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Abstract

Electronic devices can perform all sorts of operations which we can analyze. We can either analyze a
single operation executed by the device, or a full execution. Side-channel attacks (SCAs) exploit the
relation between information leaked through a side-channel and the corresponding secret data. Different
types of side-channels can be used: timing information, power consumption and electromagnetic signals
are all information sources that can be used in SCAs. When we consider an implementation on a specific
device, we can use these side channels to obtain secret information stored or used in this device. This
can break secrecy assumptions about confidential information used in these devices. In Elliptic Curve
Cryptography (ECC), we use public and private keys to encrypt and decrypt messages. If we have an
encrypted message, the original message can only be obtained if one knows the corresponding private key.
Construction of these keys depends on a problem that makes it particularly hard to obtain the private
key assuming the public key is accessible to anyone. With respect to ECC, the difficulty of this problem
depends on the intractability of determining k from Q = kP where the points P and Q are known. This
computation of kP is also known as scalar multiplication. In [11

.

], a new curve called FourQ is introduced.
Scalar multiplication on FourQ is very fast compared to other curves that were considered after its
introduction. This is because FourQ can make use of a 4-dimensional Gallant-Lambert-Vanstone (GLV)
decomposition, which reduces the total number of operations needed to compute a scalar multiplication.
In this thesis, we attack a hardware implementation of FourQ on FPGAs which was introduced in [26

.

].
We make use of an Online Template Attack (OTA) [2

.

], which greatly reduces the number of templates
needed compared to regular template attacks.
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Chapter 1

Introduction

I
n public key cryptography, the cryptographic system has a pair of keys: the public and private
key. The public key can be distributed freely, while the private key must remain known
only to the owner. If this is the case, authentication, encryption and non-repudiation can
be achieved. We introduce to three major families of public-key algorithms based on their

underlying computational problem [36

.

]:

• Integer-Factorization Schemes: schemes based on the fact that large integers are hard to factor.
An example of a scheme that falls into this category is RSA.

• Discrete Logarithm Schemes: schemes based on the discrete logarithm problem in groups. An
example of a scheme that falls into this category is the Diffie-Hellman key exchange.

• Elliptic Curve Schemes: A generalization of the discrete logarithm algorithm are elliptic curve
public-key schemes. An example of a scheme that falls into this category is the Elliptic Curve
Diffie-Hellman key exchange (ECDH).

An advantage of Elliptic Curve Cryptography (ECC) is the fact that it can offer the same level of security
while using much smaller parameters than non-ECC cryptography. This leads to a significant increase in
performance and makes these algorithms more suitable for (embedded) systems where amount of memory
is limited and where energy consumption should be minimal.

A Field-Programmable Gate Array (FPGA) is an integrated circuit that is designed to be configurable
after it has been manufactured. FPGAs have become an attractive option for deploying hardware
applications in comparison to the well-established Application-Specific Integrated Circuits (ASICs).
Besides their great flexibility, FPGAs also reduce the development costs and allow for faster prototyping.
For these reasons, FPGAs have become targets for many ECC implementations [19

.

, 41

.

, 42

.

].
In [11

.

], a new elliptic curve with the name FourQ is proposed. This curve provides approximately
128 bits of security. By combining a four-dimensional decomposition wit the fastest (explicit) twisted
Edwards curves formulas available and in combination with the efficient Mersenne prime p = 2127 − 1, it
supports highly-efficient scalar multiplications. For generic scalar multiplications, FourQ performs four
to five times faster than the original NIST P-256 curve [11

.

, 18

.

], and is also faster than curves that were
considered as NIST alternatives after its introduction. In [26

.

], an implementation of FourQ on FPGAs is
proposed, which was the first time FourQ was implemented and deployed on reconfigurable hardware. As
expected, the speed results of the hardware design of FourQ are positive: a speedup factor of 2-2.5 was
observed on a Xillinx Zynq-7020 FPGA, in comparison with the corresponding variants of the fastest
Curve22519 implementation on the same device. The proposed FourQ hardware implementation exhibits
constant time execution, which protects against timing and simple side channel attacks. This enables us to
test the resistance of the proposed hardware implementation against other, more advanced, side channel
attacks (see Chapter 6

.

).
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1.1 Related Work

Side-channels rely on the relation between information leaked through a side-channel and the secret data
related to this information. A frequent used side-channel is the power consumption of a device. A simple
attack that makes use of this information is simple power analysis (SPA), in which the power consumption
of a device is visually examined. This enables an adversary to observe the different operations occurring
in the execution of the algorithm. If the algorithm does not run in constant time, the graph of the power
consumption can be used to retrieve the secret data in the execution of the algorithm. This type of attack
is however hard to perform in practice, as countermeasures against SPA are generally fairly simple to
implement. A more advanced side-channel attack is differential power analysis (DPA), in which power
consumption measurements are statistically analyzed [27

.

]. This requires a large number of power traces
from the same device using the same secret. The more traces we capture, the higher the chances of
successfully performing the attack. The number of traces required is related to the noise that is inherent to
captured power traces. DPA requires multiple power traces for the same secret, which is something that
cannot always be realized in practice. Therefore, new techniques that fall between SPA and DPA have
been developed, with one of the most notable ones being template attacks [8

.

, 37

.

, 10

.

]. Template attacks are
generally used to attack the secret scalar in a scalar multiplication algorithm. This attack only requires one
target trace to attack this secret, while numerous template traces are needed in the precomputation phase.
This type of attack was improved in [2

.

], in which Online Template Attacks (OTAs) were introduced and
successfully applied. OTAs reduce the number of templates and only require one target trace from the
device under attack. These are horizontal SCAs, in which different parts of the same trace are considered
to attack different key bits. The OTA applied in the original paper was used to attack different scalar
multiplication algorithms that executed in constant-time. In addition, different input representations (i.e.
affine and projective) for these algorithms were also considered. They only attacked the first 5 bits of
the scalar due to a problem in their measurement setup. However, a complete key retrieval using an
OTA was performed in [12

.

]. In this paper, the open-source cryptographic library PolarSSL, that can be
used in embedded devices, was attacked. The implementation was modified to speed up the finite field
computations. Simply put, they made use of leakage due to a potential overflow in the field multiplication.
To increase the success rate of the template matching phase, they averaged multiple traces for a single
template. This increased the correlation value of the correct template from 69% (when only using 1
template trace) to 99.8% (when using the average of 100 template traces). The correlation value was
calculated using the Pearson correlation coefficient. However, the chance of retrieving the 256-bit scalar
when using 100 additional template traces per trace still remains low. Due to their approach, they were
however able to correct and detect errors in attacking a single key-bit with reasonable probability. This
made full scalar retrieval very likely.

Most of the published power analysis attacks are applied to smart card and microcontrollers. [35

.

] is
one of the first papers in which a simple power-analysis attack was applied to FPGAs. In this paper, a
Montgomery modular multiplier implementation (without the final subtraction) on a FPGA was attacked.
The attack involved a visual inspection of the computation power trace, which clearly showed the secret
key. In [44

.

], a DPA attack was applied to a FPGA running a DES implementation. As mentioned in this
paper, the physical behavior of FPGAs is different than smart cards. Therefore, the original proposal of
DPA and its improvements were not directly applicable to FPGAs. This was dealt with by generalizing
the power model of the attack to account for this difference in physical behavior. The proposed techniques
were successfully applied to DES, and it was also verified that other block ciphers (including AES
Rijndael) were vulnerable to the proposed methods. In [20

.

], a new FPGA board called SAKURA-G was
introduced that contains two Spartan-6 FPGAs. The SAKURA-G board was evaluated by making use of
a correlation power analysis (CPA) on an AES circuit with no countermeasures against SCAs. Results
of this power analysis were compared to the previously introduced standard boards SASEBO-GII and
SASEBO-G. The CPA on each of the boards was conducted five times without changing the conditions
and using the same key and plaintext. It was shown that the SAKURA-G board reduced the number of
templates needed to successfully perform a CPA by half compared to the other boards [20

.

]. In addition,
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power traces captured using the SAKURA-G board were cleaner compared to the other boards. These
results make the SAKURA-G board a good option when you want to verify the protection of hardware
designs against side-channel attacks.

In [11

.

], a fast curve named FourQ was introduced that provides a very fast way to perform scalar
multiplication. An implementation of FourQ on microcontrollers with strong countermeasures against
side-channel attacks was presented in [30

.

]. The countermeasures in this implementation applied to a
variety of side-channel attacks, and should increase the difficulty for an attacker to successfully apply an
unprofiled vertical attack. The effectiveness of the countermeasures was partially verified by carrying out
a DPA evaluation using a discovery board containing the ARM Cortex-M4 microcontroller.

1.2 Outline Thesis

In this section, we describe the outline for the rest of this thesis. In Chapter 2

.

we provide information
about the board that is used to run the hardware implementation of FourQ and to capture the power
traces necessary to perform the side-channel attack: the Side-channel AttacK User Reference Architecture
Board (SAKURA-G) [20

.

]. This includes details about how the data is transmitted from and to the board
and which state machines and interfaces are used to realize this. Information about elliptic curves is
summarized in Chapter 3

.

. In Chapter 4

.

, we describe the details of the curve FourQ. Details regarding the
hardware implementation of FourQ are discussed in Chapter 5

.

. Chapter 6

.

contains details about (online)
template attacks. The application of an OTA to FourQ and the corresponding results are described in
Chapter 7

.

. Chapter 8

.

concludes and discusses this thesis.
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Chapter 2

SAKURA-G

T
he SAKURA-G board consists of two integrated Spartan-6 FPGAs. One of these Spartan
FPGAs serves as the main security circuit (XC6SLX75-2CSG484C), while the other one serves
as the controller (XC6SLX9-2CSG225C). The main Spartan contains the actual cryptographic
hardware design. The control Spartan is used to control the main board by changing specific

signals received by the main board (e.g. signals indicating whether encryption/decryption has to be
performed, or whether the internal state has to be reset). To deploy a hardware design on our FPGA, we
need to somehow transfer this design to the board. This requires the hardware design to be processed in a
specific way:

1. Synthesis: the abstract description of our hardware design (written in for example VHDL or
Verilog) is turned into a design implementation of logic gates and lookup tables (LUTs), digital
signal processors (DSPs), BRAMs and other elements.

2. Mapping, Place and Route: the structures identified in the previous step are mapped to FPGA
elements. These components are then routed and the appropriate signals are connected.

3. Program file: a file is generated that can be transferred to the FPGA. Depending on the file format,
this file either gets flashed to the flash memory on the SAKURA-G board, or is stored in the FPGA
non-persistent memory.

2.1 Constraints

Constraints are used to guide the design tool on how specific parts of the design should be treated. There
are two types of constraints:

• Synthesis constraints are used by the synthesis tool to optimize specific parts of the hardware
description language (HDL) code. They can be either embedded directly within the VHDL/Verilog
code or specified in an external synthesis constraint file.

• Implementation constraints are instructions passed to FPGA implementation tools that specify
mapping, placement, timing and other guidelines followed by the implementation tool while
processing a FPGA design. These constraints are generally placed in a User Constraint File
(UCF). Examples of these constraints are LOC (placement) and PERIOD (timing) constraints. In the
hardware design we consider, the majority of the constraints (if not all) are LOC constraints. LOC
constraints define where a design element can be placed within a FPGA.

2.2 JTAG

JTAG was a standard initially developed by IEEE to solve issues with electronically manufactured boards.
It is a standard used to verify designs and circuit board after they have been manufactured. In our case, it
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is used as a programming, debug and probing port. The JTAG programmer/debugger is attached to both
the JTAG port and the micro-USB port, which makes it ready to use. We use the JTAG programmer to
load hardware designs of the control and main FPGAs to the Spartan FPGAs. In general, there are two
file formats that can be loaded to a FPGA:

• BIT file: A .BIT file is a raw storage of the programming bits for the FPGA. It can be loaded to the
FPGA via JTAG using for example iMPACT (a Xilinx specific utility). This file format is primarily
used for testing a hardware design. The reason for this is, when the board loses its power, the design
is “lost”.

• MCS file: A .MSC file is flashed to flash memory, which means that the contents are not lost when
power is lost. The .MSC file can be flashed to flash-memory via JTAG using iMPACT. On power-up,
specific configuration signals are used to load the program to the board.

2.3 Interface with the board

To interface with the Spartan FPGAs that are present on the SAKURA-G, we make use of Python code
from the ChipWhisperer project1

.

. In addition, we make use of the source files for both the main and
control FPGAs available on the SAKURA-G website2

.

. The software needed to develop and deploy
hardware designs to our board is as follows:

• Xilinx ISE 14.7 (licensed);

• FTDI drivers D2XX3

.

;

• FT PROG4

.

.

The FTDI drivers are required by the ftd2xx Python package to send and receive data to and from one of
the FPGAs (i.e. either the control or the main FPGA). FT_PROG can be used to view connected FPGAs (if
any). Finally, Xilinx ISE is used to generate the corresponding program files for our design and send
them to the board.

We now describe the structure of the interfaces used in the designs of the control and main FPGAs.
The two FPGAs on the SAKURA-G board are interconnected through a local bus. The SAKURA-G
makes use of an USB FTDI interface that allows an external PC to communicate with the one of the
FPGAs. Channel A of the the USB interface (FT2232H) is connected to the controller FPGA and channel
B is connected to the main FPGA. Depending on the DIP switch (and another control flag), we are
connected to either the main FPGA or to the control FPGA. As we do not need to directly interface with
the main FPGA, we assume to be always connected to the USB interface of the control FPGA.

The control FPGA can send and receive data to the main FPGA by making use of the local bus. The
control FPGA also receives external inputs such as a 48MHz clock and a reset signal. In addition, it
can also control the LEDs that are located next to the FPGA on the board. The 48MHz clock that is
received as input by the control FPGA is used to generate two clocks: one that is used as the system clock
(clk), and another one (usb_clk) to clock the USB connection (which by default is clocked at 24MHz).
The system clock is used in both the local bus (connecting the two FPGAs) and in the main FPGA. The
frequency at which the system clock operates is controlled by the (4-bit wide) User DIP switch (where the
default operation frequency is 1.5MHz). To make use of a different operation frequency, we set the first
bit of the DIP switch to high. The remaining bits of this switch control the new frequency (3, 6, 12 or
24MHz). A schematic overview of the connection between the two boards can be seen in Figure 2.1

.

. We
give a short description for each of the interfaces:

1https://newae.com/tools/chipwhisperer/

.

2http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html

.

3http://www.ftdichip.com/Drivers/D2XX.htm

.

4http://www.ftdichip.com/Support/Utilities.htm#FT_PROG

.
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Figure 2.1: Overview of the interfaces used by both the main and control FPGAs. The control FPGA
only moves data between the USB port and the control FPGA (via the FT2232H interface) and between
the main FPGA and the control FPGA (via the Cipher interface). Data transmission between the Cipher
interface and the FT2232H interface is done by making use of two FIFOs: a transmission (TX) and a
reception (RX) FIFO. The TX FIFO is used to transport data (written by the) Cipher interface to the
FT2232H interface, while the RX FIFO is used to transport data from the FT2232H interface to the
Cipher interface. Note that not all input signals are shown (e.g. the clock and reset signals for both FIFOs
are omitted). The meaning of the single and double stars in some of the output signals from the FT2232H
interface are as follows:
*: The value of usb_d contains the value that is read from the TX FIFO if the first bit of the DIP switch is
low (i.e. c_dipsw(0) = '0') (and when usb_txena = '1').
**: The value of usb_rdn (usb_wrn) equals the internal usb_rdn (usb_wrn) signal when the first
bit of the DIP switch is low (i.e. c_dipsw(0) = '0'), otherwise it is a constant value of 1.
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Figure 2.2: Finite state machine used by the FT2232H interface to control the reading and writing from
the FTDI USB chip. In the read states (r1, r2, r3), a single byte is received from the USB channel in order
to be sent to the main FPGA. In the write states (w1, w2, w3), a single byte is transmitted over the USB
channel.

• FT2232H interface: this component reads data from the USB port (FTDI based) and writes in the
internal reception FIFO (RX). In addition, it also reads the transmission FIFO (TX) and sends it
to the USB port (Figure 2.1

.

). Reading and writing from the FTDI chip is controlled by a finite
state machine (FSM) (Figure 2.2

.

). This FSM starts in the idle state (i), in which it is determined
whether it can start to read data from the USB channel (r1), write data to the USB channel (w1) or
remain in the idle state (i). We describe the read and write states in more detail:

– Read. If the RX FIFO is ready and not busy (usb_rxf_reg = '1' and rx_busy = '0'
respectively), we proceed to the first read state (r1). Once we are in the second read state
(r2), we read the actual byte from the USB channel, and set the write enable of the RX FIFO
and indicate that this register is read ready. Finally we proceed to the final read state (r3),
in which the data read from the USB channel is actually written into the RX FIFO. After
resetting the write enable of the RX FIFO, we proceed to the back-off state (b).

– Write. If the TX FIFO is ready (usb_txe_reg = '1' and tx_rdy = '1'), we proceed to
the first write state (w1). In the first write state (w1), we reset the read enable of the TX FIFO
and enable the output of the USB data bus. In the second write state (w2), we indicate that
the value from the TX FIFO is ready to be written to the USB port.

– Back off. In the back off state (b), we reset the USB write enable (which is low active). This
signal is passed to the FTDI chip, which then knows that it can set the corresponding signals
to send another byte. In addition, we also reset the output-enable signal (which indicates
whether the output data is valid or not).

• Cipher interface: This is the interface with the main FPGA. This component controls the local
bus between the control and the main FPGA. It reads the reception FIFO (RX) that the FT2232H
interface writes, and writes content received from the local bus (i.e. written by the host interface)
into the transmission (TX) FIFO (see Figure 2.1

.

). Reading and writing from the main FPGA (i.e.
the host interface) is controlled by two state machines:

– Cipher Read (Figure 2.3a

.

): This state machine controls the reading from data that is written
on the local bus by the host interface. The FSM starts in the idle state (i), in which it waits
until the main FPGA is ready, the host interface is write ready and the cipher interface is read
ready (see Figure 2.3a

.

). If this is the case, the FSM moves to the read state (r). In addition, it
sets the read enable and clears the write enable of the host. In the read state, the input received
over the local bus (lbus_rd) is written to the TX FIFO. The values of the cipher read and
host write enable are restored to their original values.

– Cipher Write (Figure 2.3b

.

): This state machine controls the writing on the local bus, which
is read by the host interface. The FSM starts in the idle state (i), in which it waits until the
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(a) Finite state machine used by the cipher
interface to control the reading from the data
written on the local bus by the host interface
(i.e. main FPGA).
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(b) Finite state machine used by the cipher interface to control the writing
to the local bus connected to the main FPGA.

Figure 2.3: State machines used by the cipher interface to control the reading from and writing to the host
Interface.

host interface is write ready, and the cipher interface is read ready. If this is the case, the FSM
moves to a read state in which it reads data from the Reception (RX) FIFO. In the write state,
this data is then transmitted over the local bus such that it can be read by the host interface.

• Host interface: This component reads and writes the local bus between the control and the main
FPGA. It is mainly a state machine. It controls the implementation through the values that are
written in the bus. Received values are stored in registers. Depending on the received value and the
appropriated control signals (e.g. write enable (WE)), parts of the register are assigned specific
values. This component consists of two registers: addr_reg and data_reg.

2.4 IP blocks

The hardware design of FourQ [26

.

] (Chapter 5

.

) makes use of a couple of Intellectual Property (IP) blocks
provided by Xillinx. An IP block is a reusable unit of logic, which is the intellectual property of one party.
The IP blocks, and their corresponding configurations, used within the FourQ hardware design are as
follows:

• blk_mem_gen_0:
Memories & Storage Elements→ RAMs & ROMs & BRAMs→ Block Memory Generator

Setting Value

Memory type True Dual-Port RAM
Clocking Options Common Clock

Port A/B Write Width 128
Port A/B Write Depth 256

Port A/B Enable Use ENA/ENB Pin
Port A/B Register Port A/B output of Memory Primitives

All other options Keep defaults

• blk_mem_gen_1:
Memories & Storage Elements→ RAMs & ROMs & BRAMs→ Block Memory Generator

10
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Figure 2.4: Finite state machine used by the host interface to control the reading from and writing to the
internal registers and control signals of the FourQ component.

Setting Value

Memory type Single Port ROM
Algorithm Fixed Primitives→ Primitive (Write Port A): 1kx18

Port A Write Width 25
Port A Write Depth 8192

Port A Enable Use ENA Pin
Port A Register Port A output of Memory Primitives

Load Init file prog_code.coe
All other options Keep defaults

• mult_gen_0:
Math Functions→Multipliers→Multiplier

Setting Value

Port A/B data type Unsigned
Port A/B width 64

Multiplier Construction Use Mults
Pipeline stages 7
All other options Keep defaults

2.5 Reading and writing of internal registers

The hardware design of FourQ requires us to first load specific constants into the RAM. These constants
are used during the scalar multiplication, and reduce the number of computations necessary. In Chapter 4

.

,
we describe these constants in more detail. After the constants are loaded into RAM, the design can
be controlled by specific operations. These operations are described in Section 5.1.2

.

. To control data
assignment to the RAM, we make use of a FSM at the main FPGA. This FSM can be seen in Figure 2.4

.

.
The FMS writes the data_reg and addr_reg values. Based on the values in these registers, the FourQ
input signals are controlled. We describe the FSM of Figure 2.4

.

in more detail. In both the reading and
writing states, first the value of the address is transmitted (w1, w2) followed by a data read/write ((r3, r4)
or (w3, w4) respectively). Because values of both the address and data are 2 bytes, and we can only
transmit one byte at a time, this transmission is done in two steps: the most significant byte (MSB) is
sent first, followed by the least significant byte (LSB). If the FSM is in the reading state and the address
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value has been transmitted, the address value is used to determine the output of the host interface. This is
realized by a multiplexer, where the value of the address determines which output signals are retrieved.
In the final design, reading from the main FPGA is primary used to retrieve the busy control signal, or
(parts of) the result point of the scalar multiplication. The multiplexer can also be used to verify whether
data assignments are done correctly within the interface itself.

The reason for the address to be 2 bytes is due to the size of the addresses within FourQ to load the
RAM constants. These addresses are 9 bits, where the first bit indicates whether we write the lower or
upper half of the 128-bits value. The remaining 8 bits specify the value of the address. Fortunately, these
data and address sizes are also used in the example main FPGA design that comes with the SAKURA-G,
and required (almost) no change.

If we want to write data values to the main FPGA, the address is used by the hardware design to control
the assignment of data (which are transmitted after the address) to the correct range of a signal. Once the
address is transferred, 2 bytes of data are transmitted. After this is done, a control signal indicates that the
assignment of data to the address can be made. If the address is not known internally, all values keep
their previous value. In the case of reading, there is an additional state in the FSM which waits for the
value-to-read to become available. The reason for this is due to a read latency of five periods. The first
three periods in this latency are because of how the interface of the memory is done in the FourQ design.
The remaining two periods are due to the two pipeline stages when reading from the True Dual-Port RAM
(TDPR). In general, the latency for either of the ports of the TDPR can be seen in the corresponding Block
Memory Generator (BMG) configuration (see Section 2.3

.

).

2.6 Capturing power traces

To perform side channel analysis of the FourQ hardware design on the FPGA, we need to obtain power
traces as FourQ is calculating the scalar multiplication. A power trace is a collection of samples. Each
sample is a tuple of voltage and time values. Time values are represented in seconds (s), while the
amplitude values are represented in volts (v). To obtain power traces, the FPGA is connected to the
oscilloscope. The SAKURA-G is designed with ultra-low noise in mind. The board provides a couple
of SMA connectors that can be used to monitor the power waveforms. The board also comes with an
on-board amplifier, which can used to monitor the amplified waveform (for both the control and main
FPGAs). To control the acquisition of a power trace, we make use of a trigger. The trigger tells the
oscilloscope when it should start the acquisition of a waveform (i.e. when the value of the trigger is high)
and when this acquisition should stop (i.e. when the oscilloscope’s memory is full). The oscilloscope
used to display and retrieve the captured power traces is the Teledyne LeCroy - WaveRunner 610Zi.
To connect with the oscilloscope and retrieve the acquired waveforms, an Ethernet cable (ENET) was
employed. Teledyne LeCroy oscilloscopes employ a standard Ethernet interface for utilizing the TCP/IP
transport layer [46

.

]. Other methods for making the remote connection exist as well (such as USBTMC,
GPIB and LSIB). To interface with the oscilloscope, we make use of ActiveDSO, which is an ActiveX
control. ActiveDSO provides interface drivers and a client library to make the remote connection over
ENET, GPIB or USBTMC interfaces. It also supports many automation features besides remote control.
One can read more about how Teledyne LeCroy oscilloscopes can be controlled by a variety of Windows
applications and programming languages in the ActiveDSO’s developer guide [45

.

]. As the interface with
the SAKURA-G board is written in Python, this is also the language of choice for communicating with
the oscilloscope. In Python, the control object used to communicate with the oscilloscope is instantiated
as follows:

command = "LeCroy.ActiveDSOCtrl.1"
_scope = win32com.client.Dispatch(command)

Using the control object, we can write commands to the oscilloscope and read back the response. To
make this possible, we connect to the oscilloscope:
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ip_address="192.168.0.1"
command = "IP:" + ip_address
_scope.MakeConnection(command)

The IP address should match the IP address set in the settings of the oscilloscope. After establishing
a connection with the oscilloscope, we can use the control object to send commands to the device.
ActiveDSO supports two types of commands that can be sent to the oscilloscope using the instantiated
control. Both traditional IEEE 488.2 (GPIB) commands and the Windows® Component Object Model
(COM) commands can be used. Examples of these commands are as follows:

# 488.2 format
scope.WriteString("<command string>", <Boolean EOI>)
# Automation Control within the VBS command
scope.WriteString("app.Shutdown", True)

If End of Identify (EOI) is set to 1 (True), the command terminates with EOI, and the device interprets
the command right away. This is normally the desired behavior. If EOI is set to 0 (False), a command
may be sent in several parts with the device starting to interpret the command only when it receives the
final part. This final command should have set its EOI value set to (True). If a command string contains
characters like double quotes ("), the command string should be surrounded with triple quotes. Otherwise,
Python would interpret the first double quote as the end of the command string, which is unintended.

The oscilloscope offers a variety of interfaces for using devices to input analog or digital signals. A
series of connectors arranged on the front of the instrument are used to input analog signals on channels
1-4. We use these analog inputs to connect our FPGA to the oscilloscope. Each of these channels
interfaces power probes and completely integrates the probe with the channel. When connected, the probe
type is recognized and some setup information, such as input coupling and attenuation, is performed
automatically. Besides these analog inputs, one can also make use of probes and the LBUS interface. In
our setup, we only use the analog inputs to capture the power traces of our FPGA. To get the waveform
from a corresponding channel, we have to call the appropriate ActiveDSO method. The available methods
for acquiring a waveform can be seen in [45

.

].
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Chapter 3

Elliptic Curves

I
n this chapter, we discuss the basics of elliptic curves. We specifically take a look at (twisted)
Edwards curves, operations on points on these curves and alternative point representations for
these curves. Alternative representations provide faster point addition and doubling. Multiple of
such efficient representations are used internally in FourQ (see Chapter 4

.

). For more information
on finite fields, we refer to the excellent section on finite fields with respect to AES in [36

.

, §4.3].

3.1 Definition

An elliptic curve E over a fieldK in long Weierstrass form is given by the following equation [6

.

]:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with ai ∈ K for i ∈ {1, . . . , 6}. To avoid singularities on the curve, it is necessary that both partial
derivatives do not vanish simultaneously for each point (x, y) over K̄ 1

.

. These partial derivatives are
given as follows:

∂K

∂y
= 2y + a1x+ a3,

∂K

∂x
= 3x2 + 2a2x+ a4 − a1y

If the characteristic of the coefficient field is not equal to 2 or 3 (char(k) 6= 2, 3), we can transform the
curve to short Weierstrass form. This short Weierstrass form is given as follows:

Ea,b : y2 = x3 + ax+ b

where a, b ∈ K. The definition of an elliptic curve requires the curve to be non-singular. This means that
it does not have cusps, self-intersections or isolated points. This non-singularity property is satisfied if
and only if the discriminant of E is unequal to zero:

4 = −16(4a3 + 27b2) 6= 0

All the points on E together with the imaginary point at infinity O form an additive group (E,⊕) [6

.

]:

• The neutral element in this group is O;

• The inverse of a point P = (x, y) is defined as −P = (x,−y), with P + (−P ) = O;

• Given two points P = (x1, y1) and Q = (x2, y2), we have P ⊕Q = (x3, y3) where:

x3 = s2 − x1 − x2
y3 = s(x1 − x3)− y1

1K̄ denotes the algebraic closure of the fieldK
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Figure 3.1: Geometric interpretation of point addition, doubling and inversion when considering an
elliptic curve over the real numbers [36

.

].

with

s =

{
y2−y1
x2−x1 if P 6= ±Q (point addition)
3x21+a
2y1

if P = Q (point doubling)

If we consider a curve that is defined over the real numbers, we have a nice geometric interpretation of
the addition, doubling and inversion operations. These interpretations can be seen in Figure 3.1

.

. If we
work with elliptic curves, it is important to know the order of the group. This order plays a key role in the
hardness of the discrete log problem (DLP) that can be constructed with elliptic curves. Hasse’s theorem
states that the number of points of an elliptic curve modulo a prime p is roughly in the range of the prime
p. Each point on the curve also has an order. The order of a point P is the smallest positive integer n such
that:

[n]P =

n times︷ ︸︸ ︷
P ⊕ . . .⊕ P = O

Some points never add up to O, which gives them an infinite order. The order of the neutral element
is 1. In cryptography, elliptic curves are treated on a given finite field, for example K = Fp, with p
being a sufficiently large prime number. Points on an elliptic curve together with the neutral element O
have cyclic subgroups. To make all points on the elliptic curve form a cyclic group, certain conditions
have to be met. K = Fp with p > 3 must hold. In addition, the discriminant of the curve has to be
non-zero (as mentioned earlier). There are also other mathematical properties leading to cryptographic
weaknesses that need to be ruled out. Due to the complexity of constructing save curves, we often make
use of standardized curves in practice. Because we know the basic math behind elliptic curves, we can
now construct a DLP over these curves [36

.

]:

Definition 1 (Elliptic Curve Discrete Logarithm Problem (ECDLP))
Given an elliptic curve E, a primitive element (also called a generator) P and another element T . The
discrete logarithm problem is finding the integer d, with 1 ≤ d ≤ #(E) (with #(E) being the number of
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points on the curve) such that:

d times︷ ︸︸ ︷
P ⊕ P ⊕ . . .⊕ P = dP = T

In cryptosystems, the value of d becomes the private key, while the public key is T , where T = (xt, yt) is
a point on the curve.

3.2 Twisted Edwards curves

Edwards curves are a family of elliptic curves [13

.

]. An Edwards curve over a fieldK having a characteristic
unequal to 2 is defined as follows:

x2 + y2 = 1 + dx2y2

with scalar d ∈ K \ {0, 1}. A more general form which introduces additional parameters also belongs to
this family of curves:

x2 + y2 = c2(1 + dx2y2)

with c, d ∈ K and c · d(1− c4 · d) 6= 0. The value of c however is often fixed at 1. This is also assumed
when we introduce the addition and subtraction formula’s for Edwards curves. Every Edwards curve is
birationally equivalent to an elliptic curve in Weierstrass form. When we have geometric objects like
elliptic curves, we want to define what it means for these two objects to be “the same”. Given two
curves E1 and E2, we say that they are “the same” when they are isomorphic. Given two mathematical
objects, they are said to be isomorphic if there exists an isomorphism between them. An isomorphism is a
structure-preserving map (also called a homomorphism) that has an inverse. Besides this way of equating
objects, we also have another way of equating them. That is by stating they are “almost the same”. This is
exactly what a birational equivalence can be used for. Two curves E1 and E2 are birationally equivalent
when there exists a map φ : E1 → E2 between the two curves which is defined at every point of E1

except for a small subset. In addition, there is also an inverse map φ−1 : E2 → E1 which is again defined
at every point of E2 except for a small subset. Before we show the birational equivalence between an
Edwards curves and an elliptic curve in Weierstrass form, we first introduce a generalization of Edwards
curves, which are called twisted Edwards curves [4

.

]. Each twisted Edwards curve is a twist of an Edwards
curve. If we have an elliptic curve E over a fieldK, then there exists a so-called quadratic twist, which is
another elliptic curve which is isomorphic to E (over an algebraic closure ofK). Given a fieldK with
char(k) 6= 2, we define a twisted Edwards curve with the following equation:

EE,a,d : ax2 + y2 = 1 + dx2y2

with a, d ∈ K \ {0} and a 6= b. Note that a ‘normal’ Edwards curve is just a specific instance of a twisted
Edwards curve (it fixes a = 1). It can be shown that every twisted Edwards curve is birationally equivalent
to an elliptic curve in Montgomery form and vice versa [4

.

]. In addition, every Montgomery curve is also
birationally equivalent to an elliptic curve in Weierstrass form. A Montgomery curve is also a form of an
elliptic curve. A Montgomery curve over a fieldK is defined as follows:

EM,A,B : Bv2 = u3 +Au2 + u

with A,B ∈ K and B(A2 − 4) 6= 4. As with the curves we have described previously, this curve is
generally considered over a finite field K with characteristic unequal to 2 and A ∈ K \ {−2, 2} and
B ∈ K \ {0}. The corresponding birational maps between these three curves are defined as follows [4

.

]:
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Theorem 1 (Birational equivalence between Montgomery curves and twisted Edwards curves)
Let EE,a,d and EM,A,B be elliptic curves in twisted Edwards form and Montgomery form respectively
(with their corresponding definitions as introduced earlier). A twisted Edwards curveEE,a,d is birationally
equivalent to the Montgomery curve EM,A,B , where:

A =
2(a+ d)

(a− d)
, and B =

4

a− d

The birational equivalence from EEa,d
to EMA,B

is given by the following map:

ψ : EE,a,d → EM,A,B

(x, y) 7→ (u, v) =

(
1 + y

1− y ,
1 + y

(1− y)x

)
with the following inverse:

ψ−1 : EM,A,B → EE,a,d

(u, v) 7→
(
u

v
,
u− 1

u+ 1

)
, a =

A+ 2

B
, d =

A− 2

B

The map ψ is not defined at the points v = 0 or u+ 1 = 0 of EM,A,B .

Theorem 2 (Birational equivalence between Montgomery curves and Weierstrass curves)
Let EM,A,B and Ea,b be elliptic curves in Montgomery form and in short Weierstrass form respectively
(with their corresponding definitions as introduced earlier). The birational equivalence from EM,A,B to
Ea,b is given by the following map:

ψ : EM,A,B → Ea,b

(x, y) 7→ (t, v) =

(
x

B
+
A

B
,
y

B

)
, a =

3−A2

3B2
, b =

2A3 − 9A

27B3

For the inverse map to be valid, a couple of conditions have to be satisfied. Assume we have an elliptic
curve Ea,b over a base field F, which is a curve over a field that is contained in all other fields (when
working over a collection of fields). We can transform Ea,b to its corresponding Montgomery form if and
only if the order of Ea,b is divisible by four and if the following conditions are satisfied [34

.

]:

• The equation x3 + ax+ b in Ea,b : y2 = x3 + ax+ b has at least one root in the finite field Fp of
order p with p ≥ 5 being a prime;

• The number 3α2+a is a quadratic residue inFp (i.e. there exists an integer x such that x2 ≡ 3α2+a
(mod p)), with α being the root of the equation x3 + ax+ b = 0 in Fp.

If these conditions are satisfied, then we have the following inverse of the map:

ψ−1 : Ea,b → EM,A,B

(t, v) 7→ (s(t− α), sv), A = 3αs,B = s

with s =
(√

3α2 + a
)−1

.

Thus, points on twisted Edwards curves can (under certain conditions) also be represented as points
on Weierstrass curves. By choosing an appropriate point to serve as the neutral element, every twisted
Edwards curve therefore admits an algebraic group law. We can now define the doubling and addition
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formulas for twisted Edwards curves. Let P = (x1, y1) and Q = (x2, y2) be points on a twisted Edwards
curve EE,a,d. The addition of the points P and Q on EE.a,d is defined as follows:

P +Q = (x1, y1) + (x2, y2) = (x3, y3)

x3 =
x1y2 + y1x2

1 + dx1x2y1y2

y3 =
y1y2 − ax1x2
1− dx1x2y1y2

The doubling of a point P = (x1, y1) uses exactly the formula as for addition, but can be simplified as
follows:

2P = (x1, y1) + (x1, y1) = (x3, y3)

x3 =
x1y1 + y1x1

1 + dx1x1y1y1
=

2x1y1
ax21 + y21

y3 =
y1y1 − ax1x1
1− dx1x1y1y1

=
y21 − ax21

2− ax21 − y21
The neutral element is O = (0, 1). The inverse of a point (x1, y1) is defined as (−x1, y1). As mentioned
before, we used the same formulas for both addition and doubling, but we were able to simplify these
formulas in the doubling case. In addition, the addition formula is also complete, which means that there
are no exceptional cases when applying this formula.

3.3 Alternative representations for fast computations

By changing the point representation of the points on the Edwards curve, we can increase the computation
speed of the operations on these points. In our definition of an elliptic curve in Weierstrass form, we
defined an algebraic affine curve which is a curve in affine space. In the following subsections, we
introduce the concepts of affine and projective space, and describe how they are related.

3.3.1 Affine space

Informally, an affine space is what is left of a vector space once we have forgotten which point is the
origin. Instead, we add translations to the linear maps over the vector space. A simple explanation in
the form of an analogy can be found on Wikipedia2

.

. Assume Alice and Bob want to add two vectors ~a
and~b (which are vectors measured from Alice’s origin). However, both Alice and Bob disagree about
which point is the origin. Alice knows that a certain point is the actual origin, but Bob believes that this
is another point, which we call p. Note that both Alice and Bob agree on which points are a and b, but
disagree about the correspondence between points and vectors. To add the vectors, Bob draws an arrow
from point p to point a and another arrow from point p to point b, thus completing the parallelogram for
vector addition and finding the resulting point which Bob believes is ~a+~b. Alice however knows that
Bob actually computed the following:

p+ (~a− p) + (~b− p)

Note that the point-from-vector subtraction seems odd at first sight. However, if we combine it with the
addition notation p+ ~v, we can interpret it as follows: “the result point after applying the transformation
represented by vector ~v to point p”. Similarly, Alice and Bob can evaluate any linear combination of
~a and ~b or any finite set of vectors with generally different answers. If the sum of coefficients in the

2https://en.wikipedia.org/wiki/Affine_space

.
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linear combination adds up to 1, then both Alice and Bob will end up with the same answer. So if Alice
evaluates the following expression:

λ~a+ (1− λ)~b

then Bob similarly will evaluate

p+ λ(~a− p) + (1− λ)(~b− p) = p+ λ~a− λp+~b− p− λ~b+ λp

= ((((((((
p− p+ λp− λp+ λ~a+~b− λ~b

= λ~a+ (1− λ)~b

Thus Alice and Bob describe the same point with the same linear combination for all coefficients
λ+ (1− λ) = 1, despite making use of different origins. Only Alice knows the “linear structure” of the
result, but they both know the “affine structure” which is the linear combination of vectors in which the
sum of the coefficients adds up to 1 (such a linear combination is also called an affine combination). A set
which has an affine structure is called an affine space.

3.3.2 Projective space

Besides having affine coordinates in affine space, we can also have projective coordinates in projective
space. We often make use of the Cartesian coordinate system, which is a coordinate system that specifies
each point in a plane uniquely by a pair of numerical coordinates. These points are described by signed
distances from two fixed perpendicular lines which are called the axes of the system. The origin is
the ordered pair (0, 0), which is the point where both axes intersect. Points can also be described in
n-dimensional Euclidean space, for any dimension n. Similarly how Cartesian coordinates are used in
Euclidean geometry, projective coordinates or homogeneous coordinates are used in projective geometry.
Affine spaces are subspaces of projective spaces. We can obtain an affine plane from any projective
plane by removing a line and all the points on it. The other way around, we can also obtain a projective
plane from an affine plane by adding a line at infinity. An advantage of projective coordinates is the
fact that formulas involving these kind of coordinate are often simpler and more symmetric than their
corresponding Cartesian formulas. In addition, projective coordinates can be used to represent points
at infinity, although the coordinates to represent these points are finite themselves. Assume we have a
point (x, y) on the Euclidean plane. The triple (xZ, yZ,Z), with Z ∈ R \ {0} is called a set of projective
coordinates for the point. If we multiply this triple by a non-zero scalar we get a new set of projective
coordinates for the same point. For example, the Cartesian point (1, 2) can be represented in projective
coordinates as (1, 2, 1) but also as (2, 4, 2). Thus a single point can be represented by an infinite number
of projective coordinates, which is not possible using Cartesian coordinates.

To summarize, any point in the projective plane is represented by a triple (X,Y, Z) which are called
the projective coordinates of the point, with X,Y and Z being nonzero. If the value of Z is unequal to
zero, the point represented is the point (X/Z, Y/Z) in the Euclidean plane. If value of Z is zero however,
the point represented is the point at infinity. The origin is represented by the triple (0, 0, 1), and the triple
(0, 0, 0) is removed and does not represent any point. So far, we assumed the points in projective 2-space.
In general, points in projective n-space are represented by (n+ 1)-tuples.

Now we have become familiar with projective coordinates, its time to introduce some alternative
representations in which a point on a twisted Edwards curve can be represented. The formula for point
addition on twisted Edwards curves (which can also be used for point doubling) as shown in Section 3.2

.

has a cost of 10M and 1S when the curve parameters are chosen properly [5

.

]. The cost of a formula is
denoted with M, S, D and A which respectively denote the cost of one multiplication, one squaring, one
doubling and one addition. In the upcoming sections, we provide formulas that are strongly unified. A
formula is strongly unified when it works for both the addition and doubling cases without any change.
A related concept is completeness, which means that a formula can handle any input. This property is
discussed per representation.

19



3.3.3 Extended twisted Edwards coordinates

A point (x, y, t) with t = x · y on the twisted Edwards curve EE,a,d can be represented as the 4-tuple
(X : Y : T : Z) that satisfies the following equations [25

.

]:

x = X/Z

y = Y/Z

t = T/Z

We can pass to the projective representation by making use of the following map: (x, y, t) 7→ (x : y : t : 1).
The identity element is now represented by (0 : 1 : 0 : 1), and the negative of (X : Y : T : Z) is defined as
(−X : Y : −T : Z). The coordinates of the point (X : Y : Z : T ) are called the extended twisted Edwards
coordinates. Addition is defined as (X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2) = (X3 : Y3 : T3 : Z3).
The explicit unified formula for addition can be seen in Table 3.1

.

, and is complete if d is a non-square in
K and a a square inK [25

.

]. Despite the additional overhead of computing the newly introduced auxiliary
variable t, this new system allows for faster point addition [25

.

], as it saves 1M.

3.3.4 Inverted twisted Edwards coordinates

In [5

.

], another representation called Inverted twisted Edwards coordinates is introduced for EE,a,d with
a = 1. They use the coordinates (X1 : Y1 : Z1) where(

X2
1 + Y 2

1

)
Z2
1 = X2

1Y
2
1 + dZ4

1

with X1Y1Z1 6= 0. A point on the twisted Edwards curve EE,a,d (with a = 1) is now represented
as (Z/X,Z/Y ). The explicit formulas for addition can be seen in Table 3.1

.

. Addition is defined as
(X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3). One of the advantages of this representation is that
they save one multiplication (1M) for each addition, without slowing down doubling or tripling. The
addition formula is not complete. The requirementX1Y1Z1 6= 0 implies that points on the Edwards curve
that satisfy x1y1 = 0 cannot be represented in inverted Edwards coordinated. As we know, there are four
points that satisfy this requirement: the neutral element (0, 1), the point (0,−1) of order 2 and the points
(±1, 0) of order 4. To be able to handle these case as inputs or outputs, special routines need to used
(which we do not describe here).

3.3.5 Projective twisted Edwards coordinates

Another way to avoid costly inversions is to work with projective twisted Edwards curves [4

.

]. This curve
has the following equation:

(aX2 + Y 2)Z2 = Z4 + dX2Y 2

with Z1 6= 0 and the projective point (X1 : Y1 : Z1). This projective point represents the affine point
(X1/Z1, Y1/Z1) on EE,a,d. The explicit formulas for addition and doubling can be seen in Table 3.1

.

.
Addition is defined as (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3). The formula shown Table 3.1

.

for the projective case has a cost of 10M (which is exactly the same as the original Edwards formula) and
is complete. However, for certain values of Z1 and Z2, the cost of this formula can be greatly reduced:
assuming Z1 = 1 and Z2 = 1, there exist an addition formula using this representation which only
requires 6M.

3.4 Efficient scalar multiplication

Gallant–Lambert–Vanstone (GLV)method is away of speeding up the computation of scalarmultiplications
on some elliptic curves defined over fields with a large prime characteristic. Assume we have an elliptic
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Extended Inverted Projective

A = X1 ·X2

B = Y1 · Y2
C = T1 · dT2
D = Z1 · Z2

E = (X1 + Y1) · (X2 + Y2)−A−B
F = D − C
G = D + C

H = B − aA
X3 = E · F
Y3 = G ·H
T3 = E ·H
Z3 = F ·G

A = Z1 · Z2

B = dA2

C = X1 ·X2

D = Y1 · Y2
E = C ·D
H = C − aD
I = (X1 + Y1) · (X2 + Y2)− C −D

X3 = (E +B) ·H
Y3 = (E −B) · I
Z3 = A ·H · I

A = Z1 · Z2

B = A2

C = X1 ·X2

D = Y1 · Y2
E = dC ·D
F = B − E
G = B + E

X3 = A · F ((X1 + Y1) · (X2 + Y2)− C −D)

Y3 = A ·G(D − aC)

Z3 = F ·G

Table 3.1: Explicit strongly unified addition formulas for extended, inverted and projective twisted
Edwards curve coordinates [25

.

].

curve of prime order n with a point P . By making use of the GLV method, we try to find a decomposition
of the scalar multiplication [k]P for k ∈ {1, . . . , n} into, for example, two scalar multiplications
[k]P = [u]P + [v]Q. This is a multi-exponentiation. In general, a multi-exponentiation has the following
form:

i<m∑
i=0

kiPi

In the example we gave, the value of m would be 2. By rewriting this scalar multiplication, the new
scalars u, v only have half of the bitlength compared to the original bitlenght of the scalar k. Such a
scalar multiplication which involves two different points and two different scalars is computed by a double
point multiplication algorithm. One obvious way to compute a double point multiplication is to perform
two single-point multiplications. However, multiple algorithms exists that can compute [u]P + [v]Q
simultaneously and therefore more efficiently. One of these algorithms is called the Straus-Shamir trick,
which is an algorithm that can be used for simultaneous point multiplication. The trick is in building one
sequence of intermediate results that directly converge to the value of [u]P + [v]Q in one execution of a
Double-and-Add algorithm (which would be the traditional way of computing the scalar multiplication).
The algorithm can be seen in Algorithm 3.1

.

, where S is some set of integers containing 0 and 1 (as
presented in [33

.

]) and E an elliptic curve. The Straus-Shamir trick is actually a special case of Straus’

Algorithm 3.1 Double Scalar Multiplication using the Straus-Shamir Trick [40

.

].
Input: u =

∑`−1
i=0 ui2

i, v =
∑`−1

i=0 vi2
i, (u`−1, v`−1) 6= (0, 0), (ui, vi) ∈ S2, (P,Q) ∈ E2, P 6= ±Q.

Output: R = [u]P + [v]Q.
1: PrecomputeWi,j = [i]P + [j]Q,∀(i, j) ∈ S \ {(0, 0)}
2: InitializeWu`−1,v`−1

3: for i = `− 2 downto 0 do
4: R = [2]R
5: if (ui, vi) 6= (0, 0) then
6: R = R+Wui,vi

7: end if
8: end for

algorithm, in which the window size is set to 1. This trick reduces the number of doublings by half. To
further increase the performance, we can make use of signed digit representations and windowing. By
making use of these methods, we can increase the number of null digits of the scalar, which increases the
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performance by reducing the number of additions. These methods require the scalar to be transformed to
another representation, which is called scalar recoding. We discuss other methods of performing efficient
scalar multiplications in the upcoming subsections.

3.4.1 Comb method

The comb method is a way to perform scalar multiplication. The method assumes that the scalar k is
represented by a matrix of w rows and d columns. During the scalar multiplication, k is being processed
columwise. Initially, the binary representation of k is first padded on the left with dw − t zeros, such that
its length is dw. k is now split up into w-bit stringsK with each of these string having a length of d, such
that:

k = Kw−1‖ . . . ‖K1‖K0

with ‖ denoting the bitwise concatenation operator. The bit strings Kj are now written as rows of an
exponent array [22

.

]:
K0

...
Kw′

...
Kw−1

 =


k0d−1 . . . k00
...

...
Kw′
d−1 . . . Kw′

0
...

...
Kw−1
d−1 . . . Kw−1

0

 =


kd−1 . . . k0
...

...
K(w′+1)d−1 . . . Kw′d

...
...

Kwd−1 . . . K(w−1)d


The columns of this exponent array will then be processed one at a time from left to right during the
scalar multiplication. To speed up the computation of the scalar multiplication, the following points are
precomputed [22

.

]:

[aw−1, . . . , a2, a1, a0]P = aw−12
(w−1)dP + . . .+ a22

2dP + a12
dP + a0P

This precomputation is done for all possible bit strings (aw−1, . . . , a1, a0). The algorithm itself can be
seen in Algorithm 3.2

.

.

Algorithm 3.2 Fixed-base comb method for point multiplication [22

.

].
Input: Scalar k = (kt−1, . . . , k1, k0)2, window width w, bit string size d = dt/we and P ∈ E(Fp).
Output: R = [k]P .

Precomputation
1: Compute [aw−1, . . . , a2, a1, a0]P for all bit strings (aw−1, . . . , a1, a0) with length w
2: Write k = Kw−1‖ . . . ‖K1‖K0 and add padding on the left if necessary. EachKj is a bit string of

length d. WithKj
i we denote the i-th bit of the bit stringKj .

3: R←∞
4: for i = d− 1 downto 0 do
5: R← 2R
6: R← R+

[
Kw−1
i , . . . ,K1

i ,K
0
i

]
P

7: end for
8: Return Q

3.4.2 Interleaving

Another way of performing scalar multiplication is by making use of interleaving. As we have seen with
the Straus-Shamir trick, the precomputed values were obtained by making use of two points. When each
precomputed value only involves one point, the associated method of multiple point multiplication is also
known as interleaving. An example of such a method is an interleaving algorithm which makes use of the
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Algorithm 3.3 Computing the NAF of a posi-
tive integer [22

.

].
Input: A positive integer k.
Output: NAF(k).
i← 0
while k ≥ 1 do

if k is odd then
ki ← 2− (k (mod 4))
k ← k − ki

else
ki ← 0

end if
k ← k/2
i← i+ 1

end while
Return (ki−1, ki−2, . . . , k1, k0)

Algorithm 3.4 Computing the width-w NAF
of a positive integer [22

.

].
Input: A positive integer k.
Output: NAFw(k).
i← 0
while k ≥ 1 do

if k is odd then
ki ← kmods 2w

k ← k − ki
else

ki ← 0
end if
k ← k/2
i← i+ 1

end while
Return (ki−1, ki−2, . . . , k1, k0)

non-adjacent form (NAF) of a number. The NAF of a number is a unique signed-digit representation,
which means that non-zero values cannot be adjacent. The integer 7 in NAF would be represented as
follows: (1 0 0 1̄), where 1̄ = −1. There exist different algorithms to convert a number to NAF, one of
which is introduced in [22

.

]. If we want to transform an integer k to NAF, this algorithm will repeatedly
divide k by 2. Remainders of 0 or ±1 are allowed, but if k is odd, then the remainder r ∈ {−1, 1} is
chosen in such a way that the quotient (k − r)/2 is even. This makes sure that the next NAF digit is
0. The corresponding algorithm can be seen in Algorithm 3.3

.

. An interleaving method for computing∑v
j=1 k

jPj can be seen in Algorithm 3.5

.

. The algorithm makes use of a window method which processes
only a particular number of digits at a time.

Ifw ≥ 2 is a positive integer, then awidth-wNAF of a positive integer k is an expression k =
∑l−1

i=0 ki2
i

in which each nonzero coefficient ki is odd. In addition, |ki| < 2w−1 with kl−1 6= 0. At most one of
any w consecutive digits is nonzero. The length of the width-w NAF is l. Computation of a w-width
NAF requires a small change of Algorithm 3.3

.

at Line 4

.

. This can be seen in Algorithm 3.4

.

. Instead
of calculating ki ← 2 − (k (mod 4)), the computation becomes ki ← kmods 2w, where kmods 2w

denotes the integer u which satisfies u ≡ k (mod 2w) with −2w−1 ≤ u < 2w−1 [22

.

].
We now discuss the interleaving algorithm shown in Algorithm 3.5

.

. We explain how this algorithm
works in the case of double exponentiation (i.e. v = 2). If we want to calculate R = [kj0]P + [kj1]Q,
we first precompute {P, 3P, 5P, . . . , [(2w− 1)/2]P} and {Q, 3Q, 5Q, . . . , [(2w− 1)]P} for a choice of
window size w. We then convert both kj0 and k

j
1 to width-w NAF format. After initializing a point R to

the point-at-infinity, we scan the NAFs for kj0 and k
j
1 from left to right. While we process each bit, we

double the value of R. As we are scanning the NAFs, we choose the subsections of the corresponding
NAF to get the largest multiple of P or Q. This value is present in the tables we precomputed earlier. We
add this precomputed multiple of P or Q to R. As the value of w becomes bigger, more time is required
for precomputation. This also increases the amount of memory needed to store these precomputed tables.
However, in the end this leads to less additions in the main double-and-add loop which increases the
performance of the algorithm.

Multi-exponentiation as shown in the Interleaving with NAFs algorithm can also be done by making
use of a morphism (also called a homomorphism). A morphism is a structure-preserving map from an
mathematical structure to itself. An endomorphism is a morphism from a mathematical object to itself.
An example of an endomorphism is the Frobenius endomorphism, which is a special endomorphism of
commutative rings with prime characteristic p. The Frobenius morphism maps every elements to its
p-th power. If we have commutative ring R with prime characteristic p, the Frobenius endomorphism is
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Algorithm 3.5 Interleaving with NAFs [22

.

].
Input: v, a set of integers kj , widths wj and points Pj , with 1 ≤ j ≤ v.
Output:

∑v
j=1 k

jPj .
1: Compute iPj for i ∈ {1, 3, . . . , wwj−1 − 1} for 1 ≤ j ≤ v
2: Compute NAFwj (k

j) =
∑lj−1

i=0 kji 2
i for 1 ≤ j ≤ v

3: l← max{lj : 1 ≤ j ≤ v} . lj denotes the length of NAFwj (k
j)

4: kji = 0 for lj ≤ i < l, 1 ≤ j ≤ v
5: R←∞
6: for i = l − 1 downto 0 do
7: R← 2R
8: for j = 1 to v do
9: if kji 6= 0 then
10: if kji > 0 then
11: R← R+ kjiPj
12: else
13: R← R− kjiPj
14: end if
15: end if
16: end for
17: end for
18: Return R

defined as:

F (p) = rp

for all r ∈ R. We can make use of homomorphisms in variable point multiplication. Assume we
want to calculate [k]p = [u]P + [v]Q, where Q = ψ(P ) and ϕ being a homomorphism. Again we
have the precomputed table {P, 3P, 5P, . . . , [(2w − 1)/2]P}. We can now easily compute the other
table by applying ψ to each of the elements in the table we already precomputed. This speeds up the
precomputation phase. This approach is also adopted by FourQ, and is described in more detail in
Chapter 4

.

.
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Chapter 4

FourQ

M
athematical details of FourQ are described in this chapter. FourQ is a scalar multiplication
algorithm that makes use of a four-dimensional GLV decomposition to increase its performance.
Compared to other constant-time alternatives, FourQ is fast and performs better than any other
known software alternative after its appearance [11

.

]. In addition, FourQ has been designed
with simplicity in mind, and even some speed trade-offs have been made to ensure this. As FourQ supports
both variable and fixed-base scalar multiplication, it can be used to achieve fast Diffie-Hellman (DH) key
exchange.

4.1 The curve: FourQ

A new complete twisted Edwards curve was introduced in [11

.

]. They work over the following quadratic
extension field:

Fp2 := Fp(i), where p := 2127 − 1 and i2 = −1

They define E to be the following twisted Edwards curve:

E/Fp2 : −x2 + y2 = 1 + dx2y2

where p = 2127 − 1 and d is the following non-square in Fp2 :

d := 125317048443780598345676279555970305165 · i+ 4205857648805777768770

The set of rational points Fp2 together with E form a group, in which the neutral element is O = (0, 1)
and the inverse of a point (x, y) is (−x, y). This curve, which is named FourQ, is based on the use of
Q-curve reductions as described in [43

.

]. The group Fp2-rational points on E is denoted by E(Fp2). Every
point in this group is an element of the product set Fp2 , which means that it is a sequence (or in this case a
tuple) of 2 elements of Fp (as denoted by the power of p). Every element in the field Fp2 can therefore
be seen as complex number. Group operations follow the elementary operations as defined for complex
numbers. During the remainder of this chapter, we work in the cryptographic group E(Fp2) [N ], whereN
is a 246-bit prime (which is fixed according to [11

.

, Equation 2]).

4.2 FourQ’s scalar multiplication

FourQ’s scalar multiplication routine can be seen in Algorithm 4.1

.

. First, the endomorphisms for point P
are computed. Next, the lookup table T is precomputed. This uses the endomorphisms computed earlier.
After decomposing and recoding the scalar, the algorithm continues to execute the main loop. This is
where the point doublings and additions of the algorithm take place. Each of previously described steps
are explained in more detail in the upcoming subsections.
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Algorithm 4.1 FourQ’s scalar multiplication on E(Fp2) [N ] [11

.

].
Input: Point P ∈ E(Fp2) [N ] and integer scalarm ∈ [0, 2256).
Output: [m]P .

Compute endomorphisms
1: Compute φ(P ), ψ(P ) and ψ(φ(P )) as described in Section 4.2.1

.

.
Precompute lookup table

2: Compute T [u] = P + [u0]φ(P ) + [u1]ψ(P ) + [u2]ψ(φ(P )) for u = (u2, u1, u0)2 in 0 ≤ u ≤ 7.
Scalar Decomposition

3: Decomposem into the multiscalar (a1, a2, a3, a4) as described in Section 4.2.2

.

.
Scalar recoding

4: Recode (a1, a2, a3, a4) into (d64, . . . , d0) and (m64, . . . ,m0) as described in Section 4.2.3

.

. Write
si = 1 ifmi = −1 and si = −1 ifmi = 0.
Main loop:

5: Q = s64 · T [d64]
6: for i = 63 downto 0 do
7: Q = [2]Q
8: Q = Q+ si · T [di]
9: end for
10: Return Q

4.2.1 The endomorphisms ψ and φ

In [11

.

], explicit formulas for the two endomorphisms on E are first derived for elliptic curves in short
Weierstrass form EW . Then they make use of a map to convert these formulas from EW to Ê , where
Ê/Fp2 : −x2+y2 = 1+ d̂x2y2 is a twisted Edwards curve that is 4-isogenous to E (with d = −(1+1/d̂)).
An isogeny between two elliptic curves E1 and E2 is a rational morphism ϕ : E1 → E2 that maps the
point at infinityO of E1 to the point at infinityO of E2. The maps in the case of FourQ are shown in [11

.

,
§3]. The explicit formula for ψ is defined as follows [11

.

]:

ψ = τ̂(δψW δ
−1)τ

τ : E 7→ Ê , (x, y) 7→
(

2xy

(x2 + y2)
√
d̂
,
x2 − y2 + 2

y2 − x2

)

τ̂ : Ê → E , (x, y) 7→
(

2xy
√
d̂

x2 − y2 + 2
,
y2 − x2
y2 + x2

)

(δψW δ
−1) : Ê → Ê , (x, y) 7→

(
2ixp · c−2,3,−1,0

yp · ((xp)2 · c−140,99,0,0 + c−76,57,−36,24)
,
c−9,−6,4,3 − (xp)2

c−9,−6,4,3 + (xp)2

)
Each of the p-power-Frobenius operations shown above are actually equal to a single negation in Fp.
Therefore, they can be calculate very efficiently. The notation ci,j,k,l is used to denote the constant
i+ j

√
2 + k

√
5 + l

√
2
√

5 in Fp2 . This is fixed by setting these values as follows:
√

2 := 264
√

5 := 87392807087336976318005368820707244464 · i
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The explicit formula for φ is defined as:

φ = τ̂(δψW δ
−1)τ

(δφW δ
−1) : Ê → Ê , (x, y) 7→ (xφ, yφ), where

xφ =

(
c9,−6,4,−3 · x · (y2 − c7,5,3,2 · y + c21,15,10,7) · (y2 + c7,5,3,2 · y + c21,15,10,7)

(y2 + c3,2,1,1 · y + c3,3,2,1) · (y2 − c3,2,1,1 · y + c3,3,2,1)

)p
yφ =

(
c15,10,6,4 · (5y4 + c120,90,60,40 · y2 + c175,120,74,54)

5y · (y4 + c240,170,108,76 · y2 + c3055,2160,1366,966)

)p
where τ and τ̂ are the same as defined in the explicit formula for ψ. Both endomorphisms are computed on
E by computing τ and τ̂ separately. The ordering of the endomorphisms in the scalar decomposition does
matter. The reason for this is that the endomorphism ψ can be computed much faster than ϕ. Therefore,
ψ is computed twice and ϕ only once.

4.2.2 Scalar decomposition

In this subsection, we describe how FourQ decomposes the scalar m ∈ Z into the corresponding
4-dimensional multiscalar (a1, a2, a3, a4) ∈ Z such thatm ≡ a1 + a2λφ + a3λψ + a4λφλψ (mod N)
with 0 ≤ ai < 264 − 1 for i ∈ {1, 2, 3, 4}. In this decomposition, λψ and λφ are the eigenvalues of the
two endomorphisms ψ and φ on E(Fp2) [N ], which are defined as follows [11

.

]:

λψ := 4 · p+ 1

r
(mod N)

λφ := 4 · (p− 1)r3

(p+ 1)2V
(mod N)

with r and V being integers that satisfy the formulas presented in [11

.

, §3.3]. We fix both integers by
taking the following solution to these equations:

V := 49293975489306344711751403123270296814, r := 15437785290780909242

To be able to decompose the scalar, we need to introduce of couple of definitions and concepts. First, we
define the lattice of zero decompositions as follows [11

.

]:

L := 〈(z1, z2, z3, z4) ∈ Z | z1 + z2λφ + z3λψ + z4λφλψ ≡ 0 (mod N)〉
Now the set of decompositions form ∈ Z/NZ (i.e. the ring of integers modulo N ) is the lattice coset
(m, 0, 0, 0) +L. Given a basisB = (b1, b2, b3, b4) of L, we can now compute (α1, α2, α3, α4) ∈ Q4 as
the unique solution to (m, 0, 0, 0) =

∑4
i=1 αibi for anym ∈ Z. This is done by making use of the Babai

rounding technique [1

.

]. The rounding technique is an alternative to the nearest plane method, which is a
method used to solve the closest vector problem (CVP) [16

.

]. In general, the Babai rounding method is
not guaranteed to solve the closest vector problem, but in this case it will find the solution (see [11

.

, §4.1]).
Application of this method involves the computation of multiple roundings. Therefore we need to account
for possible rounding errors. This is described later on. The multiscalar now becomes as follows:

(a1, a2, a3, a4) = (m, 0, 0, 0)−
4∑
i=1

bαie · bi

where bαie indicates that αi gets rounded to the nearest integer. It follows that (a1, a2, a3, a4) −
(m, 0, 0, 0) ∈ L. A Babai optimal basis B = (b1, b2, b3, b4) for the zero decomposition lattice is as
follows [11

.

]:

224 · b1 := (16(−60α+ 13r − 10), 4(−10α− 3r + 12), 4(−15α+ 5r − 13),−13α− 6r + 3)

8 · b2 := (32(5α− r),−8, 8, 2α+ r)

224 · b3 := (16(80α− 15r + 18), 4(18α− 3r − 16), 4(−15α− 9r + 15), 15α+ 8r + 3)

448 · b4 := (16(−360α+ 77r + 42), 4(42α+ 17r + 72), 4(85α− 21r − 77), (−77α− 36r − 17))
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where α = V/r ∈ Z. We have to note that in [11

.

], a typo was made where the value of b3[4] was defined
as 15α + 8r + 3α, which is incorrect. With the optimal basis B, the scalar decomposition using the
Babai rounding technique becomes as follows [11

.

]:

(a1, a2, a3, a4) = (m, 0, 0, 0)−
4∑
i=1

bαie · bi

6272r3 · α̂1 = 540V 3 + 10r(27r − 4)V 2 + 6r2(9r2 − 2r + 18)V + r3(27r + 4)(r2 − 2)

25088r3 · α̂2 = 1020V 3 + 10r(47r − 8)V 2 + 2r2(51r2 + 26r + 102)V + r3(47r + 8)(r2 − 2)

25088r3 · α̂3 = 220V 3 + 10r(11r + 16)V 2 + 2r2(11r2 − 46r + 22)V + r3(11r − 16)(r2 − 2)

1792r3 · α̂4 = 60V 3 + 30r2V 2 + 2r2(3r2 + 2r + 6)V + 3r4(r2 − 2)

where αi = α̂i ·m/N . We end up with the following decomposition form:

m ≡ a1 + a2λφ + a3λψ + a4λφλψ (mod N)

with |ai| < 262 for i ∈ {1, . . . , 4}. As mentioned previously, the method of Babai rounding used to
find the multiscalar makes use of four roundings b α̂i

N ·me, wherem is the input scalar and N the fixed
curve constant. The four α̂i and their denominators N are fixed curve constants. An efficient rounding
technique exist (as mentioned in [11

.

]), which works by choosing a power of 2 that is greater than the
denominator N . If we call this value µ, we can use it to calculate the fixed curve constants `i = b α̂i

N · µe.
If we now want to calculate b α̂i

N ·me, we can do it as follows:⌊
`i ·m
µ

⌉
=

⌊⌊
α̂i · µ
N

⌉
· m
µ

⌉
The division by µ at runtime can now easily be done by a simple bitshift. However, this rounding method
can sometimes yield results that are off by 1 [11

.

, §4.2 Lemma 1]:⌊
`i ·m
µ

⌉
−
⌊⌊
α̂i · µ
N

⌉
· m
µ

⌉
∈ {0, 1}

In [11

.

, §4.2 Lemma 1], the value above is proven to be greater than −1/2 − m/(2µ) and less than
3/2 +m/2(µ). Larger values of µ decrease the chance of rounding errors, but in FourQ’s design it was
decided to always account for these rounding errors [11

.

]. This is done by allowing:

(a1, a2, a3, a4) =

4∑
i=1

(αi − α̂i)bi =

4∑
i=1

(αi − (α̂i − εi))bi

for all the possible combinations (sixteen in total) of εi ∈ {0, 1} and i ∈ {1, 2, 3, 4}. This means that all
integers less than µ will decompose to a multiscalar in Z4. Each of the coordinates in this multiscalar
lie inside the parallelepiped Pε(B) := {Bx | x ∈ [−1/2, 3/2)4}. In addition, µ becomes the fixed
value 2256. Another thing that remains to be addressed is the sign of the multiscalar. Many points in
Pε(B) ∩ Z4 are far greater than 262 in absolute value. In addition, the majority of these points will have
coordinates that are both positive and negative. Dealing with signed multiscalars can require an additional
iteration in the main loop for the scalar multiplication, which is unwanted. Therefore, an offset vector in
L is used to find a translate of Pε(B) which only contains positive coordinates. This is done by finding
two vector c and c′ in L that achieve this property. This leads to the following multiscalar corresponding
to the decomposition ofm ∈ [0, 2256) [11

.

]:

a1 = m− ã1 · b1[1]− ã2 · b2[1]− ã3 · b3[1]− ã4 · b4[1]

a2 = −ã1 · b1[2]− ã2 · b2[2]− ã3 · b3[2]− ã4 · b4[2]

a3 = −ã1 · b1[3]− ã2 · b2[3]− ã3 · b3[3]− ã4 · b4[3]

a4 = −ã1 · b1[4]− ã2 · b2[4]− ã3 · b3[4]− ã4 · b4[4]
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whereB is the basis introduced earlier, `i := bα̂i · µ Ne are the four curve constants (with α̂i as defined
earlier). c = 5b2 − 3b3 + 2b4 and c′ = 5b2 − 3b3 + 3b4 are the translation vectors used to make the
coordinates positive, and α̃i = b`im/µc. In [11

.

, §4.3, Proposition 5] and its corresponding proof, it is
shown that both of the multiscalars (a1, a2, a3, a4) + c and (a1, a2, a3, a4) + c′ are valid decompositions
ofm (with all of the coordinates being positive and less than 264). In addition, it is shown that exactly
one of these decompositions ofm has a first coordinate that is odd, which is required as it makes scalar
multiplication and recoding easier.

4.2.3 Scalar multiplication

In this subsection, we describe how FourQ computes a scalar multiplication. To obtain an efficient
algorithm that also runs in constants time, the general recoding algorithm presented in [14

.

] is adopted.
Scalar recoding is a way to recode a scalar to a representation that exhibits a regular pattern. This makes
the scalar multiplication more resistant against simple side-channel attacks. Another way to increase this
resistance is to make use of strongly unified formulas. In scalar multiplication, strongly unified formulas
are formulas that can be used for both addition and doubling. However, use of these formulas is often
expensive and not very efficient. In the paragraphs below, we discuss a couple of recoding algorithms and
their usage in scalar multiplication algorithms.

Signed All-Bit-Set (SAB-set) A scalar multiplication algorithm that makes use of SAB-set is introduced
in [24

.

]. Assume we have the scalar k, the algorithm first replaces every zero bit of scalar k by 1 or −1.
This replacement depends on the neighbor bits. Based on the parity of k, we proceed as follows:

• k is odd. We set k′ = k + 2. If ki is the first bit that is equal to 0, we replace ki by ki + 1 = 1
and ki−1 by ki−1 − 2 = −ki−1 = −1. These changes do not change the actual value of k. The
process described above is iteratively performed for every time we have a ki equal to 0 and ki−1
being equal to 1.

• k is even. We make the value odd by setting k′ = k + 1 and performing the same steps as in the
odd case.

The scalar multiplication kP for an even scalar can now be computed by k′P − P . For an odd scalar, the
calculation becomes k′P − 2P . There is a reason why the value of the odd scalar is initially incremented
by 2 (i.e. the assignment k′ = k + 2). If this is not done, the algorithm described above could be
vulnerable to a Simple Power Analysis (SPA) attack, as it would behave differently for even and odd scalar
values. In order to make the algorithm itself also resistant against SPA attacks, the algorithm is modified
to touch every bit, independent of its value. The corresponding algorithm [24

.

, Algorithm 3] that employs
this modified binary representation now yields a SPA-resistant comb method.

Least Significant Bit - Set (LSB-Set) In [15

.

], a signed representation called the LSB-set is introduced.
This representation was used to protect the comb method, which we discussed in Section 3.4.1

.

. We define
Ki =

[
Kw−1
i , . . . ,K1

i ,K
0
i

]
, which are the points used in the precomputation of the comb method. The

methodworks by transforming all of the comb bit-columns {Ki} of a scalar k into a non-zero representation.
This is quite similar to the HPB approach described in [23

.

]. However, LSB-set approach differs from
HBP because every producedK ′i is a signed odd number. In particular, the LSB-set method generates
K
′0
i ∈ {1, 1̄} and K

′j
i ∈ {0,K

′0
i }, j 6= 0 for each bit-column K′i ≡

[
K
′w−1
i , . . . ,K

′1
i ,K

′1
i ,K

′0
i

]
with

1̄ defined as −1 [15

.

]. The algorithm can be seen in Algorithm 4.2

.

for a window width w ≥ 2 and
d = dn+1

w e. The recoding algorithm works by first converting each of the d bits in the least significant
bit string K ′0r to either 1 or 1̄. This is done by making use of the fact that 1 ≡ 11̄ . . . 1̄1̄ and that the
value of the least significant bit is one for an odd scalar k. In other words, the least significant bit in
each bit-column K ′r for 0 ≤ r < d is either 1 or 1̄ [15

.

]. Once this is done, the algorithm proceeds by
processing each bit at a time, starting from the lowest bit and moving towards the highest bit. The lowest
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Algorithm 4.2 Signed Odd-Only Comb Recoding Algorithm for an Odd Scalar [15

.

].
Input: An odd n-bit integer k =

∑n−1
i=0 bi2

i with bi ∈ {0, 1}.
Output: k =

∑wd−1
i=0 b′i2

i ≡ Kw−1
i ‖ . . . ‖K1

i ‖K0
i , with k having a length of dw (add padding zeros

to the left if necessary). Each K ′j is a binary string of length d. Let K
′j
r denote the r-th bit of K ′j

(i.e K
′j
r ≡ b

′
jd+r). We define Ki =

[
Kw−1
i , . . . ,K1

i ,K
0
i

]
. The output will satisfy K ′0r ∈ {1, 1̄} and

K
′j
r ∈ {0,K ′0r } for j 6= 0 and 0 ≤ r < d.
1: for i = 0 to d− 1 do
2: if bi = 1 then
3: b′i ← 1
4: else
5: b′i ← 1
6: b′i−1 ← 1̄
7: end if
8: end for
9: e←

⌊
k
2d

⌋
10: i← d
11: while i < wd do
12: if e is odd and b′i (mod d) = 1̄ then
13: b′i ← 1̄
14: e← b e2c+ 1
15: else
16: b′i ← e (mod 2)
17: e← b e2c
18: end if
19: i← i+ 1
20: end while
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bit is in this case the d-th bit. If the current bit being processed is 1 and has a sign that is different from
the LSB in the same K′r, this bit is set to 1̄. The value represented by the remaining bits is incremented by
1 to make sure that the value of k remains unchanged. This process generates l = wd bits {b′i}. These
bits represent an odd n-bit integer k.

GLV-SAC The recoding algorithm introduced in [14

.

] is called GLV-Based Sign-Aligned Column
(GLV-SAC). This algorithm forms the basis for the scalar recoding used in FourQ. It is a variant of the
LSB-set recoding (as described earlier). Before we describe how this recoding was tailored to FourQ,
we describe how it was originally proposed. Let ks = {k0, k1, . . . kj , . . . , km−1} be a set of positive
sub-scalars in the GLV setting with dimensionm. Simply put, the GLV-SAC recoding scheme uses one
of the subscalars of the m-GLV decomposition, lets say kJ ⊂ ks represented in signed nonzero form,
to act as the “sign-aligner”. This means hat kJ determines the sign of all the digits of the remaining
sub-scalars based on their relative position. Signed nonzero form is a representation of an integer k in
which k is represented as a sequence of bit strings different from zero. This is done by modifying the
binary representation of k such that all zero bits are eliminated and only bits equal to 1 or −1 (i.e 1̄) are
used. The GLV-SAC representation has the following properties [14

.

]:

(i) The length of the digit representation of every sub-scalar kj ∈ ks is fixed. This length is defined by
l = dlog2 r/me+ 1, where r is the prime subgroup order.

(ii) There is exactly one odd sub-scalar expressed by a signed nonzero representation kJ = (bJl−1, . . . , b
J
0 ),

with all of the digits bJi ∈ {1,−1} for 0 ≤ i < l.

(iii) The sub-scalars kj ∈ ks \ {kJ} are expressed by the signed representations (bjl−1, . . . , b
j
0) such that

bji ∈ {0, bJi } for 0 ≤ i < l.

The properties (i) and (ii) guarantee a constant time execution. This is independent of the value of the
scalar k [14

.

]. The precondition that kJ should be odd enables the conversion from any integer to a full
signed nonzero representation. This conversion is based on the equivalence 1 ≡ 11̄ . . . 1̄. Note that we
can lift the restriction of choosing an odd sign-aligner kJ by transforming the sign-aligner to an odd
number and make the corresponding correction in the end (see [14

.

, §3.1]). The restriction of having only
positive sub-scalars can also be lifted (see [14

.

, §3.3]).
We now describe the recoding algorithm in more detail. We assume that each (positive) sub-scalar kj

is padded with zeros to the left. Each of the sub-scalars must now have the fixed length l = dlog2 r/me+1.
After choosing an appropriate sign-alignerKj (which could be any odd kj), the sub-scalar kJ is recoded
to signed nonzero form bJi by making use of the equivalence 1 ≡ 11̄ . . . 1̄. This means that every sequence
of 00 . . . 01 is replaced by the sequence 11̄ . . . 1̄1̄ with the exact same number of digits. The remaining
sub-scalars are also recoded such that all of the output digits at position i are in the set {0, bJi }. If we
arrange this result in a matrix, we can see that digits in the same column either have a value of zero or
share the same sign as the corresponding digit of the sign-aligner. Now we can precompute all the possible
multiples of the base point that correspond to a digit-column, and perform the comb fixed-base scalar
multiplication by scanning the digit-columns from left to right in the recoded matrix. By definition, every
digit-column i is expected to be nonzero with any of the possible combinations [bm−1i , . . . , b2i , b

1
i , b

0
i ],

where b0i ∈ {1,−1} and bji ∈ {0, b0i } for 1 ≤ j < m and 0 ≤ i < l [14

.

]. Therefore, each iteration of the
scalar multiplication will consists of a point addition and doubling with a precomputed value selected using
the corresponding value of the current digit-column. This achieves a constant regular execution that is
protected against simple SCAs. The general algorithm for recoding a scalar into GLV-SAC representation
can be seen in Algorithm 4.3

.

. The recode algorithm used by FourQ fixes some parameters. This can be
seen in Algorithm 4.4

.

. Note that we assume that k0 acts as the sign-aligner in this algorithm, as its value
is assumed to be odd. On input of a given multiscalar (a1, a2, a3, a4) (produced by the steps described in
Section 4.2.2

.

), the algorithm outputs an equivalent multiscalar (b1, b2, b3, b4) with bj =
∑64

i=0 bj [i] · 2i
for bj [i] ∈ {0, bJi } and j = 1, 2, 3, 4. An example of how the recoding algorithm works and what the
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Algorithm 4.3 Protected Recoding Algorithm for the GLV-SAC Representation [14

.

].
Input: m l-bit positive integers kj = (kjl−1, . . . , k

j
0)2 for 0 ≤ j < m and an odd sign-aligner kJ ∈ {kj}m,

where l = dlog2 r/me+ 1. withm being the GLV dimension and r the prime subgroup order.
Output: (bjl−1, . . . , b

j
0)GLV-SAC for 0 ≤ j < m, where bJi ∈ {0, 1}, and bji ∈ {0, bJi } for 0 ≤ j < m with

j 6= J .
1: bl−1 = 1
2: for i = 0 to (l − 2) do
3: bJi = 2kJi+1 − 1
4: end for
5: for j = 0 to (m− 1), j 6= J do
6: for i = 0 to (l − 1) do
7: bji = bJi · kj0
8: kj = bkj/2c − bbji/2c
9: end for
10: end for
11: Return (bjl−1, . . . , b

j
0)GLV-SAC for 0 ≤ j < m

Algorithm 4.4 FourQ multiscalar recoding reader-friendly [14

.

].
Input: Four positive integers aj = (0, aj [63], . . . , aj [0])2 ∈ {0, 1}65 with values less than 264 for
1 ≤ j ≤ 4 and with a1 being odd.
Output: Four integers bj =

∑64
i=0 bj [i] · 2i with bj [i] ∈ {−1, 0, 1}.

1: for i = 0 to 64 do
2: if i 6= 64 then
3: b1[i] = 2a1[i+ 1]− 1
4: end if
5: for j = 2 to 4 do
6: bj [i] = b1[i] · aj [0]
7: aj = daj/2e − dbj [i]/2e
8: end for
9: end for
10: Return (bj [64], . . . , bj [0]) for 1 ≤ j ≤ 4
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Representation Representation of (X : Y : Z : T )

R1 (X,Y, Z, Ta, Tb)
R2 (X + Y, Y −X, 2Z, 2dT )
R3 (X + Y, Y −X,Z, T )
R4 (X,Y, Z)

Table 4.1: Different point representations for a point in extended twisted Edwards coordinates [11

.

].

Function Input Representation(s) Output Representation Cost
M S A

R1toR2 P R1 P R2 2 - 4
R1toR3 P R1 P R3 1 - 2
R2toR4 P R2 P R4 - - 2

ADD_core P,Q R3,R2 P +Q R1 7 - 4
ADD P,Q R1,R2 P +Q R1 8 - 6
DBL P R4 [2]P R1 3 4 6

Table 4.2: Summary of the conversion, addition and doubling functions. In addition, it is also shown what
the cost of these operations are and what the input and output representations for each of these functions
are [11

.

].

intermediate results are for the corresponding scalar multiplication can be seen in [14

.

, Example 1]. The
implementer-friendly version of the multiscalar recoding algorithm shown in [11

.

, Algorithm 1] makes use
of some optimizations mentioned in [14

.

]. If we take a look at Line 3

.

in Algorithm 4.3

.

, we can see that a
value of kJi+1 = 0 makes the corresponding bJi negative, while a value of kJi+1 = 1 makes it positive. We
know that these values indicate the sign of digit-column i. We can now rewrite Line 3

.

to bJi = kJi+1, if we
assume that bJi = 0 indicates a negative digit-column and bJi = 1 indicates a positive one (for 0 ≤ i < l).
This allows for some additional (efficient) simplifications that can be seen in the implementer friendly
version [11

.

, Algorithm 1].

Fast addition formulas As we have seen in Section 3.3

.

, there are number of alternative representations
that can be used to speed up point addition and doubling in elliptic curve cryptography. In [11

.

], the fastest
explicit addition formulas on the twisted Edwards curve E were reviewed to see which corresponding
representations are used in these formulas. It was found that the fastest formulas were due to Hisil et al
[25

.

]. They make use of extended twisted Edwards coordinates (see Section 3.3.3

.

) to represent the affine
point (x, y) on E by a projective tuple of the form (X : Y : Z : T ), where Z 6= 0, x = X/Z, y = Y/Z
and T = XY/Z. However, there exist other alternative representations that offer advantages in certain
scenarios with respect to implementation friendliness. One of these representations is the one used in
[21

.

, §3.2]. In this paper, they make use of the tuple (X,Y, Z, Ta, Tb) to represent a point in twisted
Edwards coordinates. In this representation, Ta and Tb are any field elements such that T = Ta · Tb. After
a study of alternative coordinate representations, a couple of representations were found that could be
used to speed up the scalar multiplication in FourQ [11

.

, §3.2]. These alternative representations can be
seen in Table 4.1

.

. In Table 4.2

.

, a summary of the conversion, addition and doubling functions used in
the scalar multiplication of FourQ is given. The conversion functions are used to convert from a given
representation to another, while the addition and doubling functions do what their name implies. The
usage of these representations is described in the proof of the exact operation counts for FourQ. The
corresponding theorem states that the scalar multiplication [m]P with a positivem less than 2256 for every
point P ∈ E(Fp2) [N ] is correctly computed as a fixed sequence of exactly 1I, 842M, 842S, 950.5A and
a fixed number of table lookups and integer operations [11

.

]. Exact operation counts are not provided, as
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they depend on the underlying architecture. In addition, specific trade-offs can be made for particular
architectures, which results in different operation counts than the one mentioned previously [11

.

].
We take a look at Algorithm 4.1

.

(Section 4.2

.

), which describes the complete scalar multiplication
procedure of FourQ. Before the lookup table is precomputed at Line 2

.

, we convert to a different
representation. We take P ← R1toR2(P ), φ(P ) ← R1toR3(φ(P )), ψ(P ) ← R1toR3(ψ(P )) and
ψ(φ(P ))← R1toR3(ψ(φ(P ))). To calculate the result of Line 2

.

, we need 7 executions of ADD_core, in
which the output of these additions are inR1. Line 5

.

involves one point negation. In addition, the initial
value of Q is extracted to be used in the first iteration of the main loop later on. This value of Q is then
converted toR4 using the conversion function R2toR4.

4.2.4 Performance results

In [11

.

, §6], the performance of FourQ (which targets the 128-bit security level) is compared to other
efficient curve-based primitives: the twisted Edwards GLV+GLS curve [31

.

] which is defined over Fp2
with p = 2127 − 1, and the genus 2 Kummer surface [17

.

] which is defined over Fp with p = 2127 − 5997.
We refer to these curves as “GLV+GLS” and “Kummer” (as is also done in [11

.

]). The operation count for
these curves was reviewed and summarized in [11

.

, §6.1]. We can see that the operation count for the
GLV+GLS routine is less than the operation count for FourQ. However the authors of FourQ state that
this difference is negligible due to the faster modular arithmetic and “superior simplicity” of FourQ’s
design. The authors of FourQ also wrote a standalone library that supports FourQ1

.

. The library supports
all of the basic elliptic curve operations. This includes support for variable-base, fixed-base and double
scalar multiplications. This implementation was used to compare the performance of FourQ with other
state-of-the-art implementations that are documented in literature. These results can be seen in [11

.

, §6.2].
The results for FourQ are based on one round of an ephemeral Diffie-Hellman (DH) key exchange. They
show the execution time (expressed in the number of clock cycles) for both variable-base and fixed-base
scalar multiplication. Based on these results, we can see that FourQ is 1.24− 1.29 times faster than the
previously regarded fastest implementation. The Kummer implementation for the Haswell architecture
using variable-base is particularly fast. This is because this design is making use of the AVX2 vector
instruction set. However, the FourQ implementation is still 1.09 times faster, without any optimization
being applied. This makes the increase in speed that can be gained even more promising.

1http://research.microsoft.com/en-us/projects/fourqlib/

.
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Chapter 5

FourQ On Hardware

A
fast and compact implementation of FourQ on FPGAs is presented in [26

.

]. As expected, this
implementation is fast: it is significantly faster than any other ECC alternative over a large
prime characteristic field. In this chapter, we discuss the major components in this hardware
design. In addition, we describe some of the optimizations that have been applied compared to

the original algorithm described in [11

.

].

As we have seen in Section 4.2.3

.

, different representations are used within FourQ’s scalar multiplication
(Algorithm 4.1

.

). In [26

.

], a new representation is introduced. As the negative of a precomputed point
(X +Y, Y −X, 2Z, 2dT ) is given as (Y −X,X +Y, 2Z,−2dT ), the values−2dT can be precomputed.
These values can now be stored using the tuple (X + Y, Y −X, 2Z, 2dT,−2dT ). This representation
is referred to asR5. During scalar multiplication, the coordinates are read in the right order: they are
assembled as (X + Y, Y − X, 2Z, 2dT ) or as (Y − X,X + Y, 2Z,−2dT ) for positive and negative
digit-columns respectively. The advantage of this approach is that there is no need for point negations
during the scalar multiplication [26

.

]. This comes however at the cost of storing 8 additional elements
in Fp2 . In the original paper introducing FourQ, the recoded matrix representing the output of the
scalar recoding consists of digits (di) and masks (mi). The 3 least significant bits of the values of the
digit-columns, values di, are used in the scalar multiplication to select one of the eight points from the
precomputed table T . The top bits of the digit-columns, valuesmi, determine whether we add or subtract
the element at the current index in our lookup table (which comes down to a simple conversion from
representationR5 toR2). However, [26

.

] denotes the column values used to index the table with vi, and
uses si (i.e. the sign of the digit-column) to denote the mask values. Besides these naming differences,
the algorithms presented in the two papers are exactly the same.

5.1 Architecture

In this section, we describe the architecture of the hardware design of FourQ as proposed in [26

.

].

5.1.1 Core

An overview of the architecture of the field arithmetic unit (FAU) (also referred to as “the core”) can
be seen in Figure 5.1

.

. The interface logic is used to give inputs to the architecture and to retrieve
outputs. Values used in the computation of the scalar multiplication are stored in the Dual-Port RAM.
The Dual-Port RAM is implemented as BlockRAM in the FPGA. By default, the host is connected to the
architecture through a 64-bit interface. Using this interface, we can write or read a value at a specific
address within this RAM. As the design only uses 128-bit data values, this address indicates whether the
higher or lower part of the 128-bit word is being written or read. Although the width of the interface is
64-bits by default, this width can easily be changed [26

.

]. The datapath within the design is responsible for
the field operations. It provides the basic operations needed to allow the implementation of field addition,
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Algorithm 2 FourQ’s multi-scalar recoding (adapted from [7]).

Input: Four positive integers ai = (0, ai[63], . . . , ai[0])2 ∈ {0, 1}65 less than 264 for
1 ≤ i ≤ 4 and with a1 odd.

Output: (d64, . . . , d0) with 0 ≤ di < 16.
1: s64 = 1
2: for j = 0 to 63 do
3: vj = 0
4: sj = a1[j + 1]
5: for i = 2 to 4 do
6: vj = vj + (ai[0]� (i− 2))
7: c = (a1[j + 1] | ai[0])

∧ a1[j + 1]
8: ai = (ai � 1) + c
9: v64 = a2 + 2a3 + 4a4

10: return (d64, . . . , d0) = (s64v64, . . . , s0v0).
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Fig. 1. Architectural diagram of the core.

multiplication, addition and subtraction. A field multiplication is performed (a)
by computing a 127 × 127-bit integer multiplication, (b) by adding the lower
and higher halves of the multiplication result to perform the first part of the
reduction modulo p = 2127 − 1 and (c) by finalizing the reduction by adding
the carry from the first addition. Addition and subtraction in Fp are com-
puted (a) by adding/subtracting the operands and (b) by adding/subtracting
the carry/borrow-bit in order to perform the modular reduction. The operations
in Fp2 are implemented as a series of operations in Fp managed by the control
logic; see Sect. 3.2. The datapath consists of two separate paths: (a) multiplier
path and (b) adder/subtractor path. The datapath is shown in Fig. 2.

6

The datapath consists of two separate paths: (a) multiplier
path and (b) adder/subtractor path.

Figure 5.1: Architectural diagram of the core FourQ’s hardware design proposed in [26

.

].

subtraction, doubling and multiplication. It performs these operations in Fp2 (which in case of FourQ
boils down to complex number arithmetic). The datapath consists of two paths: a multiplier path and an
adder/subtractor path [26

.

].

• The multiplier path is build around a pipelined 64x64 bit multiplier build using DSP blocks.
The pipelined multiplier consists of seven pipeline stages (as can be seen in Section 2.4

.

), and the
multiplication is done using the schoolbook algorithm. To compute the result of a multiplication,
four 64×64-bit partial multiplications are done: ai×bj for i, j ∈ {0, 1}. This gives a = a12

64+a0
and b = b12

64 + b0. The results of these partial multiplications are accumulated in a 256-bit register.
The order in which the partial products are stored is as follows: (i, j) = (0, 0), (0, 1), (1, 0), (1, 1).
After (0, 0) and (1, 0), the register is shifted down by 64 bits.

• The adder/subtractor is responsible for computing the additions, subtractions and modular
reductions of the partial multiplications results. The adder/subtractor path is designed in such a
way that it can also be used when the multiplier path is performing a multiplication [26

.

]. This is
only possible if the modular reduction computed is available and by introducing an additional set of
input registers to the adder/subtractor. The adder/subtractor also allows accumulation of its results
in the output register. Therefore, most of the additions and subtractions required during scalar
multiplication come for free.

5.1.2 Control logic

The control unit is responsible for controlling the datapath and the memory, and therefore implements all
the levels required by FourQ’s scalar multiplication. The control logic consists of a program ROM that
consists of instruction lines for the datapath and memory addresses. In addition, the control logic contains
a FSM that controls the read addresses from the program ROM. Also a decoder is present to decode the
instructions in the program ROM to control signals such that they can be used to control the datapath
and the memory components. The program ROM contains 8015 lines of hand-optimized instructions.
These instructions are 25 bits wide: 3 bits are used for the multiplier path, 5 bits for the adder/subtractor
path, one bit for write enable and two 8-bit memory addresses for the RAM [26

.

]. Each instruction line is
executed in one clock cycle. The program ROM is divided into seven different routines. Given a base
point P = (x, y) and following [26

.

, Algorithm 1], the routines are as follows:

• Initialization: Lines 1-14 map the affine point P to the representationR1: X ← x, Y ← y, Z ←
1, Ta ← x and Tb ← y.
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• Precomputation: Lines 15-4199 calculate the lookup table T by making use of the endomorphisms
and point additions. T consists of 8 points in total, each represented inR5.

• Initialization main loop: Lines 4200-4214 initialize the point accumulator (which is used in the
main loop) by loading a point from the lookup table T . This is done by making use of the first digit
of the recoded multiscalar and by mapping this point to representationR4.

• Main loop: Lines 4215-4568 compute the point doublingQ← [2]Q and additionQ← Q+mi·T [vi].
The point doubling is calculated using representationR1← R4 (i.e. the input representation to
this operation isR4, and the output representation isR1), while the point addition is calculated
using representationR1← R1×R2.

• Affine conversion: Lines 4569-7437 map the resulting point, represented inR1, to affine coordinates
by computing x = X/Z and y = Y/Z. The majority of these lines are used to perform an inversion
in Fp.

• Point validation: Lines 7438-7561 verify whether the base point P = (x, y) is in E(Fp2). This
boils down to verify whether point P satisfies the curve equation −x2 + y2 − 1− dx2y2 = 0.

• Cofactor clearing: To prevent small subgroup attacks (which can be performed in specific scenarios)
[29

.

], we can perform cofactor clearing as described in [11

.

, Appendix A]. Lines 7562-8014 perform
the cofactor killing by computing 392P . This is done by making use of theR2← R1 map (lines
7562-7643), followed by eight point doublings (lines 7644-7799) and two point additions (lines
7800-7643).

As mentioned previously, the instruction decoder controls how the instructions, read from the program
ROM, are decoded to appropriate control signals. The FSM of the control is responsible for setting the
address for the program ROM. This is done by making use of a counter and hard-coded pointers to the
beginning of each routine within the program ROM. Depending on the operation, the counter gets either
incremented such that the next line of a routine is fetched, or its value is set to the appropriate routine.
Once the end pointer of a routine is reached, either the pointer moves to the start of another routine, or the
FSM moves to the wait state.

5.1.3 Scalar decompose & recode unit

The decompose unit of the scalar unit is responsible for both decomposing the scalarm into the 64-bit
multiscalars a1, a2, a3, a4 (as described in Section 4.2.2

.

), and to recode these scalars into digit-columns
(d64, . . . , d0) with 0 ≤ di < 16. These digit-columns are then used during the scalar multiplication
to retrieve the correct precomputed points to be added. To calculate the multiscalar, the four curve
constants `1, `2, `3, `4 and the values of the basis b = (b1, b2, b3, b4) are necessary. As these values
are all constants, they are stored in the program ROM and are used from there on. In addition, the
values α̂i for i ∈ {1, . . . , 4} need to be computed, which is done by computing `im/µ with µ := 2256.
As the computation of these value involves a multiplication, a truncated multiplier was designed in
[26

.

, Algorithm 3]. Given two integers X and Y with 0 ≤ X < 2256 and 0 ≤ Y < 2195, the result
ZH =

⌊
X · Y/(2256)

⌋
(mod 264) is calculated. The truncated multiplier can also be used to calculate

the result ZL = XY (mod 264), which is necessary to compute the final values of ai. Most of the
functionality of the truncated multiplier is due to the 17× 264-bit row multiplier. The row multiplier
computes the product Yj ·X for a j ∈ [0, 11] (as needed in [26

.

, Algorithm 3 line 5].) The row multiplier
is implemented by making use of DSP blocks (11 in total). The Xillinx Zynq FPGA family, that was
used to test the proposed hardware design of FourQ, provides 17× 24 unsigned integer multiplication
with an addition of a 47-bit unsigned integer. To be compliant with these dimensions, the 256-bit input
integer X is split into d256/24e = 11 blocks of 24-bit words, and the 195-bit input integer Y is split
into d195/17e = 12 blocks of 17-bit words. X and Y now become represented as X10, X9, . . . , X0 and
Y11, X10, . . . Y0 in radix 224 and 217 respectively.
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The recode unit is also implemented as FSM, where each state computes one or more lines of the
recoding algorithm presented in [11

.

].
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Chapter 6

Side Channel Attacks

W
e describe the side-channel attack used to evaluate the hardware design of FourQ (presented
in [26

.

]) in this chapter. We first explain Simple Power Analysis (SPA). We then introduce the
concept of template attacks. This is a powerful type of side-channel attack in which profiles
are created for the targeted device that are used later on to obtain the secret key. After that,

we look into a different flavor of template attacks that is called Online Template Attacks (OTA). This
improvement of template attacks reduces the number of required template traces to perform the attack.

6.1 Simple Power Analysis

In Simple Power Analysis (SPA) attacks, power consumption measurements are collected during a
cryptographic operation and are directly interpreted. The attacker tries to derive the key bits more or less
directly from the given trace [32

.

]. This often requires detailed knowledge of the algorithm’s underlying
implementation executed by the device under attack. In the most extreme case, only one power trace can
be recorded and used to perform the attack. This is what we call a single-shot SPA attack. In multiple-shot
SPA attacks, the attacker is able to record multiple power traces for the same plaintext, or has the ability to
supply different plaintexts. For these attacks to work, the key used in the cryptographic algorithm must
have a significant impact on the power consumption of the device under attack. The impact of the key on
the power consumption could be either directly or indirectly.

6.2 Template Attack

In [8

.

], template attacks are presented. These attacks break cryptosystems for which the security is based
on the assumption that an attacker is not able to record more than one or a limited number of power traces.
To perform a template attack on a given device, the attacker must have access to another copy of the exact
same device over which it has full control. In the preprocessing state of the template attack, templates are
created. In practice, this takes a lot of power traces. However, the template attack itself only requires a
very small number of power traces from the device under attack. The obtained templates are then used to
reduce the set of possible keys, which makes an attack feasible. The steps needed to perform a template
attack are as follows [9

.

]:
1. Using a copy of the exact same device as the device under attack, record a large number of power

traces using different inputs (e.g. plaintexts and keys).

2. Generate the templates. A template is the model of captured side-channel information for one
operation and consists of information about the typical signal to expect. In addition, it also contains
a noise-characterization for that case [37

.

]. Templates should be made for all possible operations
carried out by the algorithm under consideration. The term “all possible operations” refers to (a
part of) the cryptographic system being executed using key values that trigger all relevant execution
paths of the system.
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Figure 6.1: Example of a Gaussian distribution with µ = 4 and σ = 0.4.

3. Capture the trace of a single operation from the device under attack. A single operation could for
example be the key-scheduling part of the algorithm running on the device to be attacked.

4. Using the previously generated templates (representing all key-values for the operation to be
considered), we classify the side-channel information of the device under attack and assign it to one
or more templates. This reduces the number of possible keys (or could even lead to retrieval of the
exact key used).

We now describe template attacks in more detail. Assume we have captured a power trace that consists of
b sampled points. Each sampled point consists of a signal and noise part. This gives us a b-dimensional
noise-vector per trace. As we know, electric signals are inherently noisy. If we take a voltage measurement,
we do not expect to see a constant voltage level. Even if we assume a constant power source (e.g. 4V), the
measurement values will slightly oscillate around this constant value (e.g. 3.99, 4.03, 4.02, 3.95). One
way of modeling this observed noise in a power trace is as follows [9

.

]:

X = Xactual +N

whereX andN are random variables, which means these values differ every time we take a measurement.
In the case of our example, in which we had a power source of 4V, Xactual would have a value of 4, where
the value ofN would differ for each measurement taken. A simple model to deal with these random
variables is to make use of the Gaussian distribution. The corresponding probability density function
(PDF) of a Gaussian distribution is defined as follows:

f(x) =
1

σ
√

2π
e−(x−µ)

2/2σ2

where µ is the mean and σ is the standard deviation. For example, if our voltage source has a mean of
4 and a standard deviation of 0.4, the PDF would look like the one shown in Figure 6.1

.

. We can now
use this PDF to determine how likely a certain measurement is. If f(x) is very small for one of our key
guesses, this guess is probably wrong.

The univariate Gaussian distribution works well for a single measurement. In the case of more than
one random variable, we can make use of the multivariate Gaussian distribution. This allows us to
model multiple random variables that might correlate. This model has, in contrary to the more simple
univariate models, proven to be adequate for practical usage in template attacks. Instead of making use of
a single variance σ, we make use of a whole matrix of covariances. We generalize the covariance matrix
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construction to a vector column containing n random variables. Assume we have the column vector:

X =

X1
...
Xn


in which the entries are random variables. Then the covariance matrix Σ is the matrix in which the entry
(i, j) is the covariance: Σi,j = cov(Xi,Xj). If i = j, this computation can be simplified by computing
the variance instead. The variance is a special case of the covariance in which the two variables are
identical (or in other words, the values of the two random variables are the same). The operations cov and
var are defined as follows:

cov(Xi,Xj) = E [(Xi − µi,Xj − µj)] = E [XiXj ]− µiµj
var(X) = E

[
(X − E(X))2

]
= E [(X − E(X)) · (X − E(X))]

The covariance matrix looks as follows:

Σ =



E [(X1 − µ1)(X1 − µ1)] E [(X1 − µ1)(X2 − µ2)] · · · E [(X1 − µ1)(Xn − µn)]

E [(X2 − µ2)(X1 − µ1)] E [(X2 − µ2)(X2 − µ2)] · · · E [(X2 − µ2)(Xn − µn)]

...
... . . . ...

E [(Xn − µn)(X1 − µ1)] E [(Xn − µn)(X2 − µ2)] · · · E [(Xn − µn)(Xn − µn)]


In these definitions, the operator E denotes the expected (mean) value of its argument, and µi = E(Xi) is
the expected value of the ith entry in vector X. The covariance is a measure of the joint variability of two
random variables. If two variables show similar behavior for increasing/decreasing values, this results in
positive/negative covariance. The stronger this linear dependence, the more this value goes to ±1. If the
inverse of this covariance matrix, Σ−1, exists, it is also known as the concentration or precision matrix.
The corresponding PDF of this multivariate distribution is different from the one shown for a univariate
Gaussian distribution. Instead of having a single argument, a vector is used which contains all of the
variables: x = [X1, X2, . . . , Xk]

T. For n random variables, the equation is as follows:

f(x) =
1√

(2π)n|Σ|
exp

(
−1

2
(x−µ)TΣ−1(x−µ)

)
where µ is the vector of expected (mean) values, Σ is the covariance matrix that corresponds to the
random variables, exp is the matrix exponential function and |Σ| is the determinant of the covariance
matrix. The result of this function is a n-dimensional column vector.

To be able to classify a trace captured from the device under attack, we need to build a template for
each trace, for each of the possible operations. This template consists of statistical information of the
corresponding trace. This includes the properties of the probability distribution of all the sample points in
the trace. As expected, the quality of the model improves as the number of captured traces increases. This
information can be used to find subtle differences between power traces, which makes us able to obtain
good key guesses for a single power trace.

6.2.1 Making the attack more practical

The theoretical approach to template attacks described in the previous subsection is not feasible, as there
are couple of problems that need to be dealt with [37

.

, 9

.

]:
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• Number of traces. It is not feasible to create templates for all possible key values. As originally
proposed, a template attack requires us to model every single key. Fortunately, different alternatives
exist to this approach. One of these approaches is to attack the sensitive parts of the algorithm. This
could for example be the output of the SubBytes (the substitution box or s-box) operation of the
AES encryption algorithm. By focusing on the output of the SubBytes operation, we only need to
build templates for each of the 256 outputs of the s-box. This is due to the s-box operating on 8-bits
inputs, which gives us 256 input values for the s-box. By creating templates for each of these values,
we can perform the template attack on the device under attack in 128/8 = 16 stages (assuming
AES128). In each stage, we attack a single byte (i.e. a subkey) of the key used. Afterwards, we
combine the results of all subkey attacks to retrieve the key used.
However, we could do even better. In [7

.

], it was shown that the power consumption of a
microprocessor can correspond to the Hamming weight (the number of 1’s in a bitstring) being
examined. If this assumption holds for the device to be attacked , we only have to make templates
for all possible Hamming weights of the s-box output byte, which are 9 values in total. This will
result in a much faster template generation, as the number of models needed is significantly lower.
However using the latter method makes us unable to recover the key from a single attack trace: we
need more information to retrieve the key used [9

.

].
Even if we attack the key in stages, each stage will result in a couple of subkeys that are likely to be
correct. Combining all of these subkeys to find the secret key is still not efficient. To deal with this,
one can make use of an extend-and-prune strategy [8

.

]. If we attack the cryptographic algorithm in
stages, we first start off with a small candidate set of prefixes for the key. After each stage, we end up
with another small candidate set of larger-sized prefixes of the key [39

.

]. By repeating this process,
we eventually end up with a limited number of complete keys that we can exhaustively test. After
each stage, we perform a pruning step to reduce the number of possible keys. The pruning step
is performed by a classification algorithm, that determines which subkeys at the current iteration
survive. If the performance of the classification process is efficient, the pruning step will also be
more efficient. There is however a trade-off to be made between the accuracy of the classification
process and the number of possible subkeys that survive after each iteration: if the total number of
subkeys surviving in each iteration is too high, it will result in an uncontrollable combinatorial
explosion of possible key values towards the end of the attack. To be able to perform the attack
successfully, it is sufficient to have the feasibility of exhaustive key search on the remaining possible
keys.

• Points of Interest. If the number of sampled points in a trace is high, the storage requirements
of the traces also increase. In addition, this also has impact on the performance of calculations
that need to be done in order to compute the templates (i.e. the matrix inversion of the covariance
matrix). By making use of points of interest (POIs), we do not need all samples in the power
trace to successfully launch a template attack. In addition, there is no reason to use multiple POIs
captured within a single clock cycle: these points do not provide additional information as it is very
likely that they belong tot the same leakage instance. We can get the same amount of information
from only a single sample captured at the right time [9

.

, 37

.

].
In general, there are also several ways of picking the most important points in each trace. The
general goal is to find those points that differ strongly between different operations. One of the
most simple methods is the sum of differences method. This method works as follows [9

.

, 37

.

]:

– For every operation n ∈ N , we have a number of Tp traces t1, . . . , tp. For each operation n,
we calculate the average powerM :

M =
1

Tp

Tp∑
j=1

tj
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– After we find the mean signal for all of the operations, we calculate the absolute pairwise
difference and add these. If we have an operation ni ∈ N , we calculate its pairwise difference
with every other operation (n1, n2, . . . , ni−1, ni+1, . . . , n|N |−1, n|N |):

Di =
∑
n1,n2

|Mn1,i −Mn2,i|

After adding these values together, we again end up with a trace called the sum of differences
trace. Points in this newly calculated trace that differ strongly between different operations
will now have a high value within this trace.
The next step is to extract the points from this ‘sum of differences’ trace that are interesting.
In [37

.

], only points from this trace are selected that have a minimal height that is higher than
the noise floor of the sum of differences trace. The noise floor of a signal is the measure of the
signal created from all sums of all noise sources and unwanted signals within the measurement
systems. Noise is in this case defined as any signal other than the one being monitored. In
[37

.

], an algorithm was used that retrieved the n highest peaks. This algorithm followed the
‘noise floor’ constraint and also an additional constraint that ensured that the points taken are
at least one clock cycle (or more) apart. An example algorithm would be the following [9

.

]:
1. Assume we have calculated Di, we now pick the highest point from this Di and take the

value i = argmax(Di) as our point of interest (i.e. the sample that currently has the
highest peak);

2. Discard the nearest N points, where N is the minimum spacing between the points of
interests (POIs);

3. Repeat until the required number of POIs have been selected.

6.2.2 Preprocessing the traces

In side-channel analysis, raw input data is often preprocessed. This could either be for simplicity or for
efficiency reasons. However, in some cases, preprocessing has an enormous impact on the actual results
of the side-channel attack. It turns out that by transforming the input traces from the time domain into
the frequency domain is a very lucrative transformation. In [37

.

], this preprocessing step was done on
a template attack on RC4, by making use of FFT. After preprocessing the traces, the resulting traces
could still be used to perform the template attack exactly the same as if they were not preprocessed. It
turned out that the total number of points of interest (as described in Section 6.2.1

.

) differs when the traces
are preprocessed. At the price of performing an FFT on every input trace, it was shown that much less
points were sufficient in comparison with a template attack in which the traces were not preprocessed
[37

.

]. The selection of points in the frequency domain is different from the point selection in the time
domain. The lower bound used for the selection of peaks in the time domain was not directly applicable
in the frequency domain. It turned out that the lower bound was much smaller in the frequency domain
compared to the one used in the time domain [37

.

].

6.2.3 Creating the templates

After determining the POIs in the power traces, it is time to create the templates. Assume we have I
points of interest at samples si for i ∈ {0, 1, . . . , I − 1}. The next step is to calculate the mean vector and
the covariance matrix for every operation (as described previously). Assume we have N operations, we
do the following for each operation n ∈ N [9

.

, 37

.

]:

• First, capture a power trace that corresponds to operation n. If there are Tp of these power traces,
we find the average power consumption at every point of interest, which is denoted as µi. This
value is calculated as follows [37

.

]:

µi =
1

Tp

Tp∑
j=1

tj,si
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where tj,si is the value of the point-of-interest i in trace j.

• Next, we find the variance of the power at each point of interest, which we denote as vi. This value
is calculated as follows [9

.

]:

vi =
1

Tp

Tn∑
j=1

(tj,si − µi)2

Note that these values will represent the diagonals of the covariance matrix we build later on.

• Finally, we calculate the covariance between every point-of-interest pair. This is done as follows
[37

.

]:

ci,i′ =
1

Tn

Tn∑
j=1

(tj,si − µi)(tj,si′ − µi′)

with i, i′ ∈ I and i 6= i′.

• Now its time to put all of the values together to create the corresponding mean vector and covariance
matrix [9

.

]:

µ =


µ1
µ2
...
µI

 , Σ =


v1 c1,2 c1,3 · · · c1,I
c2,1 v2 c2,3 · · · c2,I
c3,1 c3,2 v3 · · · c3,I
...

...
... . . . ...

vI,1 vI,2 vI,3 · · · vI


We end up with N mean column vectors and covariance matrices. They model each of the N different
operations available for the target device.

6.2.4 Applying the templates

Once we have our templates ready, it is time to put them to use. In order to perform the template attack,
we need a number of traces from the target device. We use these traces to determine how likely our key
guesses are. With ‘key guesses’, we refer to the templates we have generated previously for all possible
(relevant) key values. We assume to have A traces from the target device, where each trace consists of
samples aj,si for j ∈ {1, . . . , A} [9

.

]. We now describe how we apply the template to a single trace. First
we have to put the values at the POIs of our trace into a vector:

aj =


aj,1
aj,2
...
aj,I


Now we calculate the PDF for every key guess (i.e. applying each template to every attack trace):
pk,j = fk(aj). The value pk,j tells us how likely the key k is if we look at trace j ∈ A [9

.

]. As we have
multiple traces, each template is applied to each of these attack traces. Therefore, we end up with a list of
pk,j values for every single template. Each value in the list is the evaluation of that specific template for
that specific attack trace. After we have applied the templates, it is time to combine the results (i.e use our
pk,j values) to determine which template matches the power traces the best (i.e. which key is the best fit).
This is done as follows:

Pk =
A∏
j=1

pk,j

For each template, we multiply the corresponding pk,j values, which gives us the likeness that this specific
template fits the attack traces [9

.

]. Note that when we have a single trace that does not match the template,
the Pk value for this template drops very quickly. This makes it easier to discard non-matching templates
(i.e. wrong key guesses).
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Fig. 1. Vertical and Horizontal SCA

the attack steps themselves (as described in Tables 1 and 2), it impacts the
implementation security analysis. Indeed, we will see in Section 4 that a coun-
termeasure may become ineffective when going from one category of attacks to
another one. We illustrate this in the context of secure RSA implementations.

2.3 Taxonomy

Based on the discussions conducted in previous sections, we propose here a
general taxonomy for simple and advanced side-channel attacks. To name an
attack we propose to use the convention [XXX]-[YYY]-[ZZZ] where:

– XXX equals either S for simple SCA or is a reference to the statistical tool for
advanced SCA (e.g. C for Correlation, MI for Mutual Information, ML for
Maximum Likelihood, LR for Linear Regression, etc.). In case of multivariate
SCA, we propose to pad the order/dimension followed by O at the left of
the distinguisher letter.

– YYY is an acronym referring to the leakage type; PA for Power Analysis,
EMA for Electromagnetic Analysis, TA for Timing Attacks, etc.

– ZZZ is optional and may be used to specify if the attack is profiled or not.
In this case, ZZZ is replaced by P (for Profiling) or UnP (for UnProfiling).
For instance, Template attack is a ML-PA-P attack.

Of course, all those attacks can be applied either on a Vertical or Horizontal
mode. Figure 2 illustrates the taxonomy for some existing attacks.

Figure 6.2: Visualization of Vertical and Horizontal SCAs (taken from [3

.

]). A realization of random
variable X is referred to as the corresponding lower-case letter x. A power trace li for a given input xi is
denoted as li ←↩ L | X = xi (this notation sums up the event of a sample of observations of L under the
input xi).

6.3 Online Template Attack

In [2

.

], a variation of template attacks called Online Template Attacks (OTAs) is introduced. Template
attacks are a form of SCAs with a modus operandi called Vertical. In these attacks, the implementation
under attack is executed several times, such that power traces can be acquired for each of these executions.
Whether these executions use the same input or not depends on whether a simple or advanced SCA is
performed. Besides Vertical SCAs, we also have SCAs with a modus operandi called Horizontal. In
these attacks, only a single execution is necessary and different (Horizontal) data or computations are
considered when attacking the implementation. The differences between these modus operandi of SCAs
can be seen in Figure 6.2

.

. An OTA combines these two different approaches to SCAs. The attack works
by acquiring one target trace from the device under attack. Patterns of certain operations from this target
trace are then compared to templates obtained from the attacker’s device (which is a similar device running
the same implementation). Thus, an attacker requires only one target trace from the target device. Only a
single template trace per key-bit is necessary, which is obtained from the device of the attacker. OTAs can
be used to attack the secret scalar used in a scalar multiplication algorithm. In practice, OTAs make the
following assumptions about the attacker [2

.

, 12

.

]:

• The attacker knows the input point P that belongs to the trace of the target device;

• The attacker knows the implementation of the scalar multiplication algorithm and can compute
intermediate values of this algorithm;

• The attacker can choose the input point on a device similar to the target device.

For the attack to work, at least one assignment in the exponentiation algorithm must be dependent on
the value of particular scalar bit(s). However, there should not be any branches with key-dependent
computations. We now give a global overview of how an OTA works:
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• First, the attacker obtains a target trace with input point P from the target device;

• The attacker now obtains the template traces with input points [m]P form ∈ Z. This is done for
multiples of the point P , for example 2P or 3P;

• The attacker now compares the correlations between the target trace and each pair of template
traces. The one with the highest correlation is the one most likely to be correct.

6.3.1 Creating the templates

In [2

.

], several examples are shown on how an OTA works for different scalar multiplication algorithms.
Consider the left-to-right double-and-add always algorithm shown in Algorithm 6.1

.

. The algorithm

Algorithm 6.1 Left-to-right double-and-add-always algorithm [2

.

].
Input: P , k = (1, kx−2, . . . , k0)2.
Output: Q = k ·P .
1: R0 ← P
2: for i = x− 2 to 0 do
3: R0 ← 2R0

4: R1 ← R0 +P
5: R0 ← Rki . Depending on the bit value of ki,R0 either takes the valueR0 orR1

6: end for
7: ReturnR0

assumes that the most-significant bit of the scalar k is 1 (i.e. kMSB = 1). We now describe how an OTA
can be applied in the case of Algorithm 6.1

.

. It is assumed that the first bit of the scalar is 1. However, if
we take a look at the ‘for loop’ in Algorithm 6.1

.

, we see that this bit is not used. Therefore, we assume
that the first iteration of this algorithm (which involves a point doubling and addition) is done with the
neutral element of the curve. Thus, execution of the first iteration will yield the point P . If we now
consider the second iteration (the operations that correspond to kMSB− 1), we can verify that the expected
outputs of this iteration are either 2P or 3P (depending on the value of kMSB−1). We now know that in
the next iteration (i.e. the operations belonging to key-bit kMSB−2), a doubling of either 2P or 3P will
be performed. On our copy of the same device, we can now execute the algorithm with input point 2P
or 3P . This gives us a trace of the corresponding doubling operations. Thus we can match the trace of
the doubling operation in the (i+ 1)th iteration of the target trace with the appropriate template trace to
attack the key bit used in the ith iteration:

• If kMSB−1 = 0, then the output of the second iteration is 2P . The template trace for 2P (obtained
from the iteration involving kMSB−2) will now give a higher correlation with the target trace than
the template trace for 3P .

• If kMSB−1 = 1, then the output of the second iteration is 3P . The template trace for 3P (obtained
from the iteration involving kMSB−2) will now give a higher correlation with the target trace than
the template trace for 2P .

In this way, we can iteratively attack and retrieve all of the key bits used. Note that when we calculate the
correlation of the template trace with the target trace, we compare them only at the suitable parts of the
traces. These are the places at which the key-bit related assignments take place. To determine the most
likely key-bit, we compute the correlations with the target trace and the template traces, which in the
second iteration would be 2P and 3P . We consider the template trace that gives the highest correlation
value as the one with the right key guess. We repeat this procedure to find the key-bit for kMSB−2: we
correlate the templates for 4P and 5P with the target trace if we guessed that kMSB − 1 = 0. Otherwise,
we would correlate using the templates 6P and 7P . Again, the template that gives the highest correlation
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KMSB = 1 KMSB−1 ∈ {0, 1} KMSB−2

Target Trace D(O) A(O,P) D(P) A(2P,P) D(2P) or D(3P)

Template Trace of 2P D(O) A(O, 2P) D(2P) A(4P, 2P)

(a) Attacking the second-most significant key bit KMSB−1. D and A stand for the doubling and addition operation
respectively as performed in Algorithm 6.1

.

. Depending on the correlation of the output of the operations performed
using the key-bit KMSB−1 and the corresponding template traces (in this case the template trace D(2P)), we determine
the most likely value forKMSB−1. In this iteration, we assume that the template for D(2P) gives the highest correlation
with the target trace.

KMSB = 1 KMSB−1 = 0 KMSB−2 ∈ {0, 1} KMSB−3

Target Trace D(O) A(O,P) D(P) A(2P,P) D(2P) A(4P,P) D(4P) or D(5P)

Template Trace of 4P D(O) A(O, 4P) D(4P) A(8P, 4P)

(b) Attacking the third-most significant key bitKMSB−2. Depending on the correlation of the output of the operations performed
using the key-bit KMSB−2 and the corresponding template traces (in this case the template trace D(4P)), we determine the
most likely value forKMSB−2.

Figure 6.3: Visualization of the first two iterations of the OTA applied to Algorithm 6.1

.

(tables based on
examples shown in [12

.

]).

with the target trace is the most likely one to be correct. An example of attacking the first two bits of a
secret scalar k with respect to Algorithm 6.1

.

can be seen in Figure 6.3

.

.

6.3.2 Matching the templates

As mentioned previously, template matching is only performed with parts of the power trace at which the
key-bit related assignments take place. To calculate the correlation between a template and target trace
such that we can distinguish the right hypothesis on the current bit under attack, we can make use of the
Pearson correlation coefficient. The Pearson correlation coefficient is defined as follows:

ρ(X,Y ) =
cov(X,Y )

σXσY

where cov is the covariance, σX is the standard deviation of X and σY is the standard deviation of Y . X
and Y would in this case be the template and target trace (in any order).
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Chapter 7

Attacking FourQ

I
n this chapter, we describe how we attack FourQ. In Chapter 6

.

, we have seen how we can
apply an Online Template Attack (OTA) to a very simple left-to-right double-and-add always
algorithm that performed its calculations in constant time. When applying an OTA to FourQ,
we have to slightly change our approach to attack the key bits compared to the example we

gave in Chapter 6

.

. In addition, the attack itself is also more difficult, as it (at first sight) requires us to
inverse both the scalar recoding and scalar decomposition routines when generating the templates used in
attacking the scalar. We discuss these practicalities in this chapter.

7.1 Applying online template attacks to FourQ

In Algorithm 4.1

.

in Chapter 4

.

, we can see the complete scalar multiplication of FourQ. In order to retrieve
the secret scalar, we need to obtain the si and di values that are applied in each iteration. Recall that in the
case of an OTA, the attacker can only capture one target trace of the device under attack (i.e. the target
device). In addition, we assume that the attacker knows the input point that belongs to this trace. On the
attacker’s device, the attacker has full control over the implementation (which is the same implementation
responsible for the captured target trace). This means that the attacker can change the scalar, but also the
base point in the scalar multiplication. We now describe how we apply an OTA to FourQ.

• Attacking the first digit-column. If we take a look at the actual scalar multiplication algorithm in
Algorithm 4.1

.

, we can see that s64 determines the sign of the first element taken from the lookup
table T . Which element is taken from this table is determined by the value d64, which is unknown
to us in the captured target trace. After the initial assignment in Line 5

.

, the doubling operation of
this initial value (i.e. loop at iteration i = 63) is done at Line 7

.

. This is the first doubling operation
we are going to attack. If we take a look at the general scalar recoding algorithm employed by
FourQ in Algorithm 4.3

.

(in Chapter 4

.

)1

.

, we can see that b64 is always assigned a value of one, and
that this value is used in the main loop as s64. As we already know that the value of s64 = 1, we are
left to guess the value of d64, which is a 3-bit value. Our goal in the first ‘iteration’ of our OTA is
to try all of the possible d64 values (i.e. our templates), such that we can obtain the corresponding
power traces of the doubling operations. We then use these templates to find the one that matches
best with the corresponding part of the target trace (i.e. the first doubling operation).

• Attacking the remaining digit-columns. Once we have found the template (and its corresponding
d64 value) that matched the best with our target trace at the first doubling operation, its time to
attack the remaining digit-columns. At Line 8

.

, we see that both si and di determine the new value
of the variable Q. In the next iteration i− 1, this variable Q is doubled again. To find out which
values of si and di were used, we have to generate all of the possible templates for these values.
This are at most 16 possible templates (3 bits for di and 1 bit for si). Note that we need to compare

1In the case of FourQ, we have l = 65 andm = 4.
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each of the corresponding template traces at the (i− 1)th doubling operation to attack the di and si
values used in the addition operation in the ith iteration. We are then iteratively constructing the
matrix that corresponds to the recoded scalars of FourQ. Using these scalar values, we need to
invert the scalar decomposition applied to the secret scalar to obtain the ‘original scalar’ of the
scalar multiplication that corresponds to the target trace.

• Attacking the last digit-column. We cannot use a doubling operation to attack the last digit-column
and sign (s0 and d0) in the 0th iteration, as the main loop ends after this iteration. There are however
two other ways to attack the last digit-column and its corresponding sign. One way is to use the
generated templates for the addition operation involving d0 and s0, and use this operation instead
to match the template traces with the target trace. Another way would be to brute force these last
values, and see which output of the scalar multiplication gives the correct results.

As mentioned in [2

.

], we can also use the addition operation in the ith iteration together with the doubling
operation in the (i− 1)th iteration to attack digit-column (si, di). In this way, we can increase the chance
of choosing the correct template. This is however only possible when attacking the digit-columns not
used in the first or last iteration (i.e digit-columns (s63, d63) up to (s1, d1)).

7.2 An attempt to inverse the scalar recoding

To obtain templates for the OTA, we need to find recoded scalars with specific values at the digit-columns
in the corresponding recoded matrix. As we can change the value of the scalar used in FourQ’s
scalar multiplication, we need to obtain a scalar that, once decomposed and recoded, has the expected
digit-column values in it. To determine which decomposed multiscalar belongs to our wanted recoded
matrix, we have to inverse the scalar recoding for this matrix. We first take a look at the operations in the
scalar recoding algorithm shown in Algorithm 4.3

.

. We can see that in Line 8

.

, the value of the scalar gets
updated in each iteration by taking the floor of its current value divided by 2 (i.e. a bit shift of 1 to the
right) and subtracting the floor of bji divided by 2. In Line 7

.

, we see that the value bji is assigned a value
that is the result of taking bit i of the sign-aligner and multiplying it with the very first bit of scalar kj . So
what are the possible values for these variables?

• bji = bJi · k
j
0. We know that, once the sign-aligner is converted to signed non-zero form (Lines 2

.

to 4

.

), all of its values at position i will be either 1 or −1: bJi ∈ {1,−1}. As the value kji ∈ {0, 1}
(as all of the scalars are binary numbers in signed form), we have bji ∈ {0, 1,−1}.

• kj = bkj/2c − bbji/2c. We know that bji ∈ {0, 1,−1}. Therefore, we have bbji/2c ∈ {0,−1}.
Note that the −1 is due to the fact that b−1/2c = −1.

As the floor operation applied to the scalar kj divided by 2 is in essence a bit shift, we can see that this
bitshift is done 65 times (i.e for j ∈ [0, 64]). As we are working with 64-bit integers, one would expect
that the value of the scalar becomes zero after 64 bitshifts. However, the subtraction of bbji/2c from the
shifted scalar can also result in an addition of 1. Therefore, only after 65 bitshifts the value of kj will
be zero. We know that all kj’s will have a value of zero once the recoding algorithm has been applied.
Lets see what happens if we try to obtain the original multiscalar by applying the algorithm in reversed
order. As we know, a bitshift is not a completely irreversible operation. In the case of a right bitshift,
we loose the first bit of the scalar (i.e. the bit indicating the parity of the scalar). Due to the bitshift
and subtraction occurring at Line 8

.

of the algorithm, we somehow have to guess what the value in the
previous iteration would have been. So what are these possible values. This depends on the parity of the
scalar used. Assume we have the result r = (((d >> 1) << 1) + c) with c ∈ {0, 1} and d ∈ N. By
finding all possible outcomes for r and c with d being either odd or even, we know how many possibilities
there are when inverting the operation of Line 8

.

in the recoding algorithm. The results can be seen in
Table 7.1

.

. We can see that r ∈ {0, 1,−1}, which gives us an idea of the number of possibilities when
trying to undo the operation at Line 8

.

of the recoding algorithm once it has been applied. In each iteration
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d ∈ N d ∈ 2N \ {0}

c = 0 0 1
c = 1 −1 0

Table 7.1: Possible outcomes of the equation r = (((d >> 1) << 1) + c) with c ∈ {0, 1} and d ∈ N
being either odd or even. This table shows the possible values of kj if we would try to find its original
value after we already applied the operation at Line 8

.

of Algorithm 4.3

.

.

of the algorithm, it seems like we need to guess three possibilities to obtain the correct value for iteration
i− 1: kj << 1, (kj << 1)− 1 and (kj << 1) + 1. This seems to be impossible, as this would require
us to try 364 values. However, at every moment in time, we only need to make sure that the digit-column
for which we are trying to generate templates has a specific value (and all the previous digit-columns
we already attacked). It therefore seems to be the case that the values of the other digit-columns do not
matter. To see if we can make this work, we take a look at the example shown in [14

.

, Example 1]. In this
example, they also have a multiscalar consisting of four scalars (m = 4) having a length of l = 5. The
decomposition of the ‘original scalar’ is given as kP = 11P0 + 6P1 + 14P2 + 3P3. If we arrange the
scalars in matrix form and apply the recoding, we get the following:

k0
k1
k2
k3

 ≡


0 1 0 1 1
0 0 1 1 0
0 1 1 1 0
0 0 0 1 1

 ≡


1 1̄ 1 1̄ 1
1 1̄ 0 1̄ 0
1 0 0 1̄ 0
0 0 1 1̄ 1


We are going to attack the leftmost digit-column (just like the one that would be used in the very first
iteration of FourQ’s scalar multiplication algorithm). In this case, this is digit-column d4. Our first step
would be to find a multiscalar that produces the output in the matrix that we want to have for d4. We
assume that this is the exact same template as the one produced by the ‘secret’ scalar: K4 = [011] or
d4 = 3. Now we try to find the remaining entries in the recoding matrix. For simplicity, we show our
attempt by only taking the first scalar into account (i.e. k1). Recall the operation that updates the scalar in
each iteration:

kj = bk′j/2c − bbji c ≡ bk′j/2c − b(bJi · k
′j
0 )/2c

with k′j denoting the value of kj in the current iteration before it was updated (i.e the value of kj after the
previous iteration i− 1 finished). The attempt is shown below.

• Iteration i = 4. We know that k1 = bk′1/2c − b(bJ4 · k′10 )/2c = 0 with k′1 ∈ {0, 1} (note that
−1 is not possible as the intermediate values of the scalar remain positive throughout the entire
algorithm). In addition, we also know that bJ4 = 1. This gives us two possibilities:

– bk′1/2c = 0 and b(bJ3 · k′10 )/2c = 0. bk′1/2c = 0 can only happen if k′1 ∈ {0, 1}.
b(bJ3 · k′10 )/2c = 0 can only happen if bJ3 · k′10 ∈ {0, 1}. This implies that bJ4 = 1 and k′10 = 1.
The latter is only possible if k′1 = 1.

– bk′1/2c = 1 and b(bJ3 ·k′10 )/2c = 1. bk′1/2c = 1 is only possible if k′1 ∈ {0, 1}. However,
this contradicts with the fact that k′1 ∈ {0, 1} E.

• Iteration i = 3. We know that k1 = bk′1/2c − b(bJ3 · k′10 )/2c = 1 with k′1 ∈ {1, 2, 3}. This gives
us two possibilities:

– bk′1/2c = 0 and b(bJ3 · k′10 )/2c = −1. bk′1/2c = 0 can only happen if k′1 = 1.
b(bJ3 · k′10 )/2c = −1 can only happen if bJ3 · k′10 ∈ {−2,−1}. This means that k′10 = 1 and
bJ3 = −1.

– bk′1/2c = 1 and b(bJ3 · k′10 )/2c = 0. bk′1/2c = 1 can only happen if k′1 ∈ {2, 3}.
b(bJ3 ·k′10 )/2c = 0 can only happen if bJ3 ·k′10 ∈ {0, 1}. This gives the following combinations
of values:
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∗ bJ3 = −1 and k′10 = 0 (implies k′1 = 2)
∗ bJ3 = 1 and k′10 = 0 (implies k′1 = 2)
∗ bJ3 = 1 and k′10 = 1 (implies k′1 = 3)

For the sake of simplicity, we assume to guess k′1 = 1 which gives k′10 = 1.

• Iteration i = 2. We know that k1 = bk′1/2c − b(bJ2 · k′10 )/2c = 1 with k′1 ∈ {1, 2, 3}. This gives
us two possibilities:

– bk′1/2c = 0 and b(bJ2 · k′10 )/2c = −1. bk′1/2c = 0 can only happen if k′1 = 1.
b(bJ2 · k′10 )/2c = −1 can only happen if bJ2 · k′10 ∈ {−2,−1}. This means that k′10 = 1 and
bJ2 = −1.

– bk′1/2c = 1 and b(bJ2 · k′10 )/2c = 0. bk′1/2c = 1 can only happen if k′1 ∈ {2, 3}.
b(bJ2 ·k′10 )/2c = 0 can only happen if bJ2 ·k′10 ∈ {0, 1}. This gives the following combinations
of values:

∗ bJ2 = −1 and k′10 = 0 (implies k′1 = 2)
∗ bJ2 = 1 and k′10 = 0 (implies k′1 = 2)
∗ bJ2 = 1 and k′10 = 1 (implies k′1 = 3)

For the sake of simplicity, we assume to guess k′1 = 2 which gives k′10 = 0.

• Iteration i = 1. We know that k1 = bk′1/2c − b(bJ1 · k′10 )/2c = 2 with k′1 ∈ {3, 4, 5}. This gives
us two possibilities:

– bk′1/2c = 1 and b(bJ1 · k′10 )/2c = −1. bk′1/2c = 1 can only happen if k′1 ∈ {2, 3} (i.e.
k′1 = 3). b(bJ1 · k′10 )/2c = −1 can only happen if bJ1 · k′10 ∈ {−2,−1}. This means that
k′10 = 1 and bJ1 = −1.

– bk′1/2c = 2 and b(bJ1 · k′10 )/2c = 0. bk′1/2c = 2 can only happen if k′1 ∈ {4, 5}.
b(bJ1 ·k′10 )/2c = 0 can only happen if bJ1 ·k′10 ∈ {0, 1}. This gives the following combinations
of values:

∗ bJ1 = −1 and k′10 = 0 (implies k′1 = 4)
∗ bJ1 = 1 and k′10 = 0 (implies k′1 = 4)
∗ bJ1 = 1 and k′10 = 1 (implies k′1 = 5)

For the sake of simplicity, we assume to guess k′1 = 3 which gives k′10 = 1.

• Iteration i = 0. We know that k1 = bk′1/2c − b(bJ0 · k′10 )/2c = 3 with k′1 ∈ {5, 6, 7}. This gives
us two possibilities:

– bk′1/2c = 2 and b(bJ0 · k′10 )/2c = −1. bk′1/2c = 2 can only happen if k′1 ∈ {4, 5} (i.e.
k′1 = 5). b(bJ0 · k′10 )/2c = −1 can only happen if bJ0 · k′10 ∈ {−2,−1}. This means that
k′10 = 1 and bJ1 = −1.

– bk′1/2c = 3 and b(bJ0 · k′10 )/2c = 0. bk′1/2c = 3 can only happen if k′1 ∈ {6, 7}.
b(bJ0 ·k′10 )/2c = 0 can only happen if bJ1 ·k′10 ∈ {0, 1}. This gives the following combinations
of values:

∗ bJ0 = −1 and k′10 = 0 (implies k′1 = 6)
∗ bJ0 = 1 and k′10 = 0 (implies k′1 = 6)
∗ bJ0 = 1 and k′10 = 1 (implies k′1 = 7)

For the sake of simplicity, we assume to guess k′1 = 6 which gives k′10 = 1.

As you can see, we have three possibilities for obtaining a specific value for the last bit in digit-column
K4. For the other most-significant bits in the remaining digit-columns, we have four combinations to
guess. This gives a total number of 3 · 44 = 768 combinations for this very simple example. In the case
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of FourQ where we have l = 65, this would give us 3 · 464 possible combinations (a 130-bit value), which
is clearly unfeasible to brute force.

iteration i
0 1 2 3 4

bJi 1 -1 1 -1 1
kj0 0 1 0 1 1
bji 0 -1 0 -1 1
kj 3 2 1 1 0

Table 7.2: intermediate values for the scalar recoding iteration with j = 1 and k1 = 6.

bx·y2 c
x = 1 y
x = −1 −y

(a) Outcome ranges for
the function bx·y

2
c with

x ∈ {1,−1} and y ∈
{0, 1} but y’s exact value
being unknown.

bx·y2 c
y = 0 0
y = 1 x

(b) Outcome ranges
for the function bx·y

2
c

with y ∈ {0, 1} and
x ∈ {−1, 1} but x’s
exact value being un-
known.

Figure 7.1: Possible outcomes for the function bx·y2 c with either x or y being unknown.

Fortunately, we can circumvent the inversion of the recoding by changing the hardware implementation
in such a way that it takes a decomposed scalar instead of a scalar that still needs to be decomposed.
The implementation still remains the same, but instead of assigning the results of the decomposition to
the corresponding multiscalar, we take the values of the decomposed scalar directly and assign them
to their corresponding signals. It would however still be interesting to see if it is possible to invert the
scalar recoding in such a way that you can create a recoded multiscalar. If we convert this multiscalar
back to the original scalar and apply decomposition and recoding, it should still have the wanted values at
the specific digit-columns in the recoded matrix. This would make a template attack against hardware
implementations of FourQ possible in an even more restricted setting where the attacker does have a
similar device, but where its implementation cannot be changed. This could however be a whole research
project on its own, and is left as an open problem for others.

7.3 Determining the offsets

Given the power trace of both the target trace and the template trace, we need to extract the relevant
doubling and/or addition operations from these traces and correlate them. This requires us to determine
the offsets into these trace that indicate where the required operation starts and how long it lasts. To
determine these offsets, we add a trigger to our hardware design that is high between the start and end of
these operations. Determining these exact values was done adding by adding output statements to the
control FMS (see Chapter 5

.

). This component knows exactly when the scalar multiplication is executing
within the main loop. Unfortunately, there is only one state which indicates that either the doubling or
addition operation is performed, but not exactly when it starts or ends. From [26

.

], we know that an
iteration of the main loop of FourQ starts when the value of the program counter equals 4215 and ends
when this value is 4568. We also know that the main loop starts with the doubling operation. Thus, it
remains unclear when (1) a doubling operations ends and when (2) an addition operation starts. To obtain
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start end

DBL 4216/4217 4380/4381
ADD 4373/4374 4564/4565

Table 7.3: Values of the program counter in the hardware design of FourQ at which the DBL and ADD
operations start and end. The value of the program counter points to instructions in program ROM that
are used to control the operations needed to compute the scalar multiplications of FourQ.

start end

DBL 4216/4217 4251
ADD 4373/4374 4489

Table 7.4: Values of the program counter in the hardware design of FourQ at which the DBL and ADD
operations start and end. In this case, instead of taking the whole doubling operation into account, only
the first squaring in the doubling and addition operation is used to find the corresponding program counter
values.

these unknown offsets (and also to verify the known ones), we make use of a reference implementation of
FourQ available on GitHub2

.

that belongs to an Internet-Draft of FourQ [28

.

]. This implementation is
dubbed Curve4Q and follows the approach described in the original paper. It therefore does not make use
of the newly introduced representationR5 used in the proposed hardware design of FourQ [26

.

]. Thus, we
add the conversion functions as shown in Appendix A.1

.

to this reference implementation. We then change
the code in such a way that these newly introduced conversion functions are used in the table generation
phase and in the initial assignment to Q. In addition, we also add print statement to the start and end of
the actual DBL and ADD methods. By also printing the output of the Field Arithmetic Unit (FAU)3

.

and the
program counter, we can use the output of both the reference implementation and the FAU to determine
at which program counter values the DBl and ADD operations start and end. The results can be seen in
Table 7.3

.

. We used these program counter values to add a trigger in the given hardware design that has
a high signal on the start and end of each operation. As the main loop of FourQ consists of 64 points
additions and 64 doubling operations, this gives us 128 rising and falling edges in the corresponding
power trace of this trigger.

As described in [2

.

], we can also focus on a single operation within this doubling operation. Focusing
on the first squaring operation in doubling formulas described in [28

.

] gives us different values for the
program counter. These values can be seen in Table 7.4

.

. The corresponding power trace when using
the start/end values for the addition operation as mentioned in Table 7.3

.

, and for the doubling operation
as mentioned in Table 7.4

.

, can be seen in Figure 7.2

.

. Given this power trace, we need to determine
the indices at which a rising edge starts and how long it stays high (i.e. determine the relative index
of the start of the corresponding falling edge). Initially, our approach was to calculate the difference
between consecutive elements in this trigger trace without any preprocessing. If the difference of two
successive elements is high, it indicates that we are approaching a rising/falling edge (depending on the
sign of this difference). The success of this approach however depends on the sampling rate used. If a
low sampling rate is used, the difference between two successive elements can be higher. In the case of
a higher sampling rate, this difference will be much smaller. Therefore, it is hard to choose a correct
threshold to determine the indices of the rising and falling edges in this trigger trace. To solve this, we
decided to preprocess the trace by rounding all values below a threshold to zero. One has to make sure
that this threshold is lower than the values between a rising and falling edge. Applying the method we
described first now correctly yields the offsets at which operations start and end.

2https://bifurcation.github.io/fourq/

.

3This is done by making use of the image_pb.vhd VHDL package written by Ben Cohen, which can be found online

.

. A
more recent version of such a package is the txt_util.vhd VHDL package, written by Øyvind Harboe.
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Figure 7.2: Power trace that indicates at which samples the doubling and addition operations start and
end. Instead of taking the whole doubling operation into account, we only determine where the very first
squaring happens. This explains why the doubling operation consist of less samples than the addition
operation.

The previously described method still depends on the vertical offset of the operation trigger trace. A
method that works regardless the vertical offset is shown in Algorithm 7.1

.

. In the end, we decided to
stick with this generic method. The algorithm works by first determining the average of the minimum
and maximum value in the trigger trace. We then determine the greatest lower bound (GLB) and least
upper bound (LUB) for all values smaller and bigger than this average respectively. Our threshold µ now
becomes the average of GLB and LUB. All values in the trigger trace that are bigger or equal to this
threshold are clipped to the maximum value, while values smaller are clipped to the minimum value. We
then calculate the consecutive differences of all the samples in this trigger trace. We can now determine
the rising and falling edge indices by checking whether these absolute differences are bigger than our
threshold µ. The offsets can now easily be found by taking the difference between these indices. Given a
pair of successive edge indices, only those indices are taken into account for which the first edge index
corresponds to a rising edge (i.e. has a positive difference or its value is bigger than µ).

Algorithm 7.1 Given a power trace that contains the signals of the operations to attack, determine the
offsets to these operations.
Input: A power trace T of the trigger that indicates when one or more doubling/addition operations
start/end.
Output: The offsets and durations to these operations.
1: min_max_avg = (max(T ) + min(T ))/2
2: TH = {s | s ∈ T, s ≥ min_max_avg}
3: TL = {s | s ∈ T, s < min_max_avg}
4: lub = sup(TH) . Least Upper Bound (LUB)
5: glb = inf(TL) . Greatest Lower Bound (GLB)
6: µ = (glb + lub)/2
7: For all s in T : if s ≥ µ clip value to max(T ), else clip value to min(T )
8: succ_diffs = {T [n+ 1]− T [n] | n ∈ [1,#T )} . Calculate the first order difference
9: edges = {idx(d) + 1, d ∈ D | |d| ≥ µ} . Determine offsets
10: offsets = {(edges[n], edges[n+ 1]− edges[n]) | n ∈ [0,#edges], offsets[n] > µ}
11: Return offsets

7.4 Matching the templates

Using the method as described in Algorithm 7.1

.

of Section 7.3

.

to determine the offsets, we applied the
OTA to the FourQ hardware design using the SAKURA-G board. For the very first iteration, the target
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Figure 7.3: Target trace of the first doubling, which is produced using the value d64 = 7 with the base
point and scalar as listed in Appendix A.2

.

in Appendix A

.

.
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Figure 7.4: An overlap of all the template traces shown in Appendix A.2

.

.

trace of the relevant doubling operation together with the corresponding template traces can be seen in
Figure 7.3

.

and Figure A.2.1

.

respectively. An overlap of the template traces can be seen in Figure 7.4

.

. All
of these traces are captured with a sampling rate of 1GSa/s without any bandwidth or noise filter applied.
The signal coupling of the channels was set to DC50W. The operation speed of the FourQ design was
set to 1.5MHz (which is the default speed). Due to the Nyquist-Shannon sampling theorem, we need to
capture a power trace at a sample rate that is at least twice the bandwidth of the input signal. In addition,
it may be preferable to use a sample rate that is (at least) 10 times the acquisition bandwidth, such that
fast signal rise times are oversampled in order to make them consistent with the oscilloscope bandwidth
[47

.

]. This justifies our acquisition rate of 1GSa/s. Without even looking at the correlation results, we
can immediately see that the template traces are almost identical. After viewing the traces in Inspector
SCA (a software product developed by Riscure), we can see that there are very small differences between
these template traces. The similarity among the template traces is also reflected in the correlation values
obtained after correlating the templates with each other. These correlation values are at least 99%.

After correlating the template traces with the target trace using the Pearson correlation coefficient
while attacking the first 5 digit-columns (i.e. the first 5 iterations of the OTA), we again observed that all
of the correlation values were close to 99%. Instead of only using the doubling operation, we also made
use of the fact that we can use the addition operation to have two ‘operations of reference’ instead of one.
Making use of this approach slightly decreased the correlation values. However, the results were similar to
the results observed when only making use of the doubling operation. We decided to research which part
of the frequency of the target trace contained the expected leakage. After applying FFT to the target trace,
we found out that the interesting samples were in the higher frequencies of the trace. This was verified by
making use of a low-pass filter with a cut-off frequency of 81MHz. If the interesting frequencies of a
trace are filtered out, the traces will even look more similar, which will result in higher correlation values
in the template-matching phase. This is also exactly what we observed in the correlation values after we
applied the aforementioned low-pass filter. Therefore, we decided not to use this low-pass filter in the
remaining experiments we conducted.
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x̃ µ σ

d64 3.5 4.2 2.46
d63 5.0 4.8 1.60
d62 2.0 1.55 0.50
d61 9.0 8.2 3.67
d60 2.0 1.85 0.65

(a) Full.

x̃ µ σ

d64 4.0 4.2 2.23
d63 5.5 4.55 2.18
d62 1.5 1.5 0.50
d61 5.5 6.4 3.83
d60 1.0 1.45 0.50

(b) 200MHz.

x̃ µ σ

d64 2.0 3.4 2.44
d63 4.0 3.85 1.65
d62 2.0 1.6 0.49
d61 11.5 10.5 3.61
d60 1.0 1.3 0.46

(c) 20MHz.

Table 7.5: The median (x̃), mean (µ) and standard deviation (σ) of the rank of the correct template is
shown after attacking the first 5 digit-columns. These values were obtained after applying the OTA 20
times using the same target trace. The number of times the expected template had the highest correlation
value is 22, 28, and 31 for (a)

.

, (b)

.

and (c)

.

respectively.

7.4.1 Bandwidth filter comparison

As the template-matching results are so close to each other, we decided to attack the first 5 digit-columns
(i.e d64 up to d60) for the same target trace. Each attack was performed 20 times with different bandwidth
filters. The reason for conducting this experiment is to get more insight in which settings of the oscilloscope
are the most promising despite the high similarity among the template traces. By performing the OTA 20
times using the same settings, we wanted to account for coincidences with respect to the ranking of the
template that is expected to have the highest correlation value. Results of the rankings for the correct
template in attacking the first 5 digit-columns can be seen in Table 7.5

.

. What is interesting to see is that
the mean and median values for the rank of the correct template trace in attacking the digit-columns d62
and d60 is way lower than for the other digit-columns. This applies to each of the tables regardless the
bandwidth filter applied. It could be the case that the corresponding parts of the target trace are less noisy
for these particular digit-columns, which causes the correct template to have the highest correlation value
more often. For the other digit-columns, it can be seen that both the mean and the standard deviation
of the correct template are worse. Across most tables, the mean and standard deviations stay roughly
the same. The mean value of the rank tends to go down for digit-column d61 for a bandwidth limit of
200MHz (b)

.

compared to the full bandwidth (a)

.

.
Based on the data shown in Table 7.5

.

, there seems to be no real difference between any of the
bandwidth filters, which is probably due to the minimal differences between all of the correlation values.
If we launch 20 OTA to attack the first 5 digit-columns, we have to make 100 guesses. This applies to each
of the tables shown in Table 7.5

.

. In each of these guesses, we determine which template matches best
with the target trace. If we compare this total number of guesses to the number of times we matched the
correct templates for each of these tables, we get an indication on how bad the classification performance
is: between 22-31%. Despite the minimal differences between the number of templates matched correctly,
we did however choose to settle with a bandwidth limit of 20MHz for the remaining experiments we
conducted. The reason for this choice is that this bandwidth limit resulted in the highest number of
templates matched correctly. We also note that this is the same bandwidth limit used in a side-channel
attack (i.e. a correlation power analysis) on AES to test the performance of the SAKURA-G board once
its development had finished [20

.

]. Besides experimenting with different values for the bandwidth limit

56



x̃ µ σ

d64 3.0 3.3 1.79
d63 5.0 5.3 1.62
d62 1.0 1.4 0.49
d61 6.5 6.2 3.06
d60 2.0 1.6 0.49

(a) 20 additional templates.

x̃ µ σ

d64 4.5 4.6 2.33
d63 5.5 4.9 1.92
d62 1.0 1.2 0.40
d61 6.5 7.0 3.52
d60 2.0 1.6 0.49

(b) 50 additional templates.

x̃ µ σ

d64 5.0 4.1 2.47
d63 4.0 3.6 1.47
d62 1.0 1.4 0.49
d61 6.0 6.3 3.63
d60 2.0 1.6 0.49

(c) 100 additional templates.

Table 7.6: For each attack on the first 5 digit-columns, the median (x̃), mean (µ) and the standard deviation
(σ) of the rank of the correct template is shown when a bandwidth limit of 20MHz is used. The indicated
number of additional traces (20, 50 or 100) are used to average the acquisition of a single template trace.
Each OTA is performed 10 times.

(None, 20MHz or 200MHz), we also experimented with different sampling rates (from 500 MSa/s up to
20 GSa/s) and coupling values. However, the correlation results for each possible configuration remained
at least 99% and gave no observable improvement over any of the other configurations we considered.

The high correlation values observed for each of the template traces are not in line with the results
that were obtained in [2

.

]. In their experiments, it was observed that a correct template would give a
correlation result that was much higher than a non-matching one (i.e. ≥97% when correlating a matching
template compared to 85% for a non-matching template). These pattern-matching values would drop
when multiple bits were attacked using a single acquisition (which was due to a stability problem with
the power supply in their setup). The previously mentioned results were however obtained on software
devices. These devices have different power properties compared to hardware devices such as FPGAs,
which could make these result not directly applicable to our setup.

7.4.2 Template averaging

In [12

.

] an OTA was launched against PolarSSL on an ARM architecture. When they used a single
(non-averaged) template trace to attack a key bit of the scalar, the correlation values observed for the
correct templates were low. They managed to increase the correlation results of the correct template by
capturing a template trace multiple times and averaging these results. By capturing the same template
trace multiple times, one can somewhat account for the noise that is present in each acquired template
trace. The effectiveness of this approach depends on the number of additional template traces captured. It
was shown that the correct template had a correlation of 69% when using a single template trace, while
this number increased to 99.80% when an average of 100 template traces was used. In Table 7.6

.

, the
results for applying this template-averaging technique to FourQ can be seen Table 7.6

.

. As expected, the
correlation values become higher once the number of additional template traces increases. However,
classification of the correct template is still far from optimal. It is almost like throwing a dice to determine
the rank of the correct template. This is very clear if we look at the standard deviation of the rank of the
expected template for both Table 7.5

.

and Table 7.6

.

. These results were obtained by making use of the
same target trace (which would resemble a real-world scenario). It could be the case that the attacked
digit-columns at which the standard deviation is very high, the corresponding part of the target trace
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contains more noise than normal. But due to the non-distinctiveness of the correct template trace, this
reasoning remains speculation. We also applied the averaging technique to the target trace itself (which
does not represent a real-world scenario), but this did not yield any results that were more interesting than
the usage of one (non-averaged) target trace.

7.4.3 Preprocessing the traces

As we can read in Section 6.2.2

.

in Chapter 6

.

, there are some preprocessing steps that we can take into
account to improve template matching. Also a method for selecting the most interesting points in a trace
was applied (as described in Section 6.2.1

.

). These methods did however not yield improved results.
Besides that, we also made use of the built-in noise filter of the oscilloscope. Digital oscilloscopes often
have a sampling rate that is much higher than required. This is called oversampling, and can be used to
filter the digitized signal to either increase the effective resolution or to remove unwanted noise. This
method is called Enhanced Resolution (ERes). With the oscilloscope used in our setup, oversampling
can be used to increase the vertical resolution. This is done by making use of moving-average filter
[47

.

]. Application of this particular filter did not gave any observable improvement, as the classification
performance was almost identical as observed when applying the techniques discussed before. Similarly,
no improvements were observed with different sampling rates or coupling values of the channel used to
capture the template/target trace.

58



Chapter 8

Conclusion & Discussion

I
n this thesis, we attacked a hardware implementation of FourQ. In order to communicate with
a hardware design deployed on a FPGA, the SAKURA-G board contains an USB interface to
connect with a PC. Values that need to be transferred from and to the FPGA pass through this
interface. The interface itself is realized by a FTDI chip embedded in the SAKURA-G board.

The SAKURA-G board comes with example hardware designs of AES for both the main and control
FPGAs on the board. We based the final design, that wraps the hardware design of FourQ on the main
FPGA, on these example designs. However, these example hardware designs were written in Verilog
and were also largely undocumented. Therefore, we reviewed and documented the state machines used
within these designs in Chapter 2

.

, and also converted the designs to VHDL. Although VHDL is more
verbose than Verilog, from our point of view, VHDL has a couple of strengths compared to Verilog: it is
strongly typed and also very deterministic. We used documents/tutorials that were internally available to
document the relevant parts of the available example designs. In the same chapter, we also explained how
power traces can be captured from the FPGA using the available Teledyne LeCroy oscilloscope. To work
with the oscilloscope’s API using Python, we partly implemented the ActiveDSO interface which exposes
the oscilloscope’s functionality. To store and load the power traces in Inspector, we also implemented the
trace set encoding as specified in Appendix K1 of the corresponding software manual [38

.

].
In Chapter 3

.

, we discussed the concept of (twisted) elliptic curves, and how these can be used to
define a discrete-log problem for elliptic curves (ECDLP). In the same chapter, we also described several
methods that can be used to efficiently compute scalar multiplications when using elliptic curves. FourQ
combines several of these concepts, which resulted in a curve that targets the 128-bit security level
[11

.

]. These concepts are explained in Chapter 4

.

. Instead of only reviewing the mathematical concepts
underlying FourQ, we also created a Python implementation which greatly improved our understanding
of the curve itself. As FourQ has proven to be very fast compared to other (constant-time) alternatives
[11

.

], it was only a matter of time before anyone would come up with a hardware implementation. The
first hardware implementation of FourQ on FPGAs was presented in [26

.

]. That implementation formed
the basis for this thesis by subjecting it to side-channel attacks. More specifically, we applied an Online
Template Attack (OTA) to this implementation, which is an optimized template attack in which the
number of templates required is significantly reduced. Both template attacks and OTAs are discussed in
detail in Section 6.2

.

and Section 6.3

.

respectively. Applying an OTA to FourQ requires the generation of
specific multiscalars. If these multiscalars are ‘valid’, we are left with two ways in which we can apply
an OTA to the hardware implementation of FourQ. We can either find the original scalar that, once
decomposed, produces the expected digit-columns in the recoded matrix after applying the GLV-SAC
algorithm (see Section 4.2

.

). The other way is to change the hardware implementation in such a way that it
takes a multiscalar instead. As can be read in Section 7.2

.

, inversion of the scalar recoding turned out
to be far more complex than expected. Therefore, it was decided to take a different approach instead,
in which we feed the implementation a multiscalar directly. After FourQ finishes the decomposition
phase, we assign the multiscalar, we received as input, to the corresponding signals that are input to the
GLV-SAC algorithm. By making use of this approach, we were still able to generate the power traces for a
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given template in each iteration of FourQ. To make clear whether a decomposed or a regular scalar was
expected in the hardware implementation, we introduced a single constant indicating which approach was
used. This modification does hardly interfere with original design and allowed for fast switching between
different types of scalar inputs.

After we were able to generate the template traces, we attacked the hardware implementation of
FourQ (see Section 7.4

.

). In Section 7.3

.

it is described how we determined the offsets to the doubling and
addition operations in the target trace. After applying the OTA (see Section 7.4

.

), it was found that all of
the template traces showed really high correlation values among themselves and with the relevant part of
the target trace. Even after experimenting with different relevant settings of the oscilloscope (i.e. the
sampling rate, bandwidth limit and noise filter), it was found that correlation values for the template traces
in attacking a single digit-column were very similar. This did not change for the first 5 digit-columns we
attacked. The majority of these correlation values were ≥ 99%. Template averaging (as used in [12

.

]) was
also applied, with the number of additional templates ranging from 20, 50 and 100 per template. We
also used suggestions as described in both Section 6.2.1

.

and Section 6.2.2

.

in order to improve the results
of the template classification. Although these methods increased the correlation results to 99.9%, this
increase was observed for all of the templates (including the correct one). This did not help us any further
compared to the methods we were using previously.

There are a couple of reasons that could explain the observed results. First of all, it could be
the case that the amount of noise in the acquired waveforms was just too high, making results of the
template-matching phase inconsistent. Secondly, the hardware implementation we considered makes
use of pipelining. This means that multiple field computations are performed within the design without
waiting for completion of the previous computation. This feature could have reduced the distinctiveness
of the correct template trace. However, it is very hard to tell if this is the case, as this feature is built
within the program ROM, which are 8017 lines of hand-optimized routines where none of the instructions
are documented (apart from the start and end of major routines).

During the experiments, we also faced some problems with memory limits of Python 3 32-bit The
default amount of RAM assigned to a process on a Windows 7 machine is 2GB for a 32-bit process.
Some of our long-running experiments failed because they exceeded this memory limit. We eventually
found two ways to fix this problem. One can either make use of memory-mapped files (as available in
Numpy), or one can make use of a 64-bit Python version. In the end, we settled with the latter option.
However, we have to note that changing the code in such a way that memory-mapped files are used is the
most elegant solution. This is because using memory-mapped files works regardless the amount of RAM
(if done properly and the available RAM is at least 2GB). We also experienced that generating statistics
on OTAs when experimenting with different settings can take quite some time. Just attacking the first 5
digit-columns 10 times, and also taking the average of 10 templates to obtain a single template already
took a whole day (with a sampling rate of 1GSa/s). In the case of 100 additional template traces per trace,
this took almost 3 days. If we combine these experiments with different settings for the oscilloscope, it
can take a very long time to get results on different approaches to the template-matching phase.

It would be a bold statement to conclude that the hardware implementation of FourQ considered in
this thesis is side-channel resistant. For future work, a couple of interesting things can be done with
respect to the FourQ implementation we considered. First of all, it could be determined whether reducing
the amount of noise in the template traces, or dealing with this noise in a different way, can improve the
classification performance in the template-matching phase. There is a lot of literature on how to reduce
the noise from power acquisitions, and in this thesis we only used methods that were found after reviewing
the tip of the iceberg on literature on this topic. Secondly, a different implementation without pipelining
could also be considered (for which you probably should contact the authors of FourQ’s hardware design),
as it remains unclear what the impact of this feature is on the power traces. Only after these options have
been considered, it will become clearer if the hardware implementation of FourQ we attacked in this
thesis, is in fact protected against OTAs.
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Appendix A

Appendix

A.1 Curve4Q source code additions
# (X+Y, Y-X, Z+Z, 2d*Ta*Tb) = (X+Y, Y-X, Z+Z, 2d*Ta*Tb, -2d*Ta*Tb)
def R2ToR5(P):

(XplusY, YminX, ZplusZ, two_dT) = P
return(

XplusY,
YminX,
ZplusZ,
two_dT,
GFp2.neg(two_dT)

)

# R5toR2(X+Y, Y-X, Z+Z, 2d*Ta*Tb, -2d*Ta*Tb) = (X+Y, Y-X, Z+Z, ± 2d*Ta*Tb)
def R5toR2(P, sign):

(XplusY, YminX, ZplusZ, two_dT, min_two_dT) = P
# -1/+1 represented as 0/1
options = [

(
YminX,
XplusY,
ZplusZ,
min_two_dT

),
(

XplusY,
YminX,
ZplusZ,
two_dT

),
]
return options[sign]

A.2 Example template traces
Figure A.2.1

.

shows example template traces used in the first iteration of the Online Template Attack
(OTA). These traces are captured using the following base point and scalar:

P = (x, y)

x = 4278750285544105074676860908476659235 + 129913138569548007992917457078809919071i

y = 18212526546888401742587968450932351321 + 43058747546351419525605575024245364232i

m = 0x5150C5D41FB74053200BBFA6A8B72032B8F48118358A215D4D9C7722E582EE6D
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Figure A.2.1
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Figure A.2.1: Template traces that are used to attack the first digit-column d64 of FourQ using an Online
Template Attack (OTA). The value of d64 related to each template trace indicates that this was the specific
value used in the doubling operation that resulted in the captured trace.
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A.3 Measurement setup

Figure A.3.1: The measurement setup used to capture the power traces from the board. The power output
of the main FPGA is connected to C3. The signal indicating the beginning and the end of the main loop is
used as a trigger to capture all of the power traces. This trigger is assigned to C1. Its trigger value is set to
1.00 V and it triggers on the positive edge of the signal. The power trace that indicates the start and end of
the doubling and addition operations in each iteration of the main loop in FourQ is obtained from C2.
The oscilloscope used during all of the acquisitions is the Teledyne LeCroy - WaveRunner 610Zi.
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