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Chapter 1

Introduction

1.1 Introduction

Often when we exchange messages we want to protect our commu-
nication from prying eyes. When we communicate over the internet
this requires a cryptographic protocol since messages may need to
pass by many potential attackers before arriving at their destina-
tion. Think of eavesdroppers on the wire, but legitimate third parties
supposed to pass on messages such as internet service providers
are also considered untrusted. We will consider a model in which
untrusted parties will, for one, attempt to read the internet traffic
between two peers. But we need more, namely in addition to this
we want to ensure messages arrive unmodified. Lastly, on the in-
ternet we can not visually confirm who we are talking to. Therefore,
since the attacker may attempt to impersonate anyone, we require a
reliable method for identification.

In the previous paragraph we identified the three major intuitive
objectives for a protocol aiming to achieve secure communication
over the internet. Recapping, these three major objectives are:

e Confidentiality
e Integrity
e Authentication

To accomplish these goals only limited resources are available. We
will assume only a reliable, in-order, data stream. This is provided
by TCP.



1.1.1 Transport Layer Security

The requirements identified are met by Transport Layer Security
(TLS). This protocol is considered the most important cryptographic
protocol in use on the internet today. Given its prevalence it has a
fundamental role in internet security. Unfortunately such an im-
portant protocol shows its age in numerous ways. TLS is embed-
ded in many small devices around the globe, this makes integrating
any updates to TLS extremely difficult. Since breaking backwards
compatibility is therefore impossible, many new versions just extend
the previous by going yet another layer deeper, TLS 1.2 for example
still advertises itself as TLS 1.0 in its Version field while using the
client _version field to indicate the higher version. This also has an
effect on implementations, some of which have become increasingly
complex throughout TLS’ lifetime. The first version of TLS, SSL 1.0,
was actually never published. The first publicly released version of
what would become TLS was SSL 2.0, developed by Netscape and re-
leased in 1995. Since 1999, the protocol has been developed by the
Internet Engineering Task Force (IETF). This group published TLS
1.0 in 1999, TLS 1.1 in 2006 and TLS 1.2 in 2008.

TLS actually consists of two separate protocols. First of which is
the handshake protocol which authenticates one or both of the com-
municating parties to the other and establishes the parameters and
cryptographic keys for the session. This uses for the most part,
slower, public key cryptography to authenticate and exchange keys.
The handshake protocol is designed to withstand tampering by ad-
versaries, who should not be able to influence the cryptographic pa-
rameters negotiated by the legitimate parties. Second is the record
protocol which protects the traffic between the two endpoints with
the established cryptographic context. This uses faster symmetric
ey cryptography to ensure confidentiality and integrity of the trans-
mitted data, which is divided in records.

Quite recently a new version [1] of TLS, version 1.3, was submitted
to the Internet Engineering Steering Group (IESG) for publication.
This is the final step before the standardization of TLS 1.3. This new
version of the protocol features a major overhaul of the handshake
protocol. A major highlight of version 1.3 is that a full handshake
now requires just one round trip between client and server. This re-
duces the time needed to set up the secure channel. Furthermore
all public key cryptography now uses (EC)DH!, moving away from
RSA [2] and improving speed in two ways. First by using a faster

'Explained in Chapter 2



algorithm and second by reducing the amount of bytes transferred
during the handshake. Yet another highlight is the cleanup of sym-
metric cipher suites; TLS 1.3 allows only for ciphers supporting au-
thenticated encryption. The protocol negotiates an ephemeral key
which is used to start encrypting the handshake as early as pos-
sible. The ephemeral key is also used to provide forward secrecy,
which is now no longer optional. To conclude these highlights; on
session resumption the client is allowed to include data in the first
flight, enabling what is called a O-Round Trip mode. This will reduce
latency when client and server have communicated with each other
before.

During TLS 1.3 development there was a proposal to change the way
in which the server authenticates itself. This proposal was dubbed
OPTLS [3] where OPT stand for OPTimized or One-Point-Three. If
OPTLS had been standardized as TLS 1.3 it would have featured a
different handshake protocol. Forward secrecy is still achieved by
an ephemeral Diffie-Hellman [4] key exchange, but the major dif-
ference is in how authentication is achieved. While classically the
server authenticates using a signature on the handshake transcript,
in OPTLS authentication is done based on static Diffie-Hellman.
For this the server provides an additional Diffie-Hellman public key,
signed by a Certificate Authority. Using this Diffie-Hellman public
key a second key is negotiated. Using this second key the server
authenticates the handshake. When RSA was still considered this
style of handshake could lead to some major performance gains. In
addition it has the advantage of having the whole TLS key exchange
rely on only one cryptographic primitive, Diffie-Hellman, simplify-
ing implementations. Finally note that eliminating signatures allows
plausible deniability of communication — the used authentication
key can not be traced to either party — similar to SKEME.[5]

Unfortunately the OPTLS proposal was ultimately not accepted into
the TLS 1.3 standard. Instead a more traditional signature-based
approach is used for several reasons. Since static Diffie-Hellman
certificates are non-standard, there had to be support for a tran-
sition mode. In this mode the server would use its signing key to
sign a Diffie-Hellman share. However the use of such a delegated
credential was deemed not well enough researched. In addition this
would require the server to store another secret which could be com-
promised. Having this secret would allow an attacker to imperson-
ate the server for as long as the Diffie-Hellman certificate is valid.
A second reason was that the performance gain is not quite as big
when compared against ECDSA [6] or EDDSA [7] signatures. Finally;
perhaps the proposal was just “too late”. The IETF was afraid that
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careful review would delay the standardization of TLS 1.3. However
OPTLS is still an interesting approach to eliminate the need of online
signatures. Recently a new Internet Draft appeared [8], potentially
reviving a form of OPTLS as an extension to TLS 1.3.

1.1.2 Going post-quantum

As mentioned before; the key exchange protocol is based on ellip-
tic curve [9, 10] Diffie-Hellman and digital signatures. The mathe-
matical structure on which these problems are based is assumed to
be unbreakable by classical computers. However there are multiple
research efforts ongoing to build a quantum computer [11]. Such a
device, when built, will be able to utilize Shor’s algorithm to compro-
mise all the security offered by RSA and Diffie-Hellman. Although
this is a significant engineering challenge, building a large quantum
computer is believed to be possible within the next twenty years [12].
Notably even connections that are believed to be secure today can,
and are, saved to be decrypted in the future. After a quantum com-
puter is built this data can be decrypted to be analyzed by anyone
who captured the encrypted data and possesses the resources to
build a quantum computer [13].

At the moment NIST has issued a call for proposals [14] to standard-
ize a post-quantum key exchange algorithm. The call includes pro-
posals for public key encryption, key encapsulation mechanism [15]
(KEM) and digital signatures.

1.2 Motivation

Before stating the objectives of this thesis we will first state the mo-
tivation for these.

1.2.1 OPTLS implementation

Since OPTLS was not standardized no implementation was ever fin-
ished. Providing such an implementation would be interesting to
evaluate the claims of speed increase. Furthermore the recent inter-
net draft which extends TLS 1.3 with an OPTLS-like authentication
mechanism could gain some more traction from an implementation
with benchmarks.



1.2.2 OPTLS with KEMs

In the OPTLS paper Krawczyk and Wee suggest it would be possible
to use a “KEM-like” cryptographic primitive for OPTLS. As mentioned
before; NIST currently has a competition running to standardize a
post-quantum KEM. If OPTLS can be realized using a KEM this could
be a quite interesting way to design a post-quantum version of TLS.
Research is needed to figure out how exactly the key exchange looks
using KEMs, or else to solve any potential challenges that may sur-
face.

1.2.3 Privacy friendly

We feel that signatures are not the correct cryptographic primitive for
server authentication. When the server provides a signature this can
convince everyone that this server was involved in communication.
But in the TLS setup it would be enough to only authenticate the
server to the one specific client it is currently communicating with.
This is what OPTLS can provide by offering plausible deniability,
further motivating the need for an implementation.

1.2.4 Do post-quantum right

Although it may seem like an obvious solution to just drop in what-
ever post-quantum signature scheme that NIST standardizes, we feel
this might be terrible idea. Post-quantum signature schemes have
very different performance characteristics from the elliptic curve
and RSA signature schemes we are used to. Performance and key
sizes are different, and some schemes require to keep state to be
secure, something which appears impossible to require from every
TLS server.

TLS is ubiquitous, being embedded in almost every connected de-
vice. This has proven to make the protocol particularly hard to mod-
ify and furthermore means versions stick around for a long time.
Breaking backwards compatibility is considered unacceptable. There-
fore we will likely have just one chance to provide a proper version of
post-quantum TLS.



1.3 Objectives

In line with the motivation we identity two major objectives for this
thesis.

1.3.1 Implementation

By providing an implementation for a classical version of TLS based
on OPTLS we aim to make it possible to evaluate performance. We
aim to implement the internet draft from [8]; our implementation ex-
tends OpenSSL, the most popular TLS library. By providing such an
implementation we contribute to research of a version of TLS with-
out signatures and we make it possible to evaluate the performance
thereof.

1.3.2 Research

We aim to investigate how practical it is to use KEMs for OPTLS. If
any problems arise with building OPTLS using only KEMs we will
discuss these and try to provide solutions based on different cryp-
tographic primitives.

1.4 Thesis overview

Chapter 2 We introduce the cryptographic preliminaries required
to follow the thesis and give and overview of the currently most
used version of TLS: 1.2. We then do the same for TLS 1.3.
We show for both version the difference between the full and
abbreviated handshakes.

Chapter 3 In this chapter we discuss and describe OPTLS as en-
visioned by the designers. We note the advantages it has over
the final design of TLS 1.3. We then also describe a variant of
OPTLS.

Chapter 4 Here we dive into the inner workings of OpenSSL. We
then give a detailed description of our implementation of our
implementations of the original OPTLS proposal and the Inter-
net Draft.



Chapter 5 We use our implementations to measure performance,
and compare these to one another and TLS 1.3. We give ac-
curate cycle count in the different situations and look into the
reason behind the numbers we acquire.

Chapter 6 We discuss a small part of the state of post-quantum
cryptography and the future of post-quantum TLS. We have a
special focus on KEMs and explain the reason for this.

Chapter 7 Finally we conclude the thesis and give directions for fu-
ture research.



Chapter 2

Preliminaries

This chapter introduces the different variants of the TLS handshake
for protocol version 1.2 and 1.3. Furthermore we go further in-
depth on the cryptographic construction blocks mentioned in Chap-
ter 1.

2.1 Cryptographic preliminaries

A protocol like TLS can not exist without layers of cryptography. We
have already mentioned some of the building blocks required. In
this section we explain what they actually do, and what they can
accomplish in our context.

2.1.1 Diffie-Hellman

A cryptographic construction we will often use in this thesis is Diffie-
Hellman or DH for short. The Diffie-Hellman key exchange allows
two parties to establish a shared secret without allowing an eaves-
dropper to obtain this secret. However while each of the parties
can be sure it has established an shared secret with someone, the
primitive itself provides no authentication. Indeed; if Alice and Bob
try to establish a shared secret using Diffie-Hellman, there is no
inherent guarantee they will not end up having both a shared se-
cret with Eve, who can then read and forward their messages to the
other. In order to prevent this we need to build an Authenticated Key
Exchange, (AKE) [16, 17]. This construction authenticates both par-
ties, although in the context of TLS often it would often be enough to
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authenticate only the server towards the client using an Unilateral
Authenticated Key Exchange (UAKE) [18].

The “most obvious” way to perform a Diffie-Hellman key exchange is
over the integers modulo a large prime. For this one takes a large
prime modulus p and a generator g of the multiplicative group Z/Z,,
both g and p can be public. The secret key is an integer x smaller
than the group order of g, the public key is g*. Now two parties will
both have a secret and a public key: (z,¢*) and (y,¢¥). The idea
behind the Diffie-Hellman key exchange is that one party has = and
¢Y and can compute ¢¥*, while the other has y and ¢* and computes
g*’. Both parties then obtain ¢*¥, while an observer only sees g* and
¢Y, from which computing ¢* is believed to be hard [19].
Definition 1 (Diffie-Hellman Problem). Given a cyclic group G and
a generator g of G and two public values ¢*, g¥: find g*¥.

It is an immediate consequence that if x can be recovered from g*
then the DHP is solved. This is called the discrete logarithm prob-
lem:

Definition 2 (Discrete Logarithm Problem). Let G be a cyclic group
of order n, and g be a generator for G. Given an element y of G the
discrete logarithm problem is to find an integer = such that ¢* = y.

The main disadvantage of doing a Diffie-Hellman key exchange over
the integers is the existence of sub-exponential attacks on the DLP
in this group. As a result of these attacks such as index calculus
and the number field sieve the size of the parameters needs to be
quite large. In order to make it infeasible to solve the DLP p should
be at least 2048 bits [20]. Furthermore there are issues with reusing
a single prime for many sessions [20] and “wrong” choices for which
the DLP is suddenly easy to solve.

By 1985 the sub-exponential attacks on the DLP were well-known.
Miller and Koblitz independently proposed to instead build cryptog-
raphy on the elliptic curve discrete logarithm problem. For this prob-
lem no equivalent sub-exponential attacks are known and as such
much smaller key sized can be used. The resulting system, Elliptic
Curve Diffie-Hellman, uses an elliptic curve £ with a base point G
instead of the cyclic group of the integers modulo p. For a secret
integer x the public key then becomes xG, the rest of the key ex-
change works the same. The shared secret becomes xyG, however in
this thesis we will use the more usual notation ¢® for Diffie-Hellman
public keys.

The hardness of the ECDLP depends on the underlying curve [21]
but, unlike the integers, for ECDH the same curve can be reused
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many times without issue. Therefore certain curves have been found
which resist all known attacks [22] and these are standardized. The
curves we will use for the TLS handshake are limited to five: The
NIST curves P-256, P-384 and P-521 [23] which are Weierstrass
curves, and the two Edwards curves Curve25519 [24] and Ed448-
Goldilocks [25]. These are all specifically selected to allow for short
public keys and fast arithmetic.

An interesting property of the Diffie-Hellman key exchange is that
it can be done ephemerally. Assume two parties have some estab-
lished key material. Then if the protocol allows for it at any time
during normal communication one party can generate a new secret
and compute the corresponding Diffie-Hellman share. The initiat-
ing party then sends this over to the other, who performs exactly
the same procedure. At the end of this simple one round trip the
two parties have a new secret which can be mixed into their already
established key material. This provides forward secrecy [26]; if the
previous key were to be compromised, messages after the re-keying
will still be protected.

2.1.2 Key encapsulation

The concept behind a Key Encapsulation Mechanism [15] (KEM) is
to use asymmetric encryption to encrypt a symmetric key. For this
public key encryption is used to derive a shared key, the shared key
is then used with standard symmetric ciphers to encrypt and au-
thenticate the actual messages. The advantage is that while public
key encryption often works only on valid group elements, a KEM in-
cludes a key derivation function [27] (KDF) to turn these into uniform
random cryptographic keys.

Definition 3 (KEM). A KEM = (Gen, Encap, Decap) is defined as a
tuple of three algorithms:

e A probabilistic polynomial-time key generation algorithm Gen,
which on input 1* for A € Z>( outputs a random public key/se-
cret key pair (PK,SK). The exact size and structure of these keys
depends on the underlying scheme.

For \ € Z>(, we define the probability spaces
- PKSPACE, := {PK : (PK, SK) <= Gen(1*)}

- SKSPACE, := {SK : (PK, SK) <- Gen(1")}

e A probabilistic polynomial-time encryption algorithm FEncap,
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which on input 1* for A € Zs( and a public key PK € PKSPACE),
outputs a key K and a ciphertext c. For a KEM the length of K
is a parameter of the system. The ciphertext is a bitstring.

e Decap is a probabilistic polynomial-time encryption algorithm,
which on input 1* for \ € Z>o and a secret key SK € SKSPACE,,
with a ciphertext ¢ outputs either a key K or invalid.

For example let G be a group of prime order p with generator g then
a simple KEM based on ElGamal [28] would look as follows:

Gen : SK: s random from Z,, PK: h = ¢°
Enc : r random from Z,;, a = ¢", b = h" and K = KDF(b) using PK h
Dec : From ciphertext a, recover K as K = a° using SK s

In some ways this seems similar to a Diffie-Hellman key exchange,
however in Chapter 6 we will look closer into exactly in which sce-
narios a Diffie-Hellman key exchange can be replaced by a KEM and
we will also see in what scenarios it is not immediately obvious how
to do this.

2.1.3 Non-interactive key exchange

A Non-Interactive Key Exchange (NIKE) [29], is an important but rel-
atively overlooked cryptographic principle. It allows two parties who
already know each others public keys to establish a shared secret
without any interaction.

The canonical example of a NIKE is in fact the Diffie-Hellman key
exchange. We see that when (z,¢%), (y,¢Y) are the Diffie-Hellman
keys of Alice respectively Bob and they possess each others public
key, then both can compute a key based on ¢*¥ without any further
interaction being required. Unfortunately no interaction also comes
with disadvantages: it is not possible to achieve any forward secu-
rity. But some other security properties are clear: if Alice’s private
key is compromised this does not effect the security of keys where
Alice is not involved. Furthermore the compromise of one shared
key should not affect other shared keys.

Definition 4 (NIKE). A NIKE = (CommonSetup, Keygen, SharedK ey)
is defined as a tuple of three algorithms with an identity space ZD
and a shared key space SHK:

e An algorithm CommonSetup which outputs params, the system
parameters.
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e A probabilistic algorithm Keygen, which given the parameters
and an ID € 7D outputs a secret key and the corresponding
public key: SK and PK, we assume params to be included in PX.

e An algorithm SharedKey, which given an identity ID; € ZD and
a public key PK; along with another identity ID, and a secret
key SKs outputs either a shared key K € SHK or invalid.

We furthermore require that for any pair of identities ID;, ID; with
corresponding key pairs (PKj, SK; ), (PKg, SK2) the Shared Key algorithm
satisfies the following constraint:

SharedKey(ID1, PKy,ID3, SKy) = Shared K ey(IDg, PKo, ID1, SK1)

It can be shown that any secure NIKE can be converted into an (IND-
CCA) [30] secure public key encryption scheme. So can the ElGamal
KEM that we saw in Section 2.1.2 be seen as arising from the Diffie-
Hellman NIKE: here (7, ¢") is the ephemeral key of the sender and the
receivers public key is used to construct a shared secret ¢°".

Unfortunately the reverse claim is not true [29]; in general we can-
not take a IND-CCA secure public key encryption scheme (and thus
neither a KEM) and use it to construct a NIKE.

2.1.4 Cryptographic hash functions

A cryptographic hash function is a fundamental building block in
cryptography. These transform an (almost) arbitrary length input
into a short fixed length output. This is useful in many situations
where it is not practical to handle large amounts of data.
Definition 5 (Cryptographic hash function). A cryptographic hash
Jfunction is an efficiently computable function h : {0,1}* — {0,1}"
such that A is:

e preimage resistant; given Y € Img(h) it is computationally in-
feasible to find X € Dom(h).

e second-preimage resistant; given X and h(X) it is computation-
ally infeasible to find X’ # X such that h(X’) = h(X).

e collision resistant; it is computationally infeasible to find X,Y €
Dom(h) such that A(X) = h(Y).

For example a cryptographic hash function could be used to commit
to a certain answer to some question. One publishes the hash of
the answer, but not the answer itself, then once one publishes the
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answer everyone can verify that this answer must have been the one
committed to by the hash.

In TLS we will see that both parties use hash functions to ascertain
they have seen the same messages. By hashing the messages in the
protocol so far they both obtain a value that, given the properties of a
cryptographic hash we have just seen, can only be the result of that
exact message flow. However, anyone can compute these values; by
themselves they only proof integrity.

2.1.5 Message authentication codes

Once a shared secret with another party is established we would like
to be able to use this to authenticate messages. This can be done
with a message authentication code. In practice these algorithms
are faster than using digital signatures. However since both parties
possess the shared secret in principle the authenticated message
could have been from either. Thus neither of the parties can cryp-
tographically prove to a third party that a message was sent by the
other party. Typically a MAC is appended to the data, proving its
authenticity.

Definition 6 (MAC). A MAC = (Gen,Tag,Verif) consist of a three
tuple of probabilistic polynomial-time algorithms, a message space
M, a key space K and a tag space 7:

e Gen, which on input 1* for \ € Z> outputs a key K € K

e Tag, which on an input key K € K and a message m € M
outputs a tag Tagx(m) =T € T

e Vertakesinputakey K € K, amessagem € MandatagT €T,
then Verg(m,T) outputs either accept or reject.

Furthermore for all A\ and all messages m we have:

Pr[K = Gen(1*) : Verg(m, Tagx(m)) = accept] = 1

The last requirement asserts that the verify algorithm always ac-
cepts a valid tag. For a MAC to be secure it needs to be unforgeable;
the adversary is trying to create a MAC on some message that was
not seen yet. This should be infeasible even if given access to an
oracle which returns valid MACs on every message other than the
one required.
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2.1.6 HMAC

In Section 2.1.4 we noted that hash functions by themselves do not
authenticate their input. However hash functions can be used to
construct a MAC, although the naive way of prepending the key
has issues which has led to the more sophisticated HMAC [31] ap-
proach.

Definition 7 (HMAC). Given a message space M, a key space K, a
cryptographic hash function s, a message m € M and a secret key
k € K the HMAC of m under K is given by:

HMAC (K, m) = h((K @ opad)||h(K ® ipad))

Here ¢ denotes the exclusive or and || denotes concatenation.

Other MAC constructions exist, but during the TLS handshake his-
torically HMAC are used as the default way of authenticating after a
symmetric key has been established. Modern ciphers output a MAC
together with the ciphertext per default but in the next subsection we
will see the HMAC construction is useful for another purpose.

2.1.7 HKDF

We will often need to derive cryptographic keys from a Diffie-Hellman
value resulting from a key exchange. The cryptographic construc-
tion which is used by TLS to to this is a Hash-based Key Derivation
Function (HKDF) [32].

Such a construction is needed because the Diffie-Hellman value is
not uniformly random distributed. Thus it should not be used to
directly seed some pseudorandom function. Instead this construct-
ing uses two different phases, first of which is extract this extracts
from the input keying material a fixed length pseudorandom secret,
optionally a salt (non-secret random value) can also be used, this de-
faults to a string of zeroes. Second is expand, using the pseudoran-
dom secret we can then expand this secret into several cryptographic
keys, optionally when expanding an info field can be included. This
is what we will see is being used in TLS to generate keys for different
purposes from one secret.

Both extract and expand can be implemented using the standard
HMAC primitive. For this during the extract phase the salt is used
as the key and the shared secret as the input data. During the
expand phase the output of this can then be used as the key, while
the input data can be whatever is desired. Usually this will be a
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concatenation of the handshake hash and an info label indicating
the purpose of the output key.

2.1.8 Digital signatures

To proof integrity and authenticity of messages we will use digital sig-
natures. For this the sender has a key pair consisting of a public key
and a private key. The sender can apply a secret function based on
the private key on some piece of data and obtain a signature.

The sender can publish their public key freely. Now anyone receiv-
ing a message from the sender can use this public key to verify the
signature. This proofs that the message was not modified, and that
the signature was created by someone who had access to the private
key.

Definition 8 (Digital Signatures). A digital signature scheme over a
message space M and a signature space S consists of a three tuple of
probabilistic polynomial-time algorithms (Gen, Sign, Verif) with the
following properties:

e Gen, which on input 1* for A € Z>( outputs a random public
key/secret key pair (PK,SK).

For \ € Z>(, we define the probability spaces
- PKSPACE, := {PK : (PK, SK) <= Gen(1")}

- SKSPACE,, := {SK : (PK, SK) <% Gen(1")}

e Sign takes a secret key SK € SKPACE,, a public key PK € PKSPACE,
and a message m € M; giving the signature Signsx(m) =0 € S

e Verif takes a public key PKe PKSPACE ), a message m € M and
a signature o € S it then outputs either accept or reject.

Furthermore for all A\ and all messages m we have:

Pr[(SK, PK) = Gen(1*) : Verifox(m, Signsg(m)) = accept] = 1

The security notion of a signature is very similar to that of a MAC.
Again we need it to be unforgeable; if the adversary can obtain a
signature on a message he has not seen before, the signature scheme
is insecure.

Note that contrary to MACs digital signatures have the property of
non-repudiability. Once someone signs a message anyone can proof
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to a third party that this signature must have been created by the
owner of the private key.

In practice to establish trust we have Certificate Authorities, whose
keys are included in browsers and operating systems. This estab-
lishes a root of trust; the CAs are expected to sign public keys to-
gether with identifying information after verifying this information
is in fact correct.

2.2 TLS preliminaries

Every version of TLS released by the IESG has its own RFC. So far
there have been three standardized versions. These are TLS 1.0 [33],
TLS 1.1 [34] and TLS 1.2 [35]. Internally these versions share many
similarities, but also some notable differences. Although this chap-
ter is not strictly required to understand OPTLS; we aim to give the
necessary background information required to appreciate the ma-
jor changes TLS 1.3 introduces, and likewise the changes OPTLS
variants introduce to the protocol.

2.3 TLS 1.2

The TLS 1.2 handshake comes in two variants: first the full hand-
shake, which establishes a new session between server and client
and second the abbreviated handshake, which allows the parties to
resume an earlier session using stored key material.

2.3.1 Full handshake

The protocol flow corresponding to a full TLS 1.2 handshake is shown
in Figure 2.1. When using this handshake two full round trips are
needed before any application data can be send.

Going through the flow: the Client- and ServerHello share basic
protocol information, such as which ciphers each parties support.
The ServerKeyExchange is used only when a cipher supporting for-
ward secrecy is selected. If so it includes the servers ephemeral
share. Next the ServerHelloDone indicates to the client that no fur-
ther messages are to be expected from the server. If forward se-
crecy is negotiated then the client then sends a ClientKeyExchange
including its Diffie-Hellman parameters, otherwise it generates and
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Client Server

ClientHello
ServerHello

Certificate
ServerKeyExchange

ServerHelloDone
ClientKeyExchange

ChangeCipherSpec

ClientFinished
ChangeCipherSpec

[ ServerFinished
ApplicationData

Figure 2.1: Full TLS 1.2 Handshake

encrypts a pre-master secret under the public key included in the
servers certificate. The ChangeCipherSpec record indicates that from
now on encryption is used. The final message sent by the client is
then ClientFinished, which includes a MAC over the whole hand-
shake, allowing the server to verify that both parties saw the same
messages. The server ends the handshake by doing the same in its
ChangeCipherSpec and ServerFinished, completing the handshake.
After validating the ClientFinished the server can send data, the
client is only allowed to process this data or send data of its own
after validating the ServerFinished.

2.3.2 Abbreviated handshake

When server and client have an established session ticket they can
instead resume this session by including some information identify-
ing the session in the ClientHello. The server then indicates if the
session is valid by including some information in its ServerHello.
This leads to the protocol flow seen in figure 2.2. The client can now
include data after sending its ClientFinished, effectively removing
one of the round trips needed before application data can be send.
However to retain forward secrecy the session tickets should be up-
dated periodically.
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Client Server

ClientHello

ServerHello
ChangeCipherSpec

ServerFinished
ChangeCipherSpec

ClientFinished ]
ApplicationData

Figure 2.2: Abbreviated TLS 1.2 Handshake

2.4 TLS 1.3

The TLS 1.3 handshake also comes in the same two flavors as the
TLS 1.2 handshake. There is a major difference though, in the 1.3
abbreviated handshake the client is allowed to include early data in
the first flight. This data has some slightly different security proper-
ties on which we will expand in Section 2.4.3. Furthermore to lock
out passive eavesdroppers early, encryption starts as soon as possi-
ble: in the full handshake the certificate is already encrypted.

2.4.1 Full handshake

In TLS 1.3 the full handshake (Figure 2.3) has been changed to
include key material already in the ClientHello and ServerHello
records. These both include an ECDH public key. This introduces
mandatory forward secrecy. ChangeCipherSpec is only included for
backwards compatibility; it makes the handshake look similar enough
to the TLS 1.2 abbreviated handshake to pass through certain mid-
dleboxes [36]. The Certificate includes a signing key which is used
to sign the messages so far. This signature is then sent in the
CertificateVerify. This proofs the server possesses the private key
associated with the certificate to the client, and thus — when the
certificate is properly signed by some trusted CA — it authenticates
the server to the client. Both the ServerFinished and ClientFinished
then assure each party has seen the same messages and finish the
authentication process.
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ClientHello

ServerHello
ChangeCipherSpec

EncryptedExtensions

Certificate
CertificateVerify

ServerFinished
- ChangeCipherSpec

ClientFinished ]
ApplicationData

Figure 2.3: Full TLS 1.3 Handshake

2.4.2 Abbreviated handshake

The abbreviated handshake is shown in Figure 2.4. The client can
initiate an abbreviated handshake by including a Pre-Shared Key
(PSK) in the ClientHello. The server indicates in the ServerHello if it
accepts this PSK. If so the authentication is inherited from the earlier
session. An ephemeral Diffie-Hellman exchange is still performed to
achieve forward secrecy.

2.4.3 O-RTT

A major feature of TLS 1.3 is that a client is allowed to include early
data in the first flight to the server. To accomplish this, previously
established key material is used in an abbreviated handshake. This
is shown in Figure 2.5. To initiate early data the client includes
the early data extension in its ClientHello. If the server intends to
process this data it replies with its own early data extension in its
EncryptedExtensions. If the server does not include this extension
the client knows the server did not accept the early data. Since the
client does not yet have an ephemeral Diffie-Hellman share from the
server this data is only encrypted with keys derived from the PSK.
Thus the data is not forward secret. Furthermore since the client
does not have any server randomness yet the freshness of commu-
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nication is not guaranteed: the data could be a replay of previous
communication.
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Figure 2.4: Abbreviated TLS 1.3 Handshake
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Figure 2.5: Abbreviated TLS 1.3 Handshake with Early Data
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Chapter 3

OPTLS

The simplest way to describe OPTLS is “TLS without signatures”.
The original paper on OPTLS by Krawczyk and Wee [3] describes the
protocol as a full-fledged new version of TLS. Such a new version
would have offered considerable freedom to optimize TLS for the fu-
ture. This did not happen and TLS 1.3 draft-09 [37] was the last
revision of this style before ultimately a more conservative approach
was decided on for the new standard. In March 2018 an Internet
Draft by Rescorla and Sullivan [8] revived the basic idea as an ex-
tension to TLS 1.3. In this chapter we first give a high level overview
of OPTLS. We then describe the protocol flow and key derivation
schemes for both versions. Details on our implementation of both
into OpenSSL will follow in Chapter 4.

3.1 OPTLS

OPTLS is at its core a simple one-round-trip protocol between a
server and a client depicted in Figure 3.1. Both the client and server
provide unique session nonces: nc and ng. They also provide negotq
and negotg, which encompass protocol parameters such as version,
available cipher suites, etc. For the rest of the chapter the client has
an ephemeral Diffie-Hellman key ¢* while the server is assumed to
be in possession of a CA-signed Diffie-Hellman certificate certg. This
certificate binds the server’s identity to a Diffie-Hellman public key
g°, the fundamental difference s thus that the server’s identity is not
bound to a signing key. Instead the server can authenticate itself to
the client by providing a MAC over the handshake transcript with a
symmetric key derived from the shared secret ¢**. Furthermore we
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Client Server

nc,negotc,g”

ng,negotg,g¥,certg, MAC(Handshake-Transcript)

Figure 3.1: Core OPTLS flow

also assume the server has an ephemeral Diffie-Hellman key ¢¥, this
can be used to establish perfect forward secrecy: the session key is
ultimately derived from both ¢*¥ and ¢”°. This provides confidential-
ity of past communication case the server ever leaks its private key
S.

3.1.1 On the transition from signing certificates

We have seen that in TLS 1.2 and 1.3 the servers certificate always
contains a signature public key. Thus, unsurprisingly, historically
servers do not typically possess Diffie-Hellman certificates. In fact
Diffie-Hellman certificates are rarely supported by CAs. To accom-
modate the transition to Diffie-Hellman certificates the OPTLS pro-
tocol allowed the server to create a delegated credential. The idea
was that this would allow servers to use their traditional signing key
to validate a static Diffie-Hellman public key ¢°. Thus a server sends
its (signing) certificate to the client and uses the corresponding pri-
vate signing key to either sign: (i) ¢° with some included validity
period or (ii) ¢* with the client’s nonce nc. Both of these options are
intended to limit the validity of ¢°. Option (i) has the disadvantage of
allowing an attacker who somehow obtains the server’s private key
to create credentials which can be used to impersonate the server for
the validity duration. Thus the validity duration should be limited.
However unlike option (ii) this does not require online signatures,
which can be costly in terms of performance and reintroduce sig-
natures into the handshake. An advantage of option (ii) is that the
validity of ¢° is limited to one session.

3.1.2 O-RTT

As required by the TLS 1.3 working group, OPTLS allows the client to
include data in the first flight to the server if key material has been
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established during previous communication. To encrypt and au-
thenticate this data a key derived from ¢*¢ is used. However, like TLS
1.3, OPTLS does not include protection against replays of early data
at the protocol level. To protect against replays a server could keep
a state and reject duplicate messages or could require early data
messages to be idempotent, meaning they should not contain infor-
mation that might change state. For example, when TLS is used
for HTTPS this could mean accepting only GET requests without pa-
rameters. This is not entirely trivial to solve at the transport level
and furthermore the problem is not specific to OPTLS, but instead
to the protection of early data in general. For more details on how
the attack looks we refer to [38, Sec. 7.1.2].

3.1.3 Plausible deniability

Removing signatures from TLS according to the OPTLS proposal has
the advantage that this enhances privacy features of the protocol. By
eliminating signatures the server gains plausible deniability of the
client’s identity. Indeed the signature on the handshake transcript
in TLS 1.3 can be verified by anyone with the servers public key.
Thus the server irrevocably confirms to everyone that it has com-
municated with someone, an observer may be able to link this with
a ClientHello. If the observer knows who sent this ClientHello he
has proof of communication between two parties. In contrast, with
OPTLS the MAC can only be verified with the key obtained by the
key derived from ¢*¢, which is known only to the participants of a
handshake.

3.1.4 Key derivation

OPTLS uses a tree-like structure for key derivation based on the
standard construction of HKDF-Expand and -Extract [39]. The dia-
gram for key derivation is shown in Figure 3.2. Input to the respec-
tive HKDF functions is based on exactly which type of handshake is
performed. We study the three main modes.

1. Session resumption based on a pre-shared key (PSK) or re-
sumption secret.

2. Similar to the previous, with an ephemeral Diffie-Hellman key
exchange.

3. The “full handshake”: 1-RTT semi-static.
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Figure 3.2: OPTLS Key Derivation Tree

The input to the HKDF-Extract functions in the diagram are the
same order. We can that see on the left side of Figure 3.2 the
Ephemeral! Secret is used to generate a key which encrypts the rest
of the handshake. On the right side a Semi-Static secret is used to
derive keys for the MAC and the O-RTT data. Input to the HKDF-
Extract functions also includes a hash of the message transcript
seen so far. Notably: on the right side this does not yet include the
ServerHello, as the client has not seen this yet when sending early
data. Both sides of the tree then come together and are used to
generate the master secret, from which the keys are derived to en-
crypt application data. We will return to the exact implementation
in Chapter 4.

3.1.5 State machine

The main difference with the TLS 1.3 state machine is that in OPTLS
there is no need to send a CertificateVerify message [40]. Thus in
the implementation we will need to add support to go right from the
Certificate message to the ServerFinished. Unfortunately skipping

'Here ‘E’ stands for “Ephemeral and not for “Early”.
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Figure 3.3: Full OPTLS Handshake

messages like this will likely confuse some internet infrastructure,
and we will see that the Internet Draft retains the CertificateVerify
message. The message flow of a full handshake is shown in Fig-
ure 3.3. The rest of the state machine does not need to change.

3.2 Internet-Draft: TLS 1.3 Semi-Static KX

Now that we have an overview of OPTLS we will see how the adap-
tation into TLS 1.3 might look. Note that this Internet Draft is still
in an early stage — at the moment of writing TLS 1.3 is still in final
stages of standardization. Therefore perhaps interest in extensions
to TLS 1.3 may also be in an early stage. It is quite possible for the
Internet Draft to significantly change, nonetheless this appears to
be the main avenue to an OPTLS-based standard.

3.2.1 Negotiation

To negotiate the OPTLS-like extension to TLS 1.3 we advertise the
MAC as if it were a signature by adding several new valid “signa-
ture” algorithms. These will indicate that a MAC is used. If the
client supports these, then the client is is allowed to include one or
more of these signature algorithms in the signature_algorithms of
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the ClientHello. If the server selects one of these algorithms then it
will send a certificate containing a Diffie-Hellman share ¢°.

3.2.2 Cryptographic keys

The static secret ¢g*® is used in two places to derive keys. First the
MAC key for CertificateVerify is derived from ¢** by one HKDF-
Extract: HKDF-Extract(0, ¢*°). This is called the SS-Base-Key and
from this the actual key is derived using HKDF-Expand as in TLS
1.3, it seems likely the label (currently “finished”) will change dur-
ing development of the RFC, however this only requires a minimal
change in the implementation.

Second the static secret is mixed into the TLS 1.3 key derivation tree
in the last stage, where during the normal TLS 1.3 handshake only
zeroes are mixed in. The modification is shown in Figure 3.4, which
is heavily based on the relevant portions of the TLS 1.3 RFC section
7.1 and shows where ¢* is input in red.

3.2.3 Protocol flow

A major advantage of this approach is that there is no need to change
the state machine of TLS. This furthermore makes sure we retain
backwards compatibility to all previous versions of TLS, as is to be
expected of an extension of TLS 1.3.
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Chapter 4

Implementation

We implement the two styles of OPTLS, i.e, the original proposal
and the Internet Draft into 1ibssl of the ubiquitous OpenSSL! li-
brary. OpenSSL is not commonly known as an easy-to-modify piece
of software. In fact the man pages of s_client and s_server contain
the following warning in the BUGS section:

“Because this program has a lot of options and also be-
cause some of the techniques used are rather old, the C
source of s_client is rather hard to read and not a model
of how things should be done. A typical SSL client pro-
gram would be much simpler.”

Thus although this chapter will focus on our implementations, we
further hope to give a detailed enough overview of the inner workings
of OpenSSL that future work can build on our efforts.

4.1 Hacking on OpenSSL

First off, we recommend adding compilation flags to enable gdb to
access constants and structures defined in the source code. This
can be done by adding -ggdb3 -g3 to the CFLAGS in 10-main.conf.
This will definitely prove to be useful when stepping through the
code; do not forget to pass --debug to ./configure!

Here follows the global overview of relevant OpenSSL functional-
ity:

"http://www.openssl.org
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e The two programs we will modify are s_client and s_server.
Both of these have C files named after them. Their main func-
tions are s_client_main and s_server_main. These functions al-
locate memory for and, where necessary, initialize SSL/TLS
structures, parse the command line options and then connect
using the specified protocol or listen for a connection.

e All the defines for SSL/TLS structures are in ssl_locl.h with
typedefs for these structures in oss1_type.h. It can be challeng-
ing to figure out exactly why or where a certain field is in one
of these structures. Some important fields: on a valid session
resumption hit is set in the encapsulating SSL structure. This
structure also contains all the secrets. It contains a structure
SSL_METHOD which again holds a structure SSL3_ENC_METHOD; here
are stored important callback functions for cryptographic oper-
ations. For example the change cipher_state field, which is ini-
tialized with a function that changes the cipher state based on
the state of the connection. Another example is the tmp struc-
ture, which contains several connection specific parameters,
such as the selected certificate and the signature algorithms
supported by peer.

e The most interesting functions of the TLS state machine are
implemented in statem_clnt.c, statem_srv.c and statem_1lib.c.
In the first two files the state machine transitions are defined.
The functions are all named ossl_statem_*. Especially interest-
ing for the state transitions of TLS 1.3 are four functions, these
are:

— ossl_statem_clientl3_read_transition
— ossl_statem_clientl3_write_transition

for the client, and their analogues for the server. The records
are handled by functions such as tls_construct_client hello
or tls_process_server_hello for sending and receiving respec-
tively. statem_lib.c is similar; it provides functions for the
records that both client and server need to handle; for example
tls_process_finished. Lastly: statem.c mostly contains general
functionality for switching between reading and writing mode,
which is not so interesting for our purposes.

e Each extension has an initializer, client and server side parsers,
constructors and a finalizer. These functions can be found per
extension in the ext_defs array in extensions.c. The initial-
izers and finalizers are also implemented in this file. Parsers
and constructors for server and client are in extensions_clnt.c
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and extensions_srv.c. These functions read or write the actual
bytes to the packet structure.

e The encryption of TLS 1.3 is implemented in t1s13_enc.c. Here
functions such as t1s13_derive key — which derives the actual
cryptographic key from a secret — are located. Another impor-
tant function implemented here is t1s13_change cipher_state
which can perform several actions such as update the hash
transcript or derive secrets, based on the handshake state.
Note that the actual implementation of the ciphers and other
primitives is in libcrypto.

4.1.1 Implementing OPTLS

Here we describe our implementation based on TLS 1.3 draft-09 and
the OPTLS paper.

Negotiation

To support TLS 1.3 in many places OpenSSL uses the SSL_IS_TLS13
macro to influence control flow, this macro checks if the protocol
version is TLS 1.3 or bigger. Since we will negotiate a higher version
we will still hit all these statements, but we need to change the flow
in some places. Thus the first thing we need is our own SSL_IS_0PTLS
macro, which checks the relevant field of the SSL_CTX structure for
the version.

Since the protocol flow is still mostly identical to TLS 1.3 we first
look for all the places where SSL_IS_TLS13 is used. We add checks
for these code paths to also be taken (or not) by adding SSL_IS 0PTLS
control flow statements.

To then include the actual bytes for the new version of TLS we follow
the same procedure as TLS 1.3, we set the ClientHello version to 1.2
and rely on the supported version extension to indicate to a server
that we support OPTLS. For this we need to modify one of the exten-
sion construction functions, in this case t1s_construct_client hello.

We further change the client state machine to not accept client cer-
tificate requests if we negotiated OPTLS. After a Certificate, the
next message the client receives should be Finished, this is also
changed in statem clnt.c.
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The server state machine is modified too, first off the server never
sends a certificate request so we remove this state machine transi-
tion if we negotiated OPTLS. Second after sending the Certificate
the next state is sending the Finished.

Cryptographic Operations

To add the cryptographic operations we require we first need to add
support for Elliptic Curve Diffie-Hellman certificates so that we can
obtain the keys contained therein. Adding new certificates can be
done quite easily since OpenSSL is able to parse the DH certificates
without any issues; they are just not used for TLS. We add support
by defining a new constant for the certificate type in ssl_locl.h. In-
ternally OpenSSL keeps an array of these certificates, the constant
is then the index where this certificate type is stored; meaning that
the order matters. We place our new certificates at the end and also
add a constant which indicates where DH keys start.

In tls_choose sigalg the server? chooses which certificate to use
based on the available certificates and the signature algorithms ex-
tension. When using OPTLS we change this to just check for the
presence of a DH certificate. It is an error to negotiate OPTLS with-
out an available DH certificate.

Recall that the server has the static public key ¢° and the client
the ephemeral public key ¢*. The new shared secret g** needs to
be derived for both server and client. For the server this happens
in ssl derive in s3_1lib.c. If this function is called and we are not
resuming a session then we generate ¢*® and derive the static secret
with the private part of the DH certificate and the clients ephemeral
public key. The ephemeral secret is also derived in ssl derive for
both client and server. Both secrets are saved as part of the con-
text.

The client can construct the static secret only after parsing the cer-
tificate. This happens in tls process_server certificate. After ex-
tracting the servers public key the shared secret is derived, it can
then immediately be used to derive the static secret.

2And the client, but we do not consider client certificates
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Session resumption

We support two ways to resume a session. The main difference is
the value that is used to derive the ephemeral secret. This is de-
cided when the key_share extension is processed®. For PSK-mode
the client has determined in the finalizer of the key_share extension
that it has not actually sent the extension. Thus, if we actually are
resuming, we reach the point in the finalizer (final key_share) where
we can HKDF-Extract the ephemeral secret with 0 and the PSK as
input. On the servers side it determines during key_share construc-
tion in tls_construct_stoc_key_share that it did not parse a key_share
from the client, unlike the client the server then immediately derives
the same secret.

Alternatively we have PSK-DHE mode, for both server and client the
ephemeral exchange is done in ssl derive. It requires no further
changes to the control flow from TLS 1.3.

We derive the master secret from both the static and ephemeral
secret. To achieve this we introduce optls_generate master_secret.
This function expands the ephemeral secret before its fed into HKDF-
extract with the static secret. This enables us to construct the “tree-
like” structure of OPTLS key derivation. This is done in optls_enc.c.

Lastly we add support for the -optls and -no_optls command line op-
tions, to en- or disable OPTLS. They can be used with both s_client
and s_server and influence which TLS version is included in the
supported_versions extension in the expected way.

4.1.2 Implementing the Internet Draft

Since this incarnation of OPTLS is specifically designed to be inte-
grated into TLS 1.3 it should not come as a surprise that this leads to
a cleaner implementation. This is an implementation of the Internet
Draft.

Negotiation

For negotiation we need to add several signature algorithms. These
need to be added to the sigalg lookup_tbl in t1_1ib.c. The lookup
table includes a field for the type of certificate that is required for

3The initializer and finalizer for an extension are still called when the extension
is not present
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each algorithm. Here we enter the new values of our Diffie-Hellman
certificates. The client will offer these in its supported sigalgs ex-
tension. When the server looks up the certificate needed for the new
sigalg values it correctly selects one the DH certificates or tries to
fall back to another sigalg if these are unavailable. Note that the
term sigalg is overloaded here: usually it refers to which signature
algorithm the server uses, but here it instead indicates that there
will not be any signature.

Cryptographic Operations

If we have selected a Diffie-Hellman certificate then we need to mod-
ify the authentication mechanism. We can use this selection as a
criteria for control flow as these certificates have known indices; we
check if the index is larger than SSL_PKEY DH_CERT_START.

For the server we derive ¢ again in ssl_derive. For the client how-
ever we wait until we process the CertificateVerify, because from
the client’s perspective there we first deviate from TLS 1.3; we do not
need ¢”° anywhere earlier and in this location we can cleanly branch
between the two forms of authentication.

Starting with the server: we change tls_construct_cert_verify to
compute a MAC over the handshake so far if a DH certificate was se-
lected. First we generate the SS-Base-Key from ¢**, then we compute
the MAC over the hash of the handshake transcript.

For the client we do something similar: in tls_process_cert verify
we again branch between authentication styles based on if a DH
certificate was selected or not. As mentioned before; the client then
derives ¢”° and uses it to compute the SS-Base-Key, after which it
can verify the first MAC.

The code for the second MAC in the ServerFinished does not need
to change. The only thing that further needs to be modified is the
input for the HKDF-Extract of the Master Secret. This is done by
checking if a DH certificate was negotiated in t1s13_generate_secret
and selecting the input based on that.
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Chapter 5

Benchmarks

We benchmark the performance of our implementations using the
timing tool provided by OpenSSL: s_time. This tool tries to estab-
lish as many connections as possible in a given time frame and re-
ports back how many connections it was able to establish per sec-
ond. However some challenges need to be overcome before this tool
is fit for all our purposes.

First of we add support for session resumption to s_time. For these
benchmarks we hard-code a PSK which can be used to test the per-
formance of PSK-DHE and PSK modes.

Then secondly s_time lacks the -curves option which controls the
elliptic curve selected for the client ephemeral Diffie-Hellman key.
The easiest way to solve this, is to change the default curve, we
change the order in t1 1lib.c: where they are in order in the ar-
ray eccurves_default. This allows us to also evaluate performance
of X448 and the NIST curves.

Thirdly there is no option for s_client or s_server to disable PSK_ DHE
mode. The way we get OpenSSL to negotiate PSK mode without
ephemeral DH is to remove the TLSEXT_KEX MODE _FLAG_KE DHE option.
We need to disable this constant in t1s_construct_ctos_psk_kex modes.
If the server is then also configured to allow PSK only mode we can
measure performance.

We disable certificate chain verification since there is no difference
between OPTLS or TLS 1.3. This would only introduce a constant
overhead in our measurements.
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5.1 Results

We start by measuring the total amount of connections possible with
both server and client running locally. This gives a first impression
of the performance gains of OPTLS. However for TLS it is often more
significant how the server performs since this side needs to handle
significantly more connections on one machine. Therefor we con-
tinue this section by continuing to look closer into the performance
of client and server separately when using OPTLS and compare it
against TLS 1.3.

5.1.1 Connections per second

e We set a baseline by measuring TLS 1.3 performance. The main
thing we are interested in is how the performance differs when
performing a full handshake using a signing key versus a Diffie-
Hellman key. To that end we measure here using two different
signing keys. First an RSA key, which we expect to be slower
than the second key, which is an Ed25519 key. We also mea-
sure performance when using PSK-DHE and PSK only. The
ephemeral key exchange algorithm used is X25519.

e Next we measure OPTLS. We look at the full handshake using
X25519 for Diffie-Hellman. We also again look at PSK-DHE and
PSK.

e For the Internet Draft we implement all the suggested Diffie-
Hellman algorithms, that is: X25519, X448, P-256, P-384 and
P-521. We measure the performance of all of these. Since there
is no change for PSK-DHE and PSK from TLS 1.3 we do not
measure these again.

We perform 50 measurements of 30 seconds each. All measure-
ments are performed on an Intel Haswell i7-4770K CPU 3.50GHz
processor. Our implementations are both based on OpenSSL version
1.1.1-prel0-dev, commit 7d38ca3f8b. All measurements are on a
single core with Turbo Boost and hyper-threading disabled. We con-
figure the used cipher to be TLS_CHACHA20_POLY1305_SHA256 in every
case and all certificates have an Ed25519 signature. We use gcc
version 6.3.0 and the full configure command is:

./config enable-ssl-trace enable-ecnistp_64_gcc_128 -DMYBENCH
The results of our measurements are shown in Figure 5.1.
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Figure 5.1: Performance Measurements
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5.1.2 Server performance

We measure server performance by counting the total amount of
clock cycles spent inside several of the cryptographic primitives.
This is to reduce the noise that may be introduced by waiting for data
to arrive. Also considering that we are interested in post-quantum
research we note that we measure some parts which are identical
between TLS and OPTLS, but for which different algorithms must
be chosen to achieve post-quantum security in the future.

More specifically we measure the cycles used by the server to:

e Generate the ephemeral key share included in the ServerHello.

Derive the early secret by computing g*V.

In TLS 1.3: Compute the signature over the handshake tran-
script.

In OPTLS and the Internet Draft: Derive the static secret g**.

For the Internet Draft: compute the first MAC, which is in-
cluded in the CertificateVerify.

In practice this means that we count the total cycles used by the
functions ssl_generate pkey, ssl_derive, tls_construct_cert_verify.

To obtain accurate measurements we use a small snippet of inline
assembly which is included when we configure with -DMYBENCH. We
initialize the cycle counter to 0 and use a subtraction and addition
pattern to obtain accurate cycle counts in between the measure-
ments.

The average number of clock cycles used by the server across 1000
connections is shown in Table 5.1 for TLS 1.3, here signatures are
used for authentication, the last column shows bytes written and
read by the server for the full handshake.

In Table 5.2 we show the performance of the handshake when us-
ing our implementation of the internet draft. Of course here we are
required to match the curves used for the ephemeral key exchange
and the sigalg.

And finally, in Table 5.3, we give the benchmark of OPTLS.
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Table 5.1: TLS 1.3 Server Benchmarks

Ephemeral Sigalg Avg. Cycles w/r
X25519 ed25519 451438 283/791
P-256 ed25519 495493 283/791
X25519 ecdsa_secp256rl_sha256 469525 316/840
P-256 ecdsa_secp256rl_sha256 490891 316/840
X25519 ecdsa_secp384r1_sha384 3814498 283/733
P-256 ecdsa_secp384r1_sha384 3840982 283/733
X25519 ecdsa_secpb521rl_shab12 1453955 316/782
P-256 ecdsa_secpb21rl_shab12 1483818 316/782
X25519 rsa_pss_rsae_sha256 (2048) 2467698 283/792
P-256 rsa_pss_rsae_sha256 (2048) 2500159 283/792
X25519 rsa_pss._rsae_sha256 (4096) 22636946 316/842
P-256 rsa_pss_rsae_sha256 (4096) 22654267 316/842
Table 5.2: Internet Draft Server Benchmarks

Ephemeral Sigalg Avg. Cycles w/r

X25519 sig x25519 522123 269/645

X448 sig x448 3616417 293/710

P-256 sig p256 639145 302/742

P-384 sig_ p384 9938938 334/803

P-521 sig p521 3535897 370/877

Table 5.3: OPTLS Server Benchmarks

Curve Avg. Cycles w/r

X25519 486036
X448 3575601
P-256 595333
P-384 9839238
P-521 3502475

285/583
309/648
318/680
350/741
386/815
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5.1.3 Client performance

We are also interested in the client’s performance. We measure how
many cycles the client uses to:

e Generate its ephemeral key share.

e Like the server: compute the early secret ¢*¥ and for the OPTLS
variants also g**.

e Verify the MAC in the CertificateVerify and in TLS 1.3 also
the signature.

We use the same method as for the server, the functions that we
benchmark are the analogues of the ones on the server side, namely:
ssl_generate_pkey_group, ssl_derive, tls_process_cert_verify. For
OPTLS we also benchmark t1ls_process_server_certificate partially:
for the client ¢*¢ is derived here.

The results of the baseline benchmark for TLS 1.3 are shown in Ta-
ble 5.4.

Table 5.4: TLS 1.3 Client Benchmarks

Ephemeral Sigalg Avg. Cycles w/r

X25519 ed25519 752235 283/791
P-256 ed25519 803925 283/791
X25519 ecdsa_secp256rl_sha256 711670 316/840
P-256 ecdsa_secp256rl1_sha256 739876 316/840
X25519 ecdsa_secp384r1_sha384 3093090 283/733
P-256 ecdsa_secp384r1_sha384 3137300 283/733
X25519 ecdsa_secpb521rl_shab12 2598950 316/782
P-256 ecdsa_secpb21rl_shab12 2636928 316/782
X25519 rsa_pss_rsae_sha256 (2048) 520727 283/792
P-256 rsa_pss_rsae_sha256 (2048) 565813 283/792
X25519 rsa_pss._rsae_sha256 (4096) 796483 316/842
P-256 rsa_pss_rsae_sha256 (4096) 840755 316/842

And for the client Table 5.5 and Table 5.6 show the results for the
two respective variants of OPTLS.

5.2 Discussion

Analyzing the results we see that Diffie-Hellman based authentica-
tion is faster than RSA signature based authentication as expected
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Table 5.5: Internet Draft Client Benchmarks

Ephemeral Sigalg Avg. Cycles w/r

X25519 sig x25519 554960 269/645
X448 sig x448 3651390 293/710
P-256 sig p256 693379 302/742
P-384 sig p384 9970935 334/803
P-521 sig p521 3580660 370/877

Table 5.6: OPTLS Client Benchmarks
Curve Avg. Cycles w/r

X25519 501263 285/583
X448 3601070 309/648
P-256 638396 318/680
P-384 9954724 350/741
P-521 3543938 386/815

when looking at the performance of client and server combined. In-
terestingly enough we even see a significant increase in the amount
of connections established using OPTLS when compared to the faster
Ed25519 signature algorithm.

We measured the cycle counts for an Ed25519 signature and for an
X25519 key derivation; indeed as expected Ed25519 requires less
cycles than X25519. The former needs about 125000, while the
latter needs up to 167000. This is in line with what is expected
theoretically. In Ed25519 the costly operation is a fixed base point
multiplication, for which precomputation tables can be built. This is
not possible for X25519 since here the point is variable; it is supplied
by the connecting client.

Our OPTLS implementation requires less cycles on average for cryp-
tographic computations than our implementation of the Internet
Draft, this is expected; the former does not send a CertificateVerify,
while the latter does. The performance difference can be explained
mainly by the time it takes to construct the extra CertificateVerify
record and compute the MAC included in it.

On the server side the Internet Draft needs about 40000 cycles more
than OPTLS. We have looked closer at the benchmarked functions
to explain where the difference comes from, it can be explained as
follows:

e The Internet Draft requires 11000 cycles more for ssl_derive.
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This is because an extra HKDF-Expand is required when com-
pared to OPTLS. For OPTLS on both sides of the tree we have an
input of zeroes, so no pre-extract derive secret is required. In
the Internet Draft this is required for the handshake secret,
so there is one additional HKDF-Expand when compared to
OPTLS.

The aforementioned construction of the CertificateVerify re-
quires on average about 28000 cycles. These cycles are almost
exclusively spend on computing the SS-Base-Key and the MAC
as was shown in Figure 3.4.

On the client side there is a difference of about 50000 in OPTLS’
favor. The difference can be explained as follows:

e In ssl derive for the OPTLS we can not generate the static se-

cret yet since we do not have the server’s public key yet. How-
ever in the Internet Draft the client can generate up to the
handshake secret since ¢*® is not yet required. This means that
ssl_derive is about 22000 cycles faster for OPTLS.

Lastly for OPTLS we derive ¢** and generate the static secret;
this happens in tls_process_server_certificate and requires
about 176000 cycles, of which 168000 are spent deriving ¢g**.
For the Internet Draft more cycles are required: the total for
tls_process_cert_verify comes to about 204000, again 16800
of those are spent deriving ¢** and like the client it takes about
28000 cycles to compute the SS-Base-Key and MAC.

Constructing the CertificateVerify takes 28000 cycles. We thought
this was high for only symmetric operations, most of which should
be hashing. We looked further into where exactly these cycles are
being spent, we identified four major operations:

1.
2.
3.

4.

Deriving the SS-Base-Key takes 7000 cycles.
Then deriving the finishedkey also takes 7000 cycles.

Creating the actual MAC key from the finishedkey, i.e calling
EVP_PKEY new raw_private key, takes about 2200 cycles.

Finally computing the MAC takes 11000 cycles.

We expected most of these cycles to be spent computing SHA256. To
verify this we removed the inner compression function of SHA256
and reran our benchmarks. With this part of the algorithm removed
the whole construction still takes around 21000 cycles; 5800 for the
SS-Base-Key, 5000 for the finishedkey, still 2200 for the actual MAC
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key and 7800 to compute the MAC. Apparently there is quite some
overhead.

A final interesting observation is the poor performance of X448, and
the NIST curves P-384 and P-521. We speculate that the imple-
mentation of these algorithms could be further optimized, interest-
ingly enough P-521 does have some optimizations which P-384 does
not, making it faster. Thus — although every certificate type offers
the advantages of OPTLS described in Chapter 3 — we recommend
X25519 for optimal performance of OPTLS.
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Chapter 6

A look into the future

So far we have delivered an implementation of OPTLS and explored
its performance. However, the main cryptographic primitive we have
used is ECDH. This means neither variant of OPTLS offers protection
against quantum computers. Initially we set out to integrate arbi-
trary KEMs into TLS to provide this post-quantum security, however
further research is needed to turn this into reality. In this chapter
we discuss the current state of post-quantum TLS and state our
contribution.

6.1 Post-quantum TLS

In the future the world will need to switch its cryptographic prim-
itives to be resistant to attacks to a quantum computer, but what
does this mean? We have seen that a protocol such as TLS uses
several primitives to establish the secure channel over which the
application data is sent. The things that need to be replaced are the
cryptographic algorithms in the bottom layer. We have for instance
used the Diffie-Hellman key exchange to establish a shared secret.
For authentication we used digital signatures, which are assumed to
be distributed by some central authority establishing identities. To
derive cryptographic keys we have used a hash-based scheme using
HMACs. Lastly to protect the actual contents of the messages we
use symmetric cryptography. In many cases we need to reevaluate
the choice of algorithm.
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6.1.1 Security of primitives

An attacker with access to a large quantum computer can break the
security offered by some of the schemes mentioned in Section 6.1.
For one solving the discrete logarithm can be done in polynomial
time on such a machine; the solution can be found using Shor’s algo-
rithm [41]. With DH being so fundamental in OPTLS, this seems like
a major issue in making OPTLS quantum resistant. For digital sig-
natures there are several post-quantum replacements available [42,
43, 44, 45, 46]; hybrid solutions have also been considered [47].
However post-quantum signatures have different (i.e usually worse)
performance characteristics [48]. Moreover, key exchanges today
can be recorded and there can be a real risk if these are broken
in twenty years. In contrast, signatures are usually immediately
verified to authenticate, even if the private signing key would be re-
covered much later using a quantum computer it may have expired

anyway.

In the case of hashing and symmetric cryptography the situation ap-
pears to be not as bad. For symmetric ciphers an exhaustive search
of the key space can be accomplished in the square root of the size
of the space using Grover’s algorithm [49]. This means that dou-
bling the key size — moving from AES-128 to AES-256 — should
be enough to retain the same security level. But note that recently
some doubt has been cast on the security of certain block cipher
constructions against quantum attackers [50, 51].

6.1.2 Efforts so far

Since the trust in security of algorithms is only established after re-
sisting attacks for a long time it makes sense to move towards post-
quantum TLS using a hybrid key exchange using both classic and
post-quantum algorithms. This remains secure as long as one of the
selected algorithms is not broken. This has several advantages: of-
fering post-quantum security early, maintaining compatibility with
standards and reducing risk from the uncertainty of post-quantum
algorithms.

Such an experiment was performed by Google for TLS 1.2 using the
NewHope [52] KEM. For this they combined NewHope with X25519.
No unexpected issues were found enabling this key exchange, al-
though the larger message sizes did increase the latency [53].

Another significant contribution to post-quantum TLS is OpenQuan-
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tumSalfe [54] library. This library integrates into OpenSSL to provide
post-quantum primitives for use with TLS 1.2. This allows one to
test and benchmark quantum resistant algorithms. However this
is for TLS 1.2 and our focus was on modifying TLS 1.3 to make it
more amendable towards using a KEM, thus we did not use this
library:.

6.1.3 Post-quantum Signatures

We do not exhaustively treat post-quantum signature schemes, this
section is intended as a quick overview.

Note that in TLS 1.3 there are two different “types” of signatures to be
considered, the first is the signature provided by the CA. This signa-
ture is on the long-term public key of a server (the certificate). This is
the only signature that is still required in OPTLS. Since the signature
needs to be sent by the server for every handshake a proper candi-
date should first most have small signature sizes and secondly fast
verification times since the client, which may have limited resources,
needs to verify every time. Less important is the signing time since
this is done only once by a CA. We may even cautiously consider
stateful signature schemes; perhaps a CA could be assumed to keep
state. Even today there already are standardized algorithms which
could accomplish this, see XMSS [42].

More difficult — hence our interest in OPTLS — is an online signa-
ture that a server provides on every handshake. This additionally
requires fast signing time and stateful schemes become too unreli-
able to be practical.

We roughly divide the available (non-stateful) schemes into cate-
gories, numbers are from [48], we do not care (within reason) much
for key generation time:

Hash-based Such as Gravity-SPHINCS and SPHINCS™, these come
with public keys of no more than 64 bytes. However signa-
ture size is somewhat large, starting at 8 kB and becoming
larger as a trade-of for signing speed and security level. Veri-
fication is also somewhat slow with 7 million cycles minimum
for SPINCS™. Note that these schemes come with a maximum
amount of signatures for one private key, although this amount
is high enough that in general it will not be reached.

Lattice-based For example CRYSTALS-DILITHIUM and qTesla. Pub-
lic keys here start at 1 kB, and signatures at 2 kB. However
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signing and verification is very fast. This appears to be the
most balanced approach.

Multivariate Contenders are MQDSS, LUOV and others. MQDSS
has small public and secret keys, respectively 64 and 24 bytes.
With 34 kB the size of signatures is rather large though. LUOV
has significantly larger public keys (more than 15 kB) but en-
joys much smaller signatures (around 3 kB). However these are
also slow.

Code-based We are aware of RaCoSS, pgsigRM and RankSign. The
last one was already withdrawn from the NIST competition and
the other two appear to be under heavy attack.

Isogeny-based Signature sizes are over 100 kB, making this un-
practical, no submissions to NIST are based on this.

6.2 Using KEMs

In the literature on OPTLS we found some indications that a stan-
dard Diffie-Hellman key exchange can be replaced with a KEM [55,
56]. However we stress that a Diffie-Hellman key exchange can in
general not be replaced by a KEM based AKE. Even for our objective
of obtaining a UAKE there are certain conditions. In this section
we will look into what we can build using a KEM as our main cryp-
tographic primitive, while limiting ourselves to a maximum of one
round trip; keeping in mind that this was one of the requirements
of TLS 1.3.

6.2.1 Variant 1

The first variant we consider is illustrated in Figure 6.1. In this
scheme the client initiates the connection and sends it’s public key
PK¢, signed by a CA over to the server. The server now knows that
C might be trying to authenticate, thus it uses PK¢ to generate a
ciphertext ctx,, which encapsulates a secret K;. Note that the server
is not sure yet if it is really talking to C', but we assume it wants to
authenticate regardless and thus includes PKg, also signed by a CA.
The client receives PKg, and ctk,; it can recover K; using its private
key, but still has no guarantee that it is actually talking to S. Thus
is generates a ciphertext ctx, and sends that together with a MAC
over the handshake transcript, for which both keys are used.
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Client Server

PKc
cti,, PKg
cti,, MACK, e (Handshake-Transcript)

Figure 6.1: KEM authentication of client
Client Server

PKc, ctk,
ctr,, M ACk,(Handshake-Transcript)
MACK, || K2 (Handshake-Transcript)

Figure 6.2: Possible mutual KEM authentication, assuming pre-
distributed server public keys

Now the server can verify everything went correctly using its pri-
vate key. However the server was not authenticated to the client
yet. Thus the client is not allowed to include application data in the
second round trip; failing the requirements of TLS 1.3. The client is
authenticated to the server though, which might be useful, although
there is another incompatibility making this unfit for TLS 1.3; the
certificates are not encrypted thus the endpoints’ identities are not
protected [57].

6.2.2 Variant 2

To fix the scheme from Section 6.2.1 we assume the client already
knows the server’s public key. We then obtain the authentication
protocol depicted in Figure 6.2.

The protocol looks similar, the major difference being in the first
message sent, it now includes a ciphertext encapsulating the key
K>, which is obtained using the server’s public key. Now only the
legitimate server is able to prove possession of the private key, thus
authenticating it to the client. The server can also optionally issue a
challenge to the client to authenticate. When the client now validates
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the MAC, it knows the server must possess the private key, and by
the CA’s signature thus knows its identity. Therefore application
data can be included in the next round trip.

Unfortunately neither of the two variants accomplish our objective
of a 1-RTT (server) UAKE in the setting of TLS 1.3. The first variant
ends the key exchange with an authenticated client, but without an
authenticated server. This is a major issue given that we are more
interested in server authentication. The second variant requires pre-
distributed public keys. It is not clear how this would be achieved,
in fact if it could be achieved then data could even be sent in the
first flight, although with no forward secrecy or guarantee of liveli-
ness.

The issue we have identified is thus as follows:

e To achieve an OPTLS based (server) UAKE the server needs to
actually use its private key in a cryptographic operation for the
first response. If only the public key is used then the server
does not authenticate to the client. In OPTLS this is achieved
by creating the Diffie-Hellman shared secret ¢** on both sides.
The client knows when it receives ¢g° that to obtain the same
shared secret the server must have s. In contrast for the KEM
based authentication proving possession of the secret key re-
quires interaction; the server must decapsulate the provided ci-
phertext to authenticate.

Thus we stress that an interactive key exchange primitive can not
be used in OPTLS as specified in the original proposal. The Diffie-
Hellman key exchange can in this protocol only be replaced by an-
other NIKE.

6.3 The way forward

We have shown that it is not possible to use an interactive key ex-
change primitive to authenticate a server in a 1-RTT protocol initi-
ated by the client. In this section we list some possible alternatives,
unfortunately given the limitations only the first one makes use of
KEMs.
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TLS 1.2 style

The first option, which retains KEMs is to instead use a TLS 1.2
style handshake protocol. This would look very much like Figure 6.1,
except that the client would send its certificate optionally only in the
second message. This is what libogs already provides, but has the
disadvantage of more latency because of the 2-RTT required before
the handshake is complete, we feel for such a major internet protocol
a 1-RTT key exchange is worth striving for.

TLS 1.3 style

To do a TLS 1.3 style handshake with post-quantum algorithms we
need a replacement for the ephemeral Diffie-Hellman key exchange
and a signature algorithm. Ephemeral (but not static [58]) Diffie-
Hellman keys could be replaced by Supersingular Isogeny Diffie-
Hellman (SIDH) [59], which allows for public keys of 330 bytes [60],
at least comparable to ECDH. The amount of clock cycles required
for this key exchange would unfortunately be orders of magnitude
larger than for current ECDH. This can then be used together with a
post-quantum signature scheme to obtain an authentication scheme
similar to SIGMA [61, 62].

OPTLS style

The final approach we discuss would be to build an algorithm with
security properties equivalent to Diffie-Hellman in a post-quantum
setting. As mentioned this requires a post-quantum NIKE [29]. Cur-
rently there are no standardized candidates, although research into
these algorithms is ongoing. We are aware of one SIDH based algo-
rithm [63], which is unpractical, and one recent experimental candi-
date: CSIDH [64], based on the class group action on supersingular
curves.

If CSIDH or a similar (NIKE) algorithm is “found secure” and stan-
dardized we expect no problems using it for a variant of OPTLS. The
Internet Draft would be a good candidate as new algorithms can
easily be added through use of the sig_algs extension.
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Chapter 7

Conclusion

In this thesis we have described some of the inner working of OpenSSL
to hopefully help with future implementations and we built on this
ourselves to provide an implementation of two different styles of
OPTLS. We then benchmarked these and discussed some interest-
ing aspects regarding the performance of our implementations and
we provided numbers which allow a practical comparison between
the two styles and TLS 1.3. We also contribute a reminder that a
KEM can not replace a NIKE in general while discussing possible
directions for post-quantum TLS.

7.1 A note on security proofs

While OPTLS comes with a security proof and TLS 1.3 has been
extensively scrutinized by the cryptographic community [65], the
Internet Draft has not (yet) received similar attention. This is not
unexpected as it is in an early stage. However caution is advised
using this protocol in the state it is in now. It would be interesting
to see if the security proof of OPTLS can be adapted for this Internet
Draft.

7.2 Future work

Apart from the aforementioned security proof some interesting prob-
lems remain.
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e Iterating on the Internet Draft we implemented will be interest-
ing, we provided an implementation of the -00 version, but we
did not look to improve it. Speed optimizations may be possible
by looking more in depth at what security properties the MAC
key for the CertificateVerify key exactly needs to provide.

¢ Integrating KEMs in some other way, since the NIST not-a-
competition will eventually provide us with a standardized quan-
tum resistant KEM it would be very interesting if we can some-
how further optimize the 2-RTT TLS 1.2 style protocol.

e Optimizing post-quantum schemes, this may be obvious, but
any speed gains or size reductions in the available post-quantum
algorithms will directly translate to performance improvements.
If these algorithms are used in the TLS handshake protocol it
will also directly influence which handshake variant is optimal.

e Research into a post-quantum NIKE, we already stated the only
option at the moment is the experimental CSIDH. Either estab-
lishing confidence in this algorithm or coming up with a new
NIKE is a requirement for post-quantum OPTLS.

7.3 Final words

We have shown for two variants of OPTLS that they can be practically
implemented into OpenSSL. We have delivered two implementations
of variants of OPTLS integrated in OpenSSL.

However we have also seen that more research is required before
a post-quantum version of TLS can be standardized. While a post-
quantum NIKE would solve our problems with building post-quantum
OPTLS it is not immediately obvious if such an algorithm will be
available in the future. Looking into non-obvious ways to integrate
KEMs may be more successful short term.
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Appendix A

Protocol traces OPTLS

Using default temp DH parameters
ACCEPT [::]:4433
Received Record
Header:
Version = TLS 1.0 (0x301)
Content Type = Handshake (22)
Length = 224
ClientHello, Length=220
client_version=0x303 (TLS 1.2)
Random:
gmt_unix_time=0xC3771CC3
random_bytes (len=28):
AEAFEFD17D00BB062DC45BE56C68D5FC5FBD96D1BADEC20AB094C862
session_id (len=32): 452
E4BA623C57B09A2F1C2DCAA82C33FEAOBD188C63FC48881E2311B30F5DB20

cipher_suites (len=4)
{0x13, 0x03} TLS_CHACHA20_POLY1305_SHA256
{0x00, OxFF} TLS_EMPTY_RENEGOTIATION_INFO_SCSV
compression_methods (len=1)
No Compression (0x00)
extensions, length = 143
extension_type=server_name (0), length=14
0000 - 00 Oc 00 00 09 6c 6f 63-61 6¢c 68 6f 73 74
..... localhost
extension_type=ec_point_formats (11), length=4
uncompressed (0)
ansiX962_compressed_prime (1)
ansiX962_compressed_char2 (2)
extension_type=supported_groups (10), length=12
ecdh_x25519 (29)
secp256r1 (P-256) (23)
ecdh_x448 (30)
secp521r1l (P-521) (25)
secp384r1l (P-384) (24)
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extension_type=session_ticket (35), length=0
extension_type=encrypt_then_mac (22), length=0
extension_type=extended_master_secret (23), length=0
extension_type=signature_algorithms (13), length=30

ecdsa_secp256r1l_sha256 (0x0403)

ecdsa_secp384r1_sha384 (0x0503)

ecdsa_secpb521irl_shab512 (0x0603)

ed25519 (0x0807)

ed448 (0x0808)

rsa_pss_pss_sha256 (0x0809)

rsa_pss_pss_sha384 (0x080a)

rsa_pss_pss_shab12 (0x080b)

rsa_pss_rsae_sha256 (0x0804)

rsa_pss_rsae_sha384 (0x0805)

rsa_pss_rsae_shab512 (0x0806)

rsa_pkcsl_sha256 (0x0401)

rsa_pkcsl_sha384 (0x0501)

rsa_pkcsil_shab12 (0x0601)
extension_type=supported_versions (43), length=3

OPTLS (773)
extension_type=psk_key_exchange_modes (45), length=2

psk_dhe_ke (1)
extension_type=key_share(51), length=38

NamedGroup: ecdh_x25519 (29)
key_exchange: (len=32): 9
BBD78EE56D101EEAF863EB928D4EA6851FBO93A4ESFFD58FE28A6E82D41D267B

Sent Record
Header:
Version = TLS 1.2 (0x303)
Content Type = Handshake (22)
Length = 122
ServerHello, Length=118
server_version=0x303 (TLS 1.2)
Random:
gmt_unix_time=0xA4E611BE
random_bytes (len=28): 48
A6190CAC8BAB58645BB56145CEDS89EO32F3EFE0444A0CB4B712A8B
session_id (len=32): 452
E4BA623C57B09A2F1C2DCAA82C33FEA0OBD188C63FC48881E2311B30F5DB20

cipher_suite {0x13, 0x03} TLS_CHACHA20_POLY1305_SHA256
compression_method: No Compression (0x00)
extensions, length = 46
extension_type=supported_versions (43), length=2
OPTLS (773)
extension_type=key_share(51), length=36
NamedGroup: ecdh_x25519 (29)
key_exchange: (len=32): 463
C26126CA9F99D9BC43DC3ES502DB7387FA3046C6A9EBASA015DDC1A33C2632

Sent Record
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Header:
Version = TLS 1.2 (0x303)
Content Type = ChangeCipherSpec (20)
Length = 1
change_cipher_spec (1)

Sent Record
Header:
Version = TLS 1.2 (0x303)
Content Type = ApplicationData (23)
Length = 23
Inner Content Type = Handshake (22)
EncryptedExtensions, Length=2
extensions, length = 0

Sent Record
Header:
Version = TLS 1.2 (0x303)
Content Type = ApplicationData (23)
Length = 359
Inner Content Type = Handshake (22)
Certificate, Length=338
context (len=0):
certificate_list, length=334
ASN.1Cert, length=329

Certificate:
Data:
Version: 1 (0x0)
Serial Number:
f5:d1:34:cd:4c:4£f:76:7f
Signature Algorithm: ED25519
Issuer: C = NL, ST = Some-State, L = Nijmegen, 0 = RU,
0U = ICIS
Validity
Not Before: Feb 24 22:09:10 2018 GMT
Not After : Mar 26 22:09:10 2018 GMT
Subject: C = AU, ST = Some-State, 0 = Internet Widgits
Pty Ltd
Subject Public Key Info:
Public Key Algorithm: X25519
X25519 Public-Key:
pub:
Te:44:aa:5f:ce:67:c7:71:27:a7:b6:66:98:55:73:
8c:72:ea:4d:f4:a7:23:0b:ab:9e:92:80:32:bb:d9:
91:65
Signature Algorithm: ED25519
08:5a:9b:bd:a3:04:b3:bd:2a4:d7:06:49:6a:5b:33:93:13:8f:
02:4f:8¢c:¢c2:0d:6b:22:72:35:9€:09:00:29:7b:99:7f:ab5:d6:
4b:e4:d9:94:8e:ee:bd:aa:ac:4a:23:15:e2:bf:19:eb:aa:c2:
6d:ca:8e:ae:£f9:79:¢cd:39:80:07
————— BEGIN CERTIFICATE-----
MIIBRTCB+AIJAPXRNMI1MT3Z/MAUGAyt1cDBRMQswCQYDVQQGEwWJ
OTDETMBEGA1UECAwWKU29tZS1TdGFOZTERMAS8GA1UEBwwITmlgbW
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VnZW4xCzAJBgNVBAoMA1JVMQOwCwYDVQQLDARJQO1TMB4XDTE4M
DIyNDIyMDkxMFoXDTE4MDMyNjIyMDkxMFowRTELMAKGA1UEBhMC
QVUxEzARBgNVBAgMC1NvbWUtU3RhdGUxITAfBgNVBAOMGEludGV
ybmVOIFdpZGdpdHMgUHRSIExXOZDAqMAUGAYyt1lbgMhAHEEQl /0Z8
dxJ6e2ZphVc4xy6k30pyMLq56SgDK72ZF1MAUGAytlcANBAAham
72 jBLO9pNcGSWpbM5MT jwIJP jMINayJyNZ65AC17mX+11kvk2ZS0
7r2qrEojFeK/GeWqum3Kjq75ec05gAc=

----- END CERTIFICATE-----

extensions, length = 0

Sent Record
Header:
Version = TLS 1.2 (0x303)
Content Type = ApplicationData (23)
Length = 53
Inner Content Type = Handshake (22)
Finished, Length=32
verify_data (len=32): 17
AAD4A398BC8ABFF637005DF3B58422687E4E81626781978602814EED5C2B25

Received Record
Header:
Version = TLS 1.2 (0x303)
Content Type = ChangeCipherSpec (20)

Length = 1
Received Record
Header:

Version = TLS 1.2 (0x303)
Content Type = ApplicationData (23)
Length = 53
Inner Content Type = Handshake (22)
Finished, Length=32
verify_data (len=32): 2
E841F5ACCAABO93F7F2A0CEEB728D47BEB593801349C6607EEA1961E7BBE1286

Sent Record
Header:
Version = TLS 1.2 (0x303)
Content Type = ApplicationData (23)
Length = 243
Inner Content Type = Handshake (22)
NewSessionTicket, Length=222
ticket_lifetime_hint=7200
ticket_age_add=813870700
ticket_nonce (len=1): 00
ticket (len=208):
D797460547BB80802E2C828769A35A11635C3E9198279170499
22203F068C9B9C629442F2DF68868B2F566B8BE46889EBSECBY
59AA7TD4BB3D9CC7A222690F3117608DDDE4E46FDDCB6BF21ABS8
210D1412FBCF5F1F8E7B506E1675055C993966CF1D7D64AA676
240B84C77019F0CC54D683EC20A7DO8F4F52EC5F1F7CACF773F
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B7FDD63EEAEOD4D5D35A8C7809DCF116045A0DCA12FC3A352FF
7T06F47545D6A3A9A432ECBBY96F8EDB3EF883119624E043F95D4
DE6018FCCBCO20A1C8EE36EC20243C992DD6DADY0CD30F14591
CBEEE3DD

extensions, length = 0

————— BEGIN SSL SESSION PARAMETERS -----
MH8CAQECAgMFBAITAwQgO6PFpOWrok9uwcg2C5SdRiWm0OZ jMTu9
NCS+27ehD/VQEIDhzaV4/HufhKFyz6JvRJoX1RHRSeKSsMaXV9d
+eaASQoQYCBFt2xGiiBAICHCCkBgQEAQAAAKYLBAlsb2NhbGhvc
3SuBgIEMIKubLEDBAEA
————— END SSL SESSION PARAMETERS -----
Shared ciphers:TLS_CHACHA20_POLY1305_SHA256
Signature Algorithms: ECDSA+SHA256:ECDSA+SHA384:ECDSA+SHA512:
Ed25519:Ed448 :RSA-PSS+SHA256 : RSA-PSS+SHA384 :RSA-PSS+SHA512:
RSA-PSS+SHA256 : RSA-PSS+SHA384 :RSA-PSS+SHA512:RSA+SHA256 : RSA
+SHA384 :RSA+SHA512
Shared Signature Algorithms: ECDSA+SHA256:ECDSA+SHA384:ECDSA+
SHA512:Ed25519: Ed448:RSA-PSS+SHA256 : RSA-PSS+SHA384 :RSA-PSS+
SHA512:RSA-PSS+SHA256 : RSA-PSS+SHA384 :RSA-PSS+SHA512:RSA+
SHA256 : RSA+SHA384 : RSA+SHA512
Supported Elliptic Groups: X25519:P-256:X448:P-521:P-384
Shared Elliptic groups: X25519:P-256:X448:P-521:P-384
No server certificate CA names sent
CIPHER is TLS_CHACHA20_POLY1305_SHA256
Secure Renegotiation IS supported
Received Record
Header:
Version = TLS 1.2 (0x303)
Content Type = ApplicationData (23)
Length = 19
Inner Content Type = Alert (21)
Level=warning (1), description=close notify (0)

DONE
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Appendix B

Protocol traces Internet

Draft

Using default temp DH parameters

ACCEPT

Received Record

Header:

Version = TLS 1.0 (0x301)
= Handshake (22)

Content Type
Length = 308
ClientHello,

Length=304

client_version=0x303 (TLS 1.2)

Random:

gmt_unix_time=0x2465489B
random_bytes (len=28): 84
E1A80B7192552C16EFBC5C5BC1DBD948CC5082D12E71827C74C758
session_id (len=32):
FAFE6D982F9FEABAES767008249547DCECE39BBD58379A58CA6335E8ADA25259

(len=62)
TLS_AES_256_GCM_SHA384
TLS_CHACHA20_POLY1305_SHA256
TLS_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

cipher_suites
{0x13, 0x02}
{0x13, 0x03}
{0x13, 0x01}
{0xC0, 0x2C}
{0xC0, 0x30}
{0x00, O0x9F}
{0xCC, 0xA9}
{0xCC, 0xA8}
{0xCC, OxAA}
{0xC0, 0x2B}
{0xC0, 0x2F}
{0x00, O0x9E}
{0xC0, 0x24}
{0xC0, 0x28}

TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
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{0x00, 0x6B} TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
{0xC0, 0x23} TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
{0xC0, 0x27} TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
{0x00, 0x67} TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
{0xCO0, 0x0A} TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
{0xCO0, 0x14} TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
{0x00, 0x39} TLS_DHE_RSA_WITH_AES_256_CBC_SHA
{0xCO0, 0x09} TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
{0xCO0, 0x13} TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
{0x00, 0x33} TLS_DHE_RSA_WITH_AES_128_CBC_SHA
{0x00, 0x9D} TLS_RSA_WITH_AES_256_GCM_SHA384
{0x00, 0x9C} TLS_RSA_WITH_AES_128_GCM_SHA256
{0x00, 0x3D} TLS_RSA_WITH_AES_256_CBC_SHA256
{0x00, 0x3C} TLS_RSA_WITH_AES_128_CBC_SHA256
{0x00, 0x35} TLS_RSA_WITH_AES_256_CBC_SHA
{0x00, O0x2F} TLS_RSA_WITH_AES_128_CBC_SHA
{0x00, OxFF} TLS_EMPTY_RENEGOTIATION_INFO_SCSV
compression_methods (len=1)
No Compression (0x00)
extensions, length = 169

extension_type=server_name (0), length=14

0000 - 00 Oc 00 00 09 6c 6f 63-61 6¢c 68 6f 73 74

..... localhost

extension_type=ec_point_formats(11), length=4

uncompressed (0)

ansiX962_compressed_prime (1)

ansiX962_compressed_char2 (2)
extension_type=supported_groups (10), length=4

ecdh_x25519 (29)
extension_type=session_ticket (35), length=0
extension_type=encrypt_then_mac(22), length=0
extension_type=extended_master_secret (23), length=0
extension_type=signature_algorithms (13), length=58

sig_p256 (0x0901)

sig_p384 (0x0902)

sig_p521 (0x0903)

sig_x25519 (0x0904)

sig_x448 (0x0905)

ecdsa_secp256ril_sha256 (0x0403)

ecdsa_secp384rl_sha384 (0x0503)

ecdsa_secpb21rl_shab12 (0x0603)

ed25519 (0x0807)

ed448 (0x0808)

rsa_pss_pss_sha256 (0x0809)

rsa_pss_pss_sha384 (0x080a)

rsa_pss_pss_sha512 (0x080b)

rsa_pss_rsae_sha256 (0x0804)

rsa_pss_rsae_sha384 (0x0805)

rsa_pss_rsae_shab512 (0x0806)

rsa_pkcsl_sha256 (0x0401)

rsa_pkcsl_sha384 (0x0501)

rsa_pkcsl_shab512 (0x0601)

ecdsa_sha224 (0x0303)

ecdsa_shal (0x0203)
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rsa_pkcsl_sha224 (0x0301)
rsa_pkcsl_shal (0x0201)
dsa_sha224 (0x0302)
dsa_shal (0x0202)
dsa_sha256 (0x0402)
dsa_sha384 (0x0502)
dsa_shab512 (0x0602)
extension_type=supported_versions (43), length=9
TLS 1.3 (draft 26) (32538)
TLS 1.2 (771)
TLS 1.1 (770)
TLS 1.0 (769)
extension_type=psk_key_exchange_modes (45), length=2
psk_dhe_ke (1)
extension_type=key_share(51), length=38
NamedGroup: ecdh_x25519 (29)
key_exchange: (len=32):
DAE3291AB70469BF32CFB1A30F44282E9CBDCD1B56452437A81CB55BCED69A3F

Sent Record
Header:
Version = TLS 1.2 (0x303)
Content Type = Handshake (22)
Length = 122
ServerHello, Length=118
server_version=0x303 (TLS 1.2)
Random:
gmt_unix_time=0xA60025A5
random_bytes (len=28):
DE6ABC4EBF4CB2733B19965F31D420C4C369621COFOD0O390EAB71173
session_id (len=32):
FAFE6D982F9FEABAES767008249547DCECE39BBD58379A58CA6335E8ADA25259

cipher_suite {0x13, 0x02} TLS_AES_256_GCM_SHA384
compression_method: No Compression (0x00)
extensions, length = 46
extension_type=supported_versions (43), length=2
TLS 1.3 (draft 26) (32538)
extension_type=key_share(51), length=36
NamedGroup: ecdh_x25519 (29)
key_exchange: (len=32):
B939712137A6B8F394649C28B5351F8AC13A80A883EB857866A41416540D814B

Sent Record
Header:
Version = TLS 1.2 (0x303)
Content Type = ChangeCipherSpec (20)
Length = 1
change_cipher_spec (1)

Sent Record
Header:
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Version = TLS 1.2 (0x303)

Content Type = ApplicationData (23)

Length = 39

Inner Content Type = Handshake (22)

EncryptedExtensions, Length=18
extensions, length = 16
extension_type=supported_groups (10), length=12

secp521r1l (P-521) (25)
ecdh_x25519 (29)
secp256r1 (P-256) (23)
ecdh_x448 (30)
secp384r1l (P-384) (24)

Sent Record
Header:
Version = TLS 1.2 (0x303)
Content Type = ApplicationData (23)
Length = 359
Inner Content Type = Handshake (22)
Certificate, Length=338
context (len=0):
certificate_list, length=334
ASN.1Cert, length=329
—————— details-----
Certificate:
Data:
Version: 1 (0x0)
Serial Number:
f5:d1:34:cd:4c:4£f:76:7f
Signature Algorithm: ED25519
Issuer: C = NL, ST = Some-State, L = Nijmegen, 0 = RU,
0U = ICIS
Validity
Not Before: Feb 24 22:09:10 2018 GMT
Not After : Mar 26 22:09:10 2018 GMT
Subject: C = AU, ST = Some-State, 0 = Internet Widgits
Pty Ltd
Subject Public Key Info:
Public Key Algorithm: X25519
X25519 Public-Key:
pub:
Te:44:aa:5f:ce:67:c7:71:27:a7:b6:66:98:55:73:
8c:72:ea:4d:f4:a7:23:0b:ab:9e:92:80:32:bb:d9:
91:65
Signature Algorithm: ED25519
08:5a:9b:bd:a3:04:b3:bd:24:d7:06:49:6a:50:33:93:13:8f:
02:4f:8¢c:¢c2:0d:6b:22:72:35:9€:09:00:29:7b:99:7f:ab:d6:
4b:e4:d9:94:8e:ee:bd:aa:ac:4a:23:15:e2:bf:19:eb:aa:c2:
6d:ca:8e:2e:f9:79:¢cd:39:80:07
————— BEGIN CERTIFICATE-----
MIIBRTCB+AIJAPXRNMIMT3Z/MAUGAyt1cDBRMQswCQYDVQQGEwWJ
OTDETMBEGA1UECAwKU29tZS1TdGFOZTERMAS8GA1UEBwwITmlgbW
VnZW4xCzAJBgNVBAoMA1JVMQOwCwYDVQQLDARJQO1TMB4XDTE4M
DIyNDIyMDkxMFoXDTE4MDMyNjIyMDkxMFowRTELMAKGA1UEBhMC

71



QVUxEzARBgNVBAgMC1NvbWUtU3RhdGUxITAfBgNVBAOMGEludGV
ybmVOIFdpZGdpdHMgUHREIEXOZDAqMAUGAYyt1lbgMhAH5EQl/0Z8
dxJ6e2ZphVc4xy6k30pyMLq56SgDK72ZF1MAUGAyt1cANBAAham
723jBLO9pNcGSWpbMEMTjwIJPjMINayJyNZ65AC17mX+11kvk2ZS0
7Tr2qrEojFeK/GeWqwm3Kjq75ec05gAc=

————— END CERTIFICATE-----

extensions, length = 0

Sent Record
Header:
Version = TLS 1.2 (0x303)
Content Type = ApplicationData (23)
Length = 73
Inner Content Type = Handshake (22)
CertificateVerify, Length=52
Signature Algorithm: sig_x25519 (0x0904)
Signature (len=48): 63
E2B02740E6ADFCOB7F7857731AC109B9A758E4F38CA837F \
08D3824E2CE521EB5BDE3D03A678E0650943CA2724FEEGB

Sent Record
Header:
Version = TLS 1.2 (0x303)
Content Type = ApplicationData (23)
Length = 69
Inner Content Type = Handshake (22)
Finished, Length=48
verify_data (len=48): 20422
B535A5C12DDDD21C23DEDB11E1F11526E48AD3CC663B \
FA71A6A63FDAE9306EECC42BF1AES707FOF10D7A0972A35

Received Record
Header:
Version = TLS 1.2 (0x303)
Content Type = ChangeCipherSpec (20)

Length =1
Received Record
Header:

Version = TLS 1.2 (0x303)
Content Type = ApplicationData (23)
Length = 69
Inner Content Type = Handshake (22)
Finished, Length=48
verify_data (len=48): 60
FF60ABOAF2B90147EDCD8CF776A93A6F24FFBEDFC504CB7 \
FEO7CA84F15983740AF7D35EF4D94050672F028910F026D

Sent Record
Header:
Version = TLS 1.2 (0x303)
Content Type = ApplicationData (23)
Length = 259
Inner Content Type = Handshake (22)
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NewSessionTicket, Length=238
ticket_lifetime_hint=7200
ticket_age_add=2983685265
ticket_nonce (len=1): 00
ticket (len=224):
7TBE86DDBB50FAB33CAFECECD81A39ACABB59EF543E278EBA9D7
DE5B5B7BC9B99722C65451BB8B7TEC67C69B14442727488D388B
840868C49AB89BB7847623FA34D72C59AB0O17BCBASFOE3A271F
96 CCB9350BA45F53E887COE870B1A3F4380AC81EAG668A3E6G3FF
1191061 D84D68C4AD1AACDAD691A6DAB913F9ABA91CF6706599
66F48CB81D6BCE694607D2107E422EB28F31514064736F06C92
6763 ATFECB813A6A14F7FAFEE376E79618B538187B8A24245C6
F81637DA491E94D8918A38209A8711187712BFA7T1C4520F38DA
3672792EBDAFA751FE62BB10476BDO7FCF8E2BBC
extensions, length = 0

----- BEGIN SSL SESSION PARAMETERS -----

MIGQAgEBAgIDBAQCEWIEIKhOr+yPeonxsrADTeyqgmYK3i6HulV
yey81MB/9CGXSBDA2RB/TU77Wggc7GHIYOw6TvQeHePuQmIhh4w
1MaWWmVIz8fBVLA/xSYYXh41nWSYGhBgIEW3a61aIEAgIcIKQGB

AQBAAAApgsECWxvY2FsaG9zdK4HAgUAsddskbEDBAEA

————— END SSL SESSION PARAMETERS -----

Shared ciphers:TLS_AES_256_GCM_SHA384:
TLS_CHACHA20_POLY1305_SHA256 : TLS_AES_128_GCM_SHA256 : ECDHE -
ECDSA-AES256 -GCM-SHA384 : ECDHE-RSA-AES256 -GCM-SHA384 : DHE-RSA
-AES256 -GCM-SHA384 : ECDHE-ECDSA-CHACHA20-P0OLY1305: ECDHE -RSA -
CHACHA20-POLY1305:DHE-RSA-CHACHA20-P0OLY1305: ECDHE-ECDSA -
AES128-GCM-SHA256 : ECDHE-RSA-AES128-GCM-SHA256 : DHE-RSA -
AES128-GCM-SHA256 : ECDHE-ECDSA-AES256 -SHA384 : ECDHE -RSA -
AES256 -SHA384 : DHE-RSA-AES256 -SHA256 : ECDHE-ECDSA-AES128 -
SHA256 : ECDHE-RSA-AES128-SHA256 : DHE-RSA-AES128 -SHA256 : ECDHE -
ECDSA-AES256 -SHA : ECDHE-RSA-AES256 -SHA : DHE-RSA-AES256 -SHA :
ECDHE-ECDSA-AES128-SHA: ECDHE-RSA-AES128-SHA :DHE-RSA-AES128 -
SHA : AES256 -GCM-SHA384 : AES128 -GCM-SHA256 : AES256 -SHA256:
AES128-SHA256 : AES256 -SHA : AES128 -SHA

Signature Algorithms: ECDSA:ECDSA:ECDSA:0x04+0x09:0x05+0x09:
ECDSA+SHA256 : ECDSA+SHA384 : ECDSA+SHA512:Ed25519: Ed448 :RSA-
PSS+SHA256 : RSA-PSS+SHA384 : RSA-PSS+SHA512:RSA-PSS+SHA256 : RSA
-PSS+SHA384 :RSA-PSS+SHA512:RSA+SHA256 : RSA+SHA384 : RSA+SHA512
:ECDSA+SHA224 : ECDSA+SHA1 :RSA+SHA224 : RSA+SHA1 : DSA+SHA224 : DSA
+SHA1 :DSA+SHA256 : DSA+SHA384 : DSA+SHA512

Shared Signature Algorithms: ECDSA:ECDSA:ECDSA:0x04+0x09:0x05+0
x09: ECDSA+SHA256 : ECDSA+SHA384 : ECDSA+SHA512:Ed25519:Ed448:
RSA-PSS+SHA256 : RSA-PSS+SHA384 :RSA-PSS+SHA512:RSA-PSS+SHA256
:RSA-PSS+SHA384 :RSA-PSS+SHA512:RSA+SHA256 : RSA+SHA384 : RSA+
SHA512:ECDSA+SHA224 : ECDSA+SHA1 :RSA+SHA224 : RSA+SHA1

Supported Elliptic Groups: X25519

Shared Elliptic groups: X25519

No server certificate CA names sent

CIPHER is TLS_AES_256_GCM_SHA384

Secure Renegotiation IS supported

Received Record

Header:
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Version = TLS 1.2 (0x303)

Content Type = ApplicationData (23)

Length = 19

Inner Content Type = Alert (21)
Level=warning (1), description=close notify (0)

DONE

shutting down SSL
CONNECTION CLOSED
ACCEPT
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Appendix C

Reproducing

To reproduce our benchmarks for either OPTLS or the Internet draft
the code can be found at:

e https://github.com/dqi/openssl/tree/0PTLS-InternetDraft
e https://github.com/dqi/openssl/tree/0PTLS

We provide python programs with the objective of making it easy to
reproduce the benchmarks.

1. Clone the repository.
2. Switch to the right branch:
e git checkout OPTLS
e git checkout OPTLS-InternetDraft
3. ./config enable-ssl-trace enable-ec_nistp_64_gcc_128 -DMYBENCH
4. make

5. To benchmark run bench_id.py, bench optls.py or bench 13.py
in the benchmarks directory.

To compile bench_ed25519. c and bench _x25519. c use the following com-
mands from within the benchmark folder:

e gcc bench_ed25519.c -I../include -L../ -lcrypto -o ed25519
e gcc bench x25519.c -I../include -L../ -lcrypto -o x25519

Note that it may be necessary to override the default OpenSSL li-
braries; setting LD_LIBRARY _PATH is useful:

e export LD_LIBRARY PATH=/path/to/cloned/repo/openssl/
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