Master Thesis
Semi-supervised opinion mining: learning sentiment towards
vaccination on Dutch tweets

Nicole Walasek™ N.WALASEK@QSTUDENT.RU.NL

First supervisor: Antal van den Bosch™* A.VANDENBOSCH@LET.RU.NL
econd Supervisor: Tom Heskes T.HESKE IENCE.RU.N

S d Sup T Heskes™™ " SKESQ@QSCIENC

Third Supervisor: Florian Kunneman F.KUNNEMAN@LET.RU.NL

sk ok sk ok

*ICIS, Radboud University, Toernooiweld 212, 6525 EC Nijmegen, The Netherlands
**CLS, Radboud University, Erasmusplein 1, 6525 HT Nijmegen, The Netherlands
***ICIS, Radboud University, Toernooiveld 212, 6525 EC Nijmegen, The Netherlands
**** CLS, Radboud University, Erasmusplein 1, 6525 HT Nijmegen, The Netherlands

Abstract

Nowadays, online social media platforms like Twitter or Facebook provide a valuable framework
for individuals to share and discuss ideas and opinions regarding various topics, including health
related issues. Platforms like Twitter allow for an exhaustive aggregation and analysis of user-
generated content which facilitates monitoring of public opinions and sentiment over time towards
certain topic of interest. Keeping track of these developments can be crucial for health professionals
in order to understand and address the public opinion and behaviour with regard to health related
topics. One such topic is vaccination. The goal of this thesis is to perform sentiment analysis
towards vaccination on Dutch tweets referring to vaccination. I will present results for using a
framework named co-training in order to iteratively label unlabeled instances while adding those
labeled with high confidence to the training set. The experiments demonstrate that the co-training
framework can be successfully applied to improve sentiment analysis towards vaccination on Dutch
Twitter messages. In total a best F score of 0.72 on the negative class and 0.70 on the non-negative
class has been reached with the best performing co-training classification system.

Nicole Walasek s4629310

1. The importance of online opinion mining for vaccination

Nowadays, online social media platforms like Twitter or Facebook provide a valuable framework for
individuals to share and discuss ideas and opinions regarding various topics, including health related
issues. Within the past decade these kinds of platforms have spread globally and witnessed a rapid
growth in the number of users, reaching people from various demographic groups, ethnicities and
occupations (Perrin 2015). Twitter, a popular news and social networking service, where messages
(“tweets”) are restricted to 140 characters, has reported 317 million monthly and 100 million daily
active users in January 2017 with a total of 500 million tweets sent per day (Aslam 2017). These
characteristics of platforms like Twitter allow for an exhaustive aggregation and analysis of user-
generated content which facilitates monitoring of public opinions and sentiment over time towards
certain topics of interest. Keeping track of these developments can be crucial for health professionals
in order to understand and address the public opinion and behaviour with regard to health related
topics. One such topic is vaccination.

Outbreaks of vaccine preventable diseases are a serious public health issue. Its likelihood is
reported to increase either for an overall decline in vaccine uptake (Jansen et al. 2003), or with
an increase in the number and size of communities with very low vaccination rates. These low
vaccination rates are often considered to be the result of so-called opinion clustering (Salathé and
Bonhoeffer 2008, Omer et al. 2009). Opinion clusters are clusters of (unvaccinated) individuals
who share the same sentiment concerning vaccination. Recognizing and addressing public concerns
regarding vaccination is important for evolving successful immunization strategies in order to control
the spread of infectious diseases.

The structure of the Twitter networkﬂ allows not only to study sentiment towards vaccination but
also to make inferences about how these sentiment and behavioral patterns cluster along temporal,
geographic and demographic dimensions (Campbell and Salathé 2012, Huang et al. 2017). This
way Public Healthcare Organizations try to detect social discussion communities that are identified
to influence vaccination decision-making in order to adapt immunization strategies to avoid new
outbreaks of infectious diseases (Bello-Orgaz et al. 2017).

Furthermore, Signorini et al. (2011) have demonstrated in the past that Twitter can be success-
fully used not only to track users’ interest in and concern about HIN1 influenza, but also to predict
disease outbreaks in real time.

The goal of this thesis is to perform sentiment analysis towards vaccination on Dutch tweets
referring to vaccination. The task poses several challenges:

1. Identify whether a tweet is relevant, i.e. addressing vaccination
2. Disentangle general sentiment from sentiment towards vaccination

3. Train a (multiple) classifier(s) on only a small number of labeled instances each of them being
at most 140 characters long

The first challenge can be overcome by checking whether a tweet contains keywords related to
vaccination, such as “vaccination” or “immunization”. However, there are also tweets which contain
these keywords and are not related to vaccination, as for instance “A vaccine against hypocrisy
would also be nice’Bl

Concerning the second challenge some tweets might be about vaccination but express a sentiment
that is not related to vaccination. Take for instance “I hate rain. Later on heading to a doctor’s
appointment for vaccination.”. Although this tweet conveys negative sentiment (“I hate rain”) and
refers to the topic of vaccination, the expressed sentiment is not related to vaccination.

1. Tweets contain specific markers like # or @ to denote topics or user references. Moreover, tweets hold information
about the geographic location of a user, as well as other user information inferred from his Twitter profile. Linking
all of these information allows to build graphs visualizing different aspects of the Twitter network.

2. Note, that the English example tweets are artificial and only added to illustrate the challenges.

Nicole Walasek s4629310

Lastly, text classification on short documents is a demanding task. Many traditional text mining
methods rely on word frequencies and relations between words within a document as features in
order to infer similarity between documents and class membership. However, a small number of
short training documents might not provide enough information for these features to be meaning-
ful to differentiate between different classes (Man 2014, Chen et al. 2011, Timonen and Kasari 2012).

In particular my work focuses on the third challenge: I will present results for using a framework
named co-training in order to iteratively label unlabeled instances while adding those labeled with
high confidence to the training set. In the past, co-training has been successfully applied to sentiment
analysis (Biyani et al. 2013, Xia et al. 2015). However, to the best of my knowledge co-training has
not been applied to sentiment analysis of Twitter messages before.

This work is conducted in the context of a project of the Centre for Language and Speech
Technology at Radboud Universityﬂ commissioned by the RIVMﬂ The goal of the project is to
develop a dashboard for monitoring the public stance towards vaccination.

The experiments demonstrate that the co-training framework can be successfully applied to
improve sentiment analysis towards vaccination on Dutch Twitter messages. In total a best F} score
of 0.72 on the negative class and 0.70 on the non-negative class has been reached with the best
performing co-training classification system.

2. Background and related work

In this section I am going to present some background literature on sentiment analysis of Twitter
data, as well as some work concerning machine learning from both labeled and unlabeled data, i.e.
semi-supervised learning. The latter part of the literature review focuses on the specific problem
that I only have relatively few labeled examples to train on. I will further discuss the characteristics
of the given data in the data section.

2.1 Sentiment Analysis of Twitter data

The Oxford English dictionary defines sentiment analysis as follows:

“The process of computationally identifying and categorizing opinions expressed in a
piece of text, especially in order to determine whether the writer’s attitude towards a
particular topic, product, etc. is positive, negative, or neutralEf’

As such it poses an instance of a classical text mining problem. Successfully performing sentiment
analysis provides an important component of understanding the semantics of text. It can be applied
to different levels of granularity, as for instance document or sentence level. Most of the work on
sentiment analyses focuses on product reviews (Medhat et al. 2014). The difference between tweets
and typical product reviews is that tweets are restricted in length and contain attributes like hashtags
(indicated by the # symbol) and author references (Qauthor) that product reviews not necessarily
show.

Here, I will focus on sentiment analysis on tweet level.

Agarwal et al. (2011) present a system for classifying tweets into positive, negative and neutral.
They experiment with two versions of the task: a binary classification task of identifying positive
and negative tweets as well as the 3-way task of distinguishing between all three categories. Fur-
thermore, they compared three models: a unigram model as baseline, a feature based model using
100 handcrafted features as well as a tree kernel based model (avoiding the need for manual feature

3. http://www.ru.nl/clst/
4. http://www.rivm.nl/
5. https://en.oxforddictionaries.com/definition/sentiment_analysis

http://www.ru.nl/clst/
http://www.rivm.nl/
https://en.oxforddictionaries.com/definition/sentiment_analysis

Nicole Walasek s4629310

engineering). The authors find that the feature based model is not able to outperform the base-
line model while the kernel based model outperforms both. Following a feature analysis they find
the combination of prior polarity probabilities of words with their part-of-speech tags to be most
valuable for the classification task. These classical natural language features outperform twitter
specific features like emoticons or hashtags. They train their models on 5,127 manually annotated
tweets balanced over the three categories. Throughout prepossessing they make use of an emoticon
dictionary and an acronym dictionary which they designed themselves. The tree kernel approach
involves representing each tokenized tweet by certain tags, as for instance stop word, positive emoti-
con, English word or @-reference. In order to calculate the similarity between tweets all possible
sub-trees are compared. For the two-way classfication task they report an average test accuracy of
71.35% using the kernel based method and 60.60% for the three-way classification task. The other
two main models yielded lower accuracy scores. Using combinations of the models the authors were
able to achieve a 74.61% test accuracy in the two-way task and a 60.83% accuracy in the three-way
task.

For my particular problem rather than just distinguishing between positive, negative and neutral
sentiment I am interested in identifying positive, negative and neutral sentiment towards vaccination.
Part-of-speech tags proved to be effective in the work by Agarwal et al. (2011). However, identifying
POS-tags requires an additional classification system which might introduce additional error to my
system. Moreover, the syntactic dependencies modelled by the POS-tags might already be implicitly
present in the data. Therefore I will focus on generic features based on term frequencies to represent
the dependencies.

Other related work involves the use of emoticons in tweets for distant supervised learning of
sentiment classification of Twitter messages (Go et al. 2009). More specifically the emoticons are
used as noisy labels to extract training data representing positive and negative sentiment. The
authors experiment with different classifiers, namely naive Bayes, Maximum Entropy and SVM’s,
as well as different feature sets consisting of unigrams, bigrams, the combination of the two and
part-of-speech tags. They report an accuracy of 83% trained on both unigrams and bigrams as the
best result. The training data consisted of 1.6M tweets containing equal numbers of positive and
negative tweets.

The idea of exploiting emoticons in order to inexpensively label tweets originates in Read (2005).
This approach was not feasible for my specific problem as an emoticon alone does not suffice to
express sentiment towards a particular topic such as vaccination. However I decided against removing
emoticons from the tweets during the preprocessing step in order to preserve the sentiment conveyed
by them.

Moreover, Barbosa and Feng (2010) demonstrate the usage of “meta-information” (as they refer
to it) in addition to classical features like unigrams for performing sentiment analysis on tweets.
These meta-information include part-of-speech tags, as well as prior subjectivity and polarity inferred
from the subjectivity lexicorﬁ provided in (Riloff and Wiebe 2003). In doing so they propose
a two-step classification method: first training a classifier to distinguish between subjective and
objective tweets and secondly training another classifier to differentiate between positive and negative
sentiment.

Other work on sentiment classification of twitter messages approaches a multilingual framework,
while also investigating the portability of the proposed systems from one language into another (Boiy
and Moens 2009, Cui et al. 2011, Davies and Ghahramani 2011, Narr et al. 2012). The tweets for my
particular problem are in Dutch, i.e. non-English, which in general makes the use of existing polarity
lexicons more difficult given that their frequency and extent is usually much lower for non-English
languages. However, as I do not consider tweets from another language than Dutch I did not look
into previous research done in this field.

6. The lexicon can be found at http://mpga.cs.pitt.edu/

http://mpqa.cs.pitt.edu/

Nicole Walasek s4629310

Lastly, recent work by Du et al. (2017) describes a system used for sentiment analysis on HPV
vaccine related tweets. They annotate a gold standard set of 6,000 tweets and train and optimize
an SVM in a hierarchical classification scheme on various feature sets. The hierarchical method is
composed of three consecutive steps: (1) train an SVM to classify tweets into “related” and “unre-
lated” groups, (2) a second SVM for dividing the “related” group into positive, negative and neutral
tweets, and (3) another SVM model to categorize the negative tweets into five more fine-grained
classes. This way the authors aimed to tackle class imbalance in the data. They achieve a micro
average F score of 0.73% and a macro average F; score 0.4986% for the optimized hierarchical SVM
classifier on 10-fold cross validation.

Many of the papers discussed here utilize Twitter as platform for inexpensive access to large
amounts of unlabeled data. In what follows I am going to present and discuss some literature that
deals with text classification from both labeled and unlabeled data.

2.2 Text classification from labeled and unlabeled data

Nowadays, ongoing technological advances allow us to produce and store massive amounts of data
of various forms. Some of them reside on social media, while others are stored in databases by
companies or governmental organizations like the health care sector or political institutions. These
databases often contain invaluable information. However, at the same time the size of these databases
makes it infeasible to extract knowledge and information from them by hand. Therefore, there is
great need for automatic processing of these data in order to extract structured information and
relationships. In case of textual data these structured information can be for instance sentiment,
named entities, dates, actors or relations between actors.

Natural language processing and text mining are fields that provide possible tools for the auto-
matic extraction of information from text. The literature on automatic classification and processing
of text is vast. However, most of the proposed methods share one commonality: they heavily rely
on labeled data for training. As indicated earlier it is very easy and inexpensive to get access to
large databases for research and engineering purposes. However, labelling a subset of these data is
a time-consuming and tedious process that usually has to be done manually. There is a trade-off
between the time and effort put into manually labelling an additional amount of data X and the
resulting gain in classification accuracy Y. Considering that large quantities of unlabeled data are
easily accessible in most domains and the fact that usually the gain in accuracy is low compared to
the costs of labelling, the question arises how to use unlabeled data to improve learning algorithms.

Many attempts have been made to address this issue: Platforms like Amazon Mechanical Turk]]
can be used to recruit workers to label large amounts of data, methods for automatic (often noisy) la-
belling of data have been proposed (for instance Read, (2005)) and unsupervised or semi-supervised
algorithms for various tasks have been developed (Ghahramani 2004, Ko and Seo 2000).

As T was given access to a small amount of labeled tweets and a large set of unlabeled data I
focused on semi-supervised learning algorithms that make use of the few available labeled training
data and attempt to incorporate the unlabeled data as well.

Co-training is a semi-supervised machine learning paradigm that requires only a few labeled
examples based on which two classifiers are trained, in order to label unlabeled examples in an
iterative process. The rationale behind using two classifiers is that each of them constitutes a
different view on the data, thereby employing complementary information thereof. Ideally it would
be the case that the two views are conditionally independent given the class and sufficient in the
sense that each classifier is able to accurately predict each class. In the end the most confident
predictions on the unlabeled data are used to iteratively train both classifiers. The idea of co-

7. https://www.mturk.com/mturk/welcome

Nicole Walasek s4629310

training as described here can be originally traced back to Blum and Mitchell (1998). Co-training
has been successfully applied to sentiment analysis in the past (Biyani et al. 2013, Xia et al. 2015).

In the context of classification bootstrapping can be viewed as another semi-supervised learning
technique which has for example been successfully applied to the task of learning emotion hashtags
from Twitter data (Qadir and Riloff 2013). However, this technique is associated with the risk of
being limited to instances that are highly similar to the labeled examples with respect to the system’s
predictive power. Contrary to this, co-training is designed in a way to increase the generalizability
of the classification system by using two (or potentially more than two) classifiers, each of which
captures a unique set of features in the data. Furthermore, the combination of multiple classifiers
and certainty measures over the assigned labels can further increase generalizability by including
those instances as positive examples where some of the classifiers are only weakly confident in their
decision. Naturally, this method would require careful tuning of the decision thresholds to prevent
the classification system from diverging too far away from correct class assignment.

Wang and Zhou (2007) propose a variant of the classical co-training framework with weaker inde-
pendence assumptions for the classifiers. Moreover, they discuss and analyze successful termination
criteria of the training process. The work conducted by Yu (2014) provides an example where this
slightly weaker notion of co-training is applied to opinion mining. Judging whether the independence
assumption for two views holds is not always straightforward. Therefore, it is important to consider
the feasibility of weaker independence notions also for my own work.

Yu et al. (2011) propose an interesting approach combining Bayesian inference and co-training,
thereby automatically providing the property of having a certainty measure associated with each
classification. A different way to integrate a Bayesian component into the problem of sentiment
analysis is an ensemble method based on Bayesian model averaging (Fersini et al. 2014). It considers
both the uncertainty and reliability associated with each single classifier in comparison to the whole
ensemble. Although I did not employ a Bayesian approach for incorporating a certainty measure
into the co-training framework I found the idea of having such a confidence measure useful.

An alternative to the co-training framework, which still preserves its general idea, is a semi-
supervised learning algorithm that is based on the combination of Expectation-Maximization and
a naive Bayes classifier (Nigam and Mccallum 2002). In case that the co-training framework would
have failed this might have been an interesting starting point for an alternative approach.

3. Data

Twitter is a social networking and real-time microblogging service. Messages posted by Twitter
users are called tweets and restricted to a length of 140 characters. Usually tweets can be considered
informal, to contain colloquial language, emoticons and numerous spelling errors. Another charac-
teristic of Twitter is the use of hashtags (indicated by a “#” in front of a word) in order to refer to
certain topics.

Labeled data is needed to train a classifier on sentiment specific to the context of vaccination.
In order to obtain labeled data, the Twitter search API is not the best option as it only permits to
retrieve tweets from one week in the past, which would not lead to large amounts of data. However,
in the case of Dutch tweets there are options to query tweets from years in the past, such as TwiNﬂ
(Sang and van den Bosch 2013), a databse of Dutch tweet ID’s dating back to December 2010, and
Coost(ﬂ a commercial platform that offers a payed dashboard to monitor Dutch tweets. For this
particular project the RIVM’s licence has been used to collect tweets from Coosto.

Within the project of the RIVM and Radboud University, tweets have been collected from both
TwiNl and Coosto in several stages. The stages are listed in table 2] The table lists the time period

8. https://TwiNl.surfsara.nl/
9. https://www.coosto.com/nl

https://TwiNl.surfsara.nl/
https://www.coosto.com/nl

Nicole Walasek s4629310

Annotator Number of tweets annotated

1 6,404
2 4,878
3 73
4 2
5 2
6 1
7 1
8 1

Table 1: Subset of TwiNI2 and Coosto data that have been annotated by independent annotators.
The table shows how many tweets have been annotated per annotator. In total 6,541 of the 8,260
tweets have been annotated by more than one person.

of retrieval, the corresponding queries and the number of tweets retrieved. The number of tweets in
the table refers to the number of tweets after removing retweets and tweets containing URLSIE The
URL heuristic has been used to distinguish between tweets representing news, i.e. not containing
sentiment and opinionated tweets, i.e. tweets potentially containing sentiment.

Parts of all three databases have been labeled. The Relevancer tool (Hiirriyetolu et al. 2016)
has been used to cluster tweets, i.e. group tweets that are highly similar in their formulation.
After clustering, 8,395 tweets of the TwiNI1 dataset have been labeled by one person as “positive”,
“negative”, “neutral” or “don’t know”. The tweets from the most coherent clusters have been used
for labelling. Consequently, tweets belonging to one cluster were assigned the same label. For
clusters in which the tweets were not similar in sentiment, the label “not unified” was given. This
subset of labeled data has been used as test set.

Although the clustering of tweets can speed up the annotation (as more tweets can be annotated
at once), it does lead to a bias of the annotated tweets: only the tweets that have similar neighbours
are included. In order to obtain a more diverse set of labeled tweets, for parts of the TwiNI2 and
Coosto dataset single tweets were annotated by independent raters. In total, a subset of 8,260
tweets have been annotated by 1 up until 8 annotators. Table [I] shows how many tweets have been
annotated per annotator. In total, 6,541 of the 8,260 tweets have been annotated by more than one
person. This subset of labeled data has been used as training data.

As negative sentiment towards vaccination is considered to be more relevant than positive or
neutral sentiment for the purpose of the study initiated by the RIVM, I also prepared a binary clas-
sification task distinguishing between negative and non-negative sentiment by merging the positive
and neutral tweets for the labeled tweets from the TwiNIl dataset. I disregarded tweets that were
labeled as “don’t know”. In order to decide on a final label for a tweet in case that it has been
annotated by multiple raters (second subset of labeled data) the majority label has been assigned.
In case that a majority could not be established the tweet was labeled as “don’t know”.

Considering only the tweets that have been annotated by the first two annotators (compare
table [1)) and disregarding tweets that have been labeled as “don’t know” 2,713 tweets have been
used to calculate interrater reliability measures. I used Cohen’s Kappa x and Krippendorft’s a.
Both measures converged on the same values, namely 0.522 for the multiclass problem and 0.618
for the binary classification task. In conclusion, agreement can be considered to be substantial. I
only used this subset of the annotated tweets as both measures are defined to be calculated for two
raters, so the measures reflect agreement between raters and not directly between assigned labels
independent of the annotator.

10. This does not hold for the TwiNI1 dataset.

Nicole Walasek s4629310

Another random subset of the collected data has been made available to me as “unsupervised”,
i.e. unlabeled data. In total I was given 178,569 of these tweets, while 15,586 of them were explicitly
retrieved for keywords relating to vaccination whereas the other tweets were also related to diseases.
An argument could be made that the latter one are a better representation of the targeted problem
domain and should therefore perform better within the co-training framework. In order to rule out
such an effect I tested the effect of this difference in tweets in one of my experiments.

Table [3] summarizes some important characteristics of the three data splits, used for training,
testing and unsupervised learning respectively. As indicated earlier retweets and URLs had not been
removed from the TwiNI1 data which served as basis for the test set. Therefore I added an extra
preprocessing step to remove these in order to account for the difference in training and test data.
All numbers reported in the table refer to the datasets after removing retweets, URLs and “don’t
know” tweets. It can be seen that the training set displays imbalance in the number of positive and
negative tweets. I will discuss experiments addressing this imbalance in the following sections.

Figures display the most frequent 50 hashtags and bigrams (after preprocessing and excluding
stop words) for the four datasets listed in table [3] It can be observed that the individual datasets
cover roughly the same range of topics. The assumption that the training and test data are similar
and possibly generated by the same abstract underlying distribution is an important perquisite for
successful performance on the test data. Figure [5] shows a wordcloud for the positive tweets and
a wordcloud for the negative training tweets. A wordcloud represents the most frequent words in
a given text and adjusts the size of the words proportionally to their frequency. To create the
wordclouds I have used the preprocesseﬂ tweets after removing stop words and @-references.

From this representation it can be inferred that there is large overlap between the words used
to describe negative and positive tweets. Terms related to vaccination and diseases appear to be
abundant in both categories. As the tweets were specifically retrieved for keywords relating to
vaccination and diseases this result was to be expected. However this means that the classifiers will
have to be sensitive enough to pick out small differences, i.e. differences within lower frequency
words, between the classes. Just by examining the two wordclouds it is difficult to make out a
clear distinction between the positve and negative tweets. However, the wordcloud for the negative
tweets contains terms like “bijwerkingen” (side effects) or “slecht” (bad) while the positive wordcloud
contains terms like “goed” (good). A well trained algorithm should be able to utilize these differences.

4. Methods: semi-supervised sentiment classification

In this section I am going to describe the co-training framework that I used for sentiment classification
of Dutch twitter messages. First, I will discuss the preprocessing pipeline that I designed to prepare
the tweets for classification. Secondly, I will illustrate the co-training algorithm and its assumptions.
All parameter tuning described in this section has been applied to a subset of 10% of the training
data solely held out for this purpose.

All parts of the project are implemented in Python 2.7.

4.1 Preprocessing

Prior to classification the tweets have been tokenized based on spaces between words while not
splitting words containing “” or “ ’ 7. All tokens have been lowercased. Addtionally, hashtags
(indicated by the # symbol), author mentions (indicated by @), numbers and emoticons have been
preserved using regular expressions. The tweets were stripped off all other punctuation marks. Due
to the shortness of tweets this rather minimalistic preprocessing design has been chosen to preserve
as much expressiveness as possible. The use of hashtags, emoticons and also spelling errors can
be a very important feature to distinguish between the different sentiment classes. Following the
same line of reasoning I decided against removing stop words. Finally, I settled on an approach that

11. The preprocessing will be explained in the next section

Nicole Walasek

54629310

Dataset Retrieval Period Number of tweets?

Queries?

TwiNI1? 2011-06 2016 170,092

Coosto 2011-08 2016 133,567

TwiNI2 01.01.2012 - 08.02.2017 103,381

queries divided into queries relating to
vaccination and to diseases:

vaccination: vaccinatie,
vaccin

inenting,

diseases: bmr, dktp, hpv, rotavirus,
buikgriep, waterpokken, bmrv-
vaccin, gordelroos, hepatitis
a, herpes zoster, windpokken,
windpokken, meningkokken
b, griepprik, griepvaccinatie,
influenza

bmr, difterie, dktp, gordelroos,
hepatitis b, hib-ziekten, hpv,
kinkhoest, mazelen, meningokokken,
pneumokokken, polio, rodehond,
rotavirus, tetanus, waterpokken,
(vaccinatie OR, vaccin OR rijksvacci-
natieprogramma OR intenting) - (dier
OR teken OR pluim OR vastgoed OR
hond OR gewas OR landbouw OR

griepprik)

queries divided into queries relating to
vaccination and to diseases:

vaccination: vaccinatie, vaccin,
vaccineren, rijksvaccinatiepro-
gramma, vaccinatieprogramma,
intenting, inenten

diseases: bmr, difterie, dktp, gordel-
roos, hepatitis, hpv, kinkhoest,
magzelen, meningokokken,
pneumokokken, polio, rodehond,
rotavirus, tetanus, waterpokken,
bof, baarmoederhalskanker

! Number of tweets after removing retweets and tweets containing URLs.

2 with and without hashtags, case insensitive

3 Retweets and URLs have not been removed from these data

Table 2: Retrieval of Dutch tweets based on keywords relating to diseases and vaccination.

involves using generic features extracted from the minimally preprocessed tweets rather than highly

specific features like part-of-speech tags.

Nicole Walasek s4629310

Train Test Unsupervised! Unsupervised vaccination
Avg. number of hashtags® | 0.60 0.24 0,52 0,42
Number of positives 2,373 330 - -
Number of negatives 814 1,072 - -
Number of neutrals 1,108 1,059 - -
Size? 4,295 2416 162,983 15,586

! Unlabeled data excluding the set specifically relating to vaccination
2 per tweet
3 After removing retweets, URLs and tweets labeled as “don’t know”.

Table 3: Overview over the three datasets used for training, testing and unsupervised learning.

Original tweets

Preprocessed tweets

.@QKBrinkman OLVG Kosteneffectiviteitson-
derzoek loopt. Tussentijds bepleit Jan v.
Bergen @soaaids sowieso hpv-vaccin voor
startende homo’s.

Net eerste vaccinatie hepatitis a+b gehad.. En
nu al een stijve arm.. Fijn dit :/

@TrampsLikeMe ik dacht ’ ze gaat toch niet de
keuze voor vaccinatie vergelijken met keuze over
(te gemakkelijk) omgaan met zindelijkheid.

Vandaag 10.30
#ROCAI12VELP

Hepatitis B vaccinatie

@kbrinkman_olvg kosteneffectiviteitsonderzoek
loopt tussentijds bepleit jan v bergen @soaaids
sowieso hpv vaccin voor startende homo’s

net eerste vaccinatie hepatitis a b gehad en nu
al een stijve arm fijn dit :/

@trampslikeme ik dacht ze gaat toch niet de
keuze voor vaccinatie vergelijken met keuze over
te gemakkelijk omgaan met zindelijkheid
vandaag 10.30 vaccinatie
#rocal2velp

hepatitis b

Table 4: A few examples of original raw (left column) tweets and preprocessed (right column) tweets.

Table {4 displays a few examples of tweets before and after preprocessing has been applied.

4.2 Co-training framework

My goal was to develop a classification system for analyzing the sentiment of Dutch Twitter mes-
sages towards vaccination. I utilized unsupervised, i.e. unlabeled tweets in order to increase the
performance of my classification system. To do so I implemented the co-training algorithm (Blum
and Mitchell 1998) which uses two distinct views (z1 and x2), i.e. different feature sets, of the data
in order to iteratively label and retrain one or two classifiers (hy and hg) on unlabeled instances (U)
of the training data. Algorithm [I] illustrates the co-training algorithm as described in the original
paper by Blum and Mitchell (1998). The co-training algorithm is initialized with a set L of labeled
training examples (consisting of data x and labels y), a set U of unlabeled examples, two classifiers

10

Nicole Walasek s4629310

Data: L, a set of labeled training examples; U, a set of unlabeled examples
Result: Co-trained classifiers hy and hg

initialization;

create a pool U’ of examples by choosing u examples at random from U;

while still elements in U A not exceeded the maximum number of iterations k do
k=Fk+1,;

use L to train a classifier hy that considers only the z1 view of x;

use L to train a classifier ho that considers only the zo view of z;

select from U’ p most confidently labeled examples by h; as positive examples;
select from U’ n most confidently labeled examples by h; as negative examples;
select from U’ p most confidently labeled examples by he as positive examples;
select from U’ n most confidently labeled examples by ho as negative examples;

add these self-labeled examples to L;
randomly choose 2p + 2n examples from U to replenish U’;
end

Algorithm 1: Co-training algorithm as presented by Blum and Mitchell (1998).

Co-training parameters Explanation Default value in original paper
U’ size of pool of unlabeled data 75
k number of iterations 30
P number of most confidently positively 1
labeled examples to add
n number of most confidently nega- 3
tively labeled examples to add
c1 lower confidence bound of classifier 1 -
Cy lower confidence bound of classifier 2 -

Table 5: Co-training parameters and default values. ¢; and ¢y have not been used in the original
paper.

hi and ho and two distinct views z7 and x2 of the data (including both the labeled data L and
the unlabeled data U as x; and x5 just represent transformations of the data into different feature
spaces). In each iteration h; is trained on the x; view of L and hs on the xs view of the same
data. Both classifiers label a subset U’ of the unlabeled data U. From U’ the p (n) most confidently
labeled examples that have been assigned by h; to the positive (negative) class are added to the
training dataset L. The same is done for the second classifier ho. In total 2p + 2n examples are
added to L in each iteration. After each iteration 2p + 2n examples are randomly chosen from U
to replenish U’. The co-training algorithm terminates if the maximum number of iterations k is
exceeded or if U is empty.

After training both co-training classifiers on the different views, the classifiers are used to label
the test data. For all cases where the classifiers agree the label is immediately assigned. In case of
disagreement the sum over the class probabilities predicted by each classifier is computed and the
label corresponding to the maximum probability is assigned.

Table |5 displays the parameters of the co-training algorithm and their default values in the paper
by Blum and Mitchell (1998). Blum and Mitchell did not use a minimally required confidence level

11

Nicole Walasek s4629310

on the assigned label before adding a newly labeled instance to the training pool. Instead they
add the p and n most confidently labeled examples without an additional step of evaluating the
confidence of the assigned label.

I propose a variant of the co-training algorithm in which I incorporate such a lower confidence
bound for each classifier. Furthermore, I use two sets of labeled training examples L; and Lo, one
for each view, instead of just one. In the beginning both are initialized with the available labeled
training examples. Throughout co-training I add the examples labeled based on view 1 to Lo and
the examples labeled based on view 2 to L;. This way I want to increase the generalizability of
the two classifiers. The idea being that only adding the instances labeled by a different classifier
- instead of adding all newly labeled instances - directs more attention to labeled instances that
are structurally different from what the classifier has been trained on before. This way it enables
the algorithm to learn to recognize and correctly classify those structurally different examples and
moreover to discover more of those examples within the set of unlabeled data that add novel aspects
for learning to the respective classifier.

In summary this particular adaptation is supposed to increase the informativeness of the labeled
examples added to each respective classifier to ensure that learning progresses.

Algorithm [2] displays these adaptations to the original framework. The differences between the
adapted and the original version (algorithm [2)) can be summarized in three points:

1. Each classifier is trained on its own specific training dataset (L; and Ls), respectively

2. The most confidently labeled examples by each classifier are only added if the conditional
probability P(c = Clx;) of a labeled instance (represented by its view z;) belonging to a
particular class C' (either positive or negative) exceeds a predefined (classifier specific) threshold

3. The instances labeled by classifier h; are added to the training dataset Ly of ho and vice versa

The prediction on the test data by the co-training system, i.e. by the individual co-training
classifiers, is realized in the same way as for algorithm

Moreover, I implemented the co-training algorithm to also allow for more than two classes, i.e.
non-binary problems.

4.3 Assumptions

As outlined in the introduction the co-training algorithm makes two important assumptions:

Assumption 1 (Conditional Independence). The two views, i.e. the feature sets are conditionally
independent given the class label.

Assumption 2 (Sufficiency). Each view is in itself sufficient for correct classification.

If the conditional independence assumption holds, on average each added example should be
as informative as a random example from the underlying “population” of examples. Assumption
2 states that each feature set, given a large amount of training examples, is in itself sufficient to
allow for accurate classification of the test data. Consequently incorrect classifications would not be
a result of the chosen representation of the data being inappropriate and inadequate but rather a
result of the limited amount of training data.

4.4 Selecting views and classifiers

In order to select the two distinct views of the data for co-training I considered a range of different
feature sets. As indicated earlier I focused on generic features which are not highly problem specific,
i.e. features that can be regarded as a different representation of the data. For example, in contrast
to explicitly using part-of-speech tags as features I am relying on the classifiers to learn the syntax

12

Nicole Walasek s4629310

Data: L, a set of labeled training examples; U, a set of unlabeled examples

Result: Co-trained classifiers hy and hg

initialization;

create a pool U’ of examples by choosing u examples at random from U;

initialize two sets L; and Ly with all available labeled training data L;

set p and n to represent the proportions of positive and negative instances in the labeled data
L;

while still elements in U A not exceeded the maximum number of iterations k do
k=k+1;

use L4 to train a classifier hy that considers only the x; view of x;

use Lo to train a classifier hy that considers only the x5 view of x;

select from U’ p most confidently labeled examples by h; as positive examples, if
P(c=pl|x1) > c1;

select from U’ n most confidently labeled examples by h; as negative examples, if
P(c=n|z1) > c1;

select from U’ p most confidently labeled examples by ho as positive example, if
P(c =plze) > ¢

select from U’ n most confidently labeled examples by ho as negative examples, if
P(c =nlzg) > cg;

add the self-labeled examples by hi to Lo;
add the self-labeled examples by hs to Lq;

randomly choose 2p + 2n examples from U to replenish U’;
end

Algorithm 2: Adapted co-training algorithm.

implicitly from the chosen representation. All features described in the following have been extracted
from the preprocessed tweets.
I extracted the following feature setﬂ

TF-IDF (word) Term frequency - inverse document frequency assigns a vector of numerical values
to each document. Each entry in the vector represents one token in the corpus. The n-th entry
in the TF-IDF vector for document x represents how important that n-th word in the corpus
is in that document. The score is determined by the product of the term frequency (how
often does a term occur in the document) and inverse document frequency which reflects how
much information that word provides for identifying the particular document (in how many
documents does the term occur, i.e. very frequently as for instance “the” vs. rare terms).
Cosine similarity between TF-IDF vectors of documents can be used to assess the similarity
between two documents.

A TF-IDF vectorizer has been trained on word level on all available training tweets (after
preprocessing) in an n-gram range of 1-2. This particular range allows bi-words like “bible
belt” as well as single words to be represented as features. This resulted in feature vectors
of 1x51,978 dimensionaility per tweet. The machine learning library scikit-learn (Pedregosa
et al. 2011) has been used to extract both the TF-IDF features on word and character n-gram
(see below) level.

12. T also experimented with polarity values (extracted with the python library pattern) (Smedt and Daelemans 2012))
and descriptive statistics of the tweets like average number of words, its standard deviation, average number of
hashtags and average word length (plus standard deviation). However, initial classification attempts based on
these features on the development data lead to much poorer results than the other feature sets. Consequently I
decided to discard these attempts and ideas.

13

Nicole Walasek s4629310

TF-IDF (character) A TF-IDF vectorizer has been trained on character n-gram level on all avail-
able training data (after preprocessing) in an n-gram range of 2-5. Choosing character n-grams
instead of word n-grams for a TF-IDF representation has the advantage of automatically ac-
counting for spelling variants and spelling errors. The dimensionality of the feature vectors is
1x278,412.

Word2vec Word2vec embeddings (Mikolov et al. 2013) are distributed representations of words.
Each word is represented by a feature vector with a predefined number of features. The
embeddings are produced by training a two-layer neural network on a large corpus of text.
During training for each word in the corpus a context of n words around it is considered.
Thereby words that share a common context in the corpus are also closely located in the
feature space that is spanned by the resulting word embeddings. The goal of Word2vec is
to use word co-occurence statsitics in order to learn linguistic context and thereby semantics
of words. The embeddings have been trained with gensim (Rehiifek and Sojka 2010) on all
available tweets, including training, testing and unsupervised data. The test data have been
also used for training simply to increase the amount of training data in order to get a better
feature representation. The parameters used for training the Word2vec representations were:
feature dimensionality = 500, window size = 3, minimum word count = 1, number of cores =
3, number of iterations = 100, training algorithm is CBOW (sg = 0); other parameters were set
to default values. Usually Word2vec embeddings are trained on sentence level. However, given
the nature of the problem I decided to train on tweet level. To arrive at one feature vector per
tweet, Word2vec embeddings for all words in a tweet have been averaged. As addtional features
I added the absolute number of positive entries in the resulting feature vector, absolute number
of negative entries, the mean of the current feature vector, its standard deviation, as well as
the sum over all entries. The resulting feature vector per tweet therefore had a dimensionality
of 1x505.

Doc2vec As an alternative to Word2vec gensim also offers Doc2vec. While Word2vec is usually
used to measure similarity between words, Doc2vec uses word level embeddings with a pooling
approach (similar to the averaging described above) to infer similarity between whole docu-
ments (Le and Mikolov 2014). The following parameter settings have been used for training:
feature dimensionality = 500, window size = 3, minimum word count = 1, number of cores =
3, number of iterations = 100; other parameters were set to default values. The same statistics
as in the Word2vec case have been added on top of the Doc2vec vectors, resulting in feature
vectors of size 1x505.

It is difficult to make an a priori decision for which combination of the presented feature sets the
conditional independence assumption holds. The intuition behind the assumption is to choose the
most distinct features to get complementary “views” of the same data.

To evaluate the conditional independence assumption, I plotted the first two principal compo-
nents of the feature sets. As each of the described sets spans a high dimensional feature space, a
reduction to just two principal components could be viewed as a severe misrepresentation. However,
there are no empricical metrics available to estimate the conditional independence. A graphical
representation in 2D gives at least some indication of the differences in feature sets.

Figures|[6] and [7] display the two first principal components of the Word2vec, Doc2vec and the two
TF-IDF variants. Red dots indicate negative tweets while blue dots represent non-negative tweets.
I only focused on the distinction between negative and non-negative as this was more relevant for
my particular problem than a more fine grained distinction. Not surprisingly this visualization
emphasizes that within varieties of word embedding features (figure @ and within varieties of TF-
IDF features (figure [7)) the conditional independence assumption does not hold. However, between
word embedding and TF-IDF features it looks as if the views are independent given the class label.
Therefore I decided to choose a combination of word embedding and TF-IDF features as views

14

Nicole Walasek s4629310

for co-training. At this point it is however important to note that based on the first two principal
components the two classes do not seem to be linearly separable. This can mean that the two classes
become separable once all dimensions are included or that a non-linear classifier is required to solve
this problem.

In order to make a final decision on the best combination of feature sets I ran experiments
that tested multiple classifiers on each set of features. The underlying hypothesis is that to reach
good performance with the co-training framework requires a combination of classifiers and features
that yield good results in standalone classification. Moreover, the experiments provide support in
choosing view-classifier pairs that satisfy the sufficiency assumption. To find the optimal classifiers
randomized search (as implemented in the Python library scikit-learn) with 10-fold cross validation
has been performed on the development data for both the binary and the multiclass problem. The
following classifiers have been tested:

e Multinomial naive Bayes

e Random forrest

K nearest neighbors

AdaBoost

e ExtraTrees

Gradient boosting

Logistic regression

Support vector machine

All classifiers are preimplemented in the Python library scikit-learn. In addition to these classi-
fiers a baseline classification using the pattern library in Python has been integrated. The pattern
baseline classifies a tweet as positive in case that the overall polarity score returned by the sentiment()
function is positive, negative for a negative score and neutral otherwise. As the implementation of
Doc2vec in gensim did not allow the flexibility I desired for my system with regard to randomizing
data and calculating Doc2vec representations on different subsets of the test data, I decided to dis-
card this approach as the cost to benefit ratio did not seem to pay off given the time frame of my
project.

The RIVM expressed interest in a system that is specifically tailored to identitfy negative sen-
timent towards vaccination. Furthermore, precision, i.e. the number of true positives among the
tweets labeled as negative, is considered to be more important than recall for the purpose of the
research conducted by the RIVM. Therefore, instead of using the harmonic mean between precision
and recall (Fy score) as optimization metric, I use the Fj score which is defined as weighted har-
monic mean of precision and recall. Setting 8 = 0.5 results in an F-score that assigns more weight
to precision than recall. This results in the following formula for the Fj 5 score:

precision x recall

(0.52 x precision + recall)
recall + 0.5 * recall

F0.5 = 1 (2)
0'52 + prTeecil(;ion

From equation (2) it can be inferred that a /5 coefficient of 0.5 discounts the effect of recall.
Figure [§| displays the results for all classifiers on the preselected feature sets. Prior to classifica-
tion the classifiers have been tuned based on randomized search while optimizing for Fg 5. I held out

15

Nicole Walasek s4629310

another 10% of the training data and retrained the optimized classifiers on all remaining training
data while testing on the second held out development set. The results for the binary classification
can be viewed in figure |8| (a) and the results for the multiclass task in 8| (b). The results for both
tasks show that the different classifiers tend to cluster around classes. Furthermore, some classifiers
show a large discrepancy between recall and precision. It is important to note, that although the
classifiers have been optimized for Fy 5 the Fj score is displayed here. Moreover, there is a larger
noticeable variance within results for the negative class than for the other classes.

For the remainder of this thesis I will only discuss the results of the binary classification task.
The difference in classification performance on the negative class across both tasks is merely notice-
able. Therefore, I do not want to overwhelm the reader with numerous experiments for both tasks
in the co-training section and rather concentrate on the binary problem.

The results demonstrate that the pattern baseline serves as a surprisingly strong one with an
Fy score slightly below 0.4 for the negative class and a score of roughly 0.7 for the positive class.
Based on the performance of the classifiers I selected the ExtraTrees classifier in combination
with the TF-IDF (word) features and the logistic regression classifier in combination with the
Word2vec features. A feasible alternative to the ExtraTrees classifier would have been the SVM.
However, training of the SVM is slow in comparison to other classifiers and most importantly the
sklearn implementation does not allow the SVM to output probabilities instead of class labels which
is crucial for co-training.

Table [6] displays the optimized classifiers and their parameters found throughout the randomized
search for the binary classification task. The second row illustrates the explored parameter ranges.
All parameters (but the n_jobs, max_iter, and n_estimators) that do not occur in the second row
have been set to default values. I manually enabled multicore processing by setting n_jobs = -1
and I set the number of maximum iterations for the logistic regression classifier to 300 and the
number of estimators for the ExtraTress classifier to 100. For the latter two parameters it holds
that more iterations and more estimators lead to better classification results. However, my time
for the co-training experiments was limited so I decided to constrain these parameters while still
allowing for reasonable accuracy. The logistic regression classifier with the settings listed in table [f]
implements regularized logistic regression using the cross-entropy loss. The ExtraTrees classifier is
an ensemble classifier (also called meta estimator) which fits numerous randomized decision trees on
subsets of the dataset. Averaging over these sub-results is used to improve accuracy and as a means
to overcome overfitting.

After determining the view-classifier pairs for the binary classification task, the lower confidence
bounds ¢; and ¢y for both classifiers still had to be tuned on the development set. A co-training
experiment using the selected view-classifier pairs and the default parameters (compare table
from the original co-training paper was run to compute the optimal confidence bounds. p and n
however, were set to represent the proportions of negative and non-negative tweets in the data. The
experiments used the adapted version of the co-training algorithm (algorithm .

As in a binary classification task an instance has to be labeled with a probability of at least 0.5 to
be considered to belong to a specific class the following thresholds were explored for both classifiers:
[0.5,0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]. More specifically two co-training experiments were
run:

Experiment 1 Determines the optimal threshold for the ExtraTrees classifier in combination with
the TF-IDF (word) features. The lower confidence bound ¢y of the logistic regression classifier
is set to 0.5. p and n are set to represent the proportions of the negative and non-negative
tweets in the labeled training data. ¢; is varied and the results are stored for each threshold.
Only the set of “relevant” unsupervised data has been used.

16

Nicole Walasek

54629310

LogReg + Word2vec

ExtraTrees + TF-IDF (word)

Optimized parameters

C =1, class_weight = “balanced”,
dual = False, fit_intercept = True,

bootstrap = False, class_weight
= “balanced”, criterion = “gini”,

intercept_scaling = 1, max.iter max_depth = None, max_features!
= 300, multi_class = “multino- = 0.4, max_leaf nodes =
mial”, n_jobs = -1, penalty = “12”, None, min_impurity_split =
random_state = None, solver = 1e-07, min_samples_leaf =
“Ibfgs”, tol = 0.0001, verbose = 1, min_samples_split = 2,

min_weight_fraction_leaf = 0.0,
n_estimators = 100, n_jobs = -1,
oob_score = False, random_state
= None, verbose = 0, warm_start
= False

0, warm_start = True

Parameter ranges C: [0.001, 0.005, 0.01, 0.5, 1, max_features®’ = [0.4, 0.44285714,
5, 10, 50, 100, 500, 1000], 0.48571429, 0.52857143,
solver: ['newton-cg’, ’lbfgs’, 'sag’], 0.57142857, 0.61428571,
multi_class: [“ovr”, “multino- 0.65714286, 0.7, 0.74285714,
mial”] 0.78571429, 0.82857143,
0.87142857, 0.91428571,
0.95714286, 1.]
Parameter explanation C : float, inverse of ruglarization max_features: if float, then

max_features is a percentage and
int(max_features * n_features)
features are considered at each
split.

strength;
solver :
mization;
multi_class : determines whether
a binary (Covr’) problem is fit for
each label or whether the multino-
mial loss is minimized

algorithm used for opti-

LT decided to not consider fewer than 40% of the features. For that reason the explored range only
starts at 0.4.

Table 6: Optimized classifiers for the binary classification task (first row), explored parameter ranges
for those classifiers (second row) and explanation of the varied parameters (third row).

Experiment 2 Determines the optimal threshold for the logistic regression classifier in combination
with the Word2vec features. The lower confidence bound ¢y of the ExtraTrees classifier is set
to 0.5. p and n are set to represent the proportions of the negative and non-negative tweets
in the labeled training data. c; is varied and the results are stored for each threshold. Only
the set of “relevant” unsupervised data has been used.

Figure |§| displays the results of the two thresholding experiments. Based on figure (a) an optimal
threshold of 0.55 for the ExtraTrees classifier can be inferred. Figure (b) shows an optimal threshold
of 0.5 for the logistic regression. Performance is assessed in terms of the F) score. Interestingly,
the curves for the negative and non-negative class are roughly parallel to each other. In conclusion
the chosen thresholds can be considered optimal for both classes. It is important to note that the
threshold of 0.5 for the logistic regression essentially means that the same selection criterion for
adding unlabeled instances applies for this classifier as for both classifiers in algorithm [1} in every

17

Nicole Walasek s4629310

iteration the maximum number of instances (which is constrained by p, n and U’) labeled by logistic
regression will be added to the training dataset.

The following section will describe the experiments designed to analyze the performance of the
co-training framework.

5. Experiments

It is known that the maximum obtainable performance of co-training is limited in various ways
(Pierce and Cardie 2001). One such limitation is a reported degradation effect after a certain
number of iterations of the learning procedure (Wang and Zhou 2007). In order to monitor the
development of the classification system, the classification results in terms of precision, recall and F}
score are stored after each iteration. The resulting learning curves will be presented and discussed
in the results section.

For all of the following experiments the number of iterations k was set to 100 (as the classification
results after each iteration were stored I did not test higher numbers of iterations due to time
constraints) and n and p were determined based on the relative proportion of negative and non-
negative instances in the training data. I decided against performing an exhaustive search for the
optimal settings of p and n as I found the initialization to be a reasonable representation of the
training data. However, I set up two additional experiments to test the influence of p and n which
will be illustrated below. I focused on varying the pool size U’: Each of the experiments was
run with the following pool sizes U’ € [10, 25, 50, 75, 100, 150, 200, 500, 1000]. In conclusion,
each experiment ran 9 times for 100 iterations, resulting in 9 * 100 = 900 classification results per
experimental condition in case that algorithm [2| did not terminate earlier due to exhaustion of the
unsupervised data U.

The different experimental conditions varied on four levels:

1. training data: Either all of the available training data (condition all) or a stricter variant
(condition strict) have been used in which only those instances were considered where all
annotators (at least two) instead of just the majority agreed. The larger set consists of 3,436
training instances (training instances left after removing the development data) and the strict
version of 2,002 instances.

2. unsupervised data: As outlined in the data section the total amount of unsupervised, i.e.
unlabeled data, consists of 178,569 of which 15,586 specifically relate to vaccination and not
to vaccination and diseases. The general setup of the experiments uses the unsupervised
data specifically relating to vaccination. However, one of the experiments uses all of the
unsupervised data, that is a mix of tweets specifically relating to vaccination and those loosely
relating to vaccination. The goal of this experiment is to test whether performance varies
depending on the set of unsupervised tweets (either condition all or condition relevant).

3. downsampling: As the training data show an imbalance between negative and non-negative
data an option for downsampling has been implemented. Downsampling works in two modes:
“NoNeutrals” (condition NoNeutrals) and “DropOut” (condition DropOut). In the first mode
all neutral tweets are excluded, while in the latter mode tweets from the majority class (the
non-negatives) are dropped out with a probability of 0.4.

4. p and n: Both parameters are set to represent the relative proportions of non-negative and
negative tweets in the training data. In a variant of this baseline setting both parameters have
been multiplied by 10 in order to test the influence of a larger number of instances added per
iteration. Yet another variant tests the effect of only adding negative instances as a means to
overcome the imbalance in the training data.

18

Nicole Walasek s4629310

training data unsupervised data downsampling pand n
Experiment 1 all relevant none 4 &1
Experiment 2 strict relevant none 4 &1
Experiment 3 all all none 4 &1
Experiment 4 all relevant NoNeutrals 3&1
Experiment 5 all relevant DropOut 3&1
Experiment 6 all relevant none 40 & 10
Experiment 7 all relevant none 0 & 10

Table 7: Co-training experiments for the binary classification task. The first row represents the
baseline experiment and all consecutive experiments differ only on one level in order to solely test
the effect of the imposed change. The changes per experimental condition are marked in green.

Table [7] summarizes the executed co-training experiments for the binary classification task. Ex-
periment 1 serves as a baseline experiment and all other experiments only differ with regard to one
of the four levels from that baseline experiment. This is crucial in order to be able to explain changes
in the performance as a result of the experimental condition rather than of an interplay of multiple
changes at the same time.

The system has been implemented to flexibly allow to change all of the listed options.

6. Results

I will present and briefly discuss the results for each of the seven experimental conditions. Table [§]
displays the best F; score across all pool sizes U’ and all iterations per experiment for the negative
class. For this best F; score the corresponding pool size U’, the number of iterations %, and precision
and recall scores are shown. Furthermore, the average best (the best within the 100 iterations) Fj
score across all tested pool sizes U’ and its standard deviation is displayed. Lastly, the last column
shows the number of instances addeﬂ by each classifier up until the best performing number of
iterations. Table[d]displays the same statistics for the non-negative class. However, I will not discuss
these results in detail as I geared the co-training framework to perform well in the classification of
negative tweets. In total it can be observed that the best achievable Fj score for the non-negative
class is below that of the negative class. Moreover, for all but one experimental condition the best
score was achieved before adding any unlabeled instances, i.e. after zero iterations. In comparison
to the negative class a larger variance associated with the average best F) score across pool sizes
is noticeable. Lastly, precision is in general higher than recall for the non-negative class while the
opposite is true for the negative class.

In what follows I will briefly describe each experiment and compare each experimental condition
to the baseline condition (experiment 1). Thereafter I am going to present and discuss the results
for the best performing co-training setup in more detail and compare it to the pattern baseline, as
well as to the performance of the individual co-training classifiers in standalone classification.

Experiment 1 - baseline The baseline experiment used all training data, only the relevant unsu-
pervised data, no downsampling and values for n and p that represented the actual proportions
of the negative and non-negative samples in the training data, namely 4 and 1. The best I}
score across all pool sizes U’ and iterations for that particular setup was 0.60 (with corre-

13. The maximum number of instances that can be added per classifier per iteration is 5 in experiment 1-5, 50 in
experiment 6 and 10 in experiment 7. However, the maximum number is always contrained by the pool size U’
in case that U’ < (p + n).

19

Nicole Walasek

54629310

best F} score! Pr R U’ k avg. F? £std instances added?
Experiment 1 0.60 0.50 0.75 25 11 0.58 + 0.012 55/55
Experiment 2 0.54 0.46 0.64 10 41 0.51 £+ 0.014 234/234
Experiment 3 0.65 0.56 0.78 1000 95 0.64 + 0.003 475/475
Experiment 4 0.62 0.49 0.84 10 5 0.59 + 0.011 18/20
Experiment 5 0.61 0.49 0.79 75 69 0.61 4+ 0.002 276/276
Experiment 6 0.60 0.50 0.75 10 7 0.57 £+ 0.013 60/70
Experiment 7 0.61 0.47 0.85 150 17 0.60 £ 0.004 170/170

! of the negative class
2 Averaged across the best I} scores for each U’.
3 by both classifiers up until the best iteration in the format ExtraTrees/Logistic Regression.

Table 8: The table shows the best F} score for the negative class per experiment across all pool sizes
U’ and iterations. For the best F} score the accompanying pool size U’, the number of iterations, and
precision and recall scores are reported. Furthermore, the average F} score across all best F; scores
per pool size U’ and its standard deviation is displayed, as well as the number of instances added
by each classifier up until the best performing number of iterations. The best result is highlighted
in bold.

best Iy score! Pr R U’ k avg. F1?2 £ std instances added?

Experiment 1 0.61 0.64 0.58 10 0 0.58 + 0.024 0/0
Experiment 2 0.63 0.62 0.64 10 0 0.60 + 0.022 0/0
Experiment 3 0.62 0.74 0.53 1000 19 0.60 £ 0.015 95/95
Experiment 4 0.51 0.69 0.41 10 0 0.46 £ 0.022 0/0
Experiment 5 0.57 0.68 0.49 10 0 0.50 £ 0.026 0/0
Experiment 6 0.60 0.64 0.56 10 0 0.49 £+ 0.041 0/0
Experiment 7 0.60 0.65 0.56 10 0 0.44 £ 0.079 0/0

L of the non-negative class
2 Averaged across the best Fy scores for each U’.
3 by both classifiers up until the best iteration in the format ExtraTrees/Logistic Regression.

Table 9: The table shows the best F; score for the non-negative class per experiment across all
pool sizes U’ and iterations. For the best F} score the accompanying pool size U’ , the number of
iterations, and precision and recall scores are reported. Furthermore, the average F} score across
all best F; scores per pool size U’ and its standard deviation is displayed, as well as the number of
instances added by each classifier up until the best performing number of iterations. The best result
is highlighted in bold.

sponding U’ = 25 and k = 11). The average besth] F1 score across all pool sizes was slightly
lower with 0.58 + 0.012. Neither in this experimental setup nor in the following ones did the
algorithm terminate before the maximum number of iterations (k = 100) was reached. An-
other termination criterion was that the number of unsupervised examples U was exhausted.
However, this was never the case.

14. across the 100 iterations per pool size

20

Nicole Walasek s4629310

Experiment 2 - strict training This experiment tested the effect of using stricter training data.
The stricter training data only considered labeled instances where at least two annotators
agreed and where all annotators assigned the same label. In total 2,001 labeled examples
satisfied this condition. In comparison to the baseline experiment a lower best I} score of 0.54
was reached (the corresponding U’ and k can be found in table . The conclusion would be
that the co-training framework performs better using all of the training data rather than only a
stricter subset. At this point, it is not possible to argue whether this would also hold if as many
“strict” as “normal” training data were available. The decrease in performance is probably
not a result of the training data being selected for stricter criteria but of the reduced number
of training data. However, one can infer that a larger less restricted (and thereby possibly less
accurate) labeled training dataset is not detrimental to the overall learning process.

Experiment 3 - all validation This experiment was set up in the same manner as the baseline
condition with one difference: instead of the unsupervised data that were specifically related to
vaccination, all unsupervised data have been used to compose U and the random subsets U’.
This condition emerged to produce the best results in terms of F; score of the negative class,
namely F; = 0.65 with U’ = 1000 and 95 iterations. The best F} score averaged across all
pool sizes was 0.64 + 0.003. This indicates that contrary to my expectations the unsupervised
data containing both tweets specifically relating to vaccination, as well as those relating to
diseases, proved to be a more valuable addition to the training data. I will discuss the results
for this condition in more detail further below.

Experiment 4 - Downsampling 1 In order to account for the imbalance between the non-negative
and negative training data all neutral tweets were removed in this experiment. This reduced
the number of training instances to 2,564 (660 of which were negatives and 1904 positives).
Table [§] displays a best F; score of 0.62 for this condition. It appears to be the case that the
reduced imbalance in the training data did not drastically impact the F; score compared to
the baseline condition. It is however noteworthy that the recall of the negative class increased
in this condition to 0.84 compared to the 0.75 of experiment 1.

Due to removing all neutral instances one might suspect an effect on the non-negative class in
this binary classification. Indeed table [J] shows a drop in the best F score due to a drop in
recall. This might be the effect of having a lower amount of non-negative training data. It is
important to notice that the test data still included neutral tweets.

Experiment 5 - Downsampling 2 Here, another attempt was made to overcome the imbalance
in the training data by randomly dropping training instances of the majority class, i.e. the non-
negative class, with a probability of 0.4. This variant of downsampling lead to 2,288 training
instances. 660 of these tweets were negative, 514 neutral and 1,114 positive. The results are
comparable to those of the previous condition with a best F; score of 0.61. Table [J] indicates
an increase in F score for the non-negative class due to a higher recall value compared to the
previous experiment. This can be explained by the fact that the reduced training data still
contain neutral tweets and are therefore a better representation of the test data.

Experiment 6 - increased p & n This experimental manipulation tested the effect of an increased
number of unlabeled training instances per iteration. The proportion of negative and non-
negative examples was still preserved. As the results for the negative class essentially do not
differ from the baseline condition (best Fj score of 0.60 remains unchanged) it can be con-
cluded that a larger proportion of negative and non-negative instances added per iteration
do not impact the F} score for the negative class. The fact that the best result emerged for
a pool size U’ = 10 indicates that the algorithm itself constrained the number of unlabeled
instances added. Given a large enough value of U’ theoretically up to 50 instances can be
added per iteration per classifier. This would result in 350 added instances per classifier after

21

Nicole Walasek s4629310

Measure CoTrain' Pattern LogReg? ExtraTrees?
Fi 0.62 0.62 0.44 0.65
Non-negative class Pr 0.76 0.57 0.64 0.63
R 0.52 0.69 0.33 0.68
Fi 0.65 0.38 0.58 0.50
Negative class Pr 0.56 0.45 0.47 0.53
R 0.78 0.33 0.76 0.47

I Choosing the best co-training system geared towards the negative class. Com-
pare table

2 Both, the logistic regression classifier and the ExtraTrees classifier were initial-
ized with the same parameter settings as for co-training. The initialization is
based on the randomized search whose results can be viewed in figure

Table 10: Comparison of best co-training classifier system to the pattern baseline and the standalone
classification performance of logistic regression and the ExtraTrees classifier. The same training and
test data have been used for each classification system. The best results per row are indicated in
bold.

7 iterations. This might be an indication for the co-training system preventing a degradation
effect in performance after adding too many unlabeled instances.

Experiment 7 - no p The last experiment tested the effect of only adding unlabeled instances to
the training pool that have been labeled as belonging to the negative class. Eventually this
intervention could serve as a means to overcome the class imbalance in the training data.
Table |8 indicates that the best results from this condition are most similar to the results from
experiment 4 in which all neutral tweets had been removed. The comparatively high recall
value of the negative class could be attributed to the increase in negative training instances.
Interestingly the result for the positive class (compare experiment 7 in table E[) shows the
largest variance associated with the average F} score across all pool sizes. This indicates that
compared to other conditions relatively low Fj scores are reached which can be ascribed to the
changed proportions in negative and non-negative samples.

Table [L0|displays a comparison of the best performing co-training system (the one emerging from
experiment 3 in table(8)) and three baseline classification systems: the pattern baseline (as described
in section 4.4), as well the results for the standalone classification using logistic regression and the
ExtraTrees classifier. Both, the logistic regression and the ExtraTrees classifier were initialized
with the settings that lead to the best results throughout randomized girdsearch (compare table |§|
and figure . These were also the same settings that have been used for the initialization of the
co-training classifiers. All four classification systems used the same training and test data.

For the non-negative class it can be observed that the co-training system, the pattern baseline and
the ExtraTrees classifier perform similar in terms of the F; measure with the ExtraTrees classifier
slightly outperforming the other two (F; = 0.65). The co-training system leads to the highest
precision score (P = 0.76) for the non-negative class. This might be a result of optimizing the
individual classifiers for the Fj 5 score which assigns more weight to precision than to recall.

It is however the case that the co-training system outperforms the three classifiers on all measures
on the negative class.

Figure[10|displays the classification results and the convergence behaviour of the best performing
co-training system. In figure [10 (a) the Fy score, precision and recall for both classes are displayed
as a function of the number of iterations. After each co-training iteration the classifiers have been

22

Nicole Walasek s4629310

refitted and used to make predictions on the test data. Based on these predictions F}, precision and
recall are computed. The blue vertical line marks the best Fj score for the negative class. It can
be observed that the F; and recall scores for the negative class are higher than for the non-negative
class. Furthermore, the figure indicates that recall is higher for the negative class in comparison to
the non-negative class while the reverse is true for precision. Overall there is not a lot of variation
in the scores noticeable across iterations. One might expect a steady increase in performance over
iterations. At the same time it does not appear to be the case that the performance decreases
with an increasing number of labeled instances. Therefore, I would not conclude that the labeled
instances are inadequate training instances. However, the lack of an increase in performance might
be an indicator of the initial training data being sufficient enough to yield good classification results
so that the effect of additional labeled instances is rather small. In order to test this hypothesis
one might instantiate the same co-training experiment as experiment 3 in table [§| with (a) a larger
number of iterations and (b) a smaller initial training dataset. Experiment (a) would test whether
a larger quantity of added unsupervised instances increases performance over time. Experiment (b)
would test the hypothesis that the beneficial effects of co-training are more pronounced if the initial
amount of labeled data is smaller.

Figure |10 (b) illustrates the convergence of the individual classifiers during co-training as well
as of the combined system. Convergence is measured by the mean absolute difference between pre-
dicted labels on the test data (vectors containing zeros for the non-negative and ones for the negative
class) in consecutive iterations. Blue indicates the convergence behaviour of the ExtraTress classi-
fier, green of the logistic regression and red of the combined classifiers. Within the 100 recorded
iterations there still seems to be a steady level of small variation. In conclusion, the classification
pattern does not seem to change drastically between consecutive iterations. An explanation might
be that the initial training dataset was large enough so that the additional instances added through
co-training do not have a large impact on the assigned labels. Theoretically it could be the case
that more drastic changes can be observed when increasing the number of iterations.

I performed two follow-up experiments based on the results described above (both used the same
training and test dataset as the previous experiments):

1. Follow-up experiment 1 used the same setup as the best performing co-training system.
However, the algorithm ran for 1000 iterations instead of 100.

2. Follow-up experiment 2 is a replication of follow-up experiment 1. However, it uses a
different Word2vec model to extract word embedding features from the data. In parallel to
running the co-training experiments I re-trained the original Word2vec model on additional
20,052,878 Dutch twitter messages. Those tweets were not specifically pre-filtered to be related
to vaccination and/or diseases. The rationale behind this experiment was that theoretically a
Word2vec model trained on a larger corpus should outperform a model trained on a smaller
corpus and therefore lead to a better classification performance. With this experiment I wanted
to test how much better the predictive capacity of the co-training system can get due to
(possibly) better features.

The results of the follow-up experiments can be viewed in table and figures and re-
spectively. With regard to follow-up experiment 1 a new best Fj score of 0.68 for the negative class
and 0.65 for the positive class can be observed (compare table . What is more, figure [11| shows
a steady increase in performance when increasing the number of iterations (figure [11] (a)), as well
as convergence of the classifiers (figure [L1] (b)). Both of these patterns were missing in the original
experiment that ran for 100 iterations (figure . The best Fj score for the negative class has
been reached after 765 iterations with 3,788 instances added by the ExtraTrees classifier and 3,825
instances added due to logistic regression. Compared to figure [L0] one can notice more variation in

23

Nicole Walasek s4629310

Measure Exp 1 Exp 2

F 0.65 0.70

Non-negative class Pr 0.79 0.85
R 0.55 0.60

P 0.68 0.72

Negative class Pr 0.58 0.63
R 0.81 0.86

Table 11: Results of the follow-up experiments. Experiment 1 tested the effect of running the best
co-training system for 1000 instead of 100 iterations. Experiment 2 used the exact same setup as
experiment 1 with an updated Word2vec model.

the first 100 iterations in this experiment. The ExtraTrees ensemble classifier implements random-
ization of the data which might have lead to this different pattern of variation. Other than that
I do not have an explanation for this diverging behaviour. Nevertheless, the follow-up experiment
demonstrates that the co-training framework works in utilizing unsupervised, i.e. unlabeled data to
improve performance.

The results for follow-up experiment 2 (compare table|l1and figure display the same pattern
as follow-up experiment 1. The best Fj score of the negative class was reached after 511 iterations
with 2,534 instances added by the ExtraTrees classifier and 2,555 instances added due to logistic
regression. However, it is noteworthy that figure 12| (b) shows stronger oscillations in the predictions
between consecutive steps. This might be due to the updated Word2vec features having more impact
on the predictions in individual steps. Most importantly table |[L1] shows a best F; score of 0.72 for
the negative class and and 0.70 for the non-negative class. Which is a large improvement compared
to the baseline results in table [I0l

Comparing figure [10] to figures [L1] and [12]it can be seen that the ordering of recall, precision and
F scores within and between classes is preserved. In conclusion based on the results of the follow-up
experiments it can be argued that the co-training framework succeeds to add labeled instances to the
training pool that are informative in the sense that they increase the overall classification capacity
of the system.

7. Conclusion and discussion

The experiments demonstrate that the co-training framework can be successfully applied to improve
sentiment analysis towards vaccination on Dutch Twitter messages. In total a best Fj score of 0.72
on the negative class and 0.70 on the non-negative class has been reached with the best performing
co-training classification system. Thereby the system outperformed the three baseline classifiers

(compare table [10] and [L)).

In the remainder of this section I am first going to discuss a few characteristics and possible
shortcomings of my approach. Thereby I will also discuss the general feasibility of an approach like
co-training in the field of machine learning. Finally, I will conclude with a few words on future work
and the role and importance of unlabeled data for machine learning.

For the interpretation of the results it is important to keep in mind that for selecting the individual
co-training classifiers, as well as the best performing co-training system, decisions have been based on
the F; score of the negative class. Using this particular decision criterion leads to different results
than using for instance the average Fi score of both classes or of the non-negative class instead.

24

Nicole Walasek s4629310

When reading and interpreting the results this bias should be taken into account. I based my
decisions on the F} score for the negative class as correctly identifying negative sentiment towards
vaccination was more important for my particular problem. Furthermore, heightening the system’s
sensitivity for the negative class can be viewed as a measure to deal with the class imbalance in the
training data.

With regard to the different experimental conditions one needs to be cautious about the fact that
some of them reduced the total amount of available training instances (e.g. experiment 2). There-
fore, an observed decrease in performance might not necessarily be the result of the experimental
manipulation but rather of the reduced amount of training data. In order to purely test the effect
of the experimental condition more labeled training instances would be required to make sure that
the number of training instances is equal across conditions.

Moreover, I would have liked to investigate the effect of different termination criteria on the
co-training algorithm. In contrast to pre-defining a fixed amount of iterations k I would have liked
to establish criteria that track the rate of change of the predictions made by the co-training system.
This could be realized similar to the convergence measure described in the results section. In the
end this might work as a preventive measure against degradation after a certain amount of iterations
as reported in (Wang and Zhou 2007).

In order to select the optimal classifiers for co-training I performed randomized search on a subset
of the data and tested the resulting classifiers on different pre-selected feature sets. Furthermore,
I investigated the effect of different thresholds on co-training. All of these tuning steps have been
performed in isolation. Each of them constitutes an optimum on its own. However, there is no
guarantee that all the optima taken together form a global optimum. Given more computational
power and most importantly more time all of these individual parameters and settings could in
principle be tuned in one all-inclusive girdsearch to improve on the results. However, it might be
the case that such an approach entails a larger risk of overfitting.

What is more, I am of the opinion that future work (or an extension of this work) should include
an additional evaluation step in which the trained co-training system labels large amounts of unla-
beled data. These labeled instances are then evaluated by independent raters in order to to measure
the accuracy of the assigned labels. Such an evaluation procedure is of course time-consuming and
defeats to some extent the purpose of developing a system that integrates unsupervised data in order
to handle small amounts of labeled training data. Nevertheless, I think that a project as the one
funded by the RIVM enables a framework in which such an extensive evaluation should be realiz-
able. After all, especially when using classification systems that utilize unlabeled data one wants to
make sure that the classifier generalizes well and is reliable. Another crucial evaluation step that
is missing from the current work would be an extensive error analysis of the miss-classifications of
the co-training algorithm. Especially a comparison between errors made by co-training and errors
made by standalone classifiers such as logistic regression that have not been trained on additional
unlabeled instances could prove very insightful and thereby allow to better target problem cases of
the current implementation. I did not incorporate such an extensive analysis as I ran out of time.
This however would be the first starting point if I would continue to work on this project.

With regard to co-training as a general tool in machine learning I found that it requires a sub-
stantial amount of tuning before being ready for use. Some of the parameters of co-training, such as
the number of iterations k and the proportion of negative and non-negative instances n and p have
not been optimized. In general it can be concluded that the co-training framework contains many
variable parameters that require careful tuning. Most importantly I believe that these parameters
are very problem and task specific. This restricts the generelizability of the co-training framework
to other problems, domains or even datasets within the same domain. Due to the high number of
variable parameters the algorithm is prone to overfitting. Future work on the co-training framework
could involve the development of best practices that generalize across datasets and domains so that
the algorithm becomes as easy to use as a standard classifier like multinomial naive Bayes.

25

Nicole Walasek s4629310

Coming back to the original problem of classifying sentiment towards vaccination on Dutch tweets
alternative approaches to co-training or additions to the current system might involve deep learning.
One possible realization could be a form of “bootstrapped deep learning”: Once a sufficient amount
of data has been confidently labeled by co-training a deep convolutional network could be trained on
the labeled data and used in a feedback loop in the same way as the classical co-training classifiers
are used. The feasibility of deep learning for text understanding is demonstrated in (Zhang and
LeCun 2015). More specifically, they use temporal convolutional networks to solve various text
mining related tasks, such as sentiment analysis and text categorization. The input to the network
are short batches of text, which are treated as a sequence of characters rather than a sequence of
words, allowing the convolutional layers to learn the abstract semantic and syntactic representations
on their own.

One of the most constraining perquisites for successfully applying deep learning is a vast amount
of labeled data. Currently researchers in the field of deep learning devote attention to this issue and
work on developing approaches to overcome it. Reed et al. (2014) demonstrate methods to handle
noisy and corrupted labels for the task of image classification. Being able to apply this to textual
data like tweets might also serve as an alternative to the co-training approach as a whole.

Referring back to the introduction of this thesis I would like to emphasize that deep learning
algorithms are not an exception with regard to suffering from requiring large amounts of labeled
data for training. On the contrary most machine learning approaches, and especially those that
turn out to be very successful heavily rely on labeled data. Personally I think that access to large
volumes of confidently labeled data (a ground truth) is not a realistic scenario. Real data come in
many different forms and shapes: most often they are unstructured, unlabeled, correlated and not
even for humans easily separable. The unlabeled Dutch Twitter messages constitute an example of
realistic data. Labelling these tweets is a tedious and costly matter. At the same time access to these
data is very inexpensive. These data and the problem of identifying sentiment towards vaccination
within these data showcases why it is so important to develop methods that are capable to make use
of large amounts of unlabeled data. Observing the current rise of techniques like deep learning (see
for instance Najafabadi et al. (2015)) I do not believe that we are close to moving away from the
dependency on labeled data. Nevertheless, I personally am of the opinion that future development
of semi-supervised or even unsupervised algorithms will be an important subfield within data science
and machine learning as I view the most interesting problems in data science to lie within the class
of problems for which access to data is easy but labelling is costly. Medicine is an example of a
field which stores massive amounts of data. Advancement with regard to unsupervised learning
algorithms could enable the discovery of unknown patterns in the available data which again could
have serious implications for the development of treatments and medication. Of course all of this is
to some extend speculative. However, I do hope that research in this field of semi-supervised and
unsupervised learning algorithms will progress so that eventually the field of machine learning will,
next to focusing on engineering problems, e.g. how to get the highest accuracy in the classification
of images displaying distracted drivers, also concentrate on more open and research driven problems
such as the recognition of patterns in medical data.

26

54629310

Nicole Walasek

Most frequent 50 hashtags in the training data

350-

o
S
®a

250-

o
S

&
SUNO:;

100 -
50 -

s
=

D

- >2n1jod#
soug

- denebj#
gsinedays#

- Xoeneb|#

- Aqeqy#

- UsJspubi#
zodug

- BuljspueysiwIapu#

- Bbuipaonlsioq#
Snuanald#

- auiqooe(#

OINH#

A2qi2qfig#

- pob#

- SMN3aju

- Jdjuejs|eyiopaoulieeq#
11ed#

- Bepapylinap#
ISL0UWUDI#

- beepuenuso#

- uadpjodisremy

- sindnp#
doub#

- |eeusnoflsoug

- PAN#

muady

Jwiq#

W#

WALI#

- lwzg

- ejoga#

- puoyspou#
snnedayy

- dbs#

- oljod#

- pbb#

- uDdeA#

- playpuozab#
AIP#

- Bunuaul#

- ANNSMNaju#

mnedg

ndyz

H2931919#

ApMA#

- uaJauddeA#

- usjudulH

- aneuIDdeAH#

Sualezew#

(a) Most frequent 50 hashtags in the training data

Most frequent 50 bigrams in the training data (excluding stopwords)

250 -

=
S
5

=
s
=

=3
S

1
sjunod

50 -

USJ3UIDDRA Woleem
USJ3UIDDeA USSUSW
uaiapuny jee|

- Bunuaui siyineday

- Bunuaul ayyoidian

“lee| pupy

- peyab Bunusul

-3yoi2bulju bjon

-Ady uaquaul

-aneulddeA ajydidian

-31jeuIddeA 3315199

-Jaxuesjs|eyiapaoulieeq al3euddRA

-oljod uajuaul

~3139 3|qlq

~31993|qlq us|szew

-1s20Ujuly uajuaul

- uaJapury uaquaul

- peyab aneudden

- usjuaul usjeZEW

- UaJauIddeA pupy

-3neuidden aisiee|

- B|Og3 UIddeA

-uajey buuaul

-aneuiddeA Jwg
pup| sispno
us|azew uaiapup
puoy apou

- uaJapup| ussusw

-uaquaul yd1jdian
aneuIddeA usjazew
usjey aneuUddeA
Ju abul
uaJaulddeA jee|
ua|azZewW USJI3UIddeA

- uajazZeW aeUIDdRA

- USJ3UIddeA UJIapuly

-snieday aneudea

- uajuaul pupy

-uajezew bHupuaul

-uajuaul jee|

-uddeA Ady

-uaje| puy

-uaJapupj siapno

-aneudden Ady

-ua3e| uaJapury

- ua3uaUul UaIBpPU

-aneuden sineday

- uaJaudden uale|

- us|azZew uajuaul

Zuquaul uale|

(b) Most frequent 50 bigrams in the training data

Figure 1: Distribution of most frequent 50 hashtags and bigrams in the training data

27

54629310

Nicole Walasek

Most frequent 50 hashtags in the test data

o 1=

S 2
sjunod

70
60
50
20-

Jowwellswwel#
SR 1#
Suswow|eeq#

- 20bH331Ul|20NH#

- Biufubeyo#

- vuys#

- 91A3sIquioz#

- e]Ssodep#

- JUou#

- 100zajod#

- l1ed#

- 3yonz#

- usjeq#
ya19#

- pudPIMH#
uliy#

- siapnolydeus
sialspels#

- puauuedsy#

-uhd#

- ulzussby

- A1los#

- buay

- jee@i#

- ub#

- IDNUIIMA 1

- pyd#

- SO0 #

- usbueyyueqapdox
Jwq#
AnapLtu#
UXIMIHF

SIN#

- usbeunayunp#

-uhdying#

- OJ#

- doubg#

- dpy#

-Afessiwg

- 19amibeepi#

- 000zdoa#

- MNe#
yeq#
uaypjodislems#
Wil
Bijo1z#

- Mp#
dL1z#

-jluddaubg

s daubxing#

(a) Most frequent 50 hashtags in the test data

Most frequent 50 bigrams in the test data (excluding stopwords)

350-

1s294 daubjing
-dabing Jusp
-daubying usbep
-J1apjop uajey

danbiing 161

yoa uapjodiajem
- uaypjodiazem dfij2132WIsaq
-daub>jing 3s193y
-sood|apiob alsoq
-jeey daubjing

US|30A pJa013q

daub3ing 3yos
- pJa04ag susw
-euleep usjey
-peyab uaypjodiajem
-daub3jing 3ai1z

siny3 a1z

3yss daub3ing
-1s199y suabjon
-daub>jing spaais
-B121z yoa

Bia1z uaypjodiajem

321z Jeey
-peyab sneudden
-uddab seam
-daubiing Bl
-daub3jing alsnz

daub3ing Jsam

Juddaub uans
-yuddab usazswoz
-daubiing 61
- uaspjodiazem afydiu
-daubying jueq

BM1ay suabjon

usniz sinyy
-199Mm duuddaub
-uaypjodiazem afjaau
-uauulq Jaam
-daub3jing jeey

daub3ing suabjon

daubing Ny
- peyab >juddaub
-o0zj0 daubying
-3ueq daubjing

Juuddaub ua3op

uajey Hunuaul
-uaypjodiazem als0iq
-paqg daubdjing
-uapjodiazem alsnz
susjey duddasub

(b) Most frequent 50 bigrams in the test data

Figure 2: Distribution of most frequent 50 hashtags and bigrams in the test data

28

54629310

Nicole Walasek

Most frequent 50 hashtags in the unsupervised (relating to vaccination) data

= = = = = =Y °

S 3 I3 S 2 I3 8

R 3 2 = 2 54 =
sjunod

- snuIAR1Z#
- SMauU#
- dobasueedixaw#
- yoeqnj#
- Tolpel#
jundpuels#
- Nealngae}NSuod#
SueuUSISIp#
- sou#
- lwapldauajazew#
- JDegMOo||ojuiedH
SN
- PPIP#
PAN#
- zodug#
[l I EIET oS
- gsinedsay#
11es#
- omnu#
-yd#

- |Jeeuanofsou

- sawisine#

- SMnalu#

- WALI#

- Xoeneby#
BuipaoAisioq#
sulgooel#

- Jeneb#

- Beepuenusag

S

- doub|abon#

- dbs#

- Bepapylinap#

- doub#

Ul #
p1aypuozab#
INNSMN3IU#

- muadg#

- pbb#

- 993|q19#

- Wz

- Bunuaul#

ejoqa#

- udeA#
Ap#

APA#
usjuBUIH

- UsJsuIddeAH#

- mned#

2 2leuddRA#

(a) Most frequent 50 hashtags in the unsupervised data relating to vaccination

Most frequent 50 bigrams in the unsupervised (relating to vaccination) data (excluding stopwords)

800 -

600 -
500 -
400 -
200 -
100-

=
S
5

jee| uaiapupy
-peyab toom
- ulddeA jeelsaq
-3yo12bulju 6joa
-mned usaiauidden
swsine sneuid>eA
euieep uajuaul
-aneuden daub
-ewuwelboud anzeudden
-Bbunuaul 9315199
->2am apuablon
Bipou sneudoea
anjeuddeA usbiow
- Bunuaul asyfijueef
-elelew uPdeA
-uaJapupy a3euddeA
-211eUIDDEA 915199
- USJ3uIddeA pupy
313eUIDDRA J9aM
-mned aneuoea
~3139 3(qlq
-aneuldden ajsiee|
-aneuiddeA ue
-aneudoen aydldian
- u12deA ejoga
uaJ3puy UaJIauddeA
uaiauddeA ydijdian
- uaJapup| uajuaul
- bunuaul aisiee|
- USJ3UIdDeA uasusw
-uauaul pupy
daub ssueedixaw
suo003 9|26
-3u abul
-e|oga ulddeA
-uaquaul yd1dian
- uaJapup| usasusw
usJaulddeA Jee|
peyab aneudden
-uajuaul jee|
- UaJaUIddeA UaJapuUD)
-uajey bunuaul
-peyab bunuaui
usJspup| sispno
usjey aneuIddeA
~uaje| pury
- uajuaul uaudpuly
-ua3e| uauapury
-uaJaulddeA uale|
Sua1quaul uale|

(b) Most frequent 50 bigrams in the unsupervised data relating to vaccination

Figure 3: Most frequent 50 bigrams in the unsupervised data related to vaccination

29

54629310

Most frequent 50 hashtags in the unsupervised data

8000

Nicole Walasek

1z Myuddaub
muu\““w:c# Buyuaul syueuaialp
-peyab toom

“usiea# -daubing uabep

- daub|sbong “Junu eia

~ MWM_# - Bunuaul asyfijaeel

- lunug -daubing paq

- snuesen# -snneday aneulddea
deyosusrom# -paq daubing

- dip# < -3yda daubding

- sou# 4 ->29m spuabjon

- snneday# uqm = -uaxpjed daubing
s1100db# o) .m peysb dsubing
IS0 UD|# e z uiddeA ejogs

- USJapuUD# W S updoen yfijsbow

- ezuanuig mu. W -199m uabiow
INNsSmnalug a, .m -aneuddeA ajydijdian

- W w w -3s493ay daub3jing

- usbeunayunp# =} b -yjuuddaub usjey

- JUPAWI# = o -daubing Jyusp

- Bioz# me M -199m yuddaub
11993|91q# +~ E -uaJaulddeA uale|

- aneupoendauby# m m “elejew udoeA

- muady n @ - 199m daub3jing

- swspneg Wb W ~dawubing 1se|
J9djuess|eyiapaoulieeq# m S ~peysh sneudsen

- ez) o uidoen Jeel

- puelspauz 1% = -uuddaub asyfijaeel

- WAL o ‘w SNJIARYIZ UIDdeA
usjusULE 10 m - peyab bunuaul

H MMMM”__UUM># m 2 uajey bunuaul

_gpAE w 2 -ualazew bHunuaul

- mneds ou 2 -Jaxuedjs|eylapaouwiieeq al3euiddeA

_Adus# pm W -paMm duddaib

~|leampex - cm_m -daub3ing Joam

_ejogo# % b -uld>d>eA mnalu

No1z# M m -3aneupden Ady
APp# g -aneuideA sineday

- Bunusui (a\ -usjey aneuddea

- doub# -Jaxuesjs|eyiapaoulieeq UddeA
qwq -peyab dyuddsub

31jeUIdDRA BI1IXD
doaub ssueedixaw
- pleeyab juddaub

- playpuozab#
- 1911IMISMN3IU#

- UIDdeAH

- us|ozew# ozjo daub3ing
SMN3lU# -dawub3jing a1z

-uddaubg -u3[9zew aneulddeA
- aneudeny - uajuaul uaje|

o o o = o = o & daubINg# -ejoga uddeA

8 8 8 3 8 8 8 .) ;

IS 38 5 < R ;5 2 & < o & & & o suajey yuddaub

sunod E 8 § B B g &
sjunod

Most frequent 50 bigrams in the unsupervised data
30

(b) Most frequent 50 bigrams in the unsupervised data

Figure 4

Nicole Walasek

54629310

andaag aar rLeden
o B33T ek laat

‘1nent1ng

krijgen,.

baarmoederhalskanker

verplicht

vacci nat1e~

doch ter kind laten .

jﬁ_ VaCClnmwv n:

£os wmvaCC1neren

Vi Waarom

=2 kipd- griep: :
N "‘I.:“‘ “‘ Zlek]11“1 \wuml%nnl

) weer gehad
komt]werklngen

°“"(Slaten 1nenten\w
Tgoed SRS viry:

hoor krijg

(a) Wordcloud for the negative training tweets

__kinderen inenten

£0dVacCinse

laten vaccmeren .quderen aten\

c¢ineren

in ten mazelen
L.ziekte ebiblebelt beter

vacc1nat1e

moeter w1l aten 1nenten

‘mazelen“‘klnd

gewoon R Lo baby

amrnentens o
klnderenwmw

HF‘E‘I‘ '

oude[__

(b) Wordcloud for the positive training tweets

Figure 5: Wordclouds for the positive and negative tweets in the training data

0.9

0.8 |-

0.7

0.6

0.5

04+

03

0.2

01

0.0 n n n n n n
—-0.2 0.0 0.2 0.4 0.6 0.8 10 12

(a) Tweets in Word2vec feature space. Variance
explained by the first two principal components

is 65% and 33%, respectively.

12

01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

(b) Tweets in Doc2vec feature space. Variance
explained by the first two principal components
is 59% and 32%, respectively.

Figure 6: First two principal components of the Word2vec (left) and Doc2vec (right) features. Red
dots represent negative tweets and blue dots positive tweets.

Nicole Walasek s4629310

12 12

10} 10
0.8
0.6 0.6
04+ 04
0.2 0.2

0.0

00+

-0.2 -0.2
0.2 0.4 0.6 0.8 1.0 -0.2 0.0 0.2 0.4 0.6 0.8 10

(a) Tweets in TF-IDF word level feature space. (b) Tweets in TF-IDF character level feature
Variance explained by the first two principal space.Variance explained by the first two princi-
components is 0.45% and 0.35%, respectively. pal components is 0.27% and 0.14%, respectively.

Figure 7: First two principal components of the TF-IDF word level (left) and TF-IDF character
level (right) features. Red dots represent negative tweets and blue dots positive tweets.

32

Nicole Walasek s4629310

Recall Scores Precision scores

F1 Scores

Recall Scores Precision scores

F1 Scores

(b)

Classification results based on tuned parameters (optimization metric: Fp ;)

e—e Not Negative -Word2Vec © © Negative -Word2Vec
*—% Not Negative - Tf-Idf % % Negative - Tf-Idf
1.0 =8 Not Negative - Tf-1df Characters O O Negative - Tf-Idf Characters

0.8

0.6

0.4

0.2

0.0 &
PatternBaseline kNN SVM Multinomial NB AdaBoost ExtraTrees Random forest LogReg GradientBoosting

0.8
0.6
0.4

0.2

0.0
PatternBaseline KNN SVM Multinomial NB AdaBoost ExtraTrees Random forest LogReg GradientBoosting

0.8

0.6

0.4 A T e e ey

0.2

0.0

PatternBaseline kNN SVM Multinomial NB AdaBoost ExtraTrees Random forest LogReg GradientBoosting
Classifiers

Results for the binary task. Prior to classification the classifiers have been tuned in a randomized search.

Classification results based on tuned parameters (optimization metric: F 5)

®—e Negative -Word2Vec © © Neutral -Word2Vec ®—e Positive -Word2Vec
— Negative - Tf-Idf #* % Neutral - Tf-Idf *—% Positive - Tf-Idf
1.0 =8 Negative - Tf-Idf Characters O O Neutral - Tf-Idf Characters B-—@ Positive - Tf-Idf Characters

PatternBaseline kNN SVM Multinomial NB AdaBoost ExtraTrees Random forest LogReg GradientBoosting

PatternBaseline kNN SVM Multinomial NB AdaBoost ExtraTrees Random forest LogReg GradientBoosting

PatternBaseline kNN SVM Multinomial NB AdaBoost ExtraTrees Random forest LogReg GradientBoosting
Classifiers

Results for the three-way classification task. Prior to classification the classifiers have been tuned in a

randomized search.

Figure 8: Comparison of optimized classifiers across feature sets and classification tasks. Recall,
precision and F} scores are shown.

33

Nicole Walasek s4629310

F1 scores after thresholding for ExtraTrees classifer

o—e Negative class
+— Non-negative class

1.0

0.8 e

o
o

F1 Scores

0.2
0.0
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Thresholds
(a) Thresholding results for the ExtraTrees classifier.
F1 scores after thresholding for Logistic Regression classifier
e—e Negative class
+— Non-negative class
1.0
s
T —
- U

0.8 T ————————————

0.6
w
L
=}
O
(2]
—
o

0.2

0.0
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Thresholds

(b) Thresholding results for the logistic regression classifier.

Figure 9: Results of thresholding experiments for the optimized classifiers for U’ = 75 and k = 30.

34

Nicole Walasek s4629310

F1, Precision and Recall scores as a function of the number of iterations

T 0

.
o F1, Positive class
+ F1, Negative class
P, Positive class

P, Negative class
R, Positive class
R, Negative class

1.0

1111

0.8

B e e e P TRIRs o ae sBis O SR Ssaasie s FIOeasnd
%#WWWW%

o
0.6 900 0000000000000 0 0000 O, 0000000000000 09000000000000°0C 0006000000000 00-0¢00 000000000, 0000009o0a

. . b e
[e R a i S S e i e e U R e & SN
S
"

0.4

0.2

0.0

0 20 40 60 80 100

Number of iterations

(a) F1, precision and recall scores for both classes as a function of the number of iterations. The blue vertical
line marks the best F1 score for the negative class.

0.09 Convergence of classifiers during co-training

. :
e—e Convergence ExtraTrees classifier
+— Convergence Logistic Regression
~—+ Convergence of total predictions

0.08

0.07
0.06

0.05

ﬂ
| |

100

Mean absolute difference between consecutive steps

Number of iterations

(b) Convergence of the classifiers during co-training. Convergence is displayed for the individual classifiers
as well as for the combined system. Convergence is measured in the mean absolute difference in assigned
labels between consecutive iterations.

Figure 10: Classification results and convergence behaviour for the best performing co-training
system.

35

Nicole Walasek s4629310

F1, Precision and Recall scores as a function of the number of iterations

F1, Positive class
F1, Negative class
1.0 -~ P, Positive class
— P, Negative class
-~ R, Positive class
— R, Negative class

0.2

0.0

0 200 400 600 800 1000
Number of iterations

(a) F1, precision and recall scores for both classes as a function of the number of iterations. The blue vertical
line marks the best F1 score for the negative class.

Convergence of classifiers during co-training

0.09
e—e Convergence ExtraTrees classifier
+— Convergence Logistic Regression
~— Convergence of total predictions
0.08

0.06 !

n
Tl »M ;

0.04}] "“"l‘ “l l‘l

‘ : "-‘ m\M H" 0

Mean absolute difference between consecutive steps

”" 1

a}l,

s "\‘ww]

200 400 600
Number of iterations

ik

0.00

(b) Convergence of the classifiers during co-training. Convergence is displayed for the individual classifiers
as well as for the combined system. Convergence is measured in the mean absolute difference in assigned
labels between consecutive iterations.

Figure 11: Classification results and convergence behaviour for the best performing co-training
system after 1000 (follow-up experiment 1).

36

Nicole Walasek s4629310

F

-

, Precision and Recall scores as a function of the number of iterations

F1, Positive class
F1, Negative class
- P, Positive class
— P, Negative class
-~ R, Positive class
— R, Negative class

1.0

Scores

0.4

0.2

0.0

0 200 400 600 800 1000
Number of iterations

(a) F1, precision and recall scores for both classes as a function of the number of iterations. The blue vertical
line marks the best F1 score for the negative class.

Convergence of classifiers during co-training

0.09
e—e Convergence ExtraTrees classifier
+— Convergence Logistic Regression
~— Convergence of total predictions
0.08

‘U‘u -‘(H

'MWW‘M '4,,LI,A‘ 'M |l

i
!
600 800 1000

Mean absolute difference between consecutive steps

"ll‘.\ W ’ ‘ i i

Number of iterations

(b) Convergence of the classifiers during co-training. Convergence is displayed for the individual classifiers
as well as for the combined system. Convergence is measured in the mean absolute difference in assigned
labels between consecutive iterations.

Figure 12: Classification results and convergence behaviour for the best performing co-training
system after 1000 iterations and using the updated Word2vec model (followup experiment 2).

37

Nicole Walasek s4629310

References

Agarwal, Apoorv, Boyi Xie, Ilia Vovsha, Owen Rambow, and Rebecca Passonneau (2011), Sentiment
analysis of twitter data, Proceedings of the workshop on languages in social media, Association
for Computational Linguistics, pp. 30—38.

Aslam, Salman (2017), Twitter by the numbers: Stats, demographics & fun facts.
https://www.omnicoreagency.com/twitter-statistics/ .

Barbosa, Luciano and Junlan Feng (2010), Robust sentiment detection on twitter from biased and
noisy data, Proceedings of the 23rd International Conference on Computational Linguistics:
Posters, Association for Computational Linguistics, pp. 36—44.

Bello-Orgaz, Gema, Julio Hernandez-Castro, and David Camacho (2017), Detecting discussion com-
munities on vaccination in twitter, Future Generation Computer Systems 66, pp. 125-136,
Elsevier.

Biyani, Prakhar, Cornelia Caragea, Prasenjit Mitra, Chong Zhou, John Yen, Greta E Greer,
and Kenneth Portier (2013), Co-training over domain-independent and domain-dependent fea-
tures for sentiment analysis of an online cancer support community, Proceedings of the 2013
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining,
ACM, pp. 413-417.

Blum, Avrim and Tom Mitchell (1998), Combining labeled and unlabeled data with co-training,
Proceedings of the eleventh annual conference on Computational learning theory, ACM, pp. 92—
100.

Boiy, Erik and Marie-Francine Moens (2009), A machine learning approach to sentiment analysis in
multilingual web texts, Information retrieval 12 (5), pp. 526-558, Springer.

Campbell, Ellsworth and Marcel Salathé (2012), Complex social contagion makes networks more
vulnerable to disease outbreaks, arXiv preprint arXiv:1211.0518.

Chen, Mengen, Xiaoming Jin, and Dou Shen (2011), Short text classification improved by learning
multi-granularity topics, IJCAI pp. 1776-1781.

Cui, Anqgi, Min Zhang, Yiqun Liu, and Shaoping Ma (2011), Emotion tokens: Bridging the gap
among multilingual twitter sentiment analysis, Information retrieval technology pp. 238249,
Springer.

Davies, Alex and Zoubin Ghahramani (2011), Language-independent bayesian sentiment mining of
twitter, The 5th SNA-KDD Workshop11l (SNA-KDD11).

Du, Jingcheng, Jun Xu, Hsingyi Song, Xiangyu Liu, and Cui Tao (2017), Optimization on machine
learning based approaches for sentiment analysis on hpv vaccines related tweets, Journal of
biomedical semantics 8 (1), pp. 9, BioMed Central.

Fersini, Elisabetta, Enza Messina, and Federico Alberto Pozzi (2014), Sentiment analysis: Bayesian
ensemble learning, Decision Support Systems 68, pp. 26-38, Elsevier.

Ghahramani, Zoubin (2004), Unsupervised learning, Advanced lectures on machine learning,
Springer, pp. 72-112.

Go, Alec, Richa Bhayani, and Lei Huang (2009), Twitter sentiment classification using distant
supervision, CS224N Project Report, Stanford 1 (2009), pp. 12.

38

Nicole Walasek s4629310

Huang, Xiaolei, Michael C Smith, Michael J Paul, Dmytro Ryzhkov, Sandra C Quinn, David A
Broniatowski, and Mark Dredze (2017), Examining patterns of influenza vaccination in social
media.

Hiurriyetolu, Ali, Christian Gudehus, Nelleke Oostdijk, and Antal van den Bosch (2016), Relevancer:
Finding and labeling relevant information in tweet collections, International Conference on
Social Informatics, Springer, pp. 210-224.

Jansen, Vincent AA, Nico Stollenwerk, Henrik Jeldtoft Jensen, ME Ramsay, WJ Edmunds, and
CJ Rhodes (2003), Measles outbreaks in a population with declining vaccine uptake, Science
301 (5634), pp. 804-804, American Association for the Advancement of Science.

Ko, Youngjoong and Jungyun Seo (2000), Automatic text categorization by unsupervised learn-
ing, Proceedings of the 18th conference on Computational linguistics- Volume 1, Association for
Computational Linguistics, pp. 453-459.

Le, Quoc and Tomas Mikolov (2014), Distributed representations of sentences and documents, Pro-
ceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 1188-1196.

Man, Yuan (2014), Feature extension for short text categorization using frequent term sets, Procedia
Computer Science 31, pp. 663-670, Elsevier.

Medhat, Walaa, Ahmed Hassan, and Hoda Korashy (2014), Sentiment analysis algorithms and
applications: A survey, Ain Shams Engineering Journal 5 (4), pp. 1093-1113, Elsevier.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean (2013), Distributed
representations of words and phrases and their compositionality, Advances in neural information
processing systems, pp. 3111-3119.

Najafabadi, Maryam M, Flavio Villanustre, Taghi M Khoshgoftaar, Naeem Seliya, Randall Wald,
and Edin Muharemagic (2015), Deep learning applications and challenges in big data analytics,
Journal of Big Data 2 (1), pp. 1, Springer International Publishing.

Narr, Sascha, Michael Hulfenhaus, and Sahin Albayrak (2012), Language-independent twitter sen-
timent analysis, Knowledge discovery and machine learning (KDML), LWA pp. 12-14.

Nigam, Kamal and Andrew Kachites Mccallum (2002), Text classification from labeled and unlabeled
data using em, Machine Learning, Kluwer Academic Publishers, Boston. Manufactured in The
Netherlands.

Omer, Saad B, Daniel A Salmon, Walter A Orenstein, M Patricia Dehart, and Neal Halsey (2009),
Vaccine refusal, mandatory immunization, and the risks of vaccine-preventable diseases, New
England Journal of Medicine 360 (19), pp. 1981-1988, Mass Medical Soc.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay (2011), Scikit-learn: Machine learning in Python, Journal of Machine Learn-
ing Research 12, pp. 2825-2830.

Perrin, Pew Research Center, Andrew (2015), Social networking usage: 2005-2015.
http://www.pewinternet.org/2015/10/08 /social-networking-usage-2005-2015/.

Pierce, David and Claire Cardie (2001), Limitations of co-training for natural language learning from
large datasets, Proceedings of the 2001 Conference on Empirical Methods in Natural Language
Processing, pp. 1-9.

39

Nicole Walasek s4629310

Qadir, Ashequl and Ellen Riloff (2013), Bootstrapped learning of emotion hashtags# hashtagsdyou,
Proceedings of the 4th workshop on computational approaches to subjectivity, sentiment and
social media analysis, pp. 2—11.

Read, Jonathon (2005), Using emoticons to reduce dependency in machine learning techniques for
sentiment classification, Proceedings of the ACL student research workshop, Association for
Computational Linguistics, pp. 43—48.

Reed, Scott, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan, and Andrew
Rabinovich (2014), Training deep neural networks on noisy labels with bootstrapping, arXiv
preprint arXiv:1412.6596.

Rehtifek, Radim and Petr Sojka (2010), Software Framework for Topic Modelling with Large Cor-
pora, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, ELRA,
Valletta, Malta, pp. 45-50. http://is.muni.cz/publication/884893/en.

Riloff, Ellen and Janyce Wiebe (2003), Learning extraction patterns for subjective expressions,
Proceedings of the 2008 conference on Empirical methods in natural language processing, Asso-
ciation for Computational Linguistics, pp. 105-112.

Salathé, Marcel and Sebastian Bonhoeffer (2008), The effect of opinion clustering on disease out-
breaks, Journal of The Royal Society Interface 5 (29), pp. 1505-1508, The Royal Society.

Sang, Erik Tjong Kim and Antal van den Bosch (2013), Dealing with big data: The case of twitter,
Computational Linguistics in the Netherlands Journal 3 (121-134), pp. 2013.

Signorini, Alessio, Alberto Maria Segre, and Philip M Polgreen (2011), The use of twitter to track
levels of disease activity and public concern in the us during the influenza a hinl pandemic,
PloS one 6 (5), pp. €19467, Public Library of Science.

Smedt, Tom De and Walter Daelemans (2012), Pattern for python, Journal of Machine Learning
Research 13 (Jun), pp. 2063-2067.

Timonen, Mika and Melissa Kasari (2012), Statistical approach for term weighting in very short
documents for text categorization, International Joint Conference on Knowledge Discovery,
Knowledge Engineering, and Knowledge Management, Springer, pp. 3—18.

Wang, Wei and Zhi-Hua Zhou (2007), Analyzing co-training style algorithms, Furopean Conference
on Machine Learning, Springer, pp. 454-465.

Xia, Rui, Cheng Wang, Xin-Yu Dai, and Tao Li (2015), Co-training for semi-supervised sentiment
classification based on dual-view bags-of-words representation., ACL (1), pp. 1054—1063.

Yu, Ning (2014), Exploring co-training strategies for opinion detection, Journal of the Association
for Information Science and Technology 65 (10), pp. 2098-2110, Wiley Online Library.

Yu, Shipeng, Balaji Krishnapuram, Rémer Rosales, and R Bharat Rao (2011), Bayesian co-training,
Journal of Machine Learning Research 12 (Sep), pp. 2649-2680.

Zhang, Xiang and Yann LeCun (2015), Text understanding from scratch, arXiv preprint
arXiw:1502.01710.

40

http://is.muni.cz/publication/884893/en

	The importance of online opinion mining for vaccination
	Background and related work
	Sentiment Analysis of Twitter data
	Text classification from labeled and unlabeled data

	Data
	Methods: semi-supervised sentiment classification
	Preprocessing
	Co-training framework
	Assumptions
	Selecting views and classifiers

	Experiments
	Results
	Conclusion and discussion

