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Abstract

A commonly used technology to securely transmit data over a network is
a Virtual Private Network (VPN). Using a VPN a user can create a se-
cure encrypted tunnel which can be used to safely transmit sensitive data.
Naturally, flaws in the implementation of a VPN’s security protocol can po-
tentially expose this data to the outside world. This master thesis will look
into one of the more popular VPN solutions, OpenVPN, with two goals in
mind. One, paint a clear picture of the inner workings and message struc-
ture of the OpenVPN protocol. And two, create a fuzzer to attempt to find
flaws in the OpenVPN protocol.



Chapter 1

Introduction

Virtual Private Networks (VPN) are a technology to facilitate secure com-
munication over an insecure network (such as the internet). VPN solutions
can be categorized under several types, each with their own approach to
security, upsides and downsides and reliance on different combinations of
protocols and standards. The three major types are IPSec [10], PPTP [17]
and TLS [9] based VPN solutions. Given the complexity of VPN solutions
and the fact that various different implementations of these types exist, it
is not unthinkable that some of these implementations have undiscovered
security vulnerabilities. This paper will focus on testing one of these imple-
mentations, the TLS based VPN called OpenVPN.

The testing method used will be fuzzing. This means that we will be
sending garbled protocol messages to an OpenVPN server to see how it
responds. By monitoring the server’s behaviour and the network traffic be-
tween client and server and placing this information beside the fuzzed mes-
sages that caused this behaviour it is possible to find flaws in the OpenVPN
implementation. These flaws can then potentially lead to concrete security
vulnerabilities which can be exploited by an attacker sending a packet with
the same mutations as the fuzzed messages.

To set up such a fuzzer, clear knowledge of the protocol in question is
needed. As one will need to be able to construct valid protocol messages
before one can mutate their contents. Clear knowledge of the protocol also
helps determine what fields to corrupt and how to corrupt them. Therefore
the goal of this paper is twofold. First off, the OpenVPN protocol must
be clearly mapped out. This includes how the protocol will behave under
normal operation, the different security options that may be present and the
structure of the different message packets themselves so they can be manu-
ally constructed. Secondly, a fuzzer must be build which can automatically
carry out the actual fuzzing attempts.

The organization of this paper will be as follows. Chapter 2 will give
an overview of past vulnerabilities already found at the time of writing this
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paper. Chapter 3 will describe the background topics like Virtual Private
Networks and fuzzing in more detail. Chapter 4 will delve into the OpenVPN
protocol and lay out its security options, a high level representation of a reg-
ular session and the different message types and their contents. Chapter 5
will explain the implementation process and decisions made while building
the fuzzing tool, as well as detailing the results and any interesting findings
along the way. Chapter 6 will present the results of the experiments per-
formed using the fuzzing tool. And finally, Chapter 7 and Chapter 8 will
have suggestions on future work on this topic and summarize the results and
conclusions.

1.1 The scope of the thesis’ research

When making the decision to fuzz a program or protocol it is important to
decide what exactly to fuzz. OpenVPN makes use of external TLS libraries
and sets up a standard TLS connection as part of its protocol. The decision
was made to explicitly not fuzz this connection, as we want to solely focus
on OpenVPN’s protocol and its implementation and not the specific TLS
implementation used by the current version of OpenVPN. Furthermore, if
we want to fuzz the TLS library it would be a lot easier to do this separate
from OpenVPN. Leaving TLS out of the picture also means we can use an
existingTLS implementation for the fuzzer and have that implementation
generate the needed messages for us, rather than having to self-generate
these messages.

This approach has its up and downsides. It narrows the scope to purely
the OpenVPN protocol and thus excludes the fuzzing off and any bugs found
in the external TLS libraries used. But in doing so it might also overlook
any bugs or vulnerabilities in the OpenVPN specific code that uses said
libraries.
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Chapter 2

Security analysis of
OpenVPN

This chapter will give an overview of already performed work relating to
OpenVPN’s security and its individual components. The conclusions from
this work can then be used to help guide my own research by finding in-
teresting points to attack or identifying parts of OpenVPN that will not be
included in the scope of the paper. Vulnerabilities already found in earlier
versions of OpenVPN can also be used to test my own methods, as we can
use these to test if the created fuzzer can find these vulnerabilities as well.

2.1 The types of vulnerabilities

When looking at OpenVPN and the potential security problems it may have,
one can divide these problems into four categories.

1. TLS vulnerabilities: as OpenVPN uses an existing TLS implementa-
tion, any vulnerability in this implementation can also end up being a
vulnerability in OpenVPN.

2. OpenVPN vulnerabilities: any internal OpenVPN vulnerabilities, purely
related to the OpenVPN protocol. Examples include a faulty state
transition or crashes caused by modifying the OpenVPN headers of
messages in the protocol.

3. Interaction vulnerabilities: OpenVPN has several helper functions to
hook into the TLS implementation. Any vulnerabilities caused by
these functions fall under this category.

4. User errors: Try as we might, it’s impossible to remove the human
factor from security vulnerabilities. In this case a user might config-
ure their OpenVPN implementation in such a way that a connection
becomes easy to attack.
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Depending on your fuzzing approach you might not be able to touch upon
one or more of these categories. As already stated in Section 1.1, the fuzzer
in this paper will leave the TLS handshake messages unaltered while fuzzing
and can thus not find any TLS vulnerabilities, but might still be able to run
into OpenVPN or Interaction vulnerabilities.

2.2 CVE analysis of OpenVPN

This section will briefly cover CVEs related to OpenVPN. However, of the
23 CVEs, most have to do with non-default settings opening up (sometimes
platform specific) attack angles, timing attacks, cryptographic vulnerabil-
ities or other angles and are therefore not relevant to this paper, as just
fuzzing would not uncover these. Below is a list of the CVEs that can po-
tentially be found through packet fuzzing. and their typing according to
Section 2.1.

• CVE-2014-8104, OpenVPN 2.x before 2.0.11, 2.1.x, 2.2.x before 2.2.3,
and 2.3.x before 2.3.6 allows remote authenticated users to cause a
denial of service (server crash) via a small control channel packet.
This is a type 2 vulnerability.

• CVE-2017-7478, OpenVPN version 2.3.12 and newer is vulnerable to
unauthenticated Denial of Service of server via received large control
packet. Note that this issue is fixed in 2.3.15 and 2.4.2. This is a type
2 vulnerability.

• CVE-2017-7521, OpenVPN versions before 2.4.3 and before 2.3.17
are vulnerable to remote denial-of-service due to memory exhaustion
caused by memory leaks and double-free issue in extract x509 extension().
This is a type 3 vulnerability.

• CVE-2017-7522, OpenVPN versions before 2.4.3 and before 2.3.17 are
vulnerable to denial-of-service by authenticated remote attacker via
sending a certificate with an embedded NULL character. While the
function that reads the certificate sends back an error when the NULL
character is found. OpenVPN did not halt execution and can later
crash. This is a type 3 vulnerability.

• CVE-2017-7508, OpenVPN versions before 2.4.3 and before 2.3.17 are
vulnerable to remote denial-of-service when receiving malformed IPv6
packet. This is a type 2 vulnerability.

The first two CVEs listed will be revisited lated as these could be repli-
cated through packet fuzzing. The later two however fall outside the scope
of this paper (Section 1.1) as these involve bugs in the OpenVPN code that
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calls upon the TLS libraries. These bugs can only be found by fuzzing the
TLS traffic which, as stated in the previous section, will not be done.

It is worth noting that some of these CVEs were found in early 2017
when Guido Vranken also fuzzed OpenVPN using libFuzzer, AddressSani-
tizer, UndefinedBehaviorSanitizer and MemorySanitizer [4]. However due to
OpenVPN’s complex nature he has had to manually edit the OpenVPN code
to allow for this type of fuzzing. In particular he had to block OpenVPN’s
ability to run external programs (as he didn’t want to fuzz the system pro-
grams OpenVPN called upon, just OpenVPN itself), cut off direct resource
access (as to not write random files or send data to random IP’s) and remove
certain ASSERT blocks so the code would not simply abort immediately on
failing the assert. His efforts have uncovered several vulnerabilities:

• The earlier mentioned CVEs 7521, 7522 and 7508.

• A possible remote client crash, data leak and stack buffer corruption
for users who are connecting to an Windows NT Lan Manager v2
proxy (CVE-2017-7520). This is a type 2 vulnerability.

• And a vulnerability that can result in a stack buffer overflow if the
config file contains an excessively long -tls-cipher option (no CVE).
This is a type 2 vulnerability.

2.3 TLS

OpenVPN relies heavily on external TLS libraries to function (namely OpenSSL
or mbedTLS) (more on this in section 3 and 4). This makes it impossible to
mention the security of OpenVPN without at least mentioning the security
of TLS in general and any research and major past vulnerabilities that have
popped up. I would however like to reiterate that this paper will not attempt
to fuzz the TLS libraries used in OpenVPN as this would greatly inflate the
scope. The widespread use of TLS outside of OpenVPN also means that re-
search into and testing of TLS implementations is already constantly being
done and I would like this paper to focus on OpenVPN itself, rather than
the widely used libraries it depends on.

There have been many problems and bugs relating to TLS in the past
[14], both general problems with the protocol as well as specific implemen-
tation problems. But to name a few very noteworthy ones in particular:

The Heartbleed [8] bug was a major and critical security vulnerability
found in the OpenSSL library, a widely used implementation of the TLS
protocol. The bug exploited the Heartbeat functionality of the TLS protocol,
a test message any user could send over an established TLS connection to
test the connection. A normal Heartbeat exchange consists of a user sending
a string to the server and the server replying with the exact same message.
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An attacker could however modify tamper with the length field of this test
string, tricking the server into sending back much more data than just this
string. This essentially forced the server to perform a memory dump, as it
would pad the returned string with whatever it had stored in memory at
the time. The returned data could vary from singular messages from other
connections to the private keys needed to decrypt entire encrypted message
sequences from other users.

POODLE was a downgrade attack in which a man in the middle could
trick a client and server into establishing a connection using an older unsafe
version of TLS [15]. The attacker can then use known vulnerabilities in
this older version to attack this connection more easily. The attack relies
on some TLS implementations still supporting unsafe versions of TLS and
the fact that the client-server negotiation on what version to used happens
entirely in plain text. An attacker can thus intercept this negotiation and
falsely claim to either the client or the server that the only version they
support is such an unsafe version of TLS.

TLS implementations have also been fuzzed before. J. de Ruiter an-
alyzed nine different TLS implementations using protocol state fuzzing in
order to find implementation faults using the inferred state machines [6].
To infer these state machines a Java implementation of the L* algorithm
called LearnLib was used. The method proved successful in finding security
vulnerabilities in several of the TLS implementations, in particular a version
of GnuTLS, Java Secure Socket Layer and OpenSSL.
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Chapter 3

Background

This chapter gives an overview of virtual private networks, the different
types of VPN solutions and their common implementations (Section 3.1)
as well as the basic idea behind fuzzing and some tools to aid with fuzzing
(Section 3.2).

3.1 VPNs

A VPN is a virtual network, built on top of existing physical networks, that
can provide a secure communications mechanism for data and IP informa-
tion transmitted between networks [10]. In other words a VPN allows you
to set up a secure, encrypted network connection over any insecure public
network (like the internet). There are three major types of VPN solutions:
IPSec, PPTP and Secure Socket Layer (or Transport Layer Security) based.
Generally a VPN will try to fulfill three security goals, Authentication, In-
tegrity and Confidentiality [19]. So only those allowed to connect to the
VPN can do so, transmitted data can not be read by anyone other than the
receiver, and the transmitted data can not be tampered with.

As the different VPN types use different protocols and these different
protocols work on different network layers, it is important to understand
how these layers are stacked up and how they relate. There are two main
network models that are still valid today, the OSI model and the TCP/IP
model [18], which will be covered in brief detail.

The OSI model has seven layers: Physical, Data link, Network, Trans-
port, Session, Presentation and Application. Whereas the TCP/IP model
has four: Link, Internet, Transport and Application. As a packet travels
down through these layers every layer adds more information to the packet.
When a packet is received it travels in reverse, now every layer unpacks its
own information from the packet before sending it up. Thus higher level lay-
ers are completely unaware of the lower level layers and higher level layers
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OSI TCP/IP

Layer 7 Application

ApplicationLayer 6 Presentation

Layer 5 Session

Layer 4 Transport Transport

Layer 3 Network Internet

Layer 2 Data Link
Link

Layer 1 Physical

Table 3.1: The OSI and TCP/IP models

can not provide security for what happens in lower level layers. As already
said, different VPN solutions operate on different layers of the network and
thus only provide security for certain layers as well. Furthermore, since the
models are just that, models, it is often hard to draw a one on one compar-
ison with reality. It is hard to place a protocol exactly on one layer. This
makes stacking VPNs a complicated if not impossible feat, making knowl-
edge of what exactly you want to protect an important factor in choosing
the right VPN solution.

3.1.1 IPSec VPNs

IPSec is probably one of the most used standards for VPN communication, it
operates on the Network layer. IPSec itself is a framework of open standards
for private communications over public networks [10] and includes protocols
for mutual authentication and the negotiation of cryptographic keys for use
during a session and operates on the Network layer. Any security action it
takes will thus apply to IP packets and it will not be able to differentiate
between data from different application. A user of an IPSec VPN will thus
see all of their data encrypted and tunneled through the VPN. An advantage
to operating on this layer is the complete encryption of the IP packet, both
the contents as well as the IP information can be obfuscated to the outside
viewer. The downside to this is the lack of flexibility and control when the
end goal is to protect a specific application. [10]

A popular example of an IPSec VPN is strongSwan1.

3.1.2 PPTP VPNs

The Point-to-Point Tunneling Protocol was a VPN solution in part devel-
oped by Microsoft and operates on the Data Link layer. It sets up a TCP
control channel between the client and a server and uses Generic Routing

1https://www.strongswan.org/
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Encapsulation to encapsulate PPP packets to send over this same control
channel [11]. Due to the use of PPP it can be said to operate on the Data
Link layer. However, not long after its conception several serious security
flaws [17] were found in the protocol and it has since been considered obso-
lete.

3.1.3 TLS VPNs

As the name implies these VPNs are build around the Transport Layer Se-
curity protol (formerly known as SSL- Secure Sockets Layer) which operates
on the Application layer. The usage of the widely used TLS protocols mean
that these VPNs are much easier in use than for example IPSec VPNs. [13]
Where for example IPSec VPNs can be inflexible and hard to maintain, an
TLS VPN is much easier in its setup and use, requiring nothing more than
some software to setup a server without any hardware or network require-
ments. In its simplest form a client will need nothing other than their web
browser to connect to a server. But this simplicity is a disadvantage as well,
as actual user authentication is optional and can be easily left out.

There are two main types of TLS VPNs: TLS portal VPNs and TLS
tunnel VPNs [9].

• An TLS Portal VPN allows a user to connect to a gateway or portal
to access multiple network resources using a single TLS connection.
This comes in the form of a website which, after a user has authen-
ticated themselves, leads the user to a page through which they can
access other services. This has as downside that the content that can
be shown on this website is limited, as certain types of active con-
tent (Java, JavaScript, Flash, or ActiveX) cannot be displayed on this
website.

• An TLS Tunnel VPN usually means relatively more effort on the user’s
part, in that they need to install third party software to use it. But
once set up will tunnel all internet traffic through the VPN server they
are connected to. This means that, with regards to an TLS Portal
VPN, the communications that are protected are no longer limited to
what the portal can or will show to the user, anything they do is now
securely tunneled through the VPN server.

A popular example of an TLS VPN is OpenVPN, which is primarily a
Tunnel VPN.

3.2 Fuzzing

Fuzzing is a software testing technique in which a program is supplied with
invalid, unexpected or random data as input. The program can then be

9



monitored to see how it handles this input, whether or not it crashes, cor-
rupts memory or fails in any other way. Or if it behaves properly and safely
handles the non-conventional input. The eventual goal of fuzzing is to find
programming oversights in the program, edge or corner cases which were
overlooked or not considered during development. Programs are however
complex by nature, there is not a singular input method or format shared
by all programs. Monitoring programs can also be done from various angles
and using various tools. So there is not a single tool or fixed collection of
tools that can test any and all programs. This section will therefore only
list some of the more popular tools and tools found during the course of this
paper’s research.

3.2.1 Sulley

Sulley is an open source fuzzing framework written in python [5]. As it is a
full framework it isn’t just a tool to generate and send random data but also
includes features to monitor the process and help automize it. Sulley’s goal
is to simplify the fuzzing process for the end user as much as possible, so
fuzzing as a technique can become more widely used. Some of the notable
features of Sulley are:

• Packet capture - Sulley can capture network packets send and received
during the fuzzing process

• VMWare automation - Sully can interface with a VM to help automate
the process. It will keep multiple snapshots of past stable states and
can, in case of a crash caused by the fuzzing, revert to a past safe state
to continue the process.

• Process monitoring - Sulley can detect faults and crashes of connected
processes and when discovered, log the fault and for later analysis.

• GUI - Sulley provides a web based graphical user interface to ease up
the interaction with the fuzzer and allow for easier data representation
to analyze the fuzzing results.

3.2.2 American Fuzzy Lop

American Fuzzy Lop or AFL2 is a fuzzer using a combination of brute force
techniques and genetic algorithms to maximize code coverage. AFL requires
a program to be compiled using its own compiler so the fuzzer can track the
target’s control flow. It also requires one or more user provided sample com-
mands and input files for the program. AFL will then start the automated
fuzzing process by testing the supplied file and command and check if it

2http://lcamtuf.coredump.cx/afl/
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succeeds, and then trimming this input to the smallest possible form that
still triggers the exact same behavior. From here on out the fuzzing process
starts by modifying the input file and testing for program crashes. If a crash
is detected the event is logged and the modified input file that resulted in
the crash is saved for later inspection.

3.2.3 LibFuzzer

LibFuzzer3 is a more ’direct’ fuzzer that attacks a software library and its
functions directly. It takes a specific fuzzing entry point, which it calls the
Target Function, and supplies it with input. Then, after testing which areas
of the code can be reached with this input, it generations random mutations
of this input and repeats the process. Like AFL it aims to maximize code
coverage from the user supplied starting point (the Target Function). An
advantage of LibFuzzer over other fuzzers is the ability to target specific
functions in the code and using those as starting point, rather than attacking
the program from the outside and trying to path a way through the entire
program to try and reach these Target Functions.

3.2.4 Debugging tools

As already stated, the process of fuzzing feeds a program with non-conventional
input with as goal to find a way to make the program behave different than
what is specified or expected. A program does not however always crash
or exit cleanly when such a behaviour is encountered and it might in fact
just crash, hang or completely lock up. In cases like these it is helpful to
use debugging tools to look into the internal state of the program during
runtime to try an identify what went wrong.

Valgrind is a memory debugging tool that allows one to detect any mem-
ory oddities that might occur during program execution4. While not a
fuzzing tool by itself, it can help find the cause of a crash caused by fuzzing.
While most fuzzing tools will be able to tell you when a program has crashed
and what input caused the crash, figuring out why is usually outside the
scope of the tool. Using a memory debugger like Valgrind allows one to look
at the internal state of the program and can help determine exactly why the
program crashed.

AddressSanitizer, MemorySanitizer and UndefinedBehaviorSanitizer are
other examples of very specific tools. As their names suggest they each
specialize in finding specific kinds of bugs and will throw more detailed (and
hopefully more useful) errors if something happens to trigger them. The
Clang compiler front end 5 can be used to compile a program with these

3https://llvm.org/docs/LibFuzzer.html
4http://valgrind.org/
5https://clang.llvm.org/
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sanitizers enabled.
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Chapter 4

OpenVPN

This chapter will delve into OpenVPN. it gives an overview of the inner work-
ings and its protocols, the different authentication modes and the messages
used in these protocols. OpenVPN does not offer a clear documentation ex-
plaining its inner workings. Therefore all the information presented in this
section is gathered from various other sources like the Security Overview
webpage [3] (which is partially a copy paste of some comments in the code),
Wireshark traces and the doxygen generated from the code. Lastly the
chapter will look into alternatives to the official OpenVPN client, or the
lack thereof.

4.1 Introduction to OpenVPN

OpenVPN is a TLS based VPN solution that can tunnel any IP subnetwork
or virtual ethernet adapter over a single UDP or TCP port1. It mostly relies
on the security provided by OpenSSL though later versions also support
mbed TLS.

OpenVPN uses its own protocol which, when in TLS mode, incorporates
a TLS handshake to authenticate and negotiate the set of session keys. In
Static Key mode this handshake is skipped and the protocol assumes the
session keys have already been distributed beforehand. More on these modes
and the differences are explained in Section 4.1.
After this key establishment step the data channel (for the tunneled packets)
is opened. This data channel is multiplexed with the control channel (for
TLS authentication and key exchange) over the same port.

1https://openvpn.net/index.php/open-source/333-what-is-openvpn.html
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4.2 Authentication modes

As mentioned before, OpenVPN gives two different options for authentica-
tion. These options are further elaborated on in this section.

4.2.1 Static Key mode

In this mode it is assumed that the session keys have already been distributed
prior to starting the connection. Knowledge of these keys both serves as
authentication mechanism and means of encrypting/decrypting the data
from the tunnel. This mode of authentication is not relevant for the purposes
of this paper as this skips the TLS handshake and subsequent key exchange.
This mode also does not provide forward secrecy as a new key can not
be renegotiated on the fly and will need to be redistributed outside of the
session. However, a possible advantage of this mode is the added control for
the users of the server. Since key generation and distribution is no longer
handled by OpenVPN and allowing the user to take full control of these
security building blocks.

4.2.2 TLS mode

The default and, for most people, safest mode to use OpenVPN with as every
client that connects will dynamically generate a new key for their session as
well as renegotiate keys after certain criteria have been met. As said before
this mode uses the TLS protocol to secure a channel which is then used
to negotiate a key and, optionally, to authenticate the user’s credentials.
This session key is the equivalent of the pre-distributed key in static key
mode and is used to encrypt the data tunnel. However, in TLS mode this
key can be renewed at any point during the session. The combination of
this automatic key distribution and renewal provides this mode with perfect
forward secrecy as well as the means for new clients to connect on the fly.

TLS mode also has several different options that provide more (or less)
security. Namely the different key generation modes and the tls-auth option.

Key generation modes

TLS mode has two different key generation methods which slightly alter its
message structure further down the line. Which key method will be used is
indicated by the reset request message that starts of an OpenVPN session.

1. The first key generation method (V1) uses the RAND bytes function
of OpenSSL to generate the keys directly. These keys are then shared
over the secure TLS channel after which the encrypted tunnel can
start. This method is no longer recommended and deemed less safe
than the second method.
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2. The second key generation method (V2) has both the server and client
gather random source material first to generate entropy, this random
material is then shared over the secure TLS channel after which the
TLS PRF function is used to generate the keys. After this step too
the encrypted tunnel can start.

Starting with OpenVPN 2.0, the V2 method became the default and rec-
ommended key generation method as it provides a higher amount of entropy
than the V1 method provides. V1 has a single machine generate the entire
key, if this machine’s random generation becomes predictable then any key
generated becomes unsafe. V2 however provides entropy from two sources,
as both client and server take part in the generation.

TLS-auth

The last notable feature of TLS mode is what OpenVPN calls the ”HMAC
firewall” [1]. This is an optional feature enabled with the ”-tls-auth” option
that requires the pre-distribution of separate HMAC keys to all users. These
keys can then be used to add HMAC signatures to the control channel pack-
ets before any keys have been generated, adding an extra layer of security.
OpenVPN recommends using this feature ”when you are running OpenVPN
in a mode where it is listening for packets from any IP address” [1]. The
feature description states that any packet with a non matching HMAC will
be discarded and ignored, this to ensure that no processing time is wasted
on a TLS session that should not or will not complete successfully.

The advantage of using this option can indeed be a major one. If all
packets without a valid HMAC are immediately discarded upon arrival then
only the packets of authenticated, trusted users will be read. This makes
it very hard, if not impossible, for attackers to send malicious data to your
server. As the server won’t read any data from those without permission to
communicate with the server.

4.3 The OpenVPN protocol in TLS mode

This section will give an overview of the client-server communication of
OpenVPN. It will provide both a high level description of the protocol itself,
as well as a detailed explanation of the various message types and their
contents.

4.3.1 The protocol

OpenVPN does not clearly state what its protocol looks like. However, by
combining the rough description of the protocol and the messages [3] with
a trace of an OpenVPN session (Figure 4.1) it is possible to piece together
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Figure 4.1: A TLS Mode trace with Wireshark

what the protocol looks like. The protocol can be summarized as follows,
while a high level representation of this protocol can be seen in figure 4.2.
Note that the usage of the tls-auth feature does not change this message
sequence, just the content of the messages.

1. An OpenVPN session starts with a client requesting a hard reset (1),
signaling the server to reset its internal state and start a new con-
nection. This can be seen as the Client’s Hello. The server will then
answer with its own version of the hard reset packet (2). This can be
either a V1 or V2 message depending on the server settings (either use
key generation method 1 or 2).

2. The client will then send an acknowledgment to the server for the
received packet (3) and, not waiting for a response, immediately start
a TLS session (4a). This session is encapsulated in OpenVPN’s
P CONTROL V1 packets. As of writing this paper no V2 version of
these packets exists.

3. Messages (4a) and (4b) in the figure represent a series of messages
during which a TLS handshake is performed and a temporary TLS
tunnel is set up. With (4a) being the initial Hello from the client, (4b)
being the rest of the handshake that follows.

4. Message (4c) represents the temporary TLS tunnel (which was set up
with the handshake in (4a) and (4b)). Note that this is not the actual
VPN tunnel, but rather a temporary secure channel over which the
key for the VPN tunnel can be discussed. What is being sent over
this tunnel depends on the exact client and server settings but the
purpose of the tunnel is to communicate the session keys for the VPN
tunnel. If the server wants to validate the client through a username
and password then this information too is shared.
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P CONTROL HARD RESET CLIENT V1/2 (1)

P CONTROL HARD RESET SERVER V1/2 (2)

P ACK V1 (3)

P CONTROL V1 with TLS Hello message (4a)

P CONTROL V1 with 1st TLS handshake message (4b)

P CONTROL V1 with 2nd TLS handshake message

....................................

P CONTROL V1 with temporary TLS tunnel (4c)

P CONTROL V1 with temporary TLS tunnel

....................................

P ACK V1 (5)

P DATA V1/2, the OpenVPN Tunnel (6)

P CONTROL SOFT RESET SERVER V1/2 (7)

Client Server

Figure 4.2: An OpenVPN session in TLS mode for both key generation
methods

5. With the last needed information to start the VPN tunnel received,
the client sends one last acknowledgment to the server (5).

6. Now the VPN tunnel can finally start and encrypted data is sent back
and forth between the client and server.

7. At any time during the tunnel, the server can send a soft reset mes-
sage. This signals the client that the current session key will expire
soon and a new key needs to be negotiated, starting another string of
encapsulated TLS packets to negotiate a new key.

Looking at this protocol there are two things that stand out. First

17



the protocol does not discuss or share any OpenVPN options other than
specifying which key generation method the client wishes to use. This is
because the protocol assumes the specific server configuration is already
known, an OpenVPN client will use a generated config file specifying all
the relevant server options to connect to an OpenVPN server. To start a
connection a user has to be supplied with a configuration file with all the
necessary information the client needs to connect to the server. Any wrong
settings in this configuration file will result in the protocol failing. Secondly
the protocol messages themselves can be divided in two types.

• The P CONTROL * and P ACK messages that control what happens
and contain the TLS session, together these form the Control Channel.

• And the P DATA packets that contain the tunneled VPN data. Open-
VPN refers to these messages as the Data Channel.

The next section will delve deeper into these messages and how they are
formatted.

4.3.2 OpenVPN message structure in TLS mode

This section is dedicated to the specifics of the different OpenVPN messages
in TLS mode. OpenVPN currently has 8 different message types divided
over the Control and Data Channels. These message types are listed in
Table 4.1. Almost all of these messages can be seen in a single session, as
shown in figure 4.2.

Data Channel packets

The data tunnel or Data Channel only contains a single message type, the
P DATA message. This message type is the most complicated due to the
several layers of protection that are contained in this message. These VPN
tunnel or Data channel messages contain, encapsulated in a few layers of
authentication and encryption, the IP packets from and for the client. The
structure is detailed in Table 4.2 and the rest of this section.

As can be seen in the table, V1 and V2 packets are mostly identical with
the exception of one field. This Peer ID field serves to identify a peer, this
allows a peer to change its IP address while keeping the present connection
and key active. Do note that despite their confusing naming, these V1 and
V2 packets here are unrelated to the key generation types V1 and V2.

Before version 2.4, OpenVPN only has different payload structures for
the Data Channel: one for CBC mode and one for the no cipher mode (in
case you set the cipher to none). OpenVPN versions 2.4 and later will also
include three additional cipher modes (CFB, OBF and GCM) as the plan
is to also allow OpenVPN clients and servers to negotiate the data channel
cipher. All these cipher modes will have the same general P DATA packet
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OP code Message type Message purpose

0x01 P CONTROL HARD
RESET CLIENT V1

Initial message from client,
request to start a new ses-
sion using first key generation
method.

0x02 P CONTROL HARD
RESET SERVER V1

Reply from server to request
to start a new session using
first key generation method.

0x07 P CONTROL HARD
RESET CLIENT V2

Initial message from client, re-
quest to start a new session
using second key generation
method.

0x08 P CONTROL HARD
RESET SERVER V2

Reply from server to request
to start a new session us-
ing second key generation
method.

0x03 P CONTROL SOFT
RESET V1

Force tunnel key renegotia-
tion.

0x04 P CONTROL V1 Encapsulated TLS handshake
or tunnel message.

0x05 P ACK V1 Acknowledgment of received
Control Channel message.

0x06 P DATA V1 Tunnel packet V1.

0x09 P DATA V2 Tunnel packet V2.

Table 4.1: List of OpenVPN message types in TLS mode

structure, except the payload contents themselves will be slightly different.
The different payload contents are summarized in Tables 4.3, 4.4, 4.5 and
4.6.
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What Length Notes

Packet length 2 bytes does not include the 2 bytes of
the packet length.

OP code and Key ID 1 byte In the format XXXXXYYY,
with X being the OP code and
Y the key ID.

Peer ID 3 bytes Only included in V2 data
channel packets.

Payload n bytes Contents depend on several
settings

Table 4.2: P DATA message composition

What Authenticated Encrypted Notes

HMAC No No

IV Yes No Consists of random bits.

Packet ID Yes Yes

Timestamp Yes Yes Only present in Static
Key mode.

Packet payload Yes Yes The tunneled packet.

Table 4.3: Data Channel payload structure for the CBC mode

What Authenticated Encrypted Notes

HMAC No No

IV Yes No Consists of an packet
ID, timestamp and op-
tional 0 padding

Packet payload Yes Yes The tunneled packet.

Table 4.4: Data Channel payload structure for the CFB and OFB modes
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What Authenticated Encrypted Notes

opcode/peer-id Yes Yes/No peer-id is only present
and field is only authen-
ticated in P DATA V2
packets

Packet ID Yes No

TAG No No

Packet payload Yes Yes The tunneled packet.

Table 4.5: Data Channel payload structure for the GCM mode

What Authenticated Encrypted Notes

HMAC No No

Packet ID Yes No

Timestamp Yes No Only present in Static
Key mode.

Packet payload Yes No The tunneled packet.

Table 4.6: Data Channel payload structure when no cipher is used
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Control Channel packets

What Length Notes

Packet length 2 bytes does not include the 2 bytes of
the packet length.

OP code and Key ID 1 byte In the format XXXXXYYY,
with X being the OP code and
Y the key ID.

Local session ID 8 bytes A randomly generated local
ID for this session.

HMAC 16 or 20 bytes Only present if the -tls-auth
setting is used.

Packet ID 4 or 8 bytes Only present if the -tls-auth
setting is used. Optionally
contains a time t timestamp.

Ack ID Array length 1 byte

Ack ID Array As long as specified

Remote session ID 8 bytes Only present if the Acknowl-
edgment ID Array is present
(length > 0).

Message packet ID 4 bytes A local sequential message ID,
starting at 0 and incremented
by 1 with each packet send.

TLS Payload N bytes Only present if OP code is
0x04

Table 4.7: P CONTROL * message composition

While there are various control channel message types, their message
structure is all more or less the same. As a result the control channel mes-
sages can be divided in two formats.

• The P CONTROL format includes all packages starting with the label
P CONTROL. These messages have direct control over the session or
contain a payload that does. They also optionally contain an acknowl-
edgment for earlier messages received. The buildup of these packages
is detailed in Table 4.7.

• The P ACK format functions like a P CONTROL-light, it is a message
that conveys no information other than to acknowledge that certain
other messages have been received. Their buildup is detailed in Table
4.8.
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What Length Notes

Packet length 2 bytes does not include the 2 bytes of
the packet length.

OP code and Key ID 1 byte In the format XXXXXYYY,
with X being the OP code and
Y the key ID.

Local session ID 8 bytes A randomly generated local
ID for this session.

HMAC 16 or 20 bytes Only present if the -tls-auth
setting is used.

Packet ID 4 or 8 bytes Only present if the -tls-auth
setting is used. Optionally
contains a time t timestamp.

Ack ID Array length 1 byte

Ack ID Array As long as specified

Remote session ID 8 bytes

Table 4.8: P ACK message composition

A quick glance at the tables will show that the only difference between a
P CONTROL and P ACK packet consists of a few missing fields in the ACK
packet. Most of these field names speak for themselves but some require
some extra explanation. This mostly focuses on the way acknowledgments
are handled.

The first thing that might stand out is the two different session ID fields,
Remote and Local. These two fields are different because both client and
server generate their own independent session IDs for a given session. If a
client then wants to acknowledge that it has received a message from the
server it will take the Local session ID from the server packet and add this
onto its own message as the Remote session ID. The Ack ID array is then
filled with the Message packet ID’s the client has received but not confirmed
yet. The combination of Message packet IDs and the Remote session ID then
serves as identified for the messages that are being acknowledged.

The temporary TLS tunnel

As already stated and shown in Figure 4.2, before the real tunnel starts.
OpenVPN exchanges some key data and optional authentication info over
a temporary TLS tunnel. This tunnel is setup through a TLS handshake
embedded in the payload field of the OpenVPN P CONTROL V1 packets,
the temporary TLS tunnel this handshake sets up is also embedded in this
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field. The plaintext of this message comes in two forms depending on the
key generation method used. For key method 1 refer to Table 4.9, for key
method 2 refer to Table 4.10. It is worth noting that the information from
this section, despite being rather important to the overall security of the
protocol as it details the key generation, is not mentioned on the ’Security
Overview’ of the OpenVPN Documentation on the official site. Instead,
this information is only available if you look through the source code of
OpenVPN itself. The information provided in this section has been found
with a combination of looking through the source code and a set of notes
compiled for OpenVPN-NL [20].

Most of these fields are self explanatory, however the Key source struc-
ture and the Options string aren’t immediately clear from just the table
description. So let us look a bit closer at these fields.

What Length Notes

Cipher key length in bytes 1 byte

Cipher key n bytes

HMAC key length in bytes 1 byte

HMAC key n bytes

Options string n bytes Null terminated, client and
server options string must
match.

Table 4.9: TLS tunnel plaintext for Key generation method V1, encrypted
and sent as payload in step 4c of Figure 4.2

Key source structure

The key source structure is made up of 3 arrays back to back and is defined
as follows.

struct key_source {

uint8_t pre_master[48]; \\only provided by the client

uint8_t random1[32]; \\seed for the master secret

uint8_t random2[32]; \\seed for key expansion

};

These arrays are used to exchange entropy information to be used in the
generation of the cipher key for the Data Channel, but only if key generation
method V2 is used (see Table 4.10). These arrays are filled slightly differently
depending on whether you’re acting as client or server. The client will fill all
3 arrays with random data and send this to the server. The server however
will fill the pre master array with all 0’s and fill the other two with random
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What Length Notes

Literal 0 4 bytes

Key method 1 byte

Key source structure 112 bytes

Options string length 2 bytes The possible contents for this
string are listed in Table 4.11

Options string n bytes Null terminated, client and
server options string must
match.

Username string length 2 bytes includes null. Optional.

Username n bytes Null terminated. Optional.

Password string length 2 bytes includes null. Optional.

Password n bytes Null terminated. Optional.

Table 4.10: TLS tunnel plaintext for Key generation method V2, encrypted
and sent as payload in step 4c of Figure 4.2

data like the client does. Once both client and server have received their
random data sources they can use the PRF function from the TLS library
to generate the keys and secret for the Data Channel.

master_secret[48] = PRF(pre_master_secret[48], "master secret",

client_random[32] + server_random[32]);

key_block[] = PRF( master_secret[48], "key expansion",

server_random[32] + client_random[32]);

Options string

Both key generation method V1 and V2 make use of a null terminated
options string as a final check to make sure the connection will succeed.
As stated before, a client trying to connect to a server has to enter all
its connections settings locally as the protocol itself does not feature an
exchange of options. This raises the possibility of a client attempting to
connect with a faulty or outdated configuration file which can potentially
lead to unpredictable behaviour. As a safe guard against this a portion of
the options string is shared during the key generation, the options received
options string is then compared against the local one and if the certain fields
do not match the connection is terminated. An example of such an options
string is the following:

V4,dev-type tun,link-mtu 1569,tun-mtu 1500,proto UDPv4,

cipher AES-256-CBC,auth SHA256,keysize 256,
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min-platform-entropy 16,tls-auth,key-method 2,tls-client

With the exception of V4, which seems to be present by default to denote
the start of an options string, all of these are simply taken from the relevant
client or config file. Worth noting is that not all of these options are checked.
There is a specific list of options that need to match in order for the con-
nection to not be terminated (Table 4.11). These options are separated into
Tunnel, Crypto and SSL options. Keep in mind that client/server specific
options are matched against their counterpart on the other end of the con-
nection, for example the tls-client option will be matched against tls-server
and vice versa. A less obvious adherent to this rule is the ifconfig option,
”ifconfig x y” has to be matched against ”ifconfig y x”.

Tunnel Crypto SSL

dev tun—tap proto tcpserver cipher tlsauth

devtype tun—tap tunipv6 auth tlsclient

linkmtu ifconfig x y keysize tlsserver

udpmtu complzo secret

tunmtu compress alg noreplay

proto udp fragment

proto tcpclient

Table 4.11: List of options from the Options string that have to
match, entries retrieved from: https://github.com/OpenVPN/openvpn/

blob/master/src/openvpn/options.c

4.4 OpenVPN clients and servers

This section will discuss alternatives to the OpenVPN client or server.
A quick google search for OpenVPN clients will lead to several results.

Once you look into the installation instructions however you will always find
a dependency on the official OpenVPN package, immediately betraying the
’client’ as being just a GUI for OpenVPN. To strengthen this suspicion,
almost all results of this search can also be found on the OpenVPN related
project page2 under the GUI section. There are however two other results
which are not listed on this page:

• OpenVPN-NL3 is an altered version of the basic OpenVPN server and
client. It was built according to guidelines set by the Dutch govern-
ment’s national communications security agency. In essence it is a

2https://community.openvpn.net/openvpn/wiki/RelatedProjects
3https://openvpn.fox-it.com/
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stripped down and hardened version of the official OpenVPN client,
with options that were deemed unsafe completely stripped away, other
options mandated and now only using mbed TLS as back-end. This is
the closest to a custom OpenVPN client/server there was to be found,
though it is only an adaptation of the existing code.

• Pritunl4 at first glance does seem to claim to be a new implementa-
tion. However a look at the installation script does show OpenVPN as
one of its dependencies which means it is yet another GUI. A highly
specialized one however that interfaces with the VPN servers and ser-
vices that they sell as well as giving the user the option to use VPN
solutions other than OpenVPN.

In short, other than the hardened OpenVPN-NL, there doesn’t seem to
be a true alternative if you want to use OpenVPN. Every other usable client
and server seem to be build around the Official OpenVPN release.

4https://pritunl.com/
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Chapter 5

Dummy Client and Fuzzer

This chapter will cover the fuzzing of OpenVPN and test setup used for
the experiments performed in this paper. The first step towards making
the fuzzer will be building a dummy client. A program that acts like a
normal client, can construct OpenVPN messages and can successfully trick
an OpenVPN server into setting up a secure connection. This means the
dummy client can successfully go through the happy flow of the client server
communication up to and including step 7 in Figure 4.2. It will try to com-
plete this exchange using as many static messages as possible and without
computing an actual VPN tunnel key, the goal is solely to follow the proto-
col up to the desired state. Once this is up and running this dummy client
can be used as base for a fuzzer, modifying the messages it sends to fuzz the
server.

This chapter is set up as follows. Section 5.1 will summarize the test
setup used for the fuzzing and testing done in this paper. Section 5.2 looks
at the dummy client that was made and the design decisions made along the
way. And section 5.3 will go over the problems encountered while making
the dummy client and fuzzer and how these were debugged.

5.1 The general test setup

For all tests two virtual machines were setup: One is running a Ubuntu
16.04 Server with OpenVPN 2.3.10 installed. The OpenVPN server was
configured using the default settings from a config file provided with the
installation. The other virtual machine will be running a regular Ubuntu
16.04 installation, this virtual machine will take the role of client and any
fuzzing will be done from this virtual machine. The client VM will also have
wireshark installed to monitor all OpenVPN traffic. The OpenVPN server
also logs any connection attempts as well as errors and faults in the received
messages. These logs can also be used to monitor the fuzzing attempts.

The fuzzer and dummy client are used to probe the server and are written
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in C/C++, just like OpenVPN. The initial idea was to attempt to take
as much code as possible from the basic OpenVPN implementation but
this idea was quickly scrapped. OpenVPN can function as both client and
server and as a result both client and servercode exist in the same files. This
combined with the fact that a single message will travel to a multitude of
files and checks within these files makes it hard to pinpoint and copy single
code snippets to be used for the fuzzing and dummy clients. As a result
it is easier to construct messages to send to the server from scratch. The
added benefit of this approach is that we can easily modify any part of the
send messages, making it easier to build a fuzzer out of the dummy client.
A downside of this approach, of course, is the added work that comes with
writing everything from scratch.

5.2 Dummy Client

The dummy client is a simple C++ program designed to emulate standard
client behavior, but simplified with no randomness or actual VPN tunnel
traffic. The purpose of this client is to replicate the happy flow of the
OpenVPN protocol, creating and sending regular, unaltered messages to the
OpenVPN server up to the point where the VPN tunnel should open. After
this it will terminate the connection and report the success. If the Wireshark
logs of this exchange, as well as the OpenVPN server logs, show no oddities
or differences between this and a regular client connection. Every time the
dummy client successfully resolves a new step in the protocol another new
step in the protocol can be fuzzed, as we now have a baseline network trace
to compare the fuzzing attempts to as well as a base packet (the dummy
client packet) to corrupt and manipulate for fuzzing.

However, while the dummy client can read, create and modify OpenVPN
messages. It will not be build to do the same for TLS messages, as I’m
not focusing on fuzzing the TLS implementation. To still handle the TLS
handshake (see Figure 4.2, steps 4 to 6), the client will make use of a separate
TLS client that will handle the handshake and encryption of these steps.
This TLS client consists of an Mbedtls implementation capable of doing a
standard handshake (and some encryption after the handshake) with some
wrapper functions and a state machine around this to control its behaviour.
The TLS client will communicate with the dummy client as if the dummy
were a TLS server. The dummy client will only take the TLS messages,
wrap them in an OpenVPN header and send these to the actual server
(only acting like a man-in-the-middle). Any TLS responses from the server
will undergo the reverse treatment, being unwrapped out of this header and
send to the black-box as pure TLS messages. This approach will simplify the
implementation of these steps of the protocol and the fuzzing later on, letting
me focus purely on the OpenVPN messages. The downside of this approach
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is that this really makes the fuzzing of the TLS messages (apart from the TLS
tunnel payloads) impossible without some heavy modifications. However,
as this was already out of the experiment’s scope this is not considered a
problem.

Dummy Client

TLS Box OVPN Server

Figure 5.1: The dummy client/fuzzing setup. All TLS communication is
handled by a separate TLS-box, an TLS implementation which communi-
cates with the server through the dummy client/fuzzer

5.3 Debugging the dummy client

While constructing the dummy client there was one message that remained
unclear. Step 4c in Figure 4.2, the exchange of key data and some client
verification information, is not clearly documented. And unlike other mes-
sages in the Control Channel this step is fully encrypted. Figuring out what
the exact format of this message is has proven to be a chore. The following
methods have been tried:

• The message itself has been encrypted with TLS and we possess all
certificates for both the client and the server. Wireshark has an option
that lets you decrypt TLS traffic if you can provide it with all the
certificates and private keys. This option however led to no results.
It seems that Wireshark can not decrypt TLS traffic when the TLS
authentication is two-way. Wireshark also seems to struggle with the
encapsulation of the TLS protocol inside of the OpenVPN protocol.

• OpenVPN itself has two commands (–cipher and –tls-cipher) that let
one alter what ciphers are used, one for the Data Channel and one for
the Control Channel. While the Data Channel allows a ’none’ option
to be used for no encryption, the Control Channel is stricter and does
not allow the user to set a null cipher.

After these two options failed there was but one left, digging through
the source code itself to try and find the origin of the different segments
of this message. Luckily we can get some help from the earlier mentioned
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OpenVPN-NL implementation, which has a better documentation on this
part of the protocol [20]. Using the more detailed information from this
specification on the format of this message, together with the source code
of OpenVPN, we can finally infer what the contents of these messages are
(see Section 4.3.2, The temporary TLS tunnel).

5.4 the Fuzzing tool

With all the specifics of the OpenVPN protocol and message contents doc-
umented, we can start to transform the Dummy Client into a fuzzing tool.
This is done by taking the mostly hard coded messages and turning these
into variable objects. The full knowledge of the protocol allows us to simply
define the values for all the different parts of an OpenVPN message and craft
a message out of these only before sending. We can then corrupt this mes-
sage by changing one or more of these values to something the server does
not expect. The tool can also do the reverse, taking an OpenVPN message
and extracting all info from it so it can be presented in a simpler format.
This is useful to monitor server responses during the fuzzing attempts, but
also to easily insert base messages into the fuzzer.

Due to time restraints however the fuzzing tool was never incorporated
into an actual fuzzer, the debugging process to try and reverse engineer the
entire protocol took up too much time to still create a fully fleshed out fuzzer.
In the end development of the fuzzing tool choked during the implementation
of the TLS Box. Nevertheless, the fuzzing tool is able to craft and dissect
OpenVPN Control channel messages. The tool in its current shape has been
used to run some simple, manually crafted experiments which are detailed
in the next chapter. The source code of the fuzzing tool can be found at
https://github.com/Svalburg/OpenVPN-FuzzTool.
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Chapter 6

Fuzzing Results

This chapter will cover the results from the fuzzing experiments made with
the Fuzzer detailed in Chapter 5. All experiments were performed on Open-
VPN 2.3.10 installed on a Ubuntu 16.04 Server running in a virtual machine.
All experiments were manually fuzzed and for every experiment the follow-
ing information will be detailed: The specific message fuzzed (see Figure
4.2, an expectation for the result, the actual result and any potential ethical
issues related to the experiment. With ethical issues we mean whether or
not it is ethical to perform the experiment outside of a testing environment,
for example on a real live OpenVPN server we do not own. Since we didn’t
manage to create an automated fuzzer and only have a fuzzing tool that can
easily edit specific parts of OpenVPN messages, all experiments performed
here have been crafted manually.

A. The initial message, changing the key method

Since the client initiates a connection and the initial message indicates what
key method to use, and knowing that by default OpenVPN uses (and rec-

Experiment Message Structure Result

A 1 Table 4.7 Server ends connection

B 1, 3 Table 4.7, 4.8 Server ends connection,
but logs a weird error

C 1 to 4a Table 4.7 Server completely ig-
nores or ends connec-
tion

D 4a Table 4.7 Server ends connection

Table 6.1: Experiment summary
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ommends) key method 2, what happens if a client sends out a V1 message
instead? This experiment changes the OPcode of Message 1 in Figure 4.2,
exact contents of this message are detailed in Table 4.7.

Expectation The OpenVPN server should just throw this message away,
key method 2 is safer and while key method 1 is still supported for backwards
compatibility reasons, it should not be accepted unless explicitly specified
in the server setup.

Result The OpenVPN server log explicitly lists this event happening, list-
ing that an OPcode for V1 is received while key method 2 is used by the
server. It then terminates the TCP connection.

Ethical Issues As this experiment does not involve any message corrup-
tion or altering and sends a completely standard V1 packet as described
in the documentation, there should be no issues trying this on a random
server. If the server is properly configured it will just terminate the connec-
tion. But, if for some reason the server is configured to accept key method
one. Then this means the server administrators explicitly allowed this.

B. Fuzzing the hard reset header and the accompa-
nying acknowledgment

Even though the initial packet from the client does not contain any informa-
tion other than the requested key method, the header still has some fields
that could be fuzzed. The fields tried were: packet length, the OPcode, Ack
ID array and length and TLS payload. For length fields both extremely high
and extremely low values were tried. This experiment changes the contents
of Message 1 and 3 in Figure 4.2, the makeup of these messages is described
in Tables 4.7 and 4.8.

This was the first experiment to actually make use of the fuzzing tool,
albeit manually. A total of 7 packets were crafted and send towards the
server, each modifying a single field to see how the server would behave: An
abnormally low packet length, an abnormally high packet length, a different
OPcode, not existing message ID’s in the Ack array, an abnormally low Ack
array length, an abnormally high Ack array length and a TLS payload that
should not be there.
Crafting these message with the tool is extremely easy as it turns an Open-
VPN packet into an editable object with getters and setters, making it both
convenient for manual manipulation as well as for automatic manipulation.
The code for the last experiment mentioned, adding a TLS payload to the
hard reset message and writing the packet back to a buffer, looks as follows:
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//Basic client hard reset v2 packet

unsigned char hardresetclientv2[] =

{

0x00, 0x0e, 0x38, 0x04, 0x6c, 0x44, 0xbd, 0x10,

0xce, 0xe3, 0x98, 0x00, 0x00, 0x00, 0x00, 0x00

};

PControl *hardreset = new PControl(hardresetclientv2);

//TLS_hello is another predefined char buffer containing

//a standard TLS hello message taken from an earlier session

hardreset->setTLSPayload(TLS_hello, 301);

hardreset->setLength((short)315);

unsigned char buffer[500];

hardreset->toPacket(buffer);

Expectation Since the server will already terminate if the OPcode points
to the wrong key method, I’m expecting a completely wrong OPcode will
result in a similar termination. Fuzzing the length, ACK ID array or payload
fields might result in some interesting results but will probably result in a
similar immediate termination.

Result The moment any data value falls outside of the expected param-
eters the server closes the connection with a clear error message in the log.
A faulty length, OPcode, weirdly modified Ack array and a TLS payload
field filled with corrupted values all lead to an error message pointing to
the faulty element of the packet and a terminated connection. Interestingly
enough, setting the length of the packet to be long, but not longer than
the maximum expected length of 1546, leads the server to believe that the
packet contains a TLS message payload and will then give an error that the
TLS message is unreadable. Even if the packet is the first packet received
from the client (which should not even have a TLS payload).

Ethical Issues Since this experiment starts modifying packets outside of
normal parameters (and past CVE’s have shown that at least the modifi-
cation of the length and payload fields has led to server crashes) this ex-
periment should not be used on random servers without permission. This
experiment will only be performed on my own test server.

C. Attempt to start the temporary TLS tunnel ne-
gotiation early

Experiment B led to an interesting result. Even though we made the server
think there was a payload attached to the hard reset message, the server
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only complained that the payload contained unreadable information, not
that it was present. The protocol specifies that this message should not
have a payload at all. What if we add a valid TLS message as payload to
this message and try to start negotiating the temporary TLS tunnel earlier?

Expectation I expect this to trigger an error message. The protocol
clearly states the tunnel negotiation starts at a later message so the server
should end any attempt to start it earlier.

Result Two versions of the experiment were tried, one with a regular hard
reset packet that just happens to have a TLS hello message as payload. And
one with an actual P CONTROL packet, skipping the hard reset packet
alltogether. In the first case the server completely ignores the TLS payload,
it doesn’t log that it was present and simply sends a hard reset message back.
In the second case the server terminates the connection immediately, logging
an unable to route message error. This indicates the server did not know
the client (as there was no hard reset message from the client indicating
that they wish to start a connection) but did recognize the packet as a TLS
message, the server then safely terminates the connection.

Ethical Issues This change to the protocol does not seem malicious, but
does tread outside of the happyflow of the protocol. If the server does
not terminate the connection immediately, it might lead to unpredicted be-
haviour. Therefore it is safest to not perform this experiment on a public
server.

D. Fuzzing the first TLS hello packet

If the previous experiment did not lead to immediate termination of the
connection upon receiving a slightly altered packet. What would happen
once we actually reach the TLS part of the protocol and we apply the same
fuzzing techniques. Will a faulty length trigger some warning flags now
where they didn’t before? Will a corrupted payload field be passed on by
OpenVPN blindly and cause issues once the TLS implementation tries read
it? Will any suspicious or changed data in the OpenVPN header (weird ack
fields, a changed session ID, etc) cause an abort and how is this logged? This
experiment changes the contents of Message 4a in Figure 4.2. Specifically,
the TLS Payload field listed in Table 4.7.

Expectation : As a crash relating to a weird TLS payload length was part
of an old CVE and they claimed to have fixed this issue. I would expect
that they fixed it properly and any suspicious or wrong data in this type
of packet as well will lead to the packet being ignored and the connection
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closed. This expectation is strengthened by Experiment B’s results where
attempting to read the payload while there is no payload present results in
OpenVPN giving a TLS reading error, indicating that it could not properly
read the TLS payload.

Result A similar result to experiment B. The same error messages logged
by the server.

Ethical Issues same as the previous, this involves purposefully and mali-
ciously altering data to try and get a non standard reaction from the server.
This should only be performed in the test environment.
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Chapter 7

Future Work

This chapter will look at future work that can still be done, this includes
both completely different angles on this research as well as goals that weren’t
attained within the time frame of this thesis.

AFL1 could potentially also be used to fuzz OpenVPN. However AFL
does not natively support network services, as it expects input over stdin.
This would require a rewrite of OpenVPN or some other hacks to make it
work. An attempt at this has been suggested in the past2 by the creator of
the AFLize tool, a program which can automatically compile code so it can
be used by AFL, but has fallen short due to a lack of developer response.
In the end this approach was deemed to time consuming for this research as
there were multiple other fuzzing approaches to look at.

The functionality of the fuzzing tool can still be expanded. With the
ability to read and create TLS messages for the TLS handshake and tunnel
portion of the protocol as well as hooking the tool into a fuzzing framework
that automates the experiments and enables actual fuzzing. Furthermore,
a set of extra experiments was initially planned but never performed as
this state of the fuzzing tool was never reached. These experiments would
look at older versions of OpenVPN and would try to replicate the outcome
of several CVEs (CVE-2014-8104, CVE-2017-7478 and CVE-2017-7522 as
listed in Chapter 2). If the fuzzer can find these vulnerabilities as well it
would serve as a proof of concept that the fuzzer can indeed potentially
produce results.

1http://lcamtuf.coredump.cx/afl/
2https://sourceforge.net/p/openvpn/mailman/openvpn-devel/thread/56C5C6F7.

1020903%40gmail.com/#msg34862420
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Chapter 8

Conclusions

This research initially attempted to create a fuzzer for OpenVPN and would
attempt to run several experiments using this fuzzer. It became quickly
apparent, however, that the OpenVPN documentation is severely lacking.
At numerous parts through this research was progress halted due to either
faulty or completely missing documentation of OpenVPN. OpenVPN claims
to be an Open Source project, and while this is indeed true for the code
itself, the exact specifics of the protocol are kept needlessly hard to find,
scattered through various comments in the code, the doxygen and one or
two actual (yet incomplete) explanations of the protocol on the OpenVPN
website. What is especially problematic is the incompleteness of the Security
Overview page [3]. This page claims to explain the security specifics of
the OpenVPN protocol, but not only seems outdated (not mentioning the
existence of certain packets at all) but also fails to actually explain how
OpenVPN actually generates keys and exchanges entropy data to aid in this
generation, which is the entire goal of the protocol. Reverse engineering this
this key generation process turned out to be the biggest bottleneck of this
thesis.

The OpenVPN documentation is, in short, insufficient. While there is
plenty of documentation and general help available on how to use OpenVPN.
Finding technical information or the exact specifics of OpenVPN’s security
turned out to be a chore. This not only makes it harder to actually verify the
security of OpenVPN when one is not yet aware of how OpenVPN functions.
It also harms the Open-source status of the software and its protocols. It is
needlessly hard to replicate the software or write your own versions of the
protocols in another language or on another platform. This has caused large
delays for this thesis and an eventual change of goals all together. It also
explains why no real alternative versions of the OpenVPN client have been
found and why every supposed OpenVPN client alternative simply builds
around and on top of the official implementation.

As a result of the aforementioned problems, the topic of this thesis grad-
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ually shifted from building a complete fuzzing framework to figuring out how
OpenVPN operates. By gathering and compiling information from various
sources, a low level documentation of the messages in the OpenVPN proto-
col was created (see Chapter 4). This documentation can be used to create
an OpenVPN client or a fuzzer capable of creating OpenVPN messages and
corrupting specific fields of those messages. A simple fuzzing tool for Open-
VPN was also created, capable of acting like an OpenVPN client but cor-
rupting specific fields of Control channel messages. This tool was then used
to perform several manual experiments, none of which uncovered wrongful
or dangerous behaviour from the OpenVPN server. The source code of this
tool can be found at https://github.com/Svalburg/OpenVPN-FuzzTool.
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[15] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This POODLE
bites: exploiting the SSL 3.0 fallback. https://www.openssl.org/

~bodo/ssl-poodle.pdf, 2014.

[16] Tomas Novickis. Protocol state fuzzing of an OpenVPN. Master’s
thesis, Radboud University Nijmegen, 2016.

[17] Bruce Schneier, David Wagner, and Mudge. Cryptanalysis of Mi-
crosoft’s PPTP Authentication Extensions (MS-CHAPv2). In Secure
Networking—CQRE [Secure]’99, pages 192–203. Springer, 1999.

[18] Andrew S. Tanenbaum and David J. Wetherall. Computer Networks.
Pearson, 5th edition, 2011.

[19] John R. Vacca. Virtual private network security. In Complete Book of
Remote Access: Connectivity and Security, pages 251–267. Auerbach
Publications, 2002.

[20] Ebo van der Laan. OpenVPN-NL protocol specification, 2017.

41

https://openvpn.net/papers/openvpn-101.pdf
https://openvpn.net/papers/openvpn-101.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf

	Introduction
	The scope of the thesis' research

	Security analysis of OpenVPN
	The types of vulnerabilities
	CVE analysis of OpenVPN
	TLS

	Background
	VPNs
	IPSec VPNs
	PPTP VPNs
	TLS VPNs

	Fuzzing
	Sulley
	American Fuzzy Lop
	LibFuzzer
	Debugging tools


	OpenVPN
	Introduction to OpenVPN
	Authentication modes
	Static Key mode
	TLS mode

	The OpenVPN protocol in TLS mode
	The protocol
	OpenVPN message structure in TLS mode

	OpenVPN clients and servers

	Dummy Client and Fuzzer
	The general test setup
	Dummy Client
	Debugging the dummy client
	the Fuzzing tool

	Fuzzing Results
	Future Work
	Conclusions
	Bibliography

