
Automatic feature generation and
selection in predictive analytics

solutions

Suzanne van den Bosch

Suzanne van den Bosch: Automatic feature generation and selection in predictive
analytics solutions
Master thesis Computing Science
Faculty of Science, Radboud University
Student number: s4021444

Supervisors:
Arjen de Vries, Radboud University
Edwin de Jong, Quintiq
Stieneke de Lange, Quintiq

Nijmegen, June 2017

2 Automatic feature generation and selection in predictive analytics solutions

Abstract

In this thesis we proposed a feature generation and selection method called Fea-
ture Extraction and Selection for Predictive Analytics (FESPA). This method
aims to improve the current Predictive Analytics solution of Quintiq, which had
only options for manual feature selection and no options for feature generation.
We have discovered that the proposed method does not decrease performance.
In most cases, however, it does also not improve the performance. For the data
sets where the performance increased, the improvement is significant.

Automatic feature generation and selection in predictive analytics solutions iii

Acknowledgements

I would like to thank a number of people who have supported me during the
process of this master thesis.

First, I would like to thank Arjen de Vries, for giving me advice about the
direction of my research, for ensuring me I did not have to be stressed about
little things like the final presentation when it is still two months away, and for
helping me whenever I got stuck in figuring out the ExploreKit algorithm, the
implementation or the writing of this thesis. I would also like to thank Elena
Marchiori for taking the time and effort to be the second reviewer for this thesis.

I would like to thank my colleagues and supervisors at Quintiq. Edwin de
Jong for giving me the opportunity to do this research at Quintiq, for helping me
define the scope of this thesis, and giving me the freedom to define a research
scope that appealed to me most. Stieneke de Lange for patiently explaining
the perspective of the user to me and for the useful feedback while writing this
thesis. That made this thesis a lot more readable. Harm Buisman for all his
help with understanding the Predictive Analytics solution and feedback on my
implementation of FESPA in the Quintiq software.

Last, but certainly not least, I would like to thank my boyfriend Frank Blom
and my parents, Rob and Marieke, for all their loving support and unwavering
trust in my capabilities. Without them none of this would have been possible.

Automatic feature generation and selection in predictive analytics solutions v

Contents

Contents vii

1 Introduction 1
1.1 Feature generation . 2
1.2 Feature selection . 3
1.3 Quintiq . 3
1.4 Thesis structure . 4

2 Related Work 5
2.1 Decision tree . 5
2.2 Information Gain . 6
2.3 ExploreKit . 6
2.4 Other methods . 7

3 Methods 9
3.1 Feature generation . 9

3.1.1 Unary Operators . 9
3.1.2 Binary Operators . 10
3.1.3 Group-by-then operators 10
3.1.4 Redundant operators . 11
3.1.5 Linear transformations . 11

3.2 Feature selection . 12
3.2.1 Meta-features . 13
3.2.2 Background learner . 13

4 Results 15
4.1 Performance . 15
4.2 Influence background collections 18
4.3 Operators . 19
4.4 Growth of number of features . 20
4.5 Run-time approximation . 21

5 Discussion 23
5.1 Performance . 23
5.2 Influence background collections 24
5.3 Operators . 24
5.4 Time versus accuracy . 24
5.5 Future work . 25

Automatic feature generation and selection in predictive analytics solutions vii

CONTENTS

Bibliography 27

Appendix 29

A Overview data sets 29

B Algorithms pseudo-code 30

viii Automatic feature generation and selection in predictive analytics solutions

Chapter 1

Introduction

Data processing is the collection and manipulation of data. In this thesis, we
focus on data processing involving machine learning.

The focus of machine learning research has mainly been on the learning
algorithms. This may be due to the limited amount of available data. Over the
years, the available technology became more advanced and that has created the
possibility to store significantly more data. With the increase of data, it has
become clear that the representation of the data, which is the input of a learning
algorithm, can have a significant impact on the performance of that learning
algorithm. Currently, there is more available data, but that data contains more
noisy and relatively less useful data. Therefore, adequate data pre-processing is
becoming more and more important.

Data pre-processing is a collective name for all methods that aim to ensure
the quality of the data. We focus on two methods within data pre-processing
called feature generation and feature selection, explained in more detail in Sec-
tion 1.1 and 1.2 respectively.

Besides feature generation and feature selection, there is a process which
aims to detect and correct inconsistent and missing values in the data. This
process is called data cleaning. Data cleaning is also an important part of the
data pre-processing phase, but is out of the scope of this thesis.

In this thesis, we address the problem of efficient and effective feature gener-
ation and feature selection for a specific machine learning problem. We propose
a method that will improve the current Predictive Analytics solution of Quintiq,
described further in Section 1.3. The proposed method is based on an existing
implementation of a feature generation and selection method called ExploreKit,
further discussed in Section 2.3.

Our research objective of improving the current Predictive Analytics solution
for Quintiq has two aspects that need to be taken into account; first the scientific
results should be improved, however since the tool is used by companies in
predicting planning aspects on the short until long term horizon it also means
it should produce results in a timely manner. This means that, as part of our
research, we are not going for the optimum scientific solution, but we try to find
a balance between improved results and fast results. Since this balance can be
different for each business case, the approach we took aims to make the resulting
Predictive Analytics solution flexible and configurable by the user. One example
is that feature generation and selection methods have been split and can be run

Automatic feature generation and selection in predictive analytics solutions 1

CHAPTER 1. INTRODUCTION

separately, as well as the fact that their parameters can be set.

1.1 Feature generation

Feature generation is also known as feature construction, feature extraction or
feature engineering. There are different interpretations of the terms feature
generation, construction, extraction and engineering. Some nearly equivalent,
yet differing definitions for these terms are; construction of features from raw
data [11, 6], creating a mapping to convert original features to new features [12],
creating new features from one or multiple features [10].

In the context of this thesis, feature generation and all its synonyms will be
interpreted as the process of creating new features from one or multiple features,
unless otherwise specified.

Two goals of feature generation can be dimensionality reduction and ac-
curacy improvement [13, 4]. When the goal of a feature generation method is
dimensionality reduction, then the result will be a feature space which contains
less features than the original feature space. However, when the goal is accuracy
improvement, the resulting feature space will most likely contain more features
than the original feature space.

We are primarily interested in feature generation methods where the goal
is to improve the accuracy of the predictor. Dimensionality reduction does not
have a high priority, since the results of feature generation are input to a feature
selection phase aims to reduce the dimensionality of the feature space. Even
though the feature generation phase does not have to reduce the dimensionality,
it certainly has to take care to not generate an extreme amount of new features.

To illustrate the importance of feature generation, consider the following
example in Table 1.1. Here we can see the original feature Date and dependent
feature Visitors, which shows a date and the corresponding number of visitors
for a theme park. When looking at just these features, there does not seem to
be an obvious pattern between the predicting and the dependent feature. With
feature generation, we can extract what kind of day the date is, shown in the
IsWeekendDay column. This tells us whether the date is a weekend day or not.
Now we can see a clear pattern where the number of visitors is significantly
higher on weekend days than on week days.

Date Visitors IsWeekendDay

‘20-05-17’ 19234 yes
‘11-04-17’ 5735 no
‘29-01-17’ 17914 yes
‘04-05-17’ 5496 no
‘29-03-17’ 5913 no

Table 1.1: Example features Day and Visitors and extracted feature IsWeek-
endDay{Day}

Another situation where feature generation can improve performance is when
there is feature interaction. Then two (or more) features are not relevant or
correlated to the dependent feature on their own, but together they have a
(high) influence on the dependent feature. For example, take as features the

2 Automatic feature generation and selection in predictive analytics solutions

CHAPTER 1. INTRODUCTION

price and quality of a product. Separately, they will not give much indication of
whether a product is purchased often. Combined they have a high correlation
to the purchase of the product. If the price is low and the quality high, then the
product will be purchased often. However, a low price or a high quality without
knowing the other value cannot guarantee that the product will be purchased
often. If both price and quality are low, then the product will not be purchased
by many customers. The same can be said when both price and quality are
high.

1.2 Feature selection

Feature selection tries to find the optimal subset of a given feature set. The
problem of feature selection is essentially equivalent to the problem of finding
the optimal subset of a given set, which has been shown to be NP-hard. There is
one simple method to find the optimal subset, namely calculate the evaluation
score for each possible subset. The advantage of this method is that it will
always find the optimal subset. A disadvantage is that the complexity is O(2n),
where n is the number of features. This means that for 10 features, already 1024
sets have to be evaluated. This disadvantage is even more influential, because
feature selection will become more useful the more features are involved.

Since evaluating every subset separately is practically infeasible, there is
need for a different, smarter way to decide the usefulness of each subset.

If the original feature set contains a thousand features, it is highly likely
that not all features positively influence the dependent variable. For example,
in text mining it is common practice to remove the stop words; the, in, a, of,
as, and, with, and many more. Although stop word removal can be seen as a
part of the data cleaning step, it can also be seen as a separate feature selection
step. Consider every word to be a feature, then the stop words are features that
do not contribute to the prediction of the dependent value.

Feature irrelevance is the problem that some features are simply not correl-
ated to the dependent feature. These features can even have a negative effect
on the performance of a model.

1.3 Quintiq

Quintiq is one of the top companies in supply chain planning and optimization.
It was started in 1997 as a scheduling company by five programmers. It has
since grown to a vast company with offices all around the world and over 12 000
users every day. They have been developing a predictive analytics solution as
a stand-alone product or to improve other products. The predictive analytics
solution as it is at the start of this research had several functionalities. It gives
users the option to load in their own data-set, manually select and deselect
features, train a decision tree and use that tree to predict new values. The
solution helps users select features by giving them the option to calculate the
error per feature. With the feature generation and selection method proposed
in this thesis, we aim to improve the performance compared to no selection and
manual selection.

Since the classifier method implemented in the Quintiq predictive analytics

Automatic feature generation and selection in predictive analytics solutions 3

CHAPTER 1. INTRODUCTION

solution is a decision tree, the proposed method in this thesis only has decision
trees in its scope. The decision trees implemented in this thesis are based on
the definition by Breiman [2].

1.4 Thesis structure

In section 2, we discuss the literature that is relevant to this thesis. In section
3, we discuss the method that is implemented in this thesis. In section 4, the
empirical results are discussed. In section 5, we discuss the implications of the
results and conclusions.

4 Automatic feature generation and selection in predictive analytics solutions

Chapter 2

Related Work

In this section, we discuss research done that is relevant for the research done
in this thesis. Feature generation and selection methods have been shown to
improve the performance of machine learning tasks [9, 5, 14].

2.1 Decision tree

The learning algorithm used in this thesis is a decision tree based on the book
by Breiman [2]. The decision tree algorithm builds an acyclic connected graph.
Each node represents one of the input features.

Take Figure 2.1 as example. This Figure represents a decision tree build on
data of passengers of the Titanic. The input features are the sex and age of the
passengers. Based on a part of the data, the decision tree makes a decision in
each node and determines the class that decision most likely belongs to. For
example, this decision tree would predict that a male passenger of age thirty
will have died on the Titanic.

Figure 2.1: Example: Titanic data set

Automatic feature generation and selection in predictive analytics solutions 5

CHAPTER 2. RELATED WORK

2.2 Information Gain

Information Gain is used as a baseline for the proposed method in this thesis.
Information Gain is a method that can be applied to a learning algorithm to
find how much information every feature contains.

For a decision tree, it will look at the nodes and for each node calculate how
much information is gained by the split. For example, consider the decision
tree in Figure 2.2(a). Here the distribution of the classes stays consistent when
splitting from the root to the two leaf nodes. This means that doing this split
has gained the learner no new information. Feature Z will therefore have a low
Information Gain score.

Now consider the decision tree in Figure 2.2(b). Here the distribution of
the classes completely changed, with class I being contained in the first leaf and
class II being contained in the second leaf. Here the split has gained the learner
all the information it needed. Feature Y will therefore have a high Information
Gain score.

(a) (b)

Figure 2.2: Examples of (a) no gain and (b) gain, while using Information Gain

The Information Gain method used in this thesis is the variable importance
defined by Breiman [2].

2.3 ExploreKit

ExploreKit [7] is the inspiration for the implemented method for feature ex-
traction and feature selection which is analyzed in this thesis. The method
proposed in this thesis is implemented for regression tasks whereas ExploreKit
is implemented for classification tasks. Since we compare method from this
thesis to ExploreKit, we use a subset of the data sets used for ExploreKit. The
ExploreKit method provides a combined method for feature extraction and fea-
ture selection. The key contribution of this work is to introduce a classifier to
predict the usefulness of features extracted.

The ExploreKit algorithm goes as follows. For a fixed number of iterations,
they generate candidate features based on the current feature set. F0 is the
original feature set. Then they rank the candidate features by a background
classifier. The background classifier is explained in more detail in Section 3.2.
Starting with the highest ranking candidate, they evaluate the set containing
the current features and the current candidate feature on the classifier, which
is either a decision tree, support vector machine or random forest. Based on
the outcome of this evaluation, they either (1) add the candidate feature to the
current feature set, end the iteration and go to the next iteration, (2) mark
this candidate feature as best so far and continue to the next candidate feature

6 Automatic feature generation and selection in predictive analytics solutions

CHAPTER 2. RELATED WORK

in the ranking or (3) discard this candidate feature and continue to the next
candidate feature.

2.4 Other methods

Several different implementations of feature extraction and selection methods
are FICUS [10], Brainwash [1] and Cognito [8].

FICUS has many similarities to the ExploreKit method, see Section 2.3. One
of the differences is that FICUS allows for user-specified feature transformations
and constraints. FICUS considers two different categories for transformations,
namely domain-independent and domain-dependent.

Brainwash is a method designed to help computer programmers. It considers
pieces of code to be features. Based on features that other programmers wrote
and used and the features that the current programmer wrote, it recommends
new features. After the recommendation, the programmer can use the new
feature and give feedback to the system about the usefulness of the new feature.

Cognito implements a greedy incremental search approach. It builds a so-
called transformation tree. This transformation tree can be seen as a non-cyclic
graph where the nodes represent data sets and the edges represent transforma-
tions of those data sets. The root is the original data set. The tree can then be
searched using breadth-first or depth-first search to find the best data set.

The method proposed by Shadvar [15], uses the Mutual Information measure
to generate new features from the original features. This method reduces the
dimensionality of the feature space.

There are several other methods that may be just as good as or better than
ExploreKit. Evolutionary algorithms are one of these methods[3]. The idea
behind evolutionary algorithms is that it starts with some basic blocks and
creates new blocks from combinations of existing blocks. However, evolutionary
algorithms are so essentially different that discussing them is outside the scope
of this thesis.

Automatic feature generation and selection in predictive analytics solutions 7

Chapter 3

Methods

In this section, the proposed method will be explained in detail. In this thesis,
we develop FESPA, Feature Extraction and Selection for Predictive Analytics,
inspired by ExploreKit [7], but aiming to be more user-friendly by separating
feature generation and feature selection into two phases. FESPA consists of
two separate methods, one for feature generation and one for feature selection.
Pseudo-code for all methods is given in Appendix B.

3.1 Feature generation

In order to create new features from old features, we need to define transforma-
tions. These transformations define the mapping that will be used to transform
one or multiple features into a new feature. The transformations are called
operators. We use operators from three different categories; unary, binary and
group-by-then. The three categories are discussed in detail below.

Pseudo-code for the feature generation process is shown in Algorithm 1.
Users can choose which operators they want to apply in the feature generation
process. In the actual implementation the flags doApplyUnary, doApplyBinary
and doApplyGroupByThen are changed to a flag per specific operator instead of
a flag per category. This gives the user full control over which operators are
used.

3.1.1 Unary Operators

Unary operators can be any transformation that transforms a single feature
into a new feature. We have defined five different unary operators, motivated
by their use in ExploreKit and described below.

Equal range discretizer The ‘Equal range discretizer’ operator can only
be applied to numeric features. As the name implies, this operator discretizes
the input feature. The number of groups to which the input feature should be
discretized is a user-configurable constant. From the range of the input feature
and the number of groups, it calculates the range per group.

For example, if a numeric feature has a minimum value of 0 and a maximum
value of 20, then the range of that feature is 20. Take the number of groups to

Automatic feature generation and selection in predictive analytics solutions 9

CHAPTER 3. METHODS

be 10, then the range per group will be 20/10 = 2. The first group will then be
all values in the range [0,2], the second group (2,4], etcetera.

Standard score The ‘Standard score’ operator can only be applied to numeric
features. The resulting feature value is calculated using Equation 3.1.

StandardScore(x) =
x− x̄
σx

(3.1)

where x̄ is the average over x and σx is the standard deviation of x.

Day of the week The ‘day of the week’ operator extracts the day of the week
from a Date feature. The new value will be a number between zero and six,
where zero is Sunday and six is Saturday. This way the learner can better find
weekly patterns.

Is weekend The ‘is weekend’ operator converts a Date feature to a logical
feature. This new feature contains information about whether or not the date
is in the weekend.

Hour of the day The ‘hour of the day’ operator extracts the hour of the day
from a time feature.

3.1.2 Binary Operators

The binary operators are defined as follows:

Definition 3.1. Let x and y be numeric features. Let f be a function that
performs a mathematical operation. A binary operator is defined as f(x,y).

The currently available mathematical operations for these operators are the
standard mathematical operators; addition, division, multiplication.

3.1.3 Group-by-then operators

The group-by-then operators group the data set based on one or multiple fea-
tures, called the sources, and perform an action on a separate feature, called
the target. The action can be one of five mathematical operations; average,
maximum, minimum, standard deviation or count. These group-by-then oper-
ators can be explained by SQL statements. They are a combination of the GROUP
BY statement and an aggregate function. This function can be either MIN, MAX,
MEAN, or STDEV. For example, consider the data-set shown in Table 3.1. If ‘Age’
is the target feature and ‘Gender’ is the source feature, then the data will be
grouped on ‘Gender’. This will result in two groups; ‘Male’ and ‘Female’. As-
sume we use the minimum operation, then the resulting new feature will be as
shown in the third column. ‘Gender’ can not be the target feature, since it is
not numeric.

There is also a COUNT group-by-then operator, which differs slightly from
other group-by-then operators in that it does not use a target feature. The
COUNT operator groups the data set based on the source features and then counts
the number of instances per group.

10 Automatic feature generation and selection in predictive analytics solutions

CHAPTER 3. METHODS

Gender Age GBTM

Male 24 24
Female 22 22
Male 26 24
Male 26 24

Female 24 22

Table 3.1: Example features Gender and Age and extracted feature Group-
ByThenMinimum{Gender, Age} (GBTM)

3.1.4 Redundant operators

Scaling is a unary operator which was considered, where the resulting feature
value is calculated using Equation 3.2.

Scaled(x) = cx (3.2)

where c is a constant value and x is the original feature value. The scaling
operator is not implemented, because scaling of a feature has no impact on the
output of the decision tree. In the decision tree every node contains a decision
about a feature. Consider the node that decides over feature xi. Let xi > θ
be the optimal decision given the current strategy. Then transform xi with a
scaling operator; x′i = cxi. If c = 0, then all feature values will become 0 and
that is clearly not desirable. Either, x′i > cθ is the optimal decision if c > 0,
because then cxi > cθ ⇔ xi > θ. Or, x′i < cθ is the optimal decision if c < 0,
because then cxi < cθ ⇔ xi > θ. Either way, we receive an equivalent optimal
decision.

We have also considered adding subtraction as an additional binary oper-
ator. However, the subtraction operator can be defined as the binary addi-
tion operator combined with a scaling operator applied to one of the features;
sub(x, y) = add(x, Scaled(y)). We have proven that scaling does not influence
the structure of the decision tree and therefore the subtraction operator will be
equivalent to the addition operator.

3.1.5 Linear transformations

We take a special look at the linear transformations among the operators, be-
cause the scalar operator was showed to be useless to the decision tree. The
linear transformations is similar to the scalar operator.

Definition 3.2. A linear transformation is any formula that falls within the
following description.

f(x1, ..., xi) = c1x1 + c2x2 + ...+ cixi + ci+1

We have shown that scaling has no effect on the output of the decision tree
and therefore, we can generalize this definition to the following.

f(x1, ..., xi) = x1 + x2 + ...+ xi

We show that linear transformations are useful by the following two examples.

Automatic feature generation and selection in predictive analytics solutions 11

CHAPTER 3. METHODS

Example 1. Let us consider the linear transformation from Equation 3.3.

f(x, y) = x+ y (3.3)

Let the data set be defined as follows.

X = {1, 2, 3, 1, 2,}

Y = {0, 1, 2, 0, 1,}

T =


1, if y = 1

2, if x = 3

0, otherwise

The pattern to determine the dependent variable in this data set is depend-
ent on both X and Y . However, the linear transformation f(x, y) will have a
consistent value of 2 on every row. If this is used as input, then the learner will
no longer be able to determine whether T is 1, 2 or 3. So, considering this data
set, both X and Y carry information about the dependent variable, but f(x, y)
does not contain any information about the dependent variable.

This example raises a question: ”Is a linear transformation of input features
ever useful?” The answer to this question is yes, which will be made clear with
another example.

Example 2. Consider again the linear transformation from Equation 3.3. Let
the data set be defined as follows.

X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2,}

Y = {1, 2, 3, 4, 1, 2,}

T =

{
1, if x+ y = 5

0, otherwise

Now both X and Y are uniform random and contain (almost) no information
about the dependent variable. X does contain some information about the
dependent variable, because if X is five of higher, then the dependent variable
will be 0. Now, f(x, y) contains all information about the dependent variable.

Granted, both these examples will most likely never occur in real-life situ-
ations, since real data is noisier than this and the pattern for determining the
dependent variable is never this obvious. However, these examples show that it
is impossible to determine if linear transformations will be useful for the learner.

3.2 Feature selection

Instead of using a simple criterion like Information Gain, FESPA uses a classifier
to predict the usefulness of features. This classifier is called the background
classifier. This classifier bases its decision on so-called meta-features. Both the
classifier and the meta-features will be explained in more detail below. The
pseudo-code for FESPA is shown in Algorithm 2.

In ExploreKit the feature selection method is intertwined with the feature
generation. In every iteration the candidate features are calculated. FESPA

12 Automatic feature generation and selection in predictive analytics solutions

CHAPTER 3. METHODS

is different in that feature selection is separated from feature generation which
automatically made it impossible to have feature generation in the feature selec-
tion. Feature selection can also be applied to just the original features, whereas
ExploreKit always kept the original features in the selected set. The reason-
ing behind separating the feature generation and selection processes is two-fold.
First, it is based on the fact that not all original features are per definition
relevant to the learning task. Second, it is to increase the user-friendliness of
the application. We are allowing the user to get a better result on short notice,
for example by just using the improved feature selection process.

Take for example the DayOfWeekUnaryOperator. This extracts the day of
the week from a Date feature. Let’s say the dependent variable contains a
weekly pattern from this feature. Then the original feature will not give the
weekly pattern information to the learner, since the learner can not see that
the 24th of May 2017 and the 31th of May 2017 are both a Wednesday. How-
ever, the generated attribute can. In this case it makes no sense to keep the
original feature in the selected set, since the generated feature provides different
information that is not captured by the representation of the original feature.

3.2.1 Meta-features

Meta-features belong to one of two categories; data-set based and feature based.
The data-set based meta-features contain information about the data-set. These
meta-features are the same for all features of a certain data-set. Among others,
these meta-features contain information about the type of the target feature,
the number of instances and features in the data-set, the Root Mean Squared
Error (RMSE) score for the original features and statistics on the Information
Gain scores of the original features.

The feature based meta-features are focused on the corresponding feature.
These meta-features are calculated for each feature and are therefore not neces-
sarily the same for all features. These meta-features contain information about
the parents of the feature, which are non-existent for original features. They
also contain information about the Information Gain score for the new feature
combined with the original features.

3.2.2 Background learner

For the background learner, we use a collection of data sets. These data sets
can be any data sets. We use public data sets1. The process for building the
background learner is shown in Algorithm 3. In the experiments we have used a
leave-one-out method. We select one data set as focus and the rest of the data
sets will serve as background data sets.

For each background data set, the data-set based meta-features are calcu-
lated. Then all possible new features are generated, given the defined operators
see Section 3.1. Next, we generate the meta-features for each feature, both the
newly generated features and the original features. Then all features are evalu-
ated separately on a decision tree. If the RMSE score is lower than the RMSE score
of the original features, then the candidate feature is marked 1 and 0 otherwise.
So, every feature gets a 1 or a 0. These values are stored in a meta-feature

1All sets used in this research come from https://www.openml.org/

Automatic feature generation and selection in predictive analytics solutions 13

https://www.openml.org/

CHAPTER 3. METHODS

called indicator. This meta-feature is the target variable for the background
learner. All meta-features are then combined into one vast data-set.

When determining the indicator value, the RMSE score of a single original
feature is compared to the RMSE score of the original data set, which contains
all original features. The majority of the original features will not improve the
original error score and will therefore get a negative indicator. This means
that an original feature is less likely to be get a high score by the background
learner and less likely to be in the resulting selected feature set.

A decision tree is then trained on all meta-features and stored in a file. This
background learner can then be re-used, without needing to train it every time
the selection process is executed.

We added a feature to allow users to add their own data sets to the back-
ground classifier. Users are more likely to have data sets that have a strong
correlation between them, because the data comes from the same branch or
belongs to a similar prediction task. Background data sets with a strong cor-
relation with the focus data set will most likely improve the performance of
FESPA. Each time the user adds a new data set to the collection of background
sets, the trained background classifiers will be removed. This ensures that the
background classifiers used are always up-to-date.

14 Automatic feature generation and selection in predictive analytics solutions

Chapter 4

Results

In this section, we will discuss the results of the experiments, with regards to
performance, influence background collections, operators, growth of number of
features, and run-time approximation.. We have evaluated FESPA on twelve
data sets. These data sets are a subset of the data sets used for ExploreKit. This
to better compare the performance of ExploreKit to FESPA. For the evaluation
of FESPA the parameter settings were as follows.

• The maximum number of features to be selected is set to 20

• The threshold fs parameter in Algorithm 2 is set to 0.01

• The thresholdbg parameter in Algorithm 3 is set to 0

• The data sets are split into three equal partitions and used for three-fold
cross validation. For each fold of the validation, a different partition is
taken as validation set, in such a way that every partition is used as train
set, test set and validation set once. After evaluating a method using the
three folds, the average of the resulting error scores is taken as final error
score.

• The maximum source features for the group-by-then operators is set to
two.

4.1 Performance

For the evaluation of the methods the Root Mean Squared Error (RMSE) is used.
We define F-SPA to mean applying only the selection phase of the FESPA

method and FE-PA to mean applying only the generation phase of the FESPA
method.

Table 4.1 gives the RMSE scores of no selection, manual selection, information
gain, F-SPA, FE-PA and FESPA. Here we can see how FESPA performs com-
pared to the original methods and Information Gain. Colorized arrows indicate
whether the performance has gone up or down compared to the performance of
the original data set with no selection.

Figure 4.1 shows the improvement of FESPA over the original performance.
We can see that for only one data set the performance is decreased. In many
cases the performance has remained constant.

Automatic feature generation and selection in predictive analytics solutions 15

CHAPTER 4. RESULTS

Data set O M IG F-SPA FE-PA FESPA

Space 0.168 ↑ 0.175 ↑ 0.180 0.168 ↑ 0.179 0.168
Delta elevators 0.00161 ↓ 0.00157 ↑ 0.00185 0.00161 ↑ 0.00176 0.00161
Mammography 0.250 ↓ 0.242 ↑ 0.294 ↑ 0.257 ↓ 0.240 ↓ 0.245

Diabetes 0.454 ↑ 0.460 ↓ 0.452 ↑ 0.437 ↑ 0.505 ↓ 0.450
Puma 8 3.719 ↓ 3.528 ↑ 5.257 3.719 ↑ 4.043 3.719

Contraceptive 1.200 ↓ 1.178 ↑ 1.215 ↑ 1.200 ↑ 1.128 ↑ 1.223
Indian liver 0.485 ↓ 0.480 ↓ 0.449 ↓ 0.471 ↑ 0.513 ↓ 0.446

CPU 3.861 ↓ 7.714 ↓ 18.11334 3.861 ↑ 3.907 3.861
Heart 0.424 ↑ 0.428 ↓ 0.411 ↑ 0.445 ↑ 0.438 ↓ 0.405
Wind 4.449 ↑ 4.533 ↑ 5.927 ↑ 4.552 ↑ 4.711 ↓ 4.443
Credit 0.448 ↑ 0.527 ↑ 0.603 0.448 ↑ 0.588 0.448

German credit 0.490 ↓ 0.465 ↓ 0.472 ↓ 0.432 ↑ 0.95 ↓ 0.465

Table 4.1: RMSE score for no selection (O), manual selection (M), information
gain (IG), F-SPA, FE-PA and FESPA

Figure 4.1: Improvement of FESPA over the performance of the original feature
set

Figure 4.2 shows the improvement of F-SPA and FE-PA over the original
performance. It shows that F-SPA in decreases the performance for a third of
the data sets. FE-PA, on the other hand, decreases the performance for almost
every data set.

16 Automatic feature generation and selection in predictive analytics solutions

CHAPTER 4. RESULTS

(a) (b)

Figure 4.2: Improvement of (a) selection phase and (b) generation phase of
FESPA, applied seperately

Automatic feature generation and selection in predictive analytics solutions 17

CHAPTER 4. RESULTS

4.2 Influence background collections

An additional experiment on the best performing data set, Diabetes, is conduc-
ted. For this experiment, the data sets are grouped as shown in Table 4.2.

Group Data sets

Medic Contraceptive, Mammography, Diabetes, Indian liver, Heart
Finance Credit, German credit
Other Space, Delta elevators, Puma 8, CPU, Wind

Table 4.2: Grouped data sets

Each group is taken as the collection of background data sets and FESPA
is applied on the Diabetes data set. The RMSE score for each group is shown in
Figure 4.3. Figure 4.3 shows that no group has a significant improvement over
any of the other groups.

Figure 4.3

Next, we have taken each background data set separately and FESPA is
applied on the Diabetes data set. The RMSE score for each background data set
is shown in Figure 4.4. Figure 4.4 shows that no single data set improves the
performance significantly over other data sets.

18 Automatic feature generation and selection in predictive analytics solutions

CHAPTER 4. RESULTS

Figure 4.4

4.3 Operators

In Table 4.3, we can see which features were selected by FESPA for the three
folds of the cross validation, where it is first fold/second fold/third fold. We
can see that features made by unary operators are the least present in the se-
lected set. However, the unary operators are present within the binary and
group-by-then operators. For five out of the seven features made by binary fea-
tures chosen, one or both of the parent features are made by unary operators.
Also, the set of features from which the source features are taken consists of
all categorical features and for all numeric features the result of the EqualRan-
geDiscretizer operator applied to them.

Automatic feature generation and selection in predictive analytics solutions 19

CHAPTER 4. RESULTS

Data set Original Unary Binary GBT

Space 6/6/6 -/-/- -/-/- -/-/-
Delta elevators 6/6/6 -/-/- -/-/- -/-/-
Mammography 6/-/- -/-/- -/2/3 -/-/-

Diabetes -/8/- -/-/- 4/-/2 -/-/1
Puma 8 8/8/8 -/-/- -/-/- -/-/-

Indian liver -/-/- -/-/- 4/3/1 -/1/1
Heart 13/-/- -/-/- -/3/6 -/-/-
Credit 15/15/15 -/-/- -/-/- -/-/-

German credit 1/1/- -/-/- -/1/1 1/0/2
Contraceptive 9/-/- -/-/- -/-/- -/3/5

CPU 12/12/12 -/-/- -/-/- -/-/-
Wind -/14/14 2/-/- 1/-/- 2/-/-

Table 4.3: Operators used for FESPA selected features, for each data set

4.4 Growth of number of features

As mentioned in section 1.1, the feature generator should not produce an ex-
treme amount of new features. We can approximate the number of features
generated using the following Equations.

maxCombinations(n) =
n ∗ (n− 1)

2
(4.1)

nUnary(n) = 2n (4.2)

nBinary(n) = maxCombinations(n) ∗ 4 (4.3)

nGroupByThen(n) = n ∗maxCombinations(n− 1) ∗ 5 (4.4)

To find the complexity of the feature generator, we have to look at the
complexity of the aforementioned Equations.

Equation 4.1: O(maxCombinations(n)) = O(n2)

Equation 4.2: O(nUnary(n)) = O(n)

Equation 4.3: O(nBinary(n)) = O(n2)

Equation 4.4: O(nGroupByThen(n)) = O(n3)

The complexity of all this combined is equal to the highest complexity among
these equations which is O(n3). Take a look at Figure 4.5, where we have
calculated the number of features that would be created and have plotted it
against the estimated complexity. Here we can see that the number of features
that will be created exceeds the number of features estimated by the complexity
function.

20 Automatic feature generation and selection in predictive analytics solutions

CHAPTER 4. RESULTS

Figure 4.5: Actual generated features vs complexity

4.5 Run-time approximation

What we can see in Figure 4.6 and Figure 4.7 is that the complexity of the
run-time of both feature generation and feature selection is non-linear. The
run-time is most likely second or third degree polynomial.

For example, you can see that if the original set has 14 features and 30 000
instances, the feature generation phase would take 1500 seconds which is 25
minutes.

The feature selection phase is also clearly the most expensive phase of
FESPA. For the same original data set, the run-time can easily be five times as
long as the feature generation phase. Take again an original set of 14 features,
we were then to apply the feature selection phase to the result of the feature
generation, the feature selection phase would take 7000 seconds which is almost
two hours.

Automatic feature generation and selection in predictive analytics solutions 21

Figure 4.6: Run-time in seconds for feature generation

Figure 4.7: Run-time in seconds for feature selection after the feature generation
phase, on a table with x original features

Chapter 5

Discussion

In this section, we will discuss implications of the results from Section 4, with
regards to performance, operators and time versus accuracy. We will also discuss
some ideas for future research.

5.1 Performance

As we can see in Figure 4.1, FESPA has a negative improvement over the original
performance for just one data set. We can conclude from this that it is benefi-
cial to apply FESPA, given the user has time. Obviously, applying FESPA, or
any other feature generation and/or selection method, is more time-consuming
than taking the original feature set as the selected set. More on run-time in
Section 5.4. Table 4.1 shows us that generally FESPA outperforms manual se-
lection and Information Gain selection. It may not improve the performance
of more data sets than manual selection and Information Gain selection, but
FESPA decreases the performance of only one data set whereas the other se-
lection methods decrease the performance of all data sets where they do not
improve the performance.

When we compare Figure 4.1 to Figure 4.2(a), we can see that the feature
selection phase of FESPA improves the performance if the input contains only
original features or also generated features.

When we compare Figure 4.1 to Figure 4.2(b), we see that applying only the
feature extraction phase of FESPA decreases the performance in most cases. A
user should always apply a selection method after the feature extraction phase of
FESPA, since this will improve the performance. Applying the selection method
of FESPA gives the greatest improvement and is even faster than the Inform-
ation Gain method for data sets over 10 original features with all operators
applied.

I have found that most original features have as meta-feature indicator a
zero. Using a different check on line 8 of Algorithm 3 to give more original
features a positive indicator can improve the performance of FESPA on original
data sets.

Any small difference between FESPA and ExploreKit may also be due to
the difference of implementation, as ExploreKit was implemented in Java and
FESPA was implemented in R. For such a relatively complex method, Java is a

Automatic feature generation and selection in predictive analytics solutions 23

CHAPTER 5. DISCUSSION

better choice than R for a programming language, as it is more object-oriented.
In Java, it is easier to design custom objects that have their own parameters
and methods. However, since R was already integrated in the Quintiq software,
it was easier to implement FESPA in R.

5.2 Influence background collections

The hypothesis for the experiment from Section 4.2 was that a data set from a
certain group would benefit most from background data sets from that group.
However, the Diabetes data set is from the Medic group and in Figure 4.3 we
can see that the Medic group is not the best performing group. In Figure 4.4
we can see that the best performing background data sets are in the Finance
and Other group. Not only do the best performing background data sets not
belong to the Medic group, one of the data sets with the worst error score does
belong to the Medic group. This tells us that there is no apparent correlation
within a certain group of data sets.

5.3 Operators

In table 4.3, we can see which features are selected by FESPA. For five of
the twelve data sets, FESPA could not find one or more features, generated
or original, that improve the original performance. As a result, FESPA then
simply returns the original feature set, see Algorithm 2. This ensures there is
never a decrease in performance.

The binary operators addition and multiplication are most present in the
selected sets, whereas division is never selected. The group-by-then operators
with aggregate functions Avg and Stdev are by far the most represented in the
selected set.

For nearly half of the runs, FESPA actually selected features. Therefore,
even though the binary division operator and the group-by-then Count, and Min

operators are not present in any selected set, we cannot confidently conclude
that these operators will never be of importance for a data set.

5.4 Time versus accuracy

During this research, there has been one main theme. This was the problem
of finding a balance between improving the accuracy and keeping the run-time
within acceptable duration.

From a research point-of-view it is interesting to find the method and para-
meter settings that optimize the performance. However, from a business point-
of-view, the user-friendliness of the application has to be maintained. This
means that the run-time of the implemented methods cannot exceed a certain
duration or the functionality would not be possible to use by day to day opera-
tional tasks. The exact maximum acceptable duration depends on the applica-
tion, the business operation this is applied to, the method, and the run-time of
alternative methods.

The bottleneck for FESPA is the group-by-then operators, since the com-
plexity of these operators is n3, where n is the number of features, see Section

24 Automatic feature generation and selection in predictive analytics solutions

CHAPTER 5. DISCUSSION

4.4. We conclude that if results are needed in limited amount of time, it is best
to use only a few or none of the group-by-then operators. Since in our results
the most chosen group-by-then operators were Avg and Stdev, we recommend
to choose these.

The results from Section 4.5 have lead to the decision to make the solution
more adaptable by the user to make it fit their time frame. Therefore, in the
implementation, users can choose which operators to apply. If the user chooses
less operators, then the run-time of both the feature generation phase and the
feature selection phase will decrease. This makes for a much more user-friendly
application.

5.5 Future work

The application can be made more user-configurable by enabling the user to not
only select which operators to use, but also which operators to use for which
features. This will also help keep the resulting feature space of the feature gen-
erator small. However, this will require a greater understanding of the method
than the current implementation.

In future work, a functionality can be added that indicates how long the
feature generator or selector will run given the selected settings. Either by
defining a function with the possible settings as arguments, or as a prediction
task in itself.

Possibly, the application can be extended with a user-configurable classifier
method. Currently, all classifiers implemented are decision trees. But, for ex-
ample, if users want to use support vector machines instead of decision trees.
The predictions of the meta-features will currently be based on the perform-
ance of the background set features on a decision tree. However, whether a
certain feature is influential can depend on the type of classifier used. Therefore
it is recommended to make the classifier method for the entire process user-
configurable. Then the predictions of the meta-features will be based on the
performance of the background set features on support vector machines.

Automatic feature generation and selection in predictive analytics solutions 25

Bibliography

[1] Michael R Anderson, Dolan Antenucci, Victor Bittorf, Matthew Burgess,
Michael J Cafarella, Arun Kumar, Feng Niu, Yongjoo Park, Christopher
Ré, and Ce Zhang. Brainwash: A data system for feature engineering. In
CIDR, 2013. 7

[2] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984. 4, 5, 6

[3] Edwin D De Jong and Tim Oates. A coevolutionary approach to represent-
ation development. In Proc. of the ICML-2002 Workshop on Development
of Representations, 2002. 7

[4] Rezarta Islamaj, Lise Getoor, and W John Wilbur. A feature generation
algorithm for sequences with application to splice-site prediction. Feature
Selection for Data Mining: Interfacing Machine Learning and Statistics,
page 42, 2006. 2

[5] Uday Kamath, Kenneth De Jong, and Amarda Shehu. Effective automated
feature construction and selection for classification of biological sequences.
PloS one, 9(7):e99982, 2014. 5

[6] James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis:
Towards automating data science endeavors. In Data Science and Advanced
Analytics (DSAA), 2015. 36678 2015. IEEE International Conference on,
pages 1–10. IEEE, 2015. 2

[7] Gilad Katz, Eui Chul Richard Shin, and Dawn Song. Explorekit: Auto-
matic feature generation and selection. In Data Mining (ICDM), 2016
IEEE 16th International Conference on, pages 979–984. IEEE, 2016. 6, 9

[8] Udayan Khurana, Deepak Turaga, Horst Samulowitz, and Srinivasan
Partharathy. Cognito: Automated feature engineering for supervised learn-
ing. In International Conference on Data Mining. IEEE, 2016. 7

[9] Hugh Leather, Edwin Bonilla, and Michael O’boyle. Automatic feature gen-
eration for machine learning–based optimising compilation. ACM Trans-
actions on Architecture and Code Optimization (TACO), 11(1):14, 2014.
5

[10] Shaul Markovitch and Dan Rosenstein. Feature generation using general
constructor functions. Machine Learning, 49(1):59–98, 2002. 2, 7

Automatic feature generation and selection in predictive analytics solutions 27

BIBLIOGRAPHY

[11] MuhammadArif Mohamad, Haswadi Hassan, Dewi Nasien, and Habibollah
Haron. A review on feature extraction and feature selection for handwritten
character recognition. International Journal of Advanced Computer Science
& Applications, 1(6):204–212, 2015. 2

[12] Hiroshi Motoda and Huan Liu. Feature selection, extraction and construc-
tion. Communication of IICM (Institute of Information and Computing
Machinery, Taiwan) Vol, 5:67–72, 2002. 2

[13] Michael L Raymer, William F. Punch, Erik D Goodman, Leslie A Kuhn,
and Anil K Jain. Dimensionality reduction using genetic algorithms. IEEE
transactions on evolutionary computation, 4(2):164–171, 2000. 2

[14] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, et al. Imagenet large scale visual recognition challenge. International
Journal of Computer Vision, 115(3):211–252, 2015. 5

[15] Ali Shadvar. Dimension reduction by mutual information feature extrac-
tion. International Journal of Computer Science & Information Techno-
logy, 4(3):13, 2012. 7

28 Automatic feature generation and selection in predictive analytics solutions

Appendix A

Overview data sets

In the table below, an overview is given of the data sets used in this research.

Data set #features #instances % numeric features

Contraceptive 9 1.473 66.6%
CPU 12 8.192 100%

Credit 15 690 40%
Delta elevators 6 9.517 100%

Diabetes 8 768 100%
German credit 20 1.000 35%

Heart 13 270 46%
Indian liver 10 585 90%

Mammography 6 11.183 100%
Puma 8 8 8.192 100%
Space 6 3.107 100%
Wind 14 6.574 100%

Table A.1: Characteristics of used data sets

Automatic feature generation and selection in predictive analytics solutions 29

Appendix B

Algorithms pseudo-code

Algorithm 1: Feature generation

Data: dataset
Result: dataset containing original and generated features

1 begin
2 if doApplyUnary then
3 dataset := applyUnaryOperators(dataset)
4 end
5 if doApplyBinary then
6 binaryFeatures := applyBinaryOperators(dataset)
7 end
8 if doApplyGroupByThen then
9 groupedFeatures := applyGBTOperators(dataset)

10 end
11 return combine(dataset, binaryFeatures, groupedFeatures)

12 end

30 Automatic feature generation and selection in predictive analytics solutions

APPENDIX B. ALGORITHMS PSEUDO-CODE

Algorithm 2: FESPA - feature selection

Input: dataset, rankingThreshold
Output: dataset containing selected features

1 begin
2 selectedSet := ∅
3 features := dataset.GetFeatures()
4 originalError := EvaluateOnLearner(features.GetOriginal())
5 meta features := generateAllMetaFeatures(features)
6 rankedFeatures := RankFeatures(features, meta features)
7 PruneRankedFeatures(rankedFeatures, rankingThreshold)
8 foreach feature in rankedFeatures do
9 improvement := EvaluateOnLearner(selectedSet) -

EvaluateOnLearner(selectedSet ∪ feature)
10 if improvement > thresholdfs then
11 selectedSet := selectedSet ∪ feature
12 end

13 end
14 if selectedSet == ∅ then
15 selectedSet := features.GetOriginal()
16 end
17 return selectedSet

18 end

Automatic feature generation and selection in predictive analytics solutions 31

APPENDIX B. ALGORITHMS PSEUDO-CODE

Algorithm 3: Building the background learner

Input: bg datasets: background datasets
Output: dataset containing all meta-features of the background datasets

1 begin
2 foreach bg dataset do
3 originalFeatures := dataset.GetFeatures()
4 originalError := EvaluateOnLearner(originalFeatures)
5 foreach feature in originalFeatures do
6 feature meta := generateFeatureMetaFeatures(feature)
7 featureError := EvaluateOnLearner(feature)
8 if featureError ≤ originalError - thresholdbg then
9 feature meta.SetIndicator(1)

10 end
11 else
12 feature meta.SetIndicator(0)
13 end

14 end
15 dataset meta := generateDatasetMetaFeatures(bg dataset)
16 dataset := generateFeatures(background dataset)
17 foreach feature in dataset do
18 feature meta := generateFeatureMetaFeatures(originalFeatures

∪ feature)
19 featureError := EvaluateOnLearner(feature)
20 if featureError ≤ originalError - thresholdbg then
21 feature meta.SetIndicator(1)
22 end
23 else
24 feature meta.SetIndicator(0)
25 end

26 end

27 end
28 return meta-features

29 end

32 Automatic feature generation and selection in predictive analytics solutions

	Contents
	Introduction
	Feature generation
	Feature selection
	Quintiq
	Thesis structure

	Related Work
	Decision tree
	Information Gain
	ExploreKit
	Other methods

	Methods
	Feature generation
	Unary Operators
	Binary Operators
	Group-by-then operators
	Redundant operators
	Linear transformations

	Feature selection
	Meta-features
	Background learner

	Results
	Performance
	Influence background collections
	Operators
	Growth of number of features
	Run-time approximation

	Discussion
	Performance
	Influence background collections
	Operators
	Time versus accuracy
	Future work

	Bibliography
	Appendix
	Overview data sets
	Algorithms pseudo-code

