
RADBOUD UNIVERSITY

MASTER’S THESIS

Natural language generation for
commercial applications

Author:
Arianne van de GRIEND

Supervisors:
Wouter OOSTERHEERT

Tom HESKES

A thesis carried out at

Machine2Learn

in Amsterdam

for the Computing Science Master

December 23, 2018

http://www.ru.nl
mailto:ariannemeijer@gmail.com
http://www.machine2learn.com
https://www.ru.nl/english/education/masters/data-science/

RADBOUD UNIVERSITY

Abstract
Machine2Learn

Computing Science Master

Natural language generation for commercial applications

by Arianne van de GRIEND

This master thesis gives an overview on natural language generation with
the focus of dialogue systems for commercial use.

We give a description of the general approach to natural language generation
and their neural architectures first.

Then three application domains are discussed in more detail: language style
transfer, dialogue response generation and controlling dialogue response gen-
eration.

For each domain, a use case was implemented and the results are discussed.
We investigated automatic customer support, an empathetic automatic cus-
tomer support and sentiment adjustment of reviews. We show promising
results for the first two use cases, but the last use case was inconclusive due
to difficulties with implementation.

We finish with a short discussion of the use of natural language generation
in commercial applications and what can be improved in our current model
architectures.

i

HTTP://WWW.RU.NL
http://www.machine2learn.com
https://www.ru.nl/english/education/masters/data-science/
mailto:ariannemeijer@gmail.com

Contents

Abstract i

List of Figures v

List of Tables vi

1 Introduction 1

I Natural Language Generation 3

2 Sentence representation 4
2.1 Tokenisation . 4
2.2 Token representation . 5

3 Neural Language models 9
3.1 Recurrent language models . 9
3.2 Convolutional language models 11

4 Neural generation models 14
4.1 The sequence-to-sequence model 14

4.1.1 The attention mechanism 15
4.1.2 Professor forcing . 17

4.2 New generative conversational agent model 20

5 Datasets 22
5.1 Kaggle Twitter customer support 22
5.2 Yelp style transfer dataset . 23

II Applications of NLG 24

6 Dialogue response generation 25
6.1 Existing applications . 26
6.2 Training generative chatbots . 27

6.2.1 Supervised and unsupervised learning 27
6.2.2 Reinforcement learning 28
6.2.3 Adversarial learning . 29
6.2.4 Transfer learning . 29

6.3 Evaluating chatbots . 30

Natural language generation for commercial applications ii

6.4 Challenges with response generation 31
6.4.1 Meaningful responses 32
6.4.2 Relevant responses . 32
6.4.3 Consistent responses . 33

6.5 Incorporating context . 34
6.5.1 Dialogue history . 34
6.5.2 Intent and dialogue acts 35

6.6 Incorporating knowledge . 36
6.6.1 Structured knowledge 36
6.6.2 Unstructured knowledge 37

6.7 Use case: Generative customer support 37
6.7.1 Model descriptions . 38
6.7.2 Results . 39
6.7.3 Conclusion and discussion 41

7 Controlling generation 43
7.1 Enforcing politeness . 43
7.2 Use case: Empathetic customer support 44

7.2.1 Sentiment annotation 46
7.2.2 Loss function with sentiment 46
7.2.3 Training specification 47
7.2.4 Results . 47
7.2.5 Conclusion and discussion 51

8 Language style transfer 53
8.1 Parallel style transfer . 53
8.2 Non-parallel style transfer . 53
8.3 Use case: Sentiment adjustment in reviews 55

8.3.1 Model descriptions . 55
8.3.2 Training loss . 56
8.3.3 Training specification 59
8.3.4 Results . 60
8.3.5 Conclusion and discussion 60

III Conclusions and Discussions 62

9 Challenges in NLG 63
9.1 Language understanding . 63
9.2 Evaluating generated results . 64
9.3 Training GANs . 64

10 Dataset artefacts 66

11 NLG for commercial applications 67

Natural language generation for commercial applications iii

Bibliography 68

Index 73

Natural language generation for commercial applications iv

List of Figures

2.1 Bag of Words (BoW) representation of the sentence "How much
wood would a woodchuck chuck if a woodchuck could chuck
wood?". 8

3.1 The basic structure of a recurrent neural network (RNN) that
takes a sequence of input data (a). This can also be described
per element in the input sequence (b). 10

3.2 A schematic representation of the Bidirectional Recurrent Neural
Network (BiRNN) architecture. 11

3.3 The CNN language model architecture as proposed by Kim
(2014). 12

4.1 A schematic representation of how a language model and a gen-
eration model can be combined to be jointly trained for natural
language generation (NLG). 15

4.2 A schematic representation of the basic Sequence-to-Sequence
(Seq2Seq) model introduced by Sutskever et al. (2014). 16

4.3 A schematic representation of the attention mechanism proposed
by Bahdanau et al. (2014). 18

4.4 A schematic representation of the professor forcing technique
(Lamb et al., 2016). 19

4.5 A schematic representation of the NewGCA architecture pro-
posed by Ludwig (2017). 21

7.1 A schematic representation of the adjusted Label Fine Tuning
(LFT) model (Niu and Bansal, 2018). 45

8.1 A schematic representation of our TextGAN (Zhang et al., 2016)
approach to language style transfer (LST). The structure is sim-
ilar to the adjusted Label Fine Tuning (LFT) model (Niu and
Bansal, 2018) from section 7.2. 57

Natural language generation for commercial applications v

List of Tables

2.1 An example text that is preprocessed and tokenised using dif-
ferent token types. 5

6.1 Example responses for 10 tweets given by the trained NewGCA
model. 39

7.1 Example responses with different polarity for 10 tweets. Po-
larity is a scale between 1.0 (positive) and−1.0 (negative). The
bold sentence is the input tweet that the model responds to. . 48

8.1 Example negative to positive style transfer on 5 test reviews
by the CAAE model (from Shen et al., 2017). 54

8.2 Example positive to negative style transfer on 5 test reviews
by the CAAE model (from Shen et al., 2017). 55

Natural language generation for commercial applications vi

Natural language generation for commercial applications

Chapter 1

Introduction

From recent news coverage, one might conclude that the current techniques
of natural language generation (NLG) are very powerful. There have been re-
ports of an AI that coauthored a book and entered a literary contest (Shoe-
maker, 2016). Even the recent controversy surrounding Microsoft’s chatbot
Tay (Vincent, 2016) makes it seem like NLG is not some concept from science
fiction anymore. However, the actual functioning of these applications is not
publicly known. Which begs the question: What are the current limitations
of natural language generation for real world scenarios?

In this master thesis, we will describe our investigation of the limitations of
NLG with respect to commercial applications. As such, we focus on chatbot
applications, since automated customer support applications already exist.
But do the existing customer support systems actually use NLG? We have
investigated a selection of these applications (see section 6.1) and realised
that, in terms of NLG, not much has changed since the first chatbot, Eliza
(Weizenbaum, 1966). But can these applications be improved with NLG?

Thus a more exploratory approach to NLG for commercial applications is
taken. We have investigated the existing state-of-the-art algorithms and ap-
plications using NLG. We selected three application domains for NLG: di-
alogue response generation, controlling generation and language style transfer.
Each domain was investigated in more detail and a specific use case was im-
plemented for that domain.

The focus of the use cases was on end-to-end applications, since this required
less task-specific data that was not available. As such, we focused on the fol-
lowing three use cases. We investigated NLG for an automated customer
support (section 6.7). We attempted to control the sentiment of the gener-
ated responses to create an empathetic customer support (section 7.2). And
we tried to adjust the sentiment of Yelp reviews using language style transfer
(section 8.3).

The thesis itself follows a similar structure that contains three parts: the gen-
eral approach to NLG (Part I), the three application domains (Part II), and
the conclusions and discussions (Part III).

In Part I, we describe the current approach to any NLG application. We first
describe how text can be represented numerically as a sequence of symbols

Natural language generation for commercial applications 1

Chapter 1. Introduction

or words (tokens) in Chapter 2. Then, we describe how the meaning of the
text can be captured in a single vector using a language model (Chapter 3).
Combining a language model with a generation model creates the NLG pipeline
that can be used to generate text token-by-token (Chapter 4).

In Part II, each chapter describes one of the three application domains in
more detail. The last section of each chapter describes the implemented use
case belonging to its application domain.

The first application domain, dialogue response generation, is discussed in Chap-
ter 6. An overview of existing applications is given first (section 6.1). Fol-
lowed by an overview of training methods for these dialogue systems (sec-
tion 6.2) and evaluation methods (section 6.3). Dialogue response generation
is a challenging task. The three most occurring challenges are generating
meaningful, relevant and consistent responses, as discussed in section 6.4.
These challenges may be overcome by adding context (section 6.5) or by
adding knowledge (section 6.6) to the dialogue system. Lastly, we describe
the automated customer support use case (section 6.7).

The second application domain tries to add external control to NLG (see
Chapter 7). Current research on this topic is mainly focused on politeness.
An overview of this is given in section 7.1. However, these techniques can
also be adjusted to control other aspects of the generated sentence, like senti-
ment. This is shown in section 7.2, where we discuss the empathetic customer
support use case.

The last application domain is language style transfer (LST) (Chapter 8). This
is a technique of adjusting a text such that its information is the same, but
the style of the text is different. There are two possible approaches to LST,
with parallel data (section 8.1) or without parallel data (section 8.2). The LST
use case tries to replicate the sentiment adjustment of Yelp reviews by Shen
et al. (2017) such that it may be used to improve responses from retrieval-based
chatbots (section 8.3).

Lastly, in Part III, we will discuss the results with respect to three topics. First,
the current challenges with NLG (Chapter 9), aside from those discussed in
section 6.4. Then, the effects of the chosen dataset on the performance of
the dialogue system (Chapter 10). And lastly, the applicability of NLG for
commercial applications (Chapter 11).

Natural language generation for commercial applications 2

Part I

Natural Language Generation

3

Natural Language Generation

Chapter 2

Sentence representation

The first step in language generation is defining a general representation of
a text. This is done by splitting the text into smaller components, so called
tokens. These tokens need to be described in a numerical way, in order for
a computer to calculate with them. This chapter will discuss the different
choices that can be made when splitting a piece of text into tokens, a process
called tokenisation (section 2.1), and how these tokens can be transformed into
(a sequence of) numbers, an embedding (section 2.2).

2.1 Tokenisation

Tokenisation is the process of splitting a text into smaller components, tokens.
When tokenising, the text is first preprocessed and it can then be split into
different kinds of components: symbols, words, and sentences.

Preprocessing a text, before tokenising it, allows the tokenisation algorithm
to produce the same tokens regardless of the format the text is in. Usually,
all letters in the text are changed into lower case and any format annotation
(e.g. HTML tags) is removed. Sometimes it is necessary or useful to replace
specific information by a general tag. For example, by replacing a username
with the string _name_. For some applications it is useful to indicate the start
or end of the text (or both) with a specific, reserved token (e.g. "<start>" and
"<eos>", respectively).

After preprocessing, the text can be tokenised. This is relatively straight for-
ward when using symbol tokens. The text itself is already represented as a
sequence of symbols. The main strengths of this type of tokens is that there
are only a limited amount of symbols (the alphabet and some punctuation)
and that small set of tokens can create any sentence. Unfortunately, a draw-
back is that symbols on their own do contain much information about the
text. This can be a problem for natural language generation (NLG) because
most sequences of symbols do not create a sentence. The number of possible
sequences generated is of a different order of magnitude than the number of
possible correctly generated sequences. This makes it difficult for an algo-
rithm to learn how to generate natural language.

Natural language generation for commercial applications 4

Chapter 2. Sentence representation

Original "<p> Hi @Guy98! How are you? <\p>"
Preprocessed "<start> hi _name_! how are you? <eos>"
Symbol token ["<start>", "h", "i", " ", "_", "n", "a", "m", "e", "_", "!", " ", "h",

"o", "w", " ", "a", "r", "e", " ", "y", "o", "u", "?", "<eos>"]
Word token ["<start>", "hi", "_name_", "!", "how", "are", "you", "?",

"<eos>"]
Sentence token ["<start>", "hi _name_!", "how are you?", "<eos>"]

TABLE 2.1: An example text that is preprocessed and tokenised
using different token types.

Tokens that better represent the meaning of a text are word tokens. For gen-
eration, these tokens have the added benefit that using words as smallest
sentence component causes that less strings can be generated. It also has the
effect that poorly generated sentences can still be received as fine because
it contains sensible components. A random sequence of symbol tokens will
seem as if someone sat on a keyboard, where a random sequence of word
tokens seems to contain information because the word tokens have meaning.
However, there are a lot more possible word tokens than symbol tokens and
tokenising a sentence into word tokens is not trivial. In English, most words
are separated with spaces, but this is not always the case. You may want to
tokenise the word "cannot" into "can" and "not", such that it is analogous to
"do not". Similarly, punctuation should be represented as different tokens,
even though they may not be separated with spaces from the other tokens.
Words can also be abbreviated and combined, which needs to be taken into
account when tokenising as well. Since word tokenisation is quite involved,
we used a predefined implementation (NLTK1).

Lastly, a text can also be tokenised on a sentence level. Splitting a text into
sentence tokens can be done using simpler rules than with word tokens. This
token type is less expressive than the others, but that can be useful in some
cases. This particularly holds for texts that have little variability (e.g. re-
ports), such that the amount of unique sentence tokens stays small. When
replacing specific information with placeholder tags, the generated text can
be considered a template to be filled in, with the placeholders marking where
to insert the new information. However, this token type is not suitable for
most tasks.

The effect of preprocessing and tokenisation on an example sentence is visu-
alised in Table 2.1.

2.2 Token representation

Once a text is tokenised, the tokens need to be transformed into numbers that
the computer can calculate with. This is called encoding. The mapping from

1https://www.nltk.org/

Natural language generation for commercial applications 5

https://www.nltk.org/

Chapter 2. Sentence representation

token to numbers, and vice versa, is called an embedding. Transforming the
numbers back into a token is called decoding. Each embedding is defined on
a vocabulary, the set of tokens for which the mapping is defined. Sometimes,
a text contains tokens that are not in the vocabulary, out-of-vocabulary words,
and cannot be encoded. For these cases, the vocabulary contains a special
"<unk>" token, representing all unknown words.

The simplest type of embedding is a one-hot encoding. This is an embedding
where each unique token is simply numbered. The tokens are encoded by
simply replacing them with their corresponding number and decoded by
rounding the number and selecting it’s corresponding token. A special case
of this embedding is sparse one-hot encoding. Instead of encoding to a single
number, this embedding encodes to a sequence of zeroes with a 1 on the lo-
cation corresponding to the number of the token. The token represented by
a sequence of numbers is determined by finding the location in the sequence
where the value is largest.

Although one-hot encoding can be used for any token type, it may not be
suitable for most tasks. An encoded token does not contain any meaningful
information about the token itself. Values that are close to each other do not
necessarily belong to tokens that are similar in some way. Similarly, sparse
one-hot encoded tokens have the same distance to every other token. Since
symbols do not contain any meaning without context, this embedding is very
suitable for symbol tokens.

Word tokens do benefit from an embedding that represents the meaning of
the words. This meaning representation is defined by a vector. Vectors that
are close to each other represent words that are close to each other. This
type of embedding needs a semantic model that needs to be trained. Most
semantic models are based on word co-occurrences. This is based on the idea
that words that occur in similar sentences (with the same words) must have
a similar meaning. Depending on the semantic model, words are encoded
into different vectors. Two commonly used word embeddings are Word2Vec
(Mikolov et al., 2013b) and Global Vectors (GloVe)2 (Pennington et al., 2014).

Since these semantic model-based embeddings need to be trained, it is needed
to investigate if the obtained vectors actually represent the meaning of the
tokens. This is done by evaluating the quality of the vectors. A straightfor-
ward approach is to randomly select some tokens from the vocabulary and
retrieving which words in the vocabulary a represented by a vector close to
the encoded selected token. The selected tokens and their closest tokens can
be inspected manually to determine if the similar vectors represent similar
words. However, manual inspecting is never ideal and this method will not
determine whether the most similar vectors belong to the most similar to-
kens.

2https://github.com/stanfordnlp/GloVe

Natural language generation for commercial applications 6

https://github.com/stanfordnlp/GloVe

Chapter 2. Sentence representation

To solve this, Mikolov et al. (2013a) proposed a word analogy task for evaluat-
ing the quality of a trained embedding. This task uses the idea that the differ-
ence between vectors of two tokens should also be similar to the difference
between vectors of two analogous tokens. This is done with a predefined
list of 4-tuples; two tokens that have some semantic or syntactic relation and
two analogous tokens (for example "usa", "dollar", "europe" and "euro"). For
each tuple, the numerical distance between the two first tokens is added to
the third token’s encoding. The result is decoded and checked if it is indeed
the fourth token ("europe"+("dollar"-"usa")="euro"). The more accurate this
prediction is, the better the encoding.

A major drawback of this word analogy evaluation is that the vocabulary
needs to contain all tokens in the predefined list of 4-tuples. In addition
the texts that were used to train the embedding need to use these seman-
tic or syntactic relations in the sentences. A corpus of tweets may contain
the words "usa", "europe", "dollar" and "euro", but unless the corpus contains
sentences indicating the currency relation, the embedding may never learn
it. Thus, from the training sentences like "usa here I come!", "europe, here I
come!", "it was 8 dollar", "it was 15 euro...", the embedding cannot learn to
answer the question "if usa is to dollar, then europe is to ...?".

This means that the quality of an embedding depends on its training data.
This entails that the performance of embeddings trained on different datasets
may not be comparable. Another effect is that embeddings need to be trained
on a dataset that has a similar language style to the language used in the
model that the embedding is used in. This can be quite tricky when training
a model on a dataset that is too small to create a good embedding. In that
case, a pre-trained embedding can be used. This is an embedding that is already
trained on a different dataset.

Pre-trained embeddings can be very useful for many applications. However,
the embedding determines the vocabulary. This may not be a problem since
pre-trained embeddings usually have a large vocabulary, but it can be a prob-
lem when the vocabulary needs to contain important tokens (e.g. "<start>",
"<eos>" or "_name_"). It is not possible to just define a vector for each out-
of-vocabulary token, because this violates the assumption that similar tokens
have similar representations. A possible workaround for this problem is to
add a new dimension to the vectors in the embedding for each new token and
setting the values in the new dimensions to 03. The new tokens are added us-
ing a one-hot encoding with the ones only in the new dimensions. This trick
maintains the trained information space of the original tokens and defines
an embedding for the new tokens. However, the distance between the new
tokens and all other tokens does not represent meaning.

Sentence embeddings are usually build from the word tokens in the sentence.
The simplest representation is a sequence of embedded word tokens. Sen-
tences can be one-hot encoded as well, of course, but those encodings do not

3https://stackoverflow.com/questions/45113130/how-to-add-new-embeddings-for-
unknown-words-in-tensorflow-training-pre-set-fo

Natural language generation for commercial applications 7

https://stackoverflow.com/questions/45113130/how-to-add-new-embeddings-for-unknown-words-in-tensorflow-training-pre-set-fo
https://stackoverflow.com/questions/45113130/how-to-add-new-embeddings-for-unknown-words-in-tensorflow-training-pre-set-fo

Chapter 2. Sentence representation

how much wood would a chuck if could ? woodchuckquestion
0

1

2

Word token

C
ou

nt

This results in the vector representation: [0,1,1,2,1,2,2,1,1,1,2].

FIGURE 2.1: Bag of Words (BoW) representation of the sentence
"How much wood would a woodchuck chuck if a woodchuck

could chuck wood?".

represent the meaning of the sentence itself. Instead, sentences may be rep-
resented using a histogram of word token occurrences in the sentence called
a Bag of Words (BoW), see Figure 2.1. However, a BoW does not contain any
information on the word order in the sentence. Word order can be added
by using n-grams instead of word tokens. N-grams are n-tuples of n tokens
occurring in sequence (e.g "how much", "much wood", "wood would" etc.).
A histogram of occurrences of sequences of words, a Bag of n-grams, does
contain some word-order information. However, the larger the n, the more
unique n-grams, the wider the histogram (more bins) and thus the sparser
the representation (more zeroes).

In order to better represent the meaning of a sentence, sentences can be em-
bedded using a language model. Like a word embedding, a language model
maps a sentence to vector. The difference lies in that a word embedding is
trained from the tokens themselves and a language model is trained from a
sequence of (word) tokens that represent the sentence token. Thus the re-
sulting embedding maps the sentence token as sequence of (sub)tokens to a
vector, instead of the sentence token itself. These language models will be
discussed in more detail in Chapter 3.

Natural language generation for commercial applications 8

Natural Language Generation

Chapter 3

Neural Language models

A language model defines a mapping from a text or sentence to a number or
vector. This means that the sentence embeddings described in the previous
chapter can be used as a language model and vice versa. This chapter will
focus on language models that are based on neural networks. These neural
language models are more suitable for language understanding than simpler
word frequency based models, like the Bag of Words (BoW) model (Kannan
et al., 2016). Analogous to the semantic model-based embeddings described in
Chapter 2, the neural language models define a representation that takes the
meaning of the input text into account.

Language models are often used for text analysis. The vector that the text is
mapped to represents a property of the text that needs to be investigated.
These models are often trained using supervised learning (see section 6.2). The
texts and the (numerical) properties of the texts are both fed into the model
for training. An example of this is sentiment analysis, where the texts are
split into positive and negative texts before training. The trained model can
indicate whether a new text has positive or negative sentiment.

Labelling texts is more difficult if the property is more abstract or less well-
defined. When the language model should represent the text’s meaning in
a fine-grained way, labelling is impossible. In that case, the language model
can be trained using unsupervised learning (see section 6.2). It is also possible
to train a language model indirectly. This is done by using the model as part
of a larger model that can be trained using supervised learning.

In this chapter, two styles of neural language models will be discussed. Both
styles use a different neural network architecture: a recurrent neural network
(RNN) (section 3.1) and a Convolutional Neural Network (CNN) (section 3.2).

3.1 Recurrent language models

The use of a recurrent neural network (RNN) as language model was first pro-
posed by Mikolov et al. (2010). An RNN is a neural network with a linear
recursive structure that is very suitable for sequences. At each step, the RNN
takes an element of the input sequence as input and produces an output and

Natural language generation for commercial applications 9

Chapter 3. Neural Language models

(A) unfolded (B) folded

FIGURE 3.1: The basic structure of a recurrent neural network
(RNN) that takes a sequence of input data (a). This can also be

described per element in the input sequence (b).

a state. The state is used in the next step to condition the next output. The
state represents the memory of the previous in- and outputs. This type of
sequential structure is very suitable for processing sequential data such as
language.

The way in which the input and the previous state of an RNN determines
its output and its next state is determined by the RNN cell. This is the ba-
sic unit of the RNN that is called recursively. In theory, this cell or RNN
unit can be any type of operation that takes an input and state as input and
outputs an output and new state. In practice, two types of cells are used: the
Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and the
Gated Recurrent Unit (GRU) (Cho et al., 2014). The basic RNN architecture is
visualised in Figure 3.1.

In language, the meaning of a word in a sentence is not only determined by
the previous words, but also by the future words. This is taken into account
with a Bidirectional Recurrent Neural Network (BiRNN) (Schuster and Paliwal,
1997). This is an RNN with two RNN cells, one for the original sequence
order, resulting in forward states, and one for the reverse sequence order, re-
sulting in the backward states. This architecture is shown in Figure 3.2.

To summarise, an RNN can process a sequence of tokens in a text and it
keeps track of a state that represents the memory of the previous tokens. This
makes RNNs very suitable as language model. After processing a text, the
resulting state can be used as a feature vector to classify certain properties of

Natural language generation for commercial applications 10

Chapter 3. Neural Language models

FIGURE 3.2: A schematic representation of the Bidirectional Re-
current Neural Network (BiRNN) architecture.

the text. The next chapter, Chapter 4, shows how this vector can also be used
to condition a text generation model.

Due to the forward sequential nature of RNNs, they are biased towards the
last item in the sequence. This could be the reason why they perform better
when the input is reversed (Sutskever et al., 2014). Convolutional Neural Net-
work (CNN) models do not have this bias (Kalchbrenner et al., 2014). They
will be described in the next section.

3.2 Convolutional language models

A Convolutional Neural Network (CNN) (Zhang et al., 1990) is a neural network
with one or more convolutional layers. These layers calculate the convolution
(a mathematical operation) of sections of the input. The sections are defined
by its size; the window, and its stride; how to move the window over the
input. To train the relevance of the convolution results, the convolutions
are weighted and a bias is added. The combination of the convolution, the
weights, and the bias is called a filter. Applying a trained filter results in a
feature map; a vector that represents some abstract feature in the input. A filter
with the same convolution, but different sets of weight-bias pairs result in
different feature maps. Thus, a convolutional layer is described by the window
and stride for the convolution operation, and the number of resulting filters.

Given a fixed-length sequence of tokens, the filters of a CNN can describe
more abstract features of the n-grams in the sequence. The size of the n-grams

Natural language generation for commercial applications 11

Chapter 3. Neural Language models

FIGURE 3.3: The CNN language model architecture as pro-
posed by Kim (2014).

is determined by the window size of the filter. This makes CNNs suitable for
language models as well.

There are two main approaches to using multiple convolutional layers in a
language model: deep and broad. In a deep CNN, the layers are stacked; the
output of one layer is fed to the next. This approach is usually used in im-
age recognition, but it can also be used in Natural Language Processing (NLP).
An example of this is the Dynamic Convolutional Neural Network (DCNN) pro-
posed by Kalchbrenner et al. (2014) for language understanding.

The other approach combines the convolutional layers side-by-side, making
a wide network. Each layer gets the same input sequence of tokens, but their
filters have different window sizes. Thus the resulting feature maps repre-
sent features of n-grams of different sizes. This allows the language model
to distinguish between "terrible book" and "not terrible book" by architec-
ture design. An example of this type of language model is proposed by Kim
(2014). They added a max pooling over time layer to determine which feature
maps are most prominent in the input sentence for each n-gram (window
size). Their architecture can be seen in Figure 3.3. It is a simple architecture
that can learn high quality sentence representations (Zhang et al., 2016).

Natural language generation for commercial applications 12

Chapter 3. Neural Language models

The size of the filters of a CNN depends on the length of the input sentence.
This means that a CNN requires a fixed input length. Input sentences can be
padded to adjust its length, but these padding tokens will be used in the con-
volutions and thus skew the results. Conversely, the weights of an RNN do
not depend on the sentence length due to its recursive definition. In practice,
the input for RNNs is padded for technical reasons1, but these padding to-
kens do not need to be taken into account when training. This makes CNNs
less suitable for applications with input text of varying length.

1GPUs run in lockstep, performing the same calculations over a number of different in-
puts at the same time, thus preferring fixed length input. Similarly, the Keras library requires
a numpy array as input which also is also of fixed length. And the Tensorflow library does
not free GPU memory during training, resulting in more memory usage when training on
batches of different sizes.

Natural language generation for commercial applications 13

Natural Language Generation

Chapter 4

Neural generation models

The task of natural language generation (NLG) is considered to be a sequence-
to-sequence problem where both the input and output is a sequence of vari-
able length. This group of problems can be solved by first encoding the input
to a fixed length representation and then decoding that representation back
to a sequence. This latent representation can be created using a language model
(Chapter 3). This chapter will discuss the generation models that can generate
the sequence from the sentence encoding.

In practice, the two models are combined and trained together (see Figure 4.1),
we call this the NLG pipeline. This way, the language model does not need a
ground truth for the sentence representation, instead, the model can learn
what representation is suitable. In fact, this explicit separation of sentence
representation model and generation model is usually not made. Instead,
the models are presented as a whole, not as a combination of two separate
submodels that can be replaced with different models or different model ar-
chitectures, independently.

4.1 The sequence-to-sequence model

A commonly used algorithm for NLG is the Sequence-to-Sequence (Seq2Seq)
model (Sutskever et al., 2014). It was originally created for Neural Machine
Translation (NMT) and later adapted for other domains, like dialogue response
generation (Vinyals and Le, 2015).

The Seq2Seq model consists of two RNNs; one as sentence representation
model and one as generation model. The state of the first RNN is used to
initialise the state of the second one. The second RNN generates a sequence
of token representations that are then decoded to form the generated text.
This structure is visualised in Figure 4.2.

The Seq2Seq model has two main drawbacks. First, the generation model
"forgets" the input sentence because the output of the sentence representa-
tion model is only used to initialise the state of the generation model. Since
this state is adjusted each time step to store the previously generated output,

Natural language generation for commercial applications 14

Chapter 4. Neural generation models

The dashed and dotted lines indicate training and testing steps,
respectively.

FIGURE 4.1: A schematic representation of how a language
model and a generation model can be combined to be jointly

trained for natural language generation (NLG).

the information from the sentence representation model will be lost after suf-
ficient steps. This can be solved using the attention mechanism (Bahdanau
et al., 2014) discussed in section 4.1.1 or the NewGCA architecture (Ludwig,
2017) described in section 4.2.

The second drawback is due to the difference between the generation model
input when training and when using the model. During training, the gen-
eration model receives the full target sequence, this is called teacher forcing
(Williams and Zipser, 1989) (see also section 6.2). However, when using the
model, the full generated sequence is not yet known and the output of each
time step is looped back as input for the RNN cell, as is visible in Figure 4.2.
This means that the created error when using the model is propagated over
each following step, resulting in worse performance than expected. A solu-
tion to this is training the model using professor forcing (Lamb et al., 2016).
This is described in section 4.1.2.

4.1.1 The attention mechanism

The attention mechanism is an adaptation to the Seq2Seq model proposed by
Bahdanau et al. (2014) that is three-fold. First, the sentence representation
model is replaced with a Bidirectional Recurrent Neural Network (BiRNN). Sec-
ondly, the representation is not created from only the last state in the model,
but it is a linear combination of all forward and backward states in the BiRNN.

Natural language generation for commercial applications 15

Chapter 4. Neural generation models

The dashed and dotted lines indicate training and testing steps,
respectively.

FIGURE 4.2: A schematic representation of the basic Sequence-
to-Sequence (Seq2Seq) model introduced by Sutskever et al.

(2014).

Natural language generation for commercial applications 16

Chapter 4. Neural generation models

Lastly, the resulting representation is used for the states of the generation
model at each time step. This architecture is visualised in Figure 4.3.

The attention mechanism has multiple benefits for training a Seq2Seq model.
Using the sentence representation in the generation model at each time step,
allows the model to keep paying attention to the input sentence. The use
of the BiRNN allows the sentence representation to also reflect the relation
of previous tokens, as well as future tokens, to each other (Bahdanau et al.,
2014).

The linear combination of the forward and backward states in the BiRNN is
determined by a set of weights that is obtained through training. This set of
weights is different for each time step of the generation model. This allows the
generation model to learn which states of the sentence representation model
are important at each time step (Bahdanau et al., 2014). Thus, the Seq2Seq
model does not only learn which input tokens the generation model should
pay attention to, but also when it should not.

However, learning which states of the sentence generation model are impor-
tant adds more computational complexity. The attention mechanism has to
compute the attention weight for each token in the input for each token in
the output sentence. This can make it intractable for some applications (Bah-
danau et al., 2014). For instance, when automatically generating replies to
long emails.

4.1.2 Professor forcing

Professor forcing (Lamb et al., 2016) is a training technique for RNNs. The idea
behind professor forcing is that an RNN should give the same results when
a ground truth is given as input (when training, teacher forcing) as when the
output is looped back into the next step (when testing, free running). This
can be forced by training a discriminator that classifies if the output is created
with a teacher forced model or a free running model. Training a model using
a discriminator that needs to be fooled is called adversarial learning (see also
section 6.2.3). The professor forcing architecture for a single RNN is shown
in Figure 4.4 and it can easily be adjusted for training a Seq2Seq model.

The discriminator is a separate model that can be trained using either the gen-
erated sequences or the sequence of corresponding states from the generation
model created in both modes; teacher forced and free running. The output
of the discriminator is used in the loss of the RNN, together with the orig-
inal generation loss. A good RNN should be able to give the same output
in free running as it did when teacher forcing. If it doesn’t that means that
it is overfit for knowing the truth. Applying the discriminator output to the
loss of the RNN forces the RNN to produce sentences or states that are in-
distinguishable with respect to teacher forcing and free running. Thus the
difference between the teacher forced performance during training and the
free running performance during inference becomes smaller. This causes that

Natural language generation for commercial applications 17

Chapter 4. Neural generation models

The dashed and dotted lines indicate training and testing steps,
respectively.

FIGURE 4.3: A schematic representation of the attention mecha-
nism proposed by Bahdanau et al. (2014).

Natural language generation for commercial applications 18

Chapter 4. Neural generation models

The dashed lines indicate training steps.

FIGURE 4.4: A schematic representation of the professor forcing
technique (Lamb et al., 2016).

Natural language generation for commercial applications 19

Chapter 4. Neural generation models

the generation loss of the model better represents the actual performance of
the model when in use.

4.2 New generative conversational agent model

A recently proposed architecture (Ludwig, 2017) for word generation takes
a slightly different approach to natural language generation (NLG). Instead
of considering NLG as a problem of transforming a sequence of tokens into
another sequence of tokens, it is considered as a problem of next token pre-
diction given the context and previously generated tokens. This architec-
ture was not given a name by the authors, but since they named it the "new
approach to generative conversational agents", we have dubbed this model
NewGCA.

The NewGCA architecture uses two RNNs, just like the Seq2Seq model. How-
ever, these RNNs are both sentence representation models, one for the input
sequence (the context) and one for the generated sequence until now (the
partial output). Thus, the NewGCA architecture creates two separate repre-
sentations of the context and the partial output for each word to be generated.
These two representations are then used to determine the token to be gener-
ated next. In statistical terms, it calculates the conditional probability of the
next token to be generated given the context and the previous tokens.

The generation model component of NewGCA consists of two neural dense
layers. The first has 0.5∗ vocabulary_size units and a ReLU activation function.
The second layer has vocabulary_size units and a softmax activation function.
The output word is represented using a one-hot encoding, allowing categorical
cross entropy as loss function. A visualisation of the NewGCA architecture is
shown in Figure 4.5.

The main advantage of the NewGCA model is that it needs significantly less
training data and training time (Ludwig, 2017). This makes it extremely suit-
able for applications where training data is sparse or training time is expen-
sive.

It has also been shown that the quality of the generated sentences is better
than those generated with the normal Seq2Seq model (Ludwig, 2017). The
sentences are longer and less generic. This can be attributed to the paradigm
shift to next token prediction and the consequential separation of represen-
tation spaces for the context and partial output.

Natural language generation for commercial applications 20

Chapter 4. Neural generation models

The dashed lines indicate training steps. During testing, the
generated word is looped back into the partial output repre-

sentation by concatenating it to the previous partial output.

FIGURE 4.5: A schematic representation of the NewGCA archi-
tecture proposed by Ludwig (2017).

Natural language generation for commercial applications 21

Natural Language Generation

Chapter 5

Datasets

This chapter gives a short overview of the different datasets that were used
for training. We will first describe the Kaggle Twitter customer support dataset1,
followed by the Yelp dataset for style transfer2.

5.1 Kaggle Twitter customer support

For training our dialogue system, we used the Kaggle Twitter customer sup-
port dataset available on Kaggle1. This dataset contains 3.002.524 tweets and
replies in the customer support domain. Each tweet is annotated with which
tweet it replies to and whether it is send from a company’s customer support
or not, among other annotation that we did not use.

This dataset is suitable for training a dialogue system, because the tweets are
very goal oriented. The initial tweet is from someone who has a problem and
all replies have the purpose of solving that problem. Due to the character
limit on twitter, the tweets are relatively short and to the point, allowing a
dialogue system to be trained with a smaller sentence length. The conversa-
tions are relatively natural, because they are real tweets. However, many cus-
tomers are redirected to a private chat to actually solve the problem, which
may skew the behaviour of the dialogue system to do the same.

We processed the dataset to be suitable for training a dialogue system. The
dialogues were reconstructed using the reply annotation. We used a history
of 2 turns as input and a single tweet as response. The responses are fil-
tered to only be sent by a company. We replaced all newline characters in
the tweets with a special _NEWLINE_ token. Similarly, we added a spe-
cial _TURN_ token to differentiate between the different tweets in the input.
Lastly, all non-ascii symbols were removed from the tweets and the resulting
empty inputs or responses were then removed. This resulted in a dialogue
dataset with 1.077.074 input-response pairs. These pairs were then split into
a train, development and evaluation set (80%-10%-10% respectively).

1https://www.kaggle.com/thoughtvector/customer-support-on-twitter

Natural language generation for commercial applications 22

https://www.kaggle.com/thoughtvector/customer-support-on-twitter

Chapter 5. Datasets

5.2 Yelp style transfer dataset

For language style transfer, we used the Yelp dataset from Shen et al. (2017)
that is available on GitHub2. The dataset contains 250,000 negative and
350,000 positive reviews from Yelp. All reviews have less than 11 sentences
and each sentence has less than 16 words. On average, the sentences in a
positive review are 1 word shorter than those in a negative review. More
information about this dataset is not available, but it is relatively small.

2https://github.com/shentianxiao/language-style-transfer/tree/master/data/
yelp

Natural language generation for commercial applications 23

https://github.com/shentianxiao/language-style-transfer/tree/master/data/yelp
https://github.com/shentianxiao/language-style-transfer/tree/master/data/yelp

Part II

Applications of NLG

24

Applications of NLG

Chapter 6

Dialogue response generation

A possible commercial application of natural language generation (NLG) are
chatbots, also called bots. There are two main approaches to chatbot technol-
ogy: retrieval-based chatbots and generation-based chatbots (Young et al., 2017).
As the name suggest, a retrieval-based bot chooses (retrieves) its responses
from a (predefined) list of possible answers. If this choice is made using a set
of (man-made) rules, it is a rule-based chatbot. To the contrary, a generation-
based bot, or generative chatbot, actually generates its responses from scratch
using NLG. Usually, a chatbot uses only one of these technologies, but they
can also be combined (Song et al., 2016).

This chapter will focus on an application of NLG called dialogue response gen-
eration (DRG). As it is an application of NLG, the architecture, or structure, of
a generative chatbot is based on the NLG pipeline described in Part I. Thus, a
given dialogue or question is split into tokens using tokenisation (section 2.1).
Then, the tokens are transformed into a numerical representation using an
embedding (section 2.2). The resulting sequence (of variable length) of token
representations can then be converted to an abstract, fixed-length represen-
tation of the entire input using a language model (Chapter 3). Lastly, the input
representation is used to condition the generation model on, during generation
(Chapter 4). The attention mechanism has been shown to be effective in dia-
logue systems (Yao et al., 2015; Eric and Manning, 2017), but it may not be
suitable for long input sequences, like the full dialogue history.

In DRG, it is common practice to use word tokens (e.g. Serban et al., 2016b),
but symbol tokens are also used (e.g. Sordoni et al., 2015b). Most model ar-
chitectures are based on the Seq2Seq model (Sutskever et al., 2014; Vinyals
and Le, 2015). The models can be trained in different ways, an overview is
given in section 6.2. After training, a chatbot needs to be evaluated in order
to judge its quality. Evaluation methods for chatbots are described in sec-
tion 6.3. An overview of the challenges in dialogue response generation can
be found in section 6.4. These challenges may be overcome by incorporating
context (section 6.5) and knowledge (section 6.6). Lastly, the results are dis-
cussed of a DRG use case that was worked out: generative customer support
(section 6.7). But first, an overview of existing chatbots is given in section 6.1.

Natural language generation for commercial applications 25

Chapter 6. Dialogue response generation

6.1 Existing applications

Currently, chatbots are integrated in a number of customer support systems,
e.g. for KLM 1, bol.com 2. Although the techniques behind these bots remain
a mystery in general, their functioning can usually be extrapolated from their
behaviour. To the best of our knowledge, a commercial chatbot that truly
generates its responses is not available yet. Most chatbots seem to be based
on either a rule-based or retrieval-based approach. This is very suitable for
FAQ type question answering. These dialogue systems can be created using
dialogue management systems in which the rules can be easily specified. An
example of such a system is Google’s DialogFlow 3. More complicated dialogue
systems can be created with predefined frameworks, like Amazon Lex (when
combined with other Amazon Web Services (AWS) components).

These rule-based systems can be very powerful nonetheless. The conversa-
tions of the open-domain chatbot Cleverbot 4 has been tested against those of
humans in 2010 (as part of the BCS-SGAI Machine intelligence competition)
(Cleverbot inc., 2010) and in 2011 (as part of the Techniche Conference in In-
dia). During the latter test, the bot scored similar to humans (Cleverbot inc.,
2011), even though Cleverbot is written using Cleverscript 5 and is entirely
rule-based.

In addition, retrieval-based systems can also be surprisingly smart. A well
known example is Microsoft’s controversial Twitter bot Tay. It made racist
tweets and had to be taken down within the first day (Vincent, 2016). It
seemed as if Tay generated its own tweets, but it turns out that it searched for
similar Twitter conversations and responded with replies on similar tweets
from that conversation (Neff and Nagy, 2016). Thus, Tay is retrieval based,
just like the other Microsoft chatbots that use similar technologies; XiaoIce
(China, see Neff and Nagy, 2016), Rinna 6 (Japan), Ruuh 7 (India) and Zo 8

(USA, successor of Tay).

Similarly, Google’s Smart Reply (Kannan et al., 2016) that suggests email re-
sponses is also retrieval based. It uses techniques that can be implemented
in a generative dialogue system as well and will be discussed in a bit more
detail in section 6.4.2.

1https://bb.klm.com/
2https://www.bol.com/nl/klantenservice/index.html
3https://dialogflow.com
4http://www.cleverbot.com
5http://www.cleverscript.com
6http://www.rinna.jp
7https://www.facebook.com/Ruuh/
8http://www.zo.ai

Natural language generation for commercial applications 26

https://bb.klm.com/
https://www.bol.com/nl/klantenservice/index.html
https://dialogflow.com
http://www.cleverbot.com
http://www.cleverscript.com
http://www.rinna.jp
https://www.facebook.com/Ruuh/
http://www.zo.ai

Chapter 6. Dialogue response generation

6.2 Training generative chatbots

Once the model architecture has been created (as described in Part I), it needs
to be trained. There are several techniques for training. They can be cate-
gorised into five main approaches: supervised learning, unsupervised learning,
reinforcement learning, adversarial learning and transfer learning. Some training
techniques combine these approaches. For example, professor forcing (as pre-
viously described in section 4.1.2) is a combination of supervised learning
and adversarial learning. We will discuss the five main approaches in more
detail.

6.2.1 Supervised and unsupervised learning

The general approach to training a model for dialogue response generation is
supervised learning. This method updates the neural network based on a given
input and target sequence. The input sequence is given to the model and its
output is compared to the target sequence using an objective function. This
function describes the loss to be minimised or the reward to be maximised.
The loss or reward of the model is then used as feedback to optimise the
model’s performance.

A supervised learning technique often used when training RNNs is called
Teacher Forcing (Williams and Zipser, 1989). Teacher forcing is when, at each
time step, the RNN is fed the actual, expected output from the previous steps
to predict the next step, instead of the previously predicted steps. The latter
is still used when the true output is not available. Teacher forcing is so com-
mon that is the default way of training an RNN to predict sequences in a
supervised manner. Conversely, training an RNN by feeding the previously
predicted steps, without teacher forcing, is called free running. When the
RNN output consists of probabilities, the previous tokens are approximated
using the softmax function9.

It is important to note that a suitable generated response can be very dif-
ferent from the target sequence. This makes training difficult as good re-
sponses may be penalised (see also section 6.4) when using a loss function
that describes the difference between the target and output sequences (like
mean squared error). Instead, a model can be trained with the log-likelihood
that the target and output sequences are from the same distribution as ob-
jective function (Zhang et al., 2016). This is a probability to be maximised.
Other common objective functions are maximum cross entropy (Vinyals and
Le, 2015; Song et al., 2016) and maximum mutual information (MMI) (Li et al.,
2015).

Adjusting the parameters, weights, of a model to obtain the smallest loss (or
biggest reward) is called optimisation. How to adjust the weights is defined by

9The argmax function cannot be used when training an RNN, because it is not differen-
tiable.

Natural language generation for commercial applications 27

Chapter 6. Dialogue response generation

an algorithm called an optimiser. There are several optimisation algorithms.
The most commonly used optimisers in DRG are Stochastic Gradient Descent
(SGD) (Robbins and Monro, 1985) and Adam (Kingma and Ba, 2014), but
other techniques can be used as well, e.g. MERT (Li et al., 2015, 2016a) or
AdaDelta (Song et al., 2016).

In contrast, unsupervised learning is a training technique where the desired
answer, the ground truth, is not available. The model needs to find patterns
in the data without feedback about the relevance of those patterns. As such,
unsupervised learning, on its own, is not suitable for dialogue response gen-
eration. However, a sub-model of a larger model, such as the NLG pipeline
described in Chapter 4, can be trained indirectly by training it as part of the
whole model. That way, the sub-model can learn what patterns are relevant
(they are relevant for the larger model) without the need to explicitly define
them.

6.2.2 Reinforcement learning

Another approach to training is reinforcement learning. This is used for a set
of problems that can be described as a task where the system, called agent,
needs to pick an action from a list, given its current state of knowledge (envi-
ronment). Similar to supervised learning, the agent is trained by associating
a reward with every action picked and optimising its decisions to maximise
the reward. However, in reinforcement learning, the best action in a given
situation may not be defined. Thus, the reward cannot be calculated based
on some target action. Instead, the reward is calculated based on how the
action changes the environment and whether this is desired. The latter may
not be clear yet when the action is taken, but it becomes clear after several
actions. As such, the accountability of a single action is not directly reflected
in the reward.

This approach to training is has advantages and disadvantages. The creator
of the system has a lot of agency regarding how the system is defined, but this
definition needs to be specified really well. The reward, the actions and the
environment need to be balanced in a way that the model will learn to pick
the right actions in each situation. If this balance is slightly off, the model
could learn the wrong things.

When training dialogue systems using reinforcement learning, the task of
the agent is to pick a token given the input and the previously chosen to-
kens. The reward can be calculated once the generated sequence of tokens is
complete. Reinforcement learning is used in dialogue generation by Li et al.
(2017, 2016b) and Niu and Bansal (2018), among others.

Natural language generation for commercial applications 28

Chapter 6. Dialogue response generation

6.2.3 Adversarial learning

Dialogue systems can also be trained using using adversarial learning. This
is done by creating a generator that creates the responses and a discriminator
that classifies the difference between real sentences and generated ones (or
some other desired property). The two algorithms are trained in parallel.
The generator learns to generate sentences that the discriminator classifies
incorrectly and the latter learns from its mistakes. It is crucial that these two
components learn at a similar speed for adversarial learning to succeed. If
the discriminator is too good, the generator cannot learn, and vice versa.

6.2.4 Transfer learning

Once a response generation model is trained, it can still be adjusted or fine-
tuned using transfer learning. This is a technique where a trained model is
continued to be trained on a different dataset to learn new properties. Train-
ing a model with the purpose of using it in transfer learning as trained model
is called pre-training.

The advantage of transfer learning is that one can first train a generic model
and then use a small corpus to adjust the responses to a target domain. This
makes it easier to use the model for different applications. Akama et al. (2017)
showed that transfer learning can be used to build a Seq2Seq model that is
stylistically consistent. They first trained the model on a large generic corpus
en then continued training it with a small corpus that was stylistically consis-
tent (the script of a single character in a TV series). Training the entire model
from scratch would have needed a large stylistically consistent corpus, which
is not readily available.

Transfer learning can also be used to bootstrap the learning process of a net-
work using a network trained by someone else or for a different task. It can
improve a model’s performance if it is pre-trained on appropriate data (Ser-
ban et al., 2016b). Zhang et al. (2016) did this in their adversarial learning
approach, described in section 6.2.3. Transfer learning is especially useful
when a good model is publicly available, but its behaviour is not suitable for
a specific use case.

Transfer learning can also speed up the training time of a model. This is ex-
tremely valuable when the time, finances or computation power is not avail-
able to train the model from scratch.

Adversarial learning has been shown effective for dialogue generation by Li
et al. (2017). They used it in a reinforcement learning setting with an opti-
miser called REINFORCE. They showed that the quality of the output can be
improved by removing short training examples, using a weighted learning
rate, penalising similar phrases, and penalising word types that have already
been generated.

Natural language generation for commercial applications 29

Chapter 6. Dialogue response generation

However, one drawback of text generation using adversarial learning is that
text is discrete. This makes it non-trivial to use the discriminator error to
update the generator. The REINFORCE algorithm used by Li et al. (2017)
can solve this problem using Monte Carlo sampling, but its variance could be
large. Discreteness can also be simulated using a softmax activation function
instead (Zhang et al., 2016).

A neural generation model that is trained with adversarial learning is called
a Generative Adversarial Network (GAN) and they should perform better on
high-entropy tasks (Li et al., 2017). Zhang et al. (2016) showed that this
technique can be used for pure sentence generation. Their model is called
TextGAN. It uses a Seq2Seq model with LSTM as generator and a CNN lan-
guage model (by Kim, 2014) as discriminator. The discriminator was pre-
trained to distinguish real sentences and sentences with two words swapped.
This allowed the discriminator to judge word order. The encoder part of
the Seq2Seq model was pre-trained as well. Pre-training is necessary to start
with a balanced performance of the two networks. To remain balanced, the
discriminator was not updated as often as the generator, because the CNN
learned quicker than the LSTM-RNN. The objective function for optimising
the LSTM was not to generate an exact match to the real response. Instead,
it was optimised to generate output with a similar word distribution. This
better represents the nature of natural language; the generator tries to pick
similar words and the discriminator judges the word order.

An adversarial learning approach to training RNNs specifically is professor
forcing. It is similar to training GANs and has been described in section 4.1.2.
Professor forcing has been shown effective for DRG (Olabiyi et al., 2018).

6.3 Evaluating chatbots

Quantifying the performance of a trained model is not a straightforward task.
There are two main strategies for evaluating chatbots: automatic evaluation
and human evaluation.

Automatic evaluation uses predefined metrics that calculate a score based on
some features of the generated sentences. It is cheaper, faster and the evalu-
ation criteria are well-defined, making the comparison of the scores for dif-
ferent bots possible. However, the commonly used metrics for automatic
evaluation base their score on linguistical features (e.g. ROUGE, BLEU), thus
preferring grammatical sentences over relevant ones. It was even shown that
these metrics have a weak correlation with human opinions at best (Liu et al.,
2016).

This means that the current best method for evaluation is human evaluation
using human judges. This can be done by asking the judges which response
is best or by scoring the responses on some trait, e.g. naturalness, relevance,
etc. Evaluation can be based on only a single input-response pair, single-turn
experiment, or given a portion of the dialogue history, multi-turn experiment.

Natural language generation for commercial applications 30

Chapter 6. Dialogue response generation

However, human evaluation can be costly and time consuming. Li et al.
(2017) proposed a new automatic evaluation technique called AdverSuc which
uses an adversarial classifier. The metric uses an evaluator model that is
trained to distinguish real utterances from generated ones. AdverSuc (short
for adversarial success) is defined by the fraction of cases when the gener-
ator is able to fool the evaluator. Since the AdverSuc value is meaningless
when the evaluator classifies poorly, the evaluator needs to be evaluated as
well. To this end, Li et al. (2017) defined a metric called Evaluator Reliability
Error (ERE) that is the average performance on manually-invented situations
where the gold standard response is known. Note that the evaluator is a com-
pletely separate model and is not a part of the generation model for dialogue
generation. Nevertheless, the AdverSuc model can use techniques that are
also used in dialogue generation, but it is trained separately. It is yet to be
investigated how AdverSuc correlates with human evaluation.

6.4 Challenges with response generation

Although promising techniques exist for generating dialogue responses, there
are still recurring problems with these methods. In general, the main purpose
of dialogue is to convey information (Vinyals and Le, 2015). Information is an
abstract concept that seems to be difficult for a dialogue system to grasp. As
such, there are three main challenges for dialogue systems to overcome. The
model may not learn to convey information at all, this will result in generic
responses. A model, that can convey information, may give the wrong infor-
mation, resulting in irrelevant responses. And lastly, a model may give relevant
information, but the information changes in the course of the conversation,
giving inconsistent responses.

It is noteworthy that these types of responses are not a problem when using
NLG for automatic translation systems (Wei et al., 2017). Even though transla-
tion and dialogue response generation are considered similar tasks. Wei et al.
(2017) hypothesised that this is due to that, in translation tasks, the input
strongly defines the output, i.e. the input and target information is aligned.
In translation, there can only be a few good translations for a given input
sequence. However, in open-domain dialogue, there are almost endless re-
sponses to a given sentence, making it difficult for the model to learn what
response is best. Wei et al. (2017) also concluded that this could be the rea-
son why task-oriented dialogue systems perform better when conditioned on
more information. The conditioning reduces the number of possible answers,
increasing the likelihood of generating a good output. Thus, improving the
overall quality of the system. Similarly, the performance gain of the attention
mechanism may also be caused by alignment.

This section will briefly discuss these challenges and give a general overview
of possible solutions.

Natural language generation for commercial applications 31

Chapter 6. Dialogue response generation

6.4.1 Meaningful responses

The generation of meaningful responses is a difficult challenge in dialogue re-
sponse generation. Seq2Seq models tend to converge towards generic re-
sponses. This is understandable, it is the safest strategy to respond with sen-
tences that are always applicable, especially when input and target sequences
do not align well. Thus, generating suitable responses with little information,
i.e. generic responses, is a local optimum. This problem is reduced by im-
proving the alignment between input and target sequence. Usually, this is
done by penalising generic responses and promoting diverse responses dur-
ing training, but other solutions have been proposed.

One way of improving the alignment is by simulating conversations using
reinforcement learning. Li et al. (2016b) did this using two pre-trained agents.
The agents were rewarded based on ease of answering, information flow and
semantic coherence. This forces the input and target sentences to be more re-
stricted. A generic response will not be rewarded because the other agent
cannot respond to it and the lack of information reduces semantic coherence.
The information flow reward promotes the introduction of new information,
with respect to the previous turn of the same agent, by penalising the reverse.
This improves the diversity of the dialogue.

The GAN proposed by (Li et al., 2017) (described in section 6.2.3) used some
strategies that also improve the meaningfulness of the responses. Li et al.
(2017) removed short replies from the training set which reduces the chance
of learning (from) dull responses, because generic responses tend to be short.
They also adjusted the learning rate (how severely the model parameters should
be changed each step) based on the amount of meaningful tokens. The mean-
ingfulness of the tokens is estimated using the tf-idf score that is based on the
actual token frequency with respect to the expected token frequency. This
weighted learning rate increases the amount of meaningful words in the out-
put.

The generated output will also be less generic when it is more relevant. This
can be achieved with the techniques discussed next.

6.4.2 Relevant responses

A dialogue system whose output contains information also needs to gen-
erate relevant responses. A meaningful response can still contain the wrong
information. This can make the conversation feel unnatural and it can be es-
pecially problematic in task-oriented systems where the right task needs to
be completed.

Irrelevant responses show that the generation model in the dialogue system
cannot learn what is important. A straightforward approach to dealing with
this is by adding context or knowledge to the dialogue system architecture.
This will bias the output towards the given information and should result

Natural language generation for commercial applications 32

Chapter 6. Dialogue response generation

in more relevant responses. Specific architectures for achieving this will be
discussed in section 6.5 and section 6.6, respectively.

However, the system may not learn what is important because the input rep-
resentation, created by the language model, is not appropriate. Thus, perfor-
mance may be increased by adding a more suitable representation directly
into the model as input. Luan et al. (2016) added context by concatenating
topic information directly to the input of their model. The topic was approx-
imated using a technique called Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) that uses word co-occurrences. They also added dialogue role informa-
tion by learning a different weight set for each given role.

The input representation can also be improved by adding different abstrac-
tion layers as shown by Sordoni et al. (2015b). They used a Bag of Words
(BoW) representation as the language model and trained two dialogue sys-
tems. The first used the BoW representation of the entire dialogue history
as input to the generation model. The other used the BoW representation of
both the last dialogue turn and the previous dialogue history. The two rep-
resentations where concatenated and fed to the generation model. The latter
model outperformed the former, because an abstraction layer was created
between the last turn and the turns before that. The reason for this is that the
information in the dialogue history stays the same, but which information is
relevant changes over time. By splitting the two representations explicitly,
the dialogue system does not need to learn when which input information is
relevant, only what information.

An example of an application that does suggest relevant responses is Google’s
Smart Reply (Kannan et al., 2016), an automatic email response suggestion
system used in Gmail. The system uses a complex hierarchical structure for
generating a set of possible responses and selecting a set of suggestions using
a Seq2Seq model. The responses were improved by penalising redundancy
and enforcing both positive and negative responses. The entire systems was
trained with a huge corpus and the responses are not generated, but selected,
simplifying the challenge.

6.4.3 Consistent responses

A dialogue system should also generate consistent responses. Responses can
be contradictory on their own, which can be improved by penalising the rep-
etition of word types (see e.g. Li et al., 2017). But the responses can also be
inconsistent with previous utterances in terms of content or style.

Li et al. (2016a) tried to improve the consistency of content over time by in-
corporating a speaker model into the hidden layer of the encoder. This was
done by clustering different speakers based on features in their responses
and using that as representation of the speaker. This allows the model to re-
spond with sentences that are similar to those given by similar users. Since
the users in the train data should respond consistently, so should the model.

Natural language generation for commercial applications 33

Chapter 6. Dialogue response generation

They used a similar approach to model speaker-addressee behaviour in their
dialogue system. That allowed it to adjust its speaking pattern depending on
the conversational partner, e.g. addressing him/her by name.

Stylistical consistency is necessary in most applications of dialogue systems.
It can feel uncomfortable if a conversation partner seems to change or ad-
dresses you differently. This may be more subtle in languages, like English,
that do not have a stylistic distinction between, for example, different levels
of politeness or courtesy. But it is very important in languages that do make
such distinction, like the different honorifics in Japanese or the Dutch words
for you: "u" and "je"10. In section 7.1, we will discuss several architectures for
generating consistent politeness that can be used for other linguistical fea-
tures as well.

6.5 Incorporating context

A key strategy to tackle the challenges in response generation is incorporat-
ing context, as explained in section 6.4.

This section will give an overview of techniques that have been used to con-
dition a dialogue system on context. There are three main approaches to
adding context: using the dialogue history, using dialogue acts and using
language style. The research on the latter is mainly focused on politeness,
but we describe how those techniques can be adapted to learn different lin-
guistical traits like sentiment or formality.

6.5.1 Dialogue history

A popular approach to adding contextual information is by using the dia-
logue history. A straightforward approach is to feed all previous utterances
directly into the encoder (see e.g. Vinyals and Le, 2015). However, this re-
quires the encoder to make a dense representation that comprises all that
information.

Instead, relevance can be improved by optimising the model accordingly. Li
et al. (2015) proposed to use an objective function called maximum mutual in-
formation (MMI) that updates the model based on the similarity of the input
and response word distributions. The MMI objective is linearly mixed with
the standard log-likelihood function where the mixing variable determines the
relevance of the response. However, it cannot be adjusted without retraining
from scratch. In order to adjust the response relevance, Li et al. (2015) pro-
posed to train the model using the standard objective function and use the
MMI formula to rerank the top n generated tokens. We suspect that transfer

10It can still become relevant for English when the dialogues contain frequent uses of the
royal we in combination with the normal we.

Natural language generation for commercial applications 34

Chapter 6. Dialogue response generation

learning may also be suitable for quickly training a set of models, each with
a different level of relevance.

MMI has several disadvantages. Directly decoding from the MMI function
is intractable and needs to be approximated with an N-best list. This is com-
putationally expensive. The pure MMI function also penalises grammatical
responses because function words do not contain much information, but they
are necessary for grammar. We refer the reader to the original paper for a de-
tailed discussion (Li et al., 2015).

Another solution is to use an algorithm that adds context from the dialogue
history by design. An example of this is the Hierarchical Recurrent Encoder-
Decoder (HRED) model. It was proposed by Sordoni et al. (2015a) and it is an
extension of the basic Seq2Seq model that was later adjusted for use in dia-
logue systems by Serban et al. (2016b). Like the Seq2Seq model, the HRED
model transforms each dialogue turn into an abstract numerical representa-
tion using an RNN language model. This utterance representation is used
in an RNN generation model to generate a response. In addition, the model
uses a third RNN to create a context representation that is also used in the
generation model, separating the current input from the conversational con-
text. The third RNN takes the sequence of utterance representations of the
previous utterances as input and creates a dense representation of the dia-
logue history. The performance of HRED can be substantially improved by
using a Bidirectional Recurrent Neural Network (BiRNN) to create the utterance
representation. This allows the model to capture a token in relation to the
previous as well as the next token, improving the utterance representation
(Serban et al., 2016b).

Extensions to the HRED model have been proposed, such as the Latent Vari-
able HRED (VHRED) model (Serban et al., 2017b) and the Multi-resolution
RNN (MrRNN) (Serban et al., 2017a). A comparative study showed that each
architecture is able to incorporate long-term context (Serban et al., 2016a).
The VHRED and MrRNN can also handle uncertainty and ambiguity. Both
models generated more meaningful and more relevant responses than HRED
and Seq2Seq. In addition, the MrRNN can generalise well and creates utter-
ances with a high-level structure. We refer the reader to the original papers
for a detailed description of these architectures.

6.5.2 Intent and dialogue acts

Traditional rule-based dialogue systems use a hand-coded dialogue act rep-
resentation. This represents the intent of the utterance, e.g. if it is a question,
the person wants an answer. In most generative dialogue system architec-
tures, dialogue acts are not explicitly modelled, but they are part of the hid-
den state of the encoder. By extending the model with components that rep-
resent intent, the encoder can better encode the information in the utterance
(Wen et al., 2016). This approach was also used for context in the previous
section, resulting in the HRED model.

Natural language generation for commercial applications 35

Chapter 6. Dialogue response generation

As such, it may be possible to use a dialogue act classifier to incorporate in-
tent into a dialogue system by concatenating the classification result to the
input representation. Alternatively, Wen et al. (2016) proposed using an in-
tent network as part of a larger architecture. The intent network can be mod-
elled using either an RNN or a CNN. The full input utterance is fed to the
intent network to obtain an encoded vector that represents intent. The in-
tent network can be trained in two ways. It can be pre-trained on a dialogue
act classification task and the hidden state or last layer can be used as intent
representation. Or the intent network can be trained jointly with the other
components. However, training the intent network indirectly would raise
the question if the network indeed represents intent as opposed to something
else.

6.6 Incorporating knowledge

For practical applications, a good dialogue system may also need to use in-
formation. This could be knowledge that was obtained in the dialogue or
that can be retrieved from an external source. Neither the Seq2Seq model nor
the NewGCA (see Chapter 4) can use this information by default.

This section will describe a few methods to incorporate knowledge into a di-
alogue system. We make a distinction between structured and unstructured
knowledge.

6.6.1 Structured knowledge

Structured knowledge is information that can be obtained in a fixed format. If
the format is fairly short (e.g. the day in the week), it can be added to the
dialogue system in a straightforward way by appending this information di-
rectly to the input or one of the hidden layers (see Li et al., 2016a). Otherwise
this is non-optimal or even impossible.

If the information can be represented in a vector, a Recall gate could be used
(Xu et al., 2016). This is an RNN cell based on the LSTM architecture. It allows
the hidden state in the cell to represent the input under the condition of the
knowledge vector. This technique can use the information more efficiently
and performs better than the simple appending approach.

It is also possible to incorporate knowledge from a database. In that case, it
is not desirable to feed the entire database to the Seq2Seq model. Instead, the
generation model can be used to generate a template response that can be filled
with information from the database. This is done by building a database
query based on the input, generating the template based on the input and the
query result and then substituting the template slots with the query results.
This approach has been successfully used by Nayak et al. (2017); Wen et al.
(2016). However, it does require a sizeable annotated dataset to train on. This

Natural language generation for commercial applications 36

Chapter 6. Dialogue response generation

technique itself may require additional extension since it was used as part of
a more complicated model in the known successful cases.

6.6.2 Unstructured knowledge

Unstructured knowledge is information that is available, but it does not have
a strict format. This includes specific information that is given during the
dialogue itself, in the dialogue history. It is very important to be able to use
this information since a primary goal of dialogue is information exchange
(Vinyals and Le, 2015). Note that section 6.5 used the dialogue history to
indicate context not to obtain specific information (e.g. "the conversation
was about age" versus "this person is 25 years old").

Factual information from the dialogue history can be represented in a knowl-
edge base. Xu et al. (2016) proposed an easy way to create a loose-structured
knowledge base. They identified a number of domains and for each domain
they extracted entities from a domain specific corpus. The extraction was
based on statistical metrics, identifying words that occur frequently in the
domain. They used Kullback-Leibler divergence between words from a domain
specific corpus and a general corpus to identify which words were actually
specific for that domain. Those domain-specific words, the entities, were
added to a domain vocabulary. An entity can have a certain value or trait
which can be found as words occurring close to an entity. These words are
called attributes and they give information about an entity. Entity-attribute
pairs are identified using a sliding window. The most frequent pairs were
added to the knowledge base. Given an input, the attributes of the most
frequent entities can be identified. These entities and attributes are used to
create a representation of each (most frequent) entity in the input. An entity
representation is the sum of the embeddings of the attributes of the entity
that was found in the input. The obtained vector was added to the dialogue
system using the Recall Gate described in section 6.6.1.

Another way of using information from previous dialogues is by training
on domain specific data. Choudhary et al. (2017) used a domain classifier
to classify the domain of the conversation. For each domain, a different
Seq2Seq model with attention mechanism was trained on conversations in that
domain. The models generated multiple responses given a single input. The
responses were then re-ranked to pick the best output.

6.7 Use case: Generative customer support

We implemented two simple models for dialogue generation: the Seq2Seq
model by Sutskever et al. (2014) and the NewGCA model proposed by Lud-
wig (2017). Both models were described in Chapter 4.

Natural language generation for commercial applications 37

Chapter 6. Dialogue response generation

It was shown that the NewGCA model performs very well on little train-
ing data (Ludwig, 2017), but the model has not directly been compared to
the Seq2Seq model. Thus, we trained both models on the same dataset and
compare their outputs.

6.7.1 Model descriptions

We implemented both the Seq2Seq model and the NewGCA model using two
RNNs with a single LSTM cell each. Both LSTMs had a memory of 256 units.
The input and output sentences were split into word tokens and embedded
with the same GloVe embedding for each model.

The Seq2Seq model used the two RNNs as encoder and decoder, as described
in section 4.1. The output of the decoder is fed to a dense layer with softmax
activation. The dense layer has the same number of units as the dimension
size of the GloVe embedding, such that the output can be mapped back to a
word. This implementation is very similar to an example on GitHub11.

The NewGCA model used both RNNs as two parallel encoders, one for the
input and one for the partial output (see section 4.2). The encoded input and
partial response were concatenated and fed to two sequential dense layers.
The first layer has units equal to half the vocabulary size and a ReLU activa-
tion. The second layer has a unit for each word in the vocabulary and the
output is mapped one-to-one, resulting in a one-hot encoding as output. Its
activation is calculated with a softmax.

Both models were trained on the Kaggle Twitter customer support dataset (see
section 5.1). The data was filtered on sentences with a minimal length of two
word tokens and a maximal length of 50 word tokens (punctuation is counted as
well). The words were represented with a 300 dimensional GloVe embedding
(see section 2.2). The embeddings were compared by normalising them and
taking the cosine distance (for the loss of the Se2Seq model).

The NewGCA model was setup to explicitly generate word by word, whereas
the Seq2Seq model generates sequences directly with the RNN. This means
that the target output of the NewGCA model is a single word, not a se-
quence. Thus, the format of the data had to be adjusted to suit each model.
The Seq2Seq model was trained on batches of 64 input-response sentence
pairs and the NewGCA model was trained on batches of 64 "input sentence"-
"partial output sentence"-"next word token" triplets.

Both models were trained for maximally 100 epochs with early stopping; if
the model did not improve its validation loss after 5 (patience) epochs, the
training was interrupted. We used an Adam optimizer with a learning rate of
0.001 (default settings12).

11https://github.com/keras-team/keras/blob/master/examples/lstm_seq2seq.py
12https://keras.io/optimizers/#adam

Natural language generation for commercial applications 38

https://github.com/keras-team/keras/blob/master/examples/lstm_seq2seq.py
https://keras.io/optimizers/#adam

Chapter 6. Dialogue response generation

6.7.2 Results

The basic Seq2Seq model was not able to learn to make sentences. The model
learned to only respond with the repetition of a single word, regardless of
input. We later realised that this may have been due to the generation of
GloVe embeddings. The embedding has the property that words with lit-
tle meaning have a vector representation that is close to every other vector
representation. This means that a local optimum exists that only generates a
single word. Unfortunately, we have not been able to repeat our experiments
with the Seq2Seq model that generates one-hot encoding

The NewGCA model was able to learn to generate coherent responses word
by word. Some example responses from the model are shown in Table 6.1.
The responses show clearly that the model was trained on tweets, because
every response starts with "@ <unk>". It is also noticeable that the training
data contains many responses that refer the customer to some kind of private
chat (direct messages (dm)) or another website with more information. It is in-
teresting to see that the model finishes its responses with a closure that refers
to different employees and that some generated responses contain URLs.

TABLE 6.1: Example responses for 10 tweets given by the
trained NewGCA model.

Input somebody from @VerizonSupport please help meeeeee I’m
having the worst luck with your customer service

Original @115719 Help has arrived! We are sorry to see that you are
having trouble. How can we help? _NEWLINE_ ^HSB

NewGCA @ <unk>we do n’t want you to feel that way , what is going
on ? _newline_ ^acm

Input Happy Halloween! Since I’m too old to trick or treat I now
look forward to $3 booritos at @ChipotleTweets I got mine
earlier, did you?

Original @115734 I mean, Boorito is basically the adult version of Hal-
loween... -Becky

NewGCA @ <unk>we ’re happy to see you ’re a fan . -tay

Input @AskPlayStation I bought Lego Star Wars in the PlaySta-
tion store but it won’t let me download it because the data
is corrupted..

Original @115745 Sorry for the inconvenience. Do you see the data cor-
rupted message when you try to open the game or download
it?

NewGCA @ <unk>hi there ! please check the following link for more
information on parental control : https : <unk>

Natural language generation for commercial applications 39

Chapter 6. Dialogue response generation

TABLE 6.1: Continued from previous page
Input @ATVIAssist can you still pre oder ww2 on the playstation

store
Original @115755 Yes you can pre order the game on the console store.

For more information please contact your console store. ^RK
NewGCA @ <unk>hey there , please send us a dm for further assistance

. <unk>https : <unk>

Input Please tell me why my @115769 has expired, but Im still be-
ing charged????

Original @115773 Hi there, please DM us you Adobe id so that we
may have a quick look at your account details. ^Tanuj
https://t.co/iuwZCjz4Or

NewGCA @ <unk>hi <unk>, please check the following article : https :
<unk>, you may also find the details for the apps . ^tanuj

Input amazon
Original @115792 >https://t.co/NtNAX2Qh2u ET
NewGCA @ <unk>https : <unk>et

Input @115812 I cant Connect my Interactive Broker (Canada)
with yahoo finance App in ios 11, Any suggestions.. ??

Original @115811 Hi - are you receiving an error message when trying
to link the account?

NewGCA @ <unk>hi there , we ’re here to help . can you please dm us
with more details of your issue ? we ’ll look into it . thanks !
https : //t.co/gdrqu22ypt

Input Thanks for the style advice, @115833 look ...I think? #Hal-
loween2017 #flamingo https://t.co/XvI54La043

Original @115832 Alexa says both styles are working for you! My vote
goes to the Flamingo look! ^SE

NewGCA @ <unk>we ’re glad to hear you ’re enjoying the echo ! let us
know if you have any other questions . ^ep

Input How @115821 packages china https://t.co/fO9vbus18E
Original @115848 We’re always looking for ways to improve and

we’d like to hear your feedback on this packaging:
https://t.co/vjMFYkFFd1 ^KN

NewGCA @ <unk>hi there ! please check the following link for more
information : https : <unk>

Input Thank you @AppleSupport I updated my phone and now it
is even slower and barely works. Thank you for ruining my
phone.

Original @115864 We’d like to help, but we’ll need more details.
What’s happening on your device and which model is it? Do
you have iOS 11.1?

NewGCA @ <unk>we ’d like to help . let ’s take this to dm and
we ’ll explore ways to provide you assistance . https :
//t.co/gdrqu22ypt

Natural language generation for commercial applications 40

Chapter 6. Dialogue response generation

TABLE 6.1: Continued from previous page

6.7.3 Conclusion and discussion

It is clear from the previously discussed results that the NewGCA outper-
forms the simple Seq2Seq model. The former can generate sensible responses
and the latter repeats a single word.

Although we suspect that the poor performance is caused by our decision
to generate GloVe embeddings, there are numerous other reasons why the
Seq2Seq model performed poorly. It could need more data, a better word
embedding (for encoding) or different parameters. However, it is intriguing
that the Seq2Seq model seems to be more sensitive to these factors than the
NewGCA model, which did perform well with the same data and similar
settings.

The NewGCA results show some interesting behaviours that may need to
be addressed for commercial use. We will discuss four prominent response
behaviours.

First of all, the model is biased to respond like a tweet, starting with "@
<unk>". This is great for personalising tweets, but the responses will need
to be post-processed to add the correct Twitter handle. In the current ex-
ample responses, this can be done with a simple rule based adjustment, but
more complex responses may become more involved. Instead, the training
data could also be augmented with some automatic labelling that finds the
Twitter handles and replaces them with a special token before training. That
special token can be filled in after it is generated with the appropriate handle,
essentially generating a template.

Similarly, the model tends to close the responses with a proper closure in-
cluding the employee handle, name or initials. Again, this is great behaviour
for formal responses, but the model should be consistent with this. It can be
adjusted in a similar way as the Twitter handles.

Another model behaviour is that it tends to redirect the customer to a private
conversation. This is understandable because this is a prominent response in
the training data as well. It is challenging to adjust this behaviour because
it is caused by an artefact in the training data. It is possible to remove all
or some dialogue pairs where the customer is asked to continue the conver-
sation elsewhere, but this could leave too little data to train on and it cause
introduce a selection bias to the dataset. Another option is to train another
model that would be able to send appropriate direct messages. This second
model can then be used whenever the first dialogue system redirects the cus-
tomer. However, the second model requires a different train set, one with the
actual private conversations.

Natural language generation for commercial applications 41

Chapter 6. Dialogue response generation

The last model behaviour is a connected to this. Some model responses pro-
vide the customer with hyperlinks. Unfortunately, these URLs may not be
relevant or even accessible. If the model responds with a link, it should be
the correct one. Adjusting this behaviour is in theory similar to adjusting
the Twitter handle and closure, but it is a lot more involved in practice. De-
pending on the desired responses, it could mean that a classifier is needed to
retrieve the relevant URL given the input and response. This classifier will be
very similar to a retrieval-based question-answering bot. The resulting archi-
tecture would be similar to the entity-attribute pair approach to incorporate
knowledge from section 6.6.1.

In summary, the NewGCA model seems a lot more robust than the Seq2Seq
model, but no hard claims can be made. Nevertheless, the generated re-
sponses are highly dependent on the example responses in the train data.
Thus, when using natural language generation (NLG) for commercial settings,
it is crucial that the train data is both extensive and balanced. The model
needs many different examples for the same situation, but the situations
should be evenly balanced. A dialogue system can also be improved by an-
notating the type of information that is given in the sentences in the train
data, such that the right information can be filled in during post-processing.
This holds in particular for personal and dialogue-specific information.

Natural language generation for commercial applications 42

Applications of NLG

Chapter 7

Controlling generation

The advantage of generation-based chatbots over retrieval-based chatbots is that
its responses are not predefined. The bot can learn to convey the same infor-
mation in different ways, making it seem more human. But, the generation
process is not controlled and the bot may respond with undesired sentences
(even if they are meaningful, relevant, consistent and correct; section 6.4).
Therefore, it is commercially relevant to investigate the possibility of control-
ling the generation process of a dialogue system.

This chapter will discuss the existing techniques for controlling generation.
This is a rather small research area and most techniques are focused on gen-
erating responses with an appropriate level of politeness in Japanese. An
overview is given in section 7.1. We adjusted one technique and used it to
create an empathetic customer support chatbot. This use case is described in
section 7.2.

7.1 Enforcing politeness

Niu and Bansal (2018) proposed three different approaches to enforcing the
politeness of a dialogue system: the Fusion model, the Label Fine Tuning (LFT)
model and the Polite-RL model. It was shown that these approaches are able
to account for politeness without the loss of sentence quality.

Each architecture is based on a Seq2Seq model with attention mechanism. The
encoder is a two-layer BiRNN with an LSTM as RNN cell. The decoder is a
four-layer LSTM-RNN. This Seq2Seq architecture was adjusted by adding
either a pre-trained two-layer LSTM-RNN language model or a pre-trained
BiRNN-CNN politeness classifier. The language model is trained to be able
to generate polite utterances only.

The fusion model combines the Seq2Seq model with the language model. It
uses two generation models to generate a response. At each step in the gen-
eration process, both models generate a token given the previously generated
tokens. The Seq2Seq model selects the token that would result in a response
to the conversational input. Whereas the language model selects the token
that would create a polite utterance. The two tokens are combined using

Natural language generation for commercial applications 43

Chapter 7. Controlling generation

a linear combination with a specified weight. The weight determines which
model’s token is more important.

The polite-RL model describes dialogue response generation (DRG) as a reinforce-
ment learning (RL) problem. Instead of judging the model on how well it can
match a target politeness score (like the language model) or how well it can
reply on the input (like the original Seq2Seq model), the model can learn how
to compromise. Thus, generating a response that is as polite and natural as
possible. The model uses the politeness classifier to add politeness. During
training, a response is sampled (free running) and its politeness is classified.
This politeness score is then combined with the maximum likelihood loss of the
Seq2Seq model itself (teacher forcing) to create the objective function that the
model weights are updated with.

However, neither the fusion model nor the polite-RL model allow the gener-
ation of responses with different target politeness levels. A different model
needs to be trained for each level of politeness. The Label Fine Tuning (LFT)
model does allow the specification of the politeness level. This target label
is used as initial state of the encoder in the Seq2Seq model. During train-
ing, the label is automatically generated using the politeness classifier. Since
the Seq2Seq model is trained to generate the target response, the target la-
bel should be the politeness of this target response. A similar architecture is
shown in Figure 7.1.

Although these three models are created for enforcing politeness, they could
be used for enforcing other features as well. This is done by training the
language model to generate sentences with that other feature and training the
classifier to distinguish sentences with and without this feature. An example
of this is the sentiment of a response. This is investigated in section 7.2.

7.2 Use case: Empathetic customer support

For some applications, it may be beneficial for a dialogue system to incor-
porate context in terms of language usage or style. We have discussed in
section 6.4.3 that inconsistent language style can be problematic. However,
other inconsistencies can cause similar problems, depending on the situation.
In the customer support domain, it is very important to empathise with the
customer and make them feel at ease. The basic seq2seq model does not take
this into account.

This section discusses how an empathetic customer support can be created.
We imagine the creation of such a system by defining some rules that deter-
mine with which sentiment the dialogue system should respond and a gen-
eration model that adheres to this target label. Since the focus of our research
is on NLG, we will only describe the creation of the generation model.

Thus, for this use case, we need to control the sentiment of the generated
sentence. Sentiment is a complex sentence characteristic that can be assigned

Natural language generation for commercial applications 44

Chapter 7. Controlling generation

The dashed and dotted lines indicate training and testing steps,
respectively.

FIGURE 7.1: A schematic representation of the adjusted Label
Fine Tuning (LFT) model (Niu and Bansal, 2018).

automatically with an existing classifier. This means that we may not need a
specific dataset, but we can use the Kaggle twitter customer support dataset (see
section 5.1) and a sentiment classifier 1 to train the model.

We approach sentiment control by implementing the LFT model (Niu and
Bansal, 2018) described in section 7.1. The LFT model was adjusted to use
the NewGCA model (Ludwig, 2017), because it outperformed the Seq2Seq
model (see section 6.7). We added the sentiment label as an extra input to the
NewGCA model. The label is concatenated to the sentence representation,
instead of using it as bias for the sentence representation. This results in an
architecture where the NewGCA model generates the next word given the
sentence representation, the target label and the previously generated words.
This adjustment to the NLG pipeline is shown in Figure 7.1.

To force the model to generate sentences with the desired sentiment, we ad-
justed the loss function to take the sentiment label into account. This was done
by estimating the sentiment of the partially generated sentence, including
the new word, and comparing it to the actual sentiment of the given partial
answer, including the true expected word. The annotation of the response
sentiment is described in section 7.2.1 and the loss function is described in
section 7.2.2.

1https://www.clips.uantwerpen.be/pages/pattern-en

Natural language generation for commercial applications 45

https://www.clips.uantwerpen.be/pages/pattern-en

Chapter 7. Controlling generation

7.2.1 Sentiment annotation

We annotated the true sentiment of a sentence using the Pattern library1. This
library uses a database of manually annotated words to calculate the senti-
ment. The sentiment of a sentence is given by two decimals: the polarity and
the subjectivity. The polarity determines whether the sentence has positive or
negative sentiment and is a value between 1.0 (positive) and−1.0 (negative).
The subjectivity of a sentence is indicated with a value between 0.0 (objective)
and 1.0 (subjective). For the investigation of this use case, we only use the
polarity of the sentence.

The basic principle behind the sentiment score of Pattern, is that the senti-
ment of a sentence is determined by the sentiment of the words. It is based
on the average sentiment of the words with sentiment in the sentence. Since
words can be combined to create nuance, the Pattern library uses some extra
rules to capture this nuance better. Thus, the actual sentiment, calculated by
Pattern, is slightly different from the average sentiment of the words with
sentiment. However, this average can be a good approximation for the sen-
timent score that Pattern would give. We use this approximation to calculate
the sentiment loss when training.

7.2.2 Loss function with sentiment

In order to force the model to adjust its generation behaviour based on the
provided sentiment label, we defined a specific loss function consisting of
two parts: the sentiment loss and the generation loss.

The sentiment loss of a partially generated sentence can be calculated by ex-
ploiting the fact that the NewGCA model generates words that are one-hot-
encoded. Thus, it generates a vector with for each word in the vocabulary,
the probability that the word should be next. We created a sentiment weight
matrix with the sentiment score for each word in the vocabulary. This allows
us to calculate the expected sentiment score for each generated word with a
simple matrix multiplication. Then we counted the amount of non-zero sen-
timent scores in the partially generated sentence and used it to approximate
the total sentiment score. This approximation is then compared to the senti-
ment score of the true partial answer using the mean absolute error. The loss
can be summarised as:

sentiment(yi, j) =
∑

j
k=1 yik · S

max(1, |{yik · S) > 0 | k ∈ {1, 2, . . . , j}}|) (7.1)

Lsentiment =
1

∑S
i=1 Wi

S

∑
i=1

Wi

∑
j=1
|sentiment(yi, j)− sentiment(ŷi, j)| (7.2)

where S is the number of sentences, Wi the number of words in sentence i,
sentiment(yi, j) the partial sentiment of sentence yi until word j (included),

Natural language generation for commercial applications 46

Chapter 7. Controlling generation

ŷik the generated word vector for sentence i at word k and S is the sentiment
matrix.

The generation loss is determined by whether the right word is generated.
This is calculated using the categorical cross entropy:

Lgeneration =
1

∑S
i=1 Wi

S

∑
i=1

Wi

∑
j=1

V
∑
v=1

yijv · log(ŷijv) (7.3)

where V is the vocabulary size and yijv is the vth dimension of the word
vector yij. The other parameters are as in equation 7.2.

The total loss for each word is a linear combination of the generation loss
(equation 7.2) and the sentiment loss (equation 7.3):

Ltotal = Lgeneration + λLsentiment (7.4)

where λ is the weighting scalar. It is possible to tune the sentiment control
by adjusting the λ parameter. A high value will cause the model to gener-
ate words with a specific sentiment, disregarding the quality of the sentence
structure and content. A low value for λ makes the model less sensitive for
the sentiment control. Note that λ is used for training the model and cannot
be adjusted without training the model anew.

7.2.3 Training specification

We trained the adjusted LFT model on the same Kaggle twitter customer sup-
port dataset (see section 5.1) as the NewGCA and Seq2Seq models from sec-
tion 6.7.

The label given to the model was the sentiment of the partial answer com-
bined with the target word. The sentiment is the score determined by the
Pattern library2. We trained a model using only the polarity.

The model was trained with the default Adam optimiser3 and a batch size of
64 quadruples (the NewGCA triples and the sentiment score). We used a λ
of 1.0 for the loss function and the words were embedded using same GloVe
embedding as the models in section 6.7.

7.2.4 Results

A sample of sentiment controlled responses, generated by the LFT model,
are shown in Table 7.1. The LFT model learned to generate different sen-
tences from the NewGCA model to the same tweets (see Table 6.1). The LFT

2https://www.clips.uantwerpen.be/pages/pattern-en
3https://keras.io/optimizers/#adam

Natural language generation for commercial applications 47

https://www.clips.uantwerpen.be/pages/pattern-en
https://keras.io/optimizers/#adam

Chapter 7. Controlling generation

model was able to learn to respond with a given polarity sentiment, at the
cost of relevancy of the reply when compared to the responses from the pure
NewGCA model. It is noticeable that the model is slightly overfit towards
the polarity label. When someone complains in a tweet, the model generates
a response that is very positive about it. This shows that it is controlled by
the polarity label.

TABLE 7.1: Example responses with different polarity for 10
tweets. Polarity is a scale between 1.0 (positive) and −1.0 (neg-
ative). The bold sentence is the input tweet that the model re-

sponds to.

Polarity Sentence
somebody from @VerizonSupport please help meeeeee I’m
having the worst luck with your customer service

1.0 @ <unk>awesome ! we ’re glad to hear that you are able to !
please let us know if you have any questions . ^ddd

0.5 @ <unk>ok , we can help you with this . please follow and
dm us so we can assist . _newline_ ^hsb

0.0 @ <unk>we can help you with your internet . please follow
and dm us . _newline_ ^jay

-0.5 @ <unk>sorry to hear that . we can help you out with your
internet service . _newline_ ^hsb

-1.0 @ widespread horrible ! we ’d like to help . please dm us your
account email @ 115990 and we will assist . ^ddd
Happy Halloween! Since I’m too old to trick or treat I now
look forward to $3 booritos at @ChipotleTweets I got mine
earlier, did you?

1.0 @ <unk>awesome ! thanks for the kind words ! -james
0.5 @ <unk>love it . -james
0.0 @ <unk>we ’re so <unk>. -james
-0.5 @ <unk>sorry to hear that . please write us at https : <unk>.

-gabe
-1.0 @ 81 horrible ! -james

@AskPlayStation I bought Lego Star Wars in the PlaySta-
tion store but it won’t let me download it because the data
is corrupted..

1.0 @ <unk>excellent question . please check your direct mes-
sages .

0.5 @ <unk>glad to help ! please follow us via twitter and let us
know so we can send you a dm with further instructions .

0.0 @ <unk>hi there . please check your dm ’s for further instruc-
tions .

-0.5 @ <unk>sorry to hear that . please check your dm ’s for fur-
ther instructions .

-1.0 @ talked awful sorry to hear that . please check your dm ’s
for the instructions .

Natural language generation for commercial applications 48

Chapter 7. Controlling generation

TABLE 7.1: Continued from previous page

Polarity Sentence
@ATVIAssist can you still pre oder ww2 on the playstation
store

1.0 @ <unk>excellent , please let us know if you have any ques-
tions . thank you . ^rn

0.5 @ <unk>glad to hear that you were now now now now . stay
tuned for updates . ^jp

0.0 @ <unk>hey there , please send us a dm so we can investigate
this further . ^jw https : <unk>

-0.5 @ <unk>sorry to hear that , things are still being looked into .
please stay tuned for updates . <unk>

-1.0 @ widespread afraid ! ! ! please report this to our <unk>team
here : https : <unk>. ^fb
Please tell me why my @115769 has expired, but Im still be-
ing charged????

1.0 @ <unk>awesome ! let us know if you need any help in the
future . ^raj

0.5 @ <unk>glad to hear it ’s resolved . please let us know if you
need any help ! thanks ! ^aj

0.0 @ <unk>hi , please let us know if you need any help ! ^rb
-0.5 @ <unk>sorry for the <unk>issue . please let us know if you

need any help . ^raj
-1.0 @ widespread horrible sorry to hear that ! can you please dm

us your adobe id email address ? we ’d like to help . ^sv
amazon

1.0 @ <unk>awesome ! thanks for keeping us updated ! we ’re
always here to help ! <unk>

0.5 @ <unk>glad you ’re enjoying the <unk>! <unk>
0.0 @ <unk>(<unk>) _newline_ mh
-0.5 @ <unk>sorry to hear that , <unk>. we ’d like to help . please

reach us by phone or chat here : https : //t.co/jzp7hla23b
^dw

-1.0 @ talked awful !
@115812 I cant Connect my Interactive Broker (Canada)
with yahoo finance App in ios 11, Any suggestions.. ??

1.0 @ <unk>excellent ! thanks for the kind words ! i ’m glad to
hear ! please let us know if you need anything else ! !

0.5 @ <unk>sure thing , <unk>. you can find more information
here : https : <unk>. hope this helps ! <unk>

0.0 @ <unk>hi <unk>, we ’re here to help . please reach out to
us here : https : //t.co/jzp7hla23b so we can look into this
further . ^pk

-0.5 @ <unk>sorry to hear that , <unk>. you can find that informa-
tion here : https : <unk>. if you have any questions , please
let us know .

Natural language generation for commercial applications 49

Chapter 7. Controlling generation

TABLE 7.1: Continued from previous page

Polarity Sentence
-1.0 @ talked awful ! i ’ll be here to help . ^pk

Thanks for the style advice, @115833 look ...I think? #Hal-
loween2017 #flamingo https://t.co/XvI54La043

1.0 @ <unk>awesome ! thanks for the kind words ! we ’re always
here to help ! <unk>

0.5 @ <unk>glad to hear that you ’re enjoying the <unk>! we ’re
always here to help ! ^ab

0.0 @ <unk>we ’re always looking for ways to improve ! please
reach out to us here : https : //t.co/haplpmlfhn so we can
look into this further . ^pk

-0.5 @ <unk>sorry to hear that , <unk>. we ’d like to help . please
reach out to us here : https : //t.co/jzp7hla23b so we can look
into this for you . ^pk

-1.0 @ talked awful ! we ’re glad to hear that you ’re referring to .
we ’d like to help . ^pk
How @115821 packages china https://t.co/fO9vbus18E

1.0 @ <unk>excellent question . please check your direct mes-
sages .

0.5 @ <unk>glad to help . please follow us via twitter and let us
know so we can send you a dm .

0.0 @ <unk>hi there . please check your dm ’s for further instruc-
tions .

-0.5 @ <unk>sorry to hear that . please check your dm ’s for fur-
ther instructions .

-1.0 @ talked awful sorry to hear that . please check the next article
to troubleshoot the ps4
Thank you @AppleSupport I updated my phone and now it
is even slower and barely works. Thank you for ruining my
phone.

1.0 @ <unk>excellent . we ’re glad to hear that you were able to !
happy to help ! please reach out if you need help in the future
.

0.5 @ <unk>glad to hear it ’s working again . we ’ll be happy to
help . please dm us the answer . https : //t.co/gdrqu22ypt

0.0 @ <unk>we ’d like to help . send us a dm and we ’ll go from
there . https : //t.co/gdrqu22ypt

-0.5 @ <unk>sorry to hear this . we ’d like to help . send us a dm
with your current ios version and we ’ll go from there . https
: //t.co/gdrqu22ypt

-1.0 @ talked awful ! we ’d like to help .

Natural language generation for commercial applications 50

Chapter 7. Controlling generation

7.2.5 Conclusion and discussion

We have shown that natural language generation can be controlled using a
set of parameter inputs that the model is trained with.

Although the results are promising, they are not yet at a level that is suitable
for commercial use. We will discuss five ways to adjust the model in a way
that could improve performance.

First of all, we trained the full LFT model from scratch. It is also possible to
start with a pre-trained NewGCA model and continue training it with transfer
learning. That way, the model only needs to learn to adjust the sentences that
it can already generate to incorporate the sentiment label. The model would
not need to learn how to construct sentences anymore.

Secondly, the LFT model can also be adjusted architecturally. A dense layer
with linear activation function can be used to make a multi-dimensional em-
bedding of the label. This would allow the model to incorporate the senti-
ment in a more flexible way.

Another way to improve the performance is by adjusting the loss function.
Training with different values of λ will tweak the behaviour of the model to
be less sensitive to the sentiment loss (Lsentiment, see equation 7.4). It is also
possible to change the way the sentiment loss is calculated in the first place
(equation 7.2) or to compare the sentiment of the generated word with the
sentiment of the true next word, instead of using the partial responses:

Lalt_sentiment =
1

∑S
i=1 Wi

S

∑
i=1

Wi

∑
j=1
|yij · S − ŷij · S| (7.5)

We used the partial responses because this is also the value that the model
receives as label, but changing this could result in a model that can better
incorporate the sentiment because it better represents how the original senti-
ment label is constructed.

The model may also be improved by using the sentiment loss over the en-
tire generated response. During training time, the model receives the partial
sentiment of the sentence generated until now. However, when using the
model, the control label is used to indicate the sentiment of the entire sen-
tence. This means that when generating the sentences, the model will start
with a word of the right sentiment and then continue the sentence as if it was
not controlled. Instead, the model can be trained using the label of the full
target reply. It is also possible to adjust the generation procedure to change
the given label to be spread over the generated words, mimicking the distri-
bution of the label over the words in the train sentences.

Lastly, the model could be improved by using another sentiment annota-
tion. The Pattern library was chosen for its simplicity, but other methods
for sentiment analysis exist. Since other approaches were not investigated, it

Natural language generation for commercial applications 51

Chapter 7. Controlling generation

is possible that some sentiment models have a more suitable sentiment rep-
resentation. Readers interested in deep learning applications of sentiment
analysis are referred to the survey paper by Zhang et al. (2018).

Natural language generation for commercial applications 52

Applications of NLG

Chapter 8

Language style transfer

Another use of natural language generation is language style transfer (LST).
This is when a text, given in some style, is adjusted to fit some other style. The
style of a sentence can be described in several ways. For example, modern
English versus Shakespearean English or positive-negative sentiment.

There are two approaches to language style transfer: parallel style transfer and
non-parallel style transfer. The term parallel refers to the nature of the data
that is available for training. The train data is called parallel if each sentence
in the training set has a corresponding sentence in another style. This type
of data is very hard to obtain. Non-parallel data is a dataset that is split into
two (or more) subsets, one for each style, but there is no direct one-to-one
correspondence between the sentences in one subset to the other.

8.1 Parallel style transfer

Most LST models assume non-parallel data, but they are also suitable for
parallel data. Style transfer for parallel data is in essence a regular sequence
to sequence problem and can be approached with (a variation of) the basic
NLG pipeline (Chapter 4). An example of this is Neural Machine Translation
(NMT). Even dialogue response generation can be considered a style transfer
problem where a sentence in "question" style is transferred to the "answer"
style, but this perspective is a bit far fetched.

8.2 Non-parallel style transfer

Current language style transfer (LST) algorithms use a variation of adversarial
learning to train (see e.g Hu et al., 2017). The generator encodes a sentence to a
generic (style independent) representation and decodes it to a specified style.
The discriminator needs to determine whether a given sentence is original or
generated. The generator tries to fool the discriminator. This approach is
very similar to professor forcing (section 4.1.2), since the generic representation
is reconstructed in teacher forcing mode and it is transferred in free running
mode. The resulting model is essentially a GAN.

Natural language generation for commercial applications 53

Chapter 8. Language style transfer

Fu et al. (2017) showed that language style transfer can be approached from
two perspectives: with multiple decoders or with a style embedding. Multi-
decoder LST uses multiple generation models in the generator, each trained to
generate a specific style for the generic representation. Style embedding LST
has a single decoder (like dialogue systems) that has an extra input for the tar-
get style. The style is represented with an embedding. This embedding is used
to condition the output of the decoder such that it will generate sentences in
the given style.

Shen et al. (2017) proposed a version of the style embedding model called
the Cross-aligned auto-encoder (CAAE). This is a style embedding LST that is
based on the Seq2Seq model. Both the encoder and decoder use GRU cells
with the same memory size. Part of the GRU memory is used for the sentence
representation, the other part for the style embedding; they are concatenated.
The style of the input and the target style are embedded into a vector using
a dense layer. The encoder GRU-RNNs memory is initialised with the style
embedding of the input text and zeroes for the sentence representation. The
decoder GRU-RNNs memory is initialised with the style embedding from the
target style and only the sentence representation from the encoder memory.

The encoder and decoder are trained using adversarial learning. Shen et al.
(2017) used a discriminator that was a simple feed-forward network with a sin-
gle layer and sigmoid activation function.

To give an idea of the performance of the CAAE model, some example trans-
ferred sentences are shown in Table 8.1 and Table 8.2. We created these re-
sults with the available code on GitHub1. We show the results for the first 5
sentences in the validation set.

TABLE 8.1: Example negative to positive style transfer on 5 test
reviews by the CAAE model (from Shen et al., 2017).

Original Transfer
ok never going back to this place
again .

all far to come back here .

easter day nothing open , heard
about this place figured it would
ok .

this place , for one , it ’s ’s delicious
, it is excellent .

the host that walked us to the table
and left without a word .

the manager and the us us us a
made us our order .

it just gets worse . it ’s good .
the food tasted awful . the food tastes amazing .

1https://github.com/shentianxiao/language-style-transfer

Natural language generation for commercial applications 54

https://github.com/shentianxiao/language-style-transfer

Chapter 8. Language style transfer

TABLE 8.2: Example positive to negative style transfer on 5 test
reviews by the CAAE model (from Shen et al., 2017).

Original Transfer
staff behind the deli counter were
super nice and efficient !

the staff are in _num_ hours and
the staff was so slow !

love this place ! avoid this place !
the staff are always very nice and
helpful .

the staff are not very nice and rude
or rude .

the new yorker was amazing . the whole room was not amazing .
very ny style italian deli . very small italian taco style sauce .

Since the loss function in adversarial learning is dependent on the quality of
the discriminator, the CAAE model can be improved by using a language
model as discriminator (Yang et al., 2018). Similarly, the TextGAN architecture
(section 6.2.3) may be adjusted for style transfer by adding a style embedding
or training multiple decoders.

8.3 Use case: Sentiment adjustment in reviews

We suspect that language style transfer can be used for adjusting sentences
that are already retrieved or generated. The idea behind this is that the in-
formation in the input sentence is as desired, but the sentence itself is not
suitable enough. This can be valuable for improving non-specific responses
from retrieval-based chatbots and adjusting them to better suit the addressee.

We investigated this technique by adjusting the sentiment in Yelp reviews
because the Yelp dataset (section 5.2) was a suitable, readily available dataset
for style transfer. We did this using the Cross-aligned auto-encoder (CAAE)
model by Shen et al. (2017) (section 8.2) and some adjusted versions of the
TextGAN architecture by Zhang et al. (2016) (section 6.2.3).

8.3.1 Model descriptions

We first attempted to replicate the results from Shen et al. (2017) with the
CAAE model. We recreated the model in our own pipeline as much as pos-
sible and referenced the GitHub implementation2 for details.

The CAAE model uses a Seq2Seq model that is trained in a way similar to pro-
fessor forcing. The input sentence is encoded using a RNN with a single GRU
cell. The class label is fed to a dense layer with a linear activation function and
used to initialise a part of the encoder state. The other part of the encoder
state is initialised with zeroes and will contain the representation of the en-
coded sentence. After processing the input sentence, the resulting RNN state

2https://github.com/shentianxiao/language-style-transfer

Natural language generation for commercial applications 55

https://github.com/shentianxiao/language-style-transfer

Chapter 8. Language style transfer

is split into the label representation and the sentence representation. The
original label information is replaced with the target label information. The
sentence representation and the target label are used to initialise the initial
decoder state and used to generate the new sentence.

This Seq2Seq model is called in two different ways during training. To recon-
struct the original sentence with the decoder, the model is called using teacher
forcing. However, teacher forcing is not suitable when the target sentence is
not known, as in the case of language style transfer. Thus for style transfer,
the model needs to be called in free running mode.

The adjusted TextGAN model uses the NewGCA architecture instead. The re-
sulting architecture is the adjusted LFT model from section 7.2 that is trained
with a professor forcing architecture. This TextGAN-like architecture is visu-
alised in Figure 8.1.

Both LST models are trained using adversarial learning with two discrimi-
nators to determine how well the model incorporates each new style. The
discriminators of the CAAE model had to distinguish between original and
generated sentences for each style. The discriminators of the TextGAN model
had to either distinguish between original and generated sentences, regard-
less of style or classify the style of the generated sentences.

Each discriminator is the language model by Kim (2014) as described in sec-
tion 3.2. The language model consists of a number of 1-dimensional convolu-
tional layers with a leaky ReLU activation function, followed by a max pooling
layer over the time dimension to identify which tokens are more prominent.
For each convolutional layer, the max pooled result is concatenated and a
dropout layer is applied. Afterwards, the result is fed to a dense layer with a
single unit with hard sigmoid activation in order to make the classification.

All discriminators have the same architecture, but they are trained separately,
resulting in different network weights.

Note that in the original implementation of the CAAE model, the discrimi-
nators use the sequence of hidden states for the Seq2Seq decoder to classify
the style (see Shen et al., 2017). However, we used the generated sequence
of words instead due to technical limitations3. This will reduce the perfor-
mance of the discriminators and thus make it more difficult for the generator
to adjust the sentence style.

8.3.2 Training loss

The loss of both LST models is determined by the linear combination of the
word loss and the adversarial loss.

The word loss depends on the way the word is represented numerically. For
the CAAE, we used a GloVe embedding, thus the resulting word loss is the

3The Keras library exposes only the last state, not the entire sequence.

Natural language generation for commercial applications 56

Chapter 8. Language style transfer

FIGURE 8.1: A schematic representation of our TextGAN
(Zhang et al., 2016) approach to language style transfer (LST).
The structure is similar to the adjusted Label Fine Tuning (LFT)

model (Niu and Bansal, 2018) from section 7.2.

Natural language generation for commercial applications 57

Chapter 8. Language style transfer

distance between the generated word and the target word. We calculate this
using the cosine distance, after normalising the generated word:

Lcos =
1

∑S
i=1 Wi

S

∑
i=1

Wi

∑
j=1

yij · ŷij

||yij|| · ||ŷij||
(8.1)

where S is the number of sentences, Wi is the number of words in sentence i,
yij is the embedding of the target word j in sentence i and ŷij is the predicted
word j in sentence i.

For the TextGAN model, we generated words embedded with a one-hot encod-
ing. Thus we used the categorical cross entropy loss from section 7.2:

Lcce =
1

∑S
i=1 Wi

S

∑
i=1

Wi

∑
j=1

V
∑
v=1

yijv · log(ŷijv) (7.3)

The adversarial loss can be determined by the binary cross entropy or the mean
squared error between the predicted style and the actual style. The former is a
special case of the categorical cross entropy (equation 7.3):

Lbce =
1

∑S
i=1 Wi

S

∑
i=1

Wi

∑
j=1

yij · log(ŷij) + (1− yij) · log(1− ŷij) (8.2)

Lmse =
1

∑S
i=1 Wi

S

∑
i=1

Wi

∑
j=1

(yij − ŷij)
2 (8.3)

where the parameter naming is the same as for equation 8.1.

For the CAAE model, we used the total loss is defined by:

Ltotal_caae = Lcos + ρLbce (8.4)

where Lcos and Lbce are defined in equation 8.1 and equation 8.2. The ρ pa-
rameter determines how important the discriminator loss is.

The discriminators of the CAAE model were trained using the binary cross
entropy loss (equation 8.2).

Note that the adversarial loss is only relevant for training the generator if the
discriminator is accurate. Since the models are trained in parallel the dis-
criminators are clueless at the start of training. Therefore, the adversarial
loss is meaningless at first. Thus we adjust the ρ parameter during training.
As long as the discriminator loss is higher than a pre-determined value κ, we
train the generator using only the word loss; ρ = 0. Once the discriminator
is good enough, we train using the total loss with the given ρ.

The adversarial loss of the TextGAN model is the same as the loss that was
used to train the discriminators. The discriminators had to be trained from

Natural language generation for commercial applications 58

Chapter 8. Language style transfer

scratch using mean squared error (equation 8.3), because the initial binary cross
entropy loss (equation 8.2) was too high and the model could not learn how
to decrease the loss. Nevertheless, the binary cross entropy better reflects
the classification task of the discriminator and is the preferred loss function.
Thus we experimented with pre-training the discriminators with the mean
squared error and continuing training them with the generator using binary
cross entropy. The total loss for training the TextGAN from scratch is defined
by:

Ltotal_textgan = Lcce + ρ(Lmse + Lmse) (8.5)

and the total loss when training the TextGAN model with pre-trained dis-
criminators is defined by:

Ltotal_textgan = Lcce + ρ(Lbce + Lbce) (8.6)

where Lcce, Lmse and Lbce are described in equation 7.3, equation 8.3 and
equation 8.2, respectively.

Again, the adversarial loss is only informative if the discriminators are accu-
rate. The solution used for the CAAE model is not very suitable. Adding the
adversarial term to the total loss equation after it was removed will dramat-
ically increase the total loss, making it less representative of the actual fault
in the output. Thus, we experimented with a conditional loss that also takes
the discriminators accuracy into account. If the discriminator loss was higher
than a pre-specified value, the adversarial loss of that discriminator is set to a
specific large value. This value was similar to the initial loss of an untrained
network. This stabilised the training loss of the generator.

8.3.3 Training specification

We trained the both models on the Yelp dataset (see section 5.2).

The CAAE model was trained using a GloVe embedding trained on the en-
tire dataset. We used a batch size of 64. The discriminators were trained in
separate batches for each style. We used a latent label embedding size of 200
and a latent input embedding of 500. Thus the encoder and decoder RNNs
had 500 + 200 = 700 units and the dense layer for the label embedding had
200 units. For the discriminators, we used 5 convolutional layers, each with
128 output filters, but different kernel sizes: 1,2,3,4 and 5. The dropout per-
centage was set to 50%. We set ρ to be equal to 1.0, which would only be used
if the sum of the loss of the discriminators was lower than 1.2. To stabilise
the training loss, we used an optimiser with gradient clipping. Specifically,
we used the Adam optimiser with a normalised clip value of 30.0. We set the
optimiser parameters to β1 = 0.5 and β2 = 0.999. The learning rate for the
discriminator was 0.002, while we set it to 0.0005 for training the generator.
We trained for 100 epochs at maximum, using early stopping with a patience
of 5.

Natural language generation for commercial applications 59

Chapter 8. Language style transfer

The TextGAN model was trained in different ways. We used the GloVe vec-
tors created from the Yelp dataset itself or pre-trained GloVe vectors4 that were
trained on Twitter data. The pre-trained vectors were extended with an ex-
tra dimension for the one-hot encoded special tokens that indicate the start
and end of a sentence, as described in section 2.2. Due to GPU memory
limitations5, the model was trained with a batch size of 4. The model was
trained with the default Adam optimiser6. The TextGAN model was trained
from scratch, with a pre-trained style discriminator with perfect accuracy,
and with both discriminators pre-trained. The TextGAN discriminators had
2, 3, 4, and 5 as kernel sizes for the four convolutional layers with each 15
output filters. The number of output filters was empirically determined by
comparing the accuracy of models with a different number of output filters.
The discriminators were trained with the same parameter settings as the gen-
erator.

8.3.4 Results

Similar to the results of the Seq2Seq model in section 6.7.2, the both mod-
els were unable to learn to generate sentences either. The models did per-
form slightly better than the Seq2Seq model, because they generated more
than a single repeated word, but no grammatical sentences were generated.
This holds for both the positive and the negative reviews. These results do
not compare to the results in the original paper (see Shen et al., 2017). The
original model is able to generate sentence and had some promising transfer
results, as was shown in Table 8.1 and Table 8.2 in section 8.2.

8.3.5 Conclusion and discussion

Considering the performance of the original CAAE model (see table 8.1 and
8.2), neither LST model performs as is expected. Combined with the poor
results of the Seq2Seq implementation (section 6.7.2), we cannot exclude the
possibility that there is a bug in our implementation7. Nevertheless, there are
other causes to consider. We will discuss some of these.

In section 6.7.3, we considered that the Seq2Seq model can be very sensitive
to the quality of the word embedding. If this is the case, the CAAE model
would be very sensitive to this as well, since it uses a Seq2Seq model as foun-
dation. However, this does not explain the poor performance of the TextGAN
model nor its similar performance when using the pre-trained Twitter em-
bedding.

4https://github.com/stanfordnlp/GloVe
5The TextGAN model contains several models and uses a lot of GPU memory.
6https://keras.io/optimizers/#adam
7The pre-trained components of the TextGAN did not give the same results when loaded

into the full TextGAN, even though they had the same architecture and weights. This be-
haviour was unexplained.

Natural language generation for commercial applications 60

https://github.com/stanfordnlp/GloVe
https://keras.io/optimizers/#adam

Chapter 8. Language style transfer

The both models are a type of GAN. This architecture allows the model to
determine the quality of generated sentence that are not in the train data. Al-
though the use of a GAN is needed for style transfer, it does have its caveats.
In order to determine the quality of a sentence, you need a discriminator that
can actually distinguish original sentences from generated ones. However,
if the discriminator is too good, the generator is not able to learn what good
sentences are. When training the LST models, the discriminators were never
able to learn the difference between the two classes and were thus unable to
provide the generator with a representative adversarial loss.

This was solved when using pre-trained discriminators in the TextGAN model,
but they were not properly used when training the generator. The pre-trained
models in our implementation were unable to recreate their output when pre-
training, even though their weights were properly loaded in. We were unable
to find the cause of this behaviour.

Nevertheless, when considering the original CAAE results (Table 8.1 and Ta-
ble 8.2) and comparing them to the sentiment control results (Table 7.1), our
adjusted LFT model is better at grasping the nature of sentiment. This could
be due to the difference in base model (seq2seq versus NewGCA), but no
conclusions about this can be drawn from the TextGAN model.

In conclusion, we suspect that we were not able to investigate the power of
language style transfer due to problems with our implementation. This is
unfortunate, but we like to explain our methods such that others can learn
from it.

Natural language generation for commercial applications 61

Part III

Conclusions and Discussions

62

Conclusions and Discussions

Chapter 9

Challenges in NLG

This thesis provided and overview of natural language generation with a de-
tailed elaboration of language style transfer, dialogue response generation (DRG)
and controlling the generation process. The results of the investigation on an
automatic (empathetic) customer support, that are shown and discussed in
section 6.7 and section 7.2, are very promising. Unfortunately, we were un-
able to reproduce the previous results by Shen et al. (2017) on language style
transfer in our own pipeline.

The overall conclusion of the use of NLG in these applications is that they are
better when adding more complexity to the models. This is in line with previ-
ous research that showed that an ensemble of retrieval-based and generative
solutions outperform the simpler solutions on their own (Song et al., 2016).
Similarly, the NewGCA model outperforms the Seq2Seq model (section 6.7.2)
by splitting the sentence representation from the previously generated rep-
resentation. The solutions discussed in section 6.5 and section 6.6 also show
that a more complex dialogue system will generate better responses.

This chapter will discuss the challenges with NLG in general, aside from
the main challenges in DRG described in section 6.4. In particular, we will
discuss the evaluation of these NLG systems and the training of Generative
Adversarial Network (GAN)s. But first we will discuss the ability of these NLG
system to actually capture the text.

9.1 Language understanding

Our approach to dialogue response generation (DRG) makes the assumption
that conversations can be modelled as sequences of utterances that are se-
quences of tokens (Serban et al., 2016b). But, does this model actually capture
the entire dialogue? Do textual conversations contain more information than
just the text itself? Body language can also contain a lot of information in case
of conversations that take place in person. Does textual dialogue contain a
similar type of non-textual information? An example of this may be emojis
that were removed from the data. Although we are not aware of any such
filtering in our datasets, these are important questions to keep in mind when
creating an NLG system.

Natural language generation for commercial applications 63

Chapter 9. Challenges in NLG

Similarly, it is important for the NLG pipeline that the tokens are properly
represented in the model. We used a GloVe embedding to represent our word
tokens in a meaningful way, but other options could improve the results. The
quality of the GloVe embedding is dependent on the quality of the dataset.
The vector representations are based on coocurrences and each cooccurrence
is weighted equally, thus the embedding becomes less accurate if the training
text is noisy (Pennington et al., 2014).

The quality of the sentence representation is also crucial for creating a good
NLG system. A neural language model can create a suitable generic repre-
sentation that can be fine-tuned for specific tasks (Kalchbrenner et al., 2014).
But, it is non-trivial to determine the quality of this representation because it
is very abstract. The fact that the full NLG system performs well shows that
the sentence representation is good enough, but it does not indicate whether
it is the best option. It may be interesting to research the quality of other neu-
ral language models, like the CNN-based models described in section 3.2.

9.2 Evaluating generated results

Evaluation of text generated by an NLG model is a difficult problem in its
own right. As is explained in section 6.3, the existing automatic metrics do
not correlate with human opinion on DRG. This forces evaluation to be done
manually, which is subjective.

This makes it not only difficult to evaluate a model on its own, it makes it
even more difficult to compare different models with each other. To compare
models, the models need to be trained on the same data. Since the datasets
nor the models are usually not publicly available, the models need to be re-
constructed first. Then, they need to be compared in the same way, prefer-
ably with the same human judges. Manual comparison is usually performed
with just a handful of human judges, whose opinion may not correspond to
another set of human judges. Thus most models are not compared to each
other.

9.3 Training GANs

For language style transfer, we trained several models using a GAN structure
without success. Shen et al. (2017) proved that if the sentence representation
has a more complex distribution, such as a Gaussian mixture model, then
the style transfer can be uniquely determined. Thus, language style transfer
may not be possible if the sentence representation follows a simple normal
distribution (Shen et al., 2017). Our approaches to language style transfer
assume that the distribution of the information in the two parallel datasets
is the same for both datasets (Shen et al., 2017). Since we reused the dataset
from Shen et al. (2017) for our experiments and their original results with the

Natural language generation for commercial applications 64

Chapter 9. Challenges in NLG

CAAE model were promissing, we do not expect that these two assumptions
on the dataset were the reason behind the poor performance in section 8.3.

Instead, it may have something to do with training GANs. Text data is dis-
crete, which makes it difficult for the generator to back-propagate the gener-
ation loss (Zhang et al., 2016) as well as the adversarial loss from the discrim-
inator (Li et al., 2017). This is why our generation loss was estimated using a
softmax activation function (similar to Zhang et al., 2016). However, we did
not solve this problem for the adversarial loss. Due to technical limitations,
we could not train the discriminator to discriminate based on the intermedi-
ate hidden states of the generator, which was a solution proposed by Lamb
et al. (2016) for professor forcing, nor could we implement policy gradient re-
inforcement learning, as proposed by Yu et al. (2016).

Natural language generation for commercial applications 65

Conclusions and Discussions

Chapter 10

Dataset artefacts

The quality of the generated sentences of an NLG model is dependent on the
quality of the train data. The dialogue response generation results in sec-
tion 6.7.2 really show that the dialogue system learns to generate sentences
that are similar to the train data. This means that when training a system
for a specific task, it is crucial that the training data represents the expected
input data and the desired output data.

This may be overcome when using transfer learning. This is when the model
is first trained on a large, generic dataset and then training is continued on a
more specific dataset. Akama et al. (2017) showed that the improvement of
the model after transfer learning is dependent on the similarity of the generic
and the task specific datasets. Thus, transfer learning improves more when
the initial dataset is already close to the task specific dataset.

Similarly, if the dataset is not properly filtered, the model might learn un-
desired patterns in the data. An example of this is that a model by Serban
et al. (2017b) accidentally learned to respond in Dutch, because the training
set unintentionally had Dutch conversations in them. Although this specific
example may not be problematic, other analogous situations may be unde-
sired.

Thus it is important to investigate the possible biases that are present in the
dataset when training an NLG system.

Natural language generation for commercial applications 66

Conclusions and Discussions

Chapter 11

NLG for commercial applications

Using natural language generation (NLG) for commercial applications is a double-
edged sword. On the one hand, we have seen that NLG can be a very pow-
erful tool that allows the creation of complex sentences without the need to
specify a large set of hand-made rules or predefined sentences to be retrieved.
On the other hand, this comes at the cost of control over what sentences the
NLG system creates.

We have shown in section 6.7 that a trained model can give suitable re-
sponses. We have also shown that a model can also be controlled to generate
sentences with a given sentiment in section 7.2. However, we cannot state
that these models are unable to generate ungrammatical, meaningless or in-
appropriate sentences. We expect that this would be a deal breaker for most
commercial applications, since it may harm the business.

With this in mind, we attempted to adjust sentences using language style trans-
fer in section 8.3. In theory, this system could be used in combination with
a retrieval-based chatbot to fine-tune the generic retrieved response to better
fit the situation. However, we were unable to show the performance of lan-
guage style transfer. We also realised that the style transfer model suffers
from the same problem as the generative chatbot. The transferred sentence
may no be grammatical, nor contain the right information.

Unfortunately, this leads us to conclude that the current state-of-the-art neu-
ral language generation techniques are not suitable for commercial applica-
tions on their own. It may be possible to use these techniques in conjunction
with human checks, thus speeding up the manual customer support. A good
example of this is Google’s Smart Reply (Kannan et al., 2016) that proposed
quick email replies for Gmail, while still allowing the user to adjust the pro-
posed response or not use it at all. The current NLG technology can best be
used together with human evaluation for commercial applications.

Natural language generation for commercial applications 67

Conclusions and Discussions

Bibliography

Akama, R., Inada, K., Inoue, N., Kobayashi, S., and Inui, K. (2017). Gen-
erating stylistically consistent dialog responses with transfer learning. In
Proceedings of the Eighth International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), volume 2, pages 408–412.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022.

Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014). On the
properties of neural machine translation: Encoder-decoder approaches.
arXiv preprint arXiv:1409.1259.

Choudhary, S., Srivastava, P., Ungar, L., and Sedoc, J. (2017). Domain aware
neural dialog system. arXiv preprint arXiv:1708.00897.

Cleverbot inc. (2010). Cleverbot wins machine intelligence prize. Retrieved
from http: // www. cleverbot. com/ machine on 2018-06-19.

Cleverbot inc. (2011). Cleverbot comes very close to passing the Turing test.
Retrieved from http: // www. cleverbot. com/ human on 2018-06-19.

Eric, M. and Manning, C. D. (2017). A copy-augmented sequence-to-
sequence architecture gives good performance on task-oriented dialogue.
arXiv preprint arXiv:1701.04024.

Fu, Z., Tan, X., Peng, N., Zhao, D., and Yan, R. (2017). Style transfer in text:
Exploration and evaluation. arXiv preprint arXiv:1711.06861.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8):1735–1780.

Hu, Z., Yang, Z., Liang, X., Salakhutdinov, R., and Xing, E. P. (2017). Toward
controlled generation of text. arXiv preprint arXiv:1703.00955.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A convolutional
neural network for modelling sentences. arXiv preprint arXiv:1404.2188.

Kannan, A., Kurach, K., Ravi, S., Kaufmann, T., Tomkins, A., Miklos, B., Cor-
rado, G., Luk’acs, L., Ganea, M., Young, P., et al. (2016). Smart reply: Au-
tomated response suggestion for email. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 955–964. ACM.

Natural language generation for commercial applications 68

http://www.cleverbot.com/machine
http://www.cleverbot.com/human

BIBLIOGRAPHY

Kim, Y. (2014). Convolutional neural networks for sentence classification.
arXiv preprint arXiv:1408.5882.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Lamb, A. M., GOYAL, A. G. A. P., Zhang, Y., Zhang, S., Courville, A. C., and
Bengio, Y. (2016). Professor forcing: A new algorithm for training recurrent
networks. In Advances In Neural Information Processing Systems, pages 4601–
4609.

Li, J., Galley, M., Brockett, C., Gao, J., and Dolan, B. (2015). A diversity-
promoting objective function for neural conversation models. arXiv
preprint arXiv:1510.03055.

Li, J., Galley, M., Brockett, C., Spithourakis, G. P., Gao, J., and Dolan,
B. (2016a). A persona-based neural conversation model. arXiv preprint
arXiv:1603.06155.

Li, J., Monroe, W., Ritter, A., Galley, M., Gao, J., and Jurafsky, D. (2016b).
Deep reinforcement learning for dialogue generation. arXiv preprint
arXiv:1606.01541.

Li, J., Monroe, W., Shi, T., Jean, S., Ritter, A., and Jurafsky, D. (2017).
Adversarial learning for neural dialogue generation. arXiv preprint
arXiv:1701.06547.

Liu, C.-W., Lowe, R., Serban, I. V., Noseworthy, M., Charlin, L., and Pineau, J.
(2016). How not to evaluate your dialogue system: An empirical study of
unsupervised evaluation metrics for dialogue response generation. arXiv
preprint arXiv:1603.08023.

Luan, Y., Ji, Y., and Ostendorf, M. (2016). LSTM based conversation models.
arXiv preprint arXiv:1603.09457.

Ludwig, O. (2017). End-to-end adversarial learning for generative conversa-
tional agents. arXiv preprint arXiv:1711.10122.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and Khudanpur, S. (2010).
Recurrent neural network based language model. In Eleventh Annual Con-
ference of the International Speech Communication Association.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Dis-
tributed representations of words and phrases and their compositionality.
In Advances in neural information processing systems, pages 3111–3119.

Nayak, N., Hakkani-Tur, D., Walker, M., and Heck, L. (2017). To plan or
not to plan? Sequence to sequence generation for language generation in
dialogue systems. In Proceedings of the 2017 Interspeech conference.

Natural language generation for commercial applications 69

BIBLIOGRAPHY

Neff, G. and Nagy, P. (2016). Automation, algorithms, and politics| talking
to bots: Symbiotic agency and the case of tay. International Journal of Com-
munication, 10:17.

Niu, T. and Bansal, M. (2018). Polite dialogue generation without parallel
data. arXiv preprint arXiv:1805.03162.

Olabiyi, O., Salimov, A., Khazane, A., and Mueller, E. (2018). Multi-turn
dialogue response generation in an adversarial learning framework. arXiv
preprint arXiv:1805.11752.

Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global vectors
for word representation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages 1532–1543.

Robbins, H. and Monro, S. (1985). A stochastic approximation method. In
Herbert Robbins Selected Papers, pages 102–109. Springer.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing, 45(11):2673–2681.

Serban, I. V., Klinger, T., Tesauro, G., Talamadupula, K., Zhou, B., Bengio, Y.,
and Courville, A. C. (2017a). Multiresolution recurrent neural networks:
An application to dialogue response generation. In AAAI, pages 3288–
3294.

Serban, I. V., Lowe, R., Charlin, L., and Pineau, J. (2016a). Genera-
tive deep neural networks for dialogue: A short review. arXiv preprint
arXiv:1611.06216.

Serban, I. V., Sordoni, A., Bengio, Y., Courville, A. C., and Pineau, J. (2016b).
Building end-to-end dialogue systems using generative hierarchical neural
network models. In AAAI, volume 16, pages 3776–3784.

Serban, I. V., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A. C.,
and Bengio, Y. (2017b). A hierarchical latent variable encoder-decoder
model for generating dialogues. In AAAI, pages 3295–3301.

Shen, T., Lei, T., Barzilay, R., and Jaakkola, T. (2017). Style transfer from
non-parallel text by cross-alignment. In Advances in Neural Information Pro-
cessing Systems, pages 6830–6841.

Shoemaker, N. (2016). Japanese AI writes a novel, nearly wins liter-
ary award. Retrieved from https: // bigthink. com/ natalie-shoemaker/
a-japanese-ai-wrote-a-novel-almost-wins-literary-award on 2018-
12-12. [Online; posted 24-March-2016].

Song, Y., Yan, R., Li, X., Zhao, D., and Zhang, M. (2016). Two are better than
one: An ensemble of retrieval-and generation-based dialog systems. arXiv
preprint arXiv:1610.07149.

Natural language generation for commercial applications 70

https://bigthink.com/natalie-shoemaker/a-japanese-ai-wrote-a-novel-almost-wins-literary-award
https://bigthink.com/natalie-shoemaker/a-japanese-ai-wrote-a-novel-almost-wins-literary-award

BIBLIOGRAPHY

Sordoni, A., Bengio, Y., Vahabi, H., Lioma, C., Grue Simonsen, J., and
Nie, J.-Y. (2015a). A hierarchical recurrent encoder-decoder for genera-
tive context-aware query suggestion. In Proceedings of the 24th ACM In-
ternational on Conference on Information and Knowledge Management, pages
553–562. ACM.

Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell, M., Nie,
J.-Y., Gao, J., and Dolan, B. (2015b). A neural network approach to
context-sensitive generation of conversational responses. arXiv preprint
arXiv:1506.06714.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning
with neural networks. In Advances in neural information processing systems,
pages 3104–3112.

Vincent, J. (2016). Twitter taught Microsoft’s AI chatbot to be a racist ass-
hole in less than a day. Retrieved from https: // www. theverge. com/ 2016/
3/ 24/ 11297050/ tay-microsoft-chatbot-racist on 2018-12-12. [Online;
posted 24-March-2016].

Vinyals, O. and Le, Q. (2015). A neural conversational model. arXiv preprint
arXiv:1506.05869.

Wei, B., Lu, S., Mou, L., Zhou, H., Poupart, P., Li, G., and Jin, Z. (2017). Why
do neural dialog systems generate short and meaningless replies? a com-
parison between dialog and translation. arXiv preprint arXiv:1712.02250.

Weizenbaum, J. (1966). Eliza—a computer program for the study of natural
language communication between man and machine. Communications of
the ACM, 9(1):36–45.

Wen, T.-H., Vandyke, D., Mrksic, N., Gasic, M., Rojas-Barahona, L. M., Su, P.-
H., Ultes, S., and Young, S. (2016). A network-based end-to-end trainable
task-oriented dialogue system. arXiv preprint arXiv:1604.04562.

Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually
running fully recurrent neural networks. Neural computation, 1(2):270–280.

Xu, Z., Liu, B., Wang, B., Sun, C., and Wang, X. (2016). Incorporating loose-
structured knowledge into LSTM with recall gate for conversation model-
ing. arXiv preprint arXiv:1605.05110.

Yang, Z., Hu, Z., Dyer, C., Xing, E. P., and Berg-Kirkpatrick, T. (2018). Unsu-
pervised text style transfer using language models as discriminators. arXiv
preprint arXiv:1805.11749.

Yao, K., Zweig, G., and Peng, B. (2015). Attention with intention for a neural
network conversation model. arXiv preprint arXiv:1510.08565.

Young, T., Hazarika, D., Poria, S., and Cambria, E. (2017). Recent trends
in deep learning based natural language processing. arXiv preprint
arXiv:1708.02709.

Natural language generation for commercial applications 71

https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist

BIBLIOGRAPHY

Yu, Z., Xu, Z., Black, A. W., and Rudnicky, A. (2016). Strategy and policy
learning for non-task-oriented conversational systems. In Proceedings of the
17th Annual Meeting of the Special Interest Group on Discourse and Dialogue,
pages 404–412.

Zhang, L., Wang, S., and Liu, B. (2018). Deep learning for sentiment analy-
sis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, page e1253.

Zhang, W., Itoh, K., Tanida, J., and Ichioka, Y. (1990). Parallel distributed
processing model with local space-invariant interconnections and its opti-
cal architecture. Applied optics, 29(32):4790–4797.

Zhang, Y., Gan, Z., and Carin, L. (2016). Generating text via adversarial train-
ing. In NIPS workshop on Adversarial Training, volume 21.

Natural language generation for commercial applications 72

Index

1-dimensional convolutional layer,
56

action, 28
activation functions

hard sigmoid, 56
leaky relu, 56
linear activation, 55
relu, 20, 38
sigmoid, 54
softmax, 20, 27, 30, 38, 65

adadelta, 28
adam, 28, 38
adversarial learning, 17, 27, 29, 30,

53, 54, 56
adversarial loss, 58
adversuc, 31
agent, 28
alignment, 31, 32
amazon lex, 26
amazon web services, 26
applications

automatic translation systems,
31

dialogue response generation,
25

google’s smart reply, 26, 33, 67
language style transfer, v, 53,

57
argmax, 27
attention mechanism, v, 15, 17, 18,

25, 31, 37, 43
attribute, 37
automatic evaluation, 30
automatic translation systems, 31
AWS; see amazon web services, 26

backward states, 10
bag of n-grams, 8
bag of words, v, 8, 9, 33
bidirectional recurrent neural net-

work, v, 10, 11, 15, 17, 35,
43

binary cross entropy, 58, 59
BiRNN; see bidirectional recurrent

neural network, v, 10, 11,
15, 17, 35, 43

bleu, 30
bot; see chatbots, 25
BoW; see bag of words, v, 8, 9, 33

CAAE; see cross-aligned auto-encoder,
vi, 54–56

categorical cross entropy, 20, 47, 58
challenges

consistent responses, 33
generic responses, 31
inconsistent responses, 31
irrelevant responses, 31
meaningful responses, 32
relevant responses, 32

chatbots, 1, 25, 26
cleverbot, 26
eliza, 1
generation-based chatbot, 25, 43
generative chatbot, 25
retrieval-based chatbot, 2, 25,

43, 55, 67
rinna, 26
rule-based chatbot, 25
ruuh, 26
tay, 1, 26
xiaoice, 26
zo, 26

cleverbot, 26
CNN; see convolutional neural net-

work, 9, 11, 30, 36, 43, 64
conditional loss, 59
consistent responses, 33
convolutional layer, 11
convolutional neural network, 9, 11,

30, 36, 43, 64
cross-aligned auto-encoder, vi, 54–

56

datasets

Natural language generation for commercial applications 73

INDEX

kaggle twitter customer support
dataset, 22, 38, 45, 47

yelp dataset, 22, 23, 55, 59, 60
DCNN; see dynamic convolutional

neural network, 12
decoding, 6
dense layer, 20, 56
dialogue management systems, 26

amazon lex, 26
google’s dialogflow, 26

dialogue response generation, 1, 2,
14, 25, 30, 44, 63

dialogue systems, 26, 54
hierarchical recurrent encoder-

decoder, 35
latent variable hred, 35
multi-resolution rnn, 35
polite systems

fusion model, 43
label fine tuning, v, 43–45, 57
polite-rl model, 43, 44

differentiable, 27
direct messages, 39
discriminator, 17, 29, 53
dm; see direct messages, 39
DRG; see dialogue response gener-

ation, 25, 30, 44, 63
dropout layer, 56
dynamic convolutional neural net-

work, 12

early stopping, 38
ease of answering, 32
eliza, 1
embedding, 4, 6, 9, 25, 54, 64

bag of n-grams, 8
bag of words, v, 8, 9, 33
global vectors, 6
one-hot encoding, 6, 20, 38, 39,

58
pre-trained embedding, 7
semantic model-based embed-

ding, 6, 9
sparse one-hot encoding, 6
word2vec, 6

encoding, 5
entity, 37
environment, 28

ERE; see evaluator reliability error,
31

evaluation of chatbots
automatic evaluation, 30

adversuc, 31
bleu, 30
rouge, 30

criteria
ease of answering, 32
information flow, 32
naturalness, 30
politeness, 43
relevance, 30
semantic coherence, 32

human evaluation, 30
multi-turn experiment, 30
single-turn experiment, 30

evaluator reliability error, 31

feature map, 11
feed-forward network, 54
filter, 11
forward states, 10
free running, 17, 27, 44, 53, 56
fusion model, 43

GAN; see generative adversarial net-
work, 30, 53, 63

gated recurrent unit, 10, 54, 55
generation loss, 46, 47
generation model, v, 2, 14, 15, 17,

25
generative adversarial network,

30, 63
newgca, v, 15, 20, 21, 36–39,

41, 45, 56
sequence-to-sequence, v, 14, 16
textgan, 30, 55

generation-based chatbot, 25, 43
generative adversarial network, 30,

53, 63
generative chatbot, 25, 67
generator, 29, 53
generic responses, 31
global vectors, 6, 38, 39, 41, 56, 59,

64
GloVe; see global vectors, 6, 38, 39,

41, 56, 59, 64

Natural language generation for commercial applications 74

INDEX

google’s dialogflow, 26
google’s smart reply, 26, 33, 67
ground truth, 28
GRU; see gated recurrent unit, 10,

54, 55

hard sigmoid, 56
hierarchical recurrent encoder-decoder,

35
HRED; see hierarchical recurrent encoder-

decoder, 35
human evaluation, 30

inconsistent responses, 31
indirect training, 9
information flow, 32
irrelevant responses, 31

kaggle twitter customer support dataset,
22, 38, 45, 47

knowledge base, 37
loose-structured knowledge base,

37
kullback-leibler divergence, 37

label fine tuning, v, 43–45, 56, 57
language model, v, 2, 8, 9, 14, 15,

25, 55
bidirectional recurrent neural net-

work, v, 10, 11, 15, 35
convolutional neural network,

9, 11
dynamic convolutional neural

network, 12
neural language model, 9
recurrent neural network, v, 9,

10
language style transfer, v, 1, 2, 53,

56, 57, 63, 64, 67
cross-aligned auto-encoder, 54,

55
multi-decoder lst, 54
non-parallel style transfer, 53
parallel style transfer, 53
style embedding lst, 54
textgan, v, 56–58

language understanding, 12
latent dirichlet allocation, 33
latent variable hred, 35

LDA; see latent dirichlet allocation,
33

leaky relu, 56
learning rate, 32
LFT; see label fine tuning, v, 43–45,

56, 57
linear activation, 55
linear combination, 15, 44, 47
log-likelihood, 27, 34
long short term memory, 10, 30, 36,

38, 43
loose-structured knowledge base,

37
loss, 27
loss function, 27, 45, 55

adversarial loss, 58
binary cross entropy, 58, 59
categorical cross entropy, 20, 47,

58
conditional loss, 59
generation loss, 46, 47
log-likelihood, 27, 34
maximum cross entropy, 27
maximum likelihood, 44
maximum mutual information,

27, 34
mean absolute error, 46
mean squared error, 27, 58, 59
sentiment loss, 46

LST; see language style transfer, v,
2, 53, 56, 57

LSTM; see long short term mem-
ory, 10, 30, 36, 38, 43

max pooling layer, 56
max pooling over time layer, 12
maximum cross entropy, 27
maximum likelihood, 44
maximum mutual information, 27,

34
mean absolute error, 46
mean squared error, 27, 58, 59
meaningful responses, 32
mert, 28
metrics

evaluator reliability error, 31
kullback-leibler divergence, 37
tf-idf, 32

Natural language generation for commercial applications 75

INDEX

MMI; see maximum mutual infor-
mation, 27, 34

monte carlo sampling, 30
MrRNN; see multi-resolution rnn,

35
multi-decoder lst, 54
multi-resolution rnn, 35
multi-turn experiment, 30

n-grams, 8, 11
natural language generation, v, 1,

4, 14, 15, 20, 25, 31, 42, 44,
67

natural language processing, 12
naturalness, 30
neural language model, 9
neural machine translation, 14, 53
neural network, 9
neural network layers

1-dimensional convolutional layer,
56

convolutional layer, 11
dense layer, 20, 56
dropout layer, 56
max pooling layer, 56
max pooling over time layer,

12
newgca, v, 15, 20, 21, 36–39, 41, 45,

56
NLG; see natural language gener-

ation, v, 1, 4, 14, 15, 20, 25,
31, 42, 44, 67

nlg pipeline, 2, 14, 25, 28, 45, 53, 64
NLP; see natural language process-

ing, 12
NMT; see neural machine transla-

tion, 14, 53
non-parallel style transfer, 53

objective function; see loss function,
27

one-hot encoding, 6, 20, 38, 39, 58
optimisation, 27
optimiser, 28

adadelta, 28
adam, 28, 38
mert, 28
reinforce, 29

stochastic gradient descent, 28
out-of-vocabulary words, 6
overfit, 17

parallel style transfer, 53
patience, 38
polarity, 46, 47
polite-rl model, 43, 44
politeness, 43
pre-trained embedding, 7
pre-training, 29, 30
professor forcing, v, 15, 17, 19, 27,

30, 53, 55, 56, 65
punctuation, 38

recall gate, 36, 37
recurrent neural network, v, 9, 10,

13, 14, 17, 20, 27, 30, 35, 36,
38, 43, 54, 55

reinforce, 29
reinforcement learning, 27, 28, 32,

44
relevance, 30
relevant responses, 32
relu, 20, 38
retrieval-based chatbot, 2, 25, 43,

55, 67
reward, 27, 28
rinna, 26
RL; see reinforcement learning, 44
RNN; see recurrent neural network,

v, 9, 10, 13, 14, 17, 20, 27,
30, 35, 36, 38, 43, 54, 55

rnn cell, 10, 15, 36, 43
gated recurrent unit, 10
long short term memory, 10
recall gate, 36, 37

rnn unit; see rnn cell, 10
rouge, 30
rule-based chatbot, 25
ruuh, 26

semantic coherence, 32
semantic model, 6
semantic model-based embedding,

6, 9
sentence tokens, 5
sentiment

Natural language generation for commercial applications 76

INDEX

polarity, 46, 47
subjectivity, 46

sentiment analysis, 9
sentiment loss, 46
Seq2Seq; see sequence-to-sequence,

v, 14–17, 20, 25, 29, 30, 32,
33, 35–39, 41, 43, 44, 54, 55

sequence-to-sequence, v, 14–17, 20,
25, 29, 30, 32, 33, 35–39, 41,
43, 44, 54, 55

SGD; see stochastic gradient descent,
28

sigmoid, 54
single-turn experiment, 30
softmax, 20, 27, 30, 38, 65
sparse one-hot encoding, 6
stochastic gradient descent, 28
stride, 11
structured knowledge, 36
style embedding lst, 54
subjectivity, 46
supervised learning, 9, 27
symbol tokens, 4, 25

tay, 1, 26
teacher forcing, 15, 17, 27, 44, 53,

56
template response, 36
text analysis, 9
textgan, v, 30, 55–58
tf-idf, 32
tokenisation, 4, 25
tokens, 2, 4, 25, 28

sentence tokens, 5
symbol tokens, 4, 25
word tokens, 5, 25, 38

training techniques
adversarial learning, 17, 27, 29,

30, 53, 54, 56
free running, 17, 27, 44, 53, 56
indirect training, 9, 28
pre-training, 29, 30
professor forcing, v, 15, 17, 19,

27, 30, 53, 55, 56, 65
reinforcement learning, 27, 28,

32, 44
supervised learning, 9, 27

teacher forcing, 15, 17, 27, 44,
53, 56

transfer learning, 27, 29, 51, 66
unsupervised learning, 9, 27,

28
transfer learning, 27, 29, 51, 66

unstructured knowledge, 37
unsupervised learning, 9, 27, 28

VHRED; see latent variable hred,
35

vocabulary, 6, 46

weights, 27
window, 11
word analogy task, 7
word tokens, 5, 25, 38
word2vec, 6

xiaoice, 26

yelp dataset, 22, 23, 55, 59, 60

zo, 26

Natural language generation for commercial applications 77

	Abstract
	List of Figures
	List of Tables
	Introduction
	I Natural Language Generation
	Sentence representation
	Tokenisation
	Token representation

	Neural Language models
	Recurrent language models
	Convolutional language models

	Neural generation models
	The sequence-to-sequence model
	The attention mechanism
	Professor forcing

	New generative conversational agent model

	Datasets
	Kaggle Twitter customer support
	Yelp style transfer dataset

	II Applications of NLG
	Dialogue response generation
	Existing applications
	Training generative chatbots
	Supervised and unsupervised learning
	Reinforcement learning
	Adversarial learning
	Transfer learning

	Evaluating chatbots
	Challenges with response generation
	Meaningful responses
	Relevant responses
	Consistent responses

	Incorporating context
	Dialogue history
	Intent and dialogue acts

	Incorporating knowledge
	Structured knowledge
	Unstructured knowledge

	Use case: Generative customer support
	Model descriptions
	Results
	Conclusion and discussion

	Controlling generation
	Enforcing politeness
	Use case: Empathetic customer support
	Sentiment annotation
	Loss function with sentiment
	Training specification
	Results
	Conclusion and discussion

	Language style transfer
	Parallel style transfer
	Non-parallel style transfer
	Use case: Sentiment adjustment in reviews
	Model descriptions
	Training loss
	Training specification
	Results
	Conclusion and discussion

	III Conclusions and Discussions
	Challenges in NLG
	Language understanding
	Evaluating generated results
	Training GANs

	Dataset artefacts
	NLG for commercial applications

	Bibliography
	Index

