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Abstract

Space Fortress (SF) is a research tool originally designed to train humans in complex tasks
which involve the concurrent and coordinate use of perception and motor skills, conceptual and
strategic knowledge, at the service of multiple goals [Mané and Donchin, 1989]. Having a Machine
Learning (ML) model of SF could be helpful for designing optimal plans for training and selection
of personnel, which can be very resource consuming. SF has recently sparked the interest of the
Reinforcement Learning (RL) community, because it requires the agent to learn abrupt context-
dependent shifts in strategy and temporal sensitivity [Agarwal et al., 2018]. This master thesis
presents the first RL agent to learn SF from a sparse reward signal effectively and reach human
performance. This agent builds upon hDQN, an idea of [Kulkarni et al., 2016]. It is an implemen-
tation of Hierarchical Reinforcement Learning where the agent utilizes temporal abstraction over
actions in the form of goals in order to make an efficient exploration of its environment. After
several experiments conducted with different reward functions and various levels of abstraction for
hDQN it is demonstrated the potential of Hierarchical Reinforcement Learning in scenarios with
scarce positive feedback coming from the environment and the importance of designing reward
functions that indicate what we want our agents to learn, not how we want them to do it.



Les dedico este trabajo de final de máster a mis padres, por todo el apoyo y amor
recibido durante estos años. Mi carrera como estudiante no hubiese podido llegar

hasta aqúı sin vosotros.
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Chapter 1

Introduction

This is the report of my Master’s thesis project, which completes my Master’s in Computing Sci-
ence: Data Science at Radboud University. This research project was conducted between February
and July of 2018 in collaboration with the Nederlands Lucht- en Ruimtevaartcentrum (Netherlands
Aerospace Centre, referred to as NLR) in the Aerospace Operations Training & Simulation depart-
ment (AOTS). In this chapter I will give arguments and explain how three distinct motivations
were aligned to make this research project possible and meaningful. A general description of the
problem and the proposed solution will be explained as well. At the end of the chapter, a set of
research questions will be formulated.

1.1 Motivation

Training of personnel is made up of diverse stages and can be heavy resource-consuming. The basic
idea behind this project is that if Machine Learning (ML) can be used to construct a representative
model for human learning, that model could then be applied for the purpose of personnel training,
personnel selection and task design. A practical example would be to use such a model to deter-
mine optimal transfer-of-training between different training environments [Roessingh et al., 2002],
or to predict usability and trainability in the case of changes in the working environment. The
availability of a human learning model for (part) tasks could help to optimize curricula. Further-
more, this human learning model could be used as a Partner Agent, which would improve the
asymptotic performance of trainees who utilize it over those who use standard training protocols
[Ioerger et al., 2003] [Whetzel, 2005]. Overall, a pilot’s training is not cheap and a deeper under-
standing of the associated human learning curve is needed in order to optimize the process and
design more efficient training plans.

The Space Fortress (SF) original video-game [Mané and Donchin, 1989] is a research tool devel-
oped at the University of Illinois and funded by the Defense Advanced Research Projects Agency
(DARPA) of the United States. Its purpose was to create an environment to train humans in
complex tasks which involve the concurrent and coordinate use of perceptual and motor skills,
conceptual and strategic knowledge, at the service of multiple goals. In the game, the subject
controls a spaceship in a friction-less environment and the objective is to destroy a fortress by
shooting missiles at it, while having to defend itself from the shells shot by the fortress and the
mines that are randomly spawn across the arena (more details in 3.2). The authors claim to
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CHAPTER 1. INTRODUCTION

have designed it in such a way that it is not possible to play it in an optimal way ignoring any
of its cognitive elements. SF is still of big interest in the study of complex skill acquisition (see
[Towne et al., 2016, Frederiksen and White, 1989, Destefano and Gray, 2016, Lee et al., 2015] for
examples) and it has been used for training of personnel on flight tasks [Gopher et al., 1994]. As
an aerospace research institute, this game is highly relevant for NLR, which conducted one ex-
periment with this tool as well. Performance metrics about several subjects being trained on SF
were collected in various sessions and part of the motivation of this project is to build an Artificial
Intelligent (AI) agent that learns to play SF as a cost-effective method to gain more insight about
human learning and set the basis for human-machine comparisons.

Reinforcement Learning (RL) is a well known family of Machine Learning algorithms that has
seen important advances in the recent years. An RL problem can be considered as a generalization of
an optimal control problem [Sutton et al., 1992]. RL is heavily inspired by psychological theories of
human learning such as Pavlovian and instrumental conditioning [Sutton and Barto, 1999]. These
aspects make RL a promising candidate for the purpose of this project. SF has mainly three
properties that make it a challenging environment for RL. The first difficulty arises when the RL
agent tries to learn how to play taking game image pixels as input, having to learn to detect
the angles and positions of the relevant elements of the game automatically. In this thesis this
perceptual task was abstracted away from the agent and features like position and angles were
provided explicitly to the agent (see discussion in section 4.2 for the full argument). The second
challenge is related to a rule of the game by which the optimal firing strategy of the player has to
reverse depending on the current situation. And third, the reward signal of the game is very sparse
in its original form, meaning that the agent will only get useful feedback from the environment
in rare occasions. To the best of my knowledge, the work of this thesis presents the first RL
agent to successfully solve the second and third challenges together. This has been possible with
Hierarchical Reinforcement Learning, and more concretely to h-DQN, the approach proposed in
[Kulkarni et al., 2016]. The h-DQN agent operates a two different time-scales. At the low level it
uses intrinsic motivation to choose the correct atomic actions so as to accomplish a particular goal.
At the high level, the agent learns to optimally decide which goals – from a predefined set – should
be followed. This basic idea simplifies the exploration problem dramatically and the resulting agent
performs at the human expert level.

1.2 Previous approaches

Some approaches to this problem leverage the design of the game to create computational models
(such as the ACT-R cognitive architecture 1) based on the Decomposition Hypothesis, which states
that the execution of a complex task can be decomposed into a set of information-processing compo-
nents and that these components combine unchanged in different task conditions [Anderson et al., 2011,
Moon et al., 2011, Moon and Anderson, 2012]. In [Whetzel, 2005] an agent was developed that
could learn from an expert by observing how an experienced player handled each task within the
game and it was shown that such agent better reflected the behavior of a human expert than a
known expert-level agent developed using traditional knowledge elicitation techniques. NLR inter-
est in building an AI able to learn SF dates back to the end of the 20th century. It has conducted
various experiments during the last years in this direction. Inspired by task decomposition, NLR
tried Dynamic Scripting (DS) [Spronck et al., 2006], a type of RL algorithm in which the agent,

1ACT-R cognitive architecture: https://en.wikipedia.org/wiki/ACT-R
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1.3. RESEARCH QUESTIONS

instead of being given a set of atomic actions from which to choose from, is provided with a set of
‘scripts’. In DS, each script consists of a computer program hard-coded by the user that resembles
a particular behaviour –such as circumnavigating the fortress– and has an associated probability
of being chosen at a particular time. By interacting with the environment, the DS agent learns to
adjust these probabilities so that each script is triggered at the correct moment. This approach had
the potential to be effective but came along with a lack of flexibility due to the hard-coded nature
of the model. Seeking for a more general approach NLR moved to Deep Reinforcement Learning
(DRL) and used the Deep Q Network (DQN) [Mnih et al., 2013] to try to learn the game in an
end-to-end fashion from pixels. The resulting behaviour of the DRL agent was suboptimal and then
the full game was divided into simpler tasks that focused on one single element of the game such
as aiming or navigating with the idea of tackling them individually 2. Certain high-order control
components of the game were relaxed, such as the friction-less property of the space. Low-order
behaviour did emerge in some of the mini-games but the results were still not satisfactory 34. In
another attempt an implementation of the successful A3C algorithm [Mnih et al., 2016] (which out-
performed DQN according to the paper) was used to learn SF. However, the agent was still not
able to perform high-order controls in most of the mini-games [van der Linden et al., 2017]. Later
on, [Aliko, 2017] investigated the effect of temporal extended actions in several experimental envi-
ronments – including SF– by incorporating a set of scripts (inspired by DS) to the set of actions of
the A3C agent. Additionally, a surprise-based intrinsic motivation technique was used to aid the
exploration of the agent [Oh et al., 2015]. In the conducted experiments some visual artifacts of the
game (mines randomly appearing in the screen, as will be explained in 3.2) increased the instability
of the agent and the learning was unsuccessful. In the work of [Agarwal and Sycara, 2018] –which
came out while I was in the middle of my experiments–a RL agent with a recurrent unit was devised
and effectively learned a time-sensitivity strategy for SF. However, the game physics of the game
were modified so as to make it easier for the spaceship to navigate and they had to design a dense
reward function to overcome the exploration problem.

1.3 Research questions

The objective of this project is not only to build an AI to play SF but rather to acquire insight
about RL algorithms, in particular Hierarchical RL. Taking this into account we can formulate the
research questions that this thesis will attempt to answer like this:

Question I Is it possible to learn SF with Reinforcement Learning at all? After several attempts
of trying it with state of the art RL methods it was not clear if RL was the correct answer for
building an Artificial Intelligence system that learns how to play Space Fortress. In particular,
from previous experiments it was concluded that the friction-less property of the environment was
one of the main challenges, because some of the positive results only came out after deactivating it.
Learning the required strategy to actually win the game was also thought hard but it had not been
tackled yet because the implemented RL agents were still being tested in highly simplified versions
of the game.

2Here is the repository of that work https://github.com/rien333/SpaceFortressDQN
3Sample video of the Control Task : https://www.youtube.com/watch?v=D0JC1cPBpPc
4Sample video of the SF Task, a simplified version of the full game: https://www.youtube.com/watch?v=

kiTY0FlnrW4
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CHAPTER 1. INTRODUCTION

Question II Under which circumstances is it recommendable to extend RL with Hierarchical RL?
Is Space Fortress the case? It is likely that the extra features that Hierarchical RL gives are more
useful in some situations than others. We would like to derive a set of rules that tells us when is it
worth to use Hierarchical Reinforcement Learning instead of Reinforcement Learning. For this, a
deep understanding of the limitation of both algorithms must be derived. Of course, this findings
should apply outside the Space Fortress environment as well.

Question III Do Double Q learning, Dueling architecture or Prioritized Replay Memory improve
the Hierarchical Reinforcement Learning algorithm? According to the literature, these extensions
to the Deep Q learning algorithm have been proven to improve performance in different ways. They
have been tested across various experimental environments but we do not know the extent of such
positive impact when the set of actions of the agent is of a higher level of abstraction. This is exactly
what will be tried to be answered here, although focused on the Space Fortress Environment.
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Chapter 2

Methods

The purpose of this chapter is to expose the existing knowledge on which this thesis is built upon
to the reader. First I will explain the basic concepts of Reinforcement Learning and the Q-learning
algorithm, which will play a key role in all the experiments run in the project. Then I will give the
basics of Neural Networks to better understand why it makes sense to join them with RL to produce
Deep Reinforcement Learning (DRL). After that I will list several extensions to DRL that have been
researched recently. Finally I will explain Hierarchical Deep Reinforcement Learning, which adds
on top of the aforementioned ingredients a hierarchical feature that will have the potential to help
the AI agent to solve Space Fortress.

2.1 Classic Reinforcement Learning

One of the special things about RL is that it sits at the intersection of many fields of science because
it tries to solve a generic and fundamental problem: how to take optimal decisions (see figure 2.1).

An agent that uses RL learns by trial and error interactions with an environment, as it is shown
in diagram 2.2. The agent receives the system’s state St and a reward Rt associated with the last
transition from St−1 to St. Then it chooses an action At and performs it on the environment, which
makes a transition to a new state St+1 and sends it back to the agent together with a new reward
Rt+1. This cycle is repeated and the problem for the agent is to learn the optimal decision making
strategy so as to collect as much reward as possible.

2http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
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CHAPTER 2. METHODS

Figure 2.1: RL is of great interest because of the large number of practical applications that it can
be used to address, ranging from problems in artificial intelligence to operations research or control
engineering. Some examples are learning how to make fly stunt manoeuvres in a helicopter; manage
an investment portfolio; control a power station; make a humanoid robot walk and outperform
humans at playing (video) games (taken from the amazing David Silver’s course on RL 2).
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2.1. CLASSIC REINFORCEMENT LEARNING

Figure 2.2: The typical setting in which a RL agent operates with an environment E (taken from
[Sutton and Barto, 1999]).

Most of the times, the agent’s observation of the environment is partial and does not describe
its internal state completely, which would fully determine its dynamics and future states. This
property make RL problems suitable to be described within the Markov Decision Processes (MDPs)
framework. Formally, an MDP is a tuple 〈S,A,P,R, γ〉 where S is a set of states, all of which satisfy
the Markov Property3; A is a set of actions; P is a state transition probability matrix such that
Pass′ = P[St+1 = s′|St = s,At = a]; R is a reward function such that Ras = E[Rt+1|St = s,At = a];
and γ ∈ [0, 1] is a discount factor that allows for the computation of the return Gt as the total
discounted reward from time-step t,

Gt = Rt+1 + γRt+2 + ... =

∞∑
k=0

γkRt+k+1 (2.1)

Thus, one important difference between RL and other ML paradigms is that the ‘data points’
from which the agent learns are not generated i.i.d (independent and identically distributed) but
rather according to the sequence of actions performed. There is no ‘supervision’ but only a re-
ward signal Rt ∈ R that indicates a good or bad the agent is doing. This idea is formalized by
[Sutton and Barto, 1999] with the reward hypothesis:

All of what we mean by goals and purposes can be well thought of as the maximization
of the expected value of the cumulative sum of a received scalar signal.

This concept can seem limiting at first glance but it has proved to be flexible and widely applicable.
If we want our agents to do something for us, we must provide rewards to it in such a way that
in maximizing them the agent will also achieve our goals. In many real world problems ‘what we
want our agent to learn’ can only be achieved after a long sequence of very specific actions and
the exploration phase of the training becomes harder. We then say that R is sparse. In scenarios
like this it is difficult for the agent to get the first positive reward from its environment either
through random, curiosity or surprise driven exploration. We may be tempted then to modify R so
as to give the agent a prior knowledge about how to achieve what we want it to do. Nonetheless,
the reward signal is our way of communicating to the agent what we want it to achieve, not how
we want it achieved [Sutton and Barto, 1999]. To better illustrate why this is important we can
picture a football player who is training by playing several matches with the hope of discovering a
new strategy that will help his team win. R in this case could be 1 when the match is won and
0 in any other case. If this player could play an infinite amount of matches we could be sure –at

3In other words, ‘the future is independent of the past given the present’. This is the Markov Property, that
states that St is Markov if and only if P[St+1|St] = P[St+1|S1, ..., St]
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CHAPTER 2. METHODS

least asymptotically– that even if he explores by doing random actions he will eventually make his
team win once and then he could reinforce its behaviour accordingly. In the real world time and
resources are limited so that is not possible and in many cases we find that performing random
actions is not enough to find that first positive feedback signal. We may try then to shape R to
reflect our prior knowledge about how to win a match. For example, if we see that our player is
not even passing the ball we could give him a positive reward for passing it to his teammates and
negative for passing it to the adversary. Most likely we would then find that the agent gets more
reward by passing the ball around than winning a match. One famous example from OpenAI4 that
illustrates this is a RL agent that learns how to play a boat racing video-game. To encourage the
agent to drive faster towards the end of the race the researchers designed a reward function by which
the agent –apart from getting a big reward in case of victory– could get small positive rewards if
it acquired certain game bonuses such as turbo boosts. As this video shows5 the agent was not
even finishing the race and instead kept collecting speed bonuses, because that was the best way
to maximize the total reward accumulated (see [Irpan, 2018] for more examples). Of course, there
are smarter ways of shaping R but there is always a risk that the behaviour of the agent diverges
from the goals of the designer. In practice, designing R is often left to an informal trial-and-error
search but there are other possibilities. For instance, if we see R just as one more hyperparameter
we could define a space of feasible candidates and then find the best one by optimization methods,
such as evolutionary algorithms or online gradient ascent [Singh et al., 2010] [Singh et al., 2009].
Another approach –the one taken in this thesis– is to make the agent learn skills that can be useful
across many different problems that it is likely to face in the future. These skills or goals will be
pursued by the agent using intrinsic motivation –doing it for its own sake– as opposed to extrinsic
motivation – doing it to maximize an external outcome –.

2.1.1 Policies and Value functions

The standard approach to ‘solve’ MDPs is to use Dynamic Programming (DP). However, DP
becomes unfeasible whenever the MDP doesn’t have a small number of states. Actually, RL can be
thought of as a way of turning the unfeasible DP methods into practical algorithms so that they
can be applied to large-scale problems [Szepesvari, 2010].

In RL, the behaviour of the agent is fully determined by a policy π, which is a distribution over
actions given states,

π(a|s) = P[At = a|St = s]

In order to find an optimal policy, most of the RL algorithms need to be able to measure how good
a particular state is. With this purpose, a state-value function vπ(s) is defined as the expected
return starting from state s, and then following a policy π,

Vπ(s) = Eπ[Gt|St = s]

Not only we want to know how good it is to be in a particular state but also how good it is to take
a particular action from that state. For that matter, we define the action-value function qπ(s, a) as
the expected return starting from state s, taking action a, and then following policy π,

qπ(s, a) = Eπ[Gt|St = s,At = a]

4OpenAI blog post https://blog.openai.com/faulty-reward-functions/
5Boat racing environment video: https://www.youtube.com/watch?v=tlOIHko8ySg
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2.1. CLASSIC REINFORCEMENT LEARNING

To get the optimal performance in the MDP and hence solve it, we have to find the optimal state-
value function,

V∗(s) = max
π

Vπ(s) (2.2)

and also the optimal action-value function,

Q∗(s, a) = max
π

qπ(s, a) (2.3)

which ultimately indicates what is the best action to take (always choose the action for which Q∗ is
higher) and therefore would solve the problem. In order find V∗ and Q∗ some RL algorithms make
use of the Bellman Equation6. In the context of value functions, the Bellman Equation consists in
leveraging the fact that Vπ obeys a recurrent decomposition into immediate reward plus discounted
value of the next state,

Vπ(s) = Eπ[Rt+1 + γVπ(St+1)|St = s]

and similarly,
qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1)|St = s,At = a]

In practice, solving the Bellman Equation is not straightforward. The max operator in equations
2.2 and 2.3 makes the optimization problem non-linear and in general it isn’t possible to find a
closed form solution. The most common strategy in this scenario is to resort to iterative methods.
When the MDP is known and S is relatively small using DP algorithms such as Value Iteration or
Policy Iteration works well. However, when the MDP is unknown, which is the most common case,
RL methods are the best answer so far.

2.1.2 Q-learning

Temporal Difference learning (TD) is a central idea to RL [Sutton and Barto, 1999]. TD methods
can learn directly from raw experience without a model of the environment’s dynamics (they are
model-free). They can also learn a value function directly from experience where predictions are
used as targets during the course of learning (they bootstrap). And they do it in an online and fully
incremental way, so there is not need to wait until the end of a trajectory to learn. One of the most
successful TD algorithms is Q-learning [Watkins and Dayan, 1992] which is defined by

Q(St, At)← Q(St, At) + αTD (2.4)

Where α indicates the learning rate and TD is the temporal difference error,

TD = ytrue − ypred (2.5)

ytrue = Rt+1 + γmax
a

Q(St+1, a) (2.6)

ypred = Q(St, At) (2.7)

We see then that 1) Q-learning bootstraps with only one step into the future and 2) it refines the
policy greedily with respect to action values by the max operator. This rule makes Q-learning an
off-policy algorithm which means that Q∗ is approximated by Q independently of the policy being

6Many others RL algorithms do not use the Bellman Equation. For instance, in contrast to value-based methods,
policy-based methods such as the popular REINFORCE [Williams, 1992] don’t make use of it and optimize π directly.
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CHAPTER 2. METHODS

followed during training (see algorithm 1). This simplifies the analysis of the algorithm and enables
early convergence proofs [Sutton and Barto, 1999]. Indeed, a major attraction of Q-learning is its
simplicity and that it allows to use an arbitrary sampling strategy to generate the training data
provided that in the limit, all state-action pairs are updated infinitely often [Szepesvari, 2010]. One
of the most commonly used is the ε-greedy strategy, which consists in choosing actions randomly
with probability ε and otherwise choose the action a = argmaxaQ(s, a). The idea is to set ε = 1
at the beginning of the training (where the agent explores the environment) and to and anneal it
towards ε→ 0+ at the end (when the agent exploits the environment).

Algorithm 1 Q-learning

initialize Q arbitrarily, e.g. to 0 for all states, set action value for terminal states as 0
for each episode do

initialize state s
for each step of episode, state s is not terminal do
a← action for s derived by Q, e.g., ε-greedy
take action a, observe r, s′

Q(s, a)← Q(s, a) + α
[
r + γmaxa′ Q(s′, a′)−Q(s, a)

]
s← s′

end for
end for

As [Niv, 2009] pointed out, there is some evidence suggesting that dopaminergic neurons in the
brain may be responsible for the generation of a TD error based on state-action values like those
used in Q learning [Morris et al., 2006].

2.2 Deep Reinforcement Learning

In many of the tasks to which we would apply RL the state space S can be enormous because
the number of combinations is too high or simply because its domain is continuous. In such cases
we cannot expect to find neither q∗ or v∗ even in the limit of infinite time and data; our goal
instead is to find a good approximate solution using limited computational resources. In many
real world problems each new state will almost always have not been seen before. Therefore, we
need a function approximation that generalizes well [Sutton and Barto, 1999]. For this matter we
resort to methods used for pattern recognition and statistical curve fitting. The fact that any of this
algorithms works well in classic supervised learning problems does not translate directly to RL, since
RL encounters new issues related with nonstationarity, bootstrapping and delayed targets. Linear
approximation used to be a popular choice, partially because of its nice theoretical properties and
also it has potential for explainability. However, non-linear approximators have captured most of
the attention in the last decade. The usage of Artificial Neural Networks (ANNs) in combination
with RL was first introduced in [Bertsekas and Tsitsiklis, 1995] but it was not until the work of
[Mnih et al., 2013] that it became the norm among RL researchers. This combination also is used
in this work.
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2.2. DEEP REINFORCEMENT LEARNING

Figure 2.3: Simplified scheme of a a four layered Multilayer Perceptron, from right to left: one input
layer of 4 neurons, two hidden layers of four neurons each and one output layer of two neurons.

2.2.1 Multilayer Perceptron

Perceptrons are the simplest feed-forward ANNs and were first invented in 1957 by Frank Rosenblatt
[Rosenblatt, 1957], who also provided in 1962 the learning perceptron’s rule with proven convergence
[Rosenblatt, 1962]. These can be grouped in layers and then stacked together to form a Multilayer
Perceptron or MLP (see figure 2.3). An MLP will be used to build the Q(s, a) function in our
agent that will approximate q∗. Each neuron in a MLP has a bias and weighted connections with
every neuron of the next layer. These weights and biases are the model’s parameters and will be
referred to as θ. The activations of each layer are transformed using a differentiable, nonlinear
function to provide an output to the next layer, which makes them universal approximators. In this
work ReLU’s are used as activation functions (f(x) = max (0, x)). After each forward pass, these
supervised learning models output a ‘prediction’ which error can be measured in terms of θ via the
L(θ) loss function. In supervised learning a popular choice for the loss function is the mean squared
or absolute error. However, when learning q∗ the ‘true labels’ are built upon a potentially sparse
scalar signal R that comes from an stochastic environment. This means that often our agent will
encounter outlier experiences that will lead to large updates in θ and make convergence harder. To
aid this problem we can clip the produced Bellman gradient. In this thesis though, a more robust
function called the Huber loss [Huber, 1964] will be utilized,

Lδ(θ) =

{
1
2TD

2 for |TD| ≤ δ,
δ(|TD| − 1

2δ), otherwise
(2.8)

that is quadratic for small values of TD and linear for large values, with equal values and slopes
of the different sections at the two points where |TD| = δ (see figure 2.4). In this thesis δ is set to
1.

The idea is then to solve ∇L(θ) = 0 so that we can know what is the θ that minimizes the
error loss. There is no method to do this analytically hence we have to resort to iterative numerical
procedures that update the parameters on each time step t following:

θt+1 = θt + ∆θt

8Huber Loss Wikipedia definition https://en.wikipedia.org/wiki/Huber_loss
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Figure 2.4: Huber loss (green, δ = 1) and squared error loss (blue) as function of y − f(x). Taken
from Wikipedia 8.

Most of the successful techniques of this optimization problem rely on backpropagation, which
is a procedure that provides gradient information in the form of ∂L(θi)/∂θi where i = 0, ..., P and
P is the number of parameters in θ. There are different ways of introducing these gradients into
the weight vector update term ∆θt of equation 2.2.1 in order to find a θ for which L(θ) ≈ 0. The
most basic make use of a learning rate α to update the parameters at each time step t like this:

θt+1 = θt − α∇L(θt) (2.9)

The idea is that at each step θ is moved in the direction of the greatest rate of decrease of L(θ).
In the batch gradient descent variant the whole training set is used to compute L(θ). On the other
hand there is the stochastic or online version, in which only a different small portion is used to
compute L(θt) at each t. In a RL context, where the training set is comprised of experiences that
are generated while learning is happening the stochastic variant is more suitable.

In this thesis I used a more advanced gradient descent optimization algorithm called Root
Mean Square Propagation (RMSprop) [Tieleman and Hinton, 2012]. It provides a speed-up over
the vanilla gradient descent in equation 2.9 by keeping one learning rate αi for each network
parameter θi. The idea is to divide αi for a weight by a running average of the magnitudes of
recent gradients for that weight. Furthermore, the gradients ∇L computed by deriving the loss
function are clipped to 1 before making the update of equation 2.9. This can make stochastic
gradient descent behave better in the vicinity of steep cliffs [Goodfellow et al., 2016]. This is a
common practice in Deep RL to tackle the usual instability of the algorithms [Wang et al., 2015]
[Mnih et al., 2016] (in [Mnih et al., 2015] the rewards are clipped instead of the gradients).

An MLP that has one hidden layer containing a large enough finite number of non-linear units
can approximate any continuous function on a compact region of the network’s input space to any
degree of accuracy [Cybenko, 1989]. This gives them the name of ‘universal approximators’ and is
a nice theoretical result but actually some architectures are much easier to learn than others. For
instance, empirical results show that adding more hidden layers and hence forcing the network to
learn features of higher level of abstraction can help learning substantially [Bengio et al., 2009].
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2.3. EXTENSIONS TO DEEP Q LEARNING

2.2.2 Deep Q learning

In section 2.1.1 the advantages of off-policy methods such as Q-learning were introduced. Un-
fortunately, when using them in conjunction with non linear function approximation, instability
increases and divergence may occur [Tsitsiklis and Van Roy, 1997].Why this happens and how to
optimally handle it is still a cutting-edge research area [Li, 2017].

Few years ago [Mnih et al., 2013] revolutionized the field of RL with the Deep Q Network (DQN),
a model that was able to learn how to play Atari games end-to-end. The DQN agent took raw
pixels as input so they used Convolutional Neural Networks (CNNs) as function approximator of
S. CNNs are a type of ANN widely used for extracting features from images. In this thesis, how
it will be explained later, S will be a higher level abstraction of the pixel space, so an MLP will
be used instead of a CNN. Despite this difference, the combination of MLP and Q-learning will be
referred to as DQN throughout this report.

2.3 Extensions to Deep Q learning

Apart from showing how RL can be combined with image input, the original DQN of [Mnih et al., 2015]
introduced a couple of techniques to help stabilizing the aforementioned instability issues, namely
Experience Replay and a Target Network. These two features among three other extensions to the
original Q learning posterior to DQN (Double Q, Dueling architecture and Prioritized Experience
Replay) were implemented in this project and I will explain briefly in what they consist.

2.3.1 Target Network

In equations 2.5, 2.6 and 2.7 we see that at each training step, the same version of Qθ(S,A) is
used (online network), which intuitively makes sense. However, this means that we are generating
our ytrue values from a function that is changing. In other words, the ytrue generated values are
inconsistent and this is an important source of instability. To tackle this problem [Mnih et al., 2013]
proposed to maintain a copy of the online network, which we will call the target or offline network,
with parameters θ− and referred to as Qθ−(S,A) from now on. The idea is to train our online
network via RMSprop as we would normally do with the only difference that the ytrue target
samples will be generated from the target network, whose weights θ− will be copied from θ from
time to time. This simple trick makes the target values ytrue to be ‘outdated’ but much more
consistent at the same time, so Qθ(S,A) will struggle less to converge.

2.3.2 Double Q learning

The classic Q learning algorithm (see pseudocode 1) is known to produce overestimated action-value
pairs due to the max operator when computing the targets ytrue. This is not necessarily an issue.
For instance, it wouldn’t be problem if all the action-value pairs are uniformally overestimated.
Furthermore, [Kaelbling et al., 1996] suggested that optimism is a good exploration technique in the
face of uncertainty. However, if the overestimations are not uniform and not concentrated at states
about which we wish to learn more, they can lead to suboptimal policies. [Van Hasselt et al., 2016]
gave empirical evidence that overestimations have a negative performance when using the DQN
algorithm. They did it comparing the baseline DQN with and extended version of it that they
called Double DQN, which yields better estimates of ytrue and results into better policies.
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Double DQN is inspired by [Hasselt, 2010], where the original Double Q learning algorithm was
proposed. To better understand how the overestimation is solved it must be noted that in the
regular update rule ytrue = Rt+1 + γmaxaQθ(St+1, a) the same network (the online network, Qθ)
is being used for both selecting the action and also for evaluating its value. This is easily seen if we
rewrite it like

ytrue = Rt+1 + γQθ(st+1, argmax
a

Qθ(st+1, a))

What Double Q learning proposes is to decouple selection from evaluation by learning two value
functions Qθ and Qθ′ whose weights are learning by assigning each experience randomly to either
of the networks. This effectively allows for decoupling. More precisely, we can now select the
action using Qθ and evaluate it with Qθ′ . To implement this novel idea, Double DQN leverages the
fact that a second network is already being used, namely the target network. Periodically copying
θ− ← θ doesn’t make Qθ− fully decoupled from Qθ as Qθ′ is from Qθ but as the author say in the
paper:

This version of Double DQN is perhaps the minimal possible change to DQN towards
Double Q-learning. The goal is to get most of the benefit of Double Q-learning, while
keeping the rest of the DQN algorithm intact for a fair comparison, and with minimal
computational overhead.

Therefore, the formula for the target values in the update rule of the Double DQN algorithm require
no additional networks and is formalized as

ytrue = Rt+1 + γQθ−(st+1, argmax
a

Qθ(st+1, a)) (2.10)

It should be noted that introducing this extension in the algorithm implies having to do two forward
passes when computing (first one with Qθ and one with Qθ− afterwards) while in the normal DQN
only one with Qθ− is enough.

2.3.3 Dueling architecture

[Wang et al., 2015] proposed a novel ANN architecture called dueling that could be easily combined
with model free RL algorithms, such as DQN. The architecture (see figure 2.5) is designed in such
a way that when the Qθ of the agent takes a state s as input and before producing any output it
must build internally a representation of how good it is to be in s, Vθ(s); and a relative measure of
importance of each possible action. This last quantity is called the advantage function:

Aθ(s, a) = Qθ(s, a)− Vθ (2.11)

It must be clarified that even though Q, V and A share the subscript θ in equation 2.11, V and
A actually refer to different modules of the network hence they have different parameters. This is
omitted for simplification. By making the separation explicit we achieved that for many states, it is
unnecessary to estimate the value of each action choice. The assumption is that while in some states
it is of highly importance to know which action to take, in many others the choice is irrelevant.

The way the outputs of Aθ and Vθ are gathered together to form the final output of Qθ is not
as straightforward as it may seem. Given the relation in equation 2.11 we could be tempted to
aggregate them together implementing Qθ(s, a) = Vθ(s) + Aθ(s, a) but this equation is unidenti-
fiable in the sense that given Q recovering V and A uniquely is not possible, which causes poor
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Figure 2.5: Figure taken from the original paper [Wang et al., 2015]. At the top there is the
common single stream network and at the bottom the dueling architecture. The lower layers of
both architectures are CNNs, which are not used in this thesis (MLP will be utilized instead). What
is important to note is that the dueling architecture has two streams to separately estimate Vθ(s)
(scalar value) and the different advantages Aθ(s, a), which are later aggregated together according
to equation 2.12 (in green).

practical learning performance when used directly. The authors of [Wang et al., 2015] argue that a
workaround with desirable algorithmic properties consists into forcing the A estimator to have zero
advantage at the chosen action and they explain that it can be achieved implementing

Qθ(s, a) = Vθ(s) +
(
Aθ(s, a)− 1

|A|
∑
a′

Aθ(s, a
′)
)

(2.12)

where as clarification it must be noted that A is the set of possible actions, different from the
advantage function, A.

2.3.4 Experience Replay

We can define each experience of the agent as a tuple et = (st, at, rt, st+1). This is read as ‘from
state st action a was used to go to a new state st+1 and generate a reward rt’. In most of the
cases, as the agent interacts with the environment we expect the experiences of the sequence e0,
e1, e2... etc. to be highly correlated with each other. Due to this, if the agent processed those
experiences and update θ in the same order as they were generated its learning would be inefficient
[Riedmiller, 2005]. [Mnih et al., 2013] proposed to leverage the fact that Q learning is an off policy
algorithm by randomizing the order in which the generated experiences are actually used to update
Qθ. In other words, since in Q learning the policy used to interact with the environment is already
different from the policy being learn, there is no need to learn from experiences as they are generated,
so we can get rid of the correlations between experiences by randomizing them.

This is the goal of using Experience Replay, which was first proposed in [Lin, 1993]. The idea
is to store each et in a N -size dataset D = e0, ..., eN which is called the replay memory. The agent
follows a particular exploration strategy, such as ε-greedy to generate et and then storing it in D.
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Then, in order to update Qθ it periodically samples a batch of experiences from the replay memory
e ∼ D.

2.3.5 Prioritized Experience Replay

Prioritized Experience Replay is a work from [Schaul et al., 2015b] that also builds on top of DQN.
It consists in having a replay memory D = e0, ..., eN as explained in 2.3.4 but changing the way
experiences are sampled from it when updating Qθ. The idea is to leverage the fact that some expe-
riences are more significant than others. More significant in this context means that such experience
has information that the agent does not know yet. Therefore, if instead of drawing experiences uni-
formally random from D we could bias our sampling strategy towards those experiences that are
more significant then the learning process would be more efficient.

A good proxy for the significance of et is to measure the temporal difference error (TD, equa-
tion 2.5) that was produced by the agent when it experienced et. TD error can be understood
as indicating the level of surprise or how unexpected a particular transition was. This approxi-
mation is also inspired by the results of the neuroscience studies of [Singer and Frank, 2009] and
[McNamara et al., 2014], which suggest that experiences with high TD error appear to be replayed
more often in humans and animals.

In the original paper two variants of implementing this idea are proposed: proportional prior-
ization and rank-based priorization. In this work the former is used. The probability of sampling
transition i is

P (i) =
pαi∑
k p

α
k

(2.13)

where pi = |TD| + ε is the priority of transition i. ε is a small positive constant that ensures
that a every transition has some probability of being sampled even if it has TD=0 and 0 ≤ α ≤ 1
determines how much priorization is used (α = 0 being the uniform case). As the training goes
the priority of the stored experiences should change as well because the level of surprise of some
experiences – even if they have not been sampled yet – changes every time Qθ is updated. It
would be very inefficient to recompute all the priorities after each update and have them in D as
a sorted array. To make an effective implementation feasible for large D the authors proposed to
use a ‘sum-tree’ data structure for D, where the parent’s value is the sum of its children (and the
experiences are in the leaf nodes). Also, the values pi in D are only updated for those experiences
that belong sampled batches for each Wθ update. This setting introduces a bias that can harm the
convergence of the algorithm. This bias is corrected by computing Importance Sampling weights
like

wi =
( 1

N

1

P (i)

)β
(2.14)

and using wiTD instead of just TD in the update rule of equation 2.4. As the authors argue on the
paper, this importance of having unbiased updates is bigger at the end of the training than at the
beginning. Therefore the hyperparameter β is linearly annealed from 0 to 1 during the process.

2.4 Hierarchical Reinforcement Learning

One of the biggest problem in RL and also DRL is how to generate effective exploration strategies to
deal with environments that have sparse rewards. This situation occurs often in problems for which
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RL has lots of potential. As it will exposed later, Space Fortress can be one of those situations.
To deal with it I propose to use hDQN, an implementation of Hierarchical Reinforcement Learning
combined with ANNs that utilizes temporal abstraction over low level actions conceptualized as
goals to help the agent explore its environment in an explicit manner.

2.4.1 Temporal Abstraction via Options

Classic exploration strategies such as ε-greedy are based in behaving randomly at the beginning of
the training session with the hope that at some point a positive reward will be encountered. Then,
the agent will reinforce the actions that led to that particular situation to make it happen again and
then – if R is well specified – we could say that the ‘hard part’ of the problem is solved. Exploration
strategies are at the core of RL research and there are other more powerful alternatives to ε-greedy
such as Thomson sampling or Boltzmann exploration [Stadie et al., 2015] [Osband et al., 2016], but
they all operate at the level of primitive actions. This becomes problematic in environments where
R is highly sparse, because then encountering a positive reward by trying out different combinations
of low primitive actions is almost impossible. Another sometimes valid approach was proposed in
[Nair et al., 2017], who recorded human experiences used as demonstrations to aid the agent explore
the environment more effectively.

Sparse rewards scenarios could benefit from the fact that an agent, besides having its original
set of primitive actions A had another type of actions that were temporally abstracted from A. For
instance, when humans are learning a task their A is composed by actions at different temporal
scales. Lets recall the example of our football player from section 2.1. At the beginning he only
knows the very basics so he has to explore to find a good policy. Lets assume for simplicity that he
follows something close to an ε-greedy strategy. He will rarely think of trying out random sequences
of muscles contractions and twitches, which are very low level actions until his team wins. Instead,
he will try random sequences of actions at a higher level of abstraction. For instance, he may try to
pass at a random player each time or shoot the ball at different heights. Of course, this exploration
technique is naive compared to a normal human but the chances that at some point he will make
his team score a goal by following it instead of thinking only at the muscular level are much higher.

These actions of higher level of abstraction are known as options in RL [Sutton and Barto, 1999].
Options are understood as policies over actions and even over other options, so that under this new
setting the mathematical framework is formalized as a Semi Markov Decision Process (SMDP). If
the set of actions from which an agent can choose from is composed by actions with different levels
of abstraction we say that the agent is able to ‘think’ at different time scales. We can easily see
that human learning is not only full of abstractions but also that we have the ability to choose
the appropriate level of abstraction at any time. Implementing an agent that combine low-level
primitive actions and options is a central topic of this thesis.

2.4.2 Related Work

In order to learn options in real-time, [Szepesvari et al., 2014] proposes the Universal Option Model
to construct option models independently from the reward function and they experiment on strate-
gic games and article recommendations. In [Sorg and Singh, 2010] a knowledge construct is de-
veloped, the Linear Option model, which is capable of modeling temporally abstract dynamics
in continuous state spaces with a linear expectation model and give some theoretical convergence
guarantees of the TD error. In [Vezhnevets et al., 2016] the Strategic Attentive Writer (STRAW)
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was introduced: and end-to-end implementation of an agent that learns options using a deep recur-
rent neural network. STRAW was able to automatically discover multi-step plan and the authors
validated its work on next character prediction in text, navigation of a 2D maze and some Atari
games. [Florensa et al., 2017] developed a framework that uses a Stochastic Neural Network to
learn a span of skills in an unsupervised manner with proxy reward signals. After, this is leveraged
for aiding exploration by training a hierarchical structure on top of it.

Another approach is Hierarchical Reinforcement Learning in which the separation between the
execution of actions and options is often made explicit in the architecture of the learning model.
With this idea [Vezhnevets et al., 2017] created the FeUdal network, where a part of the archi-
tecture called the manager produces and sets goals which are then accomplished by another part
called worker operating at a lower time-scale and utilizes low-level actions to realize those goals.
[Schaul et al., 2015a] introduced the Universal Value Function Approximator to learn value func-
tions Vθ(s, g) that are able to generalize over combinations of states s ∈ S and goals g ∈ G. θ are
the parameters of the model, which can be an ANN if we are using function approximation. This
idea inspired [Kulkarni et al., 2016], which developed the Hierarchical Deep Q Network (h-DQN),
a framework to integrate hierarchical value functions, operating at different temporal scales, with
intrinsically motivated DRL.

2.4.3 h-DQN

This is the chosen learning model for this project. h-DQN learns Vθ(s, g) taking G as a hand-crafted
predefined set with all the goals that can be accomplished by the agent, leaving the agent with the
task of learning how to achieve them and when to use them. The lack of an automated goal discovery
mechanism has been the most criticized aspect of the work of [Kulkarni et al., 2016], specially from
those sectors in the RL community that focus on general end-to-end to learning systems. As usual,
there exists a trade-off between the generality of a solution and its efficacy. General RL stills suffers
from important problems (see ‘Deep Reinforcement Learning Doesn’t Work Yet’ [Irpan, 2018]),
so in projects that focus on solving one particular problem - like this thesis tries to solve Space
Fortress - one must take into consideration where to position in the aforementioned trade-off. Due
to the struggle of previous attempts at learning Space Fortress I considered that exchanging some
generality for effectiveness was a good decision. h-DQN allows for a very flexible definition of
‘goals’ and its architecture is simpler than most of the approaches discussed in section 2.4.2, which
makes it easier to implement and debug. Furthermore, the explicit definition of goals allows to
easily monitor what the agent is doing at a particular time in a meaningful way. This is something
valuable in cases where explainability matters (see motivation in 1.1).

The architecture of the h-DQN learning model and its description can be seen in figure 2.6. This
architecture implies that two objectives are being optimized by the agent, which are formalized as
follows: we can rewrite equation 2.1 as GMCt

, the total extrinsic reward discounted from time-step
t

GMCt
= Rt+1 + γRt+2 + ... =

∞∑
k=0

γkRt+k+1 (2.15)

which the meta-controller tries to maximize. And GCt
, the total intrinsic reward discounted from

time-step t

GCt
(g) = It+1 + γIt+2 + ... =

∞∑
k=0

γkIt+k+1(g) (2.16)
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Figure 2.6: Diagram taken from [Kulkarni et al., 2016]. The h-DQN agent has two principal mod-
ules: the meta-controller (MC) and the controller (C). The meta-controller reads an observation
st from the environment and uses QθMC

(st, gt) to set goal gt. Then the controller comes into place.
It takes both st and gt as input and uses its Q function, QθC (st, gt, at) to choose an action at
that will be performed on the environment. The idea is that the controller will interact with the
environment until its internal critic tells it if it has either failed or succeeded at reaching goal gt.
The critic has another important function: it also provides an intrinsic reward signal It(g) ∈ R
to guide the controller ’s learning towards accomplishing gt. This signal is independent from the
extrinsic reward Rt that comes directly from the environment, depends on each particular problem
and it is only seen by the meta-controller each time the controller fails/succeeds at reaching gt.
The meta-controller then receives the total extrinsic reward accumulated during the N step (see
diagram 2.7).
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which the controller tries to maximize and where I(g) varies depending on the goal g that the
agent is following at that moment. It should be noted also that even though the same index t is
used as time-step, the MC and C never run in parallel (unless the trivial case of G = A). They
operate at different time scales. The execution flow of the h-DQN agent is illustrated in figure 2.7.
In principle we could use any function approximator to estimate the optimal Q∗ and in this case, as
it was introduced in section 2.2 we will use Neural Networks. It is actually possible to understand
QθMC

and QθC as two separate DQN’s, each one having its own Huber loss function (equation
2.8) LMC and LC and its own replay memory DMC and DC . An important remark is that the
controller receives as input a concatenation of the state and the current goal, which is efficient for
several reasons. First of all the controller is forced to find one single set of parameters θC that
has the capability of achieving every goal in G. Some goals in G may share certain characteristics
and this design choice makes it possible for the controller to reuse behaviour patterns among them.
Furthermore, the simplistic one-hot-encoding of goals allows the model to - in principle - scale up
well when G is big.

Figure 2.7: Flowchart adapted from [Kulkarni et al., 2016]. Controller and meta-controller operate
at different time-scales. The controller sees all the states but the meta-controller only sees and acts
upon those states occurring after the controller has failed/succeeded at achieving the current goal.

The exploration strategy for the controller and the meta-controller is based on ε-greedy but
differs in how ε – the probability of behaving randomly – is set. In the case of the controller we
keep an εg ∀g ∈ G and its value is set to to 1/srg, where srg is the success rate of goal g. This
quantity is computed as dividing the number of successes by the number of attempts at achieving
g within the last K steps, which is an hyperparameter. If gi has been set by the meta-controller,
then εi is used in the controller. As for the meta-controller the classic ε-greedy strategy is used. It
starts at ε = 1 and it is linearly annealed towards ε = 0.05. However, the annealing of ε only starts
when the controller has learned how to achieve every g ∈ G. This condition will only suffice when
srg > threshold ∀g ∈ G.

The meta-controller takes in control whenever the controller succeeds/fails at achieving a goal.
It is thus necessary to formalize a definition of goal achievement and failure. Each g should be
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manually defined as something specific enough so that it is easier for the critic to check for its
achievement at any point of the interaction with S. Usually the achievement of g is done by
checking if st belongs to a specific sub-region of S but the current action at could also be included
in the condition. For instance, one of the goals that will be defined for learning Space Fortress is
to shoot twice within a fixed (small) number of steps m. As it will be explained, a feature that will
be included in st is the number of steps since the last shot. Therefore, the condition for checking
if the goal ‘double shot’ is met will consist in checking if at = Shoot and that the number of
steps since the last shot is less than m. On the other hand, knowing when the agent has failed at
achieving g is not as straightforward. Acknowledging failure is important because if the controller
is doing very bad at pursuing a specific goal maybe the optimal thing to do for the meta-controller
would be to set a new goal and move on. A goal can only be learned if it is achieved at some point
because only then the controller will see It > 0. Achieving some goals may take a big number of
steps the first time so one has to be very careful when setting a ‘maximum number of steps per goal
attempt’ or something of the sort. As in the original paper, here ‘failure’ at achieving a specific
goal is understood as an episode terminating before g is achieved.

In [Kulkarni et al., 2016] both QθMC
and QθC are CNNs because S was a two-dimensional pixel

space. The ‘deepness’ in Deep Reinforcement Learning often translates into using Neural Networks
to capture complex patterns in S, which is indeed the case when S consists in images. In the
h-DQN version implemented in this project S is not a pixel-space but rather a richer set of features
(positions, angles etc.) arranged in a one dimensional vector, so a Convolutional Neural Network was
not needed. This allowed to use more simple functions to approximate Q. Due to time constraints,
experimenting with other simpler and more explainable models was left to future work (section 4.2)
and Multilayer Perceptrons were used for both the controller and meta-controller.
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Chapter 3

Experiments

This chapter describes the experiments that I designed with the purpose of answering the research
questions of section 1.3. Initially, I used a toy example to illustrate the main difference between
h-DQN and DQN and to show a situation where DQN fails due to its lack of temporal abstraction.
The main part of this chapter is about experiments executed on the Space Fortress environment,
which will be fully described along with some implementation concerns. The first SF experiment
consists in testing a modification that I propose on the way the controller is intrinsically motivated
to achieve goals. What follows is the the main experiment of the project, which consists in analyzing
how the incorporation of options via Hierarchical Reinforcement Learning can help the agent when
the reward signal is dense and when it is sparse. Then I will describe and ablation study for testing
how the DQN extensions Dueling, Double Q learning and Prioritized Experience Replay affect the
performance of the controller and meta-controller separately. Finally, I will show a visual informal
comparison between the learning curves of the different agents and that of a human learning to
play SF.

The project is hosted publicly1. Some remarks about the experiments: several ‘line plots’ are
included in the figures’ experiments. Due to the instability of RL, the same experiment was run
multiple times and the reported values consist in the mean of the value that is being measured ±
one sample standard deviation. Also, since the curves were usually too peaked they were smoothed
before plotting using a Savitzky–Golay filter (see plots.ipynb in the code)

3.1 Toy Problem: Key MDP

In this experiment the agent has to solve a deterministic Markov Decision Process where S =
{S1, ...S9}. S is arranged in a 3 × 3 grid and the agent can navigate it both horizontally and
vertically so that A = {up, right, down, left}. The reward function is the following:

Rt(S) =


1 if S = S1 and S9 was visited

0.1 if S = S1 and S9 was not visited

0 otherwise

(3.1)

1Project’s repository: https://github.com/hipoglucido/Hierarchical-DRL-Tensorflow
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3.1. TOY PROBLEM: KEY MDP

The only terminal state is S1 and the idea is to test if the agent can learn that the optimal behaviour
is to first visit S9 to ‘pick up the key’ instead of going directly to S1. The agent observation from
the environment is a flattened vector of the grid and it always starts at S5. From this setting we
define the optimal behaviour as going from S5 to S9 and then to S1 and the suboptimal strategy
as directly going to S1 from S5. In figure 3.1 an example of these two trajectories is shown.

Figure 3.1: Two different trajectories for the Key MDP after training is complete. a) corresponds
to hDQN and the total episode reward is 1, and b) to DQN, where the reward is 0.1.

We compare the DQN algorithm versus hDQN. With the aim of investigating only the key
differences between the two we perform the experiment without extensions. In the case of hDQN
G = {G1, ...G9}, where each goal matches with reaching a particular state. For example, if the meta
controller sets G9 as the current goal then the critic will reward the controller when its actions lead
the agent to reach S9, and then the meta controller will set the next goal. In the left side of figure
3.2 we see the main result of this comparison in terms of reward accumulated per episode. In figure
3.1 the strategies learned by both agents are illustrated. Another interesting way of verifying that
hDQN solves the problem effectively is by keeping track of the relative frequencies of the goals set
by the meta-controller. In figure 3.3 it is shown that at the end of training G9 and G1 are the only
goals used. On the other hand, DQN is not able to learn the optimal strategy because it lacks any
kind of memory, which is needed in order to solve this MDP. For example, when the agent is in S2

it cannot know if it has been previously in S9 or not, since it bases its decisions in its observation
which only tells it where it is at the current moment. By ways of contrast, in hDQN G9 is set since
the beginning and once achieved the meta controller chooses G1. The current goal is part of the
input to the controller which provides a kind of memory to know that the optimal action when the
agent is in S2 is left.

Another issue with the vanilla DQN was found. It was not even able to converge to the sub-
optimal policy exemplified in figure 3.1 b). When ε becomes closer to zero the agent starts acting
greedily with respect of the estimated Q values. This manifested that the agent had learned feed-
back loops, causing it to perform ineffective moves such as repeatedly choosing right from S3 or
just moving between two adjacent states. It is believed that, since this MDP is not solvable by
DQN with the current setup, finding sometimes that R(St) = 1 is a source of instability for the
agent. Interestingly enough, it was found that getting rid of the overestimations of Q learning by
extending the vanilla DQN algorithm with Double Q learning (explained in section 2.3.2) made the
agent more robust to this source of instability and it helped it to converge to the suboptimal policy.
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This is illustrated at the right side of figure 3.2.

Figure 3.2: DQN versus Double DQN versus hDQN in the Key Grid MDP. Each configuration was
run 5 times with different seeds. On the left side is is shown that hDQN is the only algorithm that
learns the optimal policy. At the right side we see the average number of steps that each algorithm
takes. hDQN converges to 6 and Double DQN to 2. We can appreciate that Vanilla DQN takes a
lot of steps in order to complete an episode. This is because the learned Q values contain feedback
loops.

Figure 3.3: Goal relative frequencies along training in hDQN. We see that at the end only G1 and
G9 are used by the meta controller, which resembles the optimal policy.
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3.2. THE SPACE FORTRESS ENVIRONMENT

Figure 3.4: Left) a screen shot of the original Space Fortress and right) a screen shot of the version
used in this project. The most important component are shared between them: a) the space ship,
b) the fortress, c) a mine, e) a missile shot by the space ship and f) a shell shot by the fortress.
The component d) is an instance of a bonus and it is not included in these experiments.

3.2 The Space Fortress environment

A screen shot of the original game is displayed at the left of figure 3.4 and a link to a video game-play
of an experienced human can be found here2 an another one of an amateur player here 3.

The original Space Fortress game was ported to PC in [Gopher et al., 1994] but further progress
in hardware and software rendered it unusable. In [Shebilske et al., 2005] a revised version was
implemented. In this project the Space Fortress code from this public repository4 was used. It is
based on a C++ port made in NLR from a MS-DOS version of Space Fortress. In order to perform
the desired experiments the well known gym interface [Brockman et al., 2016] was used with the idea
that the resulting environment can be used by everyone for testing any other learning algorithms.
At the very end of this thesis project [Agarwal et al., 2018] released their SF environment also
implementing the gym interface5.

Rules Some adjustments to the code needed to be performed as part of this thesis in order to
resemble the version of the game used by NLR in its experiments with personnel as good as possible.
Although in the original version from 1989 a global score is computed taking into account several
factors of the human performance such as navigational patterns, in the NLR human experiments –
and hence this project– the focus is on learning the optimal strategy to destroy the fortress as many
times as possible throughout a fixed amount of sessions. The specific rules of the NLR game follow
what was introduced in section 1.1 but they miss some of the components of the 1989 original game.
For instance, in the full version there were two types of mines (friend and foe) which determined the
correct action to perform. In order to identify them the subject had to remember three characters

2Video of experienced human player on SF: https://www.youtube.com/watch?v=FWuTP_JgZwo
3Video of amateur human player on SF: https://www.youtube.com/watch?v=tmRITTg70VE
4SF code used in this project: https://github.com/DerkBarten/SpaceFortress
5Another SF gym: https://github.com/agakshat/spacefortress
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that were shown at the beginning of each episode. NLR experimented with a version that had only
one type of mines and another version without any mines at all. Part of this project consisted in
setting up both versions although the one with mines was chosen for the RL experiments since it
was more challenging.

The most important rules from the Space Fortress version used in this thesis were implemented
to replicate the NLR version of the game and will be now specified. Some of the rules are actually
time constraints whose values were chosen taking into account human limitations. The NLR game
runs at 50Hz, which can be translated as the relation 50 milliseconds = 1 game step.

• The player’s A is composed by 5 actions: (apply) thrust, (turn) right, (turn) left, shoot and
wait.

• The space is friction less. This means that the spaceship can only modify its momentum if it
applies thrust in a particular direction.

• There are no spatial limits at the borders of the screen. If the spaceship hits the left (down)
side of the screen it will appear in right (up) side of the screen. This is referred to as wrapping.

• The fortress has 10 lives. When the fortress looses them all the player wins and the game
restarts.

• The player –spaceship– has 3 lives. When it looses all of them the game restarts.

• The fortress is always aiming at the spaceship and shoots shells at it, taking one life away
from it with each hit.

• Each episode begins each time the game restarts and finishes when either the fortress or the
space ship have no lives left 6.

• Each episode begins with the space ship in the same position (same Y coordinate as the
fortress, in the middle of the left side of the screen) aiming upwards and still.

• When a mine is present it always chase the space ship at constant speed. Mines can disappear
if 1) they hit it the spaceship (space ship looses 1 life), 2) if the spaceship hits them with a
missile or 3) 10 seconds pass without 1) or 2) happening. A new mine will be spawned then
after 4 seconds at a random location.

• When the fortress has only 1 life (it is vulnerable) left it will only loose it if the spaceship
double shoots it. This means at least two consecutive missile hits with a maximum time-span
of 250 milliseconds (5 game steps) between them.

• When the fortress has between 1 and 10 lives and the space ship hits it with a missile it will
loose 1 life as long as 1) the last fortress hit was more than 250 milliseconds (5 game steps)
ago, 2) There is no mine present (or there is but it was spawned less than 2 seconds = 40
game steps ago).

• If the spaceship double shoots the fortress when this one has more than 1 life the fortress will
recover its 10 lives.

6When training RL agents thousands of episodes were played. In ≈ 4% of them a bug occurred causing the values
returned by the game to be corrupted hence harming the training of the agents. Corrupted episodes kept running
until the game was reloaded and a normal episode could begin. Fortunately reloading added no noticeable overhead
so the solution was to reload the game after each episode. However, to ensure that corrupted episodes finished a
maximum number of 3000 steps per episodes was set.
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State space At a particular time step t, the RL agents trained on this environment act upon
their observed state of the environment, st, which comes from the environment space S. Despite the
common approach in RL to learn video-games from image pixels in this case I decided to provide
the agent with a richer set of features. This one-dimensional array was designed in such a way that
it is possible to reconstruct all the meaningful elements of the game play given a single st so that it
is enough to know which is the next optimal action (the game is markovian). Each cell of st can be
understood as belonging to one of two groups of features. The first group contains basic perceptual
information: spaceship’s position, angle and velocity; position of the shells fired by the fortress and
position of the mines. Note that providing the spaceship’s angle as a single scalar is not optimal
because it is a cyclic feature. To ensure that the difference between st|angle=359 and st|angle=1

is correct we encode it as two separate values in st: sin(angle) and cos(angle)7. Because of the
wrapping, the same applies to the spaceship’s position. The second group of features is provided
to make the game learnable without the need of adding extra complexity to the machine learning
model architecture such as feeding a history of frames at each t or using recurrent neural networks.
This second group is comprised of the number of time-steps since the last time the spaceship fired a
missile, the number of time-steps since the last mine appeared and the fortress remaining lives. st
was scaled to range between 0 and 1. In features with known maximum value the scaling is trivial.
In features without a maximum the hyperbolic tangent was used. The most direct benefit when
training on a S designed like this instead of pixel-based is that the computational costs are reduced
dramatically. Abstracting away the perceptual component from the learning process has a price
too, specially in the generality of the solution. In the discussion of section 4.2 more comments that
are relevant to this decision are given.

Reward function The last piece of our environment is to specify the reward function R that
the agent will try to maximize (equations 2.1 and 2.15). The end objective of this experiment is to
be able to make human-machine comparisons so both players should follow the same goals. When
humans learned this game, they were told to destroy the fortress as many times as possible while
maintaining the spaceship maneuver under control (wrapping was penalized). For simplicity, we
will assume that goal of the game then is defined as follows: destroy the fortress as many times
as possible in a fixed period of time without wrapping. According to the reward design principle
described in section 2.1 our reward function should express exactly what we want and nothing else.
This could be formulated as

Rs(st) =


10 if fortress destroyed

−1 if wrapping

−0.01 otherwise

(3.2)

Where s stands for sparse8. A time penalty is added to encourage the agent destroying the fortress
quickly. Note that this time penalty imposes a requirement of what we want the agent to learn and
does not tell the agent how to destroy the fortress. The problem with Rs is that its sparsity on the
positive side makes it very hard to learn from. An agent that operates with a low level action set

7The marginal effect on performance of this preprocessing technique was not thoroughly tested. Due to their
vast amount of parameters, Neural Networks excel at memorizing entire datasets. They are possibly among those
Machine Learning models that are less sensitive to this type of optimization. It would be more important when using
simpler function approximators, which is included as future work.

8Named like this for simplicity. To be more precise it should be called positively sparse, because it is only the
positive side of R which is sparse
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according to an ε-greedy exploration strategy will have a hard time destroying the fortress for the
first time. As a workaround to the problem I included a second reward function in the experiments,

Rd(st) =



5 if fortress destroyed

1 if hit fortress normally

−5 if hit fortress too fast

−1 if hit by fortress

−1 if hit by mine

−1 if wrapping

−0.01 otherwise

(3.3)

Where d stands for dense. normally means one effective fortress hit when it is not vulnerable yet.
Two or more shots within less than 250ms when the fortress is not vulnerable is considered too fast
and then the fortress restores all its lives. As it is seen in 3.3, Rd contains many elements that
are easy to experience by the agent in its initial steps and that will guide it towards the goal of
destroying the fortress.

Temporal level of abstraction The purpose of this experiment is to investigate what is the
optimal level of temporal abstraction when operating on the SF environment. We therefore define
three different sets of goals G that will be used to identify the type of agent that uses them:

• Low level of abstraction, G0. Here, there is a one to one mapping between goals and
actions so that G0 = A. In this trivial case the h-DQN would resemble the DQN so the DQN
archtiecture will be used instead for simplicity and efficiency.

• Medium level of abstraction, G1. Here the h-DQN agent will be used with 4 different
goals. G1 = {Aim at fortress, Aim at mine, Single shoot, Double shoot}. It is worth to
mention that the critic (recall from figure 2.6 that the critic is the part of agent which judges
if a goal has been achieved or not) will understand that the goal Single shoot is accomplished
only if the agent shoots and then stays without shooting for 5 game steps. In the same fashion,
Double shoots requires the agent to shoot while the last shot happened less than 5 steps ago.
Note also that in neither case the critic takes into account if the missiles shot by the agent
hit something or not.

• High level of abstraction, G2. Here the h-DQN agent will be used with only 2 different
goals. G2 = {Hit fortress once, Hit fortress twice}. The accomplishment of these goals
is verified similarly as in Single shoot and Double shoot from G1 but in this case instead of
checking if at a particular time-step the agent has shot or not the critic will check whether
the fortress has been hit. It will also look at the number of steps since the fortress was hit.

Having G1 and G2 defined like this makes it possible for the agent to learn the game (example9).
However, it was found that adding the motion low level actions {Thrust, Right, Left, Wait}
as goals to G1 and G2 made the agent’s moves more fluent and flexible and are used for all the
experiments reported here. Of course, these new goals are trivial to accomplish. For example,
when the MC sets Thrust as the current goal, all that C has to do is to choose the action Thrust.

9https://www.youtube.com/watch?v=lpBQyqopmWQ
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Other hyperparameters The tested learning models contain many hyperparameters. Some of
them were fine tuned via grid search. The default values can be found in configuration.py10.

3.3 Intrinsic motivation

It would not make sense to start training the meta-controller if the controller does not know how
to achieve G. That is why, as explained in section 2.4.3, the meta controller chooses random
goals without updating QθMC

until the controller performs good enough, which we formalized as
srg > threshold ∀g ∈ G, srg being the success rate of g. In the experiments threshold was set
to 0.95 and such condition was usually sufficed quite early in the training. This is good but one
has to take into account that the only situation where we can say that the controller has failed
at achieving g is when the episode terminates. In other words, even if g is simple, it may happen
that the controller ‘succeeds’ at achieving it only after a big amount of steps, which means that
the controller still has a lot to learn. In SF we want to destroy the fortress as many time as
possible, so we would like out agent to learn how to achieve every g ∈ G quick. In this experiment
I investigated if adding a time penalty to It(g) would help with that. Recall from equation 2.16
that the controller tries to maximize the total intrinsic reward which depends on the goal that is
currently being followed. In the original h-DQN described in [Kulkarni et al., 2016] the intrinsic
motivation mechanism provided by the critic implements the following internal reward function:

It(g) =

{
1 if g is achieved at t

0 otherwise
(3.4)

And now we define another version of it in which a time penalty term is added so that

I ′t(g) =

{
1 if g is achieved at t

−0.01 otherwise
(3.5)

We compare It(g) versus I ′t(g) by running various h-DQN agents equipped with either G1 or G2 on
the SF environment and kept track of the average number of steps required to carry out each goal.
The result of the experiment is shown in figure 3.5. We clearly see that I ′t(g) helps the controller
achieving the goals faster. When g ∈ G1 (upper row) the time penalty makes the controller learn
to achieve the goals optimally quicker, but we see that It(g) and I ′t(g) actually converge at some
point. On the other hand, the biggest impact occurs when g ∈ G2 (bottom row), because those
goals are of a higher level of abstraction and the controller takes longer to achieve them. In this
case, the time penalty not only makes the controller learn to achieve the goals optimally quicker,
but we see that It(g) and I ′t(g) converge much slower. The design of It(g) is theoretically correct
because it follows the principle of using the reward function to express what we want – achieve g–,
and both It(g) and I ′t(g) make QθC converge to the optimal Q∗θC , but I ′t(g) does so faster, specially
when g has a high level of abstraction.

10https://github.com/hipoglucido/Hierarchical-DRL-Tensorflow/blob/master/src/configuration.py
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Figure 3.5: For each goal we have the evolution of the average number of steps (Y axes) needed to
achieve it as the training goes (X axes, in millions of steps). Averaged over three runs

3.4 Optimal level of abstraction

In this section the main experiment is explained. The idea is to see if having options as actions in a
Hierarchical RL setting adds any value, for the different levels of abstraction already defined. First
this is done when the reward signal is dense (easy case) and then when the reward signal is sparse
(hard).

3.4.1 Dense rewards

We first compare the performance of our three agents (with G0, G1 and G2) when learning how to
solve SF by trying to maximize Rd. Here is a video11 of the three agents after 25 million steps
of training (around 100 thousand episodes). The vanilla version of DQN is used as the core of
the algorithms, so no Dueling, Prioritized Replay nor Double Q learning is used. Performance is
first measured as the total extrinsic reward accumulated per epoch12. In order to verify that the
RL task of maximizing rewards aligns with the objective of destroying the fortress as many times
as possible during a fixed time interval, the number of wins per epoch is also recorded. For both
metrics (displayed in figure 3.6) the agent with medium level of abstraction (G1) outperforms DQN
(G0), which outperforms hDQN with high level of abstraction (G2). hDQN’s first win occurs at
the very beginning in both G1 and G2 while DQN’s does not happen until 10 million of steps, so it

11Dense experiment video: https://www.youtube.com/watch?v=OXT7jyvMJ2g
12In all the SF experiments one epoch consists of 10000 steps, regardless of how many games/episodes/rounds are

included in such interval
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clearly seems that having goals helps the agent to learn the task earlier in time13.

Figure 3.6: (Left) Total extrinsic reward accumulated per epoch and (right) total amount of fortress
destroyed per epoch. In both cases the three agents are tested in SF with a dense reward signal Rd
and the average win rate is measured by taking the last 50 epochs into account.

However, the precise impact of the level of abstraction of agent’s actions on the final performance
is not so straightforward to interpret. We first compare DQN and hDQN G1. They both manage
to solve the game effectively, winning 98% and 94% of the times. Despite having a slightly lower
winning rate, hDQN G1 destroys more fortresses over time. The reason is that when the fortress is
vulnerable DQN sometimes hesitates (specially when there is a mine on the screen), whereas the
meta controller of the hDQN G1 immediately switches to Double shoot or Aim at mine, guiding the
low level actions of the agent to specific behaviours in a more direct manner.

By ways of contrast, for all the (five) seeds in this experiment it seems that having G2 instead of
G0 makes things worse. Thanks to the big amount of indicators that were recorded during training
(see src/metrics.py) we can analyze why this happens a posteriori. The policy found by hDQN
G2 at the end of the training does not make use of the goal Hit fortress twice. We can see how
this anomaly manifests by keeping track of the relative frequencies of the goals set by the meta
controller ∀g ∈ G2, which are shown in figure 3.7. Interestingly enough, the frequency of use of Hit
fortress twice decreases at the same pace as the probability with which the meta controller sets a
goal randomly, εMC (displayed in figure 3.8).

13Note that in Q-learning even if the agent has already learned something its behaviour will not resemble it fully
until ε – which decays deterministically– reaches a low value. In this implementation ε reaches its lowest value 0.05
when training is 65% complete.
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Figure 3.7: Relative frequencies per epoch of each goal that belongs to G2 during training on SF
with Rd (Y-axis is the normalized frequency ∈ (0, 1) and X-axis is million of steps). Each point
is calculated as the division of the number of times that the MC set the goal in one epoch by the
total amount of goals set by the MC in that epoch. The summation of all the frequencies must add
up to one for all the epochs.

Figure 3.8: Annealing of εMC during the training of hDQN G2 on SF with Rd. Following the
exploration strategy explained in section 2.4.3, εMC = 1 until the controller learns how to achieve
all the goals, which in this case happens for the first time after 2 million steps of training (represented
with a dashed line).

Specially at the beginning, it happens quite often that the MC sets and achieves Hit fortress
twice without the fortress being vulnerable yet, resulting in a negative reward of -5 (recall Rd
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from equation 3.3) that is stored in the replay memory DMC . After ∼2 million steps C learns to
accomplish all the goals and the agent starts to draw experiences from DMC to update θMC , rapidly
establishing a negative value to QθMC

(s, g = Hit fortress twice) for almost any s ∈ S that is
plausible to be observed by the agent. Therefore, whenever the agent acts greedily –which happens
more often as εMC decays– it will choose another goal but that one. This explain the decrease in
the frequency of use. On the other hand, if the exploration leads the agent to choose Hit fortress
twice by chance the fortress won’t be vulnerable in most of those cases so the negative connection
will be reinforced; and if it happens to be then the agent will get a +5 reward but this will not
compensate for the past bad experiences and Hit fortress twice will remain as a bad choice. Another
way of visualizing this effect is by monitoring the amount of penalties that the agent incurs due to
fast-hitting the fortress when it is not vulnerable yet (right plot in figure 3.9). Despite Hit fortress
twice being almost dropped from G2, the agent will still try to maximize GMC from equation 2.15
and the MC will find that when the fortress is vulnerable the only goal it can use to destroy it is
Hit mine. To understand how this is possible it is required to take into account how this hDQN
implementation addresses the question: what happens when the MC sets Hit mine and there is
no mine on the screen? The answer given is to set it as accomplished no matter what action the
controller chooses afterwards. hDQN with G2 leverages this in order to be able to shoot fast and
destroy the fortress without using Hit fortress twice. Of course, this makes the optimization of
QθMC

complicated. There are several ways to fix this issue: one option would be to include the
action Shoot as a goal in the same way we did with the motion-related actions. Another alternative
would be to rethink the implementation, for example by disabling Hit mine from G2 if there is no
mine on the screen. Finally, we could redesign Rd diminishing or removing the penalization for
hitting the fortress too fast when it is not vulnerable. It is maybe surprising that the resulting
sub-optimal policy actually works and the agent manages to destroy the fortress 49% of the times.
In any case, it is important to realize that the problem with G2 and Rd is a clear example of the
negatives consequences of including information related with how to solve the problem in R.

From this experiment we conclude that having goals as actions gives and advantage to hDQN
over DQN but we are still unable to determine which is the optimal level of abstraction (G1 or G2)
because by trying to make the problem easier when introducing information relative to how to solve
the problem in R we made the learning difficult for one of the hDQN agents.

3.4.2 Sparse rewards

The goal of this experiment is to find the optimal level of abstraction of G on SF. To do it G0, G1
and G2 will be tested again on SF but this time we will be using a reward signal that only tells the
agent what to do. This is the case of Rs (defined in 3.2). As in section 3.4.1, the extrinsic reward
and wins accumulated over training are plotted (figure 3.10). In this experiment five seeds are also
used per agent configuration. Here is a video14 of the three agents (the best seed is selected in each
case). First thing to notice is that DQN fails in all of them. The only thing it learns is to avoid
wrapping and the resulting policy consists in executing the action Wait at mostly every step, thus
always getting -0.01 from Rs (−0.01 × 10000 stepsepoch = −100 reward accumulated per epoch as left

hand side of figure 3.10 shows) and never destroying the fortress.

14Sparse experiment video https://www.youtube.com/watch?v=ZJGslxgm2Uw
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Figure 3.9: (Left) times that the agent is penalized for wrapping around the screen and (right)
times that the agent hits the fortress too fast (two hits between less than 250 milliseconds) making
the fortress recover its 10 lives.

Figure 3.10: (Left) Total extrinsic reward accumulated per epoch and (right) total amount of fortress
destroyed per epoch. (Upper) means and standard deviations among the 5 seeds are plotted and
(bottom) each run is plotted separately. In all the cases the three agents are tested in SF with a
sparse reward signal Rs and the average win rate is measured by taking the last 50 epochs into
account.

38



3.4. OPTIMAL LEVEL OF ABSTRACTION

As the upper part of figure 3.10 shows, there is a huge variation across runs within the same
configuration. Much more than it was when learning from a dense reward. For this reason, each
of the five runs for each configuration is plotted separately at the bottom of the figure. In both
hDQN cases two runs were successful and three failed. In an attempt to gain insight about how
this instability manifests through training, several scalar indicators were monitored and compared
among successful and unsuccessful rollouts. These can be found in appendix 4. It is hard to draw
useful conclusions from that data yet it is an interesting exercise to hypothesize about how is it
that some runs failed and others did not. For example, by looking at the five runs of the hDQN
G2 agent (figure 3.11) we see that two of the failed runs actually managed to destroy the fortress
several times in the middle of training but then they just stopped doing it. It is hard to say why
(since the accumulated R also decreased, as shown in 1) but it seems that at some point in training
they started decreasing the use of the goal Hit fortress once and started overusing Hit fortress twice,
incurring in shooting penalties (that had no negative effect in terms of rewards under Rs).

Figure 3.11: Scalar indicators monitored during the training of five hDQN G2 agents with different
seeds each. Successful runs are colored with green tones and the unsuccessful ones with blue tones.

The agents do not circumnavigate the fortress as they did withRd. As [Frederiksen and White, 1989]
found, that is the optimal strategy to elude fortress’s shells. In what follows I explain one hypothe-
sis about why this happens. Rs does not provide a negative feedback when the spaceship is hit by
the fortress, so the only incentive that the agent has to dodge the shells is that at the third hit the
game will restart and the fortress lives will reset to 10, so it will take extra steps to get the next
positive reward. Figure 3.12 compares several SF indicators while the hDQN G1 learns from either
Rd or Rs for 25 million steps. If we look at the amount of wins per epoch we can see that the agent
that learns from Rs was still improving at the end of the training. This supports the idea that in
the long run the agent should be able to fully optimize the MDP and learn to avoid the fortress’s
shells. However, this does not necessarily mean that it would outperform the learning from Rd.
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Figure 3.12: Several SF indicators during training coming from the case in which the hDQN G1
agent learns from Rd and when it learns from Rs. Five different seeds were used in the former case
and only two in the latter because the rest failed.

One possible thing to do in order to accelerate the MDP optimization would be to include in S a
feature related with the remaining lives of the spaceship. I claim that it should work in Rs because
first) the agent would be able to understand how S changes if the spaceship is hit by a shell or
mine and second) with the only goal of maximizing rewards the agent will try to reach those states
closer to destroying the fortress, which usually are those where the spaceship has many lives. From
an MDP perspective, this extra feature will discretize S in such way that the connection between
the states of having less lives and having less reward over time is more easily recognizable for the
agent.

The main finding of this experiment is that in situations with reward sparsity having options as
actions in a hierarchical architecture can make the difference from a solution that fails completely to
solving the problem achieving a good performance. Another phenomenon was observed, that sparse
rewards – besides being harder to learn from – make the RL algorithms behave with more instability
than under dense rewards. Also, some odd behaviours were found in the resulting policies of the
hierarchical agents, which were analyzed and an argumented solution to the anomalies produced
was proposed. Regarding what level of abstraction (between G1 and G2) is better in Space Fortress,
it seems that G1 achieves better results. However, a solid conclusion about G1 versus G2 can not be
drawn because of two reasons. First, because the variance between runs with distinct seeds is too
high. And secondly because at the end of the training the slope of the learning curve of hDQN G2
was bigger than that one of hDQN G1. For more precise results I suggest to include the spaceship
lives in S and to run the agents with more seeds and for longer time.
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3.5 Ablation study on hDQN extensions

Failed attempts at solving SF with RL previous to this thesis made me decide to incorporate
extensions to the core algorithm - DQN - to make the agents more capable of solving the task.
According to the literature, Double Q learning, Dueling architecture and Prioritized Experience
Replay were extensions to DQN that improved performance across several environments. Therefore
I decided to spend a considerable amount of effort in adapting those extensions to the DQN and
hDQN architectures15. My implementation takes the incorporation of each extension to either
the meta-controller or the controller as one binary hyperparameter more so that it was easy to
experiment with them. Actually, I made the code highly modular so that hDQN and DQN execute
the same lines of code but in different ways.

First I found that the vanilla DQN agent was already able to solve the game with Rd. Then,
as I continued doing experiments with both DQN and hDQN the results I was getting were always
telling me that the extensions did not make a noticeable impact on the performance in any case,
but training times were considerably higher. In Double Q learning, the decoupling of selection and
evaluation when computing the target (equation 2.10) requires one extra forward pass. The model
proposed in the Dueling Architecture adds up on network complexity requiring more calculations
for each forward pass. Finally, even though the data structure used in the Prioritized Experience
Replay scheme allows for an efficient implementation of the idea of prioritizing the most useful
experiences it is still expensive to keep the priorities of the experiences in memory updated, specially
in comparison with uniform sampling. All these computational drawbacks were exacerbated in the
Prioritized Dueling Double Q hDQN agent (PDD-hDQN), where each extension was added to the
controller and meta-controller, taking around 40% more time to train than vanilla hDQN. As a
result of this I dropped the DQN extensions and focus on hDQN versus DQN comparisons having
vanilla DQN at the core.

Nonetheless, I tried to illustrate the effect of the extensions with two ablation studies (shown in
figure 3.13). At the left, the total amount of intrinsic reward per epoch accumulated by the con-
troller is measured in five different configurations: The Vanilla agent (hDQN without any extension
whatsoever), the PDD-hDQN agent (fully extended hDQN) and the PDD-hDQN with each of the
extensions ablated from the controller only (e.g. ‘Dueling ∼∈ C’ means that the Dueling extension
of the controller was ablated). At the right, the same idea but the Y-axis being extrinsic reward
and the ablations being done on the meta-controller. G1 and Rs were used. We knew already about
the variance of hDQN in SF with Rs so it is difficult to draw conclusions from the right plot 16. For
the left experiment, the results are all about how good is the controller learning G because here the
reward plotted in the Y-axis is provided intrinsically by the agent independently of the extrinsic
reward, Rs. In this case the averages look more alike, suggesting that learning medium level of
abstraction goals (G1) can be easy enough so that adding extensions to the Vanilla controller is
not worth the computational overhead. Indeed, the task of the controller is usually easy compared
with that one of the meta-controller.

15I adapted the code from this repository: https://github.com/cmusjtuliuyuan/RainBow
16If we only looked at the average between runs we could conclude that the extension of Double Q learning in the

meta-controller harms performance but this would be naive because there is too much variance.
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Figure 3.13: Left) Ablation study of DQN extensions on controller in terms of intrinsic reward
and right) ablation study of DQN extensions in the meta-controller in terms of extrinsic reward.
PDD-hDQN is the fully extended agent and ‘Dueling ∼∈ C’ means that the Dueling extension of
the controller was ablated.
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3.6 Human vs Machine superficial comparison

One point of interest since the beginning of the project was that if an ML model can be constructed
to learn SF, how does it compare to human performance. This experiment is meant to make a
visual comparison between the learning curves of the human and the machine, to give an intuition
of the results that could be expected if after this project a thorough comparison is carried out,
or at least to tell us if it would be worth to conduct it. [J.J.M. Roessingh and Kappers, 2003] is
the report of an experiment conducted at NLR where human learning curves of trainees playing
SF were recorded. The authors proposed the progressive average function as an alternative to
regular learning curve models in order to better describe the experimental data. The resulting
model was able to predict stability of performance with practice, long-lasting individual differences
and specificity of skill-transfer. The upper left plot in figure 3.14 was taken from that report and
measures how does the time required to destroy the fortress changes throughout the 16 hours of
training. Next to it are the learning curves of the G0, G1 and G2 agents after 25 million of steps (347
hours) of training on SF with Rd, plotted in a similar fashion. The only conclusion of this section
that among all of them, hDQN G1’s curve is the most similar to that of the human17 reaching the
same performance in term of fortress destructions per time.

Figure 3.14: Human trainee learning curve on SF plotted along that one of the agents DQN hDQN
G1 and G2. Time required to destroy the fortress is measured and its variance through training.

17Making solid claims about how is human learning similar to machine learning is beyond the scope of this project
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Closing

In this last chapter the research questions asked in section 1.3 will be answered. After that a
conclusion with the most relevant findings of the project is given and finally a section with some
interesting points and future lines work will be discussed.

4.1 Conclusions

Question I Is it possible to learn SF with Reinforcement Learning at all? Yes, SF is learnable
with a simple implementation of DQN and it is possible to achieve a good performance at it. It
is important to note that the representation of the environment - which in this project consists of
a high level feature 1D vector instead of pixels - and the reward function used are likely to play a
role in the difficulty of the task. For instance, it is possible to learn to play Space Fortress from a
sparse reward function with Hierarchical Reinforcement Learning but not with simple DQN.

Question II Under which circumstances is it recommendable to extend RL with Hierarchical RL?
Is Space Fortress the case? In general, I would recommend to use Hierarchical RL in those scenarios
where we want to make our agents more effective at exploring their environment, which can be
tremendously useful when the reward signal is sparse. In the type of Hierarchical RL researched
in this thesis the notion of goals arises. Different ways of how these goals get inside the agent are
still under research in the RL community. In the method used here – hDQN – the goals are given
to the agent as predefined set. If the RL practitioner has access to the environment’s entities and
dynamics this allows for a richer definition of goals which allows to turn it into an injection of expert
knowledge. This boosts performance but it makes the solution ad hoc to the problem. Therefore,
it may be an issue in scenarios were the model needs to be directly applicable to other problems.
If generality is important a more simplistic design of the goals can be utilized (as the authors of
hDQN did in [Kulkarni et al., 2016], defining every goal as entity A reaches entity B).

Question III Do Double Q learning, Dueling architecture or Prioritized Replay Memory improve
the Hierarchical Reinforcement Learning algorithm? After two ablation experiments, no solid evi-
dence was found for the fact that these extensions add any value to hDQN when training on SF. It
should be noted that the experiments from which this conclusion was drawn consisted in training
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with a sparse reward which originated a big amount of instability on the performance. This was an
issue specially when doing the ablation study focused on the agent’s module in charge of choosing
the goals that should be followed at each time (meta controller). In the case of the module that
accomplishes those goals by choosing the right low level actions (controller) the results were more
stable because that part of the agent is agnostic to the sparsity of the extrinsic reward signal and
the goals were relatively easy to achieve. In that case there was small difference in performance
across ablations. This suggests that controller can be successfully implemented with a simpler RL
algorithm than the meta controller.

Final conclusion This master thesis presents the first Reinforcement Learning agent to learn
to play Space Fortress at human level. This means being able to use a sparse reward signal to
learn abrupt context-dependent shifts in strategy and temporal sensitivity. This was done thanks
to hDQN, an implementation of Hierarchical Reinforcement Learning. With a toy example it was
shown that the higher level module of the hDQN agent can be utilized to act as a long term memory
and solve problems where the baseline DQN fails. An environment to learn Space Fortress using
high level features was implemented and used in this project. No relevant improvements were found
by extending the hDQN agent with Double Q learning, Dueling architecture or Prioritized Replay
Memory so they were discarded for the rest of the experiments. It was found that a shaped dense
reward for learning Space Fortress with DQN can be engineered but it was shown that it could
also be a source of problems. So the outcome is to try to avoid designing reward functions that
have information about how to solve the problem as much as possible and restrict ourselves to
only include what we want. This turns the reward function of Space Fortress to be sparse, and the
problem becomes way more hard because there is a lack of feedback in the exploratory phase. It
was shown that in this case having temporally extended actions is of great help, making the agent
able to successfully solve the game and reach human performance.

4.2 Discussion and future work

Learning from pixels While in this thesis the state space is formed by high level features – lets
call it SH –, in all the previous experiments of learning SF with RL conducted at NLR the state
space consisted in image pixels, SP . The reason why SP was not used in this project was not to
avoid a drop in effectiveness but in efficiency, due to the fact that using SP would have required
much more computational power. Moreover, I argue that having our agent learn how to recognize
edges, positions, missiles etc. from pixels is not relevant enough to this research in order to justify
the extra computational costs, let alone the complication for the RL task. Lets take the case of the
simplified version of SF in which there is no time sensitivity constrains, it is all about hitting the
fortress and avoid being shot. In that case, as for what the results of this thesis are, both SH and
SP contain the required elements to learn the game but the other projects that used SP did not
succeed. A very interesting research project would be to quantify the difference in efficacy of the
solution when using SH versus SP as observation from the environment.

Learning the time-sensitivity strategy with more generality As explained in 3.2, among
the features included in st there are the number of steps since the last mine appeared and the
number of steps since the last spaceship shot. Some may argue that including these temporal
features is a workaround to the time sensitivity learning problem. Without these features, a possible
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design choice for the agent to be aware about the pace of its shooting could be to use a recurrent
architecture, as it was done in [Agarwal and Sycara, 2018]. In my opinion, this added a complexity
to the agent that was not worth the computation overhead and extra model parameters. Actually,
I think that feeding the number of steps since the last shot is valid because it is something that
depends entirely on the agent, so there is not any loss of generality in the solution. On the other
hand, the number of steps since the last mine appeared is a feature that depends exclusively on
S, which makes the approach less general. However, this feature turned out to be of little use and
it could have been removed. Its only purpose was to make the agent realize that it is actually
possible to hit the fortress in the first 2 seconds after a mine is spawned, but without it it would
have learned to just shoot it down whenever it is spawned. In a similar way, knowing the remaining
lives of the fortress makes it possible for the agent to understand when does it have to reverse
the firing strategy. In theory, it should be possible to learn this behaviour without this feature
by using a recurrent architecture also, but this time it would be way more challenging because
of the dependence over previous actions would be very long, having the agent to learn something
similar as to how many times has it hit the fortress. [Agarwal and Sycara, 2018] claims that this
fact renders the game non-Markovian, justifying its decision of using a recurrent architecture. I
believe that this is not true because the vulnerability of the fortress is displayed on the screen,
and the agent of that paper learns from pixels. Therefore, I think that reason why the game is
non-Markovian is not this but only the fact that the optimal decision at a given time depends on
how fast the agent is shooting and it has no direct to such information access in st

1. Therefore,
with the chosen representation of st the game came be effectively converted into a Markov Decision
Process and a solution without a recurrent architecture is possible. A possible next step could be
to drop the steps since last shot feature and include a recurrent architecture. This extra module
would not need to be complex because it should only be able to handle short dependencies – the
shooting pace –. Nonetheless, dropping the feature of fortress vulnerability (or hiding it from the
screen if we were learning from pixels) would require more research effort and in my opinion would
be a bit far fetched because I consider it a fair assumption that the agent or player always knows
how many lives the fortress has.

Explainable AI Many industries can not leverage the potential that AI has to offer yet because
often AI uses a black box model under the hood and the decisions that need to be automated are too
important for taking an output as such, regardless of how accurate the model is [Gunning, 2017]
[Samek et al., 2017]. While recent advances in interpreting the decisions of supervised learning
black box models has been getting very interesting results [Ribeiro et al., 2016], there has not been
that much research trying to explain Deep Reinforcement Learning models. In this thesis we have
used hDQN, an implementation in which goals are followed explicitly, which provides some insight
about the agent’s decision making. However, we still can not explain why the agent chooses a
specific goal. For tackling this we could again leverage the fact that the observations from the state
are an abstracted vector of features by replacing the MLP for a linear model or a decision tree.
Since these models have certain degree of explainability but are not good feature extractors, some
extra feature engineering could help them. Another possible research direction would be to add
more level to the hierarchy of hDQN, being those at the top more abstract than the ones at the
bottom.

1Actually, when learning from pixels the agent can see how many missiles are in the screen and use it as a proxy
of its current pace of shooting. This is something that alleviates the non-Markovian behaviour of the environment.
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Optimal transfer of training Having an ML model for SF opens the possibility of various
research directions. One that was of particular interest of NLR was to use it to determine optimal
transfer-of-training between different training environments [Roessingh et al., 2002]. Years ago an
experiment was conducted with SF trainees where researchers tested an hypothesis. This stated
that if we had X amount of hours of training available, the final performance achieved by the
trainees will be higher if he/she trained the first X/2 hours with a simplified version of SF and the
last X/2 with the full version than if he/she tried the full version for all the X hours. The result
was that starting with a simpler task and by gradually increasing it resulted in better performance.
Now this hypothesis can also be tested for the ML model. If the results are similar then we would be
closer to having a model that could be used to predict human change in performance after changes
in the environment occur.
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Figure 1: Scalar indicators monitored during the training of five hDQN G2 agents with different
seeds each on SF with Rd. Successful runs are colored with green tones and the unsuccessful ones
with blue tones.
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Figure 2: Scalar indicators monitored during the training of five hDQN G1 agents with different
seeds each on SF with Rd. Successful runs are colored with green tones and the unsuccessful ones
with blue tones.
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