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Abstract

This project investigates the possibility of creating a privacy-friendly file-storage
consumer product suitable for long-term storage. A theoretical background is given for
the current state of file sharing technologies, theories on privacy, technology to protect
privacy, and peer-to-peer mechanisms. Based on this knowledge, we composed a list
of requirements to design the protocol.

The protocol by Osipkov et al. was chosen as the starting point since it is a
distributed system and robust against free-riders. To safeguard the privacy of the
users, we improved the protocol so that it can operate on an anonymity network. We
created two simple schemes based on Merkle Trees that allow third party monitoring
of the availability of remotely stored files.

Privacy, security and data protection are essential to consumer technology. Based
on what we developed, we show that it is possible to create a privacy-friendly file-
storage consumer product for long-term storage, robust against free-riders.
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1 Introduction

Currently there is no privacy preserving and user friendly consumer product that is suitable
for long-term online file storage. There are many cloud storage consumer products that are
cheap and user friendly, however these are privacy invasive since they can access the private
data of their customers. The objective of this project is to investigate if it is feasible to
create a storage product that does not depend on a central authority for storage, preserves
the privacy of the users, and remains easy to use.

Privacy is an essential human right (Westin, 1967). Yet we struggle to find a good
description or definition of what privacy actually is (DeCew, 2015). At the same time we
do notice that the right to privacy is affected by new technology and media. Through the
lens of these new technologies - photography, newspapers, and these days data collection
through the internet - we have developed ideas about what privacy could be. These ideas
on privacy usually describe the level of control people have over their data. The contem-
poraty interpreation of privacy comes from Nissenbaum in a response to the information
technology that has become part of our (online) social life . Nissenbaum describes privacy
as right to integrity of context (Nissenbaum, 2009). Protecting privacy should involve
helping people to be in control of the context in which their data flows. Protecting digital
privacy therefore is about more than just access control to the data.

To illustrate that access control is not sufficient we can consider messaging applications.
Even though the popular chat application WhatsApp1 provides end-to-end encryption of
the messages2 to hide all the data, it remains a very valuable source of personal information
for its parent company Facebook. Facebook can still use all the metadata generated by
the network to build a social graph of personal information. Users have no control about
the context in which Facebook uses their personal data.

We are often not aware about the flow between different contexts of our personal data.
When telling a friend a secret, the context dictates that the friend will likely not share
this information with others. If the friend does share the secret, you would feel that as an
infringement on your privacy. When we use online services, we often share highly personal
information, without being aware of this. This can be as innocuous as looking up a medical
ailment online. Even though we see the advertisements on such pages, we rare consciously
experience this as an infringement on privacy that this personal information about us was
shared with another party. It is not always easy to recognize our data flowing from one
context to another.

When building products that can respect the users’ privacy it is important to hide the
metadata. In a private context, the metadata that you have talked to a doctor can be as
much of an infringement to your privacy as when it would be public what you discusses
with your doctor. The metadata is a very large component that dictates the context in
which it can be perceived.

Hiding the metadata imposes constraints on the design. The price for solving the
problem under these constraints is not only payed in hardware or infrastructure, but also
in terms of a poorer user experience (Abu-Salma et al., 2017). PGP is the most well known
tool for email encryption. The complicated user experience of PGP is often considered the
main reason why the tool has not been adopted by the mainstream of users to encrypt
their e-mail messages (Abu-Salma et al., 2017). As a result hardly anyone uses end-to-end
encryption for e-mail messages. User friendliness therefore cannot be disregarded when
building new privacy tools, and should be seen as a fundamental requirement.

This idea is part of the notion of privacy friendliness in which users are aware and in
control of the way technology affects their privacy.

1https://www.whatsapp.com/
2https://whispersystems.org/blog/whatsapp-complete/, accessed 2017-07-22
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Proper security is essential for privacy and the control of our data. Security even become
a selling point in consumer technology as of late. Almost all the large chat applications
have implemented end-to-end encryption. The billion users of WhatsApp all use end-
to-end-encryption. There even are a number of chat protocols that attempt to achieve
privacy friendliness for chatting - such as Ricochet (https://ricochet.im/) or Vuvuzela
(Van Den Hooff et al., 2015).

Unfortunately the world of online file storage still is behind on chat applications, not
just about privacy but even regarding security. Storage products generally do not even
protect the confidentiality of the customers’ data. Dropbox (https://www.dropbox.com/,
one of the larger companies for consumer cloud storage, has yet to implement end-to-end
encryption for the data stored online. This allows companies like Boxcryptor (https:
//www.boxcryptor.com/) to enter the market with a product that provides end-to-end
encryption within the infrastructure of other products such as Dropbox. If storage compa-
nies earn money through advertisement and profiling based on our personal files and data,
then they do not respect the context of our data. This is a huge infringement on privacy.

We intend to design a privacy-friendly decentralized (peer-to-peer) storage protocol to
be used by regular consumers. This storage is for off-site and redundant copies of personal
files and data. It therefore ought to compete with external hard drives, Network Attached
Storage devices (NAS) and the various cloud storage solutions mentioned in subsection
2.1. After the consumer has bought and configured the product, no interactions should be
required to perform its function during the lifetime of the hardware.

There are three main challenges in this project. The first two are the requirements
for providing a basic decentralized data storage protocol. This protocol should be able to
deliver long term data storage. This protocol should provide a measure of the availability
of the stored data. Combined, these two requirements should result in the trust of the
consumer that the protocol will deliver on its functionality, and return all stored data
when requested. The final challenge is to provide privacy in the protocol. This protocol
should perform its function without revealing any information about the user, not through
the data stored in the network and not through the metadata produced.

In section 2 we first examine a number of existing file-storage solutions. Then we
will explore in subsection 2.2 peer-to-peer technology and how we can use it to do file
storage without having a central authority. In addition we will consider the general topic
of privacy and the methods that are available to provide privacy in peer-to-peer networks
(Subsection 2.3). The methods and incentives that allow us to regulate the behavior of
users in a peer-to-peer network are also important for the long term viability of a protocol,
and are described in subsection 2.4.

Based on this knowledge we specify the requirements for a protocol for privacy friendly
long-term storage in section 3. From these requirements we describe in section 4 the
protocol presented by Osipkov et al. as a possible framework to be built upon (Osipkov
et al., 2006). The Osipkov et al. protocol provides fairness among peers. Fairness protects
against the threat of free-riders that consume disproportional resources from the network.
Fairness therefore allows for meaningful agreements about long-term storage. However,
the Osipkov et al. protocol does not yet meet all our requirements. In particular it should
run on an anonymity network, so that it can be privacy preserving. The core qualities of
the protocol mostly remain unaffected by this change. It does become more prudent to
provide the peers with a tool that allows verification of the availability of remote files at
the anonymous peers. This paper contributes two simple probabilistic schemes, outlined
in subsection 5.2, to test the availability of encrypted remote files without requiring the
querying party to possess these files.
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2 Technical background

This section provides some of the theoretical background used in this project. In order to
set proper requirements for the protocol, we first consider a number of existing protocols.
Then we will look at peer-to-peer networking, and reflect on some of the strengths and
challenges. Thereafter we will give a general introduction to the topic of privacy, focusing on
how law and technology can help to create privacy preserving technology. Since networking
is inherently social, we also review the economies and mechanism that exist to incentivise
the peers in a peer-to-peer network. The last part of this section discuss the Merkle Tree,
which is core to our contributions in testing the availability of remote data.

2.1 Existing online storage technologies

Currently the market for online data has been saturated by cloud storage providers. As a
general overview, we will list a number of existing, non-peer-to-peer, online file storage so-
lutions. This provides a landscape for the data-storage consumer products and experience.
The list below is loosely based on their ability to be on the first-page of Google results for
‘secure online storage’.

• Cloud storage products, such as Dropbox (http://dropbox.com) or SURFdrive
(https://www.surfdrive.nl/), allow users to synchronize their files across devices
and get to them via a web interface. On many devices, users interface with the
storage by means of a virtual directory in their file system. Along the ability
to have online and offline redundancies, cloud storage often allows users to share
directories with each other. Some products are designed for a specific purpose
such as backup, for example Tarsnap (https://www.tarsnap.com/) or Backblaze
(https://www.backblaze.com/). Consumers generally only pay for the storage they
use, not for the bandwidth.

• Add-on security software, from companies like BoxCryptor (https://www.boxcryptor.
com/en/), sell client-side software that provides improved security features to exist-
ing storage products, such as end-to-end encryption of user data. There is a demand
for these features, yet not all big storage product offer these. Therefore, there exists
a market for this add-on software.

• Cloud storage providers, such as Amazon AWS’s S3 (https://aws.amazon.com/
s3/), provide generic online data storage. They provide the infrastructure for many
storage products. Users pay for the infrastructure based on the storage they use and
for the bandwidth they consume.

• File hosting websites should also be considered since they compete in the market
for (peer-to-peer) file-sharing. File hosting websites differ from the cloud storage
products in the sense that they are usually about single files, offer a public interface
for accessing the file, and optimize for convenient sharing. In general these are
are advertisement-sponsored pigeonholes for file storage. Most (in)famous is MEGA
(https://mega.nz/), that now promotes end-to-end encryption of the data and even
quotes the Universal Declaration of Human Rights, Article 12: the right to privacy.
The Dutch company WeTransfer (https://wetransfer.com/) is a good example of
a more mainstream product.

Since the nineties there have been numerous research projects on peer-to-peer network-
ing. A number of those have focused on file sharing and some also addressed file storage.
Almost none of these technologies are currently on the market (yet). An increase of the
research activities between 2000 and 2008 has yielded some novel ideas for storage. One
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of these was the peer-assignment scheme of Osipkov et al. that is addressed in section 4.
Research on peer-to-peer file sharing has been ongoing, in particular for its use in content
and media delivery systems (Pouwelse et al., 2008). Research into peer-to-peer storage has
recently seen renewed interest with the surge of blockchain technologies. We have listed a
number of large or interesting peer-to-peer projects that have made it to market below.

• Tahoe-LAFS (https://tahoe-lafs.org/trac/tahoe-lafs) is a decentralized cloud
storage system (Wilcox-O’Hearn and Warner, 2008). It also has a fork that runs
anonymously on I2P. Users contribute the hardware and bandwidth to the net-
work. Some choose to outsource this via cloud storage providers. Least Author-
ity (https://leastauthority.com) is the spin-off company from the creators of Tahoe-
LAFS that - for a monthly fee - adds cloud storage to the network on their customers
behalf.

• Blockchain based file storage has two main varieties. The first tries to replace
the proof-of-work for mining coins on a blockchain by a proof-of-storage. This idea
has been suggested as Permacoin (Miller et al., 2014) and Spacemint (Park et al.,
2015). Blocks are mined by proving the possession and integrity of some subset of the
dataset that as a whole is too large for a single (subset) peer to store. This proof-of-
possession then consists of a public verifiable digest of this dataset. Both Permacoin
and Spacemint want the storage of the entire dataset to be valuable in itself. For
example, the dataset could consist of the entire digitized collection of a library. Such
datasets generally do require a central authority to curate and authenticate them.

The mechanisms can also work without a central authority. The entire dataset could
be generated through some mathematical function that will not allow on-the-fly
lookup without storing all the output. Since this system does not allow storage, we
refer to the mechanism as proof-of-capacity. Burstcoin3 (Wikipedia, 2017a) mined
their blocks based on proof-of-capacity and was operational since 2014. Although
we intend to actually storing something meaningful, some of the technology could be
useful.

The second variety of blockchain based file storage merely leverages the cryptocurren-
cies that arise from mining a blockchain to broker between people offering storage and
people wanting to buy storage. Examples of this are Storj ((Wilkinson et al., 2016)) or
Filecoin (https://filecoin.io). The company Minebox (https://minebox.io/)
already sells a hardware NAS that can automatically rent out storage to these mar-
kets to earn cryptocoins.

Note that many of the companies mentioned are established in the United States.
Although they sometimes have data-centers in Europe, this does not mean that they adhere
to the stricter European privacy laws.

2.2 Peer-to-peer Technology

In this subsection we discuss the possibilities, advantages and challenges of the peer-to-peer
technology that will be used to create our file storage protocol.

Peer-to-peer computing or peer-to-peer networking is a subtype of distributed comput-
ing where all the nodes that are part of the network are considered equal.

Networked computing is typically described as a master-slave or server-client relation.
The different nodes can have different tasks, different privileges and different software.
The relation between nodes therefore is asymmetrical, and the network will be organized
around a central node, like the musicians of an orchestra around the conductor.

3Burstcoin seems to have seized operation.
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When many nodes need access to a single resource or privilege, a number of problems
may occur. For example, if nodes send many requests for an identical result, they all
put a demand on the computational resource or bandwidth and as an consequence the
performance and quality of the service may suffer. The network may congest and if the
node is part of the critical section of a computation this can create a single-point-of-failure.
Having a single-point-of-failure is a security concern.

To mitigate these problems the computation can be designed to run decentralized.
This means that there should not be a single point of failure and the demand for resources
can now be balanced across multiple nodes. This is like a central government allowing
provinces and municipalities to build their own roads. However, all the previous problems
remain if the instances still depend on a single shared resource or authority.

When the task of the nodes becomes so ubiquitous that they no longer depend on
special resources or a centralized authority, it becomes possible to move towards a more
symmetrical relation between the nodes. Some networks are so sparse and segmented that
nodes need to be able to sustain without having access to specific parts of the network and
therefore require more symmetrical and self-sufficient nodes. Imagine building a networked
application that also should work for future astronauts on Mars: your nodes are going to
be very far apart. The main latency is always going to be caused by the approximately
half-light-hour distance round-trip of the messages. It hardly matters how much computing
infrastructure you build on earth, the sparseness of your nodes through space impose a
physical limit. In such a cases it becomes almost essential to run a computation fully
distributed. Every node can consider any other node of the system as a peer and request
the service from this user.

(image by 1983~enwiki, 2017, CC-BY-SA-2.5)

Figure 1: Different network models

Peer-to-peer networks perform fully distributed computations where each node has
the same functional capabilities as any other node.

Running a computation on a peer-to-peer network provides even more robustness
against single points of failure and has even more nodes to balance the demand for re-
sources. At the same time, the lack of organization and the lack of (central) control poses
new challenges for the entire network to organize itself. Creating consensus in a distributed
network is already considered a hard problem (Lamport et al., 1982). In some cases, for
example due to lack of synchronization or in the presence of malicious and unpredictable
peers, consensus has been proven an impossibility. (Fischer et al., 1985) Organizing a
peer-to-peer network in the presence of malicious peers is therefore not a simple task.

Useful behaviors can emerge from node-to-node interactions in a network with malicious
peers. Blockchain technology, as has been popularized by the pseudonymous Nakamoto
with Bitcoin, leverages the mutual distrust of the peers in a network into a shared effort
from which a collectively agreed upon consensus emerges.

For this project we are mainly interested in ways to organize and program the nodes
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such that they - as a whole - participate in the storage. A number of simple tasks to
structure networks, such as leader election, mutual exclusion, and self stabilization are
well understood and form the building blocks for more advanced applications. (Lynch,
1996) Locating resources or peers in a distributed network by means of a Distributed Hash
Table (DHT) is the most common protocol used for peer-to-peer applications.

2.2.1 Distributed Hash Tables

A hash table is a data structure that allows the user to INSERT, DELETE and SEARCH records
in a table and is optimized to access a record from the table efficiently based on the key.
(Rivest and Leiserson, 1990) If we want to search for a record in a regular table, first we
have to sort through the data and then filter until we locate the record.

If there is plenty of memory available, search in a table can be optimized. Instead of
adding a new record for every new item like in a regular table, in a hash table the space for
all the possible keys is allocated in advance. New records are then placed directly in the
space reserved for their key. For example, when making a ‘reverse phonebook’ for caller-id:
all the possible phone numbers are listed, and for every new caller the name is written next
to the phone number. Looking up the name belonging to a phone number (key) is as easy
as going directly to that number in the list. This only takes O(1) steps. However, not all
data have such nice natural keys.

Figure 2: hash function

In order to create keys for all records in our table
we make use of a hash function. A hash function
is a one-way function that maps an arbitrary large
input set onto a (smaller) finite set. Most applica-
tions of hash functions require this onto-mapping to
have a uniform distribution. A simple view of what a
hash function does, is that for any key it assigns the
record to a specific bin. The uniform distribution
then requires that on average equally many inputs
get placed in each bin. In order to locate a resource
we now only have to look in the bin that belongs to
our key.

If you do not have enough memory to allocate a
bin for every possible key, you can use a hash table
to map a large space of keys onto the smaller set of
bins. A trade-off has to be made to deal with hash
collisions. A collision occurs when the hash function
maps two different keys onto the same bin.

There are three main solutions for dealing with collisions. The easiest is to just throw
away the data in event of a collision. This of course is only acceptable if we don’t mind
losing some data. The second solution is to re-hash the colliding key found in the bin,
and moving towards a new empty bin. This approach makes optimal use of the available
memory but as it fills up the table, the lookup performance moves from O(1) to O(n) steps
and eventually runs out of available space. The final solution is to attach a link to a new
data structure once a collision occurs. This means that for the most part the hash table still
has instant lookup performance and in the case of a collision, it will have the performance
of the associated data structure. These data structures are likely less efficient than the
hash-tables. However, the number of records in this associated data structure is going to
be at least an order smaller than the total number of records. Lookup in the associated
data structure is going to be relatively fast. Therefore, the lookup performance through all
the data will be acceptable. For example, it does not matter in a pocket phonebook that
the names are not sorted beyond the first letter of the last name, since at each of these
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letters you will find about 10 names from which you can find the right one at a glance.
The nodes in a distributed network often are connected according to some social struc-

ture in the real world. Computers often are where people are. We want to impose a data
structure on the network in such a way that we leverage the Small World Phenomenon.
The Small World Phenomenon, as made famous by Travers and Milgram, states that in
the (socially) connected graph of people in the world every person is connected to any
other person through a link of at most six people. If we can create a hash table on top of
a distributed (social) network we might be able to combine the Small World Phenomenon
with the O(1) lookup performance of a hash table and have efficient resource location in
peer-to-peer networks.

This is what Distributed Hash Tables like Pastry (Rowstron and Druschel, 2001) and
Chord (Stoica et al., 2001) can achieve. In the final part of this section we are going to look
at the Chord protocol and how it facilitates O(logN) key-value retrieval on a peer-to-peer
network (Stoica et al., 2001).

In Chord the SHA-1 hash function is used to give every node an identity number (ID)
between 0 and 2160 − 1. Since SHA-1 is a uniform hash-function with 160-bits output, and
the number of nodes (N) is a lot smaller than 2160 − 1, we expect every node to receive
a unique integer as ID. Next, all nodes are organized in a ring, where every node stores
the ID’s of the two nodes that are closest to it (mod 2160). Every node now is capable of
determining if they are have the closest ID to some other integer (mod 2160). Now it is
a hash table, where the SHA-1 hash of a key can be used to find an integer, for which the
node with the closest ID has to store the associated value.

However, this is a very inefficient method, as the messages would have to pass O(N)
steps through the entire ring until it gets to the correct node. Ideally every node would
maintain a list of all the other ID’s such that the lookup can be done locally. As the
number of nodes (N) usually is very large, it is very costly to store such a table at a single
node. A compromise is to have each of the nodes store a table with only a small number
of strategically stored ID’s that allows for efficient routing towards the the correct node.

The table uses for this purpose in Chord is called a finger table. A node n stores m
fingers in the finger table, each of which point at a live node. The ith finger, starting at
i = 1, in the table points to the live node whose ID succeeds (n + 2i−1 mod 2160). The
fingers are an exponential series of ID’s that on average can bring the search one order
closer to the correct node. For a network of N nodes, on average it takes logN requests
to get to the correct node.

Creating such a table is not without cost. Whenever a node joins or leaves the network
the finger tables need to be updated. As a upper bound for the complexity in a network
of N nodes, on average every node has to check if one entry in their finger table is still
correct at the cost of logN queries per node, resulting in O(N logN) steps. This can be
optimized to O(logN). (Stoica et al., 2001)

The Chord example shows that we have a method for organizing a peer-to-peer network
using the Distributed Hash Table, with the performance of O(logN) queries per lookup.
Peer-to-peer networking therefore becomes suitable as the networking backbone in our
application of file storage.

2.2.2 Current peer-to-peer file sharing applications

File-sharing has always been the most wide known application of peer-to-peer technology.
Most notorious was Napster by Shawn Fanning and Sean Parker, which allowed searching
and sharing music files (Wikipedia, 2017d). Following the popularity, more peer-to-peer
networks were created such as GNUnet (https://gnunet.org/). All these early technolo-
gies are built on distributed hash tables.
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File-sharing - in particular the free sharing of otherwise copyrighted and payed content
- really took of with the introduction of BitTorrent (Protocol specification http://www.
bittorrent.org/beps/bep_0003.html, accessed 24-07-2017). When downloading a file,
BitTorrent allows a user to become a server of the parts of the file that it already has
obtained, and advertises this in the network. In a centralized system the files generally
become unavailable if the number of requests grow beyond what the server can handle. In
BitTorrent the opposite occurs: the more popular the file, the more peers contribute to its
distribution and the more available it will become. Even though BitTorrent traffic is in
decline4 as illegal file-sharing is replaced by legal alternatives, the technology is still used
in new projects, for example by CacheP2P (https://www.cachep2p.com/) in an effort to
create performant decentralized Content-Delivery-Networks.

2.3 Privacy

‘The term privacy is used frequently in ordinary language as well as in philosophical,
political, legal and technical discussions. Yet there is no single definition or analysis or
meaning of the term.’ (DeCew, 2015) One of the early and influential ideas on privacy
comes from the writings of Aristotle. Aristotle describes privacy as the border between the
public sphere of political activity and the privacy sphere of home life. While the definition
of both political activity and home life have changed significantly since antiquity, this
idea still has a lot of influence on the modern idea of privacy. For example the European
Convention for the Protection of Human Rights and Fundamental Freedoms from 1950
presents the right to privacy in Article 8 as the Right to respect for private and family
life. However, with the advent of modern media, and in particular in the past few decades
with the increased integration of internet into society, privacy has had numerous new
interpretations and definitions.

The first major media innovation that helped to shape the modern views on privacy was
the mass adoption of newspapers and photography in the late nineteenth century. These
innovations challenged longstanding ideas on which agents could affect the distribution
of one’s personal identity. The work of Warren and Brandeis let to the interpretation of
privacy as the right to be let alone. (Warren and Brandeis, 1890) This was the foundation of
what later was going to be the concept of control over information about oneself. (DeCew,
2015) It also demonstrates that often multiple parties have a responsibility to enforce the
right to privacy, and is not something bound to the individual.

In 1967, Westin published a book on Privacy and Freedom, in which he investigate
the universality of privacy in a response to the cold war spy technology. Furthermore,
studies of animals had demonstrated that a desire for privacy is not restricted to humans.
Westin presented privacy as the claim of individuals, groups and institutions to determine
for themselves, when, how and to what extent information about them is communicated to
others. This furthered the ideas on controlling one’s personal information as a means to
preserve the right of privacy.

With the mainstream adoption of the internet at the start of the twenty-first century, a
new technological threat to privacy appeared. Collections of personal data were stored in
databases around the world and were being traded and combined to mine new insights into
individuals and groups. Agre and Rotenberg pose privacy as the Freedom from unreasonable
constraints on the construction of one’s own identity, as was feared that people would no
longer be in control of what (computer) systems decides about their identity. (Agre and
Rotenberg, 1998)

In 2009,Nissenbaum was able to contribute to the discussion of privacy, by interpreting
privacy as the right to integrity of context. (Nissenbaum, 2009) Contextual integrity is a

4https://www.digitalmusicnews.com/2013/11/12/illegalfilesharing/ accessed 24-07-2017
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useful framework to pinpoint why some transactions of personal data can be experienced
as an infringement to one’s privacy. For example, when someone shares information with
a physician in a medical context, it is generally acceptable when the physician shares
this information with another medical specialist. The context in which this information
has been shared remains the same. However, if the physician would decide to sell this
information to an advertisement agency, this is experienced as extremely intrusive to one’s
privacy. The same framework of context can be applied to businesses on the internet.
Going to a medical website and being shown an advertisement is so common that it is
very difficult to notice the different context from going to a shoe website to buy shoes.
Nissenbaum forces us to see the implications for privacy by requiring the identification of
the context.

All these ideas have been integrated into the societal thinking about privacy. Both law
and technology are instruments to help preserve our right to privacy. We have already
seen the inclusion of the right to privacy in the European Convention for the protection
of Human Rights and Fundamental Freedoms, but there are many more legal instruments
to help protect privacy and make sure that people can be in control of their own data,
identity or context (Council of Europe, 1950). Notable laws to protect privacy in European
context are the Data Protection Directive (Directive, 1995) and its successor the General
Data Protection Regulation (EC Reg 2016/679, 2016). It must be remarked that there is
a distinction between privacy and data protection. While the two go hand-in-hand, having
your data protected in compliance to the law does not imply that no infringement has
occurred on your privacy. The other way around; even if some party manages to respect
privacy, it does not immediately imply they are compliant to data protection law. The
enforcement of the laws regarding privacy are an essential element to actually achieving
privacy.

The other instrument we have to protect our privacy is technology, and the practices
we have to build these technologies. There is a growing industry for Privacy Enhancing
Technologies and Privacy by Design as a technical requirement will be part of the General
Data Protection Regulation (EC Reg 2016/679, 2016). This does create some difficulties
for both lawyers and engineers. The law does not give a clear definition for Privacy by
Design, and since it is a relatively new requirement a clear and shared definitions is still
lacking. Some footholds exists, such as the Privacy Design Patterns (Hoepman, 2014) or
the OWASP Top 10 Privacy Risks Project5. However, Privacy By Design still needs more
actual tools and practice, such that the relevant legal agencies can learn which meaningful
practices should be enforced.

An additional technology for protecting privacy through data protection is the use
of anonymous communications. When the context of data can be hidden, it gives back
control to the original owner of the data. Providing anonymity is not easy. Even though we
have usable mathematical descriptions of various approaches to anonymity, the practical
experience is often that there are additional channels through which an identity can leak.
This is why the use of pseudonyms almost never implies actual anonymity.

The formal description of anonymity that is considered for this document is (Pfitz-
mann and Hansen, 2005). Pfitzmann and Hansen define anonymity through set theory:
“Anonymity is the state of being not identifiable within a set of subjects, the anonymity
set”. This still allows for a number of degrees of anonymity. In a weaker reading of this
definition, anonymity implies that the likelihood of any other subject in the anonymity set
being identified as the sender or receiver of some message is significant. In the stronger
reading, every subject in the anonymity set should always have an equal likelihood of being
the sender or receiver of some message.

As a technical requirement anonymity often implies unlinkability. “Unlinkability of two
5https://www.owasp.org/index.php/OWASP_Top_10_Privacy_Risks_Project, accessed 13-08-2017
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or more items of interest [...] means that within the system [...], the attacker cannot suffi-
ciently distinguish whether these [items of interest] are related or not.”. A common measure
for such anonymity is by implementing k-anonymity. (Sweeney, 2002) k-anonymity on a
dataset is the requirement that in any ordered subset of the dataset, k is the lower bound
for the number of records that exist in such a set.

2.3.1 Protecting privacy in peer-to-peer networks

Peer-to-peer networking has a valuable application in anonymous communication technolo-
gies. For communication to be anonymous it should be impossible to relate a message to
both its sender and recipient based on the metadata of that message. Large adversaries,
like governments or foreign intelligence agencies, are said to have the power to observe all
the network traffic. This makes it verify difficult to guarantee anonymous communication.

Encryption allows us to create ‘envelopes’ that can only be opened by the intended
recipient. But if the mailman is evil: how will we send our messages without being able to
write the address on the outside of the envelope?

This can be achieved by sending messages through a trusted intermediary, called a
mixer, that ‘washes’ the details about the sender of the message.

In order to send an anonymous message, you put this message in an envelope with the
final address on it, and then put this envelope inside of another envelope that you address
to the mixer. An adversarial mailman cannot open these envelopes, so just delivers them
to the mixer. The mixer opens her mail and finds new envelopes. Once the mixer has
received a certain number of envelopes, she puts them in a large container and mixes the
container until it is impossible to determine the original order of the envelopes. The mixer
then gives all the envelopes to the mailman. The mailman cannot know who the original
sender of an envelope was, but now has an address to deliver the message. If we can
trust the mixer, we can use the mixer to send anonymous messages in the presence of an
adversarial mailman.

The anonymity set will consist of all the people who send their message to the mixer
and were in the same container. This can be a relatively small set, in which case it might
be possible to locate the sender. To increase the size of the anonymity set it is possible
to chain a number of mixers. This does mean that there are more parties that need to
be trusted. Chaum argues that chaining mixers still can achieve anonymity if at least one
mixer in the chain can be trusted (Chaum, 1981) .

Currently the most used method for anonymous communications is Onion routing.
Onion routing assumes that every peer in a network has a known public key. By encrypting
the message multiple times using a sequence of public keys, the user effectively wraps the
message in multiple layers of encryption. Peers in the network can ’peel off’ the outer
layer of encryption, revealing the next destination for the message until the last layer of
encryption has been pulled of and the message can be delivered to the intended recipient.
No individual peer can find out more information than who gave them the message, and
to whom it should be passed on. The first node therefore will also know the sender, and
the final node in the chain will learn the message. Like with a chain of mixers there is
only one trusted node needed in order to prevent the chain from sender to message to
be connected (Reed et al., 1998). The largest implementation of Onion Routing is Tor,
created by Dingledine et al.. If some attacker can observe the entire network, it can be
possible to correlate low latency traffic based on time and bandwidth usage. Therefore,
an alternative for Tor could be I2P (https://geti2p.net). I2P has better performance
for protocols like BitTorrent and implements Garlic Routing (Zantout and Haraty, 2011).
Garlic Routing6 allows peers to bundle multiple messages together, making it harder to do

6https://geti2p.net/en/docs/how/garlic-routing, accessed 24-07-2017
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traffic correlation.

2.4 Peer-to-peer economies

Peer-to-peer networks often are built on communities, and as most communities they are
all run by their economies in the end. A result from the Market-Managed Peer-to-Peer
Services (MMAPPS7) research has been a classification of the different market mechanisms
in peer-to-peer networks. Shen et al. incorporate this result in the general description of
peer-to-peer market mechanisms in (Shen et al., 2009).

Figure 3: (Strulo et al., 2003), overview image

Antoniadis et al. describe a number of incentives that regulate peer-to-peer file-sharing
at the Social Control level in (Antoniadis et al., 2004). They state that in general the
peers have rarely an incentive to act in the interest of the entire network, and therefore the
efficiency of the network suffers. They go on to describe the incentive structures that could
affect the efficiency of the peer-to-peer network. Most of these incentive structures assume
that not all the peers will act in the interest of the entire network. Their main finding is
that fixed fees or fixed contributions asymptotically attain the same efficiency for small peer
groups as if a central regulator with full information would set prices or contributions per
peer. In the conclusion of (Antoniadis et al., 2004), Antoniadis et al. suggest that simple
incentive systems therefore are preferred for optimal efficiency, to which Courcoubetis and
Weber concur in (Courcoubetis and Weber, 2006) about large peer-to-peer systems.

2.4.1 Economical models

Conventional (cloud) data storage providers have an economic model based on the exchange
of currency for storage space, bandwidth and proofs of availability. This can be called an
economy of services, where the providers get payed for the services they provide. Recent
peer-to-peer data storage products, such as Storj or Tahoe-LAFS, also use this model but
allow payments in a decentralized cryptocurrency.

Peer-to-peer Networks are not just made up from devices and services, but often the
backbone of some social structure. Core to file-sharing is the sharing, which generally is a
community activity. These communities are built by volunteers who not only contribute
their data to the community activity, but also time and resources.

This open and volunteer based model is classified as a gift-economy. (Cheal, 1988)
Cheal describes a gift economy as: “a mode of exchange where valuables are not traded
or sold, but rather given without an explicit agreement for immediate or future rewards”.
This is not the way companies like Google and Facebook give away services in order to

7(IST-2001-34201)
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create communities. These companies intend to profit from these communities or the
secondary products created by the communities. In peer-to-peer communities there often
is no acceptable mode for making money, like the refining and reselling of personal data.

Peer-to-peer communities can be closed off or private, and demand some level of par-
ticipation from a peer to remain part of the community. In many ways this is much like
the gift economy. However, in this case the gift is conditional of reciprocity. It is more
along the sociology of ‘do ut des’ - ‘a commutative contract whereby something is given
so that something may be received in return’8. In the extreme case this can become a
‘tit-for-tat’ exchange - possible giving rise to a prisoner-dilemma - when peers can have
negative feedback on each other. The structure is a reciprocal economy. An example
of a reciprocal economy can be found in BitTorrent networks where download rates are
limited for peers that do not contribute.

Finally there is the barter economy following the sociology of ‘quid pro quo’ in which
peers directly exchange services that are mutually wanted. We could call this an econ-
omy of mutual interests. We find this in protocols like Samsara (Cox and Noble,
2003), that operate with symmetric contracts. With symmetric contracts, the services and
responsibilities are equal for both peers involved in the contract. Peers also keep each
other accountable for upholding the contract, at the threat of breaking both sides of the
agreement.

These four economies give a general overview of what to expect from a peer-to-peer
network. This makes them useful for discussing the difference between peer-to-peer pro-
tocols. However, an economy is always an emergent property of a system and the actual
implementation and operation of the protocol. There are not always clear identifiers and
sometimes multiple markets and associated economies operate together. For example, pos-
session of a cryptocoin can signify payment for a service, be a badge from some reputation
system, or might be an ephemeral intermediary in a symmetrical but asynchronous barter.

2.5 Merkle Trees

There are a number of ways to verify the authenticity and integrity of a file or message
using methods from cryptography. The typical way of doing so is using a Hash-based
Message Authentication Code, HMAC for short.

An HMAC is a cryptographic way of putting a digital signature on a file, where the
signature depends on both the correct digest of a file and the use of the private key of the
provider of the file. A digest is a short summary of the file or a identifying number that
with extremely high probability belongs to the file. The verifying party can use the public
key to check that the integrity of the file has not been changed and actually originates
from the original owner.

The most common way to compute a digest is by using a cryptographic hash function.
Cryptographic hash functions, like the uniform hash functions9, map an input of arbitrary
length onto a finite set of bins. Aside from the uniform property there are three more
properties for a hash function to be a cryptographic hash function: pre-image resistance,
second pre-image resistance and collision resistance.

Pre-image resistance is about the difficulty of guessing the input to the hash function
from its output. Even if a hash function h is one-way, given message m and a resulting bin
b = h(m), b should not leak any information about m. The pocket phone book example,
where we create 26 bins from each letter of the alphabet, will not be a good cryptographic
hash since it will always leak the first letter of the last name.

Second pre-image resistance is the requirement that for a messagem1 and hash function
8From Miriam Webster
9Hash functions are explained on page 9. (Section 2, subsection 2.2.1)
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h, it is difficult to find a new message m2 for which h(m1) = h(m2) holds. This means
that it should be very difficult to change a message without the digest changing.

Collision resistance is an even stronger property than the second pre-image resistance.
For a hash function h to be collision resistant, it should be difficult to find any two messages
m1 and m2 such that h(m1) = h(m2) holds. Hash functions that are collision resistant
should make it near impossible to forge messages and makes cryptographic hashes useful
for applications where an objects need to be assigned to an ‘unique’10 bin.

Cryptographic hash functions are used in the rest of this paper mostly conceptual,
assuming the above properties hold. Whenever an example is required we usually assume
hashes from the SHA-family. Many of the older references use SHA-1 (of Standards and
Technology, 1995). In 2017, Stevens et al. found a collision in SHA-1 and it is therefore
advised to move to a newer standard such as SHA-3. (Bertoni et al., 2011)

Using a file as the input to a cryptographic hash function provides a digest suitable for
most applications. This digest should be unique to the file, hard to forge and not leak any
information about the file. For the contributions in this project, we use a slightly more
advanced structure called the Merkle tree.

The Merkle tree, as patented by Ralph Merkle in 1988, combines cryptographic hash
functions with the structure of a binary11 tree. (Merkle, 1982)

To construct a Merkle tree of height k, divide the data in 2k equal consecutive pieces
called leaves. For each of these leaves you compute the cryptographic hash. These crypto-
graphic hashes are the first branches of the tree. Now proceed to construct the rest of the
tree by pairwise combination of two consecutive branches by computing a cryptographic
hash of using the results of both previous hashes as input. Compute k layers of the tree
until you arrive at a single hash value known as the root of the tree.

A simple Merkle tree with only two leaves will be constructed as follows, using cryp-
tographic hash function h. The first leaves are the hashes of the data m0 and m1: h(m0)
and h(m1). Now we can compute the next (and final) layer by combining the branches of
the previous layer pairwise: h(h(m0)‖h(m1)), where ‖ denotes concatenation. This is also
the root of our Merkle tree.

Figure 4: A two layer Merkle tree

To compute a Merkle tree takes 2k+1 − 1 evaluations of the hash function. For a b-bit
hash function, storing the tree takes b · (2k+1 − 1) bits. It takes c · 2k bits to store all

10If the number of different inputs in the application is smaller than then number of bins the hash
functions uses the probability of a collision should move to zero.

11We assume a branching factor of two for the examples but any branching factor may be assumed.
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the c-bit leaves. Storing the tree therefore takes b
c(2−

1
2k
) times the space of storing just

the data. In many application the blocks are 32-bit and the hash has an output size of
128-bit, which makes the space needed to store the tree about 8 times bigger for larger k.
A trade-off can be made between the computation of a Merkle tree and storing the upper
section of the tree in memory. If you save the digest of one of the branches finding a new
path in the other branch no longer requires the re-computation of the branch of the stored
digest. Saving the upper m branches costs 2log2m+1 storage spaces, but the evaluations
for a single path to a leaf only takes 2log2 n−m+1 evaluations. Given constraints on both
storage space and hashing power, Berman et al. prove that there are optimal trade-offs
between time and space complexity (Berman et al., 2007).

Once a Merkle tree root is available, you have a digest for the entire file. But this root
can also be used to give a Merkle path to a specific leaf of a file. This makes it possible to
use the Merkle tree root as a digest for any sub-part of file

A Merkle path contains the root, the leaf and k hashes to show that a leaf belongs
to the root. The hash on the path at level i is denoted pi, the Merkle tree root is p0 , and
the leaf pk. To verify the correctness of a Merkle path, at each level i we use the hash ci of
the adjacent branch. Concatenating the hash on the path pi with the hash of the adjacent
branch ci gives pi+1 = h( ci ‖ pi )12. For a given Merkle path (p0 ; pk ; {c1, . . . , ci, . . . , ck})
to be correct, the following equation should hold.

p0 = h( c1 . . . ‖ h( ci ‖ . . . h( ck−1 ‖ h( ck ‖ pk))))

Figure 5: Merkle path

12For simplicity we assume concatenation (‖) is commutative (h(A‖B) = h(B‖A)). When this is not the
case, the Merkle path also should contain if the branch came from the left or the right. For the verification
the appropriate hash evaluation should be used: h(pi‖ci) for left branches and h(ci‖pi) for right branches.
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3 Requirements

We intend to design a storage product to be used by regular consumers. This storage is
for off-site and redundant copies of personal files and data. It therefore ought to compete
with external hard drives, Network Attached Storage devices (NAS) and the various cloud
storage solutions mentioned in subsection 2.1. After the consumer has bought and con-
figured the product, no interactions should be required to perform its function during the
lifetime of the hardware.

There are always multiple parties involved in off-site file storage. As we move away
from a model of storage that has a central authority we must consider who else is involved
in the process and how much trust is needed in what parties to make the system work.
Additionally we must consider the adversaries that present themselves in the absence of a
central authority.

The consumers must be ale to trust the provider of the software. This means the soft-
ware should at least be Open Source such that it can be audited publicly. Even with Open
Source Hardware and Open Source Software, as Ken Thompson points out (Thompson,
1984), if the entire product is not completely built from scratch, one must at the very least
trust the third parties that provide the fundamental building blocks for our technology.
Therefore we must assume that the (hardware) manufacturer of the final product can be
used as a trusted party.

With a distributed storage protocol we will have to account for a number of adversaries.
The primary adversary in nearly any peer-to-peer network is the free-rider. Free-riders
consume (public) resources in the network without contributing anything back. Therefore,
Free-riders devalue the rewards honest users get from participating in the network. Another
adversary we should consider is the malicious peer. While we can assume that at least half
of the peers are honest (altruistic) users, there will always be those act for their own selfish
benefits and a minor fraction that would intentionally abuse the system to attack other
peers. No other peer should be able to learn which real world identity is related to a
particular file stored in the network. Nor should any other peer be able to determine the
worth of the stored files. Finally, we consider a global adversary that has the power to
observe all the network traffic and wants to learn the identity of a user based on their
behavior in the network. The system should be able to protect the user against this
adversary.

3.1 Requirements

The objective of this research is to contribute to a peer-to-peer product that is privacy
friendly for long term data storage. The product should therefore, in our opinion, at least
satisfy the following criteria.

3.1.1 Peer-to-peer data storage protocol

Peer-to-peer networking is the preferred technology in this project to avoid a central author-
ity in the storage protocol. Considering the possibilities and the challenges in peer-to-peer
technology (section 2.2), the following requirements have been set.

• The protocol should run fully distributed.

• The protocol should allow a peer to store data in the network.

• The protocol should automatically decide at which other peer the data is stored.

• The protocol should allow a peer to retrieve specific data from the network at a
future time.

18



• The network should - for a (limited) time - retain data if a peer leaves the network.

• The network should be robust against failing or malicious clients.

• After bootstrapping, no parties beyond the (honest) peers should be required to run
the protocol.

• At least half of the peers should be honest nodes.

3.1.2 Security Requirements

Security is a general usability requirement of software. Especially when the final product
involves (personal) data. (ISO/IEC 27001:2013, 2013) Conditions to safeguard confiden-
tiality, integrity and availability are a necessity, and for our storage protocol have lead to
the following requirements.

• The data stored in the network should be (end-to-end) encrypted by the client before
storage. (No sharing.)

• The protocol should not leak any information about the data stored or the (private)
keys used in this process.

• The network should allow for the integrity of the data to be guaranteed.

• The peers should have a method to verify the integrity of the data stored in the
network.

• The availability of the data should be guaranteed over significant periods of time and
be robust for perturbations of the network.

3.1.3 Privacy

Privacy is going to be a legal requirement in Europe. Furthermore, privacy is a human
right. In this project we interpret privacy as the right to integrity of context (Nissenbaum,
2009).

• The protocol should be privacy preserving: the protocol should leave the users in
control of their data and the context of their data.

No data in the protocol should provide information about the actual user, the stored
data or the context of the peer to their data. This condition should also hold when there
is an adversary of that has the power to observe all the network traffic.

3.1.4 User Friendliness

Security tools and Privacy Enhancing Technologies have have a bad reputation for not
being user friendly. Abu-Salma et al. (2017) Seuken et al. have shown that it is possible to
hide complex market behavior through the proper design of a good user interface. (Seuken
et al., 2010)

However, the protocol should not create any obstacles for creating a user friendly
experience.

• The system should work the same way and as simple as storing a file on a local drive.

• The protocol should not require - or even offer - any interaction by the end user with
the peer-to-peer network beyond those involved in storage.
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3.1.5 Incentives and economies

To make the protocol usable beyond the mere technological capabilities, the following
requirements are to help contribute to the viability of implementing the protocol into a
product for regular consumers.

• The protocol should offer incentives for good behavior.

• The incentive mechanism should be as simple as possible.

• The protocol should not have a co-dependency with a separate market.

– Peers should therefore not be allowed to offer currency or (natural)goods in
exchange for services on the network.

• If the protocol runs on a gift economy, it should be able to guarantee that the supply
of storage will always outrun the demand.

20



4 A robust protocol for fairness in filesharing

No peer-to-peer protocol has yet been proposed that satisfies all our requirements. So we
needed to find reasonable candidate that come close to solving our problem. One approach
is to adapt an (anonymous) peer-to-peer file sharing network and include incentives so that
it will have a suitably long retention of the data. Alternatively, an existing peer-to-peer
data storage protocol can be modified to be privacy preserving.

BitTorrent would be an acceptable candidate for the the file-sharing approach. Bit-
Torrent can run fairly anonymous on I2P (Wilson and Bazli, 2016) and has the ability to
encourage longer retention. (Menasche et al., 2009) No scheme exists however that lets
random peers add files to a BitTorrent swarm and have guarantees for the availability or
coverage by the swarm of these new files.

The protocol by Osipkov et al. would be an acceptable candidates for the data storage
approach. This protocol is based on robust accounting of the usage and contributions
of all the peers in a network without need of a central authority. This gives rise to a
reciprocal economy where every peer can consume about as much as they contribute.
The protocol attempts to achieve fairness between the peers in the file storage network.
Fairness according to Osipkov et al. is that ‘peers should be allowed to use at least an
amount of network storage comparable to what they provide.’ The fairness in their protocol
is achieved through a distributed reputation system to keep the network fair for all peers.

In this project we have chosen to pursue the peer-to-peer file storage approach. In
the next subsection we describe the reputation system that allows the protocol to achieve
fairness. Then we will proceed to detail the messages that make up the Osipkov et al.
protocol. In the final part of this section we will discuss some of the shortcomings of the
protocol.

4.1 Bartering for file storage

One of the requirements of our protocol is that it should not depend on a separate market.
We cannot build an economy of services, since this would require a market of currency. The
gift economy would require some external incentive outside of the scope of our technology to
require the peers to keep investing in the protocol.13 It therefore makes sense to consider a
bartering economy since it can be regulated through the technology. Fortunately there has
been some previous research into peer-to-peer file storage with a bartering economy. The
main adversary for this type of economy is the free-rider. Free-riders consume resources in
the network without contributing and as such create distrust among the peers in a network.

When regulating a bartering economy we strive for fairness and it is easy to achieve
this through a central authority. However, the point of this project is to design a system
that does not rely on a centralized authority. An initial idea is to solve this directly in the
storage interaction between two peers. When peer A wants to save some data at peer B,
peer A immediately has to provide some storage for peer B of the same size. The Samsara
protocol (Cox and Noble, 2003) has implemented this. If peer A requests to store data at
peer B, in Samsara peer A also has to store an equal amount of data from peer B called a
claim. The data is only stored if the peer actively can prove that the related claim is also
stored in the network, otherwise the data is deleted with a set probability p after some
time. While the Samsara protocol delivers on fairness, it fails to restore the trust between
the peers. It requires constant usage of bandwidth for the peers to keep checking on each
other and provides no incentive to keep a file when the other peer goes offline. Having a
too high probability p for deletion makes the system unusable for backups. Having a too
low probability p for deletion makes the system vulnerable for free-riders. This makes it

13Nor do we intend to create a Ponzi scheme.
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not useful for the type redundant storage that one needs to restore from when the original
device fails.

Osipkov et al. manage to reintroduce an authority to enforce fairness into this system,
such that peers can have some trust in each other again (Osipkov et al., 2006). They replace
a central authority that could perform this task by the consensus of a small random group
of peers. Their protocol uses an Advance Peer Assignment Strategy (APAS), where the
public keys of the peers in the system are used to decide on a set of witnesses. These
witnesses are other peers in the same network and they are tasked with deciding on the
reputation of this peer. This method, as designed by Osipkov et al. does require availability
of a ‘trusted’ source of entropy in the system to make sure the the set of witnesses is hard
to predict for any future point in time, but the current and past sets of witnesses must
be easily computable. This allows a storage provider to offload their decision on trusting
another peer onto the consensus of the witnesses. Osipkov et al. argue that the network
remains functional even if half of the network participants are malicious, given a large
enough size of the witness set. They also note that their protocol should not be vulnerable
to the Sybil attack, because it assumes a trusted party for the initial key distribution that
can verify the identities of the peers.

4.2 The Osipkov et al. protocol

The network consists of nodes (peers) that can offer parts of their local storage space
to other nodes in the network. The network has an underlying communication structure
based on Chord (Stoica et al., 2001), Pastry (Rowstron and Druschel, 2001), or a similar
peer-to-peer Distributed Hash Table, where nodes can find each other and are loosely time
synchronized. There is a mutually-trusted authority, that can hand out certificates for new
nodes to participate in the network. All nodes have an identity, based on the certificate,
that is addressable on the underlying network. At least half of the nodes are interested in
participating. Osipkov et al. call this a Community of Common Interest: where at least
half of the nodes are interested in having a relatively stable membership in the system for
the purpose of consuming and providing long term data storage.

Nodes are responsible for periodically checking the availability of their stored files. It
is assumed, though not explicitly required, that nodes encrypt their data before storing
it in the network and use erasure codes to segment their files. Erasure codes, such as
the Reed-Solomon erasure codes, efficiently encode redundant information into a file for
the purpose of error correction and fault recovery. (Reed and Solomon, 1960) With the
Reed-Solomon codes it does not matter which bytes of the data are recovered as long as
the sum of the sizes of all unique recovered pieces sum to the original file size. Using these
erasure codes in part help to hide the file size, and prevent attacks where the storer wants
to withhold part of the file for a ransom.

4.3 Protocols and Messages

The storage protocol has algorithms for: queued witness set construction, file storage, file
deletion, storage refresh, witness hand-off algorithm, and checking with witnesses. In the
next part the operation of the algorithms is illustrated. Pseudocode for all the algorithms
can be found in (Osipkov et al., 2006).

Queued Witness Set Construction

Osipkov et al. describe the witness selection process as follows, assuming you have a DHT
such as Chord or Pastry to find the user closest to some id.

Peer A has an identities based on their public key certificate PKCA. To find the n-th
witness Wn(A) of peer A for time-interval tc, you select the identity PKCn that is closest
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to the hash of (PKCA||f(tc)||g(n)), for some set functions f and g. Per time-interval tc
the oldest witness is replaced by a new one.

This mechanism reliably and uniformly assigns a number of peers to each and every
user. These witnesses are tasked with the accounting of consumption and contribution of
the resources in the network. A user will only be served by another peer if the witness
group achieves consensus about the current accounting. It is in the self interest of a peer
to get a good accounting score. This involves rapid reporting to the witnesses whenever
credit is deserved through a contribution to the network.

In practice one can pick the size of the witness-set sw based on the tolerated fraction of
corrupt peers ε and the acceptable percentage of witness-sets that have a faulty majority
δ.

Let X be a random variable that represents the number of witnesses in a witness set of
size sw that are corrupt. X has a Bernoulli Distribution. We can describe the the fraction
δ, the witness set having a faulty majority, as P (X > b sw2 c). The Chernoff bound can
be used to calculate a lower bound for the tail of this distribution (Wikipedia, 2017b).
P (X > b sw2 c) ≤ e−

sw
2ε

( 1
2
−ε)2 . Rewriting this equation with respect to sw gives,

sw = 2ε
ln δ−1

(12 − ε)2

as a lower bound for the sw.
Recovery from a witness-set with faulty majority is generally fast because, assuming

at least half of the peers are honest, most faulty majorities are marginal.

Queued witness set WA construction as presented in (Osipkov et al., 2006).
The witnesses are replaced at random intervals in step 2a. h is a k-bits hash function.

1. On input time tc (expressed, say, in days) and peer PKCA, initialize
W0,...,sw−1(A) := ⊥, n := 0.

2. For j ∈ {0, . . . , e− 1} do:

(a) if tc − |tc| ≥ h(j||PKCA)/2k, set n := n+ 1.

3. For i ∈ {0, . . . , sw−1}, set Wi(A) to the node with ID closest successor of
h(PKCA ‖ h(btcc − b(i+ e− n)/ec) ‖ (i− n) mod sw).

File Storage

File storage between peer A and peer B begin with a file storage request S(A). Peer A
sends a cryptographically signed request to peer B, specifying the identities of both parties
involved, the required duration for the storage, the size of the file to be stored and a test
for such that peer B can show they actually stored the file. If peer B wishes to accept this
file, it informs peer A that they can send over the file, after which A proceeds to send the
file to peer B.

Peer B verifies the validity of the sent file based on the provided test in the storage
request. If the file is valid peer B produces a receipt SR(B), containing the original storage
request, the answer to the test and the current time. This receipt is sent to peer A who
can verify its validity.

Peer B sends the receipt to its witnesses set WB to claim credit for storing files, and
also to WA the witnesses of A. WB forward the receipt to peer A and WA, such that WA

can debit peer A for the used storage at peer B.
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The test in the Osipkov et al. protocol is to find a pre-image of h(h(F )), the double
cryptographic hash h over the file F . If the peer B has stored the entire file F , it is easy
to compute the pre-image h(F ).

File Deletion

All files in the system have an expiration date. Eventually they will be deleted. If peer A
wishes to clear debit before that time by deleting the file, the protocol provides a deletion
message.

Peer A sends a signed message to peer B, the witnesses of peer A and the witnesses
of peer B, that a file belonging to a certain storage receipt can be deleted. The witnesses
of peer A and the witnesses of peer B message this request to each other such that the
accounting of debit and credit can be updated. All the witnesses will also inform peer B
about the deletion, just in case peer B was offline for the deletion request from peer A.

Storage Refresh

If peer A wants to refresh the storage request such that peer B will keep the file beyond
the expiration date until a new expiration date, they send a refresh request to peer B
containing the original receipt and and updated storage request S′(A) containing the new
date. If peer B chooses to honor the request, peer B produces a new receipt SR′(B) and
sends this to peer A.

The witnesses are informed analogous to the initial Storage Request. peer B sends the
new receipt to their witnesses WB to claim credit for storing files, and also to WB the
witnesses of peer A. The witnesses in WB forward the new receipt to peer A and WA, such
that WA can debit peer A.

Witness Hand-off Algorithm

The witness set of a peer changes over time. As new peers enter the witness set, it is
important that they receive the current account, since a single storage request can live
over multiple generations of witnesses.

In order to do the hand-off, the new witness requests all the receipts related to storage,
storage refresh or deletion from the current witnesses in the set. They then verify the
validity of the receipts and keep account of the findings. The witness checks the signatures
on the receipts, makes sure the receipts are not expired, and computes if the hash indeed
are the pre-images of the requested challenges. If all these checks pass, the witness accepts
the receipt for accounting.

Checking with witnesses

If peer A wants to store a file at peer B, peer B first consults the witnesses of A to verify
if A indeed contributes as much as they consume. The witnesses then send an assessment
based on their accounting to peer B.

4.4 Shortcomings of the Osipkov et al. protocol

With respect to the requirements set in section 3, the Osipkov et al. protocol satisfies most
of the criteria. A number of essential requirements are still lacking from the Osipkov et al.
protocol.

1. The protocol should be privacy preserving.
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2. The protocol should allow a peer to retrieve specific data from the network at a
future time.

3. The network should allow for the integrity of the data to be guaranteed.

4. The peers should have a method to verify the integrity of the data stored in the
network.

The most critical shortcoming is the fact that the Osipkov et al. protocol is not privacy
preserving (1). Even though files are encrypted and erasure codes hide the file size, the
network identity of the owner of a file is linked to the storage request. This makes peers
traceable based on their non-witness interest in specific files. This also makes it possible
to distinguish files in the network from each other based on the owner. If a peer could be
compromised through their network identity, a incredibly sophisticated ransomware attack
might also try to target their online and off-site backups.

Although there is accounting on the storage of files, and this accounting mechanism
incentives fair behavior, the willingness of the peers to offer the files for downloading is
absent in this system. This means that there is no protection against denial-of-service
attacks for file retrieval. The fairness accounting scheme also cannot help, because the
witnesses have no instruments to negatively account the bad behavior. The contracts for
which this accounting applies are effectively terminated by virtue of the retrieval of the
file.

Both the storage and refresh protocols have a mechanism for checking the integrity of
a file at the storer (3), however it is only triggered at the start of the protocol and requires
both parties to have the file and do a complete verification. This means that a easy and
low latency mechanism to check the availability and integrity of the stored data is missing
(4).
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5 Contributions

This project has a number of contributions toward the objective of building a privacy
friendly peer-to-peer long term storage solution. In section 2 we provide an overview of
the relevant literature and technology. We have specified requirements to chose a protocol
and in section 4 we argue why the Osipkov et al. protocol is a good starting point towards
the objective. This section outlines the two final contributions we add to the project.

In subsection 4.4, we identified a number of shortcomings in the Osipkov et al. proto-
col. In the next section we propose a method to make the protocol more privacy preserving
through the use of anonymous networking. In the last subsection we contribute two meth-
ods for the remote querying of file availability. Such tools are beneficial for the trust users
can have in the network.

With the project we have contributed to the discussion and understanding of privacy
friendly data storage protocols in order to achieve future implementation of a peer-to-peer
protocol, based on the previous published protocol by Osipkov et al..

5.1 Anonymity in the Osipkov et al. protocol

The protocol by Osipkov et al. makes very little assumptions about the technology used
for networking. In fact, the bootstrapping only requires a Distributed Hash Table and a
Certificate Authority to assign each user their identifier.

This is precisely how anonymity networks like I2P work (Zantout and Haraty, 2011)
and in more general terms how Tor (Dingledine et al., 2004) organizes its hidden services.
Both systems offer an anonymous Distributed Hash Table and a certificate based system for
peers to anonymously have themselves contacted through the network. This means that we
may assume that peers can be an anonymous part of the network under a certificate-based
pseudonymous identity.

In the Osipkov et al. protocol we need an authority to give out the certificates for
the peer identities. This is important to protect the protocol against a sybil attack. The
identity is also bound to the storage contracts, so it is also important for peers to be able
to keep a consistent identity within the network. The pseudonymous identity we assign
to the peers has to be authenticated by the certificate authority, consistent over time and
not leak information about the real identity. In general pseudonyms are only usable for
temporary anonymity. Our challenge will be to keep the pseudonyms unlinkable.

The first step will be to prevent the authority that gives out the certificates to learn the
real world identity of the users. We choose for the manufacturer of the devices to be the
authority that gives out the certificates, since the users need to trust them anyway not to
place a backdoor in the hardware. So the manufacturer puts a certificate in every device.
Our applications is in consumer products, so the retailer often breaks the link between the
manufacturer and the customer. However, we cannot prevent a curious government or a
malicious retailer to read the identity on every device and keep a list of all the customers.

We need a method to put a signed certificate in the devices that does allow the signing
of messages using the certificate, but it should be impossible to extract the certificate from
the device. This can be done using Physically Unclonable Functions (PUF). A PUF is
a physical device that can compute one-way function, is ‘inexpensive to fabricate, pro-
hibitively difficult to duplicate, admit no compact mathematical representation, and is
intrinsically tamper-resistant’ (Pappu et al., 2002). We should note that there has only
been two decades of research into PUFs, choosing the right physical system for the task is
essential, and implementations still need to consider side-channel attacks. Typical exam-
ples of PUF devices are optical systems that can do challenge-response or memory cells
that take a set configuration during the installation, such that they can be used to generate
a key The latter is useful for our applications. PUFs are at the very least an inexpensive

26



way to increase the cost and time to read the certificate from a device.
In stead of the certificate, the manufacturer can put a PUF in each device. The device

creates a public-private key pair using the PUF and asks for a blind signature on the
public key from the manufacturer. A blind signature is a valid cryptographic signature
on a message, without the signer learning the contents of the message (Chaum, 1983).
The device now has a unique, certified public key that can be used as a pseudonymous
identity. This certificate cannot be extracted from the device without at least showing
signs of tampering. The tampering often breaks the device completely without revealing
the key. It should now be very hard to link the pseudonymous identifiers of the peers to
their real world identity. These identifiers can be used in the protocol to address peers and
witnesses, just like in the normal Osipkov et al. protocol.

For the system to provide anonymity it is remains important for the users to be in an as
large as possible anonymity set. Traffic correlation attacks are still the main weakness for
low-latency anonymity-networks. If nodes can be fingerprinted or profiled based on their
network behavior, and the network behavior is correlated to the behavior on the storage
network, then the anonymity set will be reduced to all the nodes with a similar profile.
Garlic Routing as used in I2P, can make these kind of correlation attacks more difficult.
However even this will not work if the attacker has control over a critical resource.

Consistent behavior of all the peers in the network can increase difficulty of doing a
correlation, since it greatly improves the unlinkablity. If larger numbers of peers in the
network behave similar, anonymity sets remains large. This is easily facilitated, since most
users will run the same hardware and should have no option to configure their device any
different than any of the other peers. To an outsider the network should like a large number
of indistinguishable peers that push equal sized blobs of high entropy noise around in the
network.

Though even Garlic Routing cannot protect the user if they depend on a specific re-
source. Saving redundant copies in the network, and using Reed-Solomon Erasure Cor-
recting Codes (Reed and Solomon, 1960), as used in (Osipkov et al., 2006) but also in
(Wilkinson et al., 2016) or in (Wilcox-O’Hearn and Warner, 2008), allow the user to move
on to the next resource if they find one to be unaccessible. This means that an attacker
has to be in control of most of the network before attempting a traffic correlation attack.

To achieve regularity, the implementation shall have a number of behavioral conditions,
such as the ones listed below.

• Every peer shall attempt to achieve an accounting score of 0. This means offering
all available storage to the network and storing as much data in the network. Even
if this storages is not yet in active use on the client.

• A peer shall attempt to download every of their stored file once.

The uses of anonymity networking, blindly signed certificates to provide pseudonymous
identities and regular behavior should prevent the data of the peers to be correlated to
their real world identity. This should help to preserve the privacy of the users, since it
allows them to control the context of their data stored in the network.

5.2 Remote Querying

It is important for the trust in a distributed storage network that users have a good sense
of the health of the network and the availability of the data they stored in the network.
The Osipkov et al. protocol checks at the beginning of a storage contract if the storer
actually has the file on disk by demanding a pre-image of the double cryptographically
hashed stored file. The availability then is not checked again until the contract is renewed.
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A tool has to be provided for the user such that the availability can be verified on a more
regular basis.

In the storage literature there are two common Merkle-tree based schemes for verifying
the availability of a file using a challenge-response protocol (Wilkinson et al., 2016). The
first is to compute a challenge where all the leaves of the Merkle tree are salted with a
nonce. Publishing the nonce and the hashed root of the new Merkle tree provides a new
challenge. If the storing party still has the data than they can easily find the correct pre-
image. An advantage of this scheme is that pre-computation of the challenges allows for
querying availability even if the user no longer has the file themselves. The result of the
challenge-response can be made public, and is easily verifiable by computing the hash of
the response. Shacham and Waters provide a scheme that requires the public key of the
challenger to verify the result, making sure that both parties are actually involved in the
challenge-response.

Conceptually, the idea of verifying possession of a file is related to proving possession
of a private key. That is, if we could equate a file with a private key and derive a much
shorter public key, that we give to the verifier, this public key can be used to verify the
response of the node storing the file.

There is no simple or common scheme that allows an external party to send the chal-
lenge based on a simple digest of the file. There also does not appear to be any crypto-
graphic primitive that allows us to use the entire file as a private key, then compute a small
public key. The private key can then be used to decrypt any nonce encrypted with the
public key to prove the possession of the private key. A further constraint for this problem
is that the decryption should obviously not contain a set machine-state before entering the
nonce, as this state can easily be stored.

Some initial experiments where the file is considered a large matrix and having the
public key be some property of this matrix, such as its eigenvalues and eigenvectors, as a
public key were fruitless. In general we found that some other matrix generated by these
public properties is also capable of answering the challenge and the file itself does not need
to be stored.

An interesting, though not really practical idea is to leverage some cryptography that
does allow for a size difference between the public key P and the private key S of a few
bits.14 Using k-bit sized blocks from the file as k-bit private keys and generate m-bit sized
public keys (m ≤ k) allows for a slight compression of mk of the public digest. This however
did only seem to work for toy examples of simple crypto systems and allow the storing user
to throw away a file block if it has collision with another public key.

Abandoning the path of the Proofs-of-Possession, there are some ways to device prob-
abilistic methods to challenge the availability. We will present two that are based on the
computation of Merkle paths. These methods are probabilistic in the sense that not being
able to respond allows for the conclusion that the entire file is lost, while any other response
gives a probability that the entire file still exists.

5.2.1 Using a counter to create a queriable Merkle tree

For the first scheme we compute the leaves of the Merkle tree with a hashed counter. Let
the file F be divided in n blocks denoted f1, . . . , fn. We assume that the function h(x)
computes the cryptographic hash of x. To construct the Merkle tree we include an index
i in the leaves. So the i-th leaf, calculated from the i-th block fi, will be h( h(fi) ‖ h(i) ).
This construction means that a Merkle path for index i will begin at h(i), uniquely includes
h(fi), and ends at the Merkle root. The scheme therefore is useful for verification by third
parties since they can request a path by index. If the root node of the hash tree and the

14This idea came from a discussion with Daan Sprenkels.
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size of the file (S) are public, any user can send a random challenge i < S to the storer by
asking for a Merkle path that starts at leaf i. The ability to produce the Merkle path in
a finite amount of time indicates that the storer indeed had the file before, and still has
at least a fraction of the data that contains the i-th block of the file and the hashes in the
path to fi. Assuming a user wants to know with a probability p that at least fraction s of
the file is available the number of challenges k that need to be answered is expressed as:

k =
log (s)

log (p)

Since k trails with p probability of success results in pk = s probability of surviving a series
of k independent trials.

Responses are publicly verifiable but should not be transferable. If just one party checks
the possession and the checks are very infrequent, there is an incentive to throw away (part
of) the file once the first challenges are over. Complexity and cost of computing with a
Merkle tree are discusses in section 2, subsection 2.5.

5.2.2 Size estimation of encrypted files using Merkle trees

An alternative method for testing the availability of a stored file is by estimating its size
from statistical properties. Because we deal with encrypted files, the bytes in the data have
a uniform distribution. Assuming we have 2l blocks of l-bits, we expect every possible l-bits
sequence to be found as a block. Similar to the previous counter-based method we could
send an l-bit nonce to the storer and expect to get a Merkle path in response that begins
at a leaf which block is equal to the nonce. There is some reasonable likelihood that a
none-answer in this case does not mean that the storer does not posses the file, but that
the nonce just was not among the blocks.

We cannot have the storer request new nonces, because then they will just keep request-
ing nonces until the challenger asks the right challenge. What we can do is send n nonces
and assume the fraction that get a Merkle path in the response to be the fraction of the
file that the storer possesses.15 Assuming the queries are all independent we can average
the responses and expect that for an honest storer: the standard deviation of N responses
decreases with a factor

√
N and the fraction average asymptotically moves toward 1. A

disadvantage of the method is that the storer has to compute the entire Merkle tree for
every challenge.

Depending on hardware specifications this might provide reasons to pick one of the methods
over the other. The counter method allows to make this trade-off since we just query
one leaf per challenge. This is important since we want to make many queries. The
performance increase scales exponentially with the size of m. At the other hand, we do
value the inspection of the entire file, and specialized GPUs for the parallel computation
of the Merkle tree do exists. So if the performance allows for it, the advantages of the file
size estimation method could then be exploited.

15It is also possible to do size estimation based on other statistical subsections or create more partitions
using the Coupon Collector result (Wikipedia, 2017c) such that we should expect near certainty that there
should always be at least a single path for a nonce.
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6 Conclusion and Future research

The objective of this research was to determine whether it is possible to create a privacy-
friendly file-storage product suitable for long-term storage. We set a number of require-
ments for this protocol based on a study of existing file-storage products and need for
privacy-friendliness. The peer-to-peer file-storage protocol by Osipkov et al. was the clos-
est file storage protocol to the requirements. They use a peer assignment scheme to achieve
fairness between the peers and prevent free-riding.

However the Osipkov et al. protocol did not yet satisfy all the requirements. It was
not inherently privacy preserving, nor did the peers have a efficient tool to monitor the
availability of their stored files. We suggested a number of improvements to the protocol
such that it can meet more of the requirements.

To become privacy preserving, we propose that the protocol runs on an anonymity
network. The protocol only needs a distributed hash table to locate the peers, which
works on most anonymity networks. A trusted manufacturer as a certificate authority
is needed to for the initial identity distribution. If the implementation enforces regular
behavior of all the clients, then using an anonymity network should make the data and
metadata unlinkable to the real world identity of the users.

The final improvement was providing the users with better tools to query the avail-
ability of their data in the network. Two simple new schemes were proposed to allow
third parties to create a challenge to test availability, based on only a Merkle tree root
and the file-size. The first hashes a counter into the leaves of the Merkle tree, allowing
the creation of challenges based on the counter-index. The second leverages the uniform
statistical properties of encrypted files and the ability of the responder to match a specific
bit-sequences to do file-size estimation. Depending on the hardware used in the final prod-
uct and the size the files for which a Merkle tree has to be computed both of these methods
have advantages and disadvantages. For large files the performance of the counter method
can be several orders better, given some storage and time trade-offs.

While there are a still a number of challenges to be solved, we have shown that it indeed
is possible to create a privacy-friendly file-storage product suitable for long-term storage.
The Osipkov et al. protocol provides long-term storage in a distributed network. We show
that it is possible to make this protocol privacy preserving by means of an anonymity
network. Two new tools for monitoring availability should allow consumers to trust the
product.

6.1 Future research

All the work in this document is purely theoretical and it will require actual implementation
to determine real world feasibility.

The Osipkov et al. protocol has no accounting for the downloading of the files. While
it is a fair assumption that honest peers just allow for downloads of the stored file it does
exposes the possibility of creating a denial of service by requesting loads of downloads, or
for large groups of adversaries in the network to create a bottleneck for a critical resource by
remaining honest until a certain target client is in need of a resource. The witness system
as it functions now cannot do accounting for downloading, since downloading effectively
implies the termination of the contract and the witnesses tally the contracts. An alternative
reputation system such as eigentrust (Kamvar et al., 2003) might be better suited to govern
the accounting for downloads.

The avenue of solving this problem using a peer-to-peer file-sharing method is still a
viable option. This will mostly require motivation peers to also contribute in the sharing
of files they do not really care fore. In BitTorrent some progress is made by the application
of content-bundling (Menasche et al., 2009). Reputation bases systems to achieve fairness
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in BitTorrent swarms might be an interesting approach.
Research into the auditing of availability and integrity of remote stored files is often very

specific and, just like in this thesis, built under very narrow assumptions. Detecting errors
in data stored away at different locations of a data-storage-provider (Spoor and Peddemors,
2010) has a different trust model than doing remote querying on an anonymous peer-to-
peer network. Badertscher and Maurer even argue that standard challenge-response audit
mechanism, in which the server has to compute a hash h(F‖c) on the file F concatenated
with a uniformly random challenge c, is not secure without assuming additional restrictions
on the server behavior. An overview of simple and practical methods for doing remote
querying of data possession and their security considerations might therefore be a valuable
contribution.

Finally it is important to see this work in the scope of popular file storages products.
These have often more functionality than just long-term storage of (large) files. Ideally
this work becomes just the long term part of a distributed global file-system, that will also
allow for privacy friendly file-sharing and anonymous content delivery.
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