
The selection process of model based platforms

Dré Hendriks — S4130626

July 13, 2017

First supervisor/assessor:

dr. S.J.B.A. Hoppenbrouwers

stijnh@cs.ru.nl

Second assessor:

dr. P. van Bommel

P.vanBommel@cs.ru.nl

0

Abstract

In this research we searched for the most important characteristics of

both model based platforms and organizational situations and how they

should be matched to each other. We performed interviews with industry

experts to find out how the industry looks upon the matching of situations

and platforms. We found that the most important characteristic is the

main functionality the platform provides or the situation needs. But a lot

more characteristics must be taken into account.

After we found the characteristics were found a proof of concept was

performed to see if a framework could be created to help with the selec-

tion of a platform for the situation. We created a framework using the

characteristics found earlier and asked industry experts to provide the in-

formation about the platforms and the proof of concept seems to work. So

with some further development this framework could be used to support

the platform selection process.

1

Acknowledgements

I would like to say a special thank you to Stijn Hoppenbrouwers for

all the guidance and feedback he provided during the process. I would

also like to thank the experts that participated in the research as without

them it would be impossible to do this. Last but not least I want to thank

everyone that have listened to me and provided me with feedback.

2

Contents

1 Introduction 5

2 Theoretical Background & Concepts 9

2.1 Software Procurement . 9

2.1.1 Unified procurement . 11

2.1.2 App store model . 12

2.2 Platforms . 13

2.3 concepts . 18

3 Method 20

4 Analysis 23

4.1 Definitions . 23

4.1.1 Platform . 23

4.1.2 Organizational situation 28

4.2 Match . 31

4.2.1 Definition . 31

5 Results 34

5.1 Interviews . 34

5.2 Matching Framework . 36

5.2.1 Modifiability . 40

5.3 Proof of Concept . 41

5.3.1 Cases . 41

5.3.2 Case results . 42

6 Conclusions 45

7 Future research 48

8 References 49

A Platform scores 52

3

B Cases 55

B.1 Case 1: Rabobank . 55

B.2 Case 2: Tax authorities . 59

B.3 Case 3: SpaceShare . 63

4

1 Introduction

Software development gets more important in this world of rapid IT progression.

In the last few decades software engineering went from being only for the pro-

fessional developers to the situation that even kids are making software. This

means that the community of software developers became a lot bigger and more

diverse, the community now consists of both the professional developers and the

civilian developers making software. This diversity has as a consequence that the

software development community has a wide variety of needs, as the professionals

have different, often more technical, needs than the civilians. The civilian pro-

grammers often don’t have a deep understanding of the technical background of

the tools they use, they just know how to use the tools and create applications

with them. Now this group of civilian developers gets bigger and bigger, the mar-

ket is seeing opportunities in this particular section of the software development

community. This part of the community is in need for flexible, simple, efficient,

non-technical tools for developing applications.

We see the market reacting to this by increasing effort in SaaS, PaaS and

IaaS. SaaS (Software-as-a-Service) is software offered to their customers in the

cloud. An example of this would be Google Drive, which is an online environ-

ment for keeping files and editing them. This is software that can be accessed

via a browser, which means the software doesn’t have to be installed on the com-

puter, but users can use it anywhere using any device. This can also be done

with professional software used in organizations. A level below SaaS is PaaS

(Platform-as-a-Service) which will be the main part of this research, it offers de-

velopers an online platform to help them develop, run and manage applications.

At the lowest level is IaaS (Infrastructure-as-a-Service) which offers people infras-

tructure to run applications or algorithms on, an example of this could be a data

scientist which has to run a lot of calculations once in a while. The data scientist

can rent the infrastructure it needs and thus does not have to invest heavily in

his own hardware.

In October 2016 Gartner released a paper predicting what the year 2017 will

5

bring to IT (Hilgendorf & DeBeasi, 2016). In this paper they highlight three

elements that will be important in the coming years: sense, adapt and scale.

Platforms will play a role in this development of the market. With regards to

sense Gartner writes about the Internet of Things (IoT), equipping everyday

things with sensors and use that as a sensing object for it’s surroundings. Plat-

forms play a limited role in this, platforms do enable the everyday person to build

an application. In that regard IoT is boosted a bit by the platforms as a lot of

IoT projects are hobby projects of people making cool stuff in their home for

themselves.

The next element that is going to be important according to Gartner is adapt-

ability. With all this data coming in from all the sensing, organisations must

analyse this data quickly and adapt their business on the outcome. Applications

must be built in order to transform data from system to system, this is where

the platforms come in, as many platforms focus on enabling their users to get the

data to flow from one (cloud)application to the other successfully.

The last and probably the most important of Gartner’s elements from a plat-

form perspective is scalability. Scalability is made easy by the rapid growth of

the cloud and the cloud platforms that have emerged the past years. Technically

a cloud application can start as a small project with only a few users and scale

up to millions of users in a matter of seconds as cloud providers have almost

infinite capacity. This quality makes cloud applications a good option to start an

application in, because providers provide scaling so that the application is scaled

for the amount of users it as, instead of too much or too little, this makes making

a big hardware investment obsolete.

There has been done a lot of research whether the advantages of SaaS and

PaaS solutions outweigh the disadvantages (Bhardwaj, Jain, & Jain, 2010), (Mi-

tal, Pani, & Ramesh, 2014). Those articles mainly conclude that the advantages

of cloud solutions do indeed outweigh the disadvantages in most cases. There

are also situations in which the advantages of the cloud platform do not really

provide any further value, or provide less value than the disadvantages outweigh.

Cloud platforms are in the centre of attention and are being hyped. This enables

the cloud market to rapidly grow as a lot of companies move to the cloud to

keep up with the pace of the market. This enables a lot of organizations to start

6

providing cloud services to their customers.

To illustrate the growth of cloud based software one can look at the following

statistic from Taylor (2016). This statistic shows that in 2008 12% of the busi-

nesses using Customer Relationship Management software (CRM), used it in the

cloud. In 2016 that was 87%, which is of course a huge growth. This example

shows the rapid growth of the cloud market and thus the rapid replacement of

software on premises by software that is hosted in a cloud environment.

We see that this move to the cloud is spreading from non-business critical ap-

plications like Customer Relationship Management systems to business critical

applications, for a software development company this could be software develop-

ment platforms. Although this market is just starting, there are already plenty

of organizations in the market offering cloud development platforms or PaaSs,

ranging from small start-ups to IT giants like Google and Amazon. The question

that remains unanswered in the research that is already done is: ”On what basis

can we decide which provider to choose”. How does one know which provider

offers the best solution for the situation. In this thesis we will make a start in

developing a framework for helping to make this choice. The focus will be laid

upon strongly specific business applications. As these applications are so specific

for a certain situation, the applications can not be bought off-the-shelf but have

to be tailor-made. This framework will not be a tool that provides the answer

to the decision of a platform. This framework will help to see what platforms

fits in the situation of the organization, but will not provide a definite answer.

This framework will show you a score that certain platforms have regarding the

organization’s specific situation but this does not mean that the platform with

the highest score is always the best choice, it means that the probability of plat-

forms with high scores are good platforms for the situation is high. Not every

aspect of the selection process can be measured in the framework, which makes

the framework imperfect by definition. This means that the choice should always

be made by a human that knows the imperfections of the framework and can see

that in perspective.

In this thesis we will help to get insight in what should be expected from

7

a cloud platform, and what the differences are between them. The answer our

model gives will not result in a single name of a platform which you can choose

to solve your problems, but it will provide guidance and a summary of all the

pros and cons of different cloud platforms in different organisational situations.

This is the gap that we are hoping to fill in this thesis.

This all results in the following research question: ”What are the character-

istics of organisational situations and the characteristics of IS platforms that can

help to find the match between situations and platforms?”

8

2 Theoretical Background & Concepts

There are two concepts that are connected to this thesis, that would be good

gain some insight in before starting the research. The first concept is software

procurement, because platform selection lies very close to the field of software

procurement. This is because in software procurement a big step is the selection

of the software to procure, which is similar to the selection of an online platform,

only an online platform has some other aspects to keep in mind.

The second concepts that needs background information before the research

starts is an information system platform, because this background information is

needed before we can start to look at the best way to select a platform. We will

look at what a platform is exactly, what the industry generally sees as the pros

and cons of working with a platform.

2.1 Software Procurement

There are three different methods of acquiring new software (Finkelstein, Ryan,

& Spanoudakis, 1996).

1. Buying ”off-the-shelf” software.

2. Buying software and modify it.

3. Building new software.

These options all have their pros and cons, this makes each procurement a

challenge to even pick the best way of procurement. Buying off the shelf soft-

ware is generally a cheap and labour inexpensive way of procuring software, but

without customization it may lack certain functionality or, also a disadvantage,

have too much functionality. This is a disadvantage because 1) the functionality

has been made, so it is included in the price, hence you pay for something that

you don’t actually use. 2) It may make the software excessively complicated to

use. Users have to know which functions do what and which to use and which to

leave. Plus there is an increased chance of making errors.

With the second option, buying software and modifying it, point 2 is mainly

negated, but on top of the paying for unused functionality, there has to be paid

9

to exclude that functionality from the software and adding functionality to the

software that is not normally included in the software, resulting in a higher price.

The third option has as an advantage that you only pay for what you get

and what you need. The downside is that is the price of the software might be

relatively high because it is made for a very specific context (that of the organi-

zation that the software is being made for). This means that the market for the

software is smaller, so it might only be sold to the organization that the software

is being made for, so they have to cover all the building costs. The positive side

is that the software stays within the organization and if competitive advantage

is gained, that too stays within the organization.

All these options need to be considered when an organisation is thinking about

the method of software acquisition. The question of which method to choose is

quite different relative to the situation an organization is in. For the small-to-

medium enterprises (SMEs) the choice has a whole other context than for large

enterprises as they often have already invested a lot in their IT departments.

This makes it easier for a large enterprises to build their own software because

most SMEs don’t even have an IT department, so having custom software would

require hiring a software company to build their custom software.

The field has found 10 factors that play a role in the choice for the software

acquisition method (Daneshgar, Low, & Worasinchai, 2013; Hung & Low, 2008):

• Strategy & competitive advantage; Software should be built if it is of strate-

gic value for an organisation or when it is the core competence of an organ-

isation.

• Cost ; It should be considered whether it is cheaper to build or buy the

software. Maintenance should be taken into account

• Scale & complexity ; Complex systems should be bought, because the ex-

pertise of specialised parties could be used.

• Requirements fit & commoditization & flexibility & change; Very unique

software should be built, standard software (like bookkeeping systems)

should be bought.

• Time; Building software costs more time than buying software, this should

be taken into account.

10

• In-house information systems expertise; An organisation should have the

information system expertise if they would like to build their own software

• Risk ; All sorts of risks should be considered. Buying takes away certain

risks, like performance and cost/budget risks. Building your own software

takes away the risk of lack of support and the vendor being still in business.

• Support structure; The amount of support you get with the product should

be considered.

• Operational factors ; Organisations with a lot of experience in in-house de-

velopment, might be more likely to choose the build method.

• Intellectual property ; Usually the party that builds the software has the

intellectual property of that software. If the organisation wants to have

the intellectual property of certain (strategic) software, they might want to

build it themselves.

If the choice is made to buy the software, there are still different procurement

strategies possible. The software procurement process is about managing risks,

the process is optimised to acquire software in a systematic way to try to make

the risk of buying or building the software as small as possible. Strategies are for-

mulated to guide the software procurement process. Clemons, Reddi, and Row

(1993) formulated the move-to-the-middle hypothesis predicting that business

will move to a state where non-core activities are outsourced and that organiza-

tions will engage in long-term relationships with fewer suppliers. By outsourcing

an organization is able to transfer a part of its risks to another organization. We

see this, for example, in an ERP system like SAP. By buying the SAP framework,

the organization will not have the risks that accompany building an ERP system.

This risk will be transferred to another, more specialised, organization, in this

example SAP.

2.1.1 Unified procurement

Like in every other field, software procurement is also prone to trends. One

of these trends is the unified procurement strategy, described by Kauffman and

Tsai (2009). Unified procurement means that instead of buying software from

a multitude of vendors, software is bought from a single vendor, supporting the

11

move-to-the-middle hypotheses mentioned above. A critical element in this strat-

egy is the transferred risk that it provides. This means that the risks that come

with the technology and integration thereof are transferred to the software vendor

instead of the software buyer.

Also the coordination costs will go down. The coordination costs are all costs

that are related to the coordination with the other parties including maintaining

a good relationship with them. If a multi-vendor strategy is maintained a project

with 3 vendors would be possible. This means that partnerships with 3 vendors

have to be maintained (excluding possible relationships within the vendors). This

will take significantly more resources than maintaining a partnership with just

one vendor, which is the case in unified procurement.

Another big factor with unified procurement is vendor lock-in. Because ev-

erything is bought from one vendor, it will give the vendor more power increasing

the risk that they might misuse this power in a way that is disadvantageous for

the buying party. Kauffman and Tsai (2009) says that by using a unified pro-

curement strategy a buyer actually gets more power in negotiations, because the

vendor has a lot to win or lose by maintaining the relationship. If the buying

party is going to procure a new software product, they are likely to first go to

their single vendor. This creates a mutual dependency for both the buying as the

selling party.

We also see this move to one ”provider” with development platforms. It is

more beneficial to stay with one platform, as this saves you costs like training

employees to be able to work with the platform and through the economy of scale

the licence will be cheaper per application.

2.1.2 App store model

Wenzel, Faisst, Burkard, and Buxmann (2012) made a framework which would

help decide whether it’s worth to start an extensive consulting process for the

sales process or if a transactional process is enough. This framework takes things

like price, complexity, users and implementation in consideration. If it concerns a

transactional process, there are increasingly many Business-to-Business software

12

marketplaces. An example of these marketplaces is Salesforce’s AppExchange

where extensions to Salesforce.com are as easy to buy as an app in the AppStore.

In the article they note that the market of these marketplaces is growing and that

there are increasingly more applications or extensions to applications on these

marketplaces. This trend does not apply to development platforms as those are

often a big purchase and a consulting process should be started to see what viable

options there are in the market and to see what platform would be a good fit.

Unfortunately this consulting process is not always as well performed as it would

be ideally. But often a consulting process is started because there are a lot more

things like training to take into account with the purchase.

2.2 Platforms

Before we start looking at platforms specific, we’ll take a look at where the move

to the cloud started and what is expected to still follow. Dubey and Wagle (2007)

predicts this move to the cloud back in 2007 in a way that would prove to be

highly accurate. They see some important advantages of SaaS over on premises

software.

• Payment strategy: A lot of organizations are fed up with the traditional

way of buying a software product, paying a maintenance contract and hav-

ing time-consuming and expensive upgrades made to their software. With

SaaS organizations are able to pay a monthly fee and be free of all these

pains, plus altogether it is often cheaper to pay for SaaS than on-premises

software.

• Application hosted: The software provider takes care of all the back-end

troubles and hosts the software for you, which generally has a higher avail-

ability than on premises hosting through the scale on which they operate.

They host the software of all of their customers instead of an organization

hosting only it’s own.

• Vendor lock-in: SaaS offers a low level of vendor lock-in. As most

providers use a monthly payment, if a provider does not meet the expecta-

tions or needs of the customer he can decide to move to another provider

each month, with less hassle than to start a whole procurement cycle with

a new provider and all the contractual struggle that comes with it.

13

• Maintenance/updates: It is easier for the provider to update and main-

tain the product on their own premises than it is for them to roll out an

upgrade with all of their customers. The product is upgraded and main-

tained continuously. This releases the customer of a mayor update every

3 to 5 years and making sure all the old machines and applications still

work with the new upgrade. The small and continuous upgrades make this

process a lot more gradual and less complex.

Dubey and Wagle (2007) also predicted the order certain types of applica-

tions would move to the cloud. They predicted the following four waves of SaaS

adoption:

1. Tools that are not mission critical, have low data security and privacy con-

cerns, have a distributed user base and does not need a lot of integration

with on-premises software. Examples of this kind of software are HRM ap-

plications like CRM and payroll administration. These are prime examples

thanks to their very distributed user base and as they are not mission criti-

cal, the competitive advantage of such a software product is not great. The

software just has to meet certain standards, there is not a lot of advantage

to be taken.

2. If organizations notice that the SaaS products work well in their organi-

zations they will probably be more motivated to try it in other parts of

their business products. This is still a step behind mission critical applica-

tions that provide organizations with competitive advantage, but one could

think of non-mission critical applications supporting communications with

external parties. Tools that help with interactions with other organizations.

For example the interaction between buyer and seller, logistics and supply

chain management.

3. Organizations will start to have a growing trust in their cloud software and

see that the interaction with external parties are even simplified using cloud

software, more business critical software will be moved towards the cloud.

For example software development environments might move to the cloud,

as cloud software is now growing more and more popular the software that

enables organizations to develop software will also move to the cloud and

provide these advantages on the meta level of software development.

14

4. Then they expect a new level of functionality to be developed, as in the

previous three waves of cloud adoption, this was mainly deploying the old

functionality to the cloud to gain some advantages in the business process.

This new wave will be about offering new functionality that is made pos-

sible through the use of cloud software. For example a spam- and virus

filter application that filters the traffic before it is inside the organization’s

firewall.

Right now, in 2017, we’re in the third wave. Specialised business critical soft-

ware is being moved to the cloud. The example Dubey and Wagle (2007) gave

back in 2007 is quite accurate actually, we now see online software development

platforms rising and we call them PaaS systems.

Now that it’s clear where the move to the cloud comes from, a definition of

what we consider to be a platform has to be made. In this thesis we will use the

following definition:

”A platform is an (online) environment which provides the opportunity to de-

velop, run and manage applications or information systems.”

There is two different groups of platforms (van Stokkum, 2016), one is leaning

towards model-based development. These platforms use models as the centre of

the application. These platforms often are no-code or low-code platforms, so no

or a little bit of coding or programming is needed to create the application. Sim-

plified this means that a model is created in the platform environment, segments

are dragged-and-dropped to link it all together and the application is created.

As Wim van Stokkum said: ”These platforms target the new smart developers,

not the COBOL developers. You can make anything with these. These [model

based platforms] target business process managers and business architects.” The

platform will generate the code based on what the user has modelled the model

or use existing code to run the model itself as an application. If a user for ex-

ample links an input field to a specific column of a database, the platform will

make sure that everything end-users put in that input field, is transferred to the

database. This extracts a lot of technical knowledge away from the user into the

15

framework, which means that the user needs less technical knowledge in order to

create an application in this way.

The other group of platforms is more tech-heavy and is more like a new kind of

(online) development environment. It is still a coding environment and technical

knowledge is heavily relied on. Such platforms often enable the user to use one or

more programming languages to create their application. This way more technical

knowledge is required, but it has less restrictions than the model-based platforms.

Working in a PaaS-based environment has a few major advantages in compari-

son with the traditional way of development. Important advantages are (Richard-

son & Rymer, 2014):

• Easy: Often developing using a PaaS or SaaS solution is easier than tradi-

tional developing. PaaS providers are usually used for a specific niche of the

the market. If you choose the right PaaS, the provider has added a lot of

options and functionality that make the development of your specific kind

of application easier. Also the PaaS providers have already made several

decisions for the developers like network communications. Not having to

deal with all this technical background makes the development more effi-

cient and decreases the time-to-market of the applications made with these

platforms.

• Scalability: Using PaaS also makes scalability less of an issue. Most

providers offer their customers the ability to run their applications on the

hardware of the provider as well. By doing this, if the application gets used

a lot the provider will (automatically) scale up the hardware on which the

application is running. This enables cloud providers to use the economy

of scale of their computing power as many organizations (all with their

different peak hours) use the computing power of the cloud provider. This

enables the cloud provider to create this computing power less costly than

if all organizations would create their own through the economy of scale.

• Cost: By using PaaS often payment is done only for what is actually used.

there is no licence of a certain software package all year if you don’t use it all

year. Organizations don’t have to have a lot of (expensive) servers running

day and night to be able to cope with the peak hours during the day, as

the PaaS providers will provide the scaling for you. This makes the cost

16

structure lean a lot more towards variable costs and less to constant costs,

this also means that big investments are not needed as the application gains

more usage, as payment is only done on the basis of what is used.

• Continuous integration Because most PaaS providers focus on enabling

to build cloud based applications, they are structured in a way that re-

lieves the programmer of taking care of the back-end of the system. This

enables the programmes to work on a higher level of programming abstrac-

tion, which means that they are mainly working on functionality and less

on complicated back-end instructions. This reduces the development cycle,

which means that it takes less time to build an application. This is a very

big advantage for using online platforms like these, because the market is

demanding this speed of development. This is what is called continuous

integration: the product is continuously, almost real-time adapted to the

present needs of the business.(Marko, 2017)

Of course platform based development is not all positive, it has some negative

sides as well (Lawton, 2008): vendor lock-in, reluctance to trust third party/in-

ternet with business critical application development or sensitive information.

• Vendor lock-in: As there are so many different PaaS providers, choosing

the best one for a certain project is a difficult task to start with. There-

withal business have to keep future projects or elaborations of the same

project in mind as well. If the choice for a certain platform is made, there

is no easy way to change platforms and the same platform has to be used

for the elaboration as well, otherwise the invested time and money in the

platform/application are lost. This means the choice is either recreating

the application in an other platform, thereby throwing away the made in-

vestment or staying with the same platform and be forced to work in an

inefficient manner.

• Trust: Another negative side of an online PaaS platform is the reluctance

of people to store/process important information on the internet. Busi-

nesses are not keen on storing sensitive information on the internet, as

there is a lot of legal trouble when for example personal information of

European citizens is stored outside of the European Union. Also users of

the platform have less/no influence on the security measures taken by the

17

PaaS provider, they however will have to deal with the loss of face when

data leaks. This data can be personal data which is bad but can also be

business critical information which provides the organization with a com-

petitive advantage over other businesses. This competitive advantage may

decrease or even disappear if other businesses in the industry get access to

this critical information.

Lindström (2011) tries to create a basic framework on which organization can

base their security considerations in a systematic way, in this article it is pressed

that the (security) requirements should always be checked to see if using a or a

particular cloud service provider will not violate the requirements that have been

set. If the requirements aren’t met either the platforms should not be adopted

or the security requirements should be changed.

He also states that it is best to start with non critical business processes in

the cloud than to start transferring business critical ones at once. By starting

with non-critical processes experience will be gained, which can be used in the

future. It is less disastrous to make a mistake in a non-critical process.

2.3 concepts

In figure 1 is a diagram of the concepts that play a role in this match. We

see that the match is central in the diagram. This match has meaning, the

meaning of the match is that the situation and the platform work well together

and that the platform fits well in the organizational situation the organization

is in. On the left side of the diagram is the platform and on the right side

is the organizational situation. The platform and the organizational situation

both have characteristics that should be a good fit with each other. On the left

side we see that the platform’s characteristics consists of among other things the

functionality, costs and support the platform provider provides.

On the right side of the diagram wee see that the characteristics of the or-

ganizational situation are the IT landscape, in the present form as well as how

the IT landscape is expected to be in the future. Another characteristic of the

organizational situation is the goal they have with acquiring a development plat-

form. This goal could have a operational (short term), tactical (middle term) and

a strategical (long term) component. The organizational situation also has cer-

18

Figure 1: concepts relations

tain archetypes, this archetype is consists of the four components, being process,

content, relationship and culture. More about these archetypes can be read in

4.1.2. Then only the details of the organizational situation are left, which covers

everything else, like how much scalability is needed and how much focus is on

development speed.

19

3 Method

As mentioned before the research question of this thesis is:

”What are the characteristics of organisational situations and the characteristics

of IS platforms that can help to find the match between situations and platforms?”

In order to ensure that the whole research question we divide it in multiple

sub-questions. When these are answered, the answer to the research question

should be clear and answered in full.

We divide the research question in the following sub-questions:

1. (a) What is an IS platform?

(b) What is an organisational situation?

2. What is the meaning of a match between an organisational situation and

an IS platform?

3. (a) What are characteristics of an IS platform to consider in the platform

selection process?

(b) What are characteristics of an organisational situation to consider in

the platform selection process?

4. (a) Do the characteristics we found support a match between an organi-

sational situation and an IS platform?

(b) How can this match be made

These sub-questions together will answer the research question in fully as defini-

tions and context are made to ensure a strict scope of research, the characteristics

that are important are determined and are tested when we find out how these

will help in the selection process.

The first step of this research will be defining both the interpretation of an

IS platform and an organisational situation (SQ1). In order to do so, online aca-

demic sources will be used to see what the generally used definitions are in the

academic community. This is especially important in order to have a well defined

research scope and that the same terminology is used in comparison with other

academic findings, this will decrease the chance of confusion or misunderstanding

the findings in this thesis.

20

Figure 2: Method flow

After the concepts are clearly defined and the scope is set, hypotheses will

be made with regards to the meaning of the match (SQ2). When can you say

that there is a good or a bad match? Also the characteristics of the platform and

situation (SQ3) will be searched for. Both academic and non-academic online

sources will be used to do so. By using the non-academic online sources, we hope

to get a better view on how the industry looks upon this topic as the industry

experts are usually not very present in the academic world. Because using non-

academic literature in an academic research can be tricky a lot of effort will be

put in verifying the expertise of the author of the source to make sure that it is a

serious source. This in combination with the results from the academic literature

will give a good idea as to the characteristics that are important in the process

of selecting a platform.

These hypotheses will be checked and elaborated upon in the expert inter-

views. These interviews will be mainly focussed on SQ2. We will try to find

out when an organisation thinks they’ve made a good choice en when they think

there is a mismatch. The interviews will be semi-structured, this will provide that

the right topics are handled and that the interviews can deviate a bit from the

topics if needed to get further information gain. The interviews will be recorded

in order to ease the information processing.

21

When we are on the same page as the industry and are working on something

that will actually help the industry, we will start the creation of a model which

will state what kind of characteristics of situations match with the characteristics

of platforms. By creating this model, the author is forced to apply the charac-

teristics to situations. As the characteristics are used in the model the semantics

of the characteristics and the model will be thoroughly checked. By using them

in practice, they will be approached in a practical matter, which will provide the

best results for the business.

This model will be checked in further interviews with experts from the indus-

try to make sure this research is really reflecting the state of the industry instead

of the opinion of one specific expert. The framework will be put prone to different

business cases where there is a demand for a platform. The framework will then

be tested to see what platform(s) will be recommended, finding these results and

the recommendations that the framework makes will be topic of discussion in the

interviews.

22

4 Analysis

4.1 Definitions

4.1.1 Platform

In this section it will be elaborated upon what kind of platforms are considered

in this research. The focus will be laid down so that everything that is said is

considered in the right context and confusion will be avoided as much as possible.

In the section theoretical background there already is a definition of platforms.

The focus of this thesis will be laid towards what is known as low-code plat-

forms, because speaking about all PaaS platforms would be too broad and too

complex for this master thesis. The basis of these platforms lays very close to

Model Driven Development (MDD). MDD focusses on on separating the specifi-

cation of the system functionality from the implementation of that functionality

(Ormsc et al., 2001). This is done by creating models in order to understand,

design, construct, deploy, operate, maintain and modify a system (Sharma &

Sood, 2011). Forrester (Richardson & Rymer, 2014) made the first definition for

low-code platforms that we know of:

”Platforms that enable rapid application delivery with a minimum of hand-

coding, and quick setup and deployment, for systems of engagement.”

This definition will be used as the basis, some focus will be added to be able

to make the research more specific and manageable. As this is an exploratory

research it’s good to try the concept of the research on a smaller and more man-

ageable set of platforms. The subset will consist of platforms which focus on

developing information systems in the form of internal or external facing enter-

prise applications. This combined with the definition of platforms used in the

theoretical background, will form the following definition of platforms considered

in this research:

”An online environment that enables rapid application delivery with a mini-

mum of hand-coding and provides opportunity for deploying, running and man-

aging these applications.”

23

Forrester (Richardson & Rymer, 2016) divides low-code platforms in five dif-

ferent categories using their background and functionality. These categories

are: General purpose platforms, Process application platforms, Database appli-

cation platforms, Request-handling platforms and Mobile application platforms.

In this thesis extra focus will be added by leaving out the last two of those

categories, because those both have a too specific and distinctive functionality

which will not fit nicely in the comparison. By filtering the platforms like this

there will be a set of similar platform functionality but the platforms differentiate

enough to make a reasoned choice for what platform fits the best in the particu-

lar situation. Besides that the request-handling platforms and mobile application

platforms will be ignored, we’ll make another modification to Forrester’s catego-

rization. Instead of setting up mutual exclusive categories as Forrester does, this

thesis will use not mutual exclusive categories but will allow platforms to be a

member of multiple categories to a certain extend. For example platform A is

focussing on database applications, so they are involved in the database applica-

tion platform category with a high score. But they support some basic process

modelling as well, so it also is in the process application platform category but

to a lesser extend. This allows us to score a platform on multiple focus points,

instead of labelling them general purpose without any further specification.

As general purpose will not really help us in terms of scoring a platform, this

category will be split in the other functionality of platforms that came forward

in the interviews: Rule based application platforms and Document application

platforms. This will bring our total of categories to the following four categories:

• Process application platforms

• Database application platforms

• Rule based application platforms

• Document application platforms

Obviously this is a very important characteristic to keep in mind while select-

ing a platform. These categories represent the main functionality of the applica-

tion created with the platform. For example if the structure of a business process

is to be improved, it would be wise to choose a process application platform

over a database application platform. ”The main functionality is often visible in

24

the history of the platform provider” says Wim van Stokkum in the interview

”Platforms that are really process based are often from companies that are really

process centred.” The choice of this main functionality does not only relate to the

nature of the project. It is also subject to the skills and preferences of the team.

For instance Jilt Sietsma often has a data based view of the problem: ”I’m not

going to look at how the offer is moving through the process, I do not really care

about the process and the work flow. I look at the data that is concerned.” and

”You start with making a data model, entities with attributes and relationships,

and later on you add rules to the data. For instance: if the date of creation is 2

weeks ago, make a notifications with these characteristics.”

The main functionality may be a very important characteristic to keep in

mind when selecting a platform, but it is far from the only characteristic. In a

previous chapter an explanation was given about the benefits of using a Cloud

Platform in contrast to using a traditional development environment. A platform

should be sufficient in providing these benefits. This means that scalability and

continuous integration should also be included in the platform of choice (Had-

dad, 2011). Scalability is something that usually is covered in the back-end of a

system, which means that the platform usually will take care of this problem, but

it should be checked upon to make sure that it really is supported. Continuous

integration is mostly about the speed of development. This is influenced by the

speed in which a team can update the application. This is influenced by both

the speed of development of the team and the way updates can be rolled out pro-

vided by the platform. If a platform supports the higher level of programming

abstraction mentioned in the previous sector about platforms, the development

team will be provided with the possible speed of development that is needed for

continuous integration, as there is a lot of back-end managing that is done by the

platform that will automatically be integrated in the application, removing this

duty from the obligations of the development team, meaning the development

cycle will shorten, improving the ability to quickly deliver the next version of

the software. Jeffrey Kwee said: ”People choose for using a platform because

they want to develop faster, if you look at OutSystems or Mendix, in specific

circumstances these platform can offer quicker change.”

25

Of course there a lot more characteristics that need to be considered when

selecting a platform. For example the current and predictions of the future IT

landscape of an organization. With so many different platforms for different

functionality, there is a risk of creating a spaghetti-infrastructure. If each divi-

sion of an organization is able to use their own platform an organization could

end up buying a lot of different platforms for different units of the organization,

as when this decision would be centralised there could be a lot more knowledge

sharing between developers. Developers would get the chance to specialise in a

certain platform and the benefits could be extended. Problem with trying to cen-

tralise these decisions is that ”buying a platform” is cheap enough that central

management doesn’t even have to approve the expense. This means there could

arise a growth of the platform portfolio, where enterprise architecture profession-

als are unaware of, meaning they can not do their job properly, which is gaining

strategical advantage using the benefits of the platforms and creating a platform

portfolio where synergy between the different platforms can be formed, instead

of all business units using their platform separate from each other.

Software procurement is a lot different for small organizations than it is

for large organizations, looking at IT landscape we see a difference in selection

method here, because the needs of small and large organizations are so different

here.

Small organizations often start by buying a single platform with which they

will try to solve multiple problems because they do not have the financial capac-

ity to invest in multiple platforms for different functionalities. By having this

need they would be interested in what Forrester calls general purpose platforms,

translated into our framework that would be a platform that scores high on the

multiple functionalities that the organization needs now and in the (near) future.

This means that a smaller organization has to keep in mind both the functional-

ity needed to solve the ”immediate” problem they want to fix with a platform as

well as the functionality needed to solve other problems within the organization.

Not having to buy two separate platforms (including personnel, training) will be

a huge financial relief for a smaller organization.

Larger organizations can afford to use multiple platforms for different func-

tionality. The key thing they should take care of is that the platforms in their

26

portfolio complement each other instead of providing redundant functionality. It

would be a waste to have two different platforms for displaying data from the ERP

while this can be done with just one platform, using a single platform will mean

less platform costs, less training costs and more knowledge sharing possibilities.

As Jeffrey Kwee noted: ”The cost tag often is pretty important.” A well selected

platform should add business value instead of just solving the immediate problem.

Most organizations already have an IT infrastructure before they start work-

ing with a platform. The applications that are built with the platform are built

around the existing infrastructure. This makes it very important that the plat-

form supports the use of interactions with other systems, as it often is an

application to support the core infrastructure it should have easy ways of in-

teracting with the core infrastructure. The other end of the application often

needs to have interaction with a person, this can either be a client or an internal

user, in the form of a web interface. This separation of functionality of the core

application and side application is an aspect of a new trend in IT development:

bimodal IT. Gartner (2015) defines this as:

“The practice of managing two separate, coherent modes of IT delivery, one

focused on stability and the other on agility. Mode 1 is traditional and sequential,

emphasizing safety and accuracy. Mode 2 is exploratory and nonlinear, empha-

sizing agility and speed”

This means that an organisation deploys two quite different strategies for dif-

ferent purposes. This is summed up nicely in Figure 3 from Horlach and Drews

(2016). Platforms are mainly used in the mode 2 of bimodal IT. Because of the

speed of development, possibility to work in small iterations and keep the busi-

ness close in those iterations. In this way the exploration of the business’ needs

can be experimented upon and changed rapidly based on the feedback provided

by the business/customers. This provides the opportunity to quickly see if an

experiment is viable or not.

Of course the cost of a platform play a huge role in the selection process. As

mentioned before this is a bit more relevant to the smaller organizations that are

27

Figure 3: Characteristics of mode 1 and mode 2

looking to buy a platform, but in the end the value for money has to be right,

even for the bigger organizations.

Some platforms might be of a better quality or may have provided better for

the desired functionality but if it is too expensive it might still be a bad choice.

Not every platform is equally present in different regions of the world. This

also means that the support capabilities of the platform providers are not equally

present in all regions of the world. We see certain platforms that are mainly active

in North America, they will focus their support efforts mainly on North America

because there is the most business for them. This might mean that there is worse

support in other countries.

4.1.2 Organizational situation

Before we go into the details we should have a clear vision of what we consider

to be the organizational situation. This is everything an organization can vary

in, that influences how a platform is used in an organization, thus influencing the

choice for a platform. We define the organizational situation as follows:

”The organizational situation consists of all characteristics of the situation

28

that an organization is in that can influence the choice for a platform”

The first thing that needs to be determined for the platform selection is the

goal of the adoption of the applications. This can be goals like: improving

efficiency, improving quality, decreasing costs, improve flexibility etc. An orga-

nization can have countless different reasons to adopt a platform. It is hard to

directly use the goal as an aspect of choice for a specific platform, but it is good

to keep this in mind while making the decision. For example if an organization

wants to improve the uniformity of their help desk to improve the quality of the

service they can provide, it might not be such an issue to use a more expensive

platform in contrast to when an organization is trying to reduce as many costs

from their help-desk to reduce overhead costs. Wouter van den Berg emphasizes

that from a process point of view it is better to be involved from the beginning

of the project: ”It is bothersome to join a client halfway a project where they’ve

already thought of a solution. Then you think if we could have thought with

them from the beginning we would have offered a different solution using Blueriq

than they thought of without knowing exactly what Blueriq can do.”

There is a lot of difference concerning the goal of the acquiring of a model

based platform whether the project started in the IT department or from the

business itself. As Wouter van den Berg says in the interview: ”If the demand

comes from the IT they often ask for a BPM platform but they do not know that

there are different categories of these platforms. If the demand comes from the

business they often ask for specific functionality like: Can we make this specific

call centre-interaction with it.”

Then we’re going to categorize the organizational situation on what van

Stokkum (2016) calls the organizational archetypes. This is how the organi-

zational situation is on four different aspects. For all four the aspects the situa-

tion is described to get a good view of how the organization works and what is

important for the organization. The four aspects of the organizational situation

are:

• Process: An important factor is the predictability of the process. If a

process is very predictable, another platform might be preferred than when

29

a process is very unpredictable. A predictable process might just need

an online form people can fill in and be provided with an answer. If a

process is very unpredictable, just an online form will not do because there

are too many factors to take into account. These unpredictable processes

are often harder to fully automate, but the processes often can be made

more efficient with the use of business rules platforms. Also there might

be certain regulations in an industry. For example regulations about the

documentation of the process that has to meet certain standards in the

financial business.

• Content: Another major important aspect is the content that is subject to

the new application. Is the required data always the same or do certain

choices require different kinds of data and how does the process change by

those choices. How much knowledge is needed to handle the data, is the

data only used for a simple calculation or is deep expert knowledge needed

to be able to handle the data? If more knowledge is needed to handle the

data, it often is harder to automate it into an application but if it possible to

do that, it can be more valuable than it is to automate a simple calculation.

• Relationship: The relationship the owner of the application has with the

user of the application is important as well. For example if the application

is for employees of an organization, a lot more knowledge and training can

be assumed than if the application is used by customers. It makes sense

that an application for applying for assisted living facilities should be easier

to use than an application to check your study loan as young people are

expected to be a lot more self-reliant in the digital world. But it is not only

about what can be expected from the users. It is also how the application

owner wants to treat the user. If there is a high level contact in a big

organization, it is probably not desired to have them fill in an online form,

instead personal contact is the preferred way of communication. This means

that the application needs to support the process in a different way.

• Culture: With culture things that matter are things like the amount of

trust the owner of the application has in the user of the application. Some

things to consider are what is there to gain for the users of the application

and what kind of fraud can they perform to have personal gains.

30

4.2 Match

4.2.1 Definition

It is hard to define a match between a platform and a organizational situation

because it is an abstract thing. There isn’t a real solution to solve this problem.

Several platforms might fit in an organization, however some might be better

than others, it is hard to say which one is best, partially because we can not

see in the future or know how the situation would have evolved if a different

platform was chosen. To be able to make an argued decision there has to be a

decision making process that is as objective as possible. It is important to make

the notion that a decision making process like this in this situation can never be

truly objective because choices have to be made by humans and those choices

can never be made 100% objectively. The process we will use to approach objec-

tivity is Multiple Criteria Decision Analysis. This is a process in which decisions

dealing with multiple criteria are analysed in an as objective as possible manner.

MCDA tries to provide the option that maximizes welfare (Guitouni & Martel,

1997). They also point out that MCDA supposes that the situation is isolable

and has strict boundaries, this is the only way to calculate what the best option

is, as too much interference from factors that are not considered in the MCDA

process, will make the calculation less reliable. In our case this is not fully cor-

rect as an organizational situation can never be captured in a limited amount of

factors as there are limitless factors influencing the situation. Still we chose to

use this technique as the answers it will provide do not have be viewed as the

answer to the question: ”Which platform to select?”, but should be viewed as

an substantiated ranking of options, which can be used as an indication of which

options might be best, considering the situation.

Multiple Criteria Decision Analysis is a process that consists of multiple ac-

tions that need to be taken (Dodgson, Spackman, Pearman, & Phillips, 2009).

1. Determine decision context: First of all the decision context has to be

determined. The context is needed for the decision because it provides value

to the decision. Why is this decision being made? The decision has to have a

goal, it has to be made to provide value to the organization. It is important

to know how the choice is going to help the organization. Which aspects

31

of the organization are important in this decision? Also the stakeholders

have to be determined, they might be able to help in the decision process.

They should also be involved in the decision making process to improve

involvement in the decision which is highly likely to improve the support

for the decision, because they themselves were a part of the decision.

2. Identify options: Here all viable options are selected. Every option, in

our case each platform that is on the list to be considered are searched

for and selected for the scoring step, this can also be the combination of

multiple platforms and creating synergy through that. Two platforms might

complement each others functionality towards the level that it exceeds a

singular, more complete, platform.

3. Identify criteria: Identifying the criteria means to find the characteris-

tics on which the scoring will be done. The criteria selected should be all

criteria that play a role in the decision. This might be just a little role, but

everything that matters in the decision should be identified in this step. All

the criteria together should give a complete view of the option as a whole.

All stakeholders can be used to propose criteria that influence the decision

to try to get an as complete as possible view of the option. This step might

be visited later on in the process if something is forgotten in the first it-

eration. This completeness will make the goal and a complex thing like a

platform more or less tangible and through this workable. The criteria can

also be clustered under the different objectives of the process in order to

ensure that the criteria are kept in a organized fashion.

4. Score options on criteria: In this step the actual scoring happens. All

options are scored on how well they perform on all of the criteria. If an

option scores poorly on a criterion, it will get a low grade. If an option scores

well on a criterion it get a high grade. These scores can be obtained from

actual measurements, but as this is not always possible it might also be an

(argued) estimation or studies performed by third parties. It is important

to score the criteria in such a way that they are comparable to the scores

of other criteria in order to make the final analysis.

5. Weight criteria: In this step an analysing party can prioritize the criteria

by putting a weight on all the criteria. If a criterion is very important to

the organization it will give the criterion a very hight weight. This is where

32

the context determined in the first step comes in. To determine the priority

of the criteria, one must know where the priorities of the organization lay,

therefore the context determined before is used in the weighting process. It

is possible that multiple sets of weights are made by different stakeholders in

the decision process as for example the IT department might have different

priorities than the board of directors.

6. Combine weights and scores: This is where the final scores of all the

options are calculated. The scores are multiplied by the respective weights

and those are all added together. By multiplying the higher prioritized

criteria have a bigger share of the total final score and by adding them all

together, there is an easy way to compare the options as a whole.

7. Examine results: Here the results are transformed in a way that they

can be evaluated. The best way to do this is not to just come up with the

option with the highest ranking but indicate the ranking of the options so

people can see the scores and not just the best option. This provides a

more complete image of the analysis than just pointing out the winner.

8. Perform sensitivity analysis: Then a sensitivity analysis is performed

to see if the results make any sense and if nothing is neglected or prioritized

wrongly. In this step priorities can be tweaked if some priorities are laid

down wrongly. Looking at the separate weighted scores of criteria, one can

notice that a certain criterion has more influence on the end result than

it should, then the weight shall be lowered. What are the advantages and

disadvantages of the good options? If all the results are to everybody’s

liking a recommendation can be made. In order to provide an as complete

as possible image of the analysis, all the assumptions and uncertainties that

are noticed in the whole MCDA are to be included in this recommendation.

33

5 Results

5.1 Interviews

For this research there we two different kinds of interviews held with four different

experts. The experts are Wim van Stokkum, Wouter van den Berg, Jilt Sietsma

and Jeffrey Kwee. An overview of the interviews can be found in table 1.

The first interview was held with all the experts and was about platform se-

lection in general, the goal of this interview was to get a general idea of how

platforms are treated in practise and how businesses approached them. Also the

way industry is selecting which platform they’re going to buy or use for their

projects. The interview was semi-structured to make sure that the needed infor-

mation was not to be forgotten about and the experts also had the room to add

information they thought was relevant. There were two different sets of questions

for the different experts. There was a set for the PaaS providers and a set for

the PaaS procurement (the users). The following questions were the basis of the

interviews.

PaaS provider

1. Do you have a specific target niche focussed for your platform.

(a) What is the niche?

2. Why did(n’t) you focus on a niche?

(a) Was there a gap in market? Was there a gap in functionality of other

platforms?

3. What are the needs of the niche/market? What kind of projects do you

expect them to have?

4. How is the platform designed with these needs in mind?

(a) What platform characteristics did you make/use/focus on?

5. How do customers (with certain characteristics) react to those specific char-

acteristics in the platform?

(a) Do the platform characteristics really match with situational needs?

6. How do customers (with certain characteristics) react to the platform as a

whole?

34

PaaS procurement

1. Do you use (a set of) specific PaaS providers? Which?

2. Why do you use this specific platforms? Do they have specific characteris-

tics that you’re interested in?

3. What does your customer base look like? Big/small companies? How are

their technical skills developed?

4. What (classes of) situations/projects do you expect with your customers?

5. How do you match a platform with a customer?

6. What are generally good/bad choices with situational characteristics and

platform choice?

7. Do you have any specific examples of good/bad matches?

The second interview was only done with Wim van Stokkum and Jeffrey

Kwee. By the time this interview took place, the first version of the framework

was already created. The goal of this interview was to check if the concept of

this framework was the right one and if the right results would be gotten. The

interview was constructed of two parts.

The first part of the interview was filling the platform scores for a few plat-

forms that the experts were familiar with. These scores would be the backbone

of the framework and would eventually determine the scores of the platforms

on the organizational situation. The overlapping platforms were PEGA, Mendix

and OutSystems. Wim van Stokkum also provided the values for Blueriq, al-

though it would be better to have a second opinion on those scores to decrease

Table 1: Interviews

Date Expert Subject Length Remark

07-12-2016 Wim van Stokkum Platform selection 90 min

22-12-2016 Wouter van den Berg Platform selection 80 min

05-01-2017 Jilt Sietsma Platform selection 70 min

06-01-2017 Jeffrey Kwee Platform selection 70 min

13-06-2017 Wim van Stokkum Framework testing 60 min

16-06-2017 Jeffrey Kwee Framework testing 70 min Telephone

35

the chance of those scores being consciously or unconsciously biassed, we made

the decision to use these scores in the framework as well, because Mendix and

OutSystems are very similar platforms and it is preferable to have a few different

kinds of platforms in the framework. This provides the opportunity to test the

framework in a better way than if there would only be two genres of platforms in

the framework. The exact scores the experts provided can be found in appendix A

In the second part of the interview we took a look at some fictive cases.

Before the interview three cases were prepared. All of those cases were focussed

on different platforms, to test if the framework would come up with these/similar

platforms. These cases are further elaborated upon in section 5.3. For these cases

scores of the needs of the organizational situation were filled in in the framework.

The framework made the calculations and the final scores came out. The scores

will be discussed in section 5.3. All the scores can be found in appendix B.

5.2 Matching Framework

Table 2 is the framework used for scoring the situation and the platforms. The

framework consists of multiple columns.

1. Characteristic: The name of the characteristic that is being scored.

2. Score: This is the score that the customer can fill in to indicate the situ-

ational need. If someone for example wants a platform with a high devel-

opment speed, they should score Development speed -characteristic with a

high score. In table 2 this column is filled with the possible scores of that

characteristic.

3. Weight: This metric indicates the priority of the characteristic. If some

characteristic has a high weight, the influence of that characteristic on the

result will be higher, due to the multiplication of the score and weight. We

recommend that users of the framework modify the weights as this is a big

factor of the final score and this is very different for every situation. For

instance some companies might have a lot less financial means than others,

they should increase the weight of the Cost-characteristic.

4. Platform score: The score a specific platform scored for this character-

istic, this will be filled in by experts that have an understanding of how

36

the platforms work and what their advantages and disadvantages are with

respect to other platforms.

5. Platform score*Weight*Score: This is the platform score multiplied

with the weight and the score. This calculation is made for all the different

platforms that are taken into consideration. If this amount is added up for

a specific platform, the total score will be acquired.

In the rows of the framework are the different characteristics that the situation

and the platforms are scored on. The following are all the characteristics.

• Process enablement: This metric is about how much working with pro-

cesses is enabled. Things to take into consideration here are: is it possible

to model out your processes? how easy is it to transform those processes

into working functionality?

• Data enablement: Data enablement is about how much working with

data is being enabled by the platform. Can you create a data model?

What can you do with these models?

• Rule enablement: This is about the enablement of business rules in the

platform. Is it possible to create business rules? What other functionality

do you get with these rules?

• Document enablement: This is for how much the platform enables the

use of documents. Often when this metric is high the documents are the

centre of the application. Documents are changed or added to and sent on

into the system again for further use.

• Development speed: This is about how fast the development goes. How

long does it take to create an application using this platform? A high score

means a high development speed.

• System integration: This metric is about how much external interaction

is supported by the platform. How easy is it to connect with other systems?

How many possibilities are supported to interact with external systems.

• Variable cost system: This is about how the cost system of the platform

is set up. Are there a lot of variable costs (c.q. do organizations only pay

for what they use)? Or are there a lot of constant costs?

• Technically unique: This metric is about how much technically different

things are possible with the platform. Or can you basically only make the

37

same thing in a different skin with different data?

• Non-technical knowledge only: How far can a person with limited tech-

nical knowledge get with the platform? Is it possible for someone to make

a simple application with it?

• Business model unique: How many different kind of applications can

someone make with the platform?

• Scalability: This is about how well the applications created by the plat-

form scale to many users.

• Version control (reversibility): Is there a version control system in

place? Can the application be rolled back to a previous state and continue

working.

• Support: How well is the support organized? How easy is it to get help

with the development in the platform from the provider.?

• Costs: This metric is about the total costs of using the platform. A high

score means that the costs are low.

38

Table 2: Matching framework

Characteristic Score Weight Platform score Platform score*Weighted*Score

Functionality

Process enablement 1-5 7

Data enablement 1-5 7

Rule enablement 1-5 7

Document enablement 1-5 7

Cloud characteristics

Development speed 1-5 3

System integration 1-5 3

Scalability 1-5 2

Variable cost system 1-5 2

Development

Technically unique 1-5 3

Non-technical knowledge only 1-5 3

Business model unique 1-5 3

Beauty

Version control (reversibility) 1-5 1

Support 1-5 2

Costs 1-5 5

SUM SUM

39

5.2.1 Modifiability

As we give openness about how the framework works and all the calculations

are quite easy and understandable, the framework is very flexible towards being

changed if desired, we recommend at least changing the weights, because priori-

ties with different situations are always different as well. But someone can change

a whole lot more to the framework if desired, for instance someone could change

the scoring scales. We chose for a 1-5 scoring scaling because it offers enough

diversity between the different scores, this way meaning can be given towards the

different scores. One has to keep in mind thought, that if not all the scores are

changed in the same way the impact that the characteristics have will change as

well. Basically if the possible score goes up, intrinsically the weight has gone up

with it. For example if the score of 1-3 is changed to 1-7, an average situation

would score 2 on the original score and 4 on the modified score, so basically the

weight has been intrinsically doubled. To prevent this problem from occurring is

to either change all the scores in the same way or to modify the weight so that

the score has a similar impact, in the example given above the weight would have

to been halved.

But this is not everything that can be changed, people can leave out charac-

teristics if they want to. People might also want to add certain characteristics

and they can if they know the platform values for these characteristics them-

selves. Another thing users might want to change is the platform scores on the

40

characteristics even though they are provided by experts. Although this of course

should be done with care as these scores are carefully set by experts.

5.3 Proof of Concept

5.3.1 Cases

Case 1: PEGA

The first case is a case of Rabobank, one of the big banks in the Netherlands.

The bank noticed big technological innovation taking place in the banking system.

They think that if they want to keep up with this innovation they need to make

more applications. These systems will be linked to their ERP, in order for it

to have access to the data used in these applications. The applications they

want to add are pretty complicated and mostly data and rule based. They have

enough financial means to train people in the use of the platform. They already

have employees that are trained in modelling. It is important for the bank that

the applications are scalable, because they have about 7.5 million clients. The

situation can be summed up as follows:

1. Big organization: Rabobank

2. Want to add more applications to their ERP

3. Data and rule based

4. Enough budget to train experts internally

5. They have modelling experts

6. Needs to be scalable

Case 2: Blueriq

This case is about the Dutch tax authorities. They have enough financial needs

but they want don’t want to spend too much on the project, because there is some

pressure from the government to keep the costs low, because of the expensive,

failed government projects. They don not have the technical knowledge yet, but

that can be trained. They want to make an application that will help start-ups

to determine how much tax they have to pay, which is a very knowledge-intensive

application.

1. Dutch tax authorities

2. Have medium budget

41

3. Technical knowledge can and have to be trained

4. Decision support for start-ups.

5. knowledge-intensive

Case 3: Mendix

This is the case of a start-up called SpaceShare, which rents office and meeting

space to people. They want to create an app-like self service application, which

enables their customers to rent spaces and create monthly invoices. This is mainly

data based and a bit document based for the invoices. Development speed is

pretty important for them, because currently this takes up a lot of time and

effort of their employees and customer often complain that it takes too much

effort to reserve space. Costs are pretty important for SpaceShare as they don’t

have a lot of financial means yet.

1. Start-up: SpaceShare

2. Space-renting

3. Self service application

4. Technical knowledge can be trained

5. Mostly data based

6. Development speed has some priority

7. Costs are important

5.3.2 Case results

In the interview with Wim van Stokkum we scored the platforms: Blueriq, PEGA,

Mendix, Filenet and Drools (a simple open-source rule engine). He later provided

the scores on OutSystems by email on request.

Case 1 (focussed on PEGA) resulted in the framework recommending PEGA

with a score 17% higher than Blueriq (the second highest score).

The second case (focussed on Blueriq) resulted in the framework recommend-

ing PEGA followed by Blueriq. PEGA was 9% higher than Blueriq.

The third case (focussed on Mendix) resulted in the framework recommending

Mendix followed by PEGA. Mendix only had a 1% higher score than PEGA. In

this case there was quite some focus on costs and with PEGA being very expen-

sive, the customer should probably not take PEGA into consideration, simply

42

because they can not afford it. Also PEGA got high scores on support, but they

mainly have good support in the United States, so a European organization could

choose to lower the support score for PEGA, which would induce a decrease in

PEGA’s total score.

In the interview with Jeffrey Kwee we scored the platforms: Mendix, OutSys-

tems, BeInformed and PEGA. During the interview we decided to change some

things. We changed some names of the characteristic, either to clarify them or

to make them a better fit with the concept that was behind the name. We also

decided to take out the characteristics Uses engine, which was a score on how

good the engines of the different platforms were, and Supports evolutionary appli-

cations, because for a customer this does not really matter when making a choice

for which platform to acquire.

In the first case, focussed on PEGA, the framework recommended PEGA

followed by Mendix and then OutSystems. PEGA was 4% higher than Mendix

and 7% higher than OutSystems.

In the second case, focussed on Blueriq (which was not scored by Jeffrey)

the framework recommended using PEGA followed by Mendix. PEGA was 11%

higher than Mendix. We considered this a good result because PEGA is the

platform that comes the closest to Blueriq.

In the third case, focussed on Mendix, the framework recommended Mendix

followed by OutSystems. Mendix was 6% higher than OutSystems.

Then we took the platform scores together by averaging the scores both ex-

perts gave and looked at the results again. We left Blueriq, PEGA, Mendix and

OutSystems in the framework for scoring.

In the first case, focussed on PEGA, PEGA was recommended by the frame-

work, followed by OutSystems. PEGA scored 9% higher than OutSystems.

In the second case, focussed on Blueriq, PEGA scored the highest followed by

Blueriq and OutSystems. PEGA scored 9% higher than Blueriq and 12% higher

than OutSystems.

In the third case, focussed on Mendix, Mendix ranked the highest followed by

OutSystems. Mendix scored 8% higher than OutSystems.

43

If we look at the results we got out of the framework we see that in case 1,

that is focussed on PEGA in all three different frameworks (Wim van Stokkum’s,

Jeffrey Kwee’s and the combined framework) PEGA is the highest ranking plat-

form, which is a good result because it is the platform we hoped to have the

highest ranking.

In the second case PEGA was recommended in all different frameworks as

well, this is because PEGA is a very complete platform but it is very expensive.

This results in PEGA having equally high or higher scores on every characteristic

than Blueriq except for the cost aspect. This makes it very hard for a platform

like Blueriq to compete with PEGA in this framework. This is were it becomes

visible that the MCDA framework will not provide the one true answer of what is

the best platform, but will give an indication of what platforms would work well

in the particular situation. This is where a human comes into play to make the

right decision, the person could just exclude PEGA because of the price difference

in combination with the not that much higher score PEGA gets and they would

select one of the following platforms.

In the third case, focussed on Mendix, all three frameworks resulted in Mendix

getting the highest score, followed by OutSystems. This is what we would have

expected because the case was focussed on Mendix, and OutSystems is a similar

platform so would gain a high score as well.

Overall this means that the MCDA framework is working pretty well. The

platforms that should gain high scores are generally ranked first or in Blueriq’s

case second. With the help of a human person in the selection process, which

always should be included, the right choice can be made more easily than if that

person did not have the framework to back them up in the selection process.

First of all investigating all platforms would take a lot of time, now a person can

focus on the highest scoring platforms to investigate if that platform would fit

their situation.

44

6 Conclusions

The general opinion is that platforms can help to simplify making applications

and improving efficiency. This improvement in efficiency enables the idea of con-

tinuous integration by being able to produce a business application in matter of

weeks instead of months. This in turn enables organizations to test a first concept

of an application often within a few days or a week. In this way an organization

can test that concept before building the real application. If traditional program-

ming was used, building this proof of concept alone would take a few weeks. In the

popularization of bimodal we see that (model based) PaaS systems are generally

used to make mode 2 systems, because of the speed and flexibility the platforms

provide, which is exactly the core goal of these mode 2 applications. Using model

based platforms is also a way of staying close to the business as the development

cycle progresses. As Jeffrey Kwee said it: ”Mendix developers need a different

skill set, they need to be closer to the business and more communicative”. He also

mentioned that while developing in a model based platform it is not uncommon

to take the model to the customer if there is uncertainty about something. And

you can change the model in the customers office and show them the result of the

change. This is also the closeness to the business he meant platform developers

need and is central in mode 2 application development. There is also a trend in

increasingly complex application moving over to cloud platform development/-

mode 2 development. As Wouter van den Berg said: ”These platforms are used

more for the primary process of the company. Of course there is functionality

that is always needed, like an integration of administration systems in the ERP

or archiving documents. But the composing of this generic functionality to your

primary process is what a platform is used for.”

If an organization decided to use platform based development for a certain

project, the decision of which platform they would use, often does not get the

attention it deserves. Often a platform is selected because someone in the man-

agement heard of it or there is someone who is fond of for example Microsoft

and pushed the use of a Microsoft platform, while that platform might not be

the best fit in the organizational situation. By choosing the right platform and

thus creating a good fit, the development costs could drastically decrease. So

45

if an unfitting platform is chosen, the development costs are likely to be higher

than necessary because an application is developed in a illogical way, this will

probably not only increase the costs, but also decrease the quality and main-

tainability of the product. This is because if the right platform is selected, you

can use the platform in the way it is supposed to be used, which is a lot more

logical and therefore a lot more understandable for other people (who might need

to maintain the product). Choosing the right platform is an important step of

the preparation of an project and is currently being undervalued, this should be

changed.

As we knew that creating a platform selection tool with one ”perfect” solution

was not going to work, both because there are too many platforms to be able to

do this and because organizational situations and the platforms themselves are

to complex, resulting in a tool never being able to take all characteristics into

consideration. That is why we decided to only take the most important charac-

teristics and use them to determine a score. In this way an organization would

get an ”opinion” on every platform taking the situation in consideration, instead

of coming up with one platform as an answer to the situational needs. A scoring

system can also be used more as an advice instead of a solution, this is preferred

because the complexness of the decision can never be fully captured in the tool.

An organization should first thoroughly analyse their situation. What are

exactly the needs they have for the platform? What characteristics should the

platform exceed in and what are characteristics that are less important? If the

organization has finished analysing their situation, this can be converted into

scores and weights that can be put into the framework. The framework will then

come up with what platforms match their situation. In our example cases we

saw that the framework is capable of selecting the platforms that would fit the

situation, so the proof of concept is successful. It may need some tweaking to

make it more accurate and to prevent it from things like always scoring platforms

like PEGA quite high.

While creating the MCDA model we came across two difficulties we needed

to overcome. We needed to fill the model with values of the different platforms

46

and we needed to find a way to find out the weights that we were going to use.

Platforms providers need to provide more openness to what their platform is

all about. Most of the platforms only note the general characteristics of an PaaS

platform and the benefits of working in the cloud. By looking through a lot of

PaaS websites we find that the most used words are: fast, easy and flexible. All

of these are just non-distinctive cloud characteristic buzzwords. The industry

should provide the information that is important to the procurement staff of or-

ganizations, e.g. What the main functionality of the platform is, is it an platform

that specializes in business rules management or a data driven platform which

can be used to link a database to a business application? If this information is be

provided, organizations can more easily substantiate their selection process and

start by researching only the platforms that specialize in the kind of applications

they need to have. Of course this would not superfluous the selection process but

at least organizations would have a head start.

The weights are in a different category of problems. As the weights should

be customized to the organizational situation, this should be determined by the

party that is going to make the decision. For example if an organization’s priority

lays with the cost of the platform, this could be the case in for instance a start-up

with limited financial resources, the weight of the cost characteristic should be

higher than an organization that does not have to worry about the costs of the

platform that much. This also has to do with the MCDA result not being a

perfect result and that the highest ranking platform is not necessarily the perfect

platform for the situation. Because of this customization of the weights of the

MCDA model, it is important to have a clear view of the organizational situation

before MCDA is used, this is the only way to make sure the weights are correct

for the situation an organization is in.

47

7 Future research

Important to know, for readers, is that the research done in this thesis is just a

proof of concept. So it is not at all a platform selector, it is merely a tool that will

help understand what kind of platform would be a good match and what kind

of platform would not fit that well. That doesn’t mean that the project would a

definite failure if a platform is used which has a low score and it also does not

guarantee that if a project is done with a platform with a high score it will be a

great success.

Also the model needs to be validated with more than just the few platforms

that are in the system now. The model may work well with just a few platforms,

but what happens when the model consists of dozens or even hundreds of plat-

forms, will the scores still give a significant difference between each other or will

it just be a cluster of scores that is gradually decreasing. If this would be the

case, how bad would this be, if it still supports the decision making process, it

still isn’t a bad thing per se. However if this is the case, research should be done

to what part of the top platforms are really a good fit. It needs to be determined

where the boundary goes from good to neutral platforms.

The model should also depend on a more objective way of scoring the plat-

forms. The platforms for instance should be able to proof that they provide in

certain measures to be able to get the matching scores for the different charac-

teristics. For example the process based functionality should support a certain

amount of process modelling languages to earn points in the process based func-

tionality characteristic. If this is neglected and the model would be used on a

bigger scale, platforms could easily try to get higher scores than they should be

getting by fiddling with their scores. Also an objective way of scoring prevents

experts of being biassed, they may (un)consciously give platforms they prefer

themselves a higher score. By having an objective way of scoring the chance of

this will decrease.

48

8 References

Bhardwaj, S., Jain, L., & Jain, S. (2010). An Approach for Investigating Per-

spective of Cloud Software-as-a-Service (SaaS). International Journal of

Computer Applications , 10 (2), 44–47. doi: 10.5120/1450-1962

Clemons, E., Reddi, S., & Row, M. (1993). The impact of IT on the organiztion

of economic activity - the move to the middel hypothesis.pdf (Vol. 10). doi:

10.1016/S1873-1503(06)01001-4

Daneshgar, F., Low, G. C., & Worasinchai, L. (2013). An investigation of

’build vs. buy’ decision for software acquisition by small to medium en-

terprises. Information and Software Technology , 55 (10), 1741–1750. Re-

trieved from http://dx.doi.org/10.1016/j.infsof.2013.03.009 doi:

10.1016/j.infsof.2013.03.009

Dodgson, J. S., Spackman, M., Pearman, A., & Phillips, L. D. (2009). Multi-

criteria analysis : a manual (Vol. 11) (No. 1-3). Retrieved from http://

eprints.lse.ac.uk/12761/1/Multi-criteria{ }Analysis.pdf doi: 10

.1002/mcda.399

Dubey, A., & Wagle, D. (2007). Delivering software as a service. The McK-

insey Quarterly , 6 (May), 1–12. Retrieved from http://ai.kaist.ac.kr/

{~}jkim/cs489-2007/Resources/DeliveringSWasaService.pdf doi: 10

.1021/cr068365a

Finkelstein, A., Ryan, M., & Spanoudakis, G. (1996). Software package require-

ments and procurement. Proceedings of the 8th International Workshop on

Software Specification and Design(1984), 141–145. Retrieved from http://

discovery.ucl.ac.uk/153752/ doi: 10.1109/IWSSD.1996.501156

Gartner. (2015). It glossary - bimodal it. Retrieved 20-02-2017, from http://

www.gartner.com/it-glossary/bimodal

Guitouni, A., & Martel, J.-m. (1997). Some Guidelines for Choosing an MCDA

Method Appropriate to a Decision Making Context. , 1–29.

Haddad, C. (2011). White Paper Selecting a Cloud Platform : A Platform as a

Service Scorecard White Paper About the Author. , 06 , 1–28.

Hilgendorf, K., & DeBeasi, P. (2016). 2017 Planning Guide Overview: Ar-

chitecting a Digital Business With Sensing, Adapting and Scaling. Gart-

ner. Retrieved 25-11-2016, from https://www.gartner.com/doc/3471558

49

http://dx.doi.org/10.1016/j.infsof.2013.03.009
http://eprints.lse.ac.uk/12761/1/Multi-criteria{_}Analysis.pdf
http://eprints.lse.ac.uk/12761/1/Multi-criteria{_}Analysis.pdf
http://ai.kaist.ac.kr/{~}jkim/cs489-2007/Resources/DeliveringSWasaService.pdf
http://ai.kaist.ac.kr/{~}jkim/cs489-2007/Resources/DeliveringSWasaService.pdf
http://discovery.ucl.ac.uk/153752/
http://discovery.ucl.ac.uk/153752/
http://www.gartner.com/it-glossary/bimodal
http://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/doc/3471558?refval={&}pcp=mpe
https://www.gartner.com/doc/3471558?refval={&}pcp=mpe
https://www.gartner.com/doc/3471558?refval={&}pcp=mpe

?refval={&}pcp=mpe

Horlach, B., & Drews, P. (2016). Bimodal IT : Business-IT align-

ment in the age of digital transformation Bimodal IT : Business-

IT Alignment in the Age of Digital Transformation. Mul-

tikonferenz economic computer science (MKWI)(April), Ilme-

nau, Germany. Retrieved from https://www.researchgate

.net/publication/287642679{ }Bimodal{ }IT{ }Business

-IT{ }alignment{ }in{ }the{ }age{ }of{ }digital{ }transformation

Hung, P., & Low, G. C. (2008). Factors affecting the buy vs build decision in

large Australian organisations. Journal of Information Technology , 23 (2),

118–131. doi: 10.1057/palgrave.jit.2000098

Kauffman, R. J., & Tsai, J. Y. (2009). The Unified Procurement Strategy

for Enterprise Software: A Test of the ”Move to the Middle” Hypothesis.

Journal of Management Information Systems , 26 (2), 177–204. doi: 10

.2753/MIS0742-1222260208

Lawton, G. (2008). Developing Software Online with Platform-as-a- Service

Technology. Computer , 41 (6), 13–15.

Lindström, J. (2011). Areas and problems to consider within information security

and digital preservation during procurement and use of cloud services.

Marko, K. (2017). To choose the right paas vendor, know thyself. techtarget. Re-

trieved from http://searchmicroservices.techtarget.com/feature/

To-choose-the-right-PaaS-vendor-know-thyself (Accessed 2017-03-

24)

Mital, M., Pani, A., & Ramesh, R. (2014). Determinants of choice of semantic

web based Software as a Service: An integrative framework in the context

of e-procurement and ERP. Computers in Industry , 65 (5), 821–827. Re-

trieved from http://dx.doi.org/10.1016/j.compind.2014.03.002 doi:

10.1016/j.compind.2014.03.002

Ormsc, A. B., Burt, C., Dsouza, D., Duddy, K., Kaim, W. E., Frank, W., . . .

Wood, B. (2001). Model Driven Architecture (MDA) Document number

ormsc / 2001-07-01. , 1–31.

Richardson, C., & Rymer, J. R. (2014). New Development Platforms Emerge For

Customer-Facing Applications (Tech. Rep.).

50

https://www.gartner.com/doc/3471558?refval={&}pcp=mpe
https://www.gartner.com/doc/3471558?refval={&}pcp=mpe
https://www.gartner.com/doc/3471558?refval={&}pcp=mpe
https://www.researchgate.net/publication/287642679{_}Bimodal{_}IT{_}Business-IT{_}alignment{_}in{_}the{_}age{_}of{_}digital{_}transformation
https://www.researchgate.net/publication/287642679{_}Bimodal{_}IT{_}Business-IT{_}alignment{_}in{_}the{_}age{_}of{_}digital{_}transformation
https://www.researchgate.net/publication/287642679{_}Bimodal{_}IT{_}Business-IT{_}alignment{_}in{_}the{_}age{_}of{_}digital{_}transformation
http://searchmicroservices.techtarget.com/feature/To-choose-the-right-PaaS-vendor-know-thyself
http://searchmicroservices.techtarget.com/feature/To-choose-the-right-PaaS-vendor-know-thyself
http://dx.doi.org/10.1016/j.compind.2014.03.002

Richardson, C., & Rymer, J. R. (2016). Vendor Landscape: The Fractured, Fertile

Terrain Of Low-Code Application Platforms (Tech. Rep.). Retrieved from

ForresterResearchdatabase

Sharma, R., & Sood, M. (2011). Cloud SaaS and Model Driven Architecture. In-

ternational Conference on Advanced Computing and Communication Tech-

nologies , 11 (August), 978–981.

Taylor, M. (2016). 18 crm statistics you need to know for 2017. SuperOf-

fice. Retrieved from http://www.superoffice.com/blog/crm-software

-statistics/ (Accessed 2017-04-16)

van Stokkum, W. (2016, December 7). personal communication.

Wenzel, S., Faisst, W., Burkard, C., & Buxmann, P. (2012). New Sales and

Buying Models in the Internet: App Store Model for Enterprise Application

Software. Multikonferenz Wirtschaftsinformatik , 639–651.

51

ForresterResearchdatabase
http://www.superoffice.com/blog/crm-software-statistics/
http://www.superoffice.com/blog/crm-software-statistics/

A Platform scores

Table 3: Wim van Stokkum’s platform scores

Blueriq PEGA Mendix OutSystems

Functionality

Process based 4 4 5 3

Data based 2 3 2 2

Rule based 5 5 1 4

document based 1 1 1 2

Cloud characteristics

Development speed 3 4 5 4

Supports external interaction 4 4 4 4

Variable cost system 2 3 3 2

Uses engine 2 5 1 4

Development

Technical knowledge (possible) inhouse 3 4 2 3

Non-technical knowledge only 2 2 4 2

Business model unique 4 5 3 3

Supports evolutionary applications 3 4 1 4

Beauty

Scalability 4 5 4 4

Version control (reversibility) 4 3 2 3

Support 2 5 4 2

Costs 3 1 3 3

52

Table 4: Jeffrey Kwee’s platform scores

Mendix OutSystems BeInformed PEGA

Functionality

Process enablement 4 4 3 4

Data enablement 4 4 1 3

Rule enablement 3 3 5 5

Document enablement 3 4 3 4

Cloud characteristics

Development speed 5 5 3 4

Supports systems integration 3 4 2 4

Variable cost system 2 3

Uses engine

Development

Technical knowledge

(possible) inhouse
4 5 2 4

Non-technical knowledge only 4 3 4 2

Business model unique 4 5 3 4

Beauty

Scalability 4 1 4

Version control

(reversibility)
4 4 3 5

Support 3 3 3 4

Costs 4 3 1

53

Table 5: Combined scores

Blueriq PEGA Mendix Outsystems

Functionality

Process enablement 4 4 4.5 3.5

Data enablement 2 3 3 3

Rule enablement 5 5 2 3.5

Document enablement 1 2.5 2 3

Cloud characteristics

Development speed 3 4 5 4.5

Supports external interaction 4 4 3.5 4

Scalability 4 4.5 4 4

Variable cost system 2 3 2.5 2.5

Development

Technically unique 3 4 3 4

Non-technical knowledge only 2 2 4 2.5

Business model unique 4 4.5 3.5 4

Beauty

Version control (reversibility) 4 4 3 3.5

Support 2 4.5 3.5 2.5

Costs 3 1 3.5 3

54

B Cases

B.1 Case 1: Rabobank

Table 6: Situational needs scoring

needs score weight weight*score

Functionality

Process based 2 4 8

Data based 5 7 35

Rule based 5 7 35

Document based 2 4 8

Cloud characteristics

Development speed 3 4 12

Supports external interaction 4 4 16

Scalability 5 3 15

Variable cost system 1 1 1

Development

Technical knowledge (possible) inhouse 5 3 15

Non-technical knowledge only possible in house 2 3 6

Business model unique 4 3 12

Beauty

Version control (reversibility) 3 1 3

Support 2 2 4

Costs 1 5 5

55

Table 7: Wim van Stokkum’s scores

Blueriq PEGA Mendix Outsystems

Functionality

Process based 32 32 40 24

Data based 70 105 70 70

Rule based 175 175 35 140

Document based 8 8 8 16

Cloud characteristics

Development speed 36 48 60 48

Supports external interaction 64 64 64 64

Variable cost system 2 3 3 2

Uses engine 8 20 4 16

Development

Technical knowledge (possible) inhouse 45 60 30 45

Non-technical knowledge only possible in house 12 12 24 12

Business model unique 48 60 36 36

Supports evolutionary applications 12 16 4 16

Beauty

Scalability 60 75 60 60

Version control (reversibility) 12 9 6 9

Support 8 20 16 8

Costs 15 5 15 15

607 712 475 581

56

Table 8: Jeffrey Kwee’s scores

Mendix OutSystems BeInformed PEGA

Functionality

Process based 32 32 24 32

Data based 140 140 35 105

Rule based 105 105 175 175

Document based 24 32 24 32

Cloud characteristics

Development speed 60 60 36 48

Supports external interaction 48 64 32 64

Variable cost system 2 3 0 0

Uses engine 0 0 0 0

Development

Technical knowledge

(possible) inhouse
60 75 30 60

Non-technical knowledge only

possible in house
24 18 24 12

Business model unique 48 60 36 48

Beauty

Scalability 60 0 15 60

Version control

(reversibility)
12 12 9 15

Support 12 12 12 16

Costs 20 15 0 5

647 628 452 672

57

Table 9: Combined scores

Blueriq PEGA Mendix OutSystems

Functionality

Process based 32 32 36 28

Data based 70 105 105 105

Rule based 175 175 70 122.5

Document based 8 20 16 24

0

Cloud characteristics 0

Development speed 36 48 60 54

Supports external interaction 64 64 56 64

Scalability 60 67.5 60 60

Variable cost system 2 3 2.5 2.5

Development

Technical knowledge (possible) inhouse 45 60 45 60

Non-technical knowledge only possible in house 12 12 24 15

Business model unique 48 54 42 48

0

Beauty 0

Version control (reversibility) 12 12 9 10.5

Support 8 18 14 10

Costs 15 5 17.5 15

587 675.5 557 618.5

58

B.2 Case 2: Tax authorities

Table 10: Situational needs scoring

needs score weight weight*score

Functionality

Process based 2 4 8

Data based 2 4 8

Rule based 5 9 45

Document based 2 4 8

Cloud characteristics

Development speed 4 3 12

Supports external interaction 2 3 6

Scalability 5 3 15

Variable cost system 2 1 2

Development

Technical knowledge (possible) inhouse 5 3 15

Non-technical knowledge only possible in house 2 3 6

Business model unique 3 1 3

Beauty

Version control (reversibility) 4 3 12

Support 2 2 4

Costs 4 2 8

59

Table 11: Wim van Stokkum’s scores

Blueriq PEGA Mendix OutSystems

Functionality

Process based 32 32 40 24

Data based 16 24 16 16

Rule based 225 225 45 180

Document based 8 8 8 16

Cloud characteristics

Development speed 36 48 60 48

Supports external interaction 24 24 24 24

Variable cost system 4 6 6 4

Uses engine 4 10 2 8

Development

Technical knowledge (possible) inhouse 45 60 30 45

Non-technical knowledge only possible in house 12 12 24 12

Business model unique 12 15 9 9

Supports evolutionary applications 12 16 4 16

Beauty

Scalability 60 75 60 60

Version control (reversibility) 48 36 24 36

Support 8 20 16 8

Costs 24 8 24 24

570 619 392 530

60

Table 12: Jeffrey Kwee’s scores

Mendix OutSystems BeInformed PEGA

Functionality

Process based 32 32 24 32

Data based 32 32 8 24

Rule based 135 135 225 225

Document based 24 32 24 32

Cloud characteristics

Development speed 60 60 36 48

Supports external interaction 18 24 12 24

Variable cost system 4 6 0 0

Uses engine 0 0 0 0

Development

Technical knowledge

(possible) inhouse
60 75 30 60

Non-technical knowledge only

possible in house
24 18 24 12

Business model unique 12 15 9 12

Beauty

Scalability 60 0 15 60

Version control

(reversibility)
48 48 36 60

Support 12 12 12 16

Costs 32 24 0 8

553 513 455 613

61

Table 13: Combined scores

Blueriq PEGA Mendix OutSystems

Functionality

Process based 32 32 36 28

Data based 16 24 24 24

Rule based 225 225 90 157.5

Document based 8 20 16 24

Cloud characteristics

Development speed 36 48 60 54

Supports external interaction 24 24 21 24

Scalability 60 67.5 60 60

Variable cost system 4 6 5 5

Development

Technical knowledge (possible) inhouse 45 60 45 60

Non-technical knowledge only possible in house 12 12 24 15

Business model unique 12 13.5 10.5 12

Beauty

Version control (reversibility) 48 48 36 42

Support 8 18 14 10

Costs 24 8 28 24

554 606 469.5 539.5

62

B.3 Case 3: SpaceShare

Table 14: Situational needs scoring

needs score weight weight*score

Functionality

Process based 3 7 21

Data based 3 7 21

Rule based 1 3 3

Document based 0 2 0

Cloud characteristics

Development speed 4 5 20

Supports external interaction 3 3 9

Scalability 3 2 6

Variable cost system 2 2 4

Development

Technical knowledge (possible) inhouse 4 3 12

Non-technical knowledge only 3 3 9

Business model unique 1 3 3

Beauty

Version control (reversibility) 2 1 2

Support 2 2 4

Costs 5 5 25

63

Table 15: Wim van Stokkum’s scores

Blueriq PEGA Mendix OutSystems

Functionality

Process based 84 84 105 63

Data based 42 63 42 42

Rule based 15 15 3 12

Document based 0 0 0 0

Cloud characteristics

Development speed 60 80 100 80

Supports external interaction 36 36 36 36

Variable cost system 8 12 12 8

Uses engine 8 20 4 16

Development

Technical knowledge (possible) inhouse 36 48 24 36

Non-technical knowledge only possible in house 18 18 36 18

Business model unique 12 15 9 9

Supports evolutionary applications 12 16 4 16

Beauty

Scalability 24 30 24 24

Version control (reversibility) 8 6 4 6

Support 8 20 16 8

Costs 75 25 75 75

446 488 494 449

64

Table 16: Jeffrey Kwee’s scores

Mendix OutSystems BeInformed PEGA

Functionality

Process based 84 84 63 84

Data based 84 84 21 63

Rule based 9 9 15 15

Document based 0 0 0 0

Cloud characteristics

Development speed 100 100 60 80

Supports external interaction 27 36 18 36

Variable cost system 8 12 0 0

Uses engine 0 0 0 0

Development

Technical knowledge

(possible) inhouse
48 60 24 48

Non-technical knowledge only 36 27 36 18

Business model unique 12 15 9 12

Beauty

Scalability 24 0 6 24

Version control

(reversibility)
8 8 6 10

Support 12 12 12 16

Costs 100 75 0 25

552 522 270 431

65

Table 17: Combined scores

item Blueriq PEGA Mendix OutSystems

Functionality

Process based 84 84 94.5 73.5

Data based 42 63 63 63

Rule based 15 15 6 10.5

Document based 0 0 0 0

Cloud characteristics

Development speed 60 80 100 90

Supports external interaction 36 36 31.5 36

Scalability 24 27 24 24

Variable cost system 8 12 10 10

Development

Technical knowledge (possible) inhouse 36 48 36 48

Non-technical knowledge only 18 18 36 22.5

Business model unique 12 13.5 10.5 12

Beauty

Version control (reversibility) 8 8 6 7

Support 8 18 14 10

Costs 75 25 87.5 75

426 447.5 519 481.5

66

	Introduction
	Theoretical Background & Concepts
	Software Procurement
	Unified procurement
	App store model

	Platforms
	concepts

	Method
	Analysis
	Definitions
	Platform
	Organizational situation

	Match
	Definition

	Results
	Interviews
	Matching Framework
	Modifiability

	Proof of Concept
	Cases
	Case results

	Conclusions
	Future research
	References
	Platform scores
	Cases
	Case 1: Rabobank
	Case 2: Tax authorities
	Case 3: SpaceShare

