RADBOUD UNIVERSITY NIJMEGEN

MASTER THESIS

Predicting chromatin accessibility with
convolutional neural networks

Author: Supervisors:
Cas VAN DEN BOGAARD Dr. Kees ALBERS
Prof. dr. Tom HESKES

July 10, 2017

http://www.ru.nl

Radboud University Nijmegen

Abstract

Predicting chromatin accessibility with convolutional neural networks

by Cas VAN DEN BOGAARD

We have trained convolutional neural networks to predict chromatin accessibility,
hoping to study the role of different transcription factors across a variety cell types.
To learn in which way these networks represent transcription factor motifs, we have
generated our own data, providing a ground truth for the patterns and interac-
tions that are relevant for the prediction. By training several networks on this self-
generated data, we learned that the network uses some of its convolution filters to
detect transcription factor motifs, while other filters are used to detect a combina-
tion of transcription factor motifs. Factorization machines, which we implemented
as a neural network layer, are used to model non-linear interactions between tran-
scription factors in self-generated data. By comparing networks with and without
factorization machines, we showed that interactions between transcription factors
might be relevant when predicting chromatin accessibility. We have also created the
motif building network, which appears to be able to handle positional dependencies
in transcription factor binding patterns better than more traditional architectures.
However, more research is necessary to show its effectiveness on real-world data.

http://www.ru.nl

Chapter 1

Introduction

Genetics research has become more and more important over the past decades, fol-
lowing advances in the techniques that allow us to sequence DNA. The Human
Genome Project, a decade long, multi-billion project, concluded in 2003, having
completed the first full mapping of the DNA of a human. Since then, costs of
sequencing have dropped dramatically, allowing anyone these days to have their
DNA sequenced for less than $1000. This cheaper sequencing of the DNA allows
for genome-wide association studies (GWAS) to be done, in which differences in the
genome of individuals can be linked to various traits. In 2006, Shinya Yamanaka
produced his Nobel prize-winning paper [1] in which he shows how mature cells
can be converted to stem cells, allowing for new ways to study cells and paving the
way for research into therapies to cure genetic diseases.

Even though huge steps have been taken in understanding the human genome,
there is still much work to be done. Uncovering the hugely complex systems respon-
sible for translating the DNA into a functional organism is a daunting task. While the
mechanisms of transcription and translation, through which proteins are produced,
are well understood, the way that these processes are regulated is not. Transcrip-
tion factors, proteins with specific binding sequences, can prevent or encourage the
start of transcription. The functions of many of these transcription factors are not yet
well understood, and neither are the interactions between them. Furthermore, the
complex three dimensional structure of the DNA can cause different regions to be
inaccessible for transcription factors, or it can bring regions that are many basepairs
apart closer, allowing for interactions that would seem distant when simply looking
at the DNA sequence.

The subject of this thesis will be that of trying to uncover the influence that differ-
ent transcription factors have on the accessibility of the chromatin, which transcrip-
tion factors are indicative of different cell types and what role interactions between
transcription factors play. We will use convolutional neural networks (CNNs) to
model the accessibility of various regions of the chromatin in different cell types and
attempt to interpret the relations that these models have learned. In the last decade,
CNNs have become some of the most popular tools in the field of machine learning.
They are at the basis of many state-of-the-art models in computer vision, but are also
applied in a wide array of other fields, such as speech recognition/synthesis and
bioinformatics. CNNs have recently been used to predict chromatin accessibility in
different cell types by directly looking at DNA sequences, showing state-of-the-art
performance. They are, however, notorious for their difficulty to interpret. This is
due to the large number of parameters that are tuned and due to operations that im-
prove model performance but hurt interpretability, such as drop-out. This results in
models where, even though one can follow all individual steps in the network and
realize how the output value is constructed, the “reasoning” behind the parameters

Chapter 1. Introduction 3

of the model is unclear.

In this thesis, there will often be mentions of the interpretability of trained net-
works or the convolution filters that these networks have learned. In those cases,
interpretability refers to the ease with which patterns that are relevant in biology can
be extracted from the network. When a convolution filter corresponds to a known
pattern, it is very interpretable. A filter which is a combination of multiple biologi-
cally relevant patterns is more difficult to interpret, and a filter which is used by the
network in some non-linear way to interact with the output of other filters is the least
interpretable. We will attempt to construct our networks in such a way that the in-
terpretability becomes high, hopefully allowing us to learn the biological reasoning
behind the relations that the networks learn.

Chapter 2

Background

2.1 Biological background

2.1.1 DNA and genetics

Deoxyribonucleic acid (DNA) is the carrier of evolutionary information for all life
on earth. It is made up of a long chain of paired nucleotides, of which there are
4 types, each characterized by a single nucleobase. Adenine and Thymine form a
pair, as do Cytosine and Guanine. With the choice of four different nucleotides, each
position in the DNA sequence can hold two bits. For humans, the total length of
the DNA sequence is around 3 billion base pairs, which contain sections that code
for certain proteins, sites where regulatory elements bind and parts with a variety of
other functions.

INMAMANMNY

Nucleosomes

wu -1
L 12Aa7]

wu gL -}
[ALLLE

£ [anan

Chromatine fibre

wu Qg - 01

FIGURE 2.1: Chromatin structure, highlighting three states in which
DNA can be present in the cell. Image produced by Santoni et al. [2]

DNA is a very long molecule and, because it is to be copied and read in a struc-
tured fashion, needs to exist in a compacted form. The DNA wraps around pro-
teins called histones, forming nucleosomes. In this relatively open structure seen
in Figure 2.1, also called “beads on a string”, proteins can easily bind to the DNA
sequence. The DNA can be further compacted by wrapping into a tightly nit fiber,
which prevents most proteins from binding to the DNA. These different chromatin
stages, each with a different accessibility, can be present at the same time.

Chapter 2. Background 5

2.1.2 Gene expression

The first step of gene expression is transcription, in which various proteins interact
with the DNA sequence to create RNA. RNA is a single-strand molecule that con-
tains the same information as the part of the DNA from which it is copied. Some
of this RNA, called messenger RNA, is then used in the creation of proteins, as it
codes for the sequence of amino-acids in the protein. These proteins will then go on
to perform a variety of tasks that are essential to life.

This process of transcription requires many complicated interactions between
the DNA and various proteins. The enzyme RNA polymerase can bind to a specific
sequence next to a gene, called the promoter. If bound to the promoter, the RNA
polymerase can start copying the information in the DNA into RNA. This binding,
however, is influenced by other proteins, which can bind to specific sequences in the
DNA. These proteins with sequence-specific binding sites are called transcription
factors (TFs) and perform a variety of functions. They can function as activator,
binding to an enhancer-site and promoting the binding of RNA polymerase to the
promoter region by bending the enhancer to which it is bound towards the promoter.
They can also function as repressor, preventing transcription by physically blocking
RNA polymerase from moving across the gene, or they can up- or down-regulate
transcription by altering the shape of the chromatin or by recruiting other proteins
to perform any of the aforementioned tasks. While the effects of these transcription
factors are important, little is known about the exact function each of the hundreds
of transcription factors in the human body has. Interactions between the TFs could
increase the complexity of this problem even further.

Transcription factors have sequence-specific binding sites, meaning that they
bind more easily to some sequences than to others. In this paper we refer to the
sequences that these transcription factors prefer to bind to are referred to as tran-
scription factor motifs.

2.1.3 Transdifferentiation

Even though every cell (excluding reproductive cells) contains the same DNA se-
quence, their behavior varies dramatically. Thanks to the regulatory processes ex-
plained in the previous section, different genes can be switched on or off, allowing
each type of cell to be tailored to their own function. This behavior, however, is
not fixed at the start of a cell’s life. Some cells have the ability to transform into
other cells in a process called differentiation, an example of which would be stem
cells, which can differentiate into all cell types of the organ from which they origi-
nate. One can imagine that pluripotent cells, which have the ability to differentiate
into any type of adult cell, can have many uses. This is the reason that in 2012 the
Nobel Prize in Physiology and Medicine was awarded to John Gurdon and Shinja
Yamanaka, who found a way to turn fibroblasts into pluripotent stem cells [1]. One
of these induced pluripotent stem cells (iPSCs), can be differentiated to any other
cell, thus allowing experimentation on different cell types by only taking a sample
of skin cells. To do this, the genes for 4 specific transcription factors are inserted into
the DNA of the cells, forcing the cells to produce these transcription factors. The
processes that are a result of these transcription factors being produced are then re-
sponsible for reversal of the process of differentiation. After this process, a similar
procedure can be employed, using a different set of transcription factors to force the
iPSC to differentiate to the desired cell type.

Chapter 2. Background 6

A more efficient way of going from a mature cell type to another mature cell type
would be to bypass the pluripotent cell type entirely, since their production takes a
long time. This direct differentiation between mature cells is called transdifferentia-
tion. The problem is that for each different transdifferentiation, one needs to know
which set of transcription factors is best suited to produce the final cell. With hun-
dreds of transcription factors and many cell types one would like to create, finding
the correct set of transcription factors can be a tiresome process.

214 Sequencing methods

Whether a protein can bind to the DNA depends on several factors. Some proteins
can only bind to specific sequences, thus only binding in places where this sequence
is present. It then also depends on the structure of the DNA, because parts of the
chromatin that are not accessible cannot be bound, even if the sequence matches the
binding site of the protein. DNase-Seq is a technique which maps this accessibil-
ity, making use of the DNase I enzyme. This enzyme can bind to any part of the
DNA that is accessible and as such, the binding sites of this enzyme, called DNase I
hypersensitive sites (DHSs), correspond to the parts of the DNA that are in an open
chromatin region. By mapping the DNase-Seq signal to the DNA sequence, one has a
way of measuring chromatin accessibility for all positions in the DNA sequence. The
DNase-Seq data used in this thesis is provided by two consortia: ENCODE [3] and
Roadmap Epigenomics [4]. Both of these consortia aim to create a comprehensive
set of data on the topics of gene regulation and epigenomics, allowing researchers
to study the complex processes that play a role in genetics. Combining both these
resources provides us with a dataset that contains chromatin accessibility data for
164 different cell types.

An alternative for DNase-seq is ATAC-seq. Just like DNase-Seq, it can be used
to study the accessibility of different chromatin regions. One of the advantages of
ATAC-seq over DNase-Seq, is that the ATAC-seq protocol does not require many
cells for an accurate sequencing. Whereas DNase-Seq is typically done on millions
of cells, one only needs 50.000 cells to run an ATAC-seq experiment [5]. Although
for the purpose of this thesis it is enough to known that both methods are acceptable
ways of mapping chromatin accessibility, an overview of the differences between
DNase-Seq, ATAC-seq and other similar methods can be found in a paper by Meyer
and Liu [6]. The research group op Kees Albers has collected ATAC-seq data for
several different cell types, aiming to study the transdifferentiation of fibroblasts to
neuronal cells. This has resulted in a dataset containing information on chromatin
accessibility in fibroblasts, iPSCs and iNeurons. These iNeurons are neuronal cells
derived from iPSCs. Along with the data for these three cell types, there is also
ATAC-seq data for three different transdifferentiation products. These cells are fi-
broblasts in which different transcription factors are overexpressed, resulting in cells
that longer behave like fibroblasts, but are also not yet fully neuronal.

Chapter 2. Background 7

2.2 Machine Learning

2.2.1 Artificial Neural Networks

Artificial neural networks (ANNSs) are models that derive their name from their sim-
ilarity to the brain. Where the brain consists of neurons that are interconnected by
their synapses, an ANN consists of interconnected units. The connections between
these units are weighted, allowing the network to learn complex interactions by
tuning these weights. This tuning is referred to as training and is usually done it-
eratively, using gradient-based methods to update the weights.

In feed-forward networks, the units are grouped in layers. In each layer, starting
in the input-layer, the output of each unit is calculated based on the outputs of the
units in the previous layer and the weights between the layers. This way, informa-
tion is propagated forward through the network. During training, the output of the
network for a certain input can be compared to the known true label corresponding
to this input. To obtain a good model, the weights need to be updated so that the
difference between the network output and the true labels is minimized. The func-
tion used to determine this difference is called the loss function. To train the network,
input samples for which the true labels are used as input for the network and the
outputs are calculated (the forward propagation). Then, the gradients of the loss
function with regards to the weights are calculated through backpropagation. This
backpropagation allows for a computation of the gradients in linear time w.r.t. the
number of weights. Using a gradient descent procedure, the weights are then up-
dated for the next iteration. The procedure used to train the networks for this thesis
is RMSprop [7], in which the learning rate is adapted during training.

There are many different ways to connect the units between layers in a feed-
forward neural network. The most straightforward way is to simply have every
unit in a layer be connected to every unit in the next layer. This type of layer is
called fully-connected or dense(see Figure 2.2). The output of a unit will then be
calculated as the weighted sum of all its inputs. That is:

N
x§l+1) = Z wg):p;l) (2.1)
j=1

0

where z;” is the output value of a unit ¢ in layer [, IV is the total number of units in
layer I and w(") are the weights between layers [and [+ 1.

Dense layers allow neural networks to learn very complex models, since each
unit can interact with every other unit. However, this is also where its problems are:
the number of connections, and thus the number of weights that need to be learned
increase quickly with increasingly large networks, which makes training more diffi-
cult. Another issue, which can easily be fixed, is that simply stacking dense layers
does not increase model complexity. A dense layer can be seen as a simple matrix
multiplication of the inputs with their corresponding weights. This means that two
stacked dense layers can always be replaced by a single dense layer. To combat this,
a non-linear activation function is applied to the output of each unit. This introduces
the non-linearity that is necessary to build a model that can handle complex prob-
lems. The function used to introduce this non-linearity is the Rectified Linear Unit
(ReLU), which sets all negative output values to zero, while doing nothing with pos-
itive output values.

Chapter 2. Background 8

Convolutional Neural Networks

In recent years, convolutional neural networks (CNNs) have proven to be very ef-
fective across a variety of classification and regression tasks, including image recog-
nition [8][9] and natural language processing [10]. A CNN is a feed-forward neu-
ral network which employs special convolutional layers to reduce the number of
weights to be learned. It does this by exploiting the translational invariance that is
present in many problems.

Figure 2.3 shows how a convolution layer works. Instead of connecting every
unit in a layer to every unit in the next layer, as is the case for dense layers, a convo-
lutional layer uses several kernels of weights that are moved across the input. Each
time the kernel is moved, the weighted sum is calculated for the part of the input
that is being overlapped by the kernel. This set of sums forms the output for the
kernel. Due to the kernels being much smaller in size than the input, the number
of parameters that must be learned is smaller. Because the problem was assumed to
be translationally invariant, this does not reduce the amount of complexity that the
network can learn.

A slightly different type of convolution is the dilated convolution, the filters of
which contain gaps in regular intervals. For each input value that the filter looks at,
it skips the next n, where n is the dilation rate. An example of this can be seen in
Figure 2.4. One could use dilated convolutions to enlarge the total receptive field
without increasing the number of weights have to be learned, sacrificing resolution
in the process. In this thesis, however, dilated convolutions will be used in an ar-
chitecture in which each input value represents a small subsequence, resulting in
adjacent input values sharing information about adjacent positions in the DNA se-
quence. Due to the skips in the dilated convolutions the network does not look at
overlapping subsequences.

2.2.2 Factorization Machines

Factorization machines, first introduced by Steffen Rendle [11], are an effective method
for modeling feature interactions. Where a naive model would include a parameter
for each feature interaction, leading to a model complexity quadratic in the number
of features n, factorization machines allow for k£ parameters per feature. The inter-
action between features happens solely through these weight vectors, thus leading
to a model with O(nk) parameters. This type of interaction has been shown to work
well for sparse data, because two features can interact indirectly, without the need
for a datapoint in which the interaction is learned directly.
The model is defined as follows:

y(x) := wo + Z w;T; + Z Z (Vi, Vj)aix; (2.2)
i=1 i=1 j=i+1

Here, y is the prediction for a given input x. wy is the bias, w; are the weights for the
linear part of the model and v; are the interaction vectors corresponding to the ith
feature. This formula can be rewritten, as shown in [11], to not contain a double sum
over the number of features:

n k n 2 n
Y00 = wo+ Y wiwi+ 5D ((Z fx) Sy e fxg> 2.3)
i=1 f=1 i=1 i=1

Chapter 2. Background

FIGURE 2.2: An example of a dense layer. Each node in one layer is

connected to every node in the next. Every connection, represented

by the lines, corresponds to a weight that the neural network can
learn.

FIGURE 2.3: An example of a convolution. The input is a 4 by 11
matrix, which is “scanned” by a kernel of size 4 by 4. Typically, a
convolution layer has multiple kernels.

FIGURE 2.4: In a dilated convolution, the kernel has regular gaps.
The example has a dilated kernel of size 4 by 3 with a dilation of 1

Chapter 2. Background 10

In this form, it is clear that y(x) can be computed in linear time w.r.t. n and k. Thus,
the output of factorization machines can be efficiently

One could also use a factorization machine as a layer in a neural network. In
that case, the input x is given by all output values from the previous layer, whereas
y(x) is then the output of a single FM node. Using multiple factorization machines,
each trained independently from the others, allows for an arbitrarily large number
of output nodes for the FM layer.

11

Chapter 3

Methods

3.1 Models for generating sequence data

To achieve our goal of better understanding the relations that the network learns,
we need to make sure that our interpretation of the relationships within the model is
correct. By generating our own dataset and varying the underlying models, we can
get a better understanding of the way that the network learns. It provides a “ground
truth” to the relations that we are trying to uncover and perhaps the knowledge we
gain from this enables us to force the network into a more interpretable representa-
tion of the model.

The data is generated in the following manner:

1. Generate a background sequence
Not all positions within a DNA sequence are informative. As we are modeling
the effects of transcription factor binding sites, all positions that do not contain
a TF motif are non-informative and, as such, belong to the background. This
background is generated first.

2. Select motifs to insert
Each sequence should contain a different set of motifs, representing the sites
that transcription factors can bind to. Each sequence might contain the same
number of motifs, or this number could vary between sequences within the
dataset. All sequences in the same dataset contain transcription factor motifs
from the same pool of possible motifs.

3. Insert selected motifs

Each motif is inserted into the sequence in such a way that none of them over-
lap. Since the motifs are represented by position probability matrices, there
are two obvious ways of inserting a motif into a sequence. One would be to
use the “consensus sequence”, meaning that for every position we select the
nucleotide with the highest probability at that position. The other option is
to sample from the probabilities such that the position frequencies across the
simulated dataset resemble those of the motifs.

4. Compute sequence accessibility
With the full sequence generated, we can determine if it is accessible according
to one of the models shown in Section 3.1.2. These accessibility models can take
into account which motifs are present, how they are positioned relative to each
other and if there are interactions between them. Multiple accessibility models
can be used to calculate accessibility for the same sequence, allowing training
to more than one target class at the same time.

Chapter 3. Methods 12

3.1.1 Background models

The most straight-forward method of generating a background is to assume that
each position is independent of the others. For every position, each nucleotide can
be chosen with a fixed probability. One can also think of more complicated ways
of generating the background sequence, in which positions are not independent of
each other, or with varying nucleotide probabilities between sequences. These more
complicated methods, however, are out of scope for this thesis, since they introduce
extra parameters to the experiments, which will only make our analyses more dif-
ficult. All experiments instead use the simple method in which, in every position,
each nucleotide has an equal probability of being chosen.

3.1.2 Chromatin accessibility models

The exact mechanisms behind chromatin accessibility are still not uncovered and as
such, it is difficult to describe a model for the effects that transcription factors have
on the accessibility of a given sequence. There are several models that try to explain
how the occurrences and positions of motifs could influence the accessibility of a
sequence. Instead of attempting the daunting task of trying to find out which of
these models best matches reality, we have implemented several of these models.
By studying different accessibility models, we try to get a better understanding of
the behavior of the neural networks used. At the very least it should possible to find
out if the networks used can learn the different accessibility models.

The additive model

In the additive model, the assumption is that each occurring motif has a linear con-
tribution to the accessibility of a sequence. The contributions of all occurring motifs
are summed and, when a specific threshold is met, the sequence is said to be ac-
cessible. In the additive model, one assumes that there are no motif interactions
and the position of each motif in the sequence is irrelevant. This is most likely an
oversimplification of reality, but it is the easiest model to work with.

The paired motifs model

A type of non-linear interaction that could occur, is that two transcription factors
only influence accessibility when they can both bind to the sequence. To model this
type of interaction, each motif in the simulation set is matched to another motif.
When two of these paired motifs are present in the same generated sequence, the
sequence is said to be accessible. If non of the motifs in a sequence belong to the
same pair, the sequence is said to be inaccessible.

Chapter 3. Methods 13

3.2 Neural network architectures

TABLE 3.1: Different network architectures used during this thesis

Baseline network
Convolution Kernel width equal to that of motifs
ReLU
AveragePooling Pooling across the whole input
Dense One unit for each output class

Factorization machines network

Convolution Kernel width equal to that of motifs
ReLU
AveragePooling Average pooling across the whole input

Factorization machines One FM for each output class

Motif building network

Convolution Small kernel of width n, initialized with all 4™ blocks

Threshold For each output value of the convolution this returns 0,
unless it is the maximum activation possible

Dilated convolution Dilation rate n, receptive field should be approx. equal
to width of motifs

ReLU

MaxPooling Pooling across the whole input

Dense One unit for each output class

In the experiments described in this paper, three different network architectures
are used with varying parameters. Table 3.1 shows the structure of these networks,
highlighting the properties of some of the layers. The baseline network has a simple
structure, with a single convolutional layer followed by a pooling operation and a
single dense layer. Experiments that are designed to help us better understand neu-
ral network behavior will therefore use this network architecture. The factorization
machines network is made to be comparable to the baseline network, allowing us
to study the effects that the added interaction term has on the generalization perfor-
mance and on its interpretability. Finally, the motif building network is designed to
capture positional dependencies, as will be shown in Section 3.6. None of the net-
works described use drop-out, as we expect that this would hurt the interpretability
of the networks.

3.3 Extracting motifs from convolution filters

Given that transcription factors play an important role in shaping the chromatin,
we expect their sequence-specific binding patterns to be prevalent in the networks
that we train. Given that a convolutional layer scans sections of the input sequence
for short patterns, we hope that the filters learned by this layer indeed correspond
to the important transcription factors. The patterns in these filters could then be
compared to a database of known transcription factor motifs, providing insight into
which transcription factors are relevant. The motifs of these known transcription

Chapter 3. Methods 14

factors are represented by position-probability matrices (PPMs), which describe the
probability for each nucleotide to be present at a given position in the binding site.
Thus, a procedure is necessary to retrieve a PPM-like representation of the learned
filters, so that matching to this known set of motifs can be done. To do this matching,
we would like to find the “average binding sequence” for each filter and use that as
PPM to match against the known PPMs. To this extent, the Basset framework[12] has
implemented a procedure that passes a set of test sequences through the network,
averaging over the sequences that activate the filter more than some threshold. This
height of this threshold is based on the sequence with the highest activation. While
this approach can work, it is computationally expensive, due to the need of running
a test set through the network. The resulting PPM will also be biased towards mo-
tifs that appear often in the set of test sequences, since their high frequency increases
their importance when determining the average sequence. As such, this method will
not result in a PPM that best represents the information in the filter. Even if the filter
activates heavily on a rare motif, the PPM will not look like this motif when there is
a frequently occurring motif that also matches the filter relatively well.

Because of the aforementioned problems, we use a procedure to directly extract
the information we need from the weights. This removes the reliance on a test set,
thus circumventing the problem of introducing a bias towards frequently occurring
motifs and removing the need to run test sequences through the network. The goal
of this procedure to extract the patterns that are learned by the filter and format them
such that they can be easily compared to the transcription factor PPMs. While we
want a “matchable” result, the resulting PPM should still represent what the filter
has learned. First, we first set all negative values to zero. This is done because we
only want to select nucleotides which have a positive contribution to the binding of
a transcription factor. Then there is a column-wise normalization to turn the positive
weights into a PPM. This means that the probabilities for each position in the binding
sequence sum to 1. The resulting PPM can then be fed to TomTom [13], which is a
tool for comparing PPMs to a database of known transcription factor motifs.

The same procedure can be used to match the filters of networks trained on self-
generated data to the motifs that were included. However, because there are rela-
tively few motifs relevant for the prediction and because those motifs are all consen-
sus sequences that are known beforehand, we can improve on the matching done by
TomTom. In this improved procedure, for each position in the filter it is determined
which nucleotides the filter is looking for in that position. A nucleotide is said to be
look for a nucleotide, when its contribution to the information content of that po-
sition is larger than some threshold. This means that a nucleotide needs to have a
relatively high value in the PPM and the position needs to have a high information
content. This results in a list of nucleotides present for each position, as can be seen
in Figure 3.1, which is compared to the list of relevant motifs. This comparison is
done by sliding the motifs across the filter to find the best match, counting the num-
ber of nucleotides that are both present in the filter and the motif at each position.
This count is then normalized by dividing through the maximum count a filter could
get, which is either the filter length or the motif length, depending on which one is
smaller. This results in a matching score for each combination of a filter and a motif.
If this score is higher than some threshold, the filter and motif are said to match.

The thresholds for contribution to the information content and matching score
are chosen after visually comparing learned filters to the motifs present in the data.
The information content threshold is chosen to be 0.1, so as to filter out positions in
which all nucleotide probabilities fluctuate around 0.25. The threshold for matching

Chapter 3. Methods 15

ICTTA

. <”<'mc i
AT

<t

"""""" ACTA
- <°T<cmc !

FIGURE 3.1: Example of the method with which a list of possible mo-

tifs is obtained from a learned filter. The positions in the source mo-

tif are scaled to information content, meaning that empty positions

correspond to those positions having an equal probability for each
nucleotide.

score is set to 0.8, so as to not exclude the matches in which a filter has learned a
significant part of a long motif. Choosing these thresholds remains fairly arbitrary,
since one has to make a trade-off between precision and recall. This is made even
more difficult by the fact that it is very difficult to determine whether the network is
really using the matched filter to detect the matching transcription factor motif, or
whether the filter is used in a different way in a later part of the network, meaning
that we are never sure if a match is correct or not.

3.4 Experiments on the baseline network

3.4.1 Varying the number of convolution filters

To study the influence that the number of filters has on the interpretability of these
filters, the baseline network is trained on self-generated data for a varying number of
convolution filters in the first layer. Choosing this number to be smaller than, greater
than, or equal to the number of motifs in the data, allows us to see what happens
when the network has respectively too few, too many or just enough filters to learn
a single filter for every motif. In the ideal case, the network would have learned a
single motif in each of its convolution filters, allowing for easy interpretation. We
expect these experiments to increase our understanding of the way in which the net-
work represents the relevant motifs, possibly providing clues as to how to improve
the interpretability of networks trained on real-world data.

Chapter 3. Methods 16

3.4.2 Training on multiple targets

Because some transcription factors have approximately the same effect on the acces-
sibility for a given accessibility model, we expect that the network has little incentive
to learn the motifs for those transcription factors separate from each other. This cor-
responds to the real-world case where certain transcription factors can behave in a
similar way in a certain cell type. However, their existence suggests that there are
cases in which they have a different function. By extending the dataset with multiple
target classes, we attempt to force the network to distinguish between transcription
factors that have a similar function in one target class. The expectation is then that
this will lead to models that are easier to interpret, because more motifs end up
in their own convolutional filter. With self-generated data, one can simulate more
“cell types” by calculating the accessibility score several times for each sequence, us-
ing a different accessibility model for each score. This reduces similarities between
the function of motifs, because they might have roughly the same contribution in
one target class, while having different contributions in another. While this is an
efficient way of decorrelating motif functions, it does assume that the similarity be-
tween transcription factor function is independent of the similarity of their motifs,
which is not necessarily the case.

3.5 Using factorization machines to discover interactions

3.5.1 Experiments on the factorization machines network

We hope to discover transcription factor interactions by utilizing the capability of
the factorization machines to capture non-linear interactions. To study how certain
interactions are represented in the network, we will look at the interactions learned
after training the factorization machines network on self-generated data. Accessibil-
ity is determined with the paired motifs model, meaning all interactions present in
the data are known. With this ground truth, the interactions found from the factor-
ization machines can be checked, providing validation for the methods of retrieving
these interactions.

We will see that, in comparison to the previous experiment, the convolution fil-
ters that the network has learned are harder to interpret. This would hinder the
search for interactions in the factorization machine, because we are looking at the in-
teractions between these filters. Not knowing what patterns these filters are looking
for makes it hard to determine what the interactions in the factorization machines
represent. Even though the network is adept at using these unintuitive filters, we
prefer filters that are more easily interpretable. To counteract this problem of in-
terpretability, training of the network is repeated after replacing the convolution
filters with those from another network, in which the convolution filters are more
easily interpretable. Fixing these filter weights ensures that they are not changed
and therefore remain interpretable. One can expect a drop in performance with this
method, since the network is no longer allowed to tune a part of its weights. How-
ever, because these weights originate from a network trained on a similar dataset,
this drop might be small enough that using this method is worth it for the increased
interpretability.

To study which interactions the network finds and whether the same interac-
tions are learned consistently, the factorization machines network is trained in 10-
fold cross-validation. Each fold uses the same convolution filter weights, originat-
ing from one of the baseline networks. This results in several factorization machines

Chapter 3. Methods 17

that are trained on the same inputs and outputs. Having several of these factoriza-
tion machines trained using the same convolution filters, we are able to study the
consistency with which the network represents important interactions. We expect
these factorization machines to value interactions between paired motifs highly, be-
cause those are the only interactions that are relevant for the prediction.

3.5.2 Proof of non-linear interactions

The baseline and factorization machines networks are designed to be comparable,
the only difference being the interaction term that is introduced in the factorization
machine. The baseline network, containing just a dense layer after the average pool-
ing operation, can only combine the filter activations in a linear fashion to create the
predictions and, as such, should not be able to capture the non-linear interactions
between transcription factors that might be present. The factorization machines net-
work, however, should be able to learn those interactions. To verify this reasoning,
a baseline network is trained on a self-generated dataset in which the accessibility
for each sequence is determined with the paired-motifs model. This network can
then be compared to the factorization machines networks trained in the previous
experiment. The expectation is that the baseline network will not be able to make a
prediction that is much better than a random guess, whereas the factorization ma-
chine network should be able to predict accessibility relatively well.

If the transcription factor network is shown to capture non-linear interactions in
the data better than the baseline network, we can test whether transcription factor
interactions play a role in determining chromatin accessibility. To this extent, both
networks are trained on real-world data. The factorization machines network having
a generalization performance that is higher than that of the baseline network would
give a strong indication that non-linear interactions between transcription factors
play a role in determining chromatin accessibility.

3.5.3 Attempting to find transcription factor interactions

Using the knowledge gained from the preceding experiments, we can attempt to find
potential transcription factor interactions that are relevant to chromatin accessibility
in the humans. One would expect that the factorization machines network that has
been trained on the real-world data has learned some of these interactions. First,
we must know what patterns the convolution filters are looking for. By applying
the extraction procedure explained in Section 3.3, a PPM is obtained for each of the
filters. Using TomTom, those filter PPMs are then matched to the database of known
transcription factors to find potential matches. Once the filters are matched, the
factorization machine vectors can be studied to see which filter interactions appear
to be the most important.

3.6 Capturing positional dependencies

In all previous experiments we attempt to directly learn the PPMs of important tran-
scription factor motifs in a convolutional layer, extracting these learned patterns us-
ing the method described in Section 3.3. This approach makes sense, seeing that the
databases of known motifs also contain PPMs for each of the motifs. When describ-
ing a motif with a PPM, the assumption is made that each position is independent
of the others. This means that the contribution of a given nucleotide to the bind-
ing strength of a transcription factor does not depend on the other nucleotides in

Chapter 3. Methods 18

ANC
i
éc: H
(T
T B

FIGURE 3.2: The transformation of the input sequence (top) to the

new representation (bottom). The bottom matrix actually consists

43 = 64 values for every position in the sequence, each corresponding
to one of the possible 3-letter subsequence.

the motif. One can think of cases, however, where this assumption does not hold.
For example, a transcription factor might bind to a sequence with either the sub-
sequence AA or the subsequence C'C' in a given position. In a PPM, this can only
be represented by giving the A and C' equal probabilities in both positions. From
this PPM, there is no way to determine that the transcription factor only binds to
the AA and C'C subsequences, while not binding to the subsequences C'A and AC.
To accurately capture this higher-order information, a different way of representing
motifs is necessary, which in turn means that the network architectures that aim to
directly learn motifs in a PPM-like representation also need modification. That these
positional relationships are relevant for predicting chromatin accessibility is shown
by Omidi and Van Nimwegen [14]. Their paper shows that models that incorporate
higher-order sequence information provide a better representation transcription fac-
tor motifs than PPMs.

Table 3.1 shows the architecture with which we will attempt to tackle this prob-
lem of positional dependence in transcription factor motifs. The basic idea is to
build up the motifs so that the network ends up with a PPM-like representation of
each motif, but in such a way that not all sequences matching that PPM-like repre-
sentation need to have a similar activation. The first two layers of this architecture
transform the input sequence, which consists of a 4-dimensional one-hot vector for
each position, to a sequence where each position is a 4"-dimensional one-hot vector,
as can be seen in Figure 3.2. In this transformed input, each position no longer rep-
resents a single nucleotide, but instead represents a block of n adjacent nucleotides.
These blocks will serve as the “building blocks”, from which the motifs will be con-
structed. The next layer in the network is a dilated convolution, which has a similar
function to the convolutional layer in previous networks. The dilation is necessary

Chapter 3. Methods 19

to prevent the filters from looking at overlapping subsequences, and results in this
dilated convolution having a similar receptive field as the convolutional layers in
previous models. This architecture allows us to interpret the filters as PPMs, while
granting the network the ability to incorporate positional dependencies.

As a proof of concept, small versions of both this network and the baseline net-
work will be trained on self-generated data, containing motifs with a variety of con-
sensus sequences. These different consensus sequences are derived from the same
PPM, but have a different contribution to the accessibility. This forces the networks
to be able to discriminate between different versions of the same motif. The hypothe-
sis is that the baseline network will be outperformed by the motif building network.
The baseline network has a single filter available for each motif, but it also needs to
be able to separate the different versions of each motif, which it should not be able
to do with only a single filter. Of course, the baseline network should still be able to
do better than random guessing, possibly by combining motifs in each of the filters
or by only trying to recognize some of the motifs. The motif building network, on
the other hand, should be able to differentiate between the different versions of each
motif, leading to a better prediction than that of the baseline network.

Having shown that the motif building network can outperform the baseline net-
work in the case of motifs with positional dependencies, we can use it to predict
chromatin accessibility on the real-world data. By training a network with an amount
of dilated convolution filters that is similar to the number of convolution filters used
by the networks of the experiment in Section 3.5.2, we can compare the performance
of the motif building network with that of the other architectures. Because the motif
building network receives more information than the baseline and factorization ma-
chines networks and is otherwise fairly similar, the network is expected to perform
at least as good as those networks. Even when there are no positional dependencies
within the motifs, one would expect that the motif building network has a similar
performance as the baseline network, because it should be able to learn the same
relationships linear relations as the baseline network.

20

Chapter 4

Experimental setup

4.1 Data

The data that will be used in the experiments in this thesis is split into two cat-
egories: self-generated data and real-world data. The real-world data consists of
two separate datasets, retrieved using different sequencing methods. One is the in-
house dataset consisting of ATAC-seq data for 6 different types of cells, as previously
highlighted in the biological background: fibroblasts, iNeurons, iPS cells, fibroblasts
and 3 transdifferention products. ATAC-seq is a genome-wide assay, meaning that
ATAC-seq signal provides a measurement of chromatin accessibility for each nu-
cleotide in the DNA sequence in each of these cell types. For each cell type, the
ATAC-seq signal is thresholded, resulting in a binary classification of accessibility
with single nucleotide resolution. Open regions are merged into the same peak when
they are located within 200 nucleotides of each other. Overlapping peaks between
cell types are also merged into peaks that are said to be open in both cell types. Then,
to provide us with input sequences of consistent length, a 600 nucleotide sequence
around each peak in the joint peak set is taken. These 600 nucleotide sequences are
used as input when training the neural networks. If the peak was present in a cer-
tain cell type, the corresponding sequence is said to be accessible in this cell type.
For the other cell types, the sequence is said to be inaccessible. In total, this results
in slightly over 640.000 sequences of 600 nucleotides, each of which corresponds to
an open chromatin region in at least one of the cell types.

The second dataset used is the combination of data from the ENCODE and Road-
map Epigenomics consortia. The sequences and their accessibilities are obtained in
a similar way as those for the in-house dataset. Following the same procedure of
peak-calling and merging peaks, there is chromatin accessibility data for 164 differ-
ent cell types, resulting in over 2 million input sequences that are accessible in at
least one of the cell types.

The datasets for those networks that are trained with self-generated data are,
unless otherwise specified, sets containing 100.000 sequences with a length of 600
nucleotides. Each sequence contains exactly three motifs of up to 20 nucleotides, se-
lected from a set of 20 different transcription factor motifs. The size of this dataset is
chosen to not be overbearing when training, while providing enough data to be able
to separate the relevant motifs from the background. Of these 100.000 sequences,
10.000 sequences are held out for testing and 9000 are held out for validation, leav-
ing 81.000 sequences to be used as training data.

Chapter 4. Experimental setup 21

4.2 Experiments on the baseline network

4.2.1 Varying the number of filters

Self-generated data, using the additive model for chromatin accessibility, is used
to train the baseline network in 10-fold cross-validation. This dataset contains a
total of 20 transcription factor motifs on which the accessibility is based. A varying
number of convolution filters is used: 10, 20 and 30. These values represent the case
where there is a number of convolution filters less than, equal to and more than, the
number of relevant motifs in the data respectively. Training is done in batches of
2048 sequences, with RMSProp as optimizer and a learning rate of 0.002. Training is
stopped after 250 epochs without improvement on the validation performance, after
which the weights with the best validation performance are saved.

4.2.2 Training on multiple targets

Again, self-generated data is used to train the baseline network in 10-fold cross-
validation, this time using 20 convolution filters. Instead of training on a single
target class, the additive model is used to generate 10 independent target classes for
which the network has to predict accessibility. The procedure for training, including
the parameters, is the same as in Section 4.2.1.

4.3 Finding relevant motifs

4.3.1 Experiments on factorization machines networks

The factorization machines network is trained in 10-fold cross-validation on a set of
self-generated data. To introduce non-linear interactions between transcription fac-
tors, accessibility for each sequence is determined through the paired motifs model.
The convolutional layer has 20 filters and the factorization machines have an inter-
action vector of dimension k = 20, both matching the number of motifs in the data.
Training is done in batches of 2048 sequences, with RMSProp as optimizer and a
learning rate of 0.001. Training is stopped after 250 epochs without improvement
on the validation performance, after which the weights with the best validation per-
formance are saved. This process is repeated twice, once training on a single target
class and once training on 10 separate target classes. After training, the motifs are
extracted from the convolution filters and matched to the motifs that are present in
the data.

When the training of this network does not result in filters that are easy to inter-
pret, training is repeated. Instead of randomly initializing the convolution weights
as one would normally, they are set to be the same as the convolution weights from
the networks in the experiments in Section 4.2.1. We are looking to study the inter-
actions between filter activations that the factorization machines have learned. To
study the consistency with which interactions are learned, the network is trained
in 10-fold cross-validation, every network using the same convolution filters. The
filters used for this weight transfer are the filters of the baseline network that has
learned the most single-motif filters.

4.3.2 Proof of non-linear interactions

A baseline network network is trained on the same paired-motifs dataset that is used
to train the previous factorization machines networks. This network has 20 filters in

Chapter 4. Experimental setup 22

its convolutional layer, matching the number of motifs in the data, and is trained to
a single target class. Training is done in batches of 2048 sequences, with RMSProp
as optimizer and a learning rate of 0.001. This baseline network is compared to the
previous factorization machines, looking at their AUC on the test set as a measure
of performance.

To study the interactions in real-world data, a baseline network and a factoriza-
tion machines network are both trained until convergence on the ENCODE+Roadmap
data. The factorization machines have interaction vectors with dimension k£ = 5.
Training is done in batches of 1024 sequences, with RMSProp as optimizer and us-
ing a learning rate of 0.001. For both networks, the weights from the epoch with the
lowest loss on the validation set are used to calculate the AUC on the test set. This
experiment is repeated with the in-house ATAC-seq dataset.

4.3.3 Attempting to find transcription factor interactions

The learned patterns are extracted from the convolution filters of the factorization
machines network trained in the previous experiment. All these extracted motifs are
matched to the CisBP database [15] using TomTom, which results in a list of poten-
tial matches. For each potential match, an E-value is given, which represents the ex-
pected number of times one expects a random match, given the size of the database.
We say that a filter has learned a transcription factor motif when its top match has
an E-value of at least 0.01. This is a fairly high threshold, given that there are 300
filters for which we apply this test. However, filters that are not matched provide
us with no information at all. We would rather incorrectly match some filters than
match no filters at all, as the latter would mean that any study of the interactions
between these filters is impossible. This does mean that all interactions found need
to be considered with the knowledge that some of the matches are expected to be
due to chance.

Chapter 4. Experimental setup 23

4.4 Capturing positional dependencies

TABLE 4.1: The three motifs used in the proof-of-concept experiment.
Each motif has 4 different versions. The differences between these
versions are highlighted in bold.

Motifs Variants Value

) TAACCTAGCTGC)
TAAGGTAGCTGC

]TAACCTA CT C TAACGTAGCTGC |
TYTTTEmT s EEE | TAAGCTAGCTGC

. CCTACTCGGATA)
1 CCTAGACGGATA

]CCTACIC P TA CCTACACGGATA |
® 7% | CCTAGTCGGATA

) ATGCAGTGGACT |
TAGCAGTGGACT

QJLE CA T A T AAGCAGTGGACT | |

wwwwwwwwwwww

-7 7 | TTGCAGTGGACT

ts

bi

As proof-of-concept, both the baseline network and the motif building network
are trained on a small set of self-generated data, consisting of 25.000 sequences of
length 300. Each sequence contains exactly one variant of each the motifs shown in
Table 4.1. These three motifs each have four different versions, of which two add to
the accessibility, while the other two do not. Accessibility is determined using the
additive model with a threshold of 1.5, meaning that a sequence is said to be accessi-
ble when at least 2 out of 3 motifs have a non-zero contribution. The motif building
network uses blocks of width 4, resulting in 256 first-layer filters. The dilated con-
volution layer has three filters, each of width 3 and a dilation matching the width
of the blocks. This leads to a filter that has a total receptive field of 12 positions.
L2 regularization with A = 0.01 is added to this second convolution. The baseline
network has three first-layer filters of width 12, matching the receptive field of the
motif building network.

After showing that this alternative architecture can work, a motif building net-
work is trained on the ATAC-seq data. This network uses blocks of length 4, result-
ing in a total of 256 filters in the first convolution layer. The dilated convolution layer
has 300 filters with a width of 5, matching both the number of filters and receptive
field of the convolution layer in the baseline and factorization machines networks
from the experiment in Section 3.5.2. Again, L2 regularization with A = 0.01 is
added to the dilated convolution layer.

24

Chapter 5

Results

5.1 Experiments on the baseline network

5.1.1 Varying the number of first layer filters

10 filters 20 filters 30 filters

| ehozomalmaa] acagTClas[5ac6scnn. |® TAAACA

DT el I

D CTMTNG | e

E & E

1S 1 WIOT. |4 CaTekT

FIGURE 5.1: This figure shows a small sample of the motifs extracted

from the first layer of the networks with resp. 10, 20 and 30 convolu-

tional filters. Each position is scaled to its information content, which

ranges from 0, when all 4 nucleotides have equal probability, to 2,

when a single nucleotide has probability 1. Chromatin accessibility
was determined with the additive model.

Three baseline networks have been trained in 10-fold cross-validation, with ei-
ther 10, 20 or 30 convolution filters. The networks with 10 convolution filters reached
an average AUC of 0.966 + 0.010, while the networks with 20 and 30 filters both
reached an average AUC of 0.984 £ 0.002.

Figure 5.1 shows a sample of what the motifs extracted from the learned filters
look like for the three networks. The figure contains examples of filters that are easy
to interpret and of filters that are hard to interpret. Some filters, such as the second
filter in the 10-filter network, or the first and fifth filters for the 30-filter network, are
easy to interpret. For each informative position, only a single nucleotide is learned,
indicating that the filters have learned exactly one motif, which is easy to match
to known motifs. Slightly more difficult to interpret are filters such as the fourth
filter of the 10-filter network or the second and third filters of the 20-filter network.
While it is clear that the filter does not correspond to a single motif, a combination
of two of the input motifs explains the learned pattern. Filters like the third filter
of the 10-filter network or the first filter of the 20-filter network are filters which do
not simply correspond to one or two input motifs. Several explanations for these

Chapter 5. Results 25

filters can be thought up, such as the filter not having converged or the filter being
necessary or helpful as modulation to other filters, but it is hard to determine which
of these explanations is correct.

Figure 5.2 shows how well the filters from the trained networks can be matched
to the input motifs. From the figure, it is clear that the interpretation of the network
benefits from having enough filters to cover the range of input motifs. Increasing
the number of convolution filters from 10 to 20 roughly doubles the number of in-
terpretable filters, especially increasing the number of filters that match to a single
motif. Further increasing the number of filters to 30 does lead to an increase in
matchable filters, although this increase is due to an increased number of combina-
tion filters, as opposed to the more easily interpretable filters that can be matched to
a single motif. As such, increasing the number of convolution filters past the num-
ber of relevant transcription factor motifs can only be helpful if one can interpret the
combination motifs. Otherwise, this extra increase provides little benefit.

5.1.2 Predicting on multiple targets

Another baseline network, containing 20 convolution filters, is trained in 10-fold
cross-validation. This time, there are 10 target classes for which accessibility has
been predicted, each determined from a different additive accessibility model. In
Figure 5.3 the number of filters matching to the relevant motifs is compared to the
filters that were learned when training the 20-filter baseline network on a single tar-
get class. Whereas the average number of single-motif filters is comparable between
these cases, the filters of the networks trained on 10 target classes vary more heavily.
Where the networks trained on 1 target class all have between 5 and 8 single-motif
filters, the networks trained on 10 classes have between 3 and 10.

5.2 Using factorization machines to discover interactions

5.2.1 Experiments on the factorization machines network

The factorization machines network is trained in 10-fold cross-validation on a sim-
ulated dataset of 100.000 sequences of 100 nucleotides long, each of which contains
3 motifs. These motifs have been randomly selected from a set of 20 motifs. Ac-
cessibility is determined with the paired-motif model. This experiment was done
with both 1 target class and 10 target classes, resulting in a total of 20 networks be-
ing trained. Not a single one of the filters that are learned by these networks was a
single-motif filter, as can be seen in Figure 5.4. For the networks trained on a single
target class, an average of 18.9 filters can be matched to multiple motifs, whereas the
networks trained on 10 target classes had an average of 16.3 combination filters. On
average, these networks have reached an AUC of 0.890+0.02. Because none of these
filters behave in an ideal way, training is repeated, but with the first layer weights
initiated by the weights from one of the baseline networks, as learned in the exper-
iments on varying the number of convolution filters. During this repeated training,
the transfered weights are fixed to prevent them from changing.

Appendix A contains a table with paired motifs and 10 tables showing the top-10
interactions for each of the factorization machine networks that have been trained
in the 10-fold cross-validation. Each table contains the 10 sets of filters with the
largest inner product between their interaction vectors. These tables show that the
network consistently learns the same interactions, many of which can be said to be
correct. On average, 7.4 top-10 interactions are correct. The remaining interactions

Chapter 5. Results

#filters

#filters

3 Average matching of convolution filters
T T

3 Single motif
30 - |mmm Multiple motifs
Bl No matches

AUC: 0.984

AUC: 0,984

20 -

15+

AUC: 0,966

10 |

10 filters 20 filters 30 filters
MNetworks

FIGURE 5.2: This figure shows how many of the filters in the baseline

network can be matched on average for the three different numbers of

filters. Chromatin accessibility was decided using the additive model.

Top error bar is for combination filters, bottom error bar for single-
motif filters.

Average matching of convolution filters
T

35 :
3 Single motif
30 - |mmm Multiple motifs
55 B No matches
50 b AUC: 0.984 AUC: 0,971
15 |
10 |
5 -
0 1 1
1 target 10 targets
Networks

FIGURE 5.3: This figure shows how many of the convolution filters

can be matched on average, when training the 20-filter baseline net-

work on either 1 or 10 targets. Chromatin accessibility was decided

using the paired-motifs model. Top error bar is for combination fil-
ters, bottom error bar for single-motif filters.

Chapter 5. Results 27

Average matching of convolution filters

35 T
3 Single motif
30 - g Multiple motifs 1
Bl No match
25 .
AUC: 0.89 AUC: 0.89
[T 2D [~ 1
2
15| |
10 | R
5 -]
0
1 target 10 targets
Networks

FIGURE 5.4: This figure shows how many of the first-layer filters can

be matched, when training the 20-filter FM network on either 1 or

10 targets. Top error bar is for combination filters, bottom error bar

for single-motif filters. Chromatin accessibility was decided using the
paired-motifs model

are always interactions between filters that both match against the same motif. The
learned interactions seem very stable, with the interaction between the HOXDS8 and
TFAPZ2E filters always being the most important and most of the interactions being
top-10 interactions in 9 or 10 folds. Figure 5.5 shows the difference in interaction
importance for those interactions that are correct and those that are not. The average
weight for a correct interaction is 1284 + 4773, whereas the average weight for an
interaction that is between filters that do not correspond to a motif pair is —607 &
1371. We apply Welch’s unequal variances t-test [16] to test whether this difference is
significant. The null hypothesis is that both sets are equal, which we test against the
alternative hypothesis that the set of correct interactions has a higher mean than the
incorrect interactions. The p-value for this test is 4.18 x 10714, which is low enough
for us to reject the null hypothesis in favor of the alternative hypothesis.

5.2.2 Proof of non-linear interactions

A baseline network was trained on the paired motifs dataset. This network reached
an AUC of 0.52, which is only a slight improvement over random guessing. The
average AUC of 0.89 that the factorization machines networks managed to achieve
is much higher, showing that a factorization machines network is indeed able to
learn non-linear interactions in a way that the baseline network is not.

To show that non-linear interactions between transcription factor motifs are rele-
vant when predicting chromatin accessibility, the baseline network is compared with
the factorization machines network after training them on the ENCODE+Roadmap
and ATAC-seq data. Both networks are trained to convergence. Figure 5.6 shows the
loss during training of the networks on the ATAC-seq data. The loss-curve for the

Chapter 5. Results 28

Histogram of interaction weights for paired and non-paired motifs

B Non-paired motifs
B Paired motifs

]

L]

=

et

=

Lt

[

o

L .
—-10000 —-5000 0 5000 10000

Weight

FIGURE 5.5: Histograms showing the difference in interaction

weights between the interactions that are between paired motifs, and

those that are not. Both histograms are normalized to correct for the

difference in data points for each set. The weights shown are the in-

ner product of the interaction vectors learned by the factorization ma-
chines across the 10 folds.

networks trained on the ENCODE+Roadmap data is similar. The baseline network
reaches an average AUC of 0.834 on the ENCODE+Roadmap data and an average
AUC of 0.804 on the ATAC-seq data, while the network with the factorization ma-
chines layer has an average AUC of 0.855 on the ENCODE+Roadmap data and an
average AUC of 0.823 on the ATAC-seq data. The mean ROC-curves have been plot-
ted for both of these networks and can be seen in Figures 5.7 and 5.8. To test whether
the difference between AUC:s is significant, we calculate the difference in AUC be-
tween the networks for each of the cell types. This results in a set of 164 differences
with a mean of (2.03 & 0.78) x 1072 (biased towards a higher AUC for the FM net-
work). Applying Wilcoxon signed-rank test [17], we find a p-value of 5.75x 1072 for
the null hypothesis as opposed to the alternative hypothesis that the mean is larger
than zero (in the direction of a larger mean for the FM network). This p-value is very
low, meaning that we can reject the null hypothesis.

5.2.3 Attempting to find transcription factor interactions

Using TomTom, we match the convolution filters in the factorization machines net-
work trained on the ECODE+Roadmap data to a database of transcription factor
motifs. Of the 300 filters, 53 can be matched to an existing transcription factor mo-
tif with a an E-value of at most 0.01. This E-value is the number of times that one
expects a random match against the target database. This threshold is chosen to not
be very strict, as we would rather have more matches for which we can look at in-
teractions. Of these matches, the first four are displayed in Figure 5.9. Many of the

Chapter 5. Results 29

Changes in loss during training

0.62 .
FM train
0.60 -
'| — FM validation
0.58 i, ~ baseline train :
| . . .
P’ — baseline validation
0.56 F " {f} ! .
S o054} -1V]
o . -
3 -
0.52 | _ |
0.50 |-
0.48 |- | o
0.46 ' - ' '
0 100 200 300 400 500
Epochs
FIGURE 5.6: Training and validation loss for both the baseline and
factorization machines networks, during training on the in-house
ATAC-Seq data.
Mean ROC-curve for the baseline and FM networks
T T T + *
P -~
-~ —
a
(s
}_

0.2 I ~ . i
- — Baseline, AUC: 0.834
- - — FM, AUC: 0.855
D_O 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
FPR

FIGURE 5.7: The mean ROC-curve for both the baseline and

factorization machines networks, after being trained on the EN-

CODE+Roadmap data. The ROC-curve is the mean of the curves of
all 164 cell types.

Chapter 5. Results 30

Lo Mean ROC-curve for the baseline and FM networks

TPR

02 — Baseline, AUC: 0.804]
— M, AUC: 0.823

0-0 - 1 1 1 1

0.0 0.2 0.4 0.6 0.8 1.0

FPR

FIGURE 5.8: The mean ROC-curve for both the baseline and factoriza-
tion machines networks, after being trained on the in-house ATAC-
seq data. The ROC-curve is the mean of the curves of all 6 cell types.

matching filters seem to have learned a pattern that alternates either A’s and T’s or
C’s and G’s. While these do match to a transcription factor motif, it is not hard to
imagine that the network could have learned these patterns for another reason than
the detection of the matching transcription factors.

In an attempt to find which interactions the network has learned, the interac-
tions with the highest contribution are ranked. However, of the 100 highest ranking
interactions, not a single interaction is between two filters that can be matched to a
transcription factor. Because not a single interaction top-100 interactions is between
filters of which the contents can be interpreted, studying of the learned interactions
is not possible.

Chapter 5. Results 31

24 C2H2_ZF_Average_ 137
21 CC
-=
‘ B
24
Al
ngg ==C 1 L= A= ~C
TN Mm Y B O ~@ e g T ¥ 03B QR 2g
filter19
2- C2H2 ZF M6372 1.01
214
-=
P i W0 — S P
- ™~ L - wn o L [--] (=] ‘O_ : ‘(_l
24
£1
: A
c s
o = ACrv. _c=XcTTvacC
TN ®m Y ®w O ~®O a0 - 803 8E e RS 3Q
filter25
2 ARID BRIGHT MS5966_1.01

FIGURE 5.9: Four matches of the convolution filters to a transcription
factor motif.

Chapter 5. Results 32

5.3 Capturing positional dependencies

Both the baseline network and the motif builder network are trained on a small self-
generated dataset, as explained in Section 4.4. On this dataset, the motif building
network reached an AUC on the test set of 0.87, whereas the baseline network only
reached 0.62. The ROC-curve for both these networks can be seen in Figure 5.11.
This shows that the motif building network is better at modeling the different effects
of various versions of the same motifs. The shape of the ROC-curve is fairly unex-
pected. A normal ROC-curve would approximate a TPR of 1.0, but would not reach
it until the FPR is also 1.0. This ROC-curve, however, suggests that the network
never makes a mistake on the predictions about which it is very sure. Figure 5.12
shows the predictions that the network has made on the test set. There are peaks
close to 0 and 1, and a wider distribution between 0.25 and 0.6. The shape of the
ROC-curve suggests that the predictions about which the network is very sure (the
0’s and 1’s) are all correct.

When training the motif building network on the ATAC-seq data, it only reached
an AUC of 0.707. This performance is worse than that of the baseline architecture on
the same dataset, as can be seen in Section 5.2.2. Figure 5.13 shows the loss during
training for the motif building network, as compared to that of the baseline network.
It shows that the network is not improving its performance, neither on the training
data nor on the validation data.

0.80 Training of the baseline and motif building networks

0.75 | — MB train loss |

-~ MB validation loss
0.70 LL — Baseline train loss |
0.65 |\ -.--- Baseline validation loss

0.60 |

Logloss

0.55 |

0.50 |

0.45 |

0.40 |

0.35 | | 1 1 |
0 50 100 150 200 250 300

Epochs

FIGURE 5.10: The loss during training for both the motif building
(MB) network and the baseline network. Training is stopped after 50
iterations with no improvement on validation loss.

Chapter 5. Results

33

TPR

#predictions

ROC-curves for proof of concept experiment

1.0

0-21 - — Baseline, AUC: 0.67|]
g — MB, AUC: 0.87
0.0 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
FPR

FIGURE 5.11: The ROC-curve for the baseline and motif building net-
works after being trained on a small set of sequences with positional
dependencies.

Histogram of predictions for the MB network

700

600

500

400

300

200

100

0.0 0.2 0.4 0.6 0.8 1.0
Prediction

FIGURE 5.12: A histogram of the predictions that the motif building
network has made on the test set of the proof-of-concept experiment.

Chapter 5. Results

34

Logloss

Changes in loss during training

0.80 : .
----- MB train

0.75 I —— MB validation 1
----- baseline train

0.70 | , o .
— baseline validation

0.65

0.60 f

0.55

0.50

0.45 I I I I

0 100 200 300 400 500

Epochs

FIGURE 5.13: The loss during training for both the motif build-
ing (MB) network and the baseline network, during training on the
ATAC-seq dataset.

35

Chapter 6

Conclusion

6.1 Experiments on the baseline network

The experiments on the baseline network were done to better understand in which
way the network represents important transcription factor motifs. Using the proce-
dure explained in Section 3.3, learned motifs were extracted from the trained net-
works and compared to those motifs that were included in the self-generated data.
This way, we learned that even though some convolution filters correspond to a sin-
gle motif, an even larger part of the filters is used to detect a combination of motifs.
By training the baseline network with a varying number of convolution filters, we
have studied the effect that this parameter has on the interpretability of the learned
filters. We found that having less filters than the number of relevant motifs in the
data is bad for interpretability, because this reduces the number of single-motif fil-
ters that the network learns. While increasing the number of filters past the number
of relevant motifs does lead to more combination filters, the number of single-motif
filters stays the same. As such, when an estimated range of relevant transcription
factor motifs is given, this experiment seems to suggest that it is better to use a num-
ber of filters at the higher end of this range, as underestimation hurts interpretability,
whereas overestimation does not.

We hypothesized that the network might group some transcription factors into a
single filter, because they have roughly the same contribution to the accessibility. In
those cases, the need for the network to be able to differentiate these motifs is small
and as such, the network might simply combine them into a single filter. Following
through with this reasoning, we trained a 20-filter baseline network on 10 target
classes and compared the results to the networks trained on a single target class.
This experiment showed that our hypothesis was wrong, as the networks trained on
10 target classes did not learn more single-motif filters than those trained on a single
target class. This shows that decorellating transcription factor functions by training
to multiple targets does not lead to more interpretable results. This also suggests
that one does not require many cell types to interpret a CNN trained on DNase-Seq
or ATAC-seq data, as interpretability is not improved when one trains the network
to predict accessibility in multiple cell types at the same time.

6.2 Using factorization machines to discover interactions

6.2.1 Experiments on the factorization machines network

We trained the factorization machines network on a set of self-generated sequences
for which chromatin accessibility is determined with the paired motifs model. This
resulted in networks that were much harder to interpret than the baseline networks.
None of the convolution filters learned by the network were single-motif filters,

Chapter 6. Conclusion 36

making matching to the relevant motifs difficult. Assuming the same happens when
the factorization machines networks trained on real-world data, this would make
matching to actual transcription factor motifs nearly impossible. This was also the
reason that we trained the network again, using the weights of the more inter-
pretable filters of previous experiments. While this helped increasing interpretabil-
ity of the network, its predictive performance decreased.

The factorization machines seemed to find a stable solution, in which the same
interactions between filters were deemed important across all folds. Most of the
interactions with the highest importance appear to be interactions between paired
motifs, showing that we can extract the correct transcription factor interactions from
the trained networks. This is the result we were expecting and it shows that the fac-
torization machines can represent non-linear interactions in the data in an intuitive
way.

6.2.2 Proof of non-linear interactions

First, we have shown that the factorization machines network are better than the
baseline network at predicting chromatin accessibility for sequences where non-
linear interactions between transcription factor motifs are relevant. This means that,
in real-world data, factorization machines should have a superior performance if
these non-linear interactions are indeed relevant.

We then showed that non-linear interactions between transcription factors ap-
pear to be relevant in the determination of chromatin accessibility in both the EN-
CODE+Roadmap data and the in-house ATAC-seq data. We did this by training the
baseline network and the factorization machines network, which differ only by the
factorization machine’s interaction term, on these datasets and comparing their gen-
eralization performance. The factorization machines network consistently reaches a
higher AUC across cell types than the baseline network, leading to a significantly
better generalization performance. This means that the non-linear relations between
average filter activations are provide a benefit when predicting chromatin accessibil-
ity. Since these filters seem to detect transcription factor motifs, this result suggests
that there are some interactions between transcription factors that influence the chro-
matin state. Even though little is known about transcription factor interactions, the
high complexity that nearly all biological processes exhibit would suggest that those
interactions are not just linear, which is consistent with the obtained results.

6.2.3 Attempting to find transcription factor interactions

Studying the interactions learned by the factorization machines did not allow us to
find transcription factor interactions. The reason for this approach not working, is
that only a small part of the convolution filters in the network could be matched
against known transcription factor motifs. For most of the filters, no matches could
be found, meaning that we do not know which transcription factor motifs these fil-
ters are looking for. This means that any interaction that includes these unmatchable
filters provides us with no information. Because all important interactions were of
this kind, we were unable to discover any interaction between transcription factors.

Chapter 6. Conclusion 37

6.3 Capturing positional dependencies

Through a proof-of-concept experiment, we have shown that the motif building net-
work can indeed perform better than the baseline network on a dataset that includes
positional dependencies within motifs. The predictions made by the baseline net-
work were slightly better than random guessing, while the motif building network
managed to reach an AUC of 0.87. This showed that this novel architecture can
indeed capture positional dependencies more effectively than the baseline network.

After the motif building network was proven to be effective at capturing posi-
tional dependencies in self-generated data, it was trained on the ATAC-seq dataset
to test its effectiveness on real-world data. However, comparing it to the baseline
network trained on the same data revealed that the motif building network did not
perform well. This was unexpected, as the network has the capacity to learn the
same relations as the baseline network. Apparently, transforming the input to be
a sequence of overlapping subsequences has made the problem of predicting chro-
matin accessibility more difficult to learn, resulting in the network not training prop-
erly. In the future, change the training parameters could show whether this network
holds promise.

38

Chapter 7

Discussion

7.1 Usage of self-generated data

One of the large issues with the interpretation of the networks, lies in the fact that
there is no ground truth for transcription factor motifs. It is known that transcription
factors play a role in chromatin accessibility, and since the network can accurately
predict accessibility, it is likely that it can recognize transcription factor binding pat-
terns. We have shown that the patterns extracted from the convolution filters of
networks trained on accessibility data can be matched to transcription factor motifs.
The list of known motifs, however, is far from complete. If a learned pattern does not
match a known motif, very little can be said about it. It might be a new transcription
factor motif, but it might also be a noisy combination of motifs or a pattern that is
useful to the network for any other reason. The same issue exists with interactions
between those transcription factors, not many of which are known. Therefore, none
of the relations that one finds from the network can be tested, meaning that they
could be interactions that were not known before, or relations that have no biolog-
ical meaning. We have tried to remedy this issue through the use of self-generated
data, which provides a way of testing whether the techniques used come up with
the correct results. This approach is far from perfect. Any model used to generate
the data is bound to be incorrect in some way, since the exact mechanisms that de-
termine chromatin accessibility are unknown. Therefore, there is no guarantee that
techniques that work for the self-generated data will also work on the real-world
data. By varying the parameters for generation of the data, we can improve our
understanding of the behavior of the networks, thereby gaining confidence that the
techniques we use will still find the correct relations when they are applied to real-
world data.

There is still a lot of work that can be done using self-generated data to further
increase understanding of the networks. Once could think of different models for
the background to determine whether some of the filters that cannot be matched
are used to filter out the background. Another possibility is to incorporate more
complex accessibility models, to end up with a model that closer matches the real-
world scenario. These experiments are out of scope for this thesis, since the goal
was not just to understand how the networks represent data, but also apply that
understanding to the real-world data.

Chapter 7. Discussion 39

7.2 Difficulties in matching combination filters

In the experiments conducted with self-generated data, a distinction was made be-
tween single-motif filters, combination filters and other filters. Matching these com-
bination filters to the motifs they represent was possible for two reasons: accessibil-
ity only depends on 20 different motifs and the fact that those motifs used consen-
sus sequences instead of having different weight values for all nucleotides for every
position. This made it relatively simple to find the motifs to which a filter could cor-
respond. For the real-world data, however, transcription factor are not the simple
consensus sequences. This, combined with the fact that more than 500 of them are
known, makes it a much more difficult task to match filters to the corresponding
motifs. TomTom is built to match motifs to the known transcription factors, which
works fairly well for the single-motif filters. However, TomTom is not well suited
for finding combination filters. It interprets the combination filter as a single motif
and looks for a matching transcription factor. Since the combination filter will look
fairly different from the motifs it is a combination of, chances that single transcrip-
tion factors match with the filter will be low.

If it were possible to match combination filters to the correct transcription fac-
tors, then much more information could be taken from the networks. We would no
longer be limited to just looking at interactions between single-motif filters. The ex-
periment in Section 5.1.1 suggests that these combination filters make up a majority
of the filters, so being able to including them in analyses could make a huge differ-
ence.

One of the things that can be improved upon, is the extraction of motifs from
the filters in a network. The current procedure normalizes every position separately,
which means that the resulting motif only depends on the ratio between different
nucleotides for each position. It completely disregards the differences in size of the
weights between positions. When one assumes that the weights across relevant po-
sitions of the filter are within the same magnitude, this is not an issue, but there is no
guarantee that this is the case. When a position in the filter is non-informative, the
network can either make the weights very small or assign the same weight to each
nucleotide. In the latter case, any input will lead to the same constant output for
that position. If the former case occurs, not all nucleotides might receive an equally
small value. While this is irrelevant for the network, since the contribution of any
of the nucleotides is insignificant, the motif extraction procedure could be fooled by
this small absolute difference between nucleotides. Looking at the experiments with
self-generated data, however, shows that the current approach actually works fairly
well.

Even though the procedure works fairly well when the network is trained on
self-generated data, there is no guarantee that the same is true when training on real-
world data. To improve on the method, one would like to take the actual weights
across positions into account. One way to do this, would be to smooth out the ratio
between nucleotides when weights are low. Since having equal values for every
nucleotide in a position is equivalent to having low weights for the whole position,
one could combine the two. By adding a constant to each nucleotide value, their
relative importances are reduced. By inversely scaling this constant with the weight
size, this approach makes the differences between nucleotides in positions with high
weights relatively more pronounced, thus making those positions more important
in the extracted motif. While an approach based on this principle might work, there
are issues. For example, when the fluctuations in weights between relevant positions

Chapter 7. Discussion 40

are large, this approach would make it harder to match the extracted motif to real
transcription factor motifs, because some of the relevant positions are smoothed as
well. Due to issues such as these, we have used the simple method described in the
paper in favor of one that is more complicated.

7.3 Proof of non-linear interactions

The experiment in which the factorization machines network is shown to outper-
form the baseline network is set up in such a way, that the only difference between
the networks is the added interaction term in the factorization machines. Compar-
ing the performance of both networks shows whether or not it is useful to combine
average filter activations in a non-linear way. The reasoning behind this, is that these
filter activations solely look at transcription factors, meaning that non-linear interac-
tions between these filters correspond to non-linear interactions between transcrip-
tion factors. While this reasoning is sound when these convolution filters indeed
only look at transcription factors, it breaks down when convolution filters are being
used for reasons other than transcription factor detection. It is not hard to imag-
ine a case in which the network uses a filter to detect nucleotide frequency in the
background, using this information in a non-linear way to improve prediction. The
baseline network cannot learn non-linear relationships such as this background cor-
rection, meaning that the difference in performance could be caused by effects other
than that of the non-linear interactions between transcription factors. While this ex-
periment still proves that interactions between filter activations provide a benefit, it
can not be seen as a proof of interactions between transcription factors.

7.4 The role of positional information

The baseline and factorization machines networks both contain an pooling layer that
averages the outputs of a convolution filter. This means that all positional informa-
tion that these networks can learn lies within these convolution filters. As such,
the network can not base its predictions on the locations of the filter activations,
meaning that distances between transcription factor binding sites, or the sequence
in which they occur are not factors that the network can take into account. Despite
these limiting factors, the factorization machines network still managed to reach an
average AUC of 0.855 on the combined Encode and Roadmap data. While this is not
as good as the network suggested in the Basset paper [12], which reaches an average
AUC of 0.895 on the same data, these results do suggest that positional information
between transcription factor binding sites might not be of great importance for the
chromatin state.

7.5 Use of MaxPooling and AveragePooling

In the motif building architecture, a MaxPooling layer is used as opposed to the Av-
eragePooling layers in previous networks. These layers have a similar function, both
reducing the output to a single value for each filter. The advantage of the Average-
Pooling layer is that there will be a difference in activation when a sequence contains
multiple motifs for which the filter has a large activation as opposed to containing
a single motif. This is not the case for the MaxPooling layer, for which motif repeti-
tion does not lead to a different output. On the other hand, an AveragePooling layer

Chapter 7. Discussion 41

can result in a sub-optimal filter having the same output signal as a filter that better
matches the target motif, because all output values are taken by the pooling layer. By
using a MaxPooling layer this effect can be avoided, because only information about
the highest activation is passed on by the pooling layer, forcing the network to learn
the full motif if it wants to detect a motif. This effect is the reason that a MaxPooling
layer is necessary in the motif building architecture, for without it, the network will
simply learn the “most optimal” block and repeat it several times, leading to filters
that do not represent actual transcription factor motifs. With a MaxPooling layer
replacing the AveragePooling, this effect is eliminated.

7.6 Sources of loss

Ideally, one would like to produce a model that perfectly predicts the chromatin ac-
cessibility for all new sequences. In practice, this is hard to achieve due to a variety
of reasons. Even on the self-generated data set, some issues could prevent us from
reaching a perfect prediction. One of these is the occurrence of motifs in the back-
ground pattern. In the self-generated data sets, the sequences have a randomly gen-
erated background pattern, parts of which are replaced with the transcription factor
motifs. Which of these motifs are inserted in the sequences determines whether the
sequence is accessible or not. This process, however, does not actually check for the
presence of randomly occurring motifs in the background sequence, which could
lead to wrong accessibility scores. A rough estimate of this happening: given a mo-
tif of width 15 and approx. 500 background positions in which a motif could occur,
one expects a motif to randomly occur once every % ~ 2 x 10° sequences. As such,
with only 100.000 sequences and 20 motifs in our generated data sets, this effect is
not something to worry about. However, for small motifs this effect becomes larger.
During development of the motif building architecture one of the networks would
not train properly. The reason for this was that the relevant motifs were only of
length 6, thus greatly increasing the chance that the background sequence randomly
contained one of these motifs. Increasing the length of these motifs to 12 solved this
problem.

A different issue that could cause incorrect predictions,is that the network simply
doesn’t have enough power to learn the relations necessary to make a correct pre-
diction. This is the case when we train the baseline network on ENCODE+Roadmap
data. Even when the network is properly trained, the restrictions imposed by the
single dense layer following the pooling layer simply do not allow it to learn more
complex models.

Finally, the data used to train the models might not allow a better prediction. In
our case, we use sequences that are 600 nucleotides long and force the network to
learn the chromatin state for these sequences. However, we might not be providing
the network with all information necessary to make the right prediction. The three-
dimensional shape of the chromatin might be such that regions of the DNA that are
millions of nucleotides away play an important role, causing the same 600 nucleotide
sequence to have a different chromatin state in different regions. To increase the
model performance in cases such as these, one needs to enrich the input data with
more information that is relevant to the prediction you want to make.

42

Appendix A

Appendix A

A.1 Experiments on the paired motif model

TABLE A.1: List of motif pairs as used in the paired-motifs model in
the experiments in section 4.3.1.

Motif 1 | Motif 2
HHEX | IRF4
ZBTB12 | NFIB
JUND SCRT1
ELK1 FOXL1
HOXA7 | NKX2-2
TFAP2E | HOXDS
ZHX1 BSX
MAX MAFG
JUNB GATA4
ZNF282 | BHLHE41

TABLE A.2: Inner product between the interaction vectors learned by

the factorization machines network, as trained in Section 4.3.1. This

network was trained on fold 1 out of 10, resulting in a total of 7 cor-
rectly matching filters.

Weights | Filter 1 Filter 2

23970 HOXDS8 TFAP2E

10052 BSX ZHX1

5367 HHEX BSX IRF4 MAFG NKX2-2
4638 TFAP2E NFIB | ZBTB12

4569 HOXA7 MAFG | FOXL1 NKX2-2
3673 MAFG MAX NKX2-2
3613 TFAP2E ZHX1 | ZHX1

3457 TFAP2E ZHX1 | TFAP2E

2893 HOXDS8 TFAP2E ZHX1
2780 HHEX BSX HHEX

Appendix A. Appendix A 43

TABLE A.3: Inner product between the interaction vectors learned by

the factorization machines network, as trained in Section 4.3.1. This

network was trained on fold 2 out of 10, resulting in a total of 7 cor-
rectly matching filters.

Weights | Filter 1 Filter 2

22696 HOXD8 TFAP2E

5926 BSX ZHX1

5058 TFAP2E NFIB | ZBTB12

4978 HHEX BSX IRF4 MAFG NKX2-2
4258 HOXA7 MAFG | FOXL1 NKX2-2
3558 MAFG MAX NKX2-2

3531 TFAP2E ZHX1 | ZHX1

3327 TFAP2E ZHX1 | TFAP2E

2911 HOXDS8 TFAP2E ZHX1

2646 HOXD8 HOXD8 BHLHE41 ELK1 MAFG

TABLE A.4: Inner product between the interaction vectors learned by

the factorization machines network, as trained in Section 4.3.1. This

network was trained on fold 3 out of 10, resulting in a total of 8 cor-
rectly matching filters.

Weights | Filter 1 Filter 2

30942 HOXD8 TFAP2E

4978 TFAP2E NFIB | ZBTB12

4972 HHEX BSX IRF4 MAFG NKX2-2
4740 BSX ZHX1

4689 HOXA7 MAFG | FOXL1 NKX2-2

3461 TFAP2E ZHX1 | ZHX1

3358 TFAP2E ZHX1 | TFAP2E

3217 MAFG MAX NKX2-2

2819 HOXD8 TFAP2E ZHX1

2576 HOXD8 HOXD8 BHLHE41 ELK1 MAFG

TABLE A.5: Inner product between the interaction vectors learned by

the factorization machines network, as trained in Section 4.3.1. This

network was trained on fold 4 out of 10, resulting in a total of 8 cor-
rectly matching filters.

Weights | Filter 1 Filter 2

37214 HOXD8 TFAP2E

6228 BSX ZHX1

5383 TFAP2E NFIB ZBTB12

4863 HHEX BSX IRF4 MAFG NKX2-2
4514 HOXA7 MAFG FOXL1 NKX2-2
3557 TFAP2E ZHX1 ZHX1

3403 TFAP2E ZHX1 TFAP2E

3245 MAFG MAX NKX2-2
2725 HOXD8 TFAP2E ZHX1
2710 IRF4 MAFG NKX2-2 | HHEX

Appendix A. Appendix A 44

TABLE A.6: Inner product between the interaction vectors learned by

the factorization machines network, as trained in Section 4.3.1. This

network was trained on fold 5 out of 10, resulting in a total of 8 cor-
rectly matching filters.

Weights | Filter 1 Filter 2

15479 HOXDS8 TFAP2E

5325 BSX ZHX1

4857 TFAP2E NFIB ZBTB12

4588 HHEX BSX IRF4 MAFG NKX2-2
4328 HOXA7 MAFG FOXL1 NKX2-2
3527 TFAP2E ZHX1 ZHX1

3309 TFAP2E ZHX1 TFAP2E

3208 MAFG MAX NKX2-2
2770 IRF4 MAFG NKX2-2 | HHEX

2698 HOXDS8 TFAP2E ZHX1

TABLE A.7: Inner product between the interaction vectors learned by

the factorization machines network, as trained in Section 4.3.1. This

network was trained on fold 6 out of 10, resulting in a total of 7 cor-
rectly matching filters.

Weights | Filter 1 Filter 2

15730 HOXD8 TFAP2E

5863 BSX ZHX1

4861 TFAP2E NFIB | ZBTB12

4766 HOXA7 MAFG | FOXL1 NKX2-2
4138 HHEX BSX IRF4 MAFG NKX2-2
3754 MAFG MAX NKX2-2

3550 TFAP2E ZHX1 | ZHX1

3366 TFAP2E ZHX1 | TFAP2E

2798 HOXD8 TFAP2E ZHX1

2705 HOXD8 HOXD8 BHLHE41 ELK1 MAFG

TABLE A.8: Inner product between the interaction vectors learned by

the factorization machines network, as trained in Section 4.3.1. This

network was trained on fold 7 out of 10, resulting in a total of 8 cor-
rectly matching filters.

Weights | Filter 1 Filter 2

40428 HOXD8 TFAP2E

5051 TFAP2E NFIB ZBTB12

4796 HHEX BSX IRF4 MAFG NKX2-2
4677 BSX ZHX1

4276 HOXA7 MAFG FOXL1 NKX2-2
3630 TFAP2E ZHX1 ZHX1

3431 MAFG MAX NKX2-2
3409 TFAP2E ZHX1 TFAP2E

2901 HOXD8 TFAP2E ZHX1
2620 IRF4 MAFG NKX2-2 | HHEX

Appendix A. Appendix A 45

TABLE A.9: Inner product between the interaction vectors learned by

the factorization machines network, as trained in Section 4.3.1. This

network was trained on fold 8 out of 10, resulting in a total of 7 cor-
rectly matching filters.

Weights | Filter 1 Filter 2

23441 HOXD8 TFAP2E

5765 BSX ZHX1

4866 TFAP2E NFIB | ZBTB12

4752 HHEX BSX IRF4 MAFG NKX2-2
4567 HOXA7 MAFG | FOXL1 NKX2-2
3517 TFAP2E ZHX1 | ZHX1

3313 TFAP2E ZHX1 | TFAP2E

3201 MAFG MAX NKX2-2

2963 HOXDS8 TFAP2E ZHX1

2570 HOXD8 HOXD8 BHLHE41 ELK1 MAFG

TABLE A.10: Inner product between the interaction vectors learned

by the factorization machines network, as trained in Section 4.3.1.

This network was trained on fold 9 out of 10, resulting in a total of
7 correctly matching filters.

Weights | Filter 1 Filter 2

22936 HOXD8 TFAP2E

5458 HHEX BSX IRF4 MAFG NKX2-2
4824 TFAP2E NFIB | ZBTB12

4590 BSX ZHX1

4571 HOXA7 MAFG | FOXL1 NKX2-2
3413 TFAP2E ZHX1 | ZHX1

3314 TFAP2E ZHX1 | TFAP2E

3236 MAFG MAX NKX2-2

2752 HOXD8 HOXD8 BHLHE41 ELK1 MAFG
2732 HOXD8 TFAP2E ZHX1

TABLE A.11: Inner product between the interaction vectors learned

by the factorization machines network, as trained in Section 4.3.1.

This network was trained on fold 10 out of 10, resulting in a total
of 8 correctly matching filters.

Weights | Filter 1 Filter 2

33950 HOXD8 TFAP2E

5374 HOXA7 MAFG FOXL1 NKX2-2
4862 TFAP2E NFIB ZBTB12

4815 BSX ZHX1

4179 HHEX BSX IRF4 MAFG NKX2-2
3534 TFAP2E ZHX1 ZHX1

3447 TFAP2E ZHX1 TFAP2E

3396 MAFG MAX NKX2-2
3003 IRF4 MAFG NKX2-2 | HHEX

2976 HOXD8 TFAP2E ZHX1

46

Bibliography

[1]

2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse
embryonic and adult fibroblast cultures by defined factors”, Cell, vol. 126, no.
4, pp. 663-676, 2006.

D. Santoni, F. Castiglione, and P. Paci, “Identifying correlations between chro-
mosomal proximity of genes and distance of their products in protein-protein
interaction networks of yeast”, PloS one, vol. 8, no. 3, e57707, 2013.

E. P. Consortium et al., “The encode (encyclopedia of dna elements) project”,
Science, vol. 306, no. 5696, pp. 636-640, 2004.

B. E. Bernstein,]. A. Stamatoyannopoulos,]J. E. Costello, B. Ren, A. Milosavlje-
vic, A. Meissner, M. Kellis, M. A. Marra, A. L. Beaudet, J. R. Ecker, et al., “The
nih roadmap epigenomics mapping consortium”, Nature biotechnology, vol. 28,
no. 10, pp. 1045-1048, 2010.

J. D. Buenrostro, P. G. Giresi, L. C. Zaba, H. Y. Chang, and W. J. Greenleaf,
“Transposition of native chromatin for fast and sensitive epigenomic profiling
of open chromatin, dna-binding proteins and nucleosome position”, Nature
methods, vol. 10, no. 12, pp. 1213-1218, 2013.

C. A. Meyer and X. S. Liu, “Identifying and mitigating bias in next-generation
sequencing methods for chromatin biology”, Nature Reviews Genetics, vol. 15,
no. 11, pp. 709-721, 2014.

G. Hinton, “Overview of mini-batch gradient descent”, [Online]. Available:
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_
slides_lec6.pdf.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks”, in Advances in neural information process-
ing systems, 2012, pp. 1097-1105.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification”, in Proceedings of the
IEEE international conference on computer vision, 2015, pp. 1026-1034.

C. N. Dos Santos and M. Gatti, “Deep convolutional neural networks for sen-
timent analysis of short texts.”, in COLING, 2014, pp. 69-78.

S. Rendle, “Factorization machines”, in Data Mining (ICDM), 2010 IEEE 10th
International Conference on, IEEE, 2010, pp. 995-1000.

D. R. Kelley, J. Snoek, and J. L. Rinn, “Basset: Learning the regulatory code
of the accessible genome with deep convolutional neural networks”, Genome
research, vol. 26, no. 7, pp. 990-999, 2016.

S. Gupta, J. A. Stamatoyannopoulos, T. L. Bailey, and W. S. Noble, “Quantify-
ing similarity between motifs”, Genome biology, vol. 8, no. 2, R24, 2007.

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

BIBLIOGRAPHY 47

[14]

[15]

[16]

[17]

S. Omidi and E. van Nimwegen, “Automated incorporation of pairwise de-
pendency in transcription factor binding site prediction using dinucleotide
weight tensors”, BioRxiv, 2016. DOI: 10.1101/078212. [Online]. Available:
http://www.biorxiv.org/content/early/2016/09/28/078212.

M. T. Weirauch, A. Yang, M. Albu, A. G. Cote, A. Montenegro-Montero, P.
Drewe, H. S. Najafabadi, S. A. Lambert, I. Mann, K. Cook, et al., “Determina-
tion and inference of eukaryotic transcription factor sequence specificity”, Cell,
vol. 158, no. 6, pp. 1431-1443, 2014.

B. L. Welch, “The generalization of student’s’” problem when several differ-
ent population variances are involved”, Biometrika, vol. 34, no. 1/2, pp. 28-35,
1947.

E. Wilcoxon, “Individual comparisons by ranking methods”, Biometrics bul-
letin, vol. 1, no. 6, pp. 80-83, 1945.

http://dx.doi.org/10.1101/078212
http://www.biorxiv.org/content/early/2016/09/28/078212

	Abstract
	Introduction
	Background
	Biological background
	DNA and genetics
	Gene expression
	Transdifferentiation
	Sequencing methods

	Machine Learning
	Artificial Neural Networks
	Convolutional Neural Networks

	Factorization Machines

	Methods
	Models for generating sequence data
	Background models
	Chromatin accessibility models

	Neural network architectures
	Extracting motifs from convolution filters
	Experiments on the baseline network
	Varying the number of convolution filters
	Training on multiple targets

	Using factorization machines to discover interactions
	Experiments on the factorization machines network
	Proof of non-linear interactions
	Attempting to find transcription factor interactions

	Capturing positional dependencies

	Experimental setup
	Data
	Experiments on the baseline network
	Varying the number of filters
	Training on multiple targets

	Finding relevant motifs
	Experiments on factorization machines networks
	Proof of non-linear interactions
	Attempting to find transcription factor interactions

	Capturing positional dependencies

	Results
	Experiments on the baseline network
	Varying the number of first layer filters
	Predicting on multiple targets

	Using factorization machines to discover interactions
	Experiments on the factorization machines network
	Proof of non-linear interactions
	Attempting to find transcription factor interactions

	Capturing positional dependencies

	Conclusion
	Experiments on the baseline network
	Using factorization machines to discover interactions
	Experiments on the factorization machines network
	Proof of non-linear interactions
	Attempting to find transcription factor interactions

	Capturing positional dependencies

	Discussion
	Usage of self-generated data
	Difficulties in matching combination filters
	Proof of non-linear interactions
	The role of positional information
	Use of MaxPooling and AveragePooling
	Sources of loss

	Appendix A
	Experiments on the paired motif model

	Bibliography

