RADBOUD UNIVERSITY NIJMEGEN

MASTER THESIS

Decentralized Attribute-Based
Encryption for DECODE

Author: Supervisor:
Marloes VENEMA Dr. Jaap-Henk HOEPMAN
(s4126173)

Second reader:
Dr. Peter SCHWABE

n the

Digital Security Group
Institute for Computing and Information Sciences

August 17, 2018

http://www.ru.nl

Abstract

In ecosystems such as DECODE, measures to implement access control in a de-
centralized setup are paramount. One of the cryptographic tools that can be used to
realize this is attribute-based encryption. This is a type of public-key cryptography
which associates the secret keys with attributes rather than with the identity of the
user. Because there is a multitude of schemes with several different properties, it can
be hard to find the right scheme for some chosen setting. In this work, we investi-
gate which schemes are out there and which properties they satisfy. Then we use
this research to find the best attribute-based encryption scheme for DECODE and
similar ecosystems. One of the disadvantages of attribute-based encryption is the size
of the ciphertexts, which tends to be linear in the number of attributes. Because in
the literature, the amount of schemes with constant-size ciphertexts is very small,
and there are, to the best of our knowledge, no constant-size schemes in the decen-
tralized setting that allow for expressive access policies, we will also outline a (very
inefficient) decentralized multi-authority ciphertext-policy attribute-based encryption
scheme with constant-size ciphertexts.

Contents

Abstract

1 Introduction

o

1.1 The DECODE project
1.1.1 Accesscontrol
1.1.2 Distributed ledger L.
1.1.3 Attribute-based credentials
1.1.4 Attribute-based encryption Lo

1.2 Our goal and approach oL

1.3 Overview

Preliminaries
2.1 Notations e
2.2 Statistical distance and indistinguishability
2.3 Secret sharing
2.4 Verifiable secret sharing o0 0oL
2.5 Removing the dealer: decentralized VSSS
2.6 Access structures
2.6.1 LSSS matrices as access structures
2.7 Zero-knowledge proofs of knowledgeo
2.7.1 Schnorr’s identification protocol
2.7.2 Okamoto’s identification protocol
2.7.3 EQ-composition oo
2.7.4 Non-interactive zero-knowledge proofs
2.8 Group homomorphisms oo Lo
2.9 Bilinear maps e e e e e e e
2.10 Security assumptions Lo o

Attribute-Based Encryption
3.1 Key-policy and ciphertext-policy ABE
3.1.1 Formal definitions
3.2 Collusion resistance Lo
3.3 Small and large universes L L L oL
3.4 Delegatability
3.5 (Decentralized) multi-authority ABE
3.5.1 Privacy towards the authorities
3.6 Dynamicschemes L
3.6.1 Directly and indirectly revocable schemes
3.6.2 Definition of dynamicity
3.7 Storage and computational costso oL
3.7.1 Private key and ciphertext sizes L.
3.7.2 Key generation, encryption and decryption
3.8 Grouporder

W W WN NN = -

© o 3 O Ut ot G

o e S e S Sy G T
=R R DD D = O

3.9 Privacy of access policies L L oo o
3.10 Security modelso
3.10.1 Full security
3.10.2 Selective security Lo oo
3.10.3 Security for multi-authority ABE
3.10.4 Security against chosen-ciphertext attacks
3.10.5 Standard model versus random oracle model
3.11 Choosing properties for ABE for DECODE

Comparing Existing ABE Schemes
4.1 Example: a (large universe) CP-ABE scheme
4.1.1 The construction Lo oo
4.1.2 Remarks. e
4.2 Example: a decentralized CP-ABE scheme
4.2.1 Remarks. e
4.3 The comparison of forty-two schemes
4.3.1 First set of properties L oL
4.3.2 Second set of propertieso L.
4.3.3 Methodology and notations, ...
4.4 Discussion e e e e e e e e e e
4.5 Concluding remarks L L Lo oo
4.6 CP-ABE with constant-size ciphertexts

Conclusions
5.1 Further researcho

Simplifying Security Analysis with Pair Encoding Schemes

A.1 An intuitive overview
A.1.1 Dual system encryption
A.1.2 Dual system groups
A.1.3 Small introduction to pair encoding
A.1.4 Intuitive notion of pair encoding
A.1.5 From pair encoding to attribute-based encryption.

A.2 Formal definitions L o
A.2.1 Dual system groupso
A.2.2 Pair encoding schemes

A.3 A generic CP-ABE construction from pair encoding
A.3.1 Imtuitiveidea oo
A.3.2 The construction
A.3.3 Security of the construction

A CP-ABE Scheme with Constant-Size Ciphertexts

B.1 A DSG-instantiation in prime-order groups
B.1.1 Definitions of the sample algorithms

B.2 A PES-instantiation with short ciphertext encoding
B.2.1 The constant-size ciphertext encoding PES

B.3 Constructing the scheme L.
B.3.1 The Setup algorithm,
B.3.2 The Encrypt algorithm
B.3.3 The KeyGen algorithm
B.3.4 The Decrypt algorithm

iii

28
29
29
30
31
32
33
33

35
35
36
37
37
39
39
40
40
41
41
42
43

47
48

49
49
50
o1
51
52
54
55
55
o8
61
61
62
64

iv

B.3.5 The complete construction 74
B.3.6 Storage and computational costs 75
B.4 Discussion 76

C A Decentralized CP-ABE Scheme with Constant-Size Ciphertexts 77

C.1 Key generation in the centralized setting 7
C.2 Approach to decentralization 78
C.2.1 Generating SKo;1o 78
C.2.2 Generating SKy;y - . - . o . o . oo o 81

C.3 Generating the rest of the parameters 82
C.3.1 Generatinggoandhg oL 82
C.3.2 Generatingg;jand h;; 83
C.3.3 Generating g, 83
C.3.4 Key generation parameters 83
C.3.5 Decentralized global and authority setup 84

C.4 The decentralized construction 85
C.5 Security of the scheme 0oL, 88
C.6 Efficiency e 89
D Correctness Proofs 90
D.1 Proof of correctness of the [AC16; CW14a] scheme 90

Bibliography 92

Chapter 1

Introduction

In the last decades, technology has rapidly progressed to the point where computers,
other devices and the internet have become a significantly large part of our lives. In
light of this development, much of our personal data have been digitized, and much
of our activity on the internet is stored in databases. Companies such as Facebook
and Twitter, but also every other company that provides us with services in exchange
for our personal data, base their business model on selling our personal data.

Because there are so many organizations that store and process our personal data,
some people feel as though they have lost control over whom gets to process which
information for which purposes. Projects such as IRMA' and DECODE? attempt to
give some of that control back, without individuals having to opt out of using services
that require the sharing of personal data altogether.

One of the measures that can be taken is the implementation a form of access
control that allows individuals to determine which organizations and other individuals
get to access which data based on the attributes that the individual or organization
possesses. An effective way to implement this type of attribute-based access control
is to use a cryptographic primitive called attribute-based encryption (ABE), which
allows for fine-grained access control on a cryptographic level.

1.1 The DECODE project

The DECODE project, which is an acronym for

DEcentralized Citizen-Owned Data Ecosystems, ad- d e C O d e
dresses these concerns by aiming to develop technol-
ogy that allows individuals to control their own pri- e —

vate data by giving them the ability to decide how it
is shared with service providers.
The goals of DECODE are [Dan+17]:

e allowing participants to manage access to their private data, by granting and
revoking access through entitlements;

e allowing operators to write smart rules, sign them and get the authorization to
run them on DECODE;

e allowing smart rules to access private data based on entitlements and matched
attributes;

e allowing everyone to record entitlements on a distributed ledger whose integrity
is resilient and verifiable.

T Reveal My Attributes (IRMA): https://privacybydesign.foundation/en/.
2DEcentralized Citizen-Owned Data Ecosystems (DECODE): https://decodeproject .eu/

https://privacybydesign.foundation/en/
https://decodeproject.eu/

Chapter 1. Introduction 2

DECODE aims to accomplish these goals by exploiting existing primitives such
as distributed ledgers and attribute-based credentials. Moreover, DECODE does this
in a decentralized fashion: distributing the trust across multiple parties such that
several parties have to be corrupted in order to break any security guarantees (e.g.
integrity, availability, confidentiality) of the system.

1.1.1 Access control

As we already briefly mentioned, one of the measures that can be taken to allow
participants to manage access to their private data is the implementation of access
control. There are several security principles that are important in this setting, among
of which are confidentiality, integrity and availability. In order to guarantee all of these
security principles in a decentralized manner, DECODE uses distributed ledgers (to
ensure integrity and availability) and attribute-based credentials and encryption (to
ensure authenticity and confidentiality).

The idea of access control is that, through entitlements, access is granted and
revoked by the participant. In traditional systems, access control is often implemented
in the code of the system, and it either grants or denies access to data based on the
credentials (e.g. role or attribute-based) of a user. We simply have to ‘trust’ that this
is done correctly, and that there are no participants or other parties in the system
that can read the data that was not meant for them to be accessed.

In a way, there is one ‘central authority’ in this setup that enforces access control,
which is what DECODE wants to avoid. In DECODE, the authorization of users
and enforcement of access control are supposed to be done in a decentralized setting,
namely by exploiting cryptographic primitives such as attribute-based credentials and
encryption respectively, which both allow decentralized setups.

1.1.2 Distributed ledger

The notion of distributed ledgers is one of the core foundations of DECODE, which
provides both integrity and availability (but not confidentiality). The idea of dis-
tributed ledgers is that they allow participants to perform transactions and record a
verifiable proof of that transaction without having to use data within the transaction
itself. Because is does not contain private data, the proof can be stored anywhere.
In DECODE, the proofs of these transactions will be stored on a network of nodes.
Because anyone can join the network and host a node, we do not have to put trust
in one central authority.

1.1.3 Attribute-based credentials

Attribute-based credentials (ABCs) are a cryptographic primitive that allow for is-
suance of credentials to users in a verifiable but privacy-friendly manner: an issuer
will ‘sign’ the data on the credentials such that other parties can verify whether the
data that is stored on the credential is authentic. For this simple reason, they provide
us with an authorization mechanism. On the credentials, attributes that are related
to the identity of a participant are stored. These attributes will be signed and can
be verified, and are therefore suited to be evaluated against access policies. Because
of this reason, it may be possible to combine ABCs and attribute-based encryption
such that ABCs can be used to prove possession of the attributes, and hence therefore
provides the authentication part on the user’s side.

Chapter 1. Introduction 3

1.1.4 Attribute-based encryption

Whereas ABCs are used for authentication and proving possession of attributes,
attribute-based encryption (ABE) can be used as a means to enforce access control
on the private data of a participant, i.e. the participant encrypts the private data
under an access policy such that other participants in the system can only decrypt the
data if they possess a set of attributes (and their associated keys) that satisfies the
policy. This means that ABE provides us with a way to implement attribute-based
access control on a cryptographic level. One of the features in ABE is that the setup
can be decentralized: instead of allowing one authority to control all of the keys
associated with attributes, multiple authorities distribute the keys associated with
their own unique set of attributes to users that possess those attributes. The idea is
that the user can authenticate towards the authority by showing his attribute-based
credential, and therefore prove possession of the associated attribute. However, how
this is done is not entirely trivial, and it is therefore one of the key challenges of the
DECODE project. [AB+17]

1.2 Our goal and approach

Because a lot of research and literature is published on attribute-based encryption,
there are various different schemes with a multitude of different properties circulating
the research community. For different use cases, it is desirable to have different types
of attribute-based encryption that fit the specific requirements that a system imposes.
For instance, in a hospital it might be beneficial to have a central setup, whereas in
large systems such as DECODE it is desirable to decentralize this setup. There might
also be systems in which we require the systematic update of the keys, because the
associated attributes are rather volatile. Some systems have a small set of users, and
some systems have a large set of users, which means that the ABE scheme should be
scalable to such large systems.

Our goal is to investigate which properties such ABE schemes may have and which
are suitable for DECODE in particular. Then we will investigate which ABE schemes
are already out there and which of the aforementioned properties they satisfy. Then
we can compare all of them and consider which would suit the DECODE setup the
best, based on the properties that we deemed suitable (see Section 3.11).

1.3 Overview

In this work, we will mainly focus on our goal, which is studying ABE, their properties
and the existing schemes. Before we can describe ABE, we will give some preliminaries
in Chapter 2. After that, we will focus on ABE and its properties in Chapter 3, which
we will end with a list of properties that we deem suitable for DECODE. In Chapter
4, we will look at two existing schemes and compare a larger set of forty-two ABE
schemes, of which we will choose the best candidate for DECODE based on the
properties we specified in Section 3.11.

Because almost all of the existing ABE schemes have the unfortunate feature that
ciphertexts are linear in the size of the access policy, we will focus on the use of
ABE schemes with constant-size ciphertexts in the appendix. There is one particular
ABE scheme that was created within a framework that aims to simplify the design
and analysis of ABE schemes with the use of pair encoding and dual system groups,
which we will discuss in Appendix A. Because this particular scheme with constant-
size ciphertexts is only defined in terms of pair encoding and dual system groups, we

Chapter 1. Introduction 4

will show how the generic construction that is given in Appendix A can be applied such
that an ABE scheme that fits the description of ABE in Definition 16 in Appendix
B. In Appendix C, we decentralize the setup of the resulting scheme in an attempt
to make it more suitable for DECODE. Finally, we conclude our work in Chapter 5
by evaluating our results.

Chapter 2

Preliminaries

Before we introduce attribute-based encryption, we will need to establish some math-
ematical background, along with certain notations first.

2.1 Notations

If an element is chosen uniformly at random from some finite set .S, then we denote this
asx € S. We will denote the order of g in G as ord(g), which is the unique number a
such that ¢* = 1g, and for all 0 < b < a we have g® # 1g. We define H : {0,1}* — G
as a hash function, which is preimage, second preimage, and collision resistant, and
can be mapped to any group G or set S. If we only use one or two of those properties,
we will mention this'. We will use y +— H () to indicate an assignment of a value to a
particular integer y (in this case we have used the hash function, but this may be any
function, algorithm or other mathematical operation). If some function or algorithm
yields no output, then we use L to indicate this. We will also use a shorter notation
for the set of integers {1,2,...,n}, namely [1,n]. When Z, or Zy are used without
further explanation, then p is usually used for prime values of p, and N for general
values (or composite numbers if this is indicated). We will often use shorthand for
summations, i.e. >, x; instead of) ;. g x;, but only if it is clear over which set is
summed. Furthermore, we distinguish elements from vectors and matrices by using
boldfaced characters, e.g. s for a vector and A for a matrix. We denote A;; to
indicate the entry in the i-th row and the j-th column, and AT to be the transpose
of the matrix A.

2.2 Statistical distance and indistinguishability

One of the notions that will play an important role in this work is the notion of
statistical distance. This is a measure that computes the indistinguishability between
two probability distributions.

Definition 1 (Statistical distance) Let X and Y be two random variables, and V
be the set of all possible values of both X and Y. The statistical distance between X
and Y is defined as

AX;Y) = % > | Pr[X = o] - Pr[Y =]
veV

The value of the statistical distance is related to the term ‘indistinguishability’
which means that we cannot distinguish two probability distributions by observing

1Sometimes we only need one of the properties in a protocol in order to ensure security, and then
we can avoid having to resort to the random oracle model, which we will discuss later.

Chapter 2. Preliminaries 6

the values. There are three types of indistinguishability, namely perfect, statistical
and computational indistinguishability.

Definition 2 (Negligible functions) A function f :IN — R is called negligible if
for every 6 € N, there is some xo € N such that for all x > xo we have f(z) < 1/a°.

We use this to define the notion of indistinguishability:

Definition 3 (Indistinguishability) Let X = {X;}ier and Y = {Yi}icr be two
infinite families of random variables X; and Y; over some set of possible values V;,
such that X;,Y; and V; somehow depend on index i, where I denotes the set of possible
values of i. For each i € I, we consider the statistical distance A(X;,Y;):

o If A(X;;Y;) = 0 for all i, then X and Y are perfectly indistinguishable. We
denote this as X =Y.

o If A(X;;Y;) is negligible in a function of |i| (the bit length of i), then X and Y
are statistically indistinguishable, which we denote as X =Y.

e If for all probabilistic polynomial-time (PPT) algorithms D that decide 0 or 1
for some given random variable X; or Y; and possible value v € V;?, we have
that | Pr[D(X;;v) = 1] — Pr[D(Y;;v) = 1]|, and therefore A(D(X;); D(Y;)) =
23 vev, | Pr[D(Xi50) = 1] = Pr[D(Y;;v) = 1]|, is negligible as a function of
li|, then X and Y are computationally indistinguishable, which we denote as
X=Y.

2.3 Secret sharing

Secret sharing is a cryptographic primitive that concerns the art of sharing a secret
among different parties. The informal idea of threshold secret sharing is that for any
threshold ¢ out of n parties that partake in the ‘sharing’, a group of t — 1 or fewer
parties cannot reconstruct the secret. This is done by exploiting the nature of some
mathematical structures. For instance, in Shamir’s secret sharing scheme, Shamir
uses the fact that we can only recover the coefficients of a (¢ — 1)-degree polynomial
if we know at least t different points on that polynomial.

Definition 4 (Secret sharing) A secret sharing scheme for a dealer D and partic-
ipants Py, ..., Py consists of two algorithms:

o Distribution: Dealer D shares a secret s in such a fashion that each participant
P; obtains a share s;.

e Reconstruction: Any qualified subset of participants Q C [1,n] can recover
the secret by pooling their shares together, i.e. s; for alli € Q.

Then Shamir’s secret sharing scheme is defined as follows:

Definition 5 (Shamir’s (¢,n)-secret sharing scheme [Sha79]) Let D denote a
dealer, and Pi, ..., P, the participants. Let t € [1,n] be the threshold, i.e. we will
need at least t participants in order to retrieve the secret s. This secret s is an
element in Z,, where p denotes a prime larger than n, such that all participants can
be uniquely represented in Z,. Then s is shared as follows:

2That is, D(X;;v) = 1 means that given value v € V;, D decides that X; can take on value v.

Chapter 2. Preliminaries 7

e Distribution: Dealer D picks a random polynomial of degree t — 1 over Z,
with coefficients in Z,, i.e. a(X) = Y'20a;X?, where ag = s and a; €p Z,.
FEach participant P; gets assigned their own share s; = a(i).

e Reconstruction: Any group of t participants Q C [1,n] can recover the secret
s by Lagrange interpolation, i.e.

5= Z AQ,isi such that A\g; = H %
ica jeQ\(i? !

Note that this form of secret sharing is perfect in the sense that if any group of
participants @ C [1,n] such that |Q| < ¢ tries to recover the secret, they will fail to
do so, and more importantly, they will not learn any information about the secret s.

Whereas secret sharing in itself is already an interesting primitive, it is also the
building block of other cryptographic primitives such as attribute-based encryption,
which we will discuss shortly.

We can categorize a secret sharing scheme as linear when they enjoy a certain
property: the secret is reconstructed with a linear function of its shares. As we can
see, Shamir’s SSS is an example of a linear secret sharing scheme, because if s and s’
denote two secrets which are shared with Shamir’s SSS, and the shares are denoted
as s; and s}, then s; + s} denotes the share of secret s + s'.

More generally, we give a definition of linear secret sharing schemes:

Definition 6 (Linear Secret Sharing Schemes (LSSS) [Bei96]) A secret shar-
ing scheme over a set of participants P is called linear (over Z,) if

(i) The shares for each participant form a vector over Z,.

(ii) There exists an ny X ng matrix A called the share-generating matriz. For all
i € [1,n1], the i-th row of A is denoted by A;, and we define p to be the function
that maps rows to a subset of participants P. Let v = (s,v, ..., vpn,) be a column
vector, where s € Z, denotes the secret to be shared, and va,...,vn, €Er Z, are
chosen uniformly at random, then Av is the vector of ni shares of the secret
s. The i-th element of Av, denoted as (Av);, is the share that is assigned to
participant p(i).

Remark: Note that ny denotes the number of participants that partake in the sharing,
but there is not necessarily a threshold like in Shamir’s SSS. That is, we can write
each linear threshold secret sharing scheme (e.g. Shamir’s SSS) in terms of a share-
generating matrix, but not each linear secret sharing scheme that can be written as
a share-generating matrix is a threshold scheme. To explain this in more detail, we
will use the notion of access structures in Section 2.6.

2.4 Verifiable secret sharing

Secret sharing schemes are a useful tool, but they require the honesty of the partic-
ipants in the protocol to some extent. As we have shown, an unauthorized group
of participants cannot retrieve the secret, which is security aspect that we wish to
impose. However, we might also want the participants in the protocol to be honest in
the sense that the share that they use to retrieve the secret is actually the share that
the participant received in the distribution algorithm, and not some slightly altered
version of it.

Chapter 2. Preliminaries 8

In verifiable secret sharing (VSS), the dealer also produces some extra information
regarding the share of a participant in the open such that other participants can
check during the reconstruction step whether the share that the participant provides
is actually the same share that was received during the distribution. This extra
information is also called the verification key.

An example of a verifiable secret sharing scheme is Feldman’s VSSS [Fel87]. Feld-
man extends Shamir’s secret sharing scheme with verification keys such that the
shares that the participants provide during the reconstruction step are verifiable.
The scheme is defined as follows:

Definition 7 (Feldman’s VSSS [Fel87]) Let D denote a dealer, and P, ..., Py, the
participants. Let t € [1,n] be the threshold, i.e. we will need at least t participants in
order to retrieve the secret s. This secret s is an element in Z,, where p > n denotes
a prime. We also let G be a group of prime order p such that g is a generator and
the discrete log problem is supposed to be intractable. Then s is shared as follows:

e Distribution: Dealer D picks a random polynomial of degree t — 1 with co-
efficients in Z,, i.e. a(X) = f;é a; X', where ap = s and a; €g Z,. Each
participant P; gets assigned their own share s; = a(i). In addition, dealer D
also broadcasts ‘commitments’ B; = g% for each j € [0,t — 1]. Each participant
P; wverifies that

t—1
g =[] BY (2.1)
j=0
holds, such that the participant knows that share s; was generated correctly.

e Reconstruction: Any group of t participants Q C [1,n] can recover the secret
s as in Shamir’s SSS in Definition 5. Fach participant can verify whether the
contributed share s; of participant P; is correct by using Eq. 2.1.

2.5 Removing the dealer: decentralized VSSS

We can use the notion of verifiable secret sharing in, among other things, distributed
key generation algorithms, which is useful in e.g. (¢, n)-threshold cryptosystems such
as [Ped91]. In such distributed key generation protocols, however, we often want to
get rid of the central authority: the dealer. We can do this by letting each participant
act as a dealer, and run an instance of Feldman’s VSSS. Then each participant can
generate a part of the secret, and share this with the other participants. After this,
each participant will have n shares. If each participant adds all of his own shares, he
will obtain one share of the same secret that was generated by all the participants, i.e.
the sum of all secrets that were generated by the participants. The reason that this
works is because Shamir’s SSS, and therefore also Feldman’s VSSS, is linear: adding
the shares of two secrets yields one share of the sum of those secrets.

So now we will use this to define decentralized verifiable secret sharing, which is
based on the distributed key generation in [Ped91], but works more generally for our
work:

Definition 8 (Decentralized VSSS [Ped91]) For participants Pi,..., Py, let t €
[1,n] be the threshold, and the rest of the parameters as defined in Definition 7

e Distribution: FEach participants P; picks a random polynomial of degree t — 1
with coefficients in Z,, i.e. a;(X) = 22;10 ai x X*, where a; o = s; denotes the

Chapter 2. Preliminaries 9

secret to be shared with the rest of the participants by P; and a; €r Z,. Each
participant P; will receive their own share s; j = a;(j) from participant P;. In
addition, P; also broadcasts ‘commitments’ B, = g%* for each k € [0,t —1].
Each participant P; verifies that

t—1
gSzJ = H Bik‘ (22)
k=0

holds, such that participant P; knows that share s; ; was generated by P; cor-
rectly. Each participant will add the shares, i.e. 5; = > i1 s;j, such that 5;
denotes the share of secret § =Y ;| s;.

e Reconstruction: Any group of t participants Q C [1,n] can recover the secret
5 as in Shamir’s SSS in Definition 5. Fach participant can verify whether the
contributed secret share 3; of participant P; is correct by checking

n t—1
& =11 (Bf,i) : (2.3)
0

k=

2.6 Access structures

Another important part in attribute-based encryption is the notion of access struc-
tures. There are several types of access structures that are used in ABE schemes. The
main reason for this is that in the earlier proposals of ABE schemes, more simplistic
access structures were used in the construction of the schemes, whereas more research
finally resulted in the use of more expressive access structures that would allow any
access policy to be imposed on the encrypted data, as long as the possession of a
certain attribute does not have a negative influence on the access policy, i.e. having
a certain credential may not result in a denial of access. This means that the access
structure is monotone.

Whereas monotone access structures do not allow any negations in the access
policies, non-monotone structures do, which initially sounds like a less restrictive
definition of access structures, but will prove itself to be, ironically so, a little more
restrictive in a sense when it comes to implementations of ABE schemes. The intuitive
idea behind this is that it is evidently easier to prove possession of an attribute than
the lack thereof. For instance, proving possession might just entail the revelation
of said attribute, whereas proving absence of that attribute might be much more
difficult.

First, we give a formal definition of (monotone) access structures:

Definition 9 ((Monotone) Access Structures) Let {Pi,...,P,} be a set of par-
ticipants. A collection A C 2P1-Pn} is monotone if for all B,C holds: B € A and
B C C, then also C € A. An (monotone) access structure is a (monotone) collection
A of non-empty subsets of {P1, ..., Pn}. The sets in A are called the authorized sets,
and the sets not in A are called the unauthorized sets.

Notation: In order to distinguish ‘normal’ sets from sets of attributes, we use S. If a
set of attributes S satisfies an access structure A, we denote this as A = S.

It is clear that an access structure is non-monotone if it does not satisfy the prop-
erty that for all B, C holds that if B € A and B C C, then also C € A. Informally,
this means that the presence of an attribute might result in an unauthorized set,

Chapter 2. Preliminaries 10

whereas the absence of that attribute would still be an authorized set. This would
happen, for instance, if an access policy contains a negation: —Dutch A Student, i.e.
we address international students. Having the set of attributes {Student} would re-
sult in access, whereas the extension of this set, {Student, Dutch}, would result in a
denial of access.

This also implicitly sketches a part of the problem: just because a user has a
set of attributes {Student}, it does not mean that said user is not Dutch. It might
simply mean that the user in question does not have that attribute. So in order to
solve this problem, we might have to require each user to either have the attribute,
or the negation of the attribute. How this affects ABE schemes will be shown later,
as it might force us to make sacrifices in the structure of our ABE scheme, which
might also have a negative influence on the scalability and other properties. As it
will turn out, for instance, the number of attributes in the system is bounded and
fixed after the setup (in Section 3.3 we will see why this is restrictive). Despite this,
we might still want to allow for non-monotone access structures, in which case there
are attribute-based encryption systems with non-monotone access structures (e.g.
[OSWO07]), but they cannot have certain properties that we might wish to impose on
the ABE system that we are trying to construct.

Aside of the monotonicity of access structures, there is also the question of how
we express an access policy, and how expressive they may be. For instance, there
are ABE schemes that only allow conjunctions (A) [CNO7; Yu+10], and only on
the attribute or its negation, so the access policies require users to have all of the
attributes (or their negation). There are also ABE schemes that allow the attributes
to be multivalued, making it a bit more expressive than just allowing the presence
or absence of an attribute [NYOO08; Emu+09]. Other schemes use a threshold, which
requires a user to have at least t out of n listed attributes, but do not allow negations
in the access policies [SWO05].

Others make use of access trees to represent monotone access policies [BSW07;
Cha07], which allow conjunctions and disjunctions. These access trees apply Shamir’s
secret sharing scheme in a fashion that we will explain in Section 4.1.

There is another way to make use of such expressive, monotone access policies,
namely by using the aforementioned linear secret sharing schemes (see Definition 6)
in the representation of the access structures [Wat11; LW11].

2.6.1 LSSS matrices as access structures

In [Bei96], Beimel shows that there is a close relationship between linear secret sharing
schemes (LSSS) and a linear algebraic model of computation called span programs,
which we can use to express access structures as matrices, and is used in a wide
variety of schemes (e.g. [Watll; LW11]).

As we had shown in Definition 6, we can write any linear secret sharing scheme
in terms of a share-generating matrix A and some function p that maps the rows
to participants in P. More generally, we have that for any set of participants P, we
can define a collection of subsets of P such that it consists of the authorized subsets
and a collection of unauthorized subsets as in Definition 9. In other words, a share-
generating matrix A represents an access structure, and conversely, any monotone
access structure can be represented with a share-generating matrix.

Hence, we can write any monotone access policy in terms of an LSSS matrix A
and function p, i.e. A = (A,p). Then we can distribute secret s by generating
V2, .. Uny €ER Zy? and assigning A;v to participant p(i). Then Beimel shows that
any secret sharing scheme that satisfies Definition 6 enjoys the linear reconstruction

Chapter 2. Preliminaries 11

property: suppose that we have an LSSS matrix for the access structure A, i.e.
A = (A,p). Let S be any authorized set, i.e. A =S, and let Y C [1,n] be defined
as Y = {i € [1,n] : p(i) € S}. Let A;v be the share of participant p(i), and w; € Z
for all i € Y such that Y ,cy wiA; = (1,0,...,0). Then Y,y wiAjv = s.

We can generate such matrices A by applying algorithms such as the ones as
devised in [LW10], which converts any access policy (in terms of a Boolean formula)
into such matrix.

2.7 Zero-knowledge proofs of knowledge

Another cryptographic primitive that we will be using is the notion of zero-knowledge
proofs. These are identification protocols in which the prover shows to a verifier that
he knows a certain secret without having to reveal that secret or any information
regarding it in plain view.

More specifically, we will be using the notion of ¥-protocols, which are identifi-
cation protocols that satisfy certain requirements that we will discuss later. In these
protocols, a prover wants to prove knowledge of a value to a verifier, for instance the
knowledge of a secret key corresponding to a public key. The prover does this by
committing to a random value, a nonce, which we will call an announcement®. Then
the verifier generates a random value, which is called the challenge, and sends it to
the prover, who has to use it in the last phase of the protocol. In this last phase, the
prover generates a response, and sends it to the challenger. Then the announcement,
challenge and response can be used to verify the knowledge of the value.

Before we get to the definition of Z-protocols, we will first define the notion of a
binary relation, R = {(v,w)} € V x W, which is the set of tuples in which v € V'
denotes the common variable of the prover and verifier, which is typically the ‘public
key’ or other public variable that the prover wants to use to prove the knowledge of
some secret, and w € W denotes the witness, which is typically the secret in question.

We will denote the triple (a;c;r) as the conversation that was generated by a
protocol, in which a denotes the announcement, ¢ denotes the challenge and r denotes
the response, and it will prove the knowledge of witness w for some given public v.
The conversation is accepting if (a;c;r) is well-defined and satisfies the verification
check.

Definition 10 (X-protocols [Cra96; Sch17]) A protocol between a prover and ver-
ifier is a X-protocol for relation R if it satisfies the following properties:

e Completeness: If the prover and verifier follow the protocol, then the verifier
accepts.

e Special soundness: For any given v € V, and any pair of accepting conversa-
tions (a;c;r) and (a;c;r") on this v such that ¢ # ¢, we can extract a witness
w € W in polynomial time such that (v,w) € R.

e Special honest-verifier zero-knowledgeness: For some given v € V (for
which w € W such that (v,w) € R exists) and challenge ¢, the distributions
of the simulated conversations (a;c;r) and the conversations that are generated
by running the protocol between an honest prover (that knows w) and verifier
are perfectly indistinguishable. Furthermore, some simulator is also required to

3This term was coined by Schoenmakers in [Sch17] and is a contraction of the words ‘commitment’
and ‘nonce’.

Chapter 2. Preliminaries 12

Prover Verifier
Prover Verifier (Knows : z,y) (B = g"hY)
(Knows :) (A=g")
u€ERrZy uy,up €r Zp
a+ g4 a a < g1 hv2 _a—>
CERZ, CERZLyp
c c
— = —
r<u+cx " 5 g";aAC 1 ¢ uptcr)
T — U2 + cy .72 g"th™ = aB°
FIGURE 2.1:
Schnorr’s protocol FIGURE 2.2: Okamoto’s
protocol

produce arbitrary accepting conversations for any v for which no witness exists,
for any given challenge c.

In this work, we will need two different X-protocols, namely Schnorr’s identifi-
cation protocol [Sch91] and Okamoto’s identification protocol [Oka92]. We will also
need EQ-compositions of the protocols in order to prove ‘correctness’ of certain com-
putations. For instance, if we want to some party to compute A and B such that
A = ¢” and B = g¥h", he could prove with a X-protocol that he has indeed done this
in the correct way.

2.7.1 Schnorr’s identification protocol

In Fig. 2.1, the schematic overview of Schnorr’s identification protocol is depicted, in
which the prover proves knowledge of x in A = g*, for some generator g and x € Z,,
where A is known to both the prover and verifier. It is easily proven that Schnorr’s
identification protocol as depicted in Fig. 2.1 is a 2-protocol, though we have omitted
the proof in this work.

2.7.2 Okamoto’s identification protocol

Okamoto’s identification protocol, as depicted in Fig. 2.2, is very similar to Schnorr’s
identification protocol, but instead the prover proves knowledge of two values in
B = g*hY, i.e. x and y. In order for it to be a X-protocol, we have to assume that
the log, h is unknown to anyone, otherwise the prover can forge multiple witnesses,
given the public input B. It is also proven that the protocol as depicted in Fig. 2.2
is a 2-protocol.

2.7.3 EQ-composition

In order to show that two public values have a common witness, we can use an EQ-
composition of two X-protocols. That is, if we have a -protocol for relation R, then
we can also create a X-protocol for relation {(v1,v9;w) : (v1,w) € RA (vo;w) € R}.
The basic idea of such a composition is that we use the same challenge and the same
response for the part that we want to prove equal. To give a better idea of how this
works, we give a X-protocol that proves knowledge of x and y in A = ¢ A B = g¥h".
As we can see in Fig. 2.3, we will need instances of Schnorr’s and Okamoto’s protocols,
and then we apply the EQ-composition on the both of them.

Chapter 2. Preliminaries 13

Prover Verifier
(Knows : z,y) (A=g¢g"NB = gYh")
u1, U2 €R Zyp
ap < g a
ag < g¥2pr ————

CER Zp
c
%_
71— Ul +cx r1,79 g ~ a1 A€
ro < u2 +cy ’ grEh 2z as B¢

F1GURE 2.3: EQ-composition of Schnorr’s and Okamoto’s protocols

2.7.4 Non-interactive zero-knowledge proofs

In some setups, the interactivity between the prover and verifier is not desired or even
possible. We can imagine that sometimes, a prover wants to prove the knowledge
of a value, but not to one particular verifier. In this case, a non-interactive zero-
knowledge proof would be desirable. As Fiat and Shamir have shown in [FS86], it
is fairly easy to convert an interactive X-protocol into a non-interactive X-proof, a
method that is called the Fiat-Shamir heuristic. To do this, all we need is a hash
function H : {0,1}* — {0, 1}* for some properly chosen bit length k.

Suppose that the challenge is defined as ¢ < H(a,v) mod p, where a denotes an
announcement, and v € V denotes the public value. Then r is the response to the
challenge c¢. The verification equation always takes a into account. So we can easily
rewrite it as a function of v,r and ¢, i.e. a = ¢(v;¢;r). This will be our input to the

hash function: so we have to check whether ¢ = H(p(v;e;r),v) holds, and if so, then
the prover has shown that he knows witness w such that (v, w) € R.

Definition 11 (X-proof [FS86; Schl17]) Let H be a cryptographic hash function.
For any X-protocol, a (non-interactive) X-proof for relation R is defined in terms of
two algorithms:

e Proof generation: Given (v,w) € R, a X-proof is a challenge-response pair
(¢;7), such that for announcement a, we have ¢ < H(a,v) mod p, and response
r was generated in the same fashion as in the X-protocol.

e Proof verification: For v € V, X-proof (¢;r) is accepted if and only if ¢ z
H(p(v;e;r),v) holds. Here, o(v;c;r) is the function that we have obtained after
rewriting the verification equation in the X-protocol.

So from the X-protocol in Fig. 2.1 we can make a non-interactive X-protocol:

Example 12 (Schnorr’s X-proof) Let H be a cryptographic hash function.

e Proof generation: Let A = g%, and pick w €r Z, such that a < g", as
in Fig. 2.1. Let the challenge be ¢ < H(a, A) mod p, and the response r +
u+ cx mod p. Then the output is the Z-proof (¢;r).

e Proof verification: For any given A, a L-proof (c;r) is considered valid if
and only if c L H(g"/ A, A) holds.

Chapter 2. Preliminaries 14

2.8 Group homomorphisms

We can define functions from groups G to other groups H. A special type of function
that preserves the structure is called a homomorphism. If - is an operation on G,
and © is an operation on H, and we define function ¢ : G — H such that for all
g1, 92 € G holds that ¢(g1 - 92) = ©(g1) © ¢(g2), then ¢ is called a homomorphism.
If ¢ is a homomorphism, then we can define two sets based on this function. The
first is the kernel of ¢, which is the set of all elements in G that are mapped to the
identity in H, i.e. Kernel(¢) :={g € G: ¢(g) = 1}. The second is the image of ¢,
which is the set of elements h in H such that there is some g € G such that ¢(g) = h,

Le. Image(y) := {p(g) : g € G} = »(G).

2.9 Bilinear maps

In a somewhat similar fashion, we can define a map e on two possibly different groups
G and H of prime order p, i.e. e : G x H — Gp, where G is called the target group,
such that the following properties hold:

(i) (Bilinearity I) For all a,b € Z,, we have e(g%, h®) = e(g, h)?.

(ii) (Bilinearity II) For all g1,g92 € G and hi,hy € H we have e(g1g2, h1hs) =
e(g1, hi)e(gr, ha)e(ge, hi)e(ge, ha).

(iii) (Non-degeneracy) If ¢ € G and h € H are no identity elements in G and H
respectively, then e(g, h) # 1g,.

Sometimes in literature, a property called ‘computability’ is included, which sim-
ply means that e(g, h) is efficiently computable.

Remark: In some literature, e is not defined over two groups of prime order, but
rather over groups of composite order N = pipops, where p; are prime numbers for
all i. Let G and Gr be two groups of order IV, and ¢ : G x G — G a map such that
bilinearity holds, and non-degeneracy is defined slightly differently: i.e. there is some
g € G such that e(g, g) has order N in Gr.

2.10 Security assumptions

In cryptography, the security of cryptosystems is often reduced to well-established
complexity assumptions. For instance, the security of the Diffie-Hellman key exchange
[DH76] can be reduced to the decisional Diffie-Hellman assumption, which can be
reduced to the complexity of the discrete log problem.

In this work, we will consider a lot of different ABE schemes, of which the security
is not always reducible to the same security assumption. However, a multitude of
schemes is reducible to the decisional bilinear Diffie-Hellman (DBDH) assumption,
or to a slight modification of it. In the second part of this work, we will consider
an ABE scheme which security depends on the symmetric external Diffie-Hellman
(SXDH) assumption. In both cases, we assume a security parameter A and group G
of large prime order p (of at least A bits) with generator g.

For the DBDH assumption, we assume that e is a non-degenerate bilinear map
such that ¢ : G x G — Gr.

Chapter 2. Preliminaries 15

Assumption 13 (Decisional bilinear Diffie-Hellman assumption [SWO05])

Suppose that a,b,c,z € Z, are picked at random. Then the assumption is that we
cannot distinguish (A = ¢g°, B = ¢*,C = ¢°,Z = e(g,9)™) from (A = ¢°,B =
g*,C = g% Z = e(g,9)?) in polynomial time and with more than negligible advantage.

For the SXDH assumption, we also define IH as a group of prime order p with
generator h, and e as a non-degenerate bilinear map such that e : G x H — Gr.

Assumption 14 (Symmetric external Diffie-Hellman assumption [CW14a))
Suppose that s1 €g Zp and ay,az, sy €g Z,, are picked at random. Then we can-
not distinguish (g, g2, g*1, g*%1) from (g, g%, g**1, g*251752) in polynomial time
with more than negligible advantage.

Analogously, we have that (h®, h?2 h51 h9251) gnd (b, h®2, h*151 h9251F52) gre
indistinguishable in polynomial time with more than negligible advantage.

16

Chapter 3

Attribute-Based Encryption

One of the tools that can be used to en- P
sure confidentiality of data, is public-key
cryptography. However, most public-key
cryptosystems such as RSA [RSA78] and CA
ElGamal [E1G85] have problems with the

PKg M’ = Decsk,, (CT)
distribution of keys, as they need to be
authenticated in order to be used prop- P ﬂ
erly. There are many solutions that at- - » u
tempt to solve this problem, such as the - O = Encricy (M) -

use of certificate authorities (CA), which
allows a user to generate a key-pair and
then obtain a certificate from a CA that confirms the ownership of that key (see Fig.
3.1 for a schematic overview of this particular setup).

Identity-based encryption (IBE) [Sha84] provides us with a way to tie identities
to a key-pair such that authentication of keys is trivial. The idea is that one key-
pair is generated by some trusted third party, and all other key-pairs are derived
from that key-pair in such a fashion that the identities of the users are used in this
derivation. The identity could be anything, such as a name or social security number,
or any combination of identifiable traits that one wishes to use. The main difference
between IBE and regular public-key cryptography is the encryption step: instead of
looking up a public key that corresponds to an identity, which is then used the encrypt
a message, we can immediately use the identity in order to encrypt the message. In
other words, we do not need a trusted third party in the encryption step. Instead, the
trusted third party is moved to the key distribution step (see Fig. 3.2 for a schematic
overview of IBE).

Now, this system is based entirely on the notion of identity and does not much else
than provide us with another way to send messages to other users, however we can
also imagine that we do not necessarily want to send anything to specific users, but
rather to users that possess certain attributes. For instance, we might want to send a
message to everyone that lives in the same street, or to all computer science students,
or anything more specific. One way to do this would be to ‘simply’ look up all
identities of these users and then send separate messages to each individual, encrypted
with their own respective public key, which provides us with various problems such
as finding all of those identities.

Another way to do this would be to apply attribute-based encryption (ABE)
[SWO05], which was invented by Sahai and Waters and is derived from IBE. Instead of
encrypting to separate public keys corresponding to users, the message is encrypted
to attributes according to some policy that can be specified by either the key issuer
or the encryptor, depending on the ‘type’ of ABE that we use. In other words, the

FIGURE 3.1: Public-key encryption (with CA)

Chapter 3. Attribute-Based Encryption 17

‘ PKG and SKG are key generators with seeds MPK and MSK and input identities

Master key-pair:
MPK MSK

SKB = SKGMSK (Bob)
PKB = PKGMPK(BOb)

- - ®
CT = Encpk, (M) ' “

Alice Bob

]\/I' = DeCSKB (CT)

FIGURE 3.2: Identity-based encryption

keys correspond to attributes rather than identities, and the ciphertexts can only be
decrypted when the user has the ‘right’ attributes and their associated keys.

In this scenario, there are different entities. Of course, there are the users in the
system, that can both encrypt messages and decrypt ciphertexts. Even outsiders
can encrypt messages, as long as the public parameters are known to them. And
finally, we need some key issuer or key generation authority (KGA) that generates
the master keys, and distributes the secret keys associated with attributes that the
user possesses. Moreover, these keys have to be ‘personalized’ in such a way that
we can prevent a so-called collusion attack, which entails that two or more users can
collude by combining their keys in such a way that they can decrypt ciphertexts that
they cannot decrypt with their own sets of attributes.

Before we give a formal definition of attribute-based encryption, we have to men-
tion that we distinguish between two types of attribute-based encryption, for which
the definitions are slightly different. These two types of ABE are called key-policy
and ciphertext-policy attribute-based encryption.

3.1 Key-policy and ciphertext-policy ABE

The idea of attribute-based encryption is that we can define access policies over
attributes in the form of Boolean formulas. So for instance, if we want to impose
the following policy: the user has to be a mathematics or computer science student
from the Netherlands, then we can represent this with the following Boolean formula:
Student A Dutch A (Mathematics V ComputerScience). Note that this representation
is certainly not unique, as we can also write it as (Student A Dutch A Mathematics A
Mathematics) V (Student A Dutch A ComputerScience) or any other representation
that can be rewritten as the same formula.

Now, the question is how we can integrate the policy. First, we convert the access
policy (which is represented by a Boolean formula) to some suitable representation
of an access structure. Then we can integrate the access structure in the encryption
scheme by either imposing the structure on the secret keys or on the ciphertexts. In
the first case, the access structure is integrated in the key generation algorithm, and
in the second case, the access structure is integrated in the encryption algorithm.
Because in the first case, we impose the policy on the secret keys, which is done
by the key issuer, this type of ABE is also referred to as key-policy attribute-based
encryption (KP-ABE), whereas the second type of ABE imposes the policies on the

Chapter 3. Attribute-Based Encryption 18

Policy:

P “red shirt” A “black hair”
Q\) 4 6“

Key issuer
% Yy

‘ Attributes: “red shirt”, “black hair” and “red tie”

FI1GUurE 3.4: Example of key-policy attribute-based encryption

ciphertexts, which is done by the encryptor, and is therefore called ciphertext-policy
attribute-based encryption (CP-ABE) (see Fig. 3.3).

ton of the aceess stractmms i | [KP-ABE | CP-ABE
cither the keys or the cipher- Policy imposed on Keys Ciphertexts
texts (depending on which Policy imposed by || Key issuer | Encryptor
type of ABE we are dealing piqurg 3.3: KP-ABE and CP-ABE and their policies
with) can be done by exploit-

ing primitives such as secret sharing schemes, which allows us to share a secret value
among different attributes. The idea is that the secret can only be recovered if the set
of attributes satisfies the access policy. For instance, if our access policy consists of a
set of n attributes, for which holds that we need at least ¢ € [1,n] of those in order
to satisfy the policy, then this can clearly be realized by applying Shamir’s secret
sharing scheme (see Definition 5), which is a (¢, n)-threshold scheme. The first ABE
scheme that was proposed in [SWO05] applies this strategy.

Typically, in KP-ABE, the secret to be shared is some secret value that relates
to the master secret key, which is usually some value « in the exponent of one of the
public keys that is used to hide the message M in the encryption. This secret value
is shared with SSSS, and the shares are each put in the exponent of some cleverly
chosen generators. Then, the ciphertexts are related to a set of attributes in some
fashion, for which holds that if there is a subset of attributes that consists of at least
t attributes that match the set of attributes associated with the secret keys, then the
secret keys can be used to decrypt the ciphertext. This works because the ciphertext
also contains a secret value s, specified by the encryptor. In [SW05], Sahai and Waters
define unique generators for each attribute in the system, such that this specific secret
value is only ‘added’ to the ciphertext for those attributes that the encryptor wishes
to use. This can be done by only raising the corresponding generators to the power
of the secret value s. In CP-ABE, we can do something similar, but instead use SSSS
in the sharing of the secret value in the ciphertext, whereas the keys use the unique
generators raised to the power of the master secret key value a.

In Fig. 3.4, an example of such a threshold policy for KP-ABE is depicted, in
which the policy specifies that both attributes have to be used in the ciphertext in
order to decrypt. Note that, technically, the access policy is expressed as a Boolean
formula with a single conjunction, but this is the same as a (2,2)-threshold access
structure. This indirectly also sketches the correspondence between Boolean formulas
and secret sharing, which we will discuss in more detail in Section 4.1. We also observe
in Fig. 3.4 that the attributes associated with the ciphertext satisfy the policy, which

Chapter 3. Attribute-Based Encryption 19

Attributes:
“red shirt”, “black hair”

~ \ >
W

Key issuer

’ Policy: “red shirt” A “black hair”

FI1GURE 3.5: Example of ciphertext-policy attribute-based encryption

means that Alice can decrypt the ciphertext. Note that the policy and attributes
are both attached to the key and ciphertext respectively, which is necessary to know
how to combine the keys and ciphertext in order to decrypt. It is also possible to use
hidden policies, but we will discuss this in Section 3.9. In Fig. 3.5, we see a similar
threshold policy for CP-ABE is depicted, but observe that in this case, the policy is
imposed on the ciphertext.

Because we are looking for fine-grained access control of data, controlled by users,
i.e. users get to decide who reads data pertaining to or generated by them, we will
mostly focus on ciphertext-policy attribute-based encryption in the remainder of this
work, as it allows encryptors to specify the access policy, contrary to KP-ABE, which
only allows the key issuer to do this.

3.1.1 Formal definitions

In [SWO05], Sahai and Waters introduced the notion of attribute-based encryption.
However, the first definition was formulated in [Goy+06], which gives a formal defi-
nition of key-policy attribute-based encryption.

Definition 15 (KP-ABE [Goy+06]) A key-policy attribute-based encryption
scheme with some key generation authority (KGA), users and a universe of attributes
U (which denotes the set of all of the attributes that are defined in the system) consists
of four algorithms:

(i) Setup: This is a randomized algorithm executed by the key generation authority
that takes no input other than the security parameter A. It outputs the public
parameters MPK and master secret key MSK, which is only known to the KGA.

(ii) Encrypt: This is a randomized algorithm executed by any user in the system
that takes as input a message M, a set of attributes S C U and public parameters
MPK. It outputs ciphertext CT.

(iii) KeyGen: This is a randomized algorithm executed by the KGA upon a user’s
request that takes as input an access structure A (that the user satisfies), the
master secret key MSK and public parameters MPK. It outputs a decryption
key SK.

(iv) Decrypt: This algorithm takes as input the ciphertext CT that was encrypted
under attributes S, the user’s private key SK for access structure A, and the
public parameters MPK. It outputs message M if A =S, and L if A= S.

Chapter 3. Attribute-Based Encryption 20

Note that whether the decryption algorithm outputs the message or not, depending on
whether the set of attributes satisfies the access structure, is also referred to as the
correctness property.

As we can see, the encryption algorithm takes a set of attributes as input, whereas
the key generation algorithm takes an access structure as input. We will see that
this is the other way around for ciphertext-policy attribute-based encryption. The
first formal definition of CP-ABE was given in [BSWO07], which closely resembles the
definition of KP-ABE.

Definition 16 (CP-ABE [BSWO07]) A ciphertext-policy attribute-based encryption
scheme with some key generation authority (KGA), users and a universe of attributes
U consists of four algorithms:

(i) Setup: This is a randomized algorithm executed by the key generation authority
that takes no input other than the security parameter X. It outputs the public
parameters MPK and master secret key MSK, which is only known to the KGA.

(ii) Encrypt: This is a randomized algorithm that takes as input a message M, an
access structure A specified by the encryptor and public parameters MPK. It
outputs ciphertext CT such that only a user that possesses a set of attributes
S C U that satisfies the access structure can decrypt the message.

(iii) KeyGen: Upon some user’s request, this randomized algorithm takes as input
a set of attributes S, the master secret key MSK and public parameters MPK
and lets the KGA compute private key SK for the user with attributes S.

(iv) Decrypt: This algorithm takes as input the ciphertext CT that was encrypted
under access structure A, the user’s decryption key SK associated with the set of
attributes S, and the public parameters MPK. It outputs message M if A = S.
If A= S, it outputs L.

Note that whether the decryption algorithm outputs the message or not, depending on
whether the set of attributes satisfies the access structure, is also referred to as the
correctness property.

3.2 Collusion resistance

As we already briefly mentioned, we do not allow users to collaborate in order to
decrypt messages that they are not supposed to decrypt. In other words, if we
have two users with sets of attributes &; and S5, and access structure A such that
A = 8§ US; holds but A = S and A [~ S, then the users should not be able to
decrypt the message.

To achieve collusion resistance, the key generation algorithm often generates some
random number that ‘links’ the secret keys together, so they can only be used together.
When two users will attempt to pool their secret keys, they will not ‘fit’ together
because the random numbers do not correspond. Alternatively, the secret keys are
linked to the user’s identity in some fashion. In that case, we can also define collusion
resistance for decentralized systems that do not use one central authority to distribute
the keys, which we will discuss in Section 3.5.

Chapter 3. Attribute-Based Encryption 21

3.3 Small and large universes

In ABE schemes, the attributes are often represented by integers or group elements,
either because of notation purposes, or because the attributes are somehow part of the
algorithms. The set of possible attributes that a user can possess is called a universe
of attributes, often denoted as /. We distinguish between two types of universes,
namely small and large universes. The main difference is that in the former, we are
required to choose the universe of attributes in the setup, which means that once we
have chosen a set of possible attributes, this set is fixed after the setup, and we cannot
add new attributes. Alternatively, during setup, the key issuer sets a ‘upper bound’
to the number of attributes that are ‘eventually’ needed. But this bound is required
to be polynomial in the security parameter, and restricts the system considerably,
especially if the number of public keys grows in the size of the universe of attributes.
Large universe systems,

however, do not have this ’ H Small \ Large ‘
‘upper bound’ They can || Polynomial in A Exponential in A
represent the universe of at- |PK| || May be linear in || | Independent on |/

tributes with all of the ele-
ments in Z or some other
group of elements of order N, where N is a number of at least A bits. Recall that A
denotes the security parameter. In this case, the universe of attributes is exponen-
tially large in the security parameter, as opposed to small universes of attributes. A
large universe of attributes is therefore practically unbounded. In [SWO05], a large
universe of attributes is constructed by mapping attribute strings to elements of Zy
with a collision-resistant hash function H, which is a practical method to represent
attributes in the cryptosystem and therefore often used in literature. Also note that
contrary to small universes, large universes do not allow the public keys to grow in
the size of the universe of attributes, which makes large universe constructions to
some extent more scalable than small universe constructions.

Because clearly, large universe constructions provide us with a way to constantly
add new attributes, we prefer large universe constructions in the DECODE setting.
Moreover, the size of the public keys is independent on the number of attributes in
the system, which also makes the scheme more scalable. However, this also means
that non-monotone access structures are out of the question, as to the best of our
knowledge, there are no CP-ABE schemes with a large universe of attributes and
non-monotone access structures. The reason for this is probably because for each
attribute in the attribute universe, we need to specify whether a user possesses it or
not. If our scheme were a large universe construction, then we could not realize this:
each user would have to indicate of each possible attribute, which is a number that
is exponential in the security parameter, whether he has it or not, and the key issuer
would have to issue keys for each element in e.g. Zy to each user in the system,
which is not feasible.

From a functional point of view, we would definitely prefer non-monotone access
structures, as it allows us to use more expressive access structures. But from the
practical point of view, we also argued in Section 2.6 that we preferred monotone
access structures over non-monotone access structures in the implementation, as it is
simply easier to prove possession of something than the lack thereof, especially in a
large practical setting such as DECODE. Hence, in this case, there is not much of a
trade-off.

FIGURE 3.6: Small versus large universes

Chapter 3. Attribute-Based Encryption 22

3.4 Delegatability

In some attribute-based encryption schemes, there is an additional algorithm for del-
egation of keys. This algorithm allows users that already have secret keys to delegate
their keys to other users, which sounds rather trivial, but the idea is that the policy
or the set of attributes may be more restrictive than the original. So, for key-policy
ABE, the delegation algorithm takes the secret keys associated with some access pol-
icy A as input, and outputs the secret keys associated with a more restrictive policy
A such that for all sets of attributes S holds: if A’ = S, then A = S. For ciphertext-
policy ABE, the delegation algorithm takes the secret keys associated with some set
of attributes S as input, and outputs the secret keys associated with a smaller set of
attributes S’ C S.

The ability to define such a delegation algorithm in an ABE scheme, which we will
refer to as delegatability, provides us with other benefits, which we will see in Section
3.10.4. However, because DECODE aims to implement attribute-based encryption
in combination with attribute-based credentials, and requires a user in the system
to authenticate towards the key generation authority in order to prove that he has
the right to possess the requested secret key associated with some attribute, we do
not wish to implement such delegation algorithms in the system, as it means that
users can share their keys with other users. Moreover, as we will see in the next
section, in the multi-authority setting, the secret keys are tied to global identifiers
and per definition we require that such secret keys cannot be transformed in secret
keys for other global identifiers. Hence, delegatability and decentralization are, to
some extent, incompatible with one another.

3.5 (Decentralized) multi-authority ABE

Up until now, we have considered ABE schemes in which we assume a central au-
thority that acts as a trusted third party. However, we are trying to move away from
trusting one party, and decentralize the trust that has to be put into the authorities
(see Fig. 3.7 for a schematic overview). We are trying to put the DE in DECODE,
so to speak.

In the last decades, the decentralization of trust has become more popular in
security areas. For instance, blockchains provide a decentralized ‘alternative’ to cen-
tralized banks, and secure multiparty computation makes it possible to distribute the
computation of a function in a secure, distributed fashion.

Hence, the decentralization of attribute-based encryption is a logical next step. In
2007, Chase [Cha07] published the first multi-authority (KP-)ABE scheme that — to
some extent — distributes the secret key generation among different authorities: each
authority will be responsible for their own unique set of attributes, and distributes
keys to users that are entitled to those keys. However, this scheme still needs a central
authority that distributes a part of the secret keys, so in a sense, we still have one
centralized point of trust. Moreover, the CA is able to decrypt all messages in the
system, which means that corruption of the CA leads to a massive privacy violation.
But despite its disadvantages, Chase’s work paves the way for fully decentralized
ABE, and she also introduces the notion of global identifiers, which ties each user to
an identity in the system. This way, authorities can use the global identifier to ‘tie
the keys together’ in such a way that collusion between users can be avoided. This
notion will prove itself paramount in the design of other decentralized ABE schemes.

In [CCO09], Chase and Chow showed how we can remove the central authority by
letting each authority contribute to the generation of the master secret key. Then the

Chapter 3. Attribute-Based Encryption 23

N Authority “black hair”
. Authority “red shirt”

Authority “black tie”

Alice

FIGURE 3.7: Decentralized (multi-authority) CP-ABE

master secret key is divided in different pieces for each user by using a pseudo-random
function that is dependent on the global identifier of the user. This ensures that each
user gets a different ‘sharing’ of the master secret key (and therefore avoids collusion)
while still allowing the sharing to sum to the master secret key.

Whereas the aforementioned multi-authority schemes are both key-policy based,
there are also decentralized multi-authority ciphertext-policy ABE schemes. In 2011,
Lewko and Waters [LW11] published a decentralized CP-ABE scheme (see Fig. 3.7
for a schematic overview) that only uses a ‘central authority’ to set up the system
parameters, such as the groups in which the system is defined, and other parameters
that are not required to be kept secret, with the exception of one parameter: the
groups are all of order N, where N = pqr is a composite of three large prime numbers.
It is assumed that these prime numbers are secret, because the security is derived
from an assumption that can be reduced to the assumption that the factorization
of N is unknown. Whereas this is not mentioned in [LW11] itself, at the end of a
lecture [Lewl1], Lewko is asked the same question. She answers that eventually the
system should be implemented in a prime-order setting, which is also mentioned in
the paper. Earlier the same lecture, it is however briefly mentioned that one of the
possible future goals could be to distribute the setup, e.g. with secure multiparty
computation (MPC) [BFO01].

Nevertheless, this would weaken the security at least to some extent, as it will
have to rely upon more security assumptions (as secure MPC might use different
security assumptions). Moreover, such multiparty computation protocols often have
thresholds where at most half of the participants in the protocol may misbehave in
order to keep the value secret. Hence, if the authorities were to use secure MPC to
compute N, then this affects the security of the scheme in terms of resilience. As
we will see, multi-authority ABE allows the corruption of authorities in the security
models, but there is often a limit to the number of authorities that may be corrupted,
which is referred to as resilience. In most multi-authority schemes, this limit is almost
maximal (i.e. if at least one or two authorities are honest, then the scheme is secure).
Obviously, this is not the case when we use secure MPC, because we only need to
corrupt half of the authorities in order to break the security of the system, which
makes the scheme a lot less resilient and therefore less secure.

In short, we will avoid this problem altogether by just requiring that the order of

Chapter 3. Attribute-Based Encryption 24

the groups in the multi-authority ABE scheme is a prime number, which has other
advantages as well (which we see in Section 3.8).

3.5.1 Privacy towards the authorities

In decentralized ABE, the keys associated with attributes are distributed by the
corresponding authorities. Each authority manages a unique set of attributes, which
it does so in a trustworthy manner or not. We already mentioned the notion of
corruption in multi-authority schemes, which means that some corrupt authorities
may conspire with other corrupt authorities in order to decrypt ciphertexts that they
would not be able to decrypt on their own.

But even if authorities are honest in this sense, it does not mean that they cannot
infringe upon the privacy of a user in other ways. Consider the following attack: a
user with some identifier GID requests keys from certain corrupt authorities such that
they collectively manage the attributes “female”, “student” and “computer science”.
Then together, they know that the user that corresponds to GID is a female computer
science student, which gives the corrupt authorities a significantly better chance at
identifying the user behind the identifier GID, whereas knowledge of the separate
attributes does not nearly reveal as much information. To avoid this type of attack,
we can let the user operate with different pseudonyms at different authorities.

So clearly, using the same global identifier at each authority opens up the possi-
bility to perform a linkability attack: authorities can link different attributes to the
same GID, which infringes upon the privacy of the user, at least to some extent. Re-
sistance against this type of attack is also called authority-unlinkability, which means
that no one can observe that one user requested keys at two different authorities.

In [CC09], Chase and Chow suggest an anonymous key issuing protocol that
allows users the use pseudonyms towards authorities such that the user’s privacy is
ensured (in the form of authority-unlinkability) while preserving authenticity in the
sense that the authority remains certain of the user’s right to the requested key. This
can be done by exploiting cryptographic primitives such as commitment schemes and
zero-knowledge proofs, but also anonymous credentials (e.g. [Bel+09]).

3.6 Dynamic schemes

One of the main problems in attribute-based encryption was first addressed in [Pir+10],
and concerns the revocation of users and/or their keys. Whereas in public-key en-
cryption, we could just blacklist a user and their keys, we cannot simply do this
in attribute-based encryption, because the keys correspond to attributes. Blacklist-
ing a users keys would mean that we have to blacklist all the keys in the system
that correspond to that very user’s attributes, and then other users cannot use those
keys anymore either. This would mean that all keys have to be re-generated and
re-distributed, and all of the ciphertexts have to be decrypted and encrypted with
the new keys, which is highly impractical.

Yu et al. [Yu+10] mitigate this problem by presenting a method to implement user
and attribute revocation by modifying the keys upon each revocation event instead of
entirely replacing them with new keys. To this end, Yu et al. use the cryptographic
primitive called proxy re-encryption (PRE) [BBS98|, which makes it possible for a
semi-trusted proxy to ‘re-encrypt’ the ciphertexts. This way, a ciphertext that was
encrypted under a certain key can be transformed into a ciphertext that another key
(in this case the new key) is able to decrypt. An advantage of this approach is that
we do not have to decrypt the old ciphertexts in order to compute the new one. The

Chapter 3. Attribute-Based Encryption 25

same holds for the keys, which only need to be updated in order to match the new
key. Moreover, we do not have to require the key issuer to be online, but rather allow
the re-encryption and key update to be outsourced to a semi-trusted proxy.

In [SSW12], Sahai et al. devise a similar method of implementing revocation in
ABE schemes, but it provides a stronger notion of security than the scheme that was
proposed in [Yu+10]. They also introduce the notion of revocable storage, which
allows an untrusted entity to be in charge of the stored encrypted data, and be able
to update the ciphertexts in such a fashion that no sensitive data has to be used. In
order to do this, Sahai et al. introduce a new procedure called ciphertext delegation,
which allows a third party to change a ciphertext that was encrypted under a certain
policy A into a ciphertext that is encrypted under a more restrictive policy A’, but
only use public information to do this. They also define a property called piecewise
key-generation, which can be used in realizing the revocation in ABE.

3.6.1 Directly and indirectly revocable schemes

Attrapadung and Imai [AT09] pointed out that existing revocable ABE systems can
be classified in two categories: directly and indirectly revocable ABE. In directly re-
vocable ABE, the list of revoked users is somehow integrated in the ciphertexts by the
encryptor. So whereas the revocation itself is in the hands of the trusted third party,
the ciphertexts have to be changed by the users, and not by the trusted third party
or another semi-trusted proxy. This makes the previously considered approaches that
integrate revocation in any ABE construction both indirectly revocable approaches,
because they require keys to be updated by an external party, and not the encryptors.
Hence, an advantage of direct revocation it that we do not need key updates.

However, one of the disadvantages of direct revocation is that we cannot revoke
attributes, which is not desirable in setups such as DECODE, in which attributes are
possibly of a temporary nature.

Another disadvantage is
that [AI09] puts the effort | [

Direct ‘ Indirect

almost solely on the encryp- Revocation by Encryptor | Authority
tor of each ciphertext in the Key update needed No Yes
system, i.e. the encryp- Attribute revocation || Not trivially Yes

tor has to re-encrypt the
ciphertexts at each revoca-
tion event. Shi et al. [Shi+15] somewhat mitigate this problem by delegating the
ciphertext operations to a third party, much like in the indirectly revocable ABE
schemes we have considered before. They also provide us with methods to make
this delegation verifiable, such that the third party cannot alter the plaintext in the
process.

This means that on the one hand, we prefer directly revocable ABE over its
indirect counterpart, because it would require a lot less communication in the system
from the key generation authority’s side. In fact, if the act of revocation were in the
hands of an external party, the KGA would not have to do anything at all. But on the
other hand, the lack of a trivial way to implement attribute revocation in this direct
setting is problematic in settings such as DECODE, so we would have to find another
way to do this. Because there are not many ways to do this, this would probably
lead to the same or similar solutions as the ones used in indirect revocation. Also,
because indirect revocation uses time frames in which keys associated with certain
attributes are valid, and DECODE also defines a lifespan on each attribute, it seems
that indirect revocation is more compatible with DECODE than direct revocation.

FI1GURE 3.8: Directly versus indirectly revocable ABE

Chapter 3. Attribute-Based Encryption 26

Hence, because of the explicit requirements of DECODE regarding revocation,
and the lack of such explicit limitations on the key generation authority in terms of
communication during a revocation event, we prefer indirect revocation over direct
revocation, even though it might be more costly on the KGA’s side.

Remark: Note that we might want the revocation of users and attributes to be done
by an external party. This party communicates to the key generation authorities
whenever such a revocation event has occurred and which attribute keys need to be
renewed. Because, in DECODE;, this will probably be realized in combination with
attribute-based credentials, we might want to encourage the communication between
the party that is responsible for attribute revocation in the ABC setting and the
key generation authorities in the ABE setting. Especially in cases when immediate
revocation is in order (e.g. when such an event occurs long before the expiration date
is due and the revocation is urgent), we might want to enforce a quicker update of
keys.

3.6.2 Definition of dynamicity

Intuitively, dynamic ABE is supposed to enjoy certain properties that one typically
thinks of as dynamic. We could think of properties such as user and attribute revoca-
tion (which we already determined is only possible in indirectly revocable ABE), but
also whether an attribute authority can easily join the scheme or whether the number
of attribute authorities is fixed after the setup. Another feature that we could con-
sider is whether attributes can be created on the fly in the system, or whether they
are fixed after the setup, which depends on whether ABE scheme is a small or large
universe construction. Because all of these properties are desirable in ecosystems such
as DECODE, we will tailor our definition of dynamic to include these properties.

Definition 17 (Dynamic ABE) An ABE scheme is dynamic if it is a large uni-
verse construction, and if attribute and user revocation are possible. If the ABE
scheme is also decentralized, we require that attribute authorities can join the scheme
at any moment, even if this is after the setup phase. In particular, this means that
the global setup does not generate implicitly secret parameters.

3.7 Storage and computational costs

Another important factor in cryptosystems are the computational costs, but also the
storage costs. We will be considering the possible trade-offs in key and ciphertext
sizes, as well as key generation, encryption and decryption operations.

3.7.1 Private key and ciphertext sizes

In attribute-based encryption, the sizes of the keys and /or the ciphertexts may depend
on the number of attributes. For instance, the ciphertext may depend the number
of attributes that the encryptor uses in the ciphertext, or the size of the key may
depend on the number of attributes that a user possesses. For extremely complex
access structures, this tends to blow up ciphertexts, and for large sets of attributes,
the key storage costs become very expensive.

Whereas most ABE schemes have both key and ciphertext size linear in the num-
ber of attributes (e.g. [BSWO07]), some are linear in the size of the attribute universe
(e.g. [NYOO08]). Some manage to make the system such that the ciphertexts and

Chapter 3. Attribute-Based Encryption 27

secret keys are of constant size (e.g. [Emu+09]), some have constant-size cipher-
texts but have key lengths that are linear in the size of the attribute universe (e.g.
[CZF11]), and some have constant-size ciphertexts, but at the cost of the key length
being linear in the number of attributes that the user possesses (e.g. [Att-+12]).

Depending on the setting, it might be beneficial to use either short keys (when
the key storage space is limited, for instance), or short ciphertexts (when the number
of ciphertexts is high, and we still allow complex access structures, but the storage
space is relatively small).

3.7.2 Key generation, encryption and decryption

Somewhat related to the size of keys and ciphertexts is the computational cost of
key generation, encryption and decryption algorithms, which might be dependent
on the number of attributes as well, and to some extent also on the size of the
keys and ciphertexts. In a similar fashion, we might wish to minimize the number
of pairings and exponentiations, which are typically the most expensive operations,
that are necessary to compute or decrypt a ciphertext, especially if the operations
are executed on devices that do not support complicated operations such as pairing
operations, or on devices that do support them, but it would simply cost too much
time to be practical.

However, there does not seem to be a trade-off in the computational cost of the
key generation, encryption and decryption in the same fashion as in the storage costs
of the key and ciphertext. Rather, the computational cost seems to be strongly influ-
enced by the structure of the ABE scheme. For instance, during the decryption, some
schemes require for each attribute that satisfies the access policy one or more pairing
operations (e.g. [BSWO07]), but in other schemes the secret keys and ciphertexts can
be combined in a certain way before requiring a pairing operation (e.g. [AC16]). In
these schemes, we only need a fixed number of pairing operations. In the key gen-
eration and encryption algorithms, we typically do not need any pairing operations,
regardless of the ABE scheme that we are considering.

3.8 Group order

Another influence on the storage and computational costs is the group order. In
almost all ABE schemes, we either use prime numbers p or composite numbers N =
p1p2ps as group order. Here, p and N take the security parameter A into account, e.g.
p is at least A bits. Because ABE schemes in a composite order setting are implicitly
secure under the assumption that given such N, it is computationally infeasible to
find primes p1,ps, p3 such that N = pipaps, we have to require that pi, p2,p3 are
large enough primes such that we cannot factorize N. However, the question is how
we obtain the same level of security as in the prime-order setting.

In practice, the security level is based on the best attack that is known to solve
the problem. This is tested by Guillevic in [Guil3] as well, and it turns out that a
composite of three primes only needs to be a couple of bits longer than a composite
of two primes (and therefore prime p, which has length A\) would need to be, which
makes the difference in storage costs of composite order and prime order ABE almost
minimal. This does not mean that the consequences of choosing a group of composite
order are minimal. On the contrary, Guillevic has also shown that pairing operations
on elements in a group of composite order perform much worse than in a group of
prime order, depending on the security parameter, varying from one to two orders of

Chapter 3. Attribute-Based Encryption 28

magnitude. So from the computational point of view, we prefer prime order groups
over composite order groups.

Moreover, we had already argued in Section 3.5 that in the decentralized setting
it would be beneficial to use prime order groups, because otherwise we would need to
use secure multiparty computation in order to compute such group order N without
leaking the prime factorization, which weakens the security of the system. Now, the
only reason why we would prefer the composite order setting is that it is much easier
to prove full security in the composite order setting than in the prime order setting,
whereas in the prime order setting, we often have to be satisfied with proving a weaker
notion of security. Nevertheless, the advantages of prime order groups have resulted
in interesting research on how to convert a composite order ABE system into a prime
order setting (e.g. [Frel0]), and other research on how to generically construct fully
secure ABE systems in prime order setting (e.g. [CGW15; AC16; AC17hb)).

3.9 Privacy of access policies

Until now, we have assumed that CP-ABE ciphertexts include the access policies
explicitly. However, they might reveal some information about the encryptor. For
instance, if a user in the system consistently uses a very specific access policy, then all
of the messages are linkable to that user. Moreover, the access policy might also leak
some information regarding the user, for example, because the messages are always
encrypted with the following policy: Student A ComputerScience. The messages are
sent to computer science students, which makes it likely that the sender is a professor
at the computer science department.

In other words, in some situations we wish to keep the access policies hidden or
private as well. Basically, there are two ways to do this: either we integrate the policy
in the encryption and leave the access policy out of the ciphertext completely. In this
case we only know whether we satisfy this unknown policy by attempting to decrypt
it. If the result is gibberish, then the only thing we learn about the policy is that we
did not satisfy it, and if the result does make sense, then we learn that we did satisfy
the policy. The alternative is that we include the access policy in the ciphertext, but
in a hidden way, i.e. the policy is expressed in hidden attributes that can only be
revealed if the user is in possession of the attribute.

In literature, a scheme that does not require the access policy to be public is
called attribute-hiding' [KSWO08], i.e. if we do not satisfy the policy, then we learn
nothing about the policy at all, and if we do satisfy the policy, we only learn that our
own attributes satisfy the policy. Nishide et al. [NYOO08] devised a CP-ABE scheme
that satisfies this strong notion of security, but they only allow conjunctions in the
access policy, and the set of values that each attribute can assume has to be finite
and known. Qian et al. [QLZ13] devised another attribute-hiding CP-ABE scheme,
but allow the access policies to be more expressive than [NYOO0S8]: they allow both
conjunctions and disjunctions on multivalued attributes.

The biggest drawback of these schemes is, ironically, that the policy is completely
hidden, and therefore only decryption will show whether we have access to a certain
ciphertext. In very large systems, this is highly impractical, as it would force us to
decrypt every ciphertext in the system in order to find out if we have access. Rather,
we use a slightly weaker notion of security, which we will refer to as partial attribute-
hiding, in which we allow the attributes and the policy to be visible, but hidden in the

lTechnically, the official definition of attribute-hiding also includes that the plaintext is hidden,
as opposed to payload-hiding, which only requires the plaintext to be hidden and not the attributes.

Chapter 3. Attribute-Based Encryption 29

‘ Possesses: MSK ‘
T

MPK R
?) Key request: Sy <
) SKs, (I)

lepeat

Mo, My, A '
EHCA (Mb)

Key request: Sy ~

Challenger) SKs, (R ”"“2 Attacker
| |

Guess: b € {0, 1}‘

s

Flips coin: b €r {0,1} ‘

FIGURE 3.9: Security model for ciphertext-policy attribute-based en-
cryption

sense that we can only uncover the attributes in the access policy that match with
ours. Then, we do not learn all attributes that are listed in the access policy, but
only the ones that we possess ourselves, and then we can conclude instantly whether
we can decrypt the ciphertext or not without having to attempt (the much more
expensive) decryption. These tactics are used in [Zho+18], in which Zhong et al.
exploit the properties of bilinear groups and pairings in order to find the matching
attributes. The way in which this is done is fairly generic, and can be applied to any
ABE scheme that is proven secure under the DBDH assumption (see Assumption 13).

3.10 Security models

Up till this point, we have discussed attribute-based encryption without discussing
the most important part: the security. Much like in regular public-key cryptography,
we distinguish between chosen-plaintext attacks (CPA) and chosen-ciphertext attacks
(CCA). A CPA-security game in public-key encryption only asks the challenger for
a public key associated with some secret key, such that the attacker can encrypt
(or query) a polynomially bounded number of plaintexts. When the attacker has
collected ‘enough’ of such pairs of plaintexts and ciphertexts, the attacker sends two
distinct messages My and M; to the challenger. Then the challenger flips a coin,
i.e. b €gr {0,1}, and sends M, back encrypted. Then we allow the attacker to query
even more plaintexts before he makes a guess. The scheme is said to be adaptively
CPA-secure if the attacker cannot guess b with non-negligible advantage over random
guessing.

3.10.1 Full security

In a similar fashion, we define adaptive or full security for attribute-based encryption,
but instead of querying over plaintexts, we query secret keys associated with access
structures (in the KP-ABE setting) or sets of attributes (in the CP-ABE setting),
which ensures that an ABE scheme is collusion resistant. In Fig. 3.9, we have
depicted such a security game for CP-ABE. We proceed to give a formal definition
of full security CP-ABE (but the definition of full security is similarly defined for
KP-ABE).

Definition 18 (Full or adaptive CPA-security for CP-ABE) We define the
game between challenger and attacker as follows:

Chapter 3. Attribute-Based Encryption 30

o Setup: The challenger runs the Setup algorithm and sends the public parame-
ters MPK to the attacker.

e Query phase I: The attacker queries the challenger for private keys corre-
sponding to sets of attributes S, ..., Sp, .

e Challenge: The attacker generates two messages My and My of equal length,
together with an access structure A such that none of the queried sets of at-
tributes S; satisfy A. The challenger flips a coin, i.e. b €g {0,1} and encrypts
My under A. It sends the resulting ciphertext to the attacker.

e Query phase II: The attacker queries the challenger for private keys corre-
sponding to sets of attributes Sp,+1, ..., Sn, with the restriction that none of the
sets S; satisfy access structure A.

e Guess: The attacker outputs a guess b’ for b.

The advantage of the attacker is defined as Pr[t/ = b] — % A ciphertext-policy

attribute-based encryption scheme is fully (or adaptively) secure if all polynomial-
time attackers have at most a negligible advantage in this security game.

3.10.2 Selective security

In practice, proving full security proved itself to be quite the bottleneck. It was not
until 2010 that Lewko et al. [Lew-10] presented the first fully (CPA-)secure ABE
scheme. Before this, there have been various ABE schemes (e.g. [SWO05; Goy-+06;
BSWO07; CNO7]) that were proven selectively secure, which is a weaker notion of
security. The difference between full security and selective security is that the attack
model of selective security is more restricted than the attack model that we just
discussed. Instead of letting the attacker choose the structure that he is going to
attack in the challenge phase, we let the attacker announce it before the setup starts,
which we call the initialization phase.

This allows the challenger to take the structure that will be attacked into account
in generating the parameters. This may sound like the mathematical equivalent of
being warned by an arsonist that is going to set your house on fire in a week, and
you take the appropriate measures against such threats by installing several smoke
detectors and fire extinguishers at different places in the house. Then, when the
attacker comes, you are prepared against the attack. Of course, you assume that
the attacker will set your house on fire, but it is also possible that another attacker,
whose proclivities are slightly different from the arsonist’s, will break into your house
and steal your brand new television. In this case, we can only hope that the fire
extinguisher can also be used in a creative way to subdue the intruder. So even though
this model is definitely weaker than full security (in which case we are prepared for
any attack), the selective security model still offers some useful notion of security.

Whereas almost all of the central authority ABE schemes are proven selectively
or fully secure, there is a handful of schemes that is proven secure under a slightly
different model. Schemes such as proposed in [AC16] by Agrawal and Chase use the
security model that was proposed by Chen and Wee in [CW14b] and is slightly weaker
than the full security model, but stronger than the selective security model, and is
therefore called the semi-adaptive security model. Instead of putting the initialization
step before the setup (like in the selective case), they put the initialization step
right after the setup phase (and before the first query phase), which means that
the challenger cannot tailor the parameters to the attacked structure. However, the

Chapter 3. Attribute-Based Encryption 31

attacker has to take the attacked structure into account during both query phases
and cannot choose a structure based on previous queries (like in the adaptive case).

3.10.3 Security for multi-authority ABE

In multi-authority attribute-based encryption, we obviously cannot use the same
model as the one that we use in the central authority case. Not only are the keys
generated by the separate authorities, and therefore the attacker has to request the
keys from each separate authority, but we also have take into account that the at-
tacker can potentially corrupt some of those authorities. Also, the setup is split into
two parts, the global setup and the authority setup.

Like in the central setting, we can make key queries in an adaptive or a selective
fashion. In the same manner, we can corrupt key authorities in an adaptive or a non-
adaptive (also called static) fashion, i.e. in-between key queries or strictly before,
respectively. To the best of our knowledge, there are no existing multi-authority
ABE schemes that allow for adaptive corruption of authorities in the security model?.
Instead, the attacker is only allowed to corrupt statically, i.e. commit to a list of
corrupt users before the query phase of the attack starts. Obviously, we would prefer
to also prove security against adaptive corruption, because in practice, some attacker
might also be able to corrupt authorities after key queries are made, and not only
before. However, as this seems quite possible, it has not happened that a security
proof also accounted for adaptive corruption, which means that we will have to focus
on static corruption only.

In general we observe in Tab. 3.1 that it is the case that whenever the security
model makes the key queries adaptively conform the full security model, the cor-
ruption of the authorities happens between the global and the authority setup (e.g.
[LW11; RD13; RW15]). The attacker is also allowed to generate public parameters
for these corrupted authorities (and the challenger generates the parameters of the
honest authorities). Then during the key query phases, the key requests that are sent
to the challenger must also take the corrupted authorities into account, such that the
corrupted authorities and the sets of attributes that are queried do not satisfy the
access structure (in the CP-ABE case).

In the case that keys are made non-adaptively, so conform the selective security
model, the corruption of the authorities happens in the initialization step. For the
schemes that we investigated, it is also the case that the public and secret parameters
are almost always generated by the challenger, whether the authority is corrupt or
not. Then the secret keys that belong to the corrupt authorities are also shared with
the attacker. This is unlike the full security case, in which we also let the attacker
generate the keys of the corrupt authorities.

We have found one multi-authority scheme that does not satisfy either of these
two ‘models’, and that is the scheme that was devised by Jung et al. [Jun+13].
Their security model is the same as in the central authority case, and they argue
that compromising all but two authorities will not result in the leakage of sensitive
information.

Another security aspect that is sometimes discussed in MA-ABE is the anonymity
from the user towards the authorities. As we already mentioned, in [CC09], Chase
and Chow have devised a generic anonymous key issuing protocol. Moreover, they
define a security model to test the security of the protocol, which considers both the
possibility of a corrupt user and a corrupt issuer. In [QLZ13; Han+15], blind key

2The scheme in [Liu+11] claims to prove security in a model that does allow adaptive corruption,
but the set of corrupt authorities is still announced before the key queries are made.

Chapter 3. Attribute-Based Encryption 32

]Scheme Security Corruption User anonymity

Cha07] Selective Before global setup No
CC09] Selective Before global setup Yes

LW11] Full After global setup No
Li+13] Selective Before global setup No
RD13] Full After global setup No

an+15] Selective Before global setup = Yes
ia+15] Selective Before global setup Yes
RW15] Full After global setup No
Zho+18] = Selective Before global setup No

[

[

[

[

[

[Jun+13] = Selective - Yes
[QLZ13] Selective Before global setup Yes
[H

[Q

[
[

TABLE 3.1: Security of eleven multi-authority schemes

generation protocols are designed that use commitment schemes in order to generate
the key. They prove security of the protocol by saying that it should be leak-free
and selective-failure blind, which are properties that are introduced in [GH07] and
[Han+12]. A key generation protocol is leak-free if a user cannot gain anything from
behaving dishonest in a protocol with an honest authority, and it is selective-failure
blind if an authority cannot gain information regarding the user’s identifier.

3.10.4 Security against chosen-ciphertext attacks

Previously, we have only considered security models for chosen-plaintext attacks.
However, in practice we also require the a cryptosystem to be resistant against chosen-
ciphertext attacks. Much like there are generic ways to convert a public-key cryptosys-
tem that is resistant against adaptive chosen-plaintext attacks into a cryptosystem
that is also resistant against adaptive chosen-ciphertext attacks (e.g. [RS91; Sah99]),
there are also generic ways to convert a CPA-secure ABE scheme into a CCA-secure
ABE scheme. One of these generic ways was formulated by Canetti et al. in [CHKO03],
and is often referred to in other papers when it comes to achieving CCA-security (e.g.
[Goy-+06; BSWO07]). This conversion basically introduces a ‘new’ key pair for each
ciphertext that is created such that we cannot simply compute a new ciphertext from
an old ciphertext without knowing the ‘new’ key pair. But this method can only be
applied to delegatable ABE schemes (see Section 3.4).

Because not all ABE schemes are delegatable, Yamada et al. [Yam+11] also
introduce conversion methods for schemes that are not necessarily delegatable, but
they do require schemes to be verifiable instead. The intuitive idea behind verifiability
of ABE schemes is that we can verify whether a ciphertext will decrypt to the same
plaintext for secret keys associated with two specific sets of attributes (in ciphertext-
policy case) or access policies (in the key-policy case). Then for verifiable ABE
schemes, Yamada et al. let the encryptors sign their ciphertexts with a one-time
signature scheme such that for each plaintext, there is a different sign-verify pair that
is used to sign and verify the ciphertext. The idea is that the ciphertext will be signed
with the signing key, and can be verified with the verification key.

In order to ensure CCA-security, the verification key is embedded in the structure
that is used in the encryption of the plaintext, i.e. for key-policy ABE, this means
that the set of attributes is extended, and for ciphertext-policy ABE, the access policy
is extended. In order to extend these, we expand the universe of attributes with some
dummy attributes that we use to encode the verification key. For these dummy

Chapter 3. Attribute-Based Encryption 33

attributes, we do not distribute any keys, but instead use the verifiability property
to check whether the decryption of the ciphertext yields the same output for the set
of attributes (for KP-ABE) or the access policy (for CP-ABE) corresponding to the
verification key encoding as it would for a real, authorized set of keys.

3.10.5 Standard model versus random oracle model

In cryptography, there is a difference between cryptographic schemes that can be
proven secure in the standard model and the random oracle model. In the random
oracle model, we use hash functions as a random oracle, i.e. the outputs are considered
to be truly random, and we need them to be random in order to prove the security of
the cryptographic scheme. Because, in practice, hash functions are not truly random,
this is a stronger assumption than if we do not need a random oracle. Therefore,
we consider ABE schemes that are proven secure in the standard model to be more
secure than ABE schemes that need a random oracle to be proven secure.

However, note that we sometimes require one of the properties of a hash function
to prove security. For instance, in [SW05], a collision-resistant hash function is nec-
essary to map attribute strings to group elements (in the large universe setting) in
order to ensure that two different bit strings are not accidentally represented by the
same group element. In this case, the hash function does not need to be modeled as
a random oracle.

3.11 Choosing properties for ABE for DECODE

For the DECODE project, we want to find a way to impose access control on data
that is not necessarily stored on trusted servers. Our goal is to do this in such a
way that it meets the requirements and goals of the ecosystem that DECODE tries
to implement. For instance, it requires participants to impose fine-grained access
control on their private data in terms of attributes, which is what ciphertext-policy
ABE does. As we already discussed before, we also want these access policies to be
as expressive as possible whilst being monotone. In practice, this is implemented
by means of access trees or LSSS matrices. We also established that we need the
scheme to be decentralized, and in order to do this in a privacy-friendly way, we use
pseudonyms and blind key generation algorithms to issue the keys.

Another feature of DECODE is that anyone can join the system and become part
of the network at any times. If we also take into account that users and attributes
can be revoked at all times, then we can conclude that within the ecosystem, there
is a need for a certain degree of dynamicity that we described in Definition 17.

In order to make the system as scalable as possible, we make use of session keys:
users can encrypt data with symmetric encryption (e.g. AES [DR13]), and then
encrypt that session key with attribute-based encryption. This idea was used in ABE
schemes such as [HW14] and [AC17a], and is called the key encapsulation method. In
practice, it is very common to use hybrid encryption schemes such as this.

Other considerations regarding the scalability that we want to take into account
are the use of prime orders (as opposed to composite orders), as well as computational
and storage costs. For instance, the minimization of the number of pairing operations
in the encryption and decryption would be desirable.

Moreover, as we already argued in Section 3.7, there is a trade-off to be made
between the size of the secret keys and the size of the ciphertexts. In the setting of
DECODE, the secret keys are typically stored in the user’s wallet (e.g. on the user’s
device), so whereas we would like this to be of limited size, we would like to argue

Chapter 3. Attribute-Based Encryption 34

that minimizing the ciphertext size is of more importance in this particular setup.
The first reason for this is that, in general, in large systems in which there is a lot
of information flow, we also need a large number of encrypted session keys. So in
contrast, the number of ciphertexts is much larger than the number of users and their
corresponding keys. So the total storage size would be smaller if we were to minimize
the ciphertext size, and not the key size.

The second reason has to do with the fact that, in principle, the keys only have to
be sent to the user once (if we ignore the possibility of key updates), and then they are
stored in the user’s wallet, whereas the ciphertexts will have to be downloaded from
e.g. a cloud server at any moment. Because DECODE may be used on any device,
e.g. laptop, smartphone, or other IoT devices, it might be desirable to minimize the
amount of data that is downloaded. For instance, consider a smartphone user with
a limited amount of data that can be downloaded within the subscription. Suppose
that we have used security parameter A = 2048, and the average user encrypts his
messages with ten attributes in the access policy, for some ABE scheme that has
3n + 1 group elements in the ciphertext for n attributes (see, for instance, [LW11]).
Then the ciphertext has a size of 7.68MB. So if a user may download up to one GB
per month under his subscription, he can receive roughly four messages per day that
are encrypted like this, which is not even considering the accompanying data.

In short, using ciphertexts that are linear in the number of attributes may not be
very efficient. Even if we use the schemes in the elliptic curve setting, we can still
argue that the ciphertexts may be too large to be implemented in a scheme that is
supposed to be scalable. Rather, we would like to use schemes with constant-size
ciphertexts such that the number of attributes that are used in the access policy does
not matter.

Optionally, we would also like to allow for ‘private’ access policies, but as men-
tioned in Section 3.9, this can easily be done in a generic fashion, as well as converting
a CPA-secure scheme into a CCA-secure scheme (see Section 3.10.4).

And finally, we would like the encryption scheme to be proven fully secure (against
static corruption) in the standard model to optimize the security guarantees that the
attribute-based encryption scheme offers. Furthermore, we prefer cryptosystems of
which the security is reducible to well-established complexity assumptions such as
DBDH or SXDH over ones that reduce to less well-established complexity assump-
tions.

So in short, we want to find an ABE scheme that satisfies the following properties:

(i
(ii

(ii

) Ciphertext-policy based;

) Monotone, expressive access policies (access trees or LSSS matrices);

) Large universe;

) Decentralized multi-authority based, where users can authenticate towards au-
thorities with pseudonyms;

(iv

(v) Dynamic, i.e.

e allows (indirect) revocation of users and attributes;

e allows for authorities to join the scheme;
(vi) constant-size ciphertexts;

(vii) proven fully secure in the standard model against static corruption.

35

Chapter 4

Comparing Existing ABE
Schemes

So far, we have mainly considered the intuitive notion of attribute-based encryption
and which properties they may satisfy. However, it makes sense to consider a couple
of explicitly defined schemes in order to give us an idea of what is out there, and
how secret sharing is used to realize attribute-based encryption. Furthermore, we
compare a number of existing ABE schemes by listing which of the previously defined
properties they satisfy.

We will start by giving an example of a CP-ABE scheme, that will also suffice as
an example of a large universe CP-ABE scheme. After that, we will give an example
of a decentralized CP-ABE scheme. We will omit the security proofs, as they tend to
be long and rather tedious. After the examples, we will give a list of ABE schemes
(most of which are CP-ABE schemes, but there are some KP-ABE schemes that are
interesting for other reasons).

4.1 Example: a (large universe) CP-ABE scheme

The first scheme that we will consider is the first CP-ABE scheme that was formu-
lated, namely the one that devised by Bethencourt et al. in [BSWO07]. They represent
their access structures with access trees, which are a trees of which the leaves corre-
spond with the attributes in the access policy. Then, each node will either represent
a conjunction or a disjunction, i.e. the children of the node will represent partial
access policies, and they will be joined into a ‘new’ access policy by taking either the
conjunction or the disjunction of the children (see Fig. 4.1 for an example).

The idea is that the secret value is in the
root of the tree, and each node that splits into n
branches will implement either a (1, n)-threshold
scheme (in the disjunction case) or a (n,n)-
threshold scheme (in the conjunction case), such
that the secret will be shared in such a fashion “eionce” mathematics
that it can only be retrieved when a user satisfies
the policy. These functions can be realized by
using Shamir’s secret sharing scheme (see Defini-
tion 5) in some clever manner. Each node will
define a polynomial such that the degree is either 0 or n — 1, where n denotes the
number of branches of the node. This is done in a top-down fashion, i.e. the children
will share the secret value that they inherited from their parent with a polynomial of
degree 0 or n — 1 (depending on whether they represent a disjunction or a conjunction
respectively), which they will share with their own children again.

student

FIGURE 4.1: An access tree that
represents the policy “student A
(computer science V mathematics)”

Chapter 4. Comparing Existing ABE Schemes 36

This is done as follows: first we number the nodes (we assume that the root has
index 0), and we pick some random s €r Z, as the value that will be shared in
the tree. Let n, be the number of branches of the root node, and k., = 1 if the
root represents a disjunction, and k, = n, if it represents a conjunction. Then we
will generate some random polynomial P, of degree k, — 1 such that P.(0) = s. We
assume that the indices of the children of the root are 1,...,n,. Then the secrets that
those nodes will ‘inherit’ from their parents are points on the polynomial, i.e. P, ()
will be shared with child with index ¢ € [1,n,]. Then child with index ¢ will share
their secret with their n; children by determining the threshold k; = 1 or k; = n;
and generating a polynomial P; of degree k; — 1 that shares P,(i), i.e. P;(0) = P.(i).
Then the same process is repeated for each child and their children until the leaves
are reached.

For notation purposes, we will denote parent(z) as the parent of node z, and
index(z) as the index of node z. For the leaf nodes y, we define att(y) as the
attribute that the leaf y represents. The polynomial that node = generates can be
written as Pp(X) = Pparent(s) (index(z)) + Sk, i XY, where 1, ; € Z, are chosen
uniformly, and k, denotes the threshold value of node x. We will denote the access
tree as T. If a set of attributes S satisfies the access policy that T represents, we
denote this as T E S.

4.1.1 The construction

Let A be the security parameter. Let G be a bilinear group of order p, where p is a
prime number of at least A\ bits. We define a non-degenerate bilinear map e : G x G —
Gr and hash function #H : {0,1}* — G, and we define A; g as the Lagrange coefficient
for element i € Z, and set S C Z,, i.e. Aj g = HjGS\{i} %

Definition 19 (The [BSWO07]| scheme) The ciphertext-policy attribute-based en-
cryption scheme in [BSW07] is defined as follows':

(i) Setup(X): The setup algorithm chooses a bilinear group G of order p with gen-
erator g. Then it picks random o, 3 €r Zp, such that the master secret key is
MSK = (8,g%), and the master public key is defined as

MPK = (vavGTaea}[’gvh = gﬁ’hT = e(g’g)a)'

(ii) Encrypt(MPK, M, T): The encryption algorithm encrypts a message M € G
under the tree access structure T by generating polynomials P, for each node x
of T in the manner that we described above. Recall that the secret that is shared
from the root down is the random value s €g Z,. Let' Y be the set of leaf nodes
of T. Then the ciphertext can be constructed as

CT = (T,C = Mhi, C = 1*,{Cy = g™V, 0 = H(att(y)) " O} ey).

(iii) KeyGen(MSK,S): The key generation algorithm takes as input the set of at-
tributes S and outputs a key that corresponds to that set. The algorithm firsts
picks a random r € Z,, and for each attribute j € S, it picks random r; €g Z,.
Then the key is computed as

SK = (S,D = ¢*™/8 {D; = g"H(j)"7, D} = g" }jes).

1We have omitted the delegation algorithm, as this is not relevant to this work.

Chapter 4. Comparing Existing ABE Schemes 37

(iv) Decrypt(CT,SK): The decryption algorithm will be performed in a recursive
fashion. Let T be the tree access structure corresponding to the ciphertext CT,
and S the set of attributes corresponding to the secret key SK. We assume that
T = S. Let Y’ be the set of leaf nodes of T such that att(y) € S for ally € Y.
Then for all y € Y we can define i = att(y) and compute

e(D;,Cy) e(g"H(i)", g™ ()
e(D},Cl) — e(gri, H(i)P(0)

e e(g’ g)TPy(O) .

For these leaf nodes, we define the output of the function DecryptNode(CT, SK, y)
as e(g,g)’"Py(O). Otherwise the output is defined as 1. Then for each non-leaf
node z we define the output of DecryptNode(CT,SK, z) as F,. This value is
computed recursively by looking at the values of its children, i.e. let S, be the
set of child nodes such that for all x € S,, we have found a wvalid value, i.e.
Fy, # 1, and let I, = {index(x) : @ € S.} be the corresponding indices. If
|S.| < k. holds, then F, = L. Otherwise we proceed by computing

Ain ex(x),Iz 0
F, = H E; dex(x), Iz (0) _ 6(979)”)2(0)'
CEGSZ

By invoking the DecryptNode function on the root node r, we compute A =
DecryptNode(CT,SK,r) = e(g,9)"™. Then we can retrieve the plaintext M by
computing

C’A Me(gyg)ase(g“q)rs - Me(g’g)as-i-rs

6(0, D) e(hs’g(OH‘T)/B) e(g’g)(a‘H")S

4.1.2 Remarks

As we have seen, the scheme is correct in the sense that, for access structure 7 and
set of attributes S such that 7 = S, we have the decryption yields the same message
M that was used in the encryption. For S such that T (= S, the decryption algorithm
should fail. More importantly, it should not reveal any information regarding M.

The scheme is proven selectively secure in the generic bilinear group model and
random oracle model. Whereas the security of most other schemes can be reduced
to some problem that is considered to be intractable, the security of this particular
scheme is not shown to be reducible to any of such intractable problems, but rather
uses random encodings and hashes in the proof.

Finally, we note that the scheme is a large universe construction, because the
number of attributes is not polynomially, but exponentially bounded in the security
parameter after the setup, as this scheme allows for each possible attribute string to
be mapped to a group element in G. Moreover, the master public key only consists
of a constant number of elements and is therefore not dependent on the number of
attributes.

4.2 Example: a decentralized CP-ABE scheme

In [LW11], Lewko and Waters published a fully decentralized CP-ABE scheme that
is provably adaptively secure against static corruption. Unlike the previous CP-ABE
scheme, the scheme requires a small universe of attributes, because we define a public
parameter for each attribute in the universe. As we had established in Section 3.3, a
large universe construction cannot have this feature. Moreover, the groups are not of

Chapter 4. Comparing Existing ABE Schemes 38

prime, but composite order. Another thing that is different is the access structure.
Whereas the expressiveness is the same, i.e. all monotone access policies can be used
in the encryption, the access structure is not represented by an access tree, but rather
uses the LSSS matrices that we defined in Section 2.6.1.

Recall that we defined an LSSS access structure as (A, p), where A denotes the
n1 X ng share-generating matrix and p the function that maps the rows of A to
attributes in the system. A set of attributes S satisfies the access policy if there is
a set of rows of A such that the corresponding attributes are in S and the vector
(1,0,...,0) is in the span of those rows. We define Y as the set of indices of the rows
that correspond with attributes in S, i.e. Y = {i € [1,n41] : p(i) € S}.

As we already mentioned, multi-authority ABE schemes have the trivial disadvan-
tage that the secret keys are not distributed by one central authority and therefore
have to tie the keys to an identity in quite a literal fashion in order to make collusion
impossible.

Definition 20 (The [LW11] scheme) The decentralized multi-authority ciphertext
policy attribute-based encryption scheme in [LW11] is defined as follows:

(i) GlobalSetup(\): In the global setup, we choose a bilinear group G of order
N, where N = pqr is a composite of three primes p,q and r. We also pick a
generator g € G,. Let e : G x G — Gt be a non-degenerate bilinear mapping.
We also define a hash function H : {0,1}* — G that maps global identifiers to
group elements, which we model as a random oracle. The global parameters are

GP = (N,G,Gr,9,¢e,H).

(ii) AuthoritySetup(GP): For each attribute yi that is controlled by authority Ay,
the authority chooses two random exponents oy, , By, €r ZnN and keeps MSK 4, =
{ay,, By, ty,, as the secret key. The public key is defined as

MPK 4, = {e(g,9)*, g" }y, .

(iii) Encrypt(GP,{MPK 4, } 4,, M, (A, p)): For the encryption, we take as input the
message M € Gy and access structure (A, p), as well as the global parameters
and the public keys of the relevant authorities. Then we pick random elements
8,02, ..., Uny, € ZN such that we can define vector v = (8,v2,...,0n,). Let
Ai = A;v, where A; denotes the i-th row of A. We also pick wa, ..., wyn, €Er ZN
such that we can define vector w = (0, w3, ...,wy,). Then we define w; = A;w
for each row A;. We also pick random r; €r Zy for each row. Then the
ciphertext is computed as

CT = ((A,p), Co=M- e(g’g)s’ {Cl,i = e(g,g)o‘pﬂ)”‘*‘)‘i’
Cy,i = g, C3; = gﬁp(i)ri+Wi}i€[1,n1])-

(iv) KeyGen(GP,GID,i,MSK 4): To create a key for a user with global identifier
GID for attribute y managed by authority Ay, the authority computes

SK,, c1p = g7 H(GID) o

(v) Decrypt(GP, CT, {SKy cip}yes): Let CT be the ciphertext that we want to de-
crypt, (A, p) the access structure under which it is encrypted, where A is an

Chapter 4. Comparing Existing ABE Schemes 39

n1 X ng matriz, S the set of attributes for which the user has a secret key and
GID the global identifier of the user that wants to decrypt CT. First, we compute
H(GID), and determine Y = {i € [1,n1] : p(i) € S}. Let {c;}icy be elements in
ZN such that Y ey ciA; = (1,0,...,0). Then the decryptor computes for each
ieY:

Ch,i - e(H(GID), Cs,)/e(SK () cips Ca.i) = e(g,9) M e(H(GID), g)“*,
and combines them by computing

[1(e(g,9) e(H(GID), 9)“) = e(g,9)".

€Y
Note that [1;cy e(H(GID), g)%“ cancels out because Y ;cy Ciw; = > icy iAW =
0. Finally, we retrieve plaintext M by computing

M = Cy/e(g,9)°.

4.2.1 Remarks
Correctness of the scheme above follows from the fact that e(gaP(i)H(GID)BP(i) ,g") =
(g, g") - e(H(GID)Pr) | g") and
Chi - e(H(GID), Cs:)/e(SK (i) arp» C2,1)
e(g,9)"" (H(GID), g%0+e1) /(g0 H(GID) %), ™)
= e(g,9)" - e(H(GID), g)% "+ /¢(H(GID), g) %"
=e(g,9)" - e(H(GID), g)“".

The rest is fairly straightforward, because we have >,y c;\i = >,y ¢;A;v = s and
Y icy Ciwi = ey ¢iAsw = 0, which we can use to compute

Qp(d) i+

- €

[1(e(g,9e(H(GID), g)*)* = e(g, 9) 2= “Nie(H(GID), g)2iex = e(g, g)".

€Y

We also have to point out that in the access policies, each attribute may only be
used once, which is an unfortunate feature of this scheme. The reason for this is that
in the security proof, there needs to be a restriction on p in the sense that it has to be
injective, otherwise there is not ‘enough randomness’ in the group elements. Whereas
this problem can be solved in a relatively simple way, it makes the scheme a little less
efficient. The solution requires each authority to generate another set of secret and
public keys for each possible occurrence of the attribute in any policy.

The security of this scheme is derived from the dual system encryption method-
ology that was introduced by Waters in [Wat09], which leads to encryption schemes
that are fully secure in the standard model under simple and established assumptions
such as the decisional bilinear Diffie-Hellman and the decisional linear assumptions.
We will see more about this methodology in Appendix A.

4.3 The comparison of forty-two schemes

At the end of Chapter 3, we had set out a couple of properties that we wish to
implement in our ABE scheme. Naturally, we would like to consider the schemes that
are already out there, and which properties they satisfy.

Chapter 4. Comparing Existing ABE Schemes 40

4.3.1 First set of properties

Because we have a lot of properties to take into account, we will first distinguish
between a selective number of structural and non-security related properties, namely

(i) Key-policy (KP) versus ciphertext-policy (CP);
) Small versus large universe;
(iii) Monotonic versus non-monotonic;
) Expressiveness of access policies, we distinguish between:

e Threshold function;

e CNF (conjunctive normal form) with wildcards);

Conjunctions (A) on positive and negative attributes (£) (or wildcards);

Conjunctions (A) on multi-valued (mv) attributes (with or without wild-
cards);

e Conjunctions (A) and disjunctions (V) on multi-valued attributes;
e Access trees;
e LSSS matrices;

(v) Central authority versus multi-authority;

(vi) Allows indirect revocation of users;

)
(vii) Whether the ciphertext is of constant size;

(viii) Prime versus composite order.

Note that we have only included user revocation as a property, and not attribute
revocation. However, as we had already mentioned, with indirect revocation we can
implement attribute revocation in a similar fashion as user revocation.

4.3.2 Second set of properties

In the second comparison of the schemes, we compare the schemes with regard to
their security properties. We compare the following notions of security:

(i) Selective versus full security;

(ii) Security against chosen-plaintext attacks (CPA) versus chosen-ciphertext at-
tacks (CCA);

(iii) Random oracle versus standard model;
(iv) Complexity assumption that the security of the scheme reduces to, for instance:

e Decisional bilinear Diffie-Hellman (DBDH) (see Assumption 13);

e Symmetric external Diffie-Hellman (SXDH) (see Assumption 14);

e Generic (bilinear) group heuristic (G(B)GH) (e.g. [BSWO07]);

e Decisional linear (DLIN) [BBS04];

e Subgroup, which is only used in a composite setting (e.g. [LW11]);

e ¢-type assumptions, where the number of queries that may be made in the
attack model is bounded by g;

e Other assumptions that are not specified in this work and have a less-
established status.

Chapter 4. Comparing Existing ABE Schemes 41

4.3.3 Methodology and notations

In the comparison of the schemes, we have used several strategies that might result
in the inclusion or exclusion of certain schemes that other works might have excluded
or included while analyzing the same properties.

For instance, we have only indicated that a scheme satisfies a certain property
if the authors of the work in question have explicitly defined and implemented said
property in the scheme. So, for example, only noting in the work that the scheme
can be decentralized is not sufficient to satisfy this property for the sake of this
comparison (e.g. [CZF11]). Another frequently recurring example is noting that a
scheme is easily extendable to resist chosen-ciphertext attacks by using the generic
constructions that we mentioned in Section 3.10.4 (e.g. [Goy+06; BSW0T]).

The reason for this is that simply mentioning that a certain property can be im-
plemented does not guarantee that it can be implemented in the way that we defined
in this work or that we considered to be suitable for DECODE, whereas the explicit
definition guarantees that we can assess the scheme with our own interpretation of
the property in mind.

After evaluating all forty-two schemes with regard to the sets of properties, we
analyze which schemes satisfy the most properties of the first set. For the second
set, we will simply analyze which schemes are proven fully secure. In our ‘second
round of analysis’ we determine of the fully secure schemes that did not belong to the
first set of selected properties whether their lack of certain properties is ‘redeemable’
or not. For instance, a small universe construction would not fit in this category,
because the system has to be structurally changed in order to be a large universe
construction. Similarly, access policies that are not represented by access trees or
LSSS matrices are not redeemable either, because the access structure is also part
of the structure of an ABE scheme. The same holds for the size of the ciphertexts,
but we will not discriminate on this property, because there is only one scheme that
has both constant-size ciphertexts and expressive policies, and we definitely prefer
expressive policies over constant-size ciphertexts in DECODE.

From the set of schemes that we select based on this analysis, we discuss which
one would suit the DECODE setting the best based on certain trade-offs.

For notation purposes, we have indicated the wildcards with an asterisk in Tables
4.1 and 4.2. The properties that are put in purple indicate that they satisfy the
properties that we have chosen for our specific setup in Section 3.11.

4.4 Discussion

As we can see in Tables 4.1, 4.2 and 4.3, there are no schemes that satisfy all (or even
all but one) properties that we want to impose on our ABE scheme.

However, there are six schemes that satisfy six of the eight properties that we
considered in Tables 4.1 and 4.2, namely:

(i) [BSWO7], which is not decentralized, and does not have constant-size cipher-
texts;

(ii) [Jun+13], which implements no indirect revocation but direct revocation, and
it does not have constant-size ciphertexts;

(iii) [Qia+15], which has a small universe of attributes, and does not have constant-
size ciphertexts;

Chapter 4. Comparing Existing ABE Schemes 42

(iv) [RW15], which does not support user revocation, and has no constant-size ci-
phertexts;

(v) [AC16], which is not decentralized and does not support user revocation;

(vi) [Zho+18], which has a small universe of attributes and does not have constant-
size ciphertexts.

Of these six schemes, only one is proven fully secure (against static corruption, in
the random oracle model), namely [RW15], and one is proven semi-adaptively secure
(and fully secure in [AC17b]) in the standard model, namely [AC16].

To broaden our scope of possible schemes that are fully secure (in either the
random oracle or standard model), we can also consider all fully secure schemes and
determine whether their lack of desirable properties is ‘redeemable’ or not.

As we have shown, there are only eight schemes that are proven fully secure. We
will also indicate which are redeemable and which are not. As it turns out, almost
all of the schemes are small universe constructions, i.e.

(i) [Lew+10; LW11; SSW12; RD13; Lai+13; Den+14] are small universe construc-
tions, hence irredeemable;

(ii) [RW15] may be redeemable, because has a large universe of attributes, and
expressive policies;

(iii) [AC17a] may be redeemable, because has a large universe of attributes, and
expressive policies.

If we only want to allow (semi-)adapatively secure schemes, this means we have
narrowed down our set of possible schemes to three, namely [RW15], [AC16] and
[AC17a], which is a very small group of schemes. All of these are large universe CP-
ABE schemes, with monotone access policies that are represented by LSSS matrices
and the groups are of prime order, and proven (semi-)adaptively secure.

If we extend our search parameters a tiny bit by also allowing selectively secure
schemes, and further requiring that the schemes are large universe CP-ABE schemes,
with expressive, monotone access policies and the groups are of prime order, then we
can extend our selection by three: [BSWO07], [Jun+13], and [RW13]. Note that none
of these have a significant advantage regarding the computational or storage costs.
The only advantage that any of these schemes have over the other schemes is that
[Jun-+13] implements user revocation (but does not support attribute revocation yet)
and allows to user to act anonymously towards the authorities. Hence, it is one of
the most complete schemes, even if it is only selectively secure.

Then, objectively speaking, the scheme as set out in [AC17a] might be the best one
to choose regarding the computational and storage costs, as it was created to optimize
the speed of the key generation, encryption and decryption algorithms, whereas the
storage costs are roughly the same as in the other schemes (with the exception of
[AC16]). However, we think that the scheme in [AC17a] might not be too easy to
decentralize without breaking some of the security guarantees.

4.5 Concluding remarks

It appears as though all of the forty-two schemes that we have studied have their
own advantages and disadvantages, which makes it very difficult to pick ‘one perfect
scheme’. If security guarantees and speed are important, then [AC17a] is probably the

Chapter 4. Comparing Existing ABE Schemes 43

best choice. However, we think that it will be very hard to decentralize this scheme,
so it may arguably not be the best choice for ecosystems such as DECODE, which
aims to decentralize the trust.

If security guarantees are not the most important factor, but rather the ‘complete-
ness’ of the scheme, i.e. the implementation of as many of the properties that we have
set out to be the most important in the setting of DECODE as possible, [Jun+13]
might be the best choice, because it already has almost all the features that we want
to impose on the scheme, except for attribute revocation and the constant-size ci-
phertexts property, without becoming extremely inefficient. It has also implemented
a blind key generation protocol such that users can be anonymous towards the au-
thorities, which was also one of the requirements that we formulated at the end of
Chapter 3.

Because we considered the security and decentralization properties to be very im-
portant, we feel as though [RW15] is probably the best choice, as it implements almost
all of the properties that we have set out in Section 3.11, except for revocation and
constant-size ciphertexts. However, it allows for easy re-randomization of ciphertexts,
so we suspect that this can easily be used to apply proxy re-encryption techniques,
which are used to implement indirect revocation (and does not only allow user but
also attribute revocation). In our opinion, this makes [RW15] the best option for
DECODE, because it is both usable, efficient, and proven fully secure against static
corruption whilst adhering to almost all properties we set out.

4.6 CP-ABE with constant-size ciphertexts

As we have seen in Tab. 4.1 and 4.2, only four of the forty-two schemes that we have
evaluated enjoy the constant-size ciphertexts propery. Because there is very little
research on constant-size ciphertexts in CP-ABE schemes, and there are, to the best
of our knowledge, no multi-authority ciphertext-policy schemes that have constant-
size ciphertexts and still allow for expressive access structures, it might be interesting
to look a bit further into the [AC16] scheme and the possibility of decentralizing it,
and perhaps even consider whether we can implement revocation of some proper kind.
Because [AC16] is more of a baking manual than an actual cake that is ready to be
devoured, we will have to dive a bit deeper into the background of [AC16], and how we
get to the encryption scheme that we have used in our analysis. In Appendix A we will
walk through the steps that Agrawal and Chase have described in their work, which
will eventually lead to the construction of a semi-adaptively secure CP-ABE scheme
with constant-size ciphertexts in Appendix B. Finally, in Appendix C, we attempt to
construct the first decentralized CP-ABE scheme with constant-size ciphertexts that
allows for expressive access structures, which we try to prove semi-adaptively secure
against static corruption.

Scheme KP/CP Universe Monotone? Access policies Multi-authority? Revocation? Short CT Order
[SWO05] (1) KP Small Yes Threshold No No No Prime
[SWO05] (2) KP Large Yes Threshold No No No Prime
[Goy+06] (1) KP Small Yes Access trees No No No Prime
[Goy-+06] (2) KP Large Yes Access trees No No No Prime
[BSWO07] CP Large Yes Access trees No Yes, indirect ~ No Prime
[Cha07] (1) KP Small Yes Threshold Yes, but with CA No No Prime
[Cha07] (2) KP Large Yes Access trees Yes, but with CA No No Prime
[CNO7] (1&2) CPp Small No A on +* No No No Prime
[OSWOT] KP Small No LSSS matrices No No No Prime
[INYOO08] (1&2) CP Small No A on mv* No No No Prime
[Emu+09] CP Small No A on mv No No Yes Prime
[CCO09] KP Small Yes Threshold Yes, decentralized No No Prime
[AI09] (1) KP Large Yes LSSS matrices No Yes, direct No Prime
[AT09] (2) KP Large Yes LSSS matrices No Yes, indirect ~ No Prime
[Lew+10] CP Small Yes LSSS matrices No No No Composite
[Yu+10] (1&2) CP Small No A on £* No Yes, indirect ~ No Prime
[CZF11] (1&2) CP Small No A on +* No No Yes Prime
[Wat11] (1-3) CP Small Yes LSSS matrices No No No Prime

TABLE 4.1: Comparison of forty-two schemes

sowalg Ay Sunsixsy Surreduro)) p 1o3dery)

4%

’ Scheme KP/CP Universe Monotone? Access policies Multi-authority? Revocation? Short CT Order ‘
[LW11] CP Small Yes LSSS matrices Yes, decentralized ~ No No Composite
[Att+12] CPp Small Yes Threshold No No Yes Composite
[SSW12] CP Small Yes LSSS matrices No Yes, indirect ~ No Prime
[Li+13] (PUD) CP Small No CNF with * Yes, decentralized ~ Yes, indirect ~ No Prime
[Li+13] (PSD) KP Small No CNF with * Yes, decentralized Yes, indirect ~ No Prime
[RD13] CPp Small Yes Any MAS Yes, decentralized No No Prime
[Jun+13] Cp Large Yes Access trees Yes, decentralized Yes, direct No Prime
[Lai+13] CP Small Yes LSSS matrices No No No Prime
[QLZ13] Cp Small Yes A and Vonmv Yes, decentralized No No Prime
[RW13] CP Large Yes LSSS matrices No No No Prime
[Den+14] CPp Small Yes LSSS matrices No No No Composite
[Shi+15] KP Small Yes LSSS matrices No Yes, direct No Prime
[Han+15] CPp Small Yes LSSS matrices Yes, decentralized No No Prime
[Qia+15] CPp Small Yes Access trees Yes, decentralized ~ Yes, indirect ~ No Prime
[RW15] CP Large Yes LSSS matrices Yes, decentralized ~ No No Prime
[AC16] CPp Large Yes LSSS matrices No No Yes Prime
[AC17a] CP Large Yes LSSS matrices No No No Prime
[Zho+18] CPp Small Yes LSSS matrices Yes, decentralized Yes, indirect =~ No Prime

TABLE 4.2: Comparison of forty-two schemes (continued)

Remark: Note that the [RD13] scheme allows any monotone access structure (MAS) as access policy, which also includes access trees and LSSS
maftrices.

sowalg Ay Sunsixsy Surreduro)) p 1o3dery)

Sy

Chapter 4. Comparing Existing ABE Schemes 46

’ Scheme Security CPA/CCA RO model? Assumption
[SWO05] (1) Selective CPA No Other
[SWO05] (2) Selective CPA No DBDH
[Goy+06] (1) Selective CPA No DBDH
[Goy+06] (2) Selective CPA No DBDH
[BSWO0T7] Selective CPA Yes GBGH
[Cha07] (1) Selective CCA No DBDH
[Cha07] (2) Selective CPA No DBDH
[CNOT7] (1) Selective CCA No DBDH & Other
[CNOT7] (2) Selective CPA No DBDH
[OSWOT] Selective CPA No DBDH
[NYOO08] (1) Selective CPA No DBDH & DLIN
[INYOO08] (2) Selective CPA No GGH
[Emu+09] Selective CPA No DBDH
[CCO09] Selective CPA No DBDH & Other
[AT09] (1& 2) Selective CPA No DBDH
[Lew+10] Full CPA No Subgroup
[Yu+10] (1) Selective CPA No DBDH
[Yu+10] (2) Selective CCA No DBDH
[CZF11] (1) Selective CPA No GGH & Other
[CZF11] (2) Selective CCA No GGH & Other
[Watll] (1-2) Selective CPA No Other
[Wat11] (3) Selective CPA No DBDH
[LW11] Full CPA Yes Subgroup
[Att+12] Selective CPA No Other
[SSW12] Full CPA No Subgroup
[Li+13] (PUD) Selective CPA No DBDH
[Li+13] (PSD) Selective CPA No DBDH
[RD13] Full CPA Yes GBGH
[Jun+13] Selective CPA Yes DBDH
[Lai+13] Full CCA No DBDH
[QLZ13] Selective CPA No DBDH
[RW13] Selective CPA No g-type
[Den+14] Full CPA No Subgroup
[Shi+15] Selective CPA Yes g-type
[Han+15] Selective CPA No g-type
[Qia+15] Selective CPA No DBDH
[RW15] Full CPA Yes g-type
[AC16] Semi-adaptive CPA No SXDH or DLIN
[AC17a] Full CPA Yes DLIN
[Zho+18] Selective CPA Yes Other

TABLE 4.3: Comparison of security of forty-two schemes

Remark: Note that the [AC16] scheme is proven fully (CPA-)secure in the

standard model under a g-type assumption in [AC17Db].

47

Chapter 5

Conclusions

In this work, we have analyzed how attribute-based encryption can be used and which
types exist. We have seen that there is a wide variety of ABE schemes, and that they
come in many flavors and with many useful properties that are suitable in certain
setups. For instance, there are schemes that provide expressive access structures,
schemes that are decentralized and schemes that are dynamic, or any combination of
these properties. In the particular setup of DECODE, we had argued that we need a
combination of the following properties:

(i) Ciphertext-policy based;
) Monotone, expressive access policies (access trees or LSSS matrices);
(iii) Large universe;
)

Decentralized multi-authority based, where users can authenticate towards au-
thorities with pseudonyms;

(v) Dynamic, i.e.

e allows (indirect) revocation of users and attributes;

e allows for authorities to join the scheme;
(vi) constant-size ciphertexts;
(vii) proven fully secure in the standard model against static corruption.

However, as it turned out, this combination of properties is too high of a standard.
The biggest bottleneck in this search was the constant-size ciphertext requirement,
as there are not many schemes that satisfy this property in general. Nevertheless,
even if we were to eliminate the constant-size property, we had a difficulty in finding
a scheme that satisfies all of these properties. There was one scheme that would fit
almost all of these properties, namely the scheme created by Rouselakis and Waters in
[RW15]. For this scheme, we would only have to implement the dynamicity property
in some fashion. We also argued that this is probably feasible by integrating indirect
revocation by means of proxy re-encryption. As we have seen, this would provide us
with both user and attribute revocation.

In the appendices of this work, we considered generic frameworks for creating
attribute-based encryption schemes, which we did in order to construct a ciphertext-
policy attribute-based encryption scheme with constant-size ciphertexts. From there,
we created a decentralized multi-authority CP-ABE scheme with constant-size ci-
phertexts, which sacrifices the large universe property of the old scheme, and is
extremely inefficient. To the best of our knowledge, this is the first decentralized
multi-authority ciphertext-policy attribute-based encryption scheme with constant-
size ciphertexts that is provably semi-adaptively secure against static corruption in

Chapter 5. Conclusions 48

the standard model. However, it might not be efficient enough in settings such as DE-
CODE, which require the scheme to be scalable, as it is supposed to handle possibly
large amounts of users and authorities. Another disadvantage is that the identity con-
sists of 4n; group elements, contrary to other schemes that typically use one element
to represent the global identifier.

5.1 Further research

There is still a lot of progress in the area of attribute-based encryption. Especially in
more generic encryption schemes, such as predicate and functional encryption, and
generic frameworks, such as the ones we have seen in the second part of this work,
there is still a lot of research to be done.

However, as we have seen, there is very little research on CP-ABE with constant-
size ciphertexts, and even less so in the multi-authority setting. This work attempts
to change that. Nevertheless, we have doubts that the scheme as it is would ever
be efficient enough, and it still lacks some of the properties that we deem important
in settings such as DECODE, for instance, the large universe and other dynamicity
properties. In the future, it might be possible to use the ideas that we have formulated
in this work in a more efficient setup, and perhaps implement a blind key generation
algorithm to ensure the privacy of the users towards the authorities. Moreover, we
recommend changes to the system such that it can be made dynamic. Whereas
revocation is probably possible to implement in the scheme as the keys are somewhat
homomorphic, the construction as it is now is a small universe construction, and
authorities cannot join the system without requiring that at least a part of the global
setup should be run again.

To this end, we recommend looking into the possibility of letting the parameters
correspond with the authorities, e.g. let g;; correspond with authority A;, such
that we only require a round of communication in the generation of gy and hg, and
potentially gy and hyg. We attempt to solve two problems with this: the lack of
efficiency in the old system, because this way, the authorities only need one or two
rounds of communication in the generation of gy and hy (and potentially gy and
hg), and the rest of the parameters can be generated by the authorities that are
responsible for certain parameters. This way, any authorities that wish to join can
also create their own parameters at any point in the scheme, not just during the setup.
Moreover, authorities that manage a set of attributes can add another attribute to
their set at any time, because it only needs 7" to be large enough such that the users
cannot forge keys (and it is not additionally required to provide security against
corrupt authorities), so this would restore the large universe property of the scheme
as well. However, this setup might come with its own difficulties, as it still requires
the generation of a master secret key, and other parameters that all depend on one
another in some way.

Other than the lack of pseudonyms, large universe and dynamicity properties,
the scheme that we created in Definition 35 satisfies all properties that we deemed
necessary in DECODE. Moreover, we believe that we can make the scheme secure
against chosen-ciphertext attacks with the generic methods as discussed in Section
3.10.4. We can also implement private access policies with the approach as discussed
in Section 3.9, though we would have to adapt the approach according to a setting
with two different source groups, and perhaps we would also need different or stronger
security assumptions than before. Nevertheless, we believe that this makes the scheme
somewhat more usable in some setups that do not require dynamicity properties.

49

Appendix A

Simplifying Security Analysis
with Pair Encoding Schemes

In Section 4.6, we already mentioned that [AC16] only provides the building blocks
and instructions to create a CP-ABE scheme with constant-size ciphertexts. However,
these building blocks are not straightforward, and how they can be combined in such
a fashion that it fits the formal description of Definition 16 might be difficult to
understand. There are two notions that warrant further explanation and definition
in order to truly understand how these schemes are created and why they are secure.
These notions are pair encoding schemes (PES) and dual system groups (DSGs).

Of course, these notions are not solely useful for the purpose of defining our CP-
ABE scheme, but provide a generic way to construct new ABE schemes and analyze
its security with information-theoretic notions. Proofs of security in ABE schemes
are often long and difficult, and might not always reduce to well-established security
assumptions. By using pair encoding, we can prove security in a relatively easy
fashion under well-established assumptions such as the SXDH assumption.

Note that during this chapter, we will mostly focus on the work of Agrawal and
Chase [AC16], so almost all of the definitions are inherited from their work as well.
Because their work is quite abstract and difficult to grasp, we provide intuitive ex-
planations of some of the more complicated notions that are discussed in [AC16].

A.1 An intuitive overview

As we have seen, the vast majority of the ABE schemes that have been published is
only proven to be selectively secure, and not fully secure. Of the forty-two schemes
that we have considered, only eight are proven fully secure (nine if we also count
[AC16]). Four of these are ABE schemes in the composite-order setting, and we
already established that we preferred prime-order ABE schemes in Section 3.8. Six
of the schemes are proven fully secure by using the methodology of [Wat09] that
introduces the notion of dual system encryption.

Chen and Wee [CW14a] introduce the notion of dual system groups, which is a
notion that is inspired by the dual system encryption methodology. It defines a triple
of groups with a non-degenerate bilinear mapping, accompanied by six algorithms that
are defined over the groups such that certain properties hold. Then, these groups and
their algorithms can be used to create encryption schemes in a generic fashion.

Attrapadung introduces the complementary notion of pair encoding in [Att14],
which is another generic framework that can be used to analyze the security of en-
cryption schemes, but rather considers the exponents of the group elements and how
they relate to one another.

Subsequently, the work of Agrawal and Chase [AC16] combines the two notions
in an explicit fashion, and generically constructs encryption schemes by using both of

Appendix A. Simplifying Security Analysis with Pair Encoding Schemes 50

Dual system groups Pair encoding schemes

Based on —

Generic frameworks for encryption

Dual system encryption

F1GURE A.1: A schematic overview of dual system encryption and
generic frameworks based on dual system groups and pair encoding

them in a black-box manner, i.e. any definition of dual system groups that satisfies
certain properties and any pair encoding scheme that is proven to be secure can be
used to create a secure encryption scheme in a generic way. In the same work, they
give a pair encoding scheme for the CP-ABE scheme with constant-size ciphertexts
and prove that it is secure.

So in short, these works (i.e. [Att14; CW1da; ACI6]) are all generic frameworks
based on dual system encryption by using security notions of other primitives (see Fig.
A1 for a schematic overview of how they relate). The idea is that proving security
for the other primitives is much easier than proving security of encryption schemes,
and by proving that the construction of an encryption scheme from the primitive is
secure, we can generically define secure schemes without having to prove each one of
them fully secure conform Definition 18.

Before we will consider formal definitions of any of these notions, we will give
a little bit more background information on each of the notions, i.e. dual system
encryption, dual system groups and pair encoding.

A.1.1 Dual system encryption

In 2009, Waters [Wat09] presented a | | Normal CT | S-F CT |
methodology called dual system en- Normal SK v v
cryption, which provides us with a S-F SK v X

method of devising encryption schemes
that can be proven fully secure in the FIGURE A.2: Normal versus semi-functional
standard model under simple and es- keys and ciphertexts
tablished assumptions such as the decisional bilinear Diffie-Hellman (DBDH) and
the decisional linear (DLIN) assumptions. In dual system encryption, there are two
types of keys and ciphertexts, namely normal and semi-functional keys and cipher-
texts. The normal keys and ciphertexts are the ‘usual’ keys and ciphertexts that are
used in the encryption system. The semi-functional keys and ciphertexts are not used
in the scheme itself, but they are used in the security proofs. Here, normal keys can
decrypt semi-functional ciphertexts, and for the semi-functional keys holds that they
can decrypt normal ciphertexts, but they cannot decrypt semi-functional ciphertexts.
The idea is that these semi-functional keys and ciphertexts are indistinguishable
(either computationally, statistically or perfectly) from their normal counterparts.
Then for the security proofs, we can define a series of games, which we will prove to

Appendix A. Simplifying Security Analysis with Pair Encoding Schemes 51

be indistinguishable from one another. The first security game will be the real security
game, in which the keys and ciphertexts are all normal. Then we define a series of
security games in which we will substitute the normal ciphertexts for semi-functional
ciphertexts, and because the normal and semi-functional ciphertexts are supposed to
be indistinguishable, the attacker will not notice the difference between the first and
each subsequent security game. Gradually, we will define a series of games that are
indistinguishable from one another, replacing each normal key for a semi-functional
key, such that the last game only distributes semi-functional keys and ciphertexts.
Because semi-functional keys cannot decrypt semi-functional ciphertexts, an attacker
can trivially not decrypt any challenge ciphertexts, and therefore the system will
prove itself secure.

A.1.2 Dual system groups

In 2014, Chen and Wee [CW14a] introduced the notion of dual system groups, which
leans on dual system encryption in the sense that the groups are defined in such
a manner that we can generically prove security within the dual system encryption
methodology. Chen and Wee identify the minimum number of properties that are
necessary to apply dual system encryption techniques in the most basic setting of
identity-based encryption, but they will also prove useful in other types of encryption
such as attribute-based encryption.

These properties are defined over six randomized algorithms that are defined on
the triple of groups G,IH,G7. These algorithms are called ‘sampling algorithms’,
such that for each sampling algorithm, we sample elements from G, H or G7 in some
random fashion. This ‘random fashion’ does not just simply mean that we are picking
random elements from these groups, though. There are certain properties that must
hold in order to prove correctness and security, which is why there are correctness
and security properties on these sampling algorithms as well. For instance, samplings
from G and IH have to correspond in a special way, and the samplings have to be
‘random enough’ to be considered secure.

Like in dual system encryption, dual system groups distinguish between normal
and semi-functional keys and ciphertexts, which is why two of these sampling algo-
rithms generate elements in G and IH respectively, such that they correspond with
normal ciphertexts and keys. Two of the other sampling algorithms will generate
semi-functional components in G and H such that we can create semi-functional ci-
phertexts and keys. Because we want to prove that normal and semi-functional keys
are indistinguishable, as well as the normal and semi-functional ciphertexts, we need
to define these sampling algorithms in such a fashion that this holds. One of the two
remaining sampling algorithms generates G,IH and G, and some other public and
secret parameters, such as non-degenerate bilinear mapping e : G x H — G, and
the other sampling algorithm samples from G such that it corresponds with the first
entry of the output of the sampling from G.

A.1.3 Small introduction to pair encoding

In [Att14], Attrapadung introduces the notion of pair encoding as a major component
in a framework that uses dual system encryption techniques, much like dual system
groups. Whereas the notion of dual system groups focuses on the groups and how we
can sample elements from those groups, pair encoding focuses on what happens in
the exponents of the group elements in the key generation, encryption and decryption
algorithms.

Appendix A. Simplifying Security Analysis with Pair Encoding Schemes 52

In this setting, what happens in the exponent of ciphertexts during encryption is
called the ciphertext encoding, and analogously we introduce the term key encoding
for the secret keys that are generated in the key generation algorithm. Decryption
combines secret keys and ciphertexts in such a fashion that the plaintext is recovered.
We will call the encoding of this ‘combination’ the pair encoding.

The idea is that the security of encryption schemes can be derived from the
security of pair encoding schemes. Attrapadung formalizes the security properties
of those pair encoding schemes in two notions: perfectly master-key hiding and (co-
)selectively master-key hiding, from which we can construct, respectively, fully and
selectively secure encryption schemes.

Agrawal and Chase [AC16] take this even further by finding a way to prove full
security from a more relaxed version of perfect master-key hiding, which they coined
as relaxed perfect security, which does not require perfect indistinguishability between
distributions, but statistical indistinguishability. Moreover, they allow the addition
of some extra noise to the key encoding, as long as adding this extra noise yields key
encodings that are statistically close enough to the original key encoding. In order to
know whether a pair encoding scheme is secure, we need to compute the statistical
distance between two distributions (and either show that it is zero or negligible in the
security parameter), which is considerably less complicated than proving security of
an ABE scheme, and those proofs are typically much shorter than security proofs as
well.

A.1.4 Intuitive notion of pair encoding

Now that we have established that it would be beneficial to consider the notion of
pair encodings, we can elaborate on the specific encodings and how they relate.

So first, we consider groups G and H of order N with generators g and h such that
we can define a non-degenerate bilinear mapping e : G x H — Gr to target group
Gr. As we have seen, it is often the case that part of the ciphertext is of the form
M -e(g,h)* € Gr, where « is some secret that is generated and stored by the key
generation authority, which we also refer to as the master-key, and s is the random
contribution of the encryptor.

The idea is that we let (the other part of) the ciphertexts be defined in G and
the secret keys in IH, so we can write the ciphertexts as vectors of the form gc(s’b) =
(gcl(s’b), ey gE¥1 (S7b)) and the keys in a similar fashion as vectors of the form pk(arb)
where c(s, b) denotes the ciphertext encoding and k(«, r, b) denotes the key encoding.
Note that we have introduced a couple of variables that we have not discussed yet.
In the key encoding, we have input element o and vectors r and b, and the inputs
for ciphertext encoding are vectors s and b, such that all of the entries of these
variables are distributed uniformly over Zpy. As the symbols already suggest, the
key and ciphertext encoding have a common input, namely vector b. So logically,
they are also referred to as the common variables. In the key encoding, we use the
master-key a and common variables b, but we also include some key-specific random
variables, i.e. r = (71,72, ...), which are used to tie the keys to one user and therefore
avoid collusion, much like in the schemes we have seen before. In the ciphertext
encoding, we have ciphertext-specific random variables s = (s, s1, ...), where the first
entry corresponds with the same s that is also used in ciphertext entry M - e(g, h)**,
and the rest of the entries are to link the rest of the ciphertext entries together in a
random fashion, also much like we have seen in other schemes. So we can express the

Appendix A. Simplifying Security Analysis with Pair Encoding Schemes 53

ciphertext, with plaintext M € Gr, as
CT = ¢°P) CTy= M -e(g,h)** (A1)

and the secret keys as
SK = pk(@rb), (A.2)

where CT and SK both denote vectors (because ¢ and k are also vectors).

To decrypt, we want to combine CT and SK in such a fashion that we somehow
obtain e(g, h)**, because then we can retrieve M from CTy by dividing by e(g, h)*.
Instead of looking at CT and SK directly, we can also consider ¢ and k and how to
combine them in order to obtain as. We know that c is a function with input s, and
k a function with input «, so we will look at each entry of ¢ and each entry of k, and
consider each pair of entries individually. If we define ¢; as the i-th entry of c and k;
as the j-th entry of k, we can define for each i and j some Ej; ; such that

ZEi,jCikj = QsS. (A3)

i3

Then we can write E as a matrix with entries FE; ;, which denotes the pair encoding
on the ciphertext and key encodings ¢ and k. In terms of the ciphertext CT and
keys SK this translates to computing

B(CTE, SK) — e<gc(s,b)E7 hk(a,r,b)) _ 6<g, h)zi,j Eijeiky e<97 h)as.

To use this in the CP-ABE setting, we define k over a set of attributes S, and c
over an access structure A, such that applying the pair encoding E on the key and
ciphertext encodings is only supposed to yield as if A = S.

Hence, whereas we had already discussed a correctness property in Eq. A.3, we
can also define a security property for pair encoding schemes. Recall that, as per
the security definition, if our set of attributes does not satisfy the access structure,
then the ciphertext may not leak any information on M. To this end, we require
« to be information-theoretically hidden, such that an attacker cannot observe the
secret keys associated with different sets of attributes and learn something about
a. In [Attl4] and [AC16], Attrapadung, Agrawal and Chase attempt to avoid this
type of attack by requiring that the distribution of the key and ciphertext encodings is
independent on the choice of master-key «, i.e. the distribution of {c(s,b),k(a,r,b) :
s =(s,81,...),r = (r1,...),b = (b1,...), where s,81,71,b1,... Eg Zy} is identical for
each a'. This way, the same group elements will be distributed during the key
generation and encryption algorithms, each with the same probability for any «, and
therefore no attacker can guess o (or g%) with non-negligible probability by observing
a polynomial amount of keys. By extension, no information is revealed regarding
plaintext M either, because e(g, h)*® cannot be retrieved.

Implicitly, we have defined three algorithms already: the key encoding, the ci-
phertext encoding and the pair encoding, which are denoted as EncK, EncC and Pair
respectively. In order to complete the definition of pair encoding schemes, we need a
fourth algorithm that behaves like a setup, which we call Param, that defines some
of the parameters such as the common variables b = (b1, ...,b,). Note that they are
all distributed uniformly at random, i.e. by, ...,b, €r Zy. We observe that in [Att14]

lSometimes, statistical or even computational indistinguishability is sufficient, but depending on
the generic construction, this yields weaker notions of security in the encryption scheme that follows
from the encodings.

Appendix A. Simplifying Security Analysis with Pair Encoding Schemes 54

and [AC16], it is implied that the master-key « is generated in the key encoding
EncK, whereas it is also strongly implied that this « is the same for each key that is
generated after the Param algorithm is run. Moreover, this is also the case in other
schemes, as we typically define the master secret key during the setup. This is why
we include « in our parameter setup, and for « also holds that it is chosen uniformly,
ie. a ER ZN.

In other words, a pair encoding scheme can be defined in terms of three randomized
algorithms, namely Param, EncK and EncC, and algorithm Pair that depends on the
outputs of EncK and EncC. In key encoding EncK, the key-specific entries of r are
randomly distributed over Zy, and in ciphertext encoding EncC, the ciphtertext-
specific entries of s are randomly distributed over Zy.

A.1.5 From pair encoding to attribute-based encryption

From our intuitive notion of pair encoding schemes, it becomes almost entirely clear
how it relates to attribute-based encryption, as the algorithms of a pair encoding
scheme are almost one-to-one related to the algorithms of attribute-based encryption.
However, in [AC16], the ABE scheme is not entirely constructed as Equations A.1
and A.2 suggest. Instead, it combines the notions of dual system groups and pair
encoding schemes, such that we can exploit the security properties of both notions.

If we use pair encodings in the sense that we described earlier, i.e. conform Eq.
A.1 and A.2, we only know how to construct fully secure encryption schemes if the
distribution of the ciphertext and key encodings is identical for each master-key a.
If we use them in combination with dual system groups, we can also exploit the
security properties that hold for these groups and the algorithms defined on them.
As it turns out, this allows for a somewhat weaker notion of security in the pair
encodings. Instead of requiring perfect indistinguishability, we only need statistical
indistinguishability, and we also allow the addition of some noise, while the generic
construction still results in a provably fully secure encryption scheme.

Recall that for dual system groups, we had defined six algorithms, of which one is
a sampling algorithm that defines the groups G,H, G and other parameters, two are
sampling algorithms for G, two are sampling algorithms for IH and one is a sampling
algorithm for G that is somehow related to the first sampling algorithm for G.

The idea is that we write the part of the ciphertext that was expressed as gc(s’b)
in terms of samplings from G. Now, each entry of gc(sb)
of generator g, ciphertext-specific randoms s = (s, 81, ..., Sy,) and common variables
b = (b1,...,b,), as well as some constant coefficients that are defined in the vector
c(s,b). This means that we can write each entry g°(&P) in terms of ch(S)bi for
all common variables by, ..., by, where cp;(s) = cpi(s, 81, ..., Sw,) denotes the ‘sub-
polynomials’ of ¢/(s, b) such that c/(s,b) = > cg(s)b;.

More specifically, this means that each ciphertext entry can be written as a prod-
uct of ‘generators’ ¢” with constants and ciphertext-specific random variables cei(s)
in the exponent, i.e. (gbi)cfvi(s). In order to get our new formulation, we map all of the
‘generators’ g% to entries of the outputs of the sampling algorithm defined on G, and
we let each variable in the ciphertext-specific randoms s, s1, ..., 8y, correspond with
the random value that is used in a sampling (so in total, we get ws + 1 samplings).
The constants that were used in the old expression will remain the same under the
mapping such that the structure of the encoding is preserved.

Note that the mapping of the original expression of the key encoding to our new
expression of the key encodings works analogously to that of the ciphertext encoding,
which we will see later this chapter.

can be written in terms

Appendix A. Simplifying Security Analysis with Pair Encoding Schemes 55

For the other part of the ciphertext, which we formerly wrote as M - e(g, h)®*,
we use the sampling algorithm for group Gp, which we denote as SampGT. This
algorithm is related to the first entry of the outputs of the sampling function of G
in some kind of fashion: the idea is that the public key is of the form e(go, h%),
where gy = ¢° for some b € Zy corresponds with the first entry the output of the
sampling algorithm over G. Then SampGT takes e(go, h*) as input and outputs a
randomized variant of it. More specifically, we use the same random value as in the
first sampling from G, i.e. s, so we get e(go, h*)* for s €g Zx. Then, the first entry
of the output of the first sampling from G is similarly formed, i.e. g¢g, and from the
correctness properties of dual system groups and pair encoding schemes, follows that
we can retrieve e(g, h)?*® and finally also plaintext M.

A.2 Formal definitions

After giving some intuitive idea of dual system groups and pair encoding schemes,
we can proceed to give formal definitions of both. For the dual system groups, we
will use the definition that was formulated in [AC16], which is a more generalized
version from the original definition in [CW14a]. For pair encoding schemes, we also
use the definition that was given in [AC16], but we adapt it such that the generation
of a is included in the Param algorithm, and not the EncK algorithm. We also use a
narrower definition of pair encoding schemes than the original, which is defined over
any predicate. Instead, we will only use ‘CP-ABE predicates’, i.e. if A is an access
structure and S is a set of attributes, then the ‘CP-ABE predicate’ is true if and only
if A =S holds.

Then, finally, we will give a generic construction of CP-ABE based on dual sys-
tem groups and pair encoding schemes. This construction is based on the one that
was given in [ACI6], but the original version can construct any predicate encryp-
tion scheme from PES and DSG. Because predicate encryption is a generalization
of attribute-based encryption, we can simply adapt the original construction to a
CP-ABE setting.

A.2.1 Dual system groups

A dual system group is parameterized by the security parameter A and a number
n, which will correspond with the number of common variables in the pair encoding
scheme.

Definition 21 (Dual System Groups (DSG) [AC16]) A dual system group con-
sists of siz PPT algorithms, which we describe below.

(i) SampP(1*,17) : On input 1* and 1™, SampP outputs public parameters PP and
secret parameters SP, which have the following properties:

e PP contains a triple of groups (G,H,Gr) and a non-degenerate, bilinear
map e : G xH — Gp, a homomorphism pn : H — Gr, and some additional
parameters used by SampG and SampH, to be defined below. Given PP,
we know the order of group H and how to sample uniformly from it. Let
N = ord(H), such that N is a product of distinct primes of at least \ bits.

e SP contains a generator h € H such that h # 1.

(ii) SampGT takes an element in the image of u and outputs another element from
Gr.

Appendix A. Simplifying Security Analysis with Pair Encoding Schemes 56

(ii) SampG and SampH take PP as input and output a vector of n+ 1 elements
from G and H respectively.

(iv) SampG and SampH take PP and SP as input and output a vector of n+ 1
elements from G and H respectively.

For these algorithms, we require the following properties to hold for all PP and
SP that can be output by SampP. We define SampG, to be the first output entry of
SampG. Analogously, we define SampH,, SampG, and SampH,,.

Also note that all of these algorithms are randomized. Sometimes, however, we
need to require that two algorithms use the same random integer, which we indicate
by feeding the algorithm an extra input: we denote this extra input as o, and we
apply it to the algorithm by writing e.g. SampG(PP;0), which means that SampG
is applied to input PP with random variable o.

First, we give a definition of correctness, and then we give a definition of security
for dual system groups.

Definition 22 (DSG-correctness [AC16]) A dual system group is correct if it
satisfies the following two properties:

(i) Projectivity: For all h € H and random integers o, SampGT(u(h);o) =
e(SampGg(PP; o), h).

(ii) Associativity: If (go, ..., gn) and (ho, ..., hy) are samples from SampG(PP) and
SampH(PP) respectively, then for all i € [1,n] we have e(go, hi) = e(gi, ho).

Note that, even though SampG and SampH sample from G and H in a random
fashion, they still preserve a certain structure that the associativity property captures.
We need this structure in order to write each element in the decryption that is of
the form e(g;, ho)™ as e(go, h;)" such that, eventually, we can use the projectivity
property to obtain e(go, h)*® and retrieve the plaintext.

Definition 23 (DSG-security [AC16]) A dual system group is secure if it satisfies
the following three properties:

(i) Orthogonality: Generator h in SP is in the kernel of i, i.e. u(h) = 1g

o
(ii) Non-degeneracy:
1. SampH, (PP, SP) =2 b, where 6 € Zy. (Recall that = indicates statistical
indistinguishability.)
2. There is some generator § € G such that SampG,(PP,SP) = G, where
aERZy.

3. For all gy + SampG,(PP,SP), e(go, h)? is uniformly distributed over Gr,
where B €Er Z.N.

Appendix A. Simplifying Security Analysis with Pair Encoding Schemes 57

(iii) Indistinguishability: For two (posz;tz've) polynomials poly,(-) and
polys(-), define G,H,G,H, G’ and H' as follows:
(PP, SP) «+ SampP (1*,1"); 91, ..., 7n €r ZN;
Vi € [1,poly; (N)] : g = (9i,0s -+, Gin) + SampG(PP);
&i := (9i,0, - Gin) < SampG(PP,SP); & := (1,30, -, 9]5);
Vj € [1,polys(N)] : hj := (hj0, ..., hjn) < SampH(PP);
hy = (Rjo, . hjn) SampH(PP,SP);h;- = (1,?@]}0, ’ﬁ],%)’
G = (81, poly,(\)); G = (&1, -+ Bpoly,(0); G 7= (&1, o 8oty ()5
H = (hy, by, o) B = (e, g,) B o= (B B).
We call a dual system group Left Subgroup Indistinguishable (LSI), Right Sub-

group Indistinguishable (RSI) and Parameter Hiding (PH) if for all polynomials
poly; (+) and polyy(-), we have

{PP,G} ~ {PP,G -G} (A.4)
{PP,h,G - G ,H} ~ {PP,h,G-G,H-H} (A.5)
{PP,h,G,H} = {PP,h,G-G' H-H}. (A.6)

Remarks: The security properties are all related to dual system encryption. For
instance, we had already mentioned that the sampling functions are related to the
normal keys and ciphertexts and semi-functional keys and ciphertexts. In this case,
SampG and SampH distribute the normal ciphertexts and keys, and SampG and
SampH distribute the semi-functional components of the ciphertexts and keys. In
order to get a semi-functional ciphertext or key, we multiply some output of SampG
or SampH with an output of SampG and SampH respectively. Because in dual system
encryption, we require the step from a normal to a semi-functional ciphertext to be
‘unnoticeable’ to an attacker, the normal and semi-functional ciphertexts have to be
indistinguishable, which is why the left subgroup indistinguishability, i.e. Eq. A.4, is
important.

Something similar follows from the keys, however, in the following game we already
have semi-functional ciphertexts, and we change the normal keys into semi-functional
keys. This also has to go unnoticed by any attackers, which is why right subgroup
indistinguishability is necessary, i.e. Eq. A.5. Then we have the parameter-hiding
property in Eq. A.6, which is a little more difficult to explain intuitively. In practice,
we cannot go from normal keys to semi-functional keys in one step, but first take
a ‘pit-stop’ at keys that are ‘in-between’ normal and semi-functional. One of the
reasons is that there is not enough randomness in the n 4 1 entries of the key: the
entropy is only n, because of the same randomness that is used in SampGT(PP; o)
as in the first entry of SampG(PP; o). The parameter-hiding property ensures that
we can ‘add’ some randomness such that the entropy becomes n + 1.

Then there is also the orthogonality property. Orthogonality is necessary to ensure
that e(SampG,(PP;0),h) = 1. Because e(SampGy (PP; o), h) = SampGT(uu(h); o)
holds with the projectivity property, and SampGT(u(h); o) = SampGT(1;0) because
p(h) = 1. Then from p(1) = 1 and SampGT(1;0) = e(SampGy(PP;0),1) = 1 it
follows that indeed e(SampG,(PP;c),h) = 1.

And finally, we have the non-degeneracy property, which is similar to the non-
degeneracy property of bilinear mappings: it ensures that the sampling algorithms
distribute all group elements with equal probability. Eventually, the non-degeneracy

Appendix A. Simplifying Security Analysis with Pair Encoding Schemes 58

property ensures that the message in the semi-functional ciphertexts is information-
theoretically hidden.

A.2.2 Pair encoding schemes

Now we consider a pair encoding scheme for any ‘CP-ABE predicate’, i.e. we have
a universe of attributes & and a collection of access policies A over U such that for
any set of attributes S C U either A =S or A = S holds.

Note that, much like in the algorithms of the definition of dual system groups, we
will use Zy, but not feed N as input to the algorithms like in [AC16]. We also use
constants w1 and we, which are used in the ciphertext encoding algorithm and denote
the number of entries of the ciphertext encoding and the ciphertext-specific random
vector s (minus 1) respectively. Similarly, m; and mgy denote the number of entries in
the key encoding and key-specific random vector r respectively. These are implicitly
defined and together with the constants to be defined in the polynomials below (see
Eq. A.7 and A.8), they are fixed for each invocation of any of the algorithms.

Definition 24 (Pair Encoding Schemes (PES) [AC16]) For any ‘CP-ABE
predicate’ and possibly some extra parameters par that are necessary to compute pa-
rameters n,b and «, a pair encoding scheme consists of four algorithms, which satisfy
a correctness property that we define below.

(i) Param(par) — (n,b,«): The Param algorithm takes the extra parameters par
as input, and outputs the number of common variables shared by the following
two algorithms, which we denote with n € IN, and we denote the common vari-
ables with b := (b1, ...,by), which are picked uniformly at random from Zy.
Moreover, the master-key o €g Z. is generated.

(ii) EncC(b, A) — (c(s,b) := (c1, ..., cw,)): The EncC algorithm takes the common
variables and access structure A as inputs and oulputs a ciphertert encoding
Cl, ..., Cw, Which are entries that are expressed in terms of the entries of s and
b. In this case, s = (8,81,...,Sw,) is randomly distributed over Z%"H, and
more particularly, we can write each entry cy of the ciphertext encoding as a
polynomial with constants Cp, e, 005,004 € ZN:

co(s,b) := (ps + Z Me,iSi + Z B¢ jsb; + Z Voijsibj. (A7)
1€[1,ws] JE[1,n] i€[l,wa],j€[1,n]

(iii) EncK(a,b,S) — (k(a,r,b) := (k1,...,km,)): The EncK algorithm takes the
master-key, the common variables and set of attributes S as inputs and outputs
a key encoding ki, ..., ky, which are entries that are expressed in terms of o and
the entries of v and b. In this case, v = (r1,...,7m,) s randomly distributed
over Z'* and more particularly, we can write each entry k; of the key encoding
as a polynomial with constants T4, vy, r4j € ZN:

ki(a,r,b) := e + Z Vgt + Z Gti,jTibj- (A.8)

i€[1,mo] i€[1,m2],5€[1,n]

(iv) Pair(A,S) — E: The Pair algorithm takes access structure A and set of at-

tributes S as inputs and outputs a pair encoding, which is a (my X wy)-matriz
E ez .

Appendix A. Simplifying Security Analysis with Pair Encoding Schemes 59

The Pair algorithm is supposed to yield a pair encoding E with entries E; , such
that for the ciphertext and key encoding with access structure A and set of attributes
S holds that A = S, the encodings can be combined in accordance with the pair
encoding such that as can be retrieved.

Definition 25 (PES-correctness [AC16]) Let A be an access structure, and S a
set of attributes. Let ¢ + EncC(b, A) and k + EncK(a,b,S) be a ciphertext and
key encoding and E < Pair(A,S) be the corresponding pair encoding. If A | S,
then we have
kEcT = Z ki Eygce = as.
te[l,wi],l€[1,m1]

If A= S, then KEcT outputs L.

Structural restriction: In [AC16], they impose a restriction on the pair encoding
that [Att14] does not impose, but all of the pair encoding schemes that are formulated
in [Att14] satisfy this restriction, so Agrawal and Chase argue that this does not make
much of a difference. For the matrix we also require that E; , must be 0 if k; and ¢,
both have common variables in the expression.

Now we want to consider the security properties regarding those schemes. In
[Att14], Attrapadung considers two types of security, perfect and computational, the
perfect one being perfectly master-key hiding and the computational notions can be
divided in two ‘flavors’, namely selectively and co-selectively secure master-key hiding.
In [AC16], Agrawal and Chase only use Attrapadung’s information-theoretic notion of
security, i.e. perfectly master-key hiding, and introduce another information-theoretic
notion of security called ‘relaxed perfect security’. They only consider information-
theoretic notions, because they lead to fully secure encryption schemes, contrary to
the computational notions, which result in selectively secure encryption schemes.

Definition 26 (Perfect PES-Security [Att14; AC16]) A pair encoding scheme
(Param, EncC, EncK, Pair) is perfectly secure if for every order N, extra parameters
par, access structure A and set of attributes S such that A = S, we have that
(c(s,b),k(0,r,b)) and (c(s,b),k(a,r,b)) are perfectly indistinguishable for all s €
ZPH b ep Z, v g ZW? and a €g Zy .

As we have already mentioned, Agrawal and Chase allow for some extra noise
in the key encoding, as long as this noise is not ‘too loud’ To this end, we define
some extra sampling algorithm that samples this extra noise. More specifically, this
sampling algorithm generates noise that will be added to the common variables in
the key encoding, but not in the ciphertext encoding. The idea is that the noise will
hide the master-key whilst avoiding that the attacker notices this. This way, in the
security proofs, we can define a security game in which we generate noisy secret keys
instead of the normal keys, and by design, the attacker will not notice this.

For each entry of r, we will generate a new noisy vector, such that we can add the
noise only to the common variables that are not ‘canceled’ when the rest of the entries
of r are set to 0. Then if we add all partial noisy secret keys, we create a new, noisy
secret key. If this noisy secret key is perfectly master-key hiding, then we can create
a fully secure encryption scheme from it. But to this end, the sampling algorithm
has to be independent on the choice of the access structure. If it is dependent, then
the resulting encryption scheme is not fully secure, but semi-adaptively secure, which
is a term that we used earlier in this work in Section 3.10.2. In this attack model,

Appendix A. Simplifying Security Analysis with Pair Encoding Schemes 60

we need knowledge of the attacked access structure before the key queries are made,
whereas in the full security model, the attacker is allowed to make key queries before
announcing the attacked access structure.

Formally, we define ry for all d € [1,m2] to be the vector r = (71, ..., 7,) with all
entries set to 0, except for the d-th entry, i.e. ry := (0,...,0,74,0,...,0). The initial
key encoding is k(a,r,b), and we define the partial key encoding as k(a,rg, b), for
which we sample some noise Bd, which we add to the common variables such that we
get noisy partial key encoding k(a, rg, b+ by). If we do this for each d € [1,ms], we
can make a noisy key by adding all partial keys, i.e.

Z k(o,rg, b+ by),
dE[l,mz]

and of this noisy key, we will prove that it is master-key hiding, i.e. for all « € Zy
we have that distribution

{ (c(s,b), Z k(a,rg, b+ Bd)) :s,b,r e Z%+w2+m2+1,Vd by Samp}
de(1,ms]

is statistically identical, which means that the statistical distance from distributions
with o/ # « is negligible in the security parameter A\. Note that here we only require
statistical instead of perfect indistinguishability, which is one of the two reasons that
this security property is more relaxed than the initial security property.

Also observe that we have introduced the sampling algorithm Samp which is more
specifically defined as:

Definition 27 (Noise sampling [AC16]) We define the algorithm Samp(d, A, S)
as follows: for inputs d € [1,ms], access structure A and set of attributes S, it
outputs a moise vector Bd = (lA)dJ, ...,Bd,n) in ZY;. Furthermore, we require that the
probability that the algorithm yields (u - lA)djl, ey U lA)d,n) is equal for each u € Z;.

Note that we do not require Bd €r Z%;, but instead require that the algorithm
yields (u-bg1,...,u-bg,) with equal probability for each u € Z%, because combining
this property with the non-degeneracy and parameter-hiding DSG-security properties
yields that adding this noise is unnoticeable by any attacker, which is essential in the
security proof of the encryption scheme.

Now we can introduce the definition of relaxed security:

Definition 28 (Relaxed Perfect PES-Security [AC16]) A pair encoding scheme
is relazed perfectly secure if there exists an algorithm Samp such that for every access
structure A and set of attributes S such that A = S, and every d € [1,mg] we have:

(el b))y = { (el DV RO b+ D)} o

(A.9)
Furthermore,
{ (c(s,b), Z k(0,ry,b +Bd)) } = { (c(s,b), Z k(a,rg, b+ Bd)) }
dG[l,mQ] dG[l,mz]
(A.10)

for all o € Zy. Note that in Equations A.9 and A.10 the entries of s,r,b are dis-
tributed uniformly over Zn and by < Samp(d, A,S) for all d € [1,ms]. Recall that

Appendix A. Simplifying Security Analysis with Pair Encoding Schemes 61

= denotes statistical indistinguishability. Moreover, a pair encoding scheme satisfies
strong relaxed perfect PES-security if Samp does not depend on A.

A.3 A generic CP-ABE construction from pair encoding

Previously, we have given intuitive explanations and formal definitions regarding the
notions of dual system groups and pair encoding schemes, as well as their respective
correctness and security properties. We will use them to give a generic construction
of a CP-ABE scheme from any pair encoding scheme by using the notion of dual
system groups. Note that we have adapted the generic construction of a predicate
encryption scheme from a pair encoding scheme on predicates in [AC16] to a generic
construction of a CP-ABE scheme.

A.3.1 Intuitive idea

Before we will introduce the actual construction, we will first give an intuitive idea
as to how dual system groups and pair encoding are going to be combined in order
to construct a CP-ABE scheme. On the one hand, we have the algorithms of pair
encoding schemes that correspond with the algorithms of CP-ABE, i.e. the Setup
and Param algorithms, the Encrypt and EncC algorithms, the KeyGen and EncK
algorithm and the Decrypt and Pair algorithm.

On the other hand, we have dual system groups, which allow us to sample from
G and H in a random fashion, such that certain correctness and security properties
hold. These samples consist of n 4+ 1 group elements, which is one more than the
number of common variables we have in our pair encoding scheme. The idea is that
we let the sample algorithms of the dual system groups correspond with the variables
that we have defined in our pair encoding scheme.

Recall that each ciphertext encoding entry is represented by a polynomial, i.e.

Cg(s,b) = (s + Z NeiSi + Z Qg,jsbj + Z 1947i7j8ibj,

i€[1,ws] J€[1,n] i€[l,ws],j€[1,n]

where s = (s, 81, ..., Sw,) and b = (b1, ...,b,) denote the random and common vari-
ables respectively. So for each entry of s, we can define a ‘sub-polynomial’ of ¢y,
ie.

ce((s,0,..,0),b) :=s [{+ Z 00 ;b;
J€[L,n]

ce((0,...,0,54,0,...,0),b) :=s; Nei + Z V4.5b;
j€lln]

Observe how in all of these ‘sub-polynomials’ there occur exactly n common variables
with constant coeflicients and one constant. So if we let the constants correspond with
the first entry of the output of SampG, and the n common variables with the other
n entries, then we can let each ‘sub-polynomial’ correspond with one sampling from
G, i.e. for each i € [1,ws + 1] we sample (gio,..., gin+1) < SampG(PP). The
randomness that comes from this algorithm will represent the random s or s; in the
ciphertext encoding, whereas the ‘base’ of g; ; represents the common variable b;.
So if we combine the ‘sub-polynomials’ ¢, ; that we defined in Section A.1.5 and
the ‘sub-polynomials’ that we defined above, i.e. let & ;(0) = ¢¢,((s,0,...,0))/s and

Appendix A. Simplifying Security Analysis with Pair Encoding Schemes 62

¢0i(3) = ¢2i((0,0,...,85,0,...,0)) /s;, then we can define the mapping from the pair
encoding and the dual system groups explicitly as

o= [I a5V =g TI o5 I1 w5~ I a5

’L'G[O,UIZ],J'E[L”} 746[1 w2] je[lrn} ie[lrwﬂvje[lvn}

We do something similar for the key encoding, i.e. we have r = (71, ..., 7,), so for
each j € [1,mg], we can sample (hjo,...,h;n) < SampH(PP), and we let each h;
correspond with the constants and h;j; with the common variables. Note that the
master-key a corresponds with master secret key MSK, which is uniformly distributed
over IH. Then we can write the keys in a similar fashion as the ciphertexts.

Finally, let s be the random that was used in the first sampling of the ciphertext,
i.e. goo = §°. Then with the projectivity property we have e(SampG,(PP; s), MSK) =
SampGT(u(MSK);s), and on the other hand we have e(SampGy(PP;s), MSK) =
(90,0, MSK) = e(g, MSK)?®, we can use SampGT(u(MSK);s) to hide message M €
Gr by simply setting CTy = M - SampGT(u(MSK); s). To this end, we assume that
pu(MSK) is part of the public parameters.

A.3.2 The construction

The construction of a CP-ABE scheme from pair encoding and dual system groups
follows relatively easy:

Construction 29 (Generic CP-ABE construction from PES) A CP-ABE en-
cryption scheme Ilcp_apr = (Setup, Encrypt, KeyGen, Decrypt) for any attribute
universe U and collection of access structures (i.e. the ‘CP-ABE predicate’) for which
we have a pair encoding scheme I'cp_app = (Param, EncC, EncK, Pair), using dual
system groups. The message space for Ilgp_ape would be Gr, generated by the
SampP algorithm. Recall that A denotes the security parameter, N € IN denotes the
group order, which is the product of distinct primes of at least \ bits, and we have
additional parameters par.

(i) Setup(1*, par): First run Param(par) to obtain n and the common variables
b =by,...,b,, then run SampP(lA, 1™) to obtain PP and SP. Recall that given
PP, we know the order of group H, namely N = ord(H), and can sample
uniformly from it. The output of the algorithm is

MSK e H MPK := (PP, u(MSK)),

where MSK denotes the secret key and MPK denotes the public key, which is
published.

Note that we have not explicitly used a in this algorithm, but we could have easily
defined our master secret key MSK as h™ for sampled h, i.e. h <— SampH,.

(ii) Encrypt(MPK, A, M): On input an access structure A, and message M € Gr,
run EncC(b, A) to obtain ciphertext encoding c(s,b) = (¢1, ..., Cuy), where s =
(8,81, ey Swy) s distributed uniformly. As per our intuitive description, draw
wo + 1 samples:

(90,0, -+ go,n) 4= SampG(PP; o)

(91,0 -, 91.n) < SampG(PP), ..., (Gus.,05 ---» Guwsn) < SampG(PP)

where o denotes the random that was used in drawing the first sample from
SampG, and that we will also use in the last part of the ciphertext. Recall that

Appendix A. Simplifying Security Analysis with Pair Encoding Schemes 63

the polynomial cy is given by

Cg(S,b) = (ps + Z NeiSi + Z eg’jsbj + Z ﬁg,i’jsibj.

i€[1,w2] JE[1,n] i€[l,ws],j€[1,n]

Output CT := (A,CTy,...,CTy,,CTy,+1) as the encryption of M under A,

where) p
. 4 Mei JJ ,i,5
CTy := ggfo . H 90 - H 90 H 955"
i€[1,w2] J€[1,n] i€[l,ws],j€[1,n]
for € € [1,w1] and CTy, 41 := M - SampGT(u(MSK); o), where o is the same
random that was used in the first sampling.

(iii) KeyGen(MSK,S): On input set of attributes S, run EncK(a,b,S) to obtain
key encoding k(a,r,b) = (k1,....,km,), where v = (71,...,7m,) is distributed
uniformly. As per our intuitive description, draw ms samples:

(h1,0 -y h1.n) <= SampH(PP), ..., (Rmy.05 vy Bimg.n) < SampH(PP).
Recall that the polynomial k; is given by

ki(a,r,b) := e + Z Ui + Z Gti,jTibj-
iG[l,mQ} ie[lva]vje[l’n]

Output the key as SK := (S,SKj, ..., SK,,,) where fort € [1,m4]:

s [T e T

i€[1,mz] i€[1,mz2],5€[1,n]

(iv) Decrypt(MPK,SK, CT): On input secret key SK := (S,SKy,...,SK,,,) with
set of attributes S, and a ciphertext CT := (A,CTy,...,CTy,+1) with access
structure A, run Pair(A,S) to obtain an my x wy matriz E. Output

—1
CToyy 41 - (11 e(CTy, SK?t’Z)) :
te|

1,m1],€€[1,w1]

Correctness (sketch): Note that M is indeed recovered in the decryption algorithm,
which follows from all of the correctness properties of dual system groups and pair
encoding schemes:

Because of the structural restriction we have that only k; or ¢, could have a
common variable in the expression if E;, # 0. So for all ¢ and ¢ such that E,, # 0,
we either have that CT, cannot have g;; in the product, for any j # 0 or SK; is
cannot have A . in the product for any j # 0. In the latter case, we can use that
e(gij,hirp) = é(gi’o,hi/,j) holds (because of the associativity property), so we can
write e(CTy, SK¢) in terms of e(gio,hij). Then multiplying for each ¢ and ¢ and
using the PES correctness property yields

II e(CTy, SKi) "0t = [e(gi0, hir j) " = e(fo, h)** = e(35, h*),
tE[l,wl],ZG[l,mﬂ

for which o denotes the ‘base’ of the first entry of the output of SampG, and h €
H is such that MSK = h®. So we have obtained e(go o, MSK) which is equal to

Appendix A. Simplifying Security Analysis with Pair Encoding Schemes 64

SampGT(u(MSK)); s) because of the projectivity assumption, and therefore M can
easily be retrieved.

A.3.3 Security of the construction

One of the reasons that we were considering the generic construction of encryption
schemes from pair encoding schemes was that the security proofs of pair encoding
schemes are much shorter than the security proofs of attribute-based encryption
schemes. This does mean that we have to show that the encryption scheme that
can be constructed from a pair encoding scheme with Construction 29 is secure if
the pair encoding scheme is also secure. This leads to the following Theorem, which
Agrawal and Chase prove in [AC16]:

Theorem 30 If Tcp_app = (Param, EncC, EncK, Pair) is a relazed perfectly secure
pair encoding scheme, then the CP-ABE scheme Ilcp_apg = (Setup, Encrypt,
KeyGen, Decrypt) constructed in Construction 29 using Tcp_apr is semi-adaptively
secure. Furthermore, if the algorithm Samp does not depend on access structure A,
then Ilcp_aBE s fully secure.

Proof sketch. This theorem is proven in [ACI16]. We will not give the entire proof,
which is roughly eight pages in LNCS style, but we can give a small, abstract outline
of the proof structure. In their proof, they use a (very long) series of security games,
which they prove to be statistically or computationally indistinguishable from one
another by using the correctness and security properties of DSG and PES. The idea
is that, this way, the first game (which represents the real security game) is proven to
be computationally indistinguishable from the last (which is the security game with
semi-functional ciphertexts and secret keys).

Whereas the first transition consists of the immediate step from normal ciphertexts
to semi-functional ciphertexts, we cannot do the same for normal keys versus semi-
functional keys, but instead use a series of intermediate games. Recall that sampling
the normal keys could be done by using SampH, and the semi-functional components
by using SampH.

First, we substitute the ‘normal keys’ for ‘intermediate keys’, which we do by
using the noise sampling function to gradually add noise to all of the inputs to the
key generation algorithm, until all of them are noisy. After this, all of the keys are
‘pseudo-normal noisy keys’. The next step is to make the keys semi-functional noisy,
which is done by making the master secret key semi-functional. Then, gradually, the
noise is ‘filtered out’ by using the relaxed perfect security property as well as other
DSG-properties that we have seen before, until all of the keys are semi-functional.
Because the ciphertexts were semi-functional as well, we have reached the final game.
Then the real security game is proven to be computationally indistinguishable from
the last game, for which trivially holds that attackers cannot decrypt any challenge
ciphertexts. O

Remark: Note that in the transition from a game with semi-functional ciphertexts
and normal keys to the game with semi-functional ciphertexts and pseudo-normal
noisy keys, we use the Samp algorithm to add noise to the keys. Because this is done
before the key queries are made (i.e. the output noise is added to the input of the
key generation algorithm) it matters whether Samp depends on access structure A
or not. If so, then we obviously need to know the access structure that is going to be
attacked before the key queries are made. This fits the semi-adaptive security model
that we described in Section 3.10.2. If Samp does not need A, then the CP-ABE
scheme is fully secure.

65

Appendix B

A CP-ABE Scheme with
Constant-Size Ciphertexts

In Appendix A, we have shown how we can generically construct a CP-ABE scheme
from any pair encoding scheme, and how the security of the pair encoding scheme
implies the security of the CP-ABE scheme that is constructed in this fashion. In this
appendix, we will give an instantiation of a dual system group, which was introduced
in [CW14a], and then we will give an instantiation of a pair encoding scheme, which
was introduced in [AC16]. Then we will give the CP-ABE encryption scheme that
we can construct with the generic construction in Construction 29.

B.1 A DSG-instantiation in prime-order groups

In [CW14a], Chen and Wee give an instantiation of a dual system group in a prime-
order setting, which uses the SXDH assumption to prove right and left subgroup
indistinguishability.

In Definition 21, we have shown that for the sampling algorithms, we require that
several security properties hold, of which the subgroup indistinguishability properties
are considerably the most difficult to integrate. Chen and Wee achieve these prop-
erties by using a slightly different group structure then we implied in Appendix A.
Instead of simply using groups G and IH of prime order p, where p is a prime of A bits,
and A denotes the security parameter, they use groups G = Gx G and H= H x H
such that G and H are groups of order p. We write each element in G as ¢g*, where
x = (w1,29) € Zg, and analogously for elements of [H. The non-degenerate bilinear
mapping is defined over G and H, i.e. e : G x H — Gr.

Now, we let B be an invertible 2 x 2 matrix, that was distributed uniformly over
Z2**, and we define B* := (BT)™! as the inverse of the transpose of B.

We can use SXDH to ensure left and right subgroup indistinguishability. For this,

B Boo
we use the left part in SampGy, for which we use randomness s €r Z,,, and the right
part in SampGy, for which we use randomness 5, then we can write those outputs as

we split B into two halves, i.e. the left part <B11> and the right part <B12> . Now, if

g = (¢°P1,9°P) g0 = (¢°P12,¢°P2).

Recall that left subgroup indistinguishability requires that gy and gq - &9 are compu-
tationally indistinguishable, for which g is the output of SampG,. So we have

i (3> i <S>
. 5 ; 3
g =g , 8o 8o = (9B TR geBatiBa) — g :

Appendix B. A CP-ABE Scheme with Constant-Size Ciphertexts 66

B
Now, for gg =g <S>,We have g0 = go if § =0 and go = go - 8o if 5 €r Z;.

On the other hand, we have the SXDH assumption, which assumes that we cannot
distinguish ¢?2%! from ¢%251%52 given g, g% and g*'*'. Then if we can distinguish
go from gg - &9 with non-negligible advantage in polynomial time, then we can also
break SXDH.

a1

Let gV = g 1 , and B be a uniformly distributed invertible matrix. Then
97 g

we can compute, implicitly, a uniformly distributed B, i.e. ¢ = ¢

- _ = aisi S1
. ga131B11+(a231+52)B12 B B assy +sa) B So
g0 = =g =g .

ga1511§21+(a251 +82)B22

BW. Let

a151B11+(az2s1+52)B12

Note that we can compute because we have g*°! and ags; +

a151Ba1+(azs1+52)Bao

g
s2 for which we have to determine whether sy = 0 or sg € Z,,.

Because we can distinguish between gg and gg - &9, we know whether s = 0
or sg €r Z,, which also solves SXDH. Because SXDH is widely considered to be
intractable, this is a contradiction and therefore it follows that we cannot distinguish
go and gg - &9 with non-negligible advantage.

Hence, using invertible matrix B seems like a good choice for the first output
entry of SampG. For the other n entries of the output, we use a matrix A; that is
entirely uniformly distributed over Z,, for each entry. Then we will compute BA; for
each i € [1,n], which will be the matrix that corresponds with the i-th output entry

o
of SampG. In a familiar fashion, it also follows that for g; = g¢ °) we cannot
distinguish whether § = 0 or in Z; under the SXDH assumption.

We will use this in order to define the sample algorithms. But before we can
define our instantiation of the sample algorithms, we need give a couple of notations
and definitions first. We define G to be a generator that takes as input a security
parameter A and outputs a description of (p, G, H,Gr,g,h,e), where p is a prime
of at least A bits, G, H and G are cyclic groups of order p, and g, h are generators
of G and H respectively. Finally, e : G x H — Gr is a non-degenerate bilinear
mapping. We also define 7y, and wgr, which denote two projection functions that map
a 2 X 2-matrix to its left and right column respectively.

We also introduce some special vector operations in the exponent, i.e. e(¢g*, hY) =
e(g, h)*"Y. Analogously, we have for matrices (g, hB) = e(g, h)A™B. For given g4
and hB, we can compute e(g, h)A™ by computing e(gh%, hBr3) for each k € [1,2]
and then multiply: e(g, h)A™ = e(gh1i, hB13) - e(gh2i, hB23).

B.1.1 Definitions of the sample algorithms

Now we will give the definitions of the sample algorithms.

(i) SampP(1*,1"): Let (p,G, H,Gr,g,h,e) < G()\), and define (G,H,Gr,e) :=
(G x G,H x H,Gr,e). Pick invertible B €p ZIQ,XQ, such that B* := (B~1)T
is well-defined, and let Aq,...,A, €gr Zg“. Furthermore, we define diagonal
matrix R €pg ZIQ)X2 such that Ri; # 0 and Rgs = 1. Then we define the

Appendix B. A CP-ABE Scheme with Constant-Size Ciphertexts 67

following matrices and vectors:

D .= ﬂ'L(B), f:I WR(B), Di = WL(BAZ'), fi = WR(BAi)
D* := 7 (B*R), f* := mp(B*R), D} := 7 (B*AIR), f/ := mr(B*A]R)

Also define pu: H — Gp by p(h¥) = e(gP, h¥) for all k € Z2 and set h := hf".
We define: b b b

80=9 81 =9 '8 =g"

hg = A2 hy = KP%, .. h, = hDh -

Then the output consists of the public and secret parameters

f £ fr
_ Lo g0,81,--y8n - qg.,q9-,...,g
e <<G’H’GT’€)’“’ h, b, ... by,) = (BE BT S)

SampGT(gh): Pick s €g Z,, and output g%’ € Gr.

PP): Pick s €g Z,, and output (gP%, gP1%, ..., gPn%) € Gt
PP): Pick r €g Z,, and output (hP™" hP1" ... hPar) ¢ HHL.

(
(

(v) SampG(PP,SP): Pick 8 €g Z5, and output (g%, 915, .., gf%) e G+
(

(vi) SampH(PP,SP): Pick # €g Z;, and output (RE°7 pET . pET) € HP L

Note that the use of capital letters D, etc. insinuates that they are matrices, but
in fact, are vectors. The reason for this is that we have used the notations that are
used in [CW14a], and in the more general sense, they denote matrices.

Lemma 31 The dual system group that can be defined in terms of these algorithms
satisfies the correctness properties in Definition 22 and the security properties in
Definition 23.

Proof sketch. In [CW14a], Chen and Wee prove this for a more general case. Whereas
we will not give an extensive proof, we will give an intuition regarding the properties
and why they hold for our sample functions.

The correctness properties hold because

(i) Projectivity: For all h € H and random o € Z, we have SampGT(u(h);0) =
w(h)? =e(gP,h)° =e(gP?, h) = e(SampG,(PP;), h).

(ii) Associativity: If (go,...,g,) + SampG(PP) and (hy, ..., hn) < SampH(PP),
then for all i € [1,n] we have e(gy, ki) = e(gP%, hPi") = e(g,h)P™Pisr =
e(y, h)”L(B)TWL(B*AﬁR)ST =e(g, h)”L(AIR)ST = e(g, h)“L(BAi)TﬂL(B*R)ST -

e(g, h)PiP™s" = ¢(gPis hP™) = e(g;, ho), where s, €g Z, the random integers
that were used in the samplings.

The security properties are fairly straightforward: the non-degeneracy properties
follow almost immediately from the definition of the sample functions, and we had
already argued a case for left and right subgroup indistinguishability. The orthogo-
nality property follows from DTf* = 7;,(B)Tng(B*R) = 0, i.e. u(h) = e(gP,nf") =
e(g, h)PT = 1g,. 3

For the parameter hiding property, we have to show that given PP and h, we can-
not easily distinguish & = (go, .., 9n) < SampG(PP,SP) from ¢’ = &-(1,40", ..., 43"),
and h = (hg, ..., hn) + SampH(PP, SP) from b/ = h- (1, A", ..., h"), where ; €r Z,

Appendix B. A CP-ABE Scheme with Constant-Size Ciphertexts 68

randomly distributed. Let § and 7 be the randoms that are used in SampG and
SampH, then

= (9%, 9"%, ..., ™) o= (hf7 57 RET)
A £3 f1s+71fs fas+ynf3 and NIER SV IR o NE L £5 Py £ 7Y -
g = (g g Ry’) h' = (pf'7 Afi oy bR)
We have
f;5 = ﬂ'R(BAi)§, f;8 4+ ~vfs = FR(BAZ‘)§—|—%7TR(B)§

frr = WR(B*AiTR)f, £57 + yf = ﬂR(B*AzTR)f +vmr(B*R)7,
which we can also write as

_ (((Az‘)12]311+ (Ai)22 B12))
((A4)12B21 +| (Aj)22 B22)3

£+ 7£8 = (((Ai)lan +[((Ai)22 +7i) Bi2)8)

((Ai)12B21 +| ((Ai)22 + i) Ba2)

P S ((Aj)21Bo2 —|(Aj)22 B

BuBa=Buba | _(A))y By + (Ai>22

VA

f;s

* A A P
£77 +yf*7 B11B22—B12B2 (

(A;)21Ba2 — 1)22 + i) Ba1
—(Aj)21B12 + ((o2 +7) B/

Note that we have indicated the differences between f;§ and f;§ + 1;£5, as well as
the differences between {7 and f# + v,f*# by putting around those specific
parts in the equation. Because of these boxes, we can immediately see that the
only difference between (f;3, f#) and (£;8 + v;f3, £7 + ,£*7) is that (A;)22 has some
‘extra randomness’ (i.e. ;) in the second expression. However, the distributions of
(A;)22 and (A)22 + i for (A;)22,7: €r Z, are identical. Hence, the distributions of
(g,h) and (&, 1) are identical. O

B.2 A PES-instantiation with short ciphertext encoding

The second instantiation that we need, and for this, we also assume that our groups
have a prime order, is a pair encoding scheme that was introduced by Agrawal and
Chase in [AC16]. The novelty of this scheme is that the ciphertext encoding consists
of a constant number of elements, and therefore leads to the first provably semi-
adaptively secure CP-ABE scheme with constant-size ciphertexts. We will give a
description of the scheme, and then sketch the security proof of Agrawal and Chase.

B.2.1 The constant-size ciphertext encoding PES

Recall that an LSSS access structure is denoted as A = (A, p), where A is a ny X ng
matrix with entries in Z,, where p is a prime of at least A bits, and p : [1,n1] — U,
which maps the rows of A to U, where U = Z, denotes the (large) universe of
attributes. We denote A; as the i-th row of A and a; ; = A;; as the j-th element of
the i-th row. For set of attributes S C U we define Y = {i € [1,n1] : p(i) € S} to be
the set of indices of rows in A associated with S. Furthermore, for this scheme, we
define T' € IN to be the maximum number of attributes a user is allowed to possess,
ie. [S|<T.

Appendix B. A CP-ABE Scheme with Constant-Size Ciphertexts 69

(i) Param(par) — (n:=ni(n2+T +1),b,a), where we let b := ({bi ; }ic(1,n,],je[1,na]
{b; +}ic1,m1)bc(0,7]) De the common variables, i.e. b;;,b;, €r Z, for each i, j,t,
and o €g Zp.

(ii) EncC(b, (A4,p)) = (c(s,b) := (c1,¢2), where s = s €p Z,,, ¢1 = s and

o =8 (> a; b ; + > P(i)tbé,t) :
i€ (0,77

17n1]7j€[17n2] i€[17n1],t6

(iii) EncK(a,b,S) — (k(a,r,b) := ({k1i, k2, k305, Kaigs K5t} iocltmlize,)s
j€[1,n2],t€]0,T],
yeS
where v = (71, ..., Tny, V2, .o, Uny) ER Z;‘l*m_l, v1 = a and

kii=ri, kaij=ribij—vj, Fksie; =ribe;
_ ty/ _ /
kaiy=1i Y, Yl ksiee = ribly.

te[0,7T)

(iv) Pair((4,p),S) = E). Let Y = {i € [1,n1] : p(¢) € S}, and {&; € Zn}icy be
such that Y,y €;4; = (1,0, ...,0), where A; denotes the i-th row of A. We write
matrix E as a set of entries E; , where ¢t matches the indices of k and ¢ matches
the indices of ¢. Then we set

Eupe=¢i Eiji = —€itij, By = —€its,
Blaipina = —€is Bsien = —eipl),
for all i,¢ € [1,n1],£ # i,j € [1,n2],t € [0,T]. The rest of the entries is 0.

Note that, technically, our definitions of b and k (and in a way, also E) are not
written as vectors but sets. However, we can easily map the sets to vectors such that
they do conform to the vector notations as used in Definition 24. But for notation
purposes, we rather define them as sets as it makes them more readable.

Lemma 32 This pair encoding scheme satisfies the correctness property of Def. 25.

Proof. We have

Y Eugekiico+ Y EBoijikigat+ Y Egaegaksicia

€Y €Y, i€Y,le(1,n1],044,
J€[1,n2] J€E[1,nz]
+ Z E(4,i,p(i)),1k;4,i,p(i) a+ Z E(577;7£7t)71k57i’€7t61
icY €Y Le[1,n1],041,
t€[0,T]

= Z g | rico — 1 Z ag j1ibe ; — Z a; ;vj + Z rip(£)'by,
J

i€Y L€[1,m1], Le[1,n1],
j€[1,n2] Jj€[1,n2]
= as+ Z €iTi (S (Z ag jbej + Z p(0)* /e,t)
1S €[1,n1],7€[1,n2] £€[1,m1],t€[0,T

-5 (Z apjbej + Z p(ﬁ)tb'&t)) = as,
[0,7]

Le1,n1],5€([1,n2) Le[l,ny],te

Appendix B. A CP-ABE Scheme with Constant-Size Ciphertexts 70

because iy je[1,ny] C1€i0i,V; = Q. U

Now we want to know whether this pair encoding scheme is secure. First, we
observe that the pair encoding scheme is not perfectly secure, because the statisti-
cal distance of {(c(s,b),k(a,r,b)) : r,b,s € Zp*"*"2} and {(c(s,b),k(0,r,b)) :
r,b,s € ZpT™Hm2} for a # 0 is 1, which is maximal (and therefore the distributions
do not overlap anywhere). However, we can prove the following:

Lemma 33 This pair encoding scheme is relazed perfectly secure. The Samp algo-
rithm depends on (A, p), which means that the CP-ABE scheme that follows under
Construction 29 is semi-adaptively secure.

Proof sketch. The full proof of this is in [AC16], but we will give a brief explanation
of the steps that are taken in the proof. First, we define the Samp algorithm, which
we do as follows:

e Samp(d, (4,p),8) = (ba = {bi;}ie(tn]jeltna)> {0 icltmecfo,r)- On input
d € [1,n1 + ny — 1], access structure (A, p) and set of attributes S, the al-
gorithm first checks whether d € [1,n;] or not. If not, then the output is
all-zero. Otherwise, it checks whether p(d) € S or not. If p(d) ¢ S, then
(bay, - ban,) €Er Z22. If p(d) € S, then (bg1,....,ban,) Er Zp2 but with
the extra requirement that > icp ,) ad,le)dJ- = 0. Then the output of Samp is
{bi}ig, {b} 1 }is such that b;j = 0 for all i # d and j € [1,ny], and b}, = 0 for
all 7, t.

It is obvious that Samp depends on the access structure (A, p), which means that
the encryption scheme that follows under Construction 29 is proven semi-adaptively
secure.

For d € [1,n1], we have

(c(s,b),k(0,r4,b + by)) ((Zame —|—Zp)'b;0)) k(0, rd,b+bd)) :

for which k(0,rq, b + f)d)) consists of mostly O-entries, except for k1 4,k24.5, k3.d.0,5,
kyay and ks gy for all £ € [1,n1],£ # d,j € [1,n2] and ¢t € [0,T]. Note that only
koq; = ra(ba; + lA)dJ') — vj, has some extra addition of noise, the rest of the entries is
unaffected by this noise. The idea is that this extra randomness ‘cancels out’ the «
in k(a,rg, b+ Bd), because o + lA)dJ is perfectly indistinguishable from IA)dvl.

However, we still need to show that, for each such d, adding this noise cannot
be detected by the attacker. First, we observe that, because b; ; and IBZ-J are both
uniformly distributed, no attacker can distinguish k(0, 4, b)) from k(0,rs, b+ bg))
by just observing the secret key part. But the attacker can also observe the ciphertext
encoding, and in particular the second part, which is

(Zamb i, +Zp bgt> .

Appendix B. A CP-ABE Scheme with Constant-Size Ciphertexts 71

Let us divide this equation into two parts: ¥ C [1,n1] such that ¥ = {i € [1,n4] :
p(i) € 8} and its complement ¥ = [1,n1] \'¥. Then we have

s (Siew () isbig + S0 o)) + e (35 igbiy + X0 p(0)'0],))

=52 iey Zj a; (Eiﬁj — IA)”) + k47i,p(i)) + Zie? randomremainderﬁ

=5(2iey Zj aiﬁi’j + k47i’p(i)> + Zie? randomremainderi)

=5 (2Dicy Zj Qg j L,fllf + k4’i7 p(i)) + Zz’e? randomremainderi)
where b; j = b; ; + b; ; for all i and j (but b; ; = 0 for i # d). Note that the equation
indeed holds because for i # d, all of the steps in the equation trivially hold, and for d
we observe: if d € ¥, then }; adJ«lA)d,j =0, and if d € ¥, then it is part of the random

remainder (which behaves randomly because we do not have ky 4 ,4) and therefore
bl,; behave completely randomly, because we assumed |S| < T', and k4 a,p(q) denotes a

T-degree polynomial). Hence, adding noise by is not observable by an attacker. Note
that we have to require that >_; aq ;ba; = 0, because the noisy keys have to be able
to decrypt normal ciphertexts for valid sets of attributes.

The second part of the proof shows that
{ (c(s,b), > k(a,rg,b+ Bd)> }
de[l,mg]

{ (c(s,b), Y k(0,rab+ Bd)) }
dell,mz]

holds, by arguing that the extra noise b, ‘cancels out’ the a. O

I

Remark: We observe that, indeed, the security proof of PES is much shorter than
the security proof of CP-ABE: the proof as given in [AC16] is roughly two pages in
LNCS style, whereas the security proof of the generic CP-ABE was eight pages long.

In [AC17a], Agrawal and Chase prove that the encryption scheme that follows from
this PES under Construction 29 is fully secure. To prove this, Agrawal and Chase
introduce the notion of symbolic security in pair encoding schemes. Whereas [AC16]
proves the CP-ABE scheme semi-adaptively secure under the SXDH assumption,
[AC17a] proves the same CP-ABE scheme to be fully secure under a g-type assump-
tion called the g-ratiopga assumption.

B.3 Constructing the scheme

Now we can apply the generic construction in Construction 29 to the pair encoding
scheme defined in Section B.2.1.

We will do this by considering each algorithm of the generic construction, and
observe which algorithms and variables of the dual system group and pair encoding
scheme we need in order to realize this algorithm. Naturally, we will start with the
Setup algorithm, and work our way through the other algorithms until we finish with
the Decrypt algorithm. At last, we will give the complete construction, without using
invocations of dual system group or pair encoding algorithms.

Recall that in Section B.2.1, we had assumed that the ciphertext encodings take
LSSS access structures as inputs, where the matrices are restricted in the sense that
the size is fixed, i.e. we only consider n; x ny matrices. The key encodings take sets
of attributes S as input, for which holds that the size may not be larger than T

Appendix B. A CP-ABE Scheme with Constant-Size Ciphertexts 72

B.3.1 The Setup algorithm

Running Param(par) yields n = (ni(ne + 7 +1),b,a), where a € Z, and b =
({bij Yic[1,m1],je1ma]s 10i 4 Fic[1,m]bcjo,r]- Note that instead of using a, we use two
randoms o, g €r Zp.

Then, we run SampP(1*,1"), which yields tuple (p,G,H,Gr,e), where p is a
prime of at least A bits, and G = G x G and H = H x H, where G and H denote two
cyclic groups of prime order, with generators g and h. Then, e is a non-degenerate
bilinear mapping e : G x H — Gr, and Gy = Gp. We also obtain p : H — Gr,
defined as u(h¥) = e(gP, h¥), where k € Z2.

Moreover, we obtain go, {8 tie[1,n1],je[1,n2]» {80 Fie[1,n1] tefo,7] Such that go = gP,
gij = g°i and g}, = gPit for all i € [1,n1],7 € [1,n2] and t € [0,T]. Here,
D, D, ;,D;, are defined as in Section B.1.1. We also obtain hy, {hi Yie[,ni]5€l1me]
{h;,t}ie[l,nl],te[O,T}v which we define similarly. We compute the master secret key as
MSK = (h*t, h*2). Our master public key is

MPK = <(pa Ga]I_L GTa 6), H M(MSK)a g0, {gl,_]}z,]7 {gg7t}’i,t; hO) {hz,j}l,]7 {h;7t}i,t) .

B.3.2 The Encrypt algorithm

The inputs are master public key MPK, access structure A = (A, p) and message
M € Gp. We first run EncC(b, A), such that we obtain ciphertext encoding c(s, b) =
(c1,¢2). In this case, s = (s) €r Zp, c1 = s and ¢ = $(Xicf1,m,] je[1,na] Yiribinj T
Sie[tm]eeo.r] P(1)'y"), where a;; denote the entries of A, ie. Aj; = a;; for each
1€ [[1, ni],j € [1,n2]. Because s only consists of one entry, we only need to draw one
sample from G with SampG, for which we let s be the random that is used in the
sampling, i.e.
(g5, {87, }ij, {(8]4)}it) < SampG(PP;s).

Then we define CTy = gj and CT5 as
i,j i)t
CT, = I &5 I ().
ie[lfnl]vje[lanﬂ} 16[1,n1],t€[0,T]

Note that both CT; and CTy denote elements in G = G x G, and therefore both
consist of two elements in G.

The last part of the ciphertext is CTs = M - SampGT(u(MSK);s) = M -
e(gP,PK)® = M - e(go, PK)*®. So our output is the ciphertext

CT = ((A,p), CTl, CTQ, CTg) 5

which consists of an access structure and five group elements of order p.

B.3.3 The KeyGen algorithm

The key generation takes the master secret key MSK and set of attributes S as
inputs, for which we assume that [S| < T. We run EncK(aq,b,S) to obtain key
encoding k(ay,r,b), where r = (r1,...,70,,02, ..., Un,) ER Zgﬁ”?_l and v; = a,

Appendix B. A CP-ABE Scheme with Constant-Size Ciphertexts 73

such that k(aq,r,b) has entries

ki =1y, koij=mibij—vj, k3;e;=ribej

— t1/ _ /
kaiy=71i Y, Y'bis, ksiee=ribly
t€(0,T

Then for each r; and v;, we sample from IH with SampH, for which we will be using
the random elements r = (71, ...,7p,, V2, ..., Un,) for better readability, i.e.

(hg', {h;’ }ij, {(hi ;)™ }it) <= SampH(PP;7y), ...,
Un n
(hO % {hi,j2 }i,ja {(h;,t)vn2 }i,t) A SampH(PP; vnz)'

The secret key is denoted as SK = (S, {SK1,;, SK2; j, SK3; ¢ i, SKui .y, SKs 04 }ivjyt),
such that ‘
h;’ /hy ifj>1
hy/MSK if j =1
SK3,iej = hij SKyiy = Hte[O,T](hg,tyiyt
SKs,i et = (hy,)".

SK;; = hy SKo;; = {

B.3.4 The Decrypt algorithm

The decryption algorithm takes master public parameters MPK, the secret key

SK = (S, {SKl,ia SKQJ'J, SKgﬂ'yg,j, SK4,i,y, SK57i7g7t}i7g,t7y) and the Ciphertext

CT = ((A,p),CTy,CTy,CT3) as inputs, such that S denotes the set of attributes
and (A, p) is the access structure that was used to encrypt the ciphertext. We run
Pair((4, p),S), such that we obtain for Y C [1,n,] the set of rows corresponding to
the set of attributes S, and {e;};cy such that > ;cye;4; = (1,0,...,0). Then Pair
yields E such that

Bz =¢i, Eeija = —€itij, Egiepna = —€ia,
E(4,i,p(i)),1 = —&i, E(5,i,£,t),1 = —€z‘P(€)t7

foralli € Y, ¢ € [1,n1],£ # 14,5 € [1,n2],t € [0,T],y € S.
The decryption then works as follows:

-1
CT; - <H ¢(CTy1,SKz ") - [e(CT>, SKf“)) :
zel z€l

where 7 = {(1,4),(2,4,7),(3,4,£,7),(4,4,y), (5,%,¢,t) }s 0.4, denotes the set of indices
for which E, 1 or E, 2 is not equal to 0.

More specifically, we compute Co = e(CT2, [[,c7 SKEM) = ¢(CTa, [1;ey SKT%),
and C1 = e(CT1, [[,er SKE”I) by first computing for all i € Y:

So; = H SK;%, S3i = H SKgfifZ,jv
j€[l,n2] £e[1,n],0#4,5€(1,n2]
Vi t

Le[1,n1],04,t€[0,T]
and then C1 = e (CT1, [[;cy(S2,:S3:54,S5,:)%). Finally, we retrieve M by computing

CTs-C1/Cs.

Appendix B. A CP-ABE Scheme with Constant-Size Ciphertexts 74

B.3.5 The complete construction

We can combine the previously explained algorithms into a more compact construc-
tion that resembles the descriptions of other ABE schemes, such as the ones that we
have shown in Definitions 19 and 20.

Definition 34 (The [AC16; CW14a] scheme) We represent access structures by
LSSS matrices, denoted as A = (A, p), where A is a ny X ng matriz with entries in
Z,, where p is a prime of at least \ bits, and p : [1,n1] — U, which maps the rows of
A to attributes, where U = Z,, denotes the (large) universe of attributes. We denote
A; as the i-th row of A and a;; = A;j as the j-th element of the i-th row. For set of
attributes S C U we define Y = {i : i € [1,n1],p(i) € S} to be the set of indices of
rows in A associated with S. Furthermore, for this scheme, we define T € IN to be
the mazimum number of attributes a user is allowed to possess, i.e. |S| <T.

(i) Setup(lA) : The Setup algorithm takes the security parameter \ as input, and
generates (p, G, H,Gr,g,h), where p is a prime of at least \ bits, and G and
H are cyclic groups of order p, with generators g € G and h € H. We also
define non-degenerate bilinear mapping e : G x H — Gp. Let B €p Z?,XQ
be an invertible matriz, and set B* = (B™1)! be the transposed inverse of B.
Furthermore, pick A;;, A, €g Z?)XQ for each i € [1,n1],7 € [1,n9],t € [0,T],
and let R € ZZQ,X2 be an invertible diagonal matriz with Ras = 1. Define

D= ﬂ'L(B), DiJ = 7TL<BAZ'J), D;,t = WL(BAéyt)
D* := 7, (B*R), D}, := 7.(B*Al ;R), D}, := 7, (B*(A],)'R)

which we use to define

_ D _ D o _ D
8 =9 {8 =9 7.8 =9 “tij
1%

_ 1, D* _ D, /v _ 3D :
ho =h" {h;; =h"" hi, =h"t} 5,

We also generate master secret key MSK = (h*', h®?) for oy, a0 €g Zp,. Then
the public parameters are

MPK = <pa Gv H’ GTa €, e(g[), MSK)7 g0, {gl,j }i,j7 {gg,t}i,t; h07 {hl,J }Lj’ {h;,t}i,t> .

(ii) Encrypt(MPK, (A4, p), M) : The Encrypt algorithm takes the master public key
as input, as well as the access structure (A,p) and message M € Grp. Let
s €r Zy. The output ciphertext is CT = ((4, p), CT1,CTo, CT3), such that

CT; =g;

CT, = g I (gl)*®
i€[1,n1],5€[1,n2] i€[1,n1],t€[0,T]

CT3=M- e(go,MSK)S.

(iii) KeyGen(MSK,S) : The KeyGen algorithm takes the master secret key and the
set of attributes S that the user possesses, for which we require |S| < T, as
inputs, and generates ri,v; €r Z, for all i € [1,n1] and j € [2,n2]. The secret
key is defined as

SK = (8, {SKu,;,SKa,;,j, SK3,0,j, SKu,iys SKs it} ivefim)ize,)
j€[1,n2],y€S,t€[0,T)

Appendix B. A CP-ABE Scheme with Constant-Size Ciphertexts 75

for which we have
SK;; = hy
h* /hy fj>1
SK2,i,j:{ i/ Do ii>

hg}i/MSK ifj=1
SK3,¢j = hij
SKy;y = H (hé,t)riyt
te[0,T
SKs 00 = (hy,)".

(iv) Decrypt(MPK,SK, CT) : The Decrypt algorithm takes the master public key
MPK, the secret key SK related to S and ciphertext CT encrypted under (A, p)
as input, and then determines for the set of attributes Y C S that correspond
to the rows of A the set {e;}icy such that Y ;cyeidi = (1,0,...,0). Then it
computes Cy = e(CTa, [[;cy SKY;) and for alli € Y, it computes

So.= [] SK3 Ss,i = 11 SK;'7
J€[1,n2] Le[1,n1],0#4,5€[1,n2]

gt

Sai = SKy; p(i), Ss.i = I1 SKg’fi’)M,

Le[1,n1],04i,t€]0,T]

then sets C1 = e (CT1, [[;cy(S2,iS3,:S84:S5:)%), and retrieves the plaintext by
computing CTs - C1/Cs.

Correctness: The correctness of this scheme follows directly from the correctness of
the generic construction in 29, though the full proof of correctness can be found in
Appendix D.

B.3.6 Storage and computational costs

Now that we have given a clear definition of the [AC16; CW14a] scheme, we can
analyze the storage and computational costs.

For the storage costs, we have that the secret key associated with S consists of
2n1(n +|S| —T) < 2n1n group elements and will therefore be at most 2ni;nA bits
long. The ciphertext associated with any access structure always consists of five group
elements (four in G and one in Gr).

In Table B.1, the computational costs are depicted. In this analysis, we have taken
LSSS matrices A that are generated with the algorithm that was described by Lewko
and Waters in [LW10]. Because all of the entries in A are in {1, —1,0} as well as ¢;
for all 4, most of the computations that seem to denote exponentations are actually
multiplications or divisions (e.g. the computation of Sy ;).

As we can see in Table B.1, the total number of pairing operations is very limited,
which is an advantage in comparison with other schemes. However, the number of
exponentiations in key generation is still quite large, especially compared to other
schemes, which makes it interesting to consider whether we can move part of the key
generation away from the key generation authority to either semi-trusted proxies or
the users themselves (a large part of the secret key is not related to the attributes
that the user possesses). Moreover, in some of the algorithms, we might be able to
apply optimization steps. For instance, in the decryption we will be able to reduce the
number of exponentatiations, as [; S5'; can be rewritten as [T,4; ; (IT;ey SKs..0,)""),

Appendix B. A CP-ABE Scheme with Constant-Size Ciphertexts 76

| Alg. Pair. Exp. Mult. & div.
Setup 2 2n+2in G, 2n+4 in H X
Encrypt X 2 (T+1)+4inG,1in Gy 2n—2in G, 1in Gp
2n1(n+T(|S|—1)+S) .
KeyGen X ony 2 in H 2(nin2 + T|S|) in H
Decrypt 4 2lY|(ny —1)(T+1)in H 2|Y|(ning +4) in H, 2 in Gp

TABLE B.1: Computational costs

which reduces the number of exponentiations by a factor 1/|Y|. However, this will
not be the focus of this work, as we are already fairly satisfied with the results and
the possibilities of optimizing the algorithms.

B.4 Discussion

As we have shown, the [AC16; CW14a] scheme is semi-adaptively secure under the
SXDH assumption (and fully secure under the g-ratiopgg assumption [AC17a]), which
makes it the most secure CP-ABE scheme with constant-size ciphertexts.

Moreover, the scheme allows for very expressive access structures, over a large
universe of attributes. Another advantage of this scheme over other schemes such as
[LW11] is that this scheme allows for multi-use of attributes in the access policies,
without having to compute more public and secret keys.

However, there are also some obvious disadvantages. Namely, our scheme is re-
stricted in the size of the access matrix: the maximum number of rows is fixed in nq,
and the maximum number of columns is fixed in ny. Another restriction is 7', the
maximum number of attributes that a user in the system can possess. One way to
limit the problems that this might cause is to make the scheme dynamic. If a user
wants to request a set of keys corresponding to the set of attributes S, such that
|S| > T, then technically, the key generation authority could update the keys such
that the new T is large enough such that |S| < T holds. The same could happen for
the access structure: if some user needs a larger access structure, it can simply request
the key generation authority for keys that can realize this, i.e. the key generation
authority generates more g; ;, gg’t, h; ; and h;,t and sends new key sets to users that
need them.

A disadvantage that cannot be mitigated this easily is the size of the secret keys
associated with a set S. Whereas the size is only linear in the number of attributes,
it depends heavily on the maximum size of the access structures and the maximum
size of the set of attributes as well.

But all things considered, the advantages might actually outweigh the disadvan-
tages, and we might even be able to mitigate most of the disadvantages by applying
some changes to the scheme.

As we had already briefly mentioned, we are interested in formulating a decentral-
ized ciphertext-policy based scheme with constant-size ciphertexts, as these are — to
the best of our knowledge — still nonexistent in literature, while they would provide
some useful functionality in some settings such as DECODE, and other use cases in
which we require the minimization of ciphertexts and the decentralization of the key
generation. To this end, we will work on the decentralization of this CP-ABE scheme
in Appendix C.

7

Appendix C

A Decentralized CP-ABE
Scheme with Constant-Size
Ciphertexts

As we have seen in Section 3.5, the key generation of CP-ABE schemes can be dis-
tributed across multiple authorities such that not just one central authority is respon-
sible for the distribution of keys. In a fully decentralized scheme, we do not need any
communication between the authorities after the setup. Our goal is to achieve this
for the [AC16; CW14a] CP-ABE scheme that we defined in Definition 34.

For this, we need to split the key generation algorithm into parts such that an
authority can only generate secret keys associated with some attribute y € S if the
authority manages that attribute. This might result in a slight change in the notation
of our scheme, which will ripple through in the other algorithms as well, so in addition
to making changes to the key generation algorithm, we might have to make changes
to the other algorithms too. Especially the setup, which will be split in a global and
authority setup, but possibly also the encryption and decryption algorithms will be
affected by this.

In order to do this, we will first focus on the key generation algorithm, and which
parts are associated with attributes, and which other parts are required to remain
secret towards the authorities.

C.1 Key generation in the centralized setting

In the central authority setup, the key generation algorithm for some set of attributes
S generates the following secret keys:

SK;,; = h{’
S _ [hii/hy ifj>1
* \npy/[MSK] i =1

SKs3.,i0; = hy;

=TI ;)
t€[0,T)

SKsi0 = (hy,)".

We observe two things: first, we observe the occurrence of the master secret
key MSK in the second subset of secret keys, i.e. SKsy;; for ¢ € [1,ni]. This
master secret key is supposed to remain secret towards users in the centralized setting.
However, because knowledge of the master secret key results in being able to decrypt

Appendix C. A Decentralized CP-ABE Scheme with Constant-Size Ciphertexts 78

each ciphertext in the system, since CT3/e(CT1, MSK) = CTs/e(go, MSK)*® =
M - e(go, MSK)*/e(go, MSK)® = M, we cannot allow that any of the authorities
has knowledge of this master secret key either. So the solution to this problem would
be to distribute the generation of MSK among all the authorities such that they can
only retrieve MSK if they all collaborate (and this breaks the security of the system
anyway).

Our second observation is that only one subset of secret keys depends on attribute
y € S, namely {SKuy}ic[1,n,]- So our first attempt would be to put each authority
Aj, that manages attribute y in charge of distributing SKy;, for all i € [1,n4].
However, we also observe that SKy;, uses variables that are used for each y, so we
cannot simply let authority Ay generate h;,t for all ¢ and . On a second note, we
recall the corresponding part of the key encoding as defined in Section B.2.1, which
is a polynomial: ky;, = 7; Zte[O,T] ytbat. In the key encoding, this was chosen as
a polynomial such that users with attribute set S of size < T could not reconstruct
r;b; ;, and from that also create ky;, for 3’ that are not in S. The reason for this
is that they do not have enough ‘points’ (y, k4,y) on the polynomial to reconstruct
the coefficients of the polynomial with Lagrange interpolation, and therefore these
‘coefficients’ Tib;,t behave as random integers.

Because of the form of k4 ; ,, we can also approach the computation of those secret
keys as invocations of Shamir’s secret sharing scheme, of which there are several
verifiable versions such as Feldman’s VSS scheme, which we discussed in Section 2.4.
More importantly, we have defined a decentralized VSS scheme in Definition 8 that
allows for a distributed key generation algorithm in the fashion that we want to apply,
because k4 ;, basically symbolizes what happens in the exponents, so what happens
in the exponents resembles the use of polynomials. We say ‘resembles’ here, because
in our setup we use [[;c(0.7) (hat)’"iyt, which is not entirely of the form h”®) where h
is some base and P(y) is some polynomial. We will see, though, that we are able to
write the exponent as a sum of two polynomials, in the form (h®F1+azP2 pbiPi+baPz)
where Py and P, are polynomials, and aq, a2, b1 and by are scalars in Z,,. But in any
case, this still enables us to use the decentralized VSS sheme in Definition 8.

C.2 Approach to decentralization

In the previous section, we observed that there are two subsets of secret keys that
need actual decentralization in the scheme: SKj ;1 and SKy;, for all i € [1,7n1], and
attributes y. We will now consider approaches to generating SKy ;1 and SKy;, in a
secure, distributed fashion.

C.2.1 Generating SKo ;1

From SK3 ; 1, we had already required that the distributed generation should be done
such that MSK remains secret, as long as at least one of the authorities is honest.
To do this, we can use that SKo ;1 is of the form hffl/MSK. So if each authority
Ay generates its own share of the master secret key h:il’k /MSKj, (where r;, €r Z,
and MSK; € H), and we combine them by Computiﬁg
i Tik ZA ik
h,/MSK = [[h;}"/MSK; = h;;"* "/ [MSK. (C.1)
Ay, Ay

Appendix C. A Decentralized CP-ABE Scheme with Constant-Size Ciphertexts 79

Then we know that r; = ZAk rix and MSK = [TMSK}, are secret as long as one
of the authorities is honest (and all h:&’“ /MSK, were well-formed, which they prove
by using an instance of Okamoto’s identification protocol (see Section 2.7.2)).

Now, we have to do this for all ¢ € [1,n1], because per assumption, we cannot
generate h;’,/MSK from hi’, /MSK for i’ # i, because 7; and hj are secret.
Because we want to preserve the form of the secret keys, we define fixed generation
parameters, such that h;f:l/ MSK can be generated in secret, but the rest of the
parameters can still be generated, i.e. we have fixed generation parameters:

FGP;; = h{
hl’ /hy if j > 1
FGPyij =1 7 o B9
h;7/MSK ifj=1

FGPy; = hy};
FGPyiy = [[(hj)""
t€[0,T]
FGPE):Z?z:t = (h,gft)ri’

where r; generated in a distributed fashion, i.e. each authority A picks random
Q1 ks O ks T1 ks -, Try b €R Zp and computes:

FGPl,i,k = hgbk

h; if j > 1
FGPy; ;=1 7 '] ~
hr / (hee, hose) i j = 1

FGPy 0, = hy
) t
FGPy;yr = H (h;;t)n’ky
te[0,T]

FGPs ;01 = (hy,) ",

with Z-proofs of EQ-compositions of Schnorr’s and Okamoto’s protocols to prove
correctness of these shares, and then all individual shares are multiplied. Note that
all of these values may be public, so the authorities can use a public bulletin board
or other public communication channels in order to communicate these shares.

We can now rewrite the secret keys as

SKl,i = hg’ . FGPLZ‘
h¥ /hy’ - FGPy, ;. ifj>1
SKaij =19, /to el
hi,zl . FGPz%l ifj=1
SKs,ie; =hy - FGP3 ;4
SKuiy = H (hg,t)uiyt‘FGP4,i,y
t€[0,T]
SK5M¢ = (/e,t)ui 'FGPS,z‘,e,t,

where u; €g Z,, for all i € [1,n4].

Note that FGPy;, is not public, but rather denotes part of the secret key of
the authority that manages attribute y. Also note that FGP5; ., (and the shares
generated by the authorities) cannot be computed in the fashion that we described,
because it requires h;yt to be public for all 7,¢. At the end of the next section, we will

Appendix C. A Decentralized CP-ABE Scheme with Constant-Size Ciphertexts 80

discuss how we can securely generate both FGPy4;, and FGP5; ¢ ;.

In order to be able to use our new formulation of the secret keys, we are supposed
to show that it is equivalent to our old definition:

Proof. If we define our new formulation of the secret keys as

ﬁlﬂ‘ = hg" . FGPl,i
— h! /hy -FGPg;; ifj>1
SK,,, = { /D0 PGP
hiy - FGPy;, ifj =1
SiKs,ug = h?} "FGP3;

W&i,y = H (h;,t)uiyt‘FGPzL,i,y
t€[0,T]

SKs,ie: = (hy)" - FGPs 04,
and we write our old keys as
SK;; = hy

T ”U; P
SKy,; — h%}?-/h0 ifj>1
hi,ll /MSK ifj=1

SK3i; = h;jj
SKuiy= [] (h,)"
t€[0,T)
/ !

where u;,v;,7; €g Z) and v;- = v; for all 7 and j. Then SK and SK are equivalent,

because the distributions of 7} €g Z, and r; + u;, with u; €g Z,, are equivalent for
each 7, and

SiKLi = hg’ . hg’ = h8i+”
Uj Uy Ty e s wi+r; /1.V5 oo
SK,,; = hi,j/hoj.'hi,j ifj>1 _ h” ‘/hOJ ifj>1
b /MSK ifj=1 BT /MSK ifj =1
SK3¢; = by’ - hy’ = hy ™

QI Ui t T t _ U;+7; t
SKyiy = H (hg,t) v H (h;,t) Vo= H (hg,t)(iy

tefo1] t€(0,7] t€[0,7]
K00 = (hy,)" - (hf,)™ = (hp,) .

Hence, they are equivalent. [

Note that in our new formulation, we have gotten rid of the master secret key

MSK, which means that we have found a way to generate keys without using MSK
in plain sight.

Appendix C. A Decentralized CP-ABE Scheme with Constant-Size Ciphertexts 81

Finally, we note that MSK also occurs in the public parameters, i.e. e(go, MSK).
We have

(3, MSK) = (s, T MSK,) = [el (15 1)

= [Te(go. (b, b))z =TT (e(br(go), h)*H* - e(dr(go), h)°2*) .

.Ak Ak

Because e(¢1(go),h),e(dr(80),h) € Gr are both public, the authorities can simply
add e(¢r(go), h)** and e(pr(go), h)*2* to the previously broadcast fixed generation
parameters, together with a X-proof of equality of ay ; and ag . Then e(go, MSK)
can easily be generated.

C.2.2 Generating SKy;,

As we already mentioned, we can write SK,;, as a power of two polynomials that
are multiplied by some scalars and then added. We will now show that this is indeed
the case, and how these polynomials relate to one another.

Recall that hy = hP", for which D* was defined as

* 1 R11B22 —Ba
B'R) = | ——
i)= (det(B) <—R11B12 B J)’
where R, B € ZQX2 such that B is invertible and R is an invertible diagonal matrix
with Rog = 1. Because R11 €g Zj, and det(B) # 0, we have €r Zj, which
means we can write hg as (h*B22, h‘me).

For hj;, on the other hand, we have some A}, €g Z;*? such that hj, = WP for
which D, is defined as

det()

R1 (A],)11B22 — (A} ,)12B21
B* A/ T — R 7,0

hence analogously to hy we can write h' it as

(oA Bas (A B (A Brz (A i)

= h(A . (h*mBm’thu)(A;t)l?

A’ — (A’
_ pAon gl

for which we let hg = (hmBm—me, hﬂE(—ameBu)), with a,b € Z,. Note that hg
is of the same form as the other public parameters {h,; ;, hg,t}m?t- Then we can write
SK47i7y as

i 11y i Jiz-y* rit
(hgjte[o,T] t Zte[OT t) 7 (CQ)

which is indeed in the form that we discussed earlier, for polynomials P ;(y) =
Siefor] (Af) -yt and Poi(y) = X (Af)12 - "

So with inputs SK;; and hji™", each authority can compute SKj,;, for the
attributes y that it manages.

Hence, with our decentralized VSS scheme in Definition 8, the authorities obtain
their own shares of the polynomial SK4, 1, = Pi,i(yx) and SKa, 2 = Pi(yk),

Appendix C. A Decentralized CP-ABE Scheme with Constant-Size Ciphertexts 82

where y;, denotes an attribute that is managed by A, such that they can compute
FGP4;,, and eventually SK4;,. Note that in order to ensure that no group of
corrupt authorities can retrieve the secret, we must assume that 7' is at least as large
as the number of authorities. Also, whereas the rest of the communication may be
public, the transfer of shares must be done in secret: each authority sends the share
that is meant for another authority over a secure channel such that the particular
share is only known to the sender and receiver.

Now, because hj, are supposed to remain secret to all authorities under the as-
sumption that at least one of the authorities is honest, we need to compute FGP5; ¢,
from FGP;; and 1_16i. To this end, we introduce another fixed generation parameter
FGPy; = l_lgi in the joint generation of MSK (with accompanying X-proof).

In order to reduce the number of exponentiations, we can also use the ver-
ification keys in the VSSS to compute FGPj5,,; for all ¢ € [0,7]. Instead of
computing the commitments as defined in Definition 8, we compute commitments
Ciwt = (hgi)(AZ»t) . (]r_lgi)(A%!t)12 (each individual authority A; computes ‘subcom-
mitments’ C; ¢4 = (hgi)((AZ»t)“)"‘ . (Bgi)((A;»t)m)’“ from which the commitments are
computed). Then we can set FGP5 ; ¢, = C; ¢+. Note that this way, we can only ver-
ify whether both polynomials are generated correctly, but if the verification step fails,
we do not know which polynomial is incorrect. However, each authority can check
whether the other authorities have generated their shares and subcommitments cor-
rectly, so if an authority was dishonest, we can detect this, even though we do not
know where the authority has cheated.

C.3 Generating the rest of the parameters

Now that we have considered how we can generate SKj;; and SKy;, (and to
some extent also SK5 ;) and in addition to that the fixed generation parameters
FGP = {FGP()J', FGPLZ', FGPQJ'J', FGP3’Z'7[J, FGP47i7y, FGP57i,g7t}i’g,j,y7t, such that
FGPy; , is only known to the authority that manages y and the rest is ‘public’. How-
ever, we still have to consider the generation of hg, h; ; and their ‘counterparts’ go, g; ;,
as well as the counterparts to h} ,, namely g/ ;.

C.3.1 Generating gy and hy
Recall that for gy and hg we have
g0 = g0 = (¢B1,gB) hg =AD" = (B2, heBe),

where x €g Z;, and B is an invertible matrix in Zg“. A matrix is invertible if and
only if its determinant is not equal to 0, i.e. we have B11Boy — B12B9o; # 0. In other
words, the authorities jointly generate h” =[] 4, h"* # 1 and then generate jointly

<gB11,gBm) — H<g(B11)k’g(BQ1)k)
Ay

(hCCB227 h*CEBlg) — H(hCL‘(Bm)k, h*I(BIQ)k).
Ay

Then they check whether the implicit B is invertible by computing

e(an’ hmBQQ) . €(gB21,h_xB12)

Appendix C. A Decentralized CP-ABE Scheme with Constant-Size Ciphertexts 83

and checking whether it is not equal to 1. If so, then we have found a suitable choice
of B, otherwise we repeat the process.

Alongside the generation of gy and hy, the authorities also jointly generate hy =
(hx(aBmbezl)’hx(*aBIQ‘FbBll))’ and gy = (gaB11+CB12,gaB21+CB22), with a,b,c €gr
Z,. This is done in two steps: first g%, g, h?, hY are jointly generated (with -proofs
of correctness), and then gy and hy. Because the powers are equal to those of gq
and hg, the authorities use Z-proofs of EQ-compositions of Schnorr’s and Okamoto’s
protocol on their parts of the ‘random exponentiation’.

C.3.2 Generating g; ; and h; ;

For g; ; and h; ; we have

(Aj;)11B11+(A5)21B12 (Ai,j)11B21+(Ai,j)21B22)
b

gi; = 9" = (g
= g(()Ai,j)ll 'g(()Ai,j)2l
hij - th,j — (hw((Ai,j)llBQQ—(Ai,j)12B21,h—x((Ai,j)11B12—(Ai,]’)12B11)

g

= h(()Ai,j)ll) EéAi,j)IQ'

So the authorities can easily generate these in a joint fashion as well. We note that
we use EQ-compositions of Okamoto’s protocol in the joint generation to ensure that
(Ai,j)ll in 8i,j and hi,j are equal.

C.3.3 Generating g;,

Recall that in Section C.2.2, we had not explicitly defined h;t, but instead let the
authorities jointly generate FGP5;0; = (hj,)"". However, during this generation,

(hgi)((A27t)ll)k

the authorities generate ‘subcommitments’ Cy ;¢ = and Co; ot =

(ﬁri)((Ag 12)k which we can use in our generation of g/ ,:
0 ’ ’ g 8it:

(A;t)nBqu(A;,t)mBm’ (A;Yt)llBgl‘f’(A;,t)nggg)

D’
gii=9 "=1(yg g

_ (Al _(A])=n
= 8o 8o

)

where (Aj,)11 has to be equal to the (A],)11 that occurs in Cy ;¢ = (hge)(A;»f)“,
and for this we can use an EQ-composition of an instance of Schnorr’s and an instance
of Okamoto’s protocol on the ‘subcommitments’.

C.3.4 Key generation parameters

In our new formulation of the set of secret keys, we compute the secret key from
the fixed generation parameter and h*, where u; €r Z,. However, as we have seen
in Section C.2.2, we cannot simply publish hg,t, because then authorities can forge
secret keys associated with attributes that they do not control. So instead, we apply
the same tactics as in the creation of SKj5; ;;: we publish h;gt for random 7} €p Z,.
Because the random variables in the exponent of all secret kest have to be the same,
we do this for all parameters at the same time, with Z-proofs to prove correctness.

Appendix C. A Decentralized CP-ABE Scheme with Constant-Size Ciphertexts 84

To this end, we define key generation parameters KGP = {KGPg ;, KGP ;,
KGPy; ;, KGP3,,,;, KGP,;,, KGP;5; .} such that
KGP,,; = hy'
KGP,; = h)/
KGP,,;; = h!"
KGP3, ., = hy,

KGP4,i,yk = H (h;t)r'/éyi = KGP??“AkvlviKGPETjAk,Zi
te[0,T
/ Al A/
KGPE’J}M = (hZ,t)Ti = I<GP§’1.“)11 .KGPé’iZ,t)lz

are generated in a distributed fashion with r} €p Z,.
The new formulation of the secret keys will then be

(SKo,; = KGP}, - FGPy,;)
SK1, = KGPY, - FGPy,

SK,,; ; = KGPy; ;/hy' -FGPy;; if j>1
" KGPy,, - FGPy; if j=1
SK3; = KGPy; , .- FGP3y;

SKyiy = KGPZ;’W “FGPy;,

iy
SKs,0t = KGPg, - FGPs5; 4,

which is quite obviously equivalent to the previous formulation of secret keys. Note
that both KGP, ;, and FGP,; , are only in the hands of authority A, that manages

attribute y.
Note that we can express SKy;, in terms of SKo;, SK;; and secret keys of

authority A; that manages y, i.e. SK 4, ,1,i, 5K, 2,

— KGP) " KGP, ' . FGP); " KGP,

SKuay,1,i SKuay,2,i
= SKl,i SKO,i

C.3.5 Decentralized global and authority setup

We have discussed how we can generate the public parameters, so now we can apply
our findings to the global setup, and also the authority setup, as it defines the secret
keys associated with the authorities and the attributes they manage.

Towards this, we define a couple of algorithms:

e GenGHy: This algorithm generates go, g0, hg and hgy conform Section C.3.1.

° GenGHiJ(go,ho,go,ﬁo): On input go, hg, 8o, ho, this algorithm generates gi
and h; ; for all 7, j conform Section C.3.2.

e GenFGP(PPP): On input the partial public parameters PPP = (g, hy, o, ho,
{gi,j,hi;}ij), the algorithm generates the public parameter e(go, MSK) and

Appendix C. A Decentralized CP-ABE Scheme with Constant-Size Ciphertexts 85

the first half of FGP (i.e. without FGPy4;, and FGP5; ;) conform Section
C.2.1.

e GenKGP(PPP): On input the partial parameters, this algorithm computes
half of the key generation parameters KGP (without KGPy4;, and KGPs; ;)
conform Section C.3.4.

e GenSK(gg, ho, &9, hg, FGPg;, KGPg1): On input parameters go, hg, 8o, ho, fixed
generation parameters FGPo; = {FGPg;, FGP;;}; and key generation pa-
rameters KGPg; = {KGP(;, KGP ;}; this algorithm generates secret keys
{SK4,,1,i,SK 4, 2.i }; for each authority Aj conform Section C.2.2. As a side
product, the algorithm also computes FGP5; s+, KGP5; ¢, and ggyt.

We use these algorithms to define our setup algorithms. The idea is that, after
running the setups, we do not need any communication between the authorities. Be-
cause of the use of a master secret key MSK and its distributed generation, as well as
the distributed generation of the authority-associated secret keys, this scheme is more
similar to the MA-ABE scheme of Chase and Chow [CC09] than the decentralized
scheme of Lewko and Waters [LW11]. However, our scheme tolerates the corruption
of all but one authority ([CC09] assumes at least two honest authorities), which we
will prove in Section C.5.

Another thing that is always defined in multi-authority schemes is the global
identifier, GID, which is used to connect the keys to one user. Whereas this GID
is usually one group element, we will use a slightly modified version that will fit
our scheme better. Because any authority 4;, that controls y;, can compute SKy; ,,
from SK;; and SKj;, these make good choices for GID, i.e. we define GID =
{SKo,i, SK1,i }ic[1,n,)- This GID should be unique in the sense that for each pair of

identifiers GID, GID, we have that SKq; # Woﬂ- and SK; # Wlﬂ- for all 7.

C.4 The decentralized construction

We can use the previously defined algorithms to define our decentralized multi-
authority ciphertext-policy attribute-based encryption (IMA-CP-ABE) scheme with
constant-size ciphertexts. For this, we use the [AC16; CW14a] scheme that we defined
in Definition 34. Note that we also consider an algorithm that does not exist in other
MA-ABE schemes: UserSetup, that defines the GID and the rest of the parameters
that are not generated by the authorities that manage attributes upon signing onto
the system. In practice, a group of parameter generation authorities P.A (that is at
least as large as the group of attribute authorities) is supposed to do this, because
the random integers u; have to be unknown to the user (and this is the case under
the assumption that at least one of the parameter generation authorities is honest).

Definition 35 (dAMA-CP-ABE with short CT) Let access structures be repre-
sented by LSSS matrices, denoted as A = (A, p), where A is a ny X ny matriz with
entries in Z,, where p is a prime of at least X bits, and p : [1,n1] — U, which maps
the rows from A to the attributes, where U = Z,, denotes the (large) universe of at-
tributes. We denote A; as the i-th row of A and a; ; = A;j as the j-th element of the
i-th row. For set of attributes S C U we define Y = {i : i € [1,n1],p(i) € S} to be
the set of indices of rows in A associated with S. Furthermore, for this scheme, we
define T' € IN to be the maximum number of attributes a user is allowed to possess,
i.e. |S| < T. Suppose that T is at least as large as the number of authorities. We
denote an authority as Ay, where y;. denotes the attribute that is managed by Ay.

Appendix C. A Decentralized CP-ABE Scheme with Constant-Size Ciphertexts 86

(i) GlobalSetup(1*) : The GlobalSetup algorithm takes the security parameter \ as

(i)

(iii)

input, and generates (p,G,H,Gr,qg,h), where p is a prime of at least \ bits,
and G and H are cyclic groups of order p, with generators g € G and h € H.
We also define non-degenerate bilinear mapping e : G x H — Gr.

The authorities jointly generate:

£0, o, ho7 }_10 — GenGHO
{ij. hi;} < GenGHi;(go, ho, 8o, ho)
PPP « (g07 g0, ho, ho, {gi7j7 hivj})
(e(go, MSK), {FGPOJ, FGPLZ', FGPZ}i’j, FGP&Z‘,(’]‘}) — GGDFGP(PPP)
FGP' + {FGPy,;,FGP,;, FGPy, ;, FGP3,;}
KGP/ = {KGPOJ‘, KGPLZ‘, KGPQJ"]', KGP&LEJ‘} < GenKGP(PPP)

The authorities also generate the secret keys (implicitly) and the rest of the
public parameters:

FGPg1,KGPy; < {FGPy;, FGP,;};, {KGP;, KGP;;};
{FGPs,i0t, KGP501,8;+} < GenSK(go, ho, 80, ho, FGPo1, KGPo1).

Let FGP = FGP' U{FGPs5,} and KGP = KGP' U{KGPs5,,;}. Then the
global parameters are

GP - (pa Ga Ha GT7 €, e(gO) MSK)7 £0, h07 {gz,]}’b,jv {gg,t}il? FGP; KGP) .

AuthoritySetup(GP): Fach authority Ay with attribute yi has a set of pairs of
secret keys, {SK , 1., SKAk72,i}i€[l,n1]7 that were defined during the global setup.
The secret key associated with Ay is

MSK 4, = {SKua,,1,i, SK-Ak,?,i}ie[l,nl}-

We define the public key of authority Ay as the set of verification keys VK 4, 1 =
t t
Hte[O,T] C‘lllf“27t7k, and VK 4, ; = Hte[o,T] Czkl,t,k: for i # 1 such that

PK 4, = {VKu,.itici1n)-

UserSetup(GP): Upon signing onto the system, the user and the parameter
generation authorities PA jointly generate

SKo,, ;0 = KGP}, - FGPy,;
SK1,mp = KGPY',- FGPy

o KGPY, | - FGPy,, ifj=1

;i

SK3,irj0 = KGP3', - FGP3; 4 ;
Usq

SK51i1€)t7ID = KGPE),Z,Z,t ’ FGP5’/L‘1€7t’

such that u;,vj, € Z, for alli € [1,n1] and j € [2,n2] and unknown under the
assumption that at least one of the parameter generation authorities is honest.
The global identifier is defined as GID = {ID, SK; p, SKl,i,ID}ie[l,m]- Here,
ID is a random identifier for the user that is purely used for notation purposes.

Appendix C. A Decentralized CP-ABE Scheme with Constant-Size Ciphertexts 87

(iv) Encrypt(GP, (4, p), M) : The Encrypt algorithm takes the master public key as
input, as well as the access structure (A, p) and message M € Gr. Let s € Z,.
The output ciphertext is CT = ((A, p), CTy,CTs,CTs3), such that

CT, =g

CT2 = H gz(;i’j H (g£7t)5l7(i)t
i€[1,n1],5€[1,n2] i€[1,n1],t€[0,T)

CT3 =M- e(go, MSK)S.

(v) KeyGen(GID, A, yi) : Authority Ay that manages attribute yi generates a se-
cret key for global identifier GID = {SKo 0, SK1,i1D }ic1,n,) by computing

SKuy,1,i SKua,,2,i

Vi e [1,77,1] : SK4,i,yk,ID = SKl,i,ID SKO,i .
The output is SKy, 10 = {SKuiy, 1D Fic[1,n1]-

(vi) Decrypt(GP,SK,CT) : The Decrypt algorithm takes the master public key
MPK, the secret key SKip associated with user GID that possesses a set of
attributes S and ciphertext CT encrypted under (A, p) as input, and then deter-
mines for the set of attributes Y C S associated with the rows of A the set {€;}icy
such that 3;cy €iAi = (1,0,...,0). Then it computes C2 = e(CT2,[[;ey SK{'; 1p)
and for all 1 €Y, it computes ’

R i, j — ag,j
S2,z - H SK2,i,j,ID’ SB,Z - H SK3,i,€,j,ID’
je[lvnQ] €€[17n1],£76i,j6[1,n2]
_ _ p(€)*
Su,i = SKy; (i), Ss,i = II SK,i 0,610

Le[1,n1],64i,t€[0,T]

then sets C1 = e (CT1, [[;cy(S2,i85,84:S5:)%), and retrieves the plaintext by
computing CTg - Cy/Cs.

Note that the encryption and decryption algorithms are identical to those of Def-
inition 34, and therefore the scheme is also correct. We also observe that during
the key generation, authority Aj can prove its honesty by producing X-proofs of
EQ-compositions of Okamoto’s protocol, such that it is proven that we have

. SK i SK i
Vi€ [1,m]: SKy,iy,, 0 = SKy i,ka’l’ SKO,i ?Dw’

. o
A VK = FGP) RGP, 0

Remark: The decentralization of the scheme comes with a sacrifice: the old CP-ABE
scheme in Definition 34 was a large universe construction. Because the authorities
have to know which attributes they are going to manage in the setup, as they use
this in the decentralized VSS scheme to distribute the shares of the secret keys,
they cannot add any attributes later in the scheme without having to communicate
with the other authorities. Another problem is that the addition of an attribute also
requires that 7' is incremented, otherwise the authority with more secret keys has more
information about the exponent of [], h;,t than the other authorities, and perhaps a
smaller subgroup of authorities can retrieve the secret, which is in contradiction with
our assumption that the scheme allows corruption of all but one authority.

Appendix C. A Decentralized CP-ABE Scheme with Constant-Size Ciphertexts 88

C.5 Security of the scheme

We will prove that our scheme is semi-adaptively secure against static corruption. We
will do this by showing that the security game with our new formulation of the secret
keys is computationally indistinguishable from the security game with secret keys
conform Definition 34, because we already know that the scheme is proven secure in
that security game. We will also show that the authorities have as much knowledge
about the master secret key MISK and one another’s secret keys as the users, which
means that corruption of authorities does not lead to enough information to forge
other secret keys. We will use the following ‘properties’:

e Secret exponent: In the joint generation of ¢g" by letting each authority Ay
pick a random 7, €r Z,, and compute g"* together with a X-proof of knowledge
of rg, and setting g" = [] 4, g"* such that » = >_ 4, rx holds implicitly, r is secret
under the assumption that at least one of the authorities is honest.

e Secret exponent II: Under the SXDH assumption, we cannot compute (h")*
from h”, k", and (h")* if r,/, z are unknown.

e Security of honest authority’s secret keys: Because Shamir’s secret shar-
ing scheme is perfectly secure, no absolute subset of corrupt authorities C can
compute h;’t, the polynomials P;; and P»; as defined in Section C.2.2, or any
honest authority’s secret keys from SK 4, 1, SK4,,2,i-

e Preservation of DSG subgroup indistinguishability: We have defined hg
and gg such that they do not break left and right subgroup indistinguishability:
they are both basically new public parameters of the same form as g; ; and h, ;.

We had already shown that our new formulation of the secret keys (without SKj ;)
is equivalent to our old formulation of our secret keys. With the preservation of DSG
subgroup indistinguishability also follows that the addition of SKy ; does not interfere
with the security of the scheme, because it is of the same form as h; ;, and the addition
of extra common variables to the scheme does not weaken the security of the scheme.

Because all parameters are generated from gy and gg, as well as hy and hg by
computing h{' - hy’> for random r; and 73), all elements that are distributed are
basically samples from G and H which are sampled with the sampling algorithms.

Lemma 36 Our dMA-CP-ABE scheme with constant-size ciphertexts as defined in
Definition 35 is semi-adaptively secure against static corruption in the standard model
under the SXDH assumption.

Proof sketch: We define the real game in the decentralized setup as the game with
normal keys and ciphertexts as defined in Definition 35. We will prove that this game
is indistinguishable from the security game with keys and ciphertexts as in Definition
34. Because the ciphertexts are exactly the same, we only have to transform the keys
in the decentralized setting into keys in the centralized setting. Recall that we had
already shown that our formulation of the secret keys is equivalent, e.g.:

SKirj = KGPY, ;- FGPy 05 = (hy)" by = by
and because u; €g Z, can only be recovered when all parameter generation author-
ities are corrupt, and 7}, r; €r Z, can only be recovered when all authorities work
together, we have that u;r; + r; €g Z, is unknown and uniformly distributed. (Note
that the other secret keys are analogously defined.)

Appendix C. A Decentralized CP-ABE Scheme with Constant-Size Ciphertexts 89

Moreover, corruption of authorities does not jeopardize the secret keys of honest
authorities, because of the perfect secrecy of Shamir’s SSS.

The distributed setup lets the authorities jointly generate all parameters by com-
bining ‘subparameters’ that are created individually by the authorities. So in a sense,
our instance of the dual system groups changes slightly here: if A is the set of au-
thorities, then we can define our new (partial) set of public parameters as

{20, 1o, 80, ho, {gi ;. &, i, FGP512:, FGPs5,1, (i # 1)},
{8ijk 84 po gk FGP5124 5, FGPs ;141 (1 # 1)} a,eal

for which easily follows that the DSG-properties hold (and as we had already shown,
even left and right subgroup indistinguishability hold with the knowledge of all these
extra parameters). Note that we have only included FGP5 ; 2+ and FGPs5; 1 + because
they represent hat for all 7,¢. The rest of the parameters that are used at any point
in the setup can all be generated with the sampling algorithms. So the new scheme
that follows from the DSG with these parameters is also semi-adaptively secure.

We have an extra property that we did not have in the first scheme: MSK can
only be retrieved if all authorities work together, because of the secret exponent
properties. So none of the authorities can decrypt ciphertexts for which they do not
have authorization.

Hence, our scheme is indeed semi-adaptively secure against static corruption. [

C.6 Efficiency

One of the other drawbacks of this scheme is that it is very inefficient. As was already
the case in the centralized setup, the secret key generation costs a lot of computational
power. Also, the setup itself generates more public parameters than the average
CP-ABE scheme requires. This computational cost increases even further in this
decentralized version, because each of the authorities generates every parameter in G
once. The number of parameters in H blows up even more: each individual authority
generates its own share of hg, h, {h; ;} and all fixed and key generation parameters.
The number of rounds of communication is not all that high, though, as there are
a lot of parameters that do not depend on one another to be created. We need
one round for gg and hg, then one round for gy and hg (if we generate g%, h® etc.
in the first round), the first part of the fixed and key generation parameters can
be generated in parallel, and the secret keys and the corresponding fixed and key
generation parameters can also be generated in parallel (but after the first part of
FGP and KGP is generated). So in total we need four rounds of communication, with
lots of computational cost: both for generation and verification, as each generation
also comes with a number of X-proofs.

On the bright side, most of the computational power of the key generation al-
gorithm is put on the side of the parameter generation authorities and user in this
formulation of the scheme, which reduces the amount of computational power on the
attribute authority’s side. For each key request, the authority only has to compute
4n, exponentations and 2n; multiplications, which is much less than the original
scheme needed. However, the computational power that is required from the pa-
rameter generation authorities is larger than in the central setup, as the security is
only assured if the generation is distributed across multiple authorities (under the
assumption that at least one of them is honest).

90

Appendix D

Correctness Proofs

D.1 Proof of correctness of the [AC16; CW14a] scheme

Proof. We have CT3 = M - e(go, MSK)® and dividing it by e(go, MSK) yields M.
We indeed get e(go, MSK) by computing C3/C1, because we have

Cy/e (CTl, 11 (SQ,iSS,isél,iSS,i)Ei)

1€Y

:e(M & I <gz,t>ﬂ@‘»Hh?f°>/
[

i€[1,m1],5€[1,n2] i€[1,n1],t€[0,T] €Y

e(gO’H(I wy I w0y

€Y ZE[Lnl],jG[l,ng} Ze[l,nl],tE[O,T]

<MSK%1 11 hgqgj_LO)))
jE[Q,TLQ]
= e(gP*, MSK)
e (H (gDi,jS)am’ H (ng,ts)P(i)t7 H(hD*m)Ei) /
i€[1,n1],5€([1,n2] i€[1,n1],t€[0,T] i€Y

e(gDs Il (G T | Bl))

1€Y \ L€[1,n1],5€[1,n2] Le[1,n],t€]0, T]

e(ITey (9P%5%) 9 1o, (g7 hD*”

= e(go, MSK)* [| ~ =
ey \ e(gP% TTpy (BP%") 03 T4 th

= e(go, MSK)* T [T] (g, B2y 1 (P40’ Dy)

TiE7S

DF o).
ey \zj e(gP,h “)a“ 0t (9 Pt

ang tD'TD*

— e(go,MSK)* T [T L2 H

ay tDD
ey \ o elg, h) ™ Tei

Ti€4S

TiE:S
=e(go, MSK)* [T ([T 1cr 1] 1GT) = e(go, MSK)?,

icY \ 4,j 0t

which follows from D] . D* = DTD; ; and DD}, = (Dj,)TD*. Then, it follows from
(BA;)T(B*R) = A}jBTB*R = AZ]'TR and BTB*AZ]R A}J.R). 0

91

List of Abbreviations

ABC Attribute-Based Credentials

ABE Attribute-Based Encryption

CA Certificate Authority or Central Authority
CCA Chosen-Ciphertext Attack

CPA Chosen-Plaintext Attack

CP-ABE Ciphertext-Policy Atrribute-Based Encryption
DBDH Decisional Bilinear Diffie-Hellman
DECODE Decentralized Citizen-Owned Data Ecosystems

DLIN Decisional Linear (assumption)

DSG Dual System Group

G(B)GH Generic (Bilinear) Group Heuristic
GID Global Identifier

IBE Identity-Based Encryption

KGA Key Generation Authority

KP-ABE Key-Policy Atrribute-Based Encryption
LSI Left Subgroup Insdistinguishability
LSSS Linear Secret Sharing Scheme
MA-ABE Multi-Authority Attribute-Based Encryption
MPC Multiparty Computation

MPK Master Public Key

MSK Master Secret/Private Key

PES Pair Encoding Scheme

PH Parameter Hiding

PK Public Key

PPT Probabilistic Polynomial Time

RSI Right Subgroup Insdistinguishability
SK Secret/Public Key

SXDH Symmetric External Diffie-Hellman

TTP Trusted Third Party

92

Bibliography

[AB+17]

[AC16]

[AC17a]

[AC17b]

[AI09)]

[Att+12]

[Att14]

[BBSO04]

[BBS9S)]

[Beig6]

[Bel+09]

[BFO1]

[BSW07]

M. Al-Bassam, S. Bano, G. Danezis, M. deVilliers, and A. Sonnino.
Survey of Technlogies for ABC, Entitlements and Blockchains. https:
/ / decodeproject . eu/publications /survey - technologies - abc -
entitlements-and-blockchains. Accessed: 2018-02-20. 2017.

S. Agrawal and M. Chase. “A Study of Pair Encodings: Predicate Encryp-
tion in Prime Order Groups”. In: Theory of Cryptography Conference.
Springer. 2016, pp. 259-288.

S. Agrawal and M. Chase. “FAME: Fast Attribute-Based Message En-
cryption”. In: Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM. 2017, pp. 665—682.

S. Agrawal and M. Chase. “Simplifying Design and Analysis of Complex
Predicate Encryption Schemes”. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer. 2017,
pp. 627-656.

N. Attrapadung and H. Imai. “Attribute-Based Encryption Supporting
Direct/Indirect Revocation Modes”. In: Ima International Conference on
Cryptography and Coding. Springer. 2009, pp. 278-300.

N. Attrapadung, J. Herranz, F. Laguillaumie, B. Libert, E. De Panafieu,
and C. Rafols. “Attribute-Based Encryption Schemes with Constant-Size
Ciphertexts”. In: Theoretical Computer Science 422 (2012), pp. 15-38.

N. Attrapadung. “Dual System Encryption via Doubly Selective Security:
Framework, Fully-Secure Functional Encryption for Regular Languages,
and More”. In: Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques. Springer. 2014, pp. 557-577.

D. Boneh, X. Boyen, and H. Shacham. “Short Group Signatures”. In:
Annual International Cryptology Conference. Springer. 2004, pp. 41-55.

M. Blaze, G. Bleumer, and M. Strauss. “Divertible Protocols and Atomic
Proxy Cryptography”. In: International Conference on the Theory and
Applications of Cryptographic Techniques. Springer. 1998, pp. 127-144.

A. Beimel. “Secure Schemes for Secret Sharing and Key Distribution”.
PhD thesis. Ben Gurion University, 1996.

M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya,
and H. Shacham. “Randomizable Proofs and Delegatable Anonymous
Credentials”. In: Advances in Cryptology-CRYPTO 2009. Springer, 2009,
pp. 108-125.

D. Boneh and M. Franklin. “Efficient Generation of Shared RSA Keys”.
In: Journal of the ACM (JACM) 48.4 (2001), pp. 702-722.

J. Bethencourt, A. Sahai, and B. Waters. “Ciphertext-Policy Attribute-
Based Encryption”. In: 2007 IEEE Symposium on Security and Privacy
(SP ’07). 2007, pp. 321-334.

https://decodeproject.eu/publications/survey-technologies-abc-entitlements-and-blockchains
https://decodeproject.eu/publications/survey-technologies-abc-entitlements-and-blockchains
https://decodeproject.eu/publications/survey-technologies-abc-entitlements-and-blockchains

Bibliography 93

[CCO09] M. Chase and S. S. M. Chow. “Improving Privacy and Security in Multi-
Authority Attribute-based Encryption”. In: Proceedings of the 16th ACM
Conference on Computer and Communications Security. CCS 09. ACM,
2009, pp. 121-130.

[CGW15] J. Chen, R. Gay, and H. Wee. “Improved Dual System ABE in Prime-
Order Groups via Predicate Encodings”. In: Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer. 2015, pp. 595-624.

[Cha07] M. Chase. “Multi-Authority Attribute-Based Encryption”. In: Theory of
Cryptography Conference. Springer. 2007, pp. 515-534.

[CHKO03] R. Canetti, S. Halevi, and J. Katz. “A Forward-Secure Public-Key En-
cryption Scheme”. In: International Conference on the Theory and Ap-
plications of Cryptographic Techniques. Springer. 2003, pp. 255-271.

[CNO7] L. Cheung and C. Newport. “Provably Secure Ciphertext Policy ABE”.
In: Proceedings of the 14th ACM conference on Computer and communi-
cations security. ACM. 2007, pp. 456—465.

[Cra96] R. Cramer. “Modular Design of Secure Yet Practical Cryptographic Pro-
tocols”. PhD thesis. 1996.

[CW14a] J. Chen and H. Wee. Dual System Groups and its Applications — Compact
HIBE and More. IACR Cryptology ePrint Archive, Report 2014/265.
https://eprint.iacr.org/2014/265.pdf. 2014.

[CW14b] J. Chen and H. Wee. “Semi-Adaptive Attribute-Based Encryption and
Improved Delegation for Boolean Formula”. In: International Conference
on Security and Cryptography for Networks. Springer. 2014, pp. 277-297.

[CZF11] C. Chen, Z. Zhang, and D. Feng. “Efficient Ciphertext-Policy Attribute-
Based Encryption with Constant-Size Ciphertext and Constant Computation-
Cost”. In: International Conference on Provable Security. Springer. 2011,
pp. 84-101.

[Dan+17] G. Danezis, S. Bano, M. Al-Bassam, and A. Sonnin. First Version of
DECODE Architecture. https://decodeproject . eu/publications/
decode-architecture-first-version. Accessed: 2018-02-27. 2017.

[Den+14] H. Deng, Q. Wu, B. Qin, J. Domingo-Ferrer, L. Zhang, J. Liu, and W. Shi.
“Ciphertext-Policy Hierarchical Attribute-Based Encryption with Short
Ciphertexts”. In: Information Sciences 275 (2014), pp. 370-384.

[DHT76] W. Diffie and M. Hellman. “New Directions in Cryptography”. In: IEEE
transactions on Information Theory 22.6 (1976), pp. 644-654.

[DR13] J. Daemen and V. Rijmen. The Design of Rijndael: AES — the Advanced
Encryption Standard. Springer Science & Business Media, 2013.

[E1G85] T. ElGamal. “A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms”. In: IEEE Transactions on Information Theory
31.4 (1985), pp. 469-472.

[Emu+09] K. Emura, A. Miyaji, A. Nomura, K. Omote, and M. Soshi. “A Ciphertext-
Policy Attribute-Based Encryption Scheme with Constant Ciphertext
Length”. In: International Conference on Information Security Practice
and Ezxperience. Springer. 2009, pp. 13-23.

https://eprint.iacr.org/2014/265.pdf
https://decodeproject.eu/publications/decode-architecture-first-version
https://decodeproject.eu/publications/decode-architecture-first-version

Bibliography 94

[Fel87] P. Feldman. “A Practical Scheme for Non-Interactive Verifiable Secret
Sharing”. In: 28th Annual Symposium on Foundations of Computer Sci-
ence. IEEE. 1987, pp. 427-438.

[Frel0) D. M. Freeman. “Converting Pairing-Based Cryptosystems from Composite-
Order Groups to Prime-Order Groups”. In: Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer. 2010, pp. 44-61.

[F'S86] A. Fiat and A. Shamir. “How to Prove Yourself: Practical solutions to
Identification and Signature Problems”. In: Conference on the Theory

and Application of Cryptographic Techniques. Springer. 1986, pp. 186—
194.

[GHO7] M. Green and S. Hohenberger. “Blind Identity-Based Encryption and
Simulatable Oblivious Transfer”. In: International Conference on the
Theory and Application of Cryptology and Information Security. Springer.
2007, pp. 265-282.

[Goy+06] V. Goyal, O. Pandey, A. Sahai, and B. Waters. “Attribute-based Encryp-
tion for Fine-grained Access Control of Encrypted Data”. In: Proceedings

of the 13th ACM Conference on Computer and Communications Secu-
rity. CCS '06. ACM, 2006, pp. 89-98.

[Guil3] A. Guillevic. “Comparing the Pairing Efficiency over Composite-Order
and Prime-Order Elliptic Curves”. In: International Conference on Ap-
plied Cryptography and Network Security. Springer. 2013, pp. 357-372.

[Han+12] J. Han, W. Susilo, Y. Mu, and J. Yan. “Privacy-Preserving Decentral-
ized Key-Policy Attribute-Based Encryption”. In: IEEFE Transactions on
Parallel and Distributed Systems 23.11 (2012), pp. 2150-2162.

[Han+15] J. Han, W. Susilo, Y. Mu, J. Zhou, and M. H. Au. “Improving Privacy
and Security in Decentralized Ciphertext-Policy Attribute-Based Encryp-
tion”. In: IEEE Transactions on Information Forensics and Security 10.3
(2015), pp. 665-678.

[HW14] S. Hohenberger and B. Waters. “Online/Offline Attribute-Based Encryp-
tion”. In: International Workshop on Public Key Cryptography. Springer.
2014, pp. 293-310.

[Jun+13] T. Jung, X. Y. Li, Z. Wan, and M. Wan. “Privacy Preserving Cloud Data
Access With Multi-Authorities”. In: INFOCOM, 2018 Proceedings IEEF.
IEEE. 2013, pp. 2625 2633.

[KSWO08] J. Katz, A. Sahai, and B. Waters. “Predicate Encryption Supporting
Disjunctions, Polynomial Equations, and Inner Products”. In: Annual In-

ternational Conference on the Theory and Applications of Cryptographic
Techniques. Springer. 2008, pp. 146-162.

[Lai+13] J. Lai, R. H. Deng, C. Guan, and J. Weng. “Attribute-Based Encryp-
tion with Verifiable Outsourced Decryption”. In: IEEE Transactions on
Information Forensics and Security 8.8 (2013), pp. 1343-1354.

[Lew+10] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. “Fully
Secure Functional Encryption: Attribute-Based Encryption and (Hierar-
chical) Inner Product Encryption”. In: Annual International Conference

on the Theory and Applications of Cryptographic Techniques. Springer.
2010, pp. 62-91.

Bibliography 95

[Lewl1]

[Li+13]

[Liu+411]

[LW10]

[LW11]

[INYOO8]

[Oka92]

[OSW07]

[Ped91]

[Pir+10]

[Qia+15]

[QLZ13]

[RD13]

A. Lewko. Decentralizing Attribute-Based Encryption. 2011. URL: https:
//www . youtube . com/watch?v=vQvLTnoY9Nw (visited on 03/28/2018).

M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou. “Scalable and Secure
Sharing of Personal Health Records in Cloud Computing using Attribute-
Based Encryption”. In: IEEFE transactions on parallel and distributed
systems 24.1 (2013), pp. 131-143.

Z. Liu, Z. Cao, Q. Huang, D. S. Wong, and T. H. Yuen. “Fully Secure
Multi-Authority Ciphertext-Policy Attribute-Based Encryption Without
Random Oracles”. In: European Symposium on Research in Computer
Security. Springer. 2011, pp. 278-297.

A. Lewko and B. Waters. Decentralizing Attribute-Based FEncryption.
Cryptology ePrint Archive, Report 2010/351. https://eprint.iacr.
org/2010/351. 2010.

A. Lewko and B. Waters. “Decentralizing Attribute-Based Encryption”.
In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer. 2011, pp. 568-588.

T. Nishide, K. Yoneyama, and K. Ohta. “Attribute-Based Encryption
with Partially Hidden Encryptor-Specified Access Structures”. In: In-

ternational Conference on Applied Cryptography and Network Security.
Springer. 2008, pp. 111-129.

T. Okamoto. “Provably Secure and Practical Identification Schemes and
Corresponding Signature Schemes”. In: Annual International Cryptology
Conference. Springer. 1992, pp. 31-53.

R. Ostrovsky, A. Sahai, and B. Waters. “Attribute-Based Encryption
with Non-Monotonic Access Structures”. In: Proceedings of the 14th ACM

conference on Computer and communications security. ACM. 2007, pp. 195—
203.

T. P. Pedersen. “A Threshold Cryptosystem Without a Trusted Party”.
In: Workshop on the Theory and Application of of Cryptographic Tech-
niques. Springer. 1991, pp. 522-526.

M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. “Secure Attribute-
Based Systems”. In: Journal of Computer Security 18.5 (2010), pp. 799
837.

H. Qian, J. Li, Y. Zhang, and J. Han. “Privacy-Preserving Personal
Health Record Using Multi-Authority Attribute-Based Encryption with
Revocation”. In: International Journal of Information Security 14.6 (2015),
pp. 487-497.

H. Qian, J. Li, and Y. Zhang. “Privacy-Preserving Decentralized Ciphertext-
Policy Attribute-Based Encryption with Fully Hidden Access Structure”.
In: International Conference on Information and Communications Secu-
rity. Springer. 2013, pp. 363-372.

Y. Sreenivasa Rao and R. Dutta. “Decentralized Ciphertext-Policy Attribute-
Based Encryption Scheme with Fast Decryption”. In: IFIP International
Conference on Communications and Multimedia Security. Springer. 2013,

pp. 66-81.

https://www.youtube.com/watch?v=vQvLTnoY9Nw
https://www.youtube.com/watch?v=vQvLTnoY9Nw
https://eprint.iacr.org/2010/351
https://eprint.iacr.org/2010/351

Bibliography 96

[RS91] C. Rackoff and D. R. Simon. “Non-Interactive Zero-Knowledge Proof
of Knowledge and Chosen Ciphertext Attack”. In: Annual International
Cryptology Conference. Springer. 1991, pp. 433-444.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems”. In: Communications
of the ACM 21.2 (1978), pp. 120-126.

[RW13] Y. Rouselakis and B. Waters. “Practical Constructions and New Proof
Methods for Large Universe Attribute-Based Encryption”. In: Proceed-
ings of the 2013 ACM SIGSAC Conference on Computer € communica-
tions Security. ACM. 2013, pp. 463-474.

[RW15] Y. Rouselakis and B. Waters. “Efficient Statically-Secure Large-Universe
Multi-Authority Attribute-Based Encryption”. In: International Confer-

ence on Financial Cryptography and Data Security. Springer. 2015, pp. 315—
332.

[Sah99] A. Sahai. “Non-Malleable Non-Interactive Zero Knowledge and Adap-
tive Chosen-Ciphertext Security”. In: Foundations of Computer Science,
1999. 40th Annual Symposium on. IEEE. 1999, pp. 543-553.

[Sch17] B. Schoenmakers. Cryptographic Protocols. Lecture Notes. 2017.

[Sch91] C. P. Schnorr. “Efficient Signature Generation by Smart Cards”. In: Jour-
nal of Cryptology 4.3 (1991), pp. 161-174.

[ShaT79] A. Shamir. “How to Share a Secret”. In: Communications of the ACM
22.11 (1979), pp. 612-613.

[Sha84] A. Shamir. “Identity-Based Cryptosystems and Signature Schemes”. In:
Workshop on the Theory and Application of Cryptographic Techniques.
Springer. 1984, pp. 47-53.

[Shi+15] Y. Shi, Q. Zheng, J. Liu, and Z. Han. “Directly Revocable Key-Policy
Attribute-Based Encryption with Verifiable Ciphertext Delegation”. In:
Information Sciences 295 (2015), pp. 221-231.

[SSW12] A. Sahai, H. Seyalioglu, and B. Waters. “Dynamic Credentials and Ci-
phertext Delegation for Attribute-Based Encryption”. In: Advances in
Cryptology—-CRYPTO 2012. Springer, 2012, pp. 199-217.

[SWO05] A. Sahai and B. Waters. “Fuzzy Identity-Based Encryption”. In: An-
nual International Conference on the Theory and Applications of Cryp-
tographic Techniques. Springer. 2005, pp. 457-473.

[Wat09] B. Waters. “Dual System Encryption: Realizing Fully Secure IBE and
HIBE under Simple Assumptions”. In: Advances in Cryptology—-CRYPTO
2009. Springer, 2009, pp. 619-636.

[Wat11] B. Waters. “Ciphertext-Policy Attribute-Based Encryption - An Expres-
sive, Efficient, and Provably Secure Realization”. In: International Work-
shop on Public Key Cryptography. Springer. 2011, pp. 53-70.

[Yam+11] S. Yamada, N. Attrapadung, G. Hanaoka, and N. Kunihiro. “Generic
Constructions for Chosen-Ciphertext Secure Attribute Based Encryp-

tion”. In: International Workshop on Public Key Cryptography. Springer.
2011, pp. 71-89.

Bibliography 97

[Yu+10] S. Yu, C. Wang, K. Ren, and W. Lou. “Attribute-Based Data Sharing
with Attribute Revocation”. In: Proceedings of the 5th ACM Symposium
on Information, Computer and Communications Security. ACM. 2010,
pp- 261-270.

[Zho+18] H. Zhong, W. Zhu, Y. Xu, and J. Cui. “Multi-Authority Attribute-Based
Encryption Access Control Scheme with Policy Hidden for cloud Stor-
age”. In: Soft Computing 22.1 (2018), pp. 243-251.

	Abstract
	Introduction
	The DECODE project
	Access control
	Distributed ledger
	Attribute-based credentials
	Attribute-based encryption

	Our goal and approach
	Overview

	Preliminaries
	Notations
	Statistical distance and indistinguishability
	Secret sharing
	Verifiable secret sharing
	Removing the dealer: decentralized VSSS
	Access structures
	LSSS matrices as access structures

	Zero-knowledge proofs of knowledge
	Schnorr's identification protocol
	Okamoto's identification protocol
	EQ-composition
	Non-interactive zero-knowledge proofs

	Group homomorphisms
	Bilinear maps
	Security assumptions

	Attribute-Based Encryption
	Key-policy and ciphertext-policy ABE
	Formal definitions

	Collusion resistance
	Small and large universes
	Delegatability
	(Decentralized) multi-authority ABE
	Privacy towards the authorities

	Dynamic schemes
	Directly and indirectly revocable schemes
	Definition of dynamicity

	Storage and computational costs
	Private key and ciphertext sizes
	Key generation, encryption and decryption

	Group order
	Privacy of access policies
	Security models
	Full security
	Selective security
	Security for multi-authority ABE
	Security against chosen-ciphertext attacks
	Standard model versus random oracle model

	Choosing properties for ABE for DECODE

	Comparing Existing ABE Schemes
	Example: a (large universe) CP-ABE scheme
	The construction
	Remarks

	Example: a decentralized CP-ABE scheme
	Remarks

	The comparison of forty-two schemes
	First set of properties
	Second set of properties
	Methodology and notations

	Discussion
	Concluding remarks
	CP-ABE with constant-size ciphertexts

	Conclusions
	Further research

	Simplifying Security Analysis with Pair Encoding Schemes
	An intuitive overview
	Dual system encryption
	Dual system groups
	Small introduction to pair encoding
	Intuitive notion of pair encoding
	From pair encoding to attribute-based encryption

	Formal definitions
	Dual system groups
	Pair encoding schemes

	A generic CP-ABE construction from pair encoding
	Intuitive idea
	The construction
	Security of the construction

	A CP-ABE Scheme with Constant-Size Ciphertexts
	A DSG-instantiation in prime-order groups
	Definitions of the sample algorithms

	A PES-instantiation with short ciphertext encoding
	The constant-size ciphertext encoding PES

	Constructing the scheme
	The Setup algorithm
	The Encrypt algorithm
	The KeyGen algorithm
	The Decrypt algorithm
	The complete construction
	Storage and computational costs

	Discussion

	A Decentralized CP-ABE Scheme with Constant-Size Ciphertexts
	Key generation in the centralized setting
	Approach to decentralization
	Generating SK2,i,1
	Generating SK4,i,y

	Generating the rest of the parameters
	Generating g0 and h0
	Generating gi,j and hi,j
	Generating g'i,t
	Key generation parameters
	Decentralized global and authority setup

	The decentralized construction
	Security of the scheme
	Efficiency

	Correctness Proofs
	Proof of correctness of the AC16,CW14 scheme

	Bibliography
	titlepage.pdf
	Abstract
	Introduction
	The DECODE project
	Access control
	Distributed ledger
	Attribute-based credentials
	Attribute-based encryption

	Our goal and approach
	Overview

	Preliminaries
	Notations
	Statistical distance and indistinguishability
	Secret sharing
	Verifiable secret sharing
	Removing the dealer: decentralized VSSS
	Access structures
	LSSS matrices as access structures

	Zero-knowledge proofs of knowledge
	Schnorr's identification protocol
	Okamoto's identification protocol
	EQ-composition
	Non-interactive zero-knowledge proofs

	Group homomorphisms
	Bilinear maps
	Security assumptions

	Attribute-Based Encryption
	Key-policy and ciphertext-policy ABE
	Formal definitions

	Collusion resistance
	Small and large universes
	Delegatability
	(Decentralized) multi-authority ABE
	Privacy towards the authorities

	Dynamic schemes
	Directly and indirectly revocable schemes
	Definition of dynamicity

	Storage and computational costs
	Private key and ciphertext sizes
	Key generation, encryption and decryption

	Group order
	Privacy of access policies
	Security models
	Full security
	Selective security
	Security for multi-authority ABE
	Security against chosen-ciphertext attacks
	Standard model versus random oracle model

	Choosing properties for ABE for DECODE

	Comparing Existing ABE Schemes
	Example: a (large universe) CP-ABE scheme
	The construction
	Remarks

	Example: a decentralized CP-ABE scheme
	Remarks

	The comparison of forty-two schemes
	First set of properties
	Second set of properties
	Methodology and notations

	Discussion
	Concluding remarks
	CP-ABE with constant-size ciphertexts

	Conclusions
	Further research

	Simplifying Security Analysis with Pair Encoding Schemes
	An intuitive overview
	Dual system encryption
	Dual system groups
	Small introduction to pair encoding
	Intuitive notion of pair encoding
	From pair encoding to attribute-based encryption

	Formal definitions
	Dual system groups
	Pair encoding schemes

	A generic CP-ABE construction from pair encoding
	Intuitive idea
	The construction
	Security of the construction

	A CP-ABE Scheme with Constant-Size Ciphertexts
	A DSG-instantiation in prime-order groups
	Definitions of the sample algorithms

	A PES-instantiation with short ciphertext encoding
	The constant-size ciphertext encoding PES

	Constructing the scheme
	The Setup algorithm
	The Encrypt algorithm
	The KeyGen algorithm
	The Decrypt algorithm
	The complete construction
	Storage and computational costs

	Discussion

	A Decentralized CP-ABE Scheme with Constant-Size Ciphertexts
	Key generation in the centralized setting
	Approach to decentralization
	Generating SK2,i,1
	Generating SK4,i,y

	Generating the rest of the parameters
	Generating g0 and h0
	Generating gi,j and hi,j
	Generating g'i,t
	Key generation parameters
	Decentralized global and authority setup

	The decentralized construction
	Security of the scheme
	Efficiency

	Correctness Proofs
	Proof of correctness of the AC16,CW14 scheme

	Bibliography

