MASTER THESIS

2 %
S =
- O
3, &
MiNe S

RADBOUD UNIVERSITY

Modelling User Context using
Deep Neural Networks

Author: ICIS Supervisor:
Dennis VERHEIJDEN Arjen DE VRIES
s4455770 Second Reader:

Faegheh HASIBI

August, 2019

ii

Disclaimer

This thesis is subject to a non-disclosure agreement. As such, some important
information and implementation details are explicitly or implicitly omitted. The
full thesis, without any omissions, is available upon request.

iii

iv

Abstract

In the current age, more photographs are taken than ever. To handle this, we
could use automatic photoset summarization. However, a good summarization
is highly dependend on the user. To this end, it is desirable to include the
context of the user when judging the relevance of photographs.

This thesis provides a framework for modelling user context using neural
networks. This framework consists of three components.

The first component is modelling the context of a user. Using neural net-
works, characteristics of a user were learned. From these networks, an abstract
representation of a user is extracted, called the user vector.

The second component includes finding groups of users that share similar
user vectors. This was done by clustering the user vectors.

The last component is incorporating user context into a Learning to Rank
model.

A visual analysis of the filters, gradients and activations of the neural net-
works revealed that mainly facial and environmental features in the images are
used for predicting characteristics of users.

vi

Contents

1 Introduction

2 Background

2.1

2.2

2.3

24

2.5

Neural Networks
2.1.1 The Basics of Neural Networks
2.1.2 Convolutional Neural Networks
2.1.3 Recurrent Neural Networks
Related Work Lo oo
2.2.1 Multi-image Classification
2.2.2 Information Retrieval,
Transfer Learning,
2.3.1 Transferring Domain Knowledge
Used Dimensionality Reduction Techniques
2.4.1 Principal Component Analysis
2.4.2 t-Distributed Stochastic Neighbor Embedding
2.4.3 Uniform Manifold Approximation and Projection
2.4.4 Comparisono
Data Pipeline o
2.5.1 User Data Retrieval
2.5.2 Data Preprocessing L.

3 User Quantification

3.1 Methods
3.1.1 User Vector
3.1.2 Neural Network Architectures

3.2 Experimental Setup o000
3.2.1 Data
3.2.2 Training Procedure
3.2.3 Experiments oL

3.3 Results.
3.3.1 Architecture

4 Clustering

4.1 User Vector Visualization

4.2 Clustering Algorithms
4.2.1 Gaussian Mixture Models
422 k-Means

4.3 Determining Partitioning Quality

vii

21
21
21
21
22
22
22
23
23
23

viii

4.4 Clustering Evaluation
5 Learning Personal Relevance

6 Result Analysis
6.1 Training a Neural Network for Visualization
Architecture
6.1.2 Dataset Construction
6.1.3 Results
6.2 Generating Optimal Image Inputs
6.3 Saliency Maps Generation
6.4 GradCAM

6.1.1

7 Discussion

8 Conclusion

Glossary

References

CONTENTS

45
47
49

51

Chapter 1

Introduction

Since the rise of social media platforms like Facebook, Snapchat and Insta-
gram, the internet is filling with user-uploaded photographs. Every day, mul-
tiple petabytes of new multimedia is uploaded through these social platforms
(Wiener, 2014). In 2017, the number of digital photographs that were taken in
that year was estimated at a total of 1.2 trillion (Richter, 2017). It may come
as no surprise that the most-used camera is the one that you carry around ev-
ery day: your smartphone. This has made capturing and sharing your favorite
moments easier than ever.

This is one of the main reasons why the number of photographs that are
taken is increasing each year. A solution to this abundance of digitally-captured
moments is photoset summarization. However, the process of manually creating
such a summarization may be a time consuming practice, even when done digi-
tally. This can be circumvented by using a platform which automatically creates
a summarization. This is done by automatically selecting the best photographs,
leaving out photographs that are blurry or duplicates.

Automatically generating photoset summarizations is a complex process.
First, photographs are judged as to whether they are suitable for the summa-
rization. These photographs are selected based on the value that they add to the
whole, referred to as the quality score. This score consists of two components:
A sentimental component, which is influenced by the contents of the image, for
example: if the image contains people, landmarks or landscapes; a qualitative
component, which is influenced by meta attributes of the image, for example:
the blurriness of the image, whether the image is a duplicate or how beautiful
the image is aesthetically-speaking.

The goal of photoset summarization is to generate a subset of the complete
photoset which maximizes the joint quality score. The joint quality score is
not merely the sum of the quality scores of individual photographs, as the
subset should minimize redundancy and maximize novelty. In the context of
photoset summarization, the selected photos must be a good representation
of the whole photoset, while avoiding selecting multiple images that share a
sentimental experience, e.g. selecting images of the same object.

Without considering the context of the photoset, i.e. the person creating the
summarization, the produced selections are suitable for any person. This is a
valid approach for the general population of people who wish to summarize a

2 CHAPTER 1. INTRODUCTION

photoset, as this would be considered a good summarization. However, if the
selection of the photographs is tailored to the preferences of the person creating
it, the specific information needs of that person may be satisfied, which creates
a more positive experience. Personalization is necessary as individual people
may have different preferences, which leads to different information needs. This
relies on the assumption that people attribute different quality scores to the
same image, due to their personal preferences. For example, it might be the
case that certain groups of people may prefer images of lush green environments,
whereas others may prefer more urban environments.

This way, we may reframe the summarization problem to take the context
of the creator into account: Given a set of photographs and the preferences of
a user, generate a subset that maximizes the joint personal quality score.

The solution to the summarization problem may be given in two steps. The
first step includes assigning a quality score to photographs and the second step
includes selecting a subset of the given photoset. This thesis will focus on the
first step, where the goal is to incorporate the preferences of a user for the
approximation of the quality score of a photograph.

For the approximation of a personal quality score, a profile is constructed
which defines the person creating the summarization. Constructing such a pro-
file is not a trivial task, as users may not have interacted previously with the
summarization system. To this end, the creation of this profile is constrained
by only using photographs from the given photoset. For being able to generalize
the preferences of unseen users, the constructed profiles are clustered to create
groups of similar profiles. These groups are then used to learn a personalized
quality score for a given photograph.

This thesis focuses on the question: “How can we learn the context of a
user and incorporate this for the approximation of the quality score of a photo-
graph?”. This question can be divided into smaller problems. First, a method is
required for learning a representation of the user context. Second, users should
be grouped based on their representation. Lastly, user context should be incor-
porated into a model for predicting the quality score of a photograph. These
smaller problems are examined in their corresponding chapters. Each chapter
provides the required methodology and approaches for solving the problem. The
approaches in these chapters are experimentally tested and the results will be
provided in the corresponding sections.

This thesis is organized as follows: The next chapter, Chapter 2, provides
background information about used methods and related research. Chapter 3
provides a framework for modelling user context. Chapter 4 examines different
clustering approaches for finding groups of users with similar profiles. Chapter 5
provides a method for applying user context for the approximation of a quality
score of a photograph.

In Chapter 6, an analysis is given. The goal of this analysis is to provide
a possible explanation of the results found in previous chapters. This is done
by opening the black-box that arises from the nature of neural networks. In
Chapter 7, the full approach is discussed. Here, the results are interpreted
and discussed, including the potential limitations and material for future work.
Finally, in Chapter 8, the conclusion of this thesis is presented.

CHAPTER 1. INTRODUCTION

Chapter 2

Background

This thesis focusses on approximating a personal quality score for a given pho-
tograph. This requires a representation’of the user in the form of a user profile.

As mentioned in Chapter 1, learning such a representation has the constraint
that only photographs from the photoset may be used. To this end, a deep learn-
ing approach is used as they are very capable of extracting high level features
of their inputs. This learned representation will then be used for finding groups
of users with similar representations. Finally, these groups will be used to learn
the quality score of a photograph.

This chapter will provide background material on methods that are applied
in this thesis. First an introduction is given on neural networks, including
variants which are used within this thesis.

This is followed by related work. This section will include studies based on
photoset summarization and deep learning approaches for extracting features
from photosets. Afterwards, the data pipeline used within this thesis is pre-
sented. In this section, the retrieval, cleaning and pre-processing of the data
is discussed. This section is followed by several dimensionality reduction tech-
niques that may be used to generate compact user representations. Finally, a
framework is discussed for learning an indirect ranking using Learning to Rank.
This framework will be central for learning a quality score of a photograph.

2.1 Neural Networks

Artificial neural networks have become the driving force for achieving new state-
of-the-art performances in various domains, for example in Computer Vision
(Hu, Shen, & Sun, 2017; Howard et al., 2017; Alom et al., 2019) and Natu-
ral Language Processing (Edunov, Ott, Auli, & Grangier, 2018; Radford et al.,
2019). In this thesis, neural networks are central for learning high level fea-
tures from photosets and quality scores for photographs. As such, some general
knowledge of neural networks is required.

1 This thesis may contain terms like ‘representation’, which may be unclear to some readers.
To this end, a list of terms and their descriptions is provided in the Glossary. The first
occurrence of a term contained in the glossary is styled with a red font.

6 CHAPTER 2. BACKGROUND

This section will provide a basic introduction to neural networks and ex-
plain the concepts that are relevant for this thesis. The following mathematical
notations will be used:

e r non-bold lower-case letters denote elements. If the element is indexed,
the subscript denotes the position of the element in the vector.

e x bold lower-case letters denote vectors.

o W capital letters denote matrices. If the matrix is indexed, the subscript
denotes the position.

2.1.1 The Basics of Neural Networks

Neural networks are a class of connectionist machine learning algorithms. A neu-
ral network consists of processing units and connections between them. These
will be referred to as the nodes and weights of a neural network. This mecha-
nism is vaguely inspired by the human brain (van Gerven & Bohte, 2018). Here,
the structure of the neural network resembles the structure of the brain with
neurons and synapses respectively.

A neural network may be described as a system that takes input features
and outputs a high-level representation (Bishop, 2006). This high-level repre-
sentation is computed by feeding the input through a series of layers. In each
layer of the network, a (non-)linear transformation is applied to the input x.
This transformation is computed using trainable weights W and bias terms b.
The output of a layer is then activated using an activation function ¢.

Throughout this thesis, four different types of layers will be distinguished:
e input layer: the first layer of the network which receives external inputs.

e hidden layer: an intermediate layer of the network which computes ab-
stract features.

e feature layer: the last hidden layer. The output of this layer holds all
information for making predictions.

e output layer: the last layer of the network. This layer leverages the infor-
mation of the feature layer to compute the predictions of the network.

To explain the mathematical concepts of a neural network, an example will
be given using a Multilayer Perceptron network (MLP) with one hidden layer.
A graphical representation of this example may be found in Figure 2.1. This
type of network is more commonly referred to as a fully-connected network. The
provided example is adapted from Bishop (2006).

Each layer in the MLP network contains M nodes, referred to as percep-
trons. A layer of perceptrons are referred to as a dense layer. A neural network
containing only dense layers are called Dense Neural Networks (DNNs).

The output unit activation, i.e. the output before activation, of the j-th
perceptron is given by:

D
a; = wiz; + oV (2.1)
=1

2.1. NEURAL NETWORKS 7

hidden layer
input layer

Figure 2.1: Multilayer Perceptron Neural Network with one hidden layer

where x; referes to the i-th element of the input x. The superscript in w®
and b(!) indicates that the corresponding parameters are in the first layer of the
network.

The output of the layer is then activated using a differentiable (non-)linear
activation function ¢:

zj = ¢(a;) (22)

where z; corresponds to the activated output of perceptron j. The output of
intermediate layers are referred to as hidden units.

Since this network contains only one hidden layer, this layer is also the fea-
ture layer. Thus, the next layer is the output layer. The output unit activations
is then given as:

M
j=1

where k = 1,..., K, and K is the number of outputs of the network. Finally,
the output unit activations are transformed using an activation function to
compute the output of the model §. For intermediate activation functions,
hyperbolic tangent (tanh, Equation 2.4) activation or the Rectified Linear Unit
(ReLU, Equation 2.5) (Nair & Hinton, 2010) is generally used. However, since
tanh activation suffers from the vanishing gradient problem (Nwankpa, [jomah,
Gachagan, & Marshall, 2018), the latter is commonly preferred.

tanh(z) = m -1 (2.4)

relu(z) = z, itz>0 (2.5)
B 0, otherwise '

8 CHAPTER 2. BACKGROUND

The choice of the activation function for the output layer, is dependent on
the type of task.

For regression tasks, there are multiple choices for the activation function.
If the output is allowed to be greater than 1, the Identity function y = a may
be used. If the output should be within the range [0, 1], the sigmoid function
may be used. This function is given by:

y =o(a) = (2.6)

For classifying samples belonging to C classes, the output of the model
should be a distribution P over the classes C. This is given by applying the
softmax function o to the output unit activations a:

efe
chP(C:C):U(a)c:cia, (2.7)
D i1 €%
where c = 1,...,C, and C is the number of output classes of the network, which

is equal to the number of units K in the output layer.

The weights of a node may be learned through an iterative process called
backward propagation of errors, commonly referred to as back-propagation
(Rumelhart, Hinton, Williams, et al., 1988). This iterative process updates
trainable parameters based on the error between the prediction of the network
¥ and the target y. This error is referred to as the loss, which is computed by a
loss function. More specifically, the weights of a node are updated according to
the derivative of the loss with respect to the weights. This derivative is found by
using the chain rule to back-propagate the errors. For more information about
back-propagation you are encouraged to read (Rumelhart et al., 1988).

The choice of the loss function, depends on the task: For regression problems,
the mean squared error (MSE) may be chosen, which is given as

NSE(Y.9) = = (s — 31)° 28)

For classification problems, the cross-entropy loss (CCE) is a good alterna-
tive, which is given as:

1

C
CCE(y,y) = C Z Yelog(ge) + (1 — ye) log(1 —) (2.9)

where y is the true label (encoded as a one-hot vector) and y is the predicted
label. For binary classification, the binary cross-entropy loss (BCE) may be
used, a specific configuration of the categorical cross entropy. Assuming that
the softmax activation function is used for the prediction layer, a two-class
classification problem may be represented as a one-class classification problem,
as yo = 1 — y1. The binary cross-entropy is then given as:

BCE(y, 9) = —(ylog(9) + (1 — y)log(1 — 9)) (2.10)

2.1. NEURAL NETWORKS 9

Figure 2.2: Example of a convolution operation in an image.?

The weights are then updated such that the loss is minimized. The optimiza-
tion of weights in a neural network is done by an optimizer such as Stochastic
Gradient Descent (SGD) (Kiefer & Wolfowitz, 1952). It has been shown that
models learned with optimizers like SGD are able to generalize well to unseen
data. This statement holds even when the number of parameters in the network
is significantly larger than the number of samples in the training set (Zhang,
Bengio, Hardt, Recht, & Vinyals, 2016). This is the main reason why neural
networks are known for being good estimators for complex (unknown) functions.
However, the drawback of neural networks is that learning the parameters typi-
cally require more training data than other traditional classification algorithms
such as Support Vector Machines.

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of neural networks that
extract features based on patterns in their inputs. They are specifically designed
to deal with the variability of 2D objects (LeCun, Bottou, Bengio, Haffner, et
al., 1998). This makes CNNs the dominant option for computer vision tasks.

CNNs perform convolutions in their layers, where each node contains a filter
that reacts to a specific pattern in the input. This filter is also commonly referred
to as a kernel. A convolution is an operation where a filter is passed over an
input using a sliding window. The output is defined as the sum of the element-
wise multiplication of the values in the sliding window with the corresponding
value in the filter. The resulting matrix is referred to as the feature map. A
graphical example of a convolutional operation is given in Figure 2.2. For a
given filter h with size (4, k) and input f, the convolution is given as

Glm,nl = (f«W)m,n] =3 > hlj k1 flm = jin — k] (2.11)

where m, n are the indices of the resulting matrix. The resulting matrix is
smaller than the input matrix as the filter center cannot slide over the edges
of the input image. For example, when the input matrix f is a 3D image
with dimensions 12x12x 3, the result of a convolution with a 5x5x 3 filter is a
8x8x1 (12 — 5+ 1) matrix.

2https://brilliant.org/wiki/convolutional-neural-network/, date accessed:June
19th, 2019

https://brilliant.org/wiki/convolutional-neural-network/

10 CHAPTER 2. BACKGROUND

(a) low-level (b) mid-level (c) high-level

Figure 2.3: Feature maps visualizations on different depths of a CNN. (a) feature
map in an early layer. Here we see sensitivity to low-level features like lines
and gabor filters. (b) feature map in a later layer. Here we see sensitivity to
texture-like patterns. (c) feature map of the last convolutional layer. Here we
see sensitivity to concrete objects and structures.

Each convolutional layer holds K filters, such that the output of a convolu-
tional layer contains K feature maps. These are then stacked to create a single
matrix. Extending the previous example to a layer with 32 kernels would lead
to an output matrix of 8 x8x32. However, one may also perform convolutions
with padding. Here, the image is padded such that the output dimension is
equal to the input dimension. There are multiple methods for padding the in-
put. Typically the input is padded with zeros, as this does not affect the output
(since the multiplication with zero remains zero).

Each convolutional layer consists of multiple filters. As every filter contains
different values, each filter is sensitive to different patterns in the input. This
ensures that the resulting feature maps contain unique information about the
input. Since the resulting feature maps are fed through multiple convolutional
layers, each feature map reacts to increasingly more complex patterns. For
example, feature maps in earlier layers are sensitive to very basic patterns, like
lines, color or contrasts. While feature maps in later layers are sensitive to
increasingly more complex patterns (Olah et al., 2018), for example structures
and faces. This resembles the process of how humans perceive visual stimuli
(van Gerven & Bohte, 2018). Here, the early topologies in the visual stream are
sensitive to lines of different orientations. While later topologies are specialized
to recognize certain objects, for example faces.

To determine what pattern maximally activates certain nodes, the feature
maps may be visualized. This is achieved by generating the optimal input f*
for a feature map G, given by

f& = argmax Z Z G[m,n] (2.12)
f* m n

The solution may be found by taking advantage of back-propagation. Examples
of feature-map visualizations with varying complexity may be found in Figure
2.3. This is one of the techniques that will be used in Chapter 6, for analyzing
the neural networks in this thesis.

2.2. RELATED WORK 11

2.1.3 Recurrent Neural Networks

For DNNs and CNNs, the input consists of a fixed number of images, typically
one. However, for the classification of photo sets, the input is a sequence of
images of arbitrary length. One solution to this problem is to compute the
average image, i.e. concatenate all images and take the mean over the image di-
mension. However, this solution would discard possibly important information,
since image-specific features and chronological ordering is lost in the process.

A different solution would be to use a type of neural network that can handle
sequences of arbitrary length as an input. One class of neural networks that
solve this problem are Recurrent Neural Networks (RNNs). RNNs contain lay-
ers which learn spatial information from individual samples (like perceptrons)
as well as temporal information from the sequence. This allows RNNs to learn
intra- and inter-sequence information (Lipton, 2015).

Nodes in a recurrent layer contain edges with corresponding weights, simi-
larly to perceptrons, with the addition that there may be edges to itself, called
recurrent edges. This creates cycles in recurrent layers which transfer informa-
tion about previously seen samples in the sequence. For the computation of the
activations in a recurrent layer, we may combine and extend equations 2.1 and
2.2:

2 = p(Whox® + Wizt +b) (2.13)

where the superscript (¢) corresponds to the time-step t. W}, corresponds to
the non-recurrent weights connecting the input units to the layer units. Wy,
corresponds to the recurrent weights, connecting the layer units to themselves.
Since the input for RNNs are sequences, we write x instead of ;.

Finally, the output of the recurrent layer is given by:
¥ = o(W,nh® +b,) (2.14)

The computation of the activations through time is done by unrolling the
layer. This is done by computing activations sequentially, where every sample
in the sequence is regarded as a time-step. A graphical representation of this
process is given in Figure 2.4. Since one forward pass includes multiple time-
steps, Backpropagation Through Time (Werbos et al., 1990) was introduced.

Mainstream applications for RNNs are mostly found in Natural Language
Processing (NLP), where sentences are depicted as a sequence of words. Exam-
ples of RNN applications in NLP are sentiment analysis and Sequence2Sequence
problems such as translation from one language into another (Bahdanau, Cho,
& Bengio, 2014).

2.2 Related Work

As mentioned, learning a personal quality score for photographs requires two
things: first, a method for learning the context of a user; second, a method for
incorporating user context into a model. The first method may be rephrased as
a classification problem: classifying the type of user given the photoset. When
using a neural network for solving the classification task, the feature layer may

12 CHAPTER 2. BACKGROUND

ﬂ
OROR0

o

Figure 2.4: Example of unrolling of a Recurrent Layer with three inputs.

be used for extracting high level features from photosets. The second method
may be rephrased as an information retrieval problem, where the goal is to
summarize photosets.

This section will outline studies that are related to classification using mul-
tiple images and photoset summarization.

2.2.1 Multi-image Classification

In multi-image classification, the model is presented with multiple images. In-
stead of sequentially feeding images, the images are fed at once. From literature
there are two prominent approaches: multi-view learning and video classifica-
tion. In the first approach, images are fed through separate channels. In the
second approach, the images are concatenated, creating a new dimension. The
new dimension may then represent the temporal dimension of images, which
could be leveraged using a RNN.
This section will outline both methods and discusses relevant literature.

Multi-view Learning

Multi-view learning was first used for object recognition. Here, multiple views
of the same object were fed to the model. These views may be photographs or
scans from different angles, effectively creating a 2.5D scan of the same object.

These approaches are mostly found in the field of medical imaging (Roth et
al., 2014; Setio et al., 2016). Here multiple planes of, for example, a lesion are
presented to the model. These different views are then processed and combined
using a fusion technique, which combines the computed feature vectors. For
classifying nodules, late-fusion gave the highest performance (Setio et al., 2016).
Late-fusion is a technique where images are processed separately in different
streams. The feature vector of each stream is then concatenated into one vector
which is used for predictions. Similar successes are achieved in the field of object
and face recognition (Su, Maji, Kalogerakis, & Learned-Miller, 2015; Farfade,
Saberian, & Li, 2015).

Karpathy et al. extended this approach for a set of multiple images. Here,
subsets of images with a fixed length were selected. These images were se-

2.2. RELATED WORK 13

quentially processed using convolutional layers and fused in different stages.
Images fused in early stages were first concatenated and processed using four-
dimensional convolutions. Where images fused in later stages are fully processed
individually using three-dimensional convolutions and concatenated afterwards.
A hybrid approach was also proposed, called soft fusion. Here, images are it-
eratively processed and merged with their neighbors until there was only one
stream. It was found that soft fusion gave the highest performance.

The drawback of these approaches is that the number of streams or images is
constant, i.e. the number of input images is static. This may have implications
for our application as the number of images in a photoset is variable.

Video Classification

Another possibility is to model our problem as a video classification problem,
where the images may be perceived as a fourth dimension. As photograhs
in a photoset are shot in chronological order, sequentially going through the
photographs may be perceived as looking at a film reel. Stacking all images
may thus be seen as a timelapse-video.

A study by Yue-Hei Ng et al. fully exploits the fourth, temporal, dimension.
This work focusses on the classification of short video clips. The classification is
split into two tasks. First, every frame from the video is processed individually
to compute high level features using a pre-trained convolutional neural network.
Afterwards, the resulting high level features are concatenated and processed.
Two different approaches are given for processing the high level features, either
through temporal convolutions or through recurrent cells (as used in Recurrent
Neural Networks). It was found that processing the high level features using
recurrent cells performed better than using convolutions and pooling.

2.2.2 Information Retrieval

The automatic summarization of a photoset consists of two stages, relevance
prediction and reranking. In the first stage, every photograph is individually
given a relevance measure that indicates the importance of the photograph in
the set. These photographs may then be ranked according to their relevance,
where a higher rank indicates a higher importance.

The second stage reranks the photographs. Here the the relevance is judged
in the context of the whole photoset, where the co-occurrence of certain pho-
tographs may result in a lower rank. An example is duplicate images, as having
duplicate images decreases novelty.

Taking the top reranked photographs then gives a representative subset of
the photoset which minimizes redundancy and optimizes novelty. The focus of
this thesis will be on the first stage, as the aim is to judge the relevance of the
photograph based on the preferences of a user.

A classical information retrieval problem consists of two things: a set of
documents D = dy,ds,...,dy and an information need, expressed as a query
q. The task is to find a subset of documents d € D which are relevant to the
query ¢q. Afterwards the documents are ranked based on some ranking formula.

14 CHAPTER 2. BACKGROUND

Bouhini, Géry, and Largeron have introduced the context of the user into
judging document relevance. This is done by creating a profile of a user from
social annotations. These social annotations are initially provided by the user
and may be enriched by annotations from users with similar search queries. The
user profile is then integrated into the relevance function to boost documents
that are relevant based on the user profile.

There are multiple options for judging relevancy of documents for a given
query. In this thesis, the Probability Ranking Principle (Robertson, 1977) is
used. This principle states that the overall effectiveness of an IR system will be
maximal, if the response to each query is a ranking of documents in order of
decreasing probability of relevance. As such, the probability that a document
is relevant for a given query ¢ may be used as the relevancy score of a docu-
ment. The language modelling approach to IR aims to estimate this probability
by constructing a Language Model for each document M, for judging the rel-
evancy P(R = 1|My,q). The intuition behind probabilistic ranking models is
that models corresponding to relevant documents are assigned higher probabil-
ities (Jones, Walker, & Robertson, 2000).

In Chapter 5, a ranking model will be trained. This model will be trained
with and without the incorporation of user context. If the incorporation of user
context yields a higher performance than the model without the incorporation
of user context, this may be perceived as evidence that the proposed framework
is able to model user context.

2.3 Transfer Learning

Deep Neural Networks that are used for image analysis are generally a class
of Convolutional Neural Networks. These networks learn to recognize complex
patterns that may be found in the input. For most tasks in the field of computer
vision, like classification and detection, similar features should be learned in the
earlier layers. Examples of these features include edge detection and structure
recognition (Figure 2.3). Depending on the task, more specialized features in
later layers may also be useful.

When learning different computer-vision-related models, it is observed that
the learned feature maps of these models exhibit similar patterns in convolu-
tional filters (Simonyan, Vedaldi, & Zisserman, 2013). Due to this reason, it
is convenient to start learning by using a model that has already learned to
detect basic features that are applicable to the domain of the task. This can be
achieved by using a deep learning model that is trained on domain A and adapt-
ing it to domain B. This works when domain A and B share enough similarities.
This technique is called Transfer Learning.

2.3.1 Transferring Domain Knowledge

Transfer Learning is best applied when the task on which the pre-trained model
is learned, shares knowledge with the task that is to be achieved (Goodfellow,
Bengio, & Courville, 2016). The concept of Transfer Learning is that features
which are shared between the two tasks, do not have to be re-learned. Instead,

2.4. USED DIMENSIONALITY REDUCTION TECHNIQUES 15

the useful features are transferred. This makes transfer learning most successful
when the learned features from the source task are generalizable to the target
task (Olivas, Guerrero, Sober, Benedito, & Lopez, 2009).

The most popular benchmarking task in image classification is classifying
images from the ImageNet dataset (Russakovsky et al., 2015). This dataset
contains 1000 image categories and a total of roughly 1.5 million images. This
dataset is used as a benchmarking tool to evaluate new deep learning archi-
tectures that may be used for image classification. New network architectures
may then be pre-trained on the ImageNet dataset and made available through
popular deep learning frameworks, such as TensorFlow® and PyTorch?.

2.4 Used Dimensionality Reduction Techniques

One sub-task of this thesis is finding groups of similar users. This will be solved
by grouping the representation of users into clusters, where every user contained
within a cluster shares certain characteristics. These clusters will be found by
employing a clustering algorithm, which will be further examined in Chapter 4.

However, these cluster algorithms work best best on low-dimensional data
(Lloyd, 1982; McInnes, Healy, & Melville, 2018). To this end, the user repre-
sentations should be reduced in dimensionality. Dimensionality reduction algo-
rithms typically fall into one of two categories: those who seek to preserve the
structure within the data and those who aim to preserve local distances over
global distances.

When reducing the dimensionality of data, the chosen dimensionality reduc-
tion method has a big impact. For finding the algorithm that best suits the
needs of this thesis, three algorithms will be discussed and compared: Principal
Component Analysis, which belongs to the first category; t-Distributed Stochas-
tic Neighbor Embedding and Uniform Manifold Approximation and Projection,
which both belong to the second category.

In this section, all three algorithms will be examined. They will be explained
to an extent, such that the advantages and disadvantages of each algorithm are
clear. For further information, it is recommended to read the respective papers.
Finally, the three algorithms are applied to an example to choose the most
suitable algorithm for this thesis.

2.4.1 Principal Component Analysis

Principal Component Analysis (PCA) (Pearson, 1901) is a dimensionality re-
duction algorithm that aims to preserve the structure within the data. This
means that distances between datapoints in the reduced low-dimensional repre-
sentation are proportional to the distances between datapoints in the original
high-dimensional representation.

PCA decomposes a multivariate dataset into a set of Principal Components.
These Principal Components are orthogonal components that explain a maxi-
mum amount of variance, where the variance is defined as the expected value

Shttps://www.tensorflow.org, date accessed:June 19th, 2019
“https://pytorch.org/, date accessed:June 19th, 2019

https://www.tensorflow.org
https://pytorch.org/

16 CHAPTER 2. BACKGROUND

of the squared deviation from the mean:
Var(X) = E[(X - n)*)] (2.15)

and X is a datapoint in the dataset.

The resulting principal components are sorted, such that the first principal
component is the component that explains the most variance. These principal
Components may be seen as linear combinations of features that describe the
data.

PCA has been successfully applied in multiple fields for reducing dimension-
ality (Ma & Dai, 2011), including deep learning (Sun, Chen, Wang, & Tang,
2014).

2.4.2 t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) (Maaten & Hinton, 2008)
is a manifold approach. This approach is very popular for visualizing high di-
mensional features that are extracted using deep neural networks (Chan, Rao,
Huang, & Canny, 2018). t-SNE aims to find local and global patterns in the
data, where similar samples are drawn together and distant samples are pushed
apart.

The steps for achieving this are as followed: First, two Gaussian probabil-
ity distributions are created. The first distribution P models the relationship
between points in the original high-dimensional space. The second distribution
Q, is a low-dimensional model, which models the relationship between points in
the low-dimensional space.

The low-dimensional representation of the high-dimensional data is then
determined by minimizing the Kullback-Leibler (KL) divergence between the
distributions P and Q. This is given by:

Pij
KL(PJ|Q) = Zpij log qu (2.16)
i#j “

This low-dimensional representation is then optimized through gradient descent
until the KL divergence converges to a local minima. An intuitive interpretation
of the computed gradients is the following: If the gradient with respect to two
points is positive, there is an attraction. If the gradient is negative, there is a
repulsion.

The resulting low-dimensional representation is referred to as the embedding.
This embedding is a stable local minimum of the optimization. It is worth not-
ing that the KL-divergence is non-convex, such that the resulting minima might
be a local optima. However, tricks like Early Ezxaggeration and Early Compres-
ston try to avoid this (Maaten & Hinton, 2008).

One important hyperparameter of t-SNE is the perplexity. This hyperpa-
rameter is a measure which controls how much the global structure should be
preserved over the local structure.

While t-SNE is a good tool for reducing dimensionality for existing data, it is
unable to transform new data. This is due to the fact that t-SNE does not learn

2.4. USED DIMENSIONALITY REDUCTION TECHNIQUES 17

a transformation function®, instead it directly optimizes the low-dimensional
representation.

2.4.3 Uniform Manifold Approximation and Projection

Uniform Manifold Approximation and Projection (UMAP) (Mclnnes et al.,
2018) is a manifold technique, like t-SNE. UMAP aims to find a transformation
function for mapping high-dimensional data onto a low-dimensional plane. This
is a clear distinction between t-SNE and UMAP as t-SNE directly optimizes an
embedding.

The steps for finding the transformation function are as followed: First, a
weighted graph is computed for the high-dimensional data W that models the
local relationship of neighboring points. Second, a weighted graph is computed
for a low-dimensional representation W%, similarly to the high-dimensional
neighborhood. The low-dimensional representation is then determined by min-
imizing the cross entropy, given by:

H —wH
cwr Wty =S w; 1og()+(1—W5)10g(%) (2.17)
i#£] i

where W;; represents the weight of the edge connecting point ¢ to point j.

The most important hyperparameter for UMAP is the number of neighbors
that are considered when constructing the weighted graph. Having a larger
number of neighbors produces more global views of the structure, which pre-
serves a more global structure of the data. Another important hyperparameter
is the minimum distance between datapoints. A lower (or zero) minimum dis-
tance relaxes the constraints on the placement of the points in terms of the
distance between neighbors. This typically leads to dense clumps of data. A
large minimum distance typically leads to the datapoints being more sparse in
the low dimensional plane.

The low-dimensional representation may then be optimized by performing
gradient descent to find a stable local minimum. As UMAP indirectly optimizes
the embedding through the optimization of the weighted graph, it is suitable
for transforming new datapoints.

2.4.4 Comparison

For finding the the best dimensionality reduction technique, the three techniques
will be applied to the MNIST dataset. This dataset consists of written digits,
where each class corresponds to a different digit. This example will highlight
the characteristics of the dimensionality reduction methods. The outcome of
the dimensionality reduction methods may then be compared to choose one
definitive dimensionality reduction method that will be used throughout this
thesis.

In the MNIST dataset, each digit is presented as an 28 x 28 black-and-white
image. The image may then be flattened, such that every image is represented

5 Maaten adapted t-SNE to learn a parametric transformation function, called paramet-
ric t-SNE (Maaten, 2009). However, at the time of performing the experiments, no robust
implementation was available. To this end, parametric t-SNE is not considered in this thesis.

18 CHAPTER 2. BACKGROUND

(a) PCA (b) t-SNE (c) UMAP

Figure 2.5: A comparison of the representations found by PCA, t-SNE and
UMAP using the MNIST dataset. The hyperparameters were set to their default
values. The colours in the plots represent the digits in the dataset. The colour
representation is equal for every plot.

by a 1x784 feature vector. The goal in this example is to reduce the high-
dimensional feature vector to a low-dimensional feature vector containing only
two components. The resulting low dimensional space may then be visualized
by plotting the two components on the x and y axes.

Figure 2.5 depicts the results of applying these three algorithms to the
MNIST dataset, which clearly highlights the difference between the two classes
of dimensionality reduction algorithms. The low-dimensional representations
produced by PCA contain a lot of overlap between classes. This may be ex-
plained by the fact that the images share pixels which are black in every image.

The low-dimensional representations produced by t-SNE and UMAP do not
have any overlap. This may be explained by the fact that these types of dimen-
sionality reduction algorithms attract similar samples and push away distant
samples.

The differences between UMAP and t-SNE are more subtle. When look-
ing at the relational distance between classes in the PCA representation, these
are more similar to the representation produced by UMAP than t-SNE. This
highlights the main difference between UMAP and t-SNE: UMAP preserves the
global structure of the data better than t-SNE.

However, the choice of dimensionality reduction algorithm depends on more
factors than the produced representation. For production systems, scalability
and runtime are also important factors. Here every computed representation
should be reduced in dimensionality before finding the cluster-membership of
the representation. As scalability and runtime is heavily influence by the im-
plementation of the algorithm, we will take a look at the following implemen-
tations: MulticoreTSNES for t-SNE, the sklearn’ implementation of PCA and
the UMAP® implementation by the original authors of the UMAP paper.

Shttps://github.com/DmitryUlyanov/Multicore-TSNE, date accessed:June 19th, 2019

"https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA
.html, date accessed: June 19th, 2019

Shttps://umap-learn.readthedocs.io/en/latest/benchmarking.html, date ac-

https://github.com/DmitryUlyanov/Multicore-TSNE
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://umap-learn.readthedocs.io/en/latest/benchmarking.html

2.4. USED DIMENSIONALITY REDUCTION TECHNIQUES 19

e PCA
UMAP
® MulticorsTSNE

2000

1500

runtime (s)

1000

500

0 10000 20000 30000 40000 50000 60000 70000
dataset size

Figure 2.6: A comparison of runtime and scalability of PCA, t-SNE and UMAP.

A comparison between the three algorithms based on these factors may be
found in Figure 2.6. In terms of scalability and runtime, PCA performs best, it
scales well to large datasets and has a low runtime. This is closely followed by
UMAP, which scales just slightly worse than PCA. t-SNE has the worst scaling
by far, performing worst out of all three dimensionality reduction methods.
Judging on the size of the dataset used within this thesis, it is not feasible to
use t-SNE.

For clustering it is desired to generate low-dimensional representations that
preferably generate clearly separated groups of samples. Due to efficiency and
UMAP preserving global structure better than t-SNE, UMAP will be the chosen
method for dimensionality reduction. However, it should be noted that the
resulting representations of manifold approaches may generate clusters that are
not part of the data but are instead introduced by noise in the data. This is
circumvented by carefully tuning the hyperparameters.

cessed: June 19th, 2019

20 CHAPTER 2. BACKGROUND

2.5 Data Pipeline

This thesis will be using implicit customer feedback. As such, care should be
taken when using this data in a machine learning pipeline. This section will
outline the retrieval of user data and the preprocessing steps that are performed.

2.5.1 User Data Retrieval

This section is available upon request.

2.5.2 Data Preprocessing

Due to the large collection of photographs in the dataset, pre-processing during
runtime is kept to a minimum. To achieve this, photosets are stored in the most
compact and readily-available representation possible.

Every image is converted and resized. Afterwards, useful information is
extracted from the images, called encodings. It should be noted that storing
images in an encoded format, instead of an RGB format, entirely disables the
usage of augmentations on the image-level. However, there are a number of
augmentations that may be performed on photosets to reduce the risk of over-
fitting. These will be further examined in Section 3.2.2. Since the encoded
format does come with limitations, this format is only used for approaches that
use photosets as an input, i.e. Chapter 3 and Chapter 4.

Chapter 3

User Quantification

Before the preferences of a user can be learned, a method for representing a user
is required. This representation consist of a list of values that define a user. This
list of values will be referred to as the user vector u. In this chapter, two types of
user vectors are examined: User vectors containing concrete properties and user
vectors containing abstract features. These will be referred to as respectively
concrete and abstract user vectors.

Concrete user vectors contain meaningful characteristics of a user. Abstract
user vectors contain a series of numbers u; € R. These numbers may not have
any meaning in isolation, but the combination provides a rich representation of
the user.

The outline of this chapter is as follows: First, the methodology for com-
puting user vectors is discussed. This is followed by an overview of the data
and the training procedure for training the neural networks. The chapter will
conclude with the results.

3.1 Methods

In this section, the methodologies will be explained regarding learning the rep-
resentation of a user.

First, the computation of the two types of user vectors is discussed. After-
wards, the two different types of neural networks will be discussed for learning
this representation.

3.1.1 User Vector

For a given user, user characteristics may be known. This information will be
used for learning a concrete user vector. As discussed in section 2.1.1, neural
networks are excellent feature extractors. To this end, the abstract user vector
is extracted from the learned neural networks.

3.1.2 Neural Network Architectures

This section is available upon request.

21

22 CHAPTER 3. USER QUANTIFICATION

3.2 Experimental Setup

This section will provide a summary of the dataset and experimental setup
that is used for testing the proposed neural networks. First, an overview of the
dataset is given. This is followed by a section in which an outline is given for the
different steps in the training procedure. Finally, experiments will be presented
to test the approach.

3.2.1 Data

The neural networks will be trained to predict the concrete user vector of a cor-
responding photoset. The dataset consists of sequences of encoded photograph
with the corresponding labels. Here, the label corresponds to the concrete user
vector. As some user characteristics may be unknown, it was decided to train
one model for every feature of the concrete user vector.

3.2.2 Training Procedure

The training procedure is split in two stages, dataset creation and training.
First, the photosets for which the label is unknown are removed from the dataset
containing all photosets. The resulting dataset is split into three subsets: a
training, validation and test set. These contain respectively 62.50%, 25% and
12.50% (%, % and %) of the dataset. This is done by first grouping the photo-
sets of unique users. Afterwards, Ny, and Ny photosets are drawn from the
dataset without replacement. Samples are drawn according to a uniform distri-
bution, where the probability of sampling label ¢ is given by P(C = ¢) = |—é‘,
where |C| denotes the number of labels in a class. The subsets are created such
that every user is contained in at most one subset. This is done to ensure that
the model cannot already have seen the photos of a certain user.

To remove the bias towards over-represented classes, batches from the train-
ing set are sampled such that the class distribution in one batch is roughly
equal. This is done by sampling according to a uniform class distribution. The
epoch is finished when all photosets in the smallest class are sampled once. Note
that not every photoset in the largest class is sampled in each epoch, since no
sample from the smallest class may be sampled twice. However, through experi-
mentation, it was determined that this sampling method increased performance.

Models were constructed and trained using TensorFlow, an end-to-end ma-
chine learning platform (Abadi et al., 2015).

3.3. RESULTS 23

3.2.3 Experiments

There are a number of experiments that may be performed to test the pro-
posed approach. The first experiment compares the proposed architectures.
One model is trained for each characteristic.

For categorical classes, the performance measures that will be used are the
categorical cross-entropy loss (CCE), given by Equation 2.9, and the categorical
accuracy (acc). The reported accuracy is the average categorical accuracy of
the test set, which is defined as:

| X
acc(y,y) = i Z a(yi, ¥:) (3.1)

Where y denotes the labels and y denotes the predictions, IV denotes the number
of samples and ca is given as:

. 1, argmax,o(y) = argmax, o(9)
ca(y,y) = . g 3.2
(:9) {0, otherwise (32)

where argmax, o(y) denotes the label with the highest probability. For example,
the acc([[0.1,0.9],[0.7,0.3]], [[0.2,0.8],[0.4,0.6]]) = (1 +0) = 0.5

For numerical classes, the mean squared error (MSE) (Equation 2.8) and
the correlation (r) between the predicted and actual age will be reported. The
correlation is defined as:

The MSE is a measure for how well the model fits the individual datapoints.
Whereas the correlation is a measure for the global shape of the data. The MSE
punishes large errors in the prediction, making it more sensitive to outliers. The
correlation is a measure for the strength of the global relation, where a high
correlation indicates a strong relation and a near-zero correlation indicates that
there is no relation.

3.3 Results

This section presents the results of the aforementioned experiments. Here, the
results will be evaluated to establish the best architecture for the problem of
user quantification.

3.3.1 Architecture

This section is available upon request.

24

CHAPTER 3. USER QUANTIFICATION

Chapter 4

Clustering

For learning the preferences of users, a lot of data is required. Traditionally,
the interactions of a user with a system are tracked over a longer period of
time. This information may then be used to learn the information needs of a
particular user (Bouhini et al., 2016). When the information need is known, the
system may be adapted to better suit the needs of the user.

For the application of personalized photosets summarization, it would also
be desirable to have multiple interactions per user. When the user receives the
result of the initial summarization, the user may include images in or exclude
images from the selection. These interactions may then be used to learn which
images a user would like to have in their summarization. If these preferences
are incorporated in the model, they may be used to select images that would
also be selected by the user.

One approach for user modelling is the following: Let a user have a photoset
PB. From P, generate a selection of photographs s C P using model m. The
user may then change the selection according to their preferences. The new
selection is referred to as the optimal selection s*. The goal is then to finetune
m to generate an optimal model m* that approximates the optimal selection s*,
given photoset 3.

One disadvantage of this approach is that personalization can only happen
after the user has already interacted with the system. Another problematic
aspect is the point at which a selection is called optimal. When a user makes
changes to selection s, resulting in s, it cannot be determined with certainty
that selection s’ = s*. To this end, the following assumption is made: a prede-
fined condition exists where it is known that the selection is optimal, ié. s’ = s*.

To circumvent these limitations, a different approach must be chosen. In
this approach, a user should not be required to have interacted with the system
before. This may be achieved by learning the preferences of users that are
similar. Here, the users may be represented as user vectors u. Suppose U
denotes the set of all user vectors. The goal is then to generate subsets G}, with
similar user vectors. Here, every user in G, should be more similar to the typical
user vector uy of Gy, than the typical user vector u; of any other subset. This

25

26 CHAPTER 4. CLUSTERING

is formally given by the following property:
Gy = {ui : Huz —ﬁkH < ||uz — ﬁl” Vi e {1,. .. 7Kv},l #* k‘} (4.1)

where |[u — u|| represents the similarity between a user vector and the typical
user vector of a subset. Intuitively, the typical user vectors may be seen as the
average user vector in a subset. This relies on the assumption that users with
a similar representation, have a similar preference.

The typical user vectors are found by employing a clustering algorithm. The
resulting clusters that may be found represent the different groups of users with
similar preferences.

Clustering concrete representations is an easier task than clustering abstract
representations. For clustering concrete representations, one valid approach is
found by creating different combination of features. Numerical features may
then be converted to categorical features through binning. Users may then be
grouped based on these combinations.

Clustering abstract representations is a more complex task, as individual
features may not have any meaning when binned. As mentioned in section 2.4,
high-dimensional user vectors should first be reduced in dimensionality. This
is done by mapping the high-dimensional user vector onto a low-dimensional
space by applying UMAP. The resulting low-dimensional representations is then
clustered using a clustering algorithm.

This chapter will focus on the latter: clustering abstract user vectors to
find groups of similar users. First, a visualization of the low-dimensional user
vectors is given to provide context for the clustering algorithms. Based on this
visualization, several suitable clustering techniques are presented. Afterwards,
several measures are presented for determining the quality of a given clustering.
Finally, the different clusterings that are found by the presented algorithms are
discussed and compared.

4.1 User Vector Visualization

In Chapter 3, different models were presented for computing concrete user vec-
tors. Here, each feature was predicted by a different model. The user vectors
that are used in this chapter consist of the concatenated user vectors that are
found by every model.

Clustering algorithms are found to yield a higher performance when the
number of features is low (Lloyd, 1982). To this end, the high-dimensional
user vectors are first reduced in dimensionality. As discussed in Section 2.4,
UMAP will be used to transform the high-dimensional user vector to a compact
low-dimensional representation. For visualization purposes, the user vector is
reduced to two components. However, having more components increases the
amount of information that can be represented. To this end, the user vectors
are reduced to [l dimensions when performing the experiments.

One important hyperparameter for UMAP is the minimum distance between
two datapoints. By enforcing a larger minimum distance in the low-dimensional
space, the differences in the local structure may be highlighted, which is ben-
eficial for visualization. To this end, the minimum distance was set to 0.2 for
visualization. However, for clustering, it is desirable to have densely distributed

4.1. USER VECTOR VISUALIZATION 27

(1) A (2)B ®3)c

(1) A (2)B ®3)c
(b) Combined User Vector

Figure 4.1: Visualizations of the user vectors, transformed to a two dimensional
space. The colors represent the true labels of the different characteristics. (a)
The individual components of the user vectors are separated and transformed
in isolation. (b) The user vectors containing all components are transformed.

data (McInnes et al., 2018). To this end, the minimum distance is set to [|
when performing experiments.

The combined user vector consists of all characteristics. As every charac-
teristic is learned in isolation, it is possible to transform and visualize each
component separately. This highlights the learned features of every charac-
teristic. The produced low-dimensional representations are found in in Figure
4.1a.

One important characteristic that is visible in the visualizations is that
classes are localized, i.e. each class may be found in a specific location. For
example, characteristic B is somewhat shaped like a triangle where the corners
contain a specific class. It is worth noting that UMAP is an unsupervised di-
mensionality reduction technique, such that labels are not taken into account
in the transformation. This indicates that the learned abstract representations
correspond to the concrete user vectors.

Characteristic A and C exhibit similar features. Both characteristics are
snake-shaped, where the classes are distributed like a spectrum. Here, each end
of the snake contains a class. A closer examination of the photosets correspond-

28 CHAPTER 4. CLUSTERING

ing to the datapoints in the snake reveal that the position is correlated to the
confidence of the network. Datapoints that are closer to a tail have a higher
confidence than datapoints closer to the middle.

Another interesting property that is visible in both, A and C, is the smaller
snake-shaped cloud of datapoints in the center. A closer examination shows that
photosets in this cloud are distinctly different from photosets in the larger snake.

The visualization of the transformed user vector containing all characteristics
may be seen in Figure 4.1b. The phenomenon of class localization that was
found in the separate characteristics, is also visible in the visualization of the
user vector containing all characteristics. This is especially prominent when
examining the color overlay representing the different classes. There is one
interesting property that arises from the color overlays: the main divisor of
the combined user vector is characteristic B. The other characteristics are then
localized inside B.

4.2 Clustering Algorithms

There are various clustering algorithms that may be used for clustering data-
points into clusters of similar datapoints. This may be done by exploiting the
density of the data or by partitioning the data.

Density based clustering algorithms are most effective when clusters arise
naturally from the data (McInnes, Healy, & Astels, 2017). An example of this
is the UMAP and t-SNE embeddings of the MNIST example, found in Figure
2.5.

The low-dimensional UMAP embedding of the user vectors (Figure 4.1b) do
not form distinct clusters. Instead, the embeddings are shaped like a cloud of
datapoints. Density based clustering algorithms may find suboptimal clusters
using these embeddings. To this end, this thesis only focuses on partitioning-
based clustering algorithms. This class of clustering algorithms assigns data
points to K nearby components. The goal of partitioning algorithms is to find
these components. These components were previously referred to as the typical
user vectors.

For both algorithms, the number of components K is a hyperparameter,
which may be freely chosen. As such, K may be considered a hyper-parameter
of this approach. K should be chosen experimentally, however the initial value
may be chosen intuitively: Let C' be the number of classes. When K < C| classes
that are similar may be partitioned into the same cluster. When K = C, the
resulting components may partition the data, such that every class is contained
into one subset. When K > C, the partitioning becomes more specialized, i.e.
partitions are formed within classes. These resulting partitions may then be
seen as specific groups within the class.

Computing the optimal partitioning for a given number of datapoints is an
intractable problem in Computer Science. To this end, various algorithms are
designed to estimate an optimal partitioning instead. These algorithms often
rely on the Expectation-Maximization (EM) algorithm (Dempster, Laird, &
Rubin, 1977).

In this Section, two variants of partitioning based cluster algorithms will

4.2. CLUSTERING ALGORITHMS 29

be examined: Gaussian Mizture Models (GMM) and k-Means. These variants
are both iterative processes, where model parameters are updated using the
EM Algorithm. To this end, Gaussian Mixture Models and k-means will be
explained in the context of the EM algorithm.

For each algorithm, an example will be given where the goal is to partition
characteristic A. This characteristic is chosen as the shape of the low-dimensional
representation highlights defining properties of the algorithms.

The explanations for the algorithms will be given in terms of user clustering,
where U = {uy,...,uy} represents the set of all user vectors.

4.2.1 Gaussian Mixture Models

A Gaussian Mixture Models (GMM) (Dempster et al., 1977) is a collection of
gaussian components that may be used to model the underlying distribution
of the data. GMMs contain two learnable parameters: a set of components
C ={C4,...,Ck} and component weights 0 = {61, ...,0xk}. The goal of GMMs
is to find K components such that the likelihood for user vectors belonging to
the nearest component CY, is maximized. The components may be described as a
gaussian distribution A" with mean p;, and covariance matrix . This gaussian
is denoted as N (ug, Xg). Finding the optimal parameters is done using the EM
algorithm.

The EM algorithm does not directly compute the optimal parameters. In-
stead, the EM algorithm maximizes the likelihood that the learned components
generate the data. The reasoning behind this approach is the following: If a
set of gaussian components is found from which drawn samples resemble the
distribution of the data, then each components is said to be able to model a
distinct group of datapoints in the dataset.

The EM algorithm optimizes the parameters using an iterative two-step
approach: The first step is called the Expectation step. This step consists of
computing an expectation of the assignment for every user vector u; € U to
each component Cj. This is a soft assignment where each photoset is assigned
to each component with a probability. This is given by:

Ok (wifue, S)
T —
> =1 OGN (il i, 25)
Where %, is the estimated probability that user vector u; is generated by com-
ponent Cx. N (u;|fix, Xx) represents the probability of generating user vector u;
by a gaussian with mean pj and covariance matrix X.
The second step is called the Maximization step. This step consists of

updating the model parameters to maximize the expectations from the E step.
This is done by first updating the component weights, given by:

N .

A Yik

O => = (4.3)
i=1 N

Followed by updating the mean and covariance matrix for every component,
given by:

Yik = (4.2)

SN Ak

fie = : (4.4)
Zf\; Yik

30 CHAPTER 4. CLUSTERING

N .
D iy Yik(wi —)
N
22:1 Yik
The result of the maximization step is a parameter configuration that is more
likely to generate the data than the previous configuration. The likelihood that

the parameter configuration generates the data may be defined by computing
the log likelihood of the data given the parameters. This function is given by:

Sy =

(4.5)

N K
log p(U|C, 0) = Z 109{ Zak/\/(uimk, ik)} (4.6)
n=1 k=1

Since the likelihood of the data is a value that may be computed, it is possible
to mathematically establish whether the parameter configuration at iteration ¢
is more likely to generate the data than the previous configuration at iteration
t — 1. The EM algorithm is ran until the increase in likelihood is smaller than
a certain threshold, denoted by e. Convergence is then established when the
following condition is satisfied:

log p(U|C®, 0M)) —log p(U|CT—D, 9¢t—D) < ¢ (4.7)
The component C}, that is most likely to generate user vector u; is given by:
C} = argmax ;i (4.8)

k

Cluster assignment using GMM is soft, i.e. datapoints belong to a cluster
with a probability p. It is then possible to set a threshold « for which a point
does not belong to any cluster.

4.2.2 k-Means

K-means (Lloyd, 1982) is the most popular clustering algorithm in the field
of data mining. K-means aims to partition datapoints into K clusters. In k-
means, the datapoints are hard-assigned to a component. This is done by finding
a component configuration that minimize the distance between each point and
its closest component.

In k-means, the components are called clusteroids. Clusteroids only contain
their position .

Finding the optimal parameters configuration is done by using the EM al-
gorithm. Here, the E-step consists of assigning user vectors to the nearest
clusteroid CY, given by:

SO = Lt w01 < - 0N <5< K} (49)

where Sy denotes the set of user vectors that are assigned to clusteroid &, ||u; —

u,(:) [|2 denotes the squared euclidean distance between the user vector u; and the
clusteroid position py. The superscript (t) denotes the configuration at iteration
t.

4.3. DETERMINING PARTITIONING QUALITY 31

The M-step then consists of updating the centroid locations u for every
clusteroid. This is given by:

1
t+1
ﬂl(c) = 0] (4.10)
B Z

where |S;| denotes the number of user vectors assigned to centroid Sy.

As k-means is not a probabilistic model, a different metric should be used for
establishing convergence. A commonly used metric to establish convergence is
inertia: the sum of the within-cluster sum-of-squares of every centroid. Inertia
is given as:

U]

inertia(U|C) = 2::0 min ([|u; -) (4.11)
Convergence is then established when the following condition is satisfied:
inertia(U|CM) — inertia(U|CHV) < ¢ (4.12)
User vector u is then assigned to the nearest centroid C};, given by:

Ci = argmin ||u — pg|| (4.13)
k

Finding the optimal parameters of k-means may be seen as a specific config-
uration of a Gaussian Mixture model, where ¥ is an identity matrix, multiplied
with a very small value S.

This may be shown by integrating this into Equation 4.2:

Oy, exp{—(w; — jux)?/2}

T =
21 O exp{—(u; — p;)?/28}
When limg_,¢, the component Cj that minimizes (u; — ur)?, approaches zero

more slowly than the other components. This results in the expectations for
components 7; jxr becoming nearly zero and -y;, nearing 1.

Yik = (4.14)

The main differences between k-means and GMMs may be found in the
E-step: K-means hard assigns datapoints and GMMs soft-assigns datapoints.
K-means does not compute the probability of datapoints being generated by a
component, but merely computes the distance between every component and
the datapoint. This results in k-means being significantly faster than GMMs.

4.3 Determining Partitioning Quality

The evaluation of a partitioning is not a trivial task. Commonly used measures
for determining the quality of a partitioning are classification measures, such as
completeness, homogeneity and the v-measure. However, in this Chapter, classi-
fication is not the goal. Instead, the goal is to partition the data into K clusters.

The completeness score measures the completeness of the global partition-
ing. Here, a complete clustering is defined as a clustering where all datapoints

32 CHAPTER 4. CLUSTERING

belonging to one class are assigned to the same cluster. Intuitively, this is a
good measure for penalizing partitions that are too specific. Where too specific
is defined as a clustering in which users are found which do not generalize well
to unseen data. Consequently, this measure penalizes the splitting of clusters.

Another measure that may be examined is the homogeneity score. The
homogeneity score is a measure for defining the purity of the partitioning. If
clusters contain only one class, then the partitioning is called pure. One im-
portant property that arises from this definition is that homogeneity does not
penalize splitting clusters into smaller clusters. This is a desirable property, as
is evident from the previous example. The homogeneity is given by:

H(C|K)

homogeneity(C, K) =1 — HO)

(4.15)

where H(C|K) is the conditional entropy of a class C' given the cluster assign-
ments K, given by:

IC] K|
Ne,k Ne,k
H(C|K) = =) 3" == xlog (Tk) (4.16)
c=1k=1
and H(C) is the entropy of the class, given by:
IC| n n
H(C) = —;;bg (;) (4.17)

where n denotes the total number of samples, n. and n; denote the total number
of samples respectively belonging to label c and cluster k, and finally n. ;, denotes
the number of samples with label ¢ assigned to cluster k.

Suppose we have user vectors that correspond to C' = [a,a,b,b] and clus-
ter assignments K; = [0,0,1,1]. This partitioning is perfectly homogeneous
as homogeneity(C, K1) = 1.0. Whereas the cluster assignment K> = [0,1,0,1]
yields homogeneity(C, K3) = 0.0. It should be noted that splitting cluster as-
signments K; to K5 = [0, 1,2, 3] also gives a perfectly homogeneous partitioning,
as homogeneity(C, K3) = 1.0, which is a too specific partitioning. As the com-
pleteness score is not a valid measure, a method for determining too specific
clusters is desired. To this end, the average number of clusters in a given parti-
tioning should also be taken into account. When the number of clusters is small
and the homogeneity is high, this might be an indication that the partitioning
is too specific.

The optimal clustering algorithm and values for K will be determined by
performing experiments. These experiments will entail the partitioning of the
combined user vector using the two algorithms and various values for K. The
data that will be used for clustering consists of the user vectors corresponding
to the photosets in the test set of NI This was done to prevent
contamination of the dataset with partitionings that are specific to the training
or validation set that may be the result of overfitting.

For every clustering algorithm and k&, the test set is split into two subsets: one
set for fitting the model, containing 75% of the data, and one set for validation,
containing the remaining 25% of the data.

4.4. CLUSTERING EVALUATION

4.4 Clustering Evaluation

This section is available upon request.

33

34

CHAPTER 4. CLUSTERING

Chapter 5

Learning Personal
Relevance

This chapter is available upon request.

35

36

CHAPTER 5. LEARNING PERSONAL RELEVANCE

Chapter 6

Result Analysis

In Chapter 4, a visualization was provided of the user vector space. This visual-
ization provided interesting insights into the modelling of user context. Here, we
may see that the learned user vectors are representative for the characteristics
of a user.

However, it does not show what features in images are beneficial for a given
characteristic. Visualizing the models of different characteristics would provide
more insight into the reasoning of a neural network.

Several approaches have been proposed for visualizing and explaining the
predictions of a neural network. One such method was examined in Section
2.1.2. Here, the filters of convolutional units were visualized by generating im-
ages that strongly activate the filter. In addition to this approach, two other
approaches will be examined: visualizing the gradients of the class activations
and visualizing the convolutional filters with respect to the image.

In this Chapter a solution will be presented for training a convolutional
neural network that uses only one image for classification. This network will
then be used for the three aforementioned visualization approaches.

6.1 Training a Neural Network for Visualization

Since the visualization CNN may only use one image for making predictions,
the model architecture and training setup requires some changes. These changes
will be examined in this section. First, the neural network architecture will be
discussed. Afterwards, the new training procedure is discussed. Finally, the
performance of the trained network is discussed.

6.1.1 Architecture

For training a neural network for visualization, the input is restricted to only one
image. The main interest is the visualization of feature-maps, activations and
gradients. To this end, a convolutional neural network architecture is chosen.
The visualization approaches used in this Chapter, rely on gradients that are
computed using back-propagation. To this end, the convolutional architecture

37

38 CHAPTER 6. RESULT ANALYSIS

that will be used is the Inception V3 architecture. The Inception architectures
are commonly used for visualization tasks as they provide clear and colorful
visualizations (Olah, Mordvintsev, & Schubert, 2017; Olah et al., 2018).

The results from Chapter 3 show that characteristic A and C yield the highest
performance when trained on [l Il Bl Characteristic C yields the
highest performance when trained on |] BEl. To this end, an
Inception V3 architecture is trained for each characteristics.

The training procedure for training the visualization network is almost iden-
tical to that of training the architectures of Chapter 3. The only difference is
the sampling of training samples: instead of sampling photosets, images are
sampled from a new dataset. The construction of this dataset is discussed in
Section 6.1.2. The following image augmentation were applied: Flipping the im-
age vertically, random Gaussian Blurs and cropping followed by resizing. More
information on these augmentations may be found in Jung (2018).

The training parameters for this approach are similar to those of Chapter

6.1.2 Dataset Construction

Training a convolutional neural network for visualization requires the input to
contain only one image, which requires some changes to the data pipeline pre-
sented in section 3.2.2.

One solution to this problem is to randomly select an image from the pho-
toset and use the corresponding label of the full photoset. However, not every
image contributes equally to a correct prediction. To this end, a different ap-
proach was chosen that includes teacher-student learning. Here we leverage the
learned knowledge of a fully trained teacher network to teach the student net-
work. For the teacher network, the architectures from Chapter 3 will be used.
The student network is the Inception V3 architecture.

Every photograph p € 3 contributes to the correct prediction p. of a class c.
However, the contribution of images is not equal. The exists a subset of images
s that positively contribute to the correct prediction and a subset of images §
that negatively contribute to the correct prediction, i.e. lowers the confidence
of the model.

For training the student network, images from s should be used, instead of s.
Selection s may be found by leveraging the teacher network, denoted by ¢. This
is done by first computing the prediction on true class ¢ using the full photoset
pe = t(P). Afterwards, every image in ¢ € {1,...,|PB|} may be removed from
the photoset, resulting in 3;. The prediction on class ¢, without photo ¢ is then
given as p.; = t(P;). We may then construct a function f(pei,pe), such that
f(pei, pe) = 1 indicates that image i belongs in s and if f(pi,p.) = 0, image 4
belongs in 5. For categorical characteristics, f is given as:

17pci Z Pc
f(pci7pc) = (61)
O7pCi < Pc

6.2. GENERATING OPTIMAL IMAGE INPUTS 39

since leaving out image ¢ yields a lower probability on class ¢ being the true
class. The most influential images s may then be sorted such that s = [p; :
Pcj > pc(j+1)]'

However, the prediction for numerical characteristics is only a single value,
such that a comparison would not indicate a less confident prediction. To this
end, the subscript ¢ is dropped and f is given as:

f(pzyp) = ||pi —PH (6-2>

Where higher values of f indicate that leaving out image i leads to a larger
error in the prediction, such that photo ¢ has a positive influence for predict-
ing the correct value. s then consists of every image and is sorted as follows

s=1[p;: f(pj,p) > f(pj+1.p)]-

For training the student network, only the most influential images should
be taken from s. For categorical characteristics, s consists of only influential
images such that every image may be selected. For numerical characteristics,
a boundary € may be chosen to determine the most influential images. This
sampling method will be referred to as (A).

A different method for selecting the most influential images is to choose the
first K images from the sorted list s, where K = 0.1 x [J8|. This ensures that
from all influential images, only the most influential images are used for training.
This sampling method will be referred to as (B).

Finally, the dataset for training is constructed by joining all influential im-
ages in set s for every photoset .

6.1.3 Results

This section is available upon request.

6.2 Generating Optimal Image Inputs

Convolutional Neural Networks are driven by convolutional layers. As explained
in Section 2.1.2, convolutional layers contain a number of filters. In the con-
volutional layers, a convolution of the input and a filter is performed for every
filter in the layer, resulting in H feature maps.

One method for visualizing the optimal activation for a specific filter is the
following: First, generate a random image, containing pseudo-random noise.
Second, feed the image to the network to compute the feature map of the corre-
sponding filter. Third, change the input such that the feature map is maximized.
Changing the image is done by computing the gradients of the feature map with
respect to the input image. The second and third steps are then repeated for a
number of iterations.

The resulting input that optimally activate a certain filter is also commonly
referred to as a deep dream. More information about this process is found in
Olah et al. (2017) and Olah et al. (2018).

The Inception V3 architecture contains 16 blocks of convolutional layers.
Every block responds to increasingly more complex patterns in the data. In the

40 CHAPTER 6. RESULT ANALYSIS

following example, filters at different depths will be visualized. Here, a depth
of 1 refers to the first block and a depth of 16 refers to the 16th block.

The feature map visualizations of three networks at various depths are given
in Figure 6.1. At depth 1, the filters of the three networks seem to be activated
by colors. At depth 5, more advanced patterns arise. Here, the three networks
react to lines in different directions. Depth 9 is where the three networks start to
deviate. The filter of the characteristic C reacts to complex shapes. The filters
of characteristic A and B react to similar looking patterns. Starting at depth
13, all networks start to exhibit specialized filters for solving the corresponding
classification problem. At depth 16, which corresponds to the last block in the
network, the filters react to specific patterns in the data. This block contains
the last convolutional layer before the prediction layer. The features that are
found in this block are the features that are used for making predictions.

6.3 Saliency Maps Generation

We now discuss how regions in the image relate to the predictions of the neural
network, to better understand the learned features of the convolutional neural
network. This is done by computing saliency maps. Saliency (Simonyan et
al., 2013) represents the relative importance of the inputs for computing the
gradient of the output class. This is done by computing the gradients of class
activation S, with respect to the input image I, given by:

0S5,
oI

(6.3)

The result is a heatmap that highlights the pixels that are important for mak-
ing the prediction. Here, pixels that are more important have a higher color
intensity.

Due to non-differentiable activation functions, the resulting heatmap con-
tains noise. To this end, the softmax or sigmoid activation on the last layer is
replaced with a linear activation function (f(z) = z). To combat the noise of the
remaining ReLU activation functions, Guided Backpropagation (Springenberg,
Dosovitskiy, Brox, & Riedmiller, 2014) is used. Guided Backpropagation tries
to remove noise from the produced activation map by preventing the flow of
negative gradients from units that decreases the activation of the feature that
is visualized. This step is performed during back propagation, where gradients
that have a negative effect on the class activation are set to zero.

For visualizing the saliency maps, we consider the three images in Figure
6.2.

6.4. GRADCAM 41

6.4 GradCAM

The second approach for visualizing the model activations, is visualizing the
gradients directly. This is done using GradCAM (Selvaraju et al., 2016). Grad-
CAM is a generalization of the CAM algorithm (Zhou, Khosla, Lapedriza, Oliva,
& Torralba, 2015).

GradCAM is similar to visualizing saliency maps. The difference between the
two methods is the layer for which the gradients should be computed. Instead
of computing the gradients of the output layer with respect to the input, the
gradients of the last convolutional layer, before activation, are computed with
respect to the input.

As discussed in Section 2.1.2, convolutional layers consist of H filters. The
gradients should be computed for every filter GG, in the convolutional layer with
respect to the input image I. This is given by:

oGy,

=7 (6.4)

The gradients are then stacked and normalized. Normalization is performed
by dividing the stacked gradients with the maximum gradient in the stack. Af-
terwards the mean is computed over all maps, resulting in a gradient map with
dimensions (j, k). The resulting gradient map is then multiplied with the out-
put of every filter G}, € G and activated using ReLU activation, resulting in the
GradCAM heatmap. Finally, the heatmap is upscaled to match the dimensions
of the input image, (224,224).

In Figure 6.3, the GradCAM maps are presented for the same three images
that were used for computing the saliency maps in Section 6.3. Here, a higher
color intensity denotes a larger gradient which corresponds to more important
pixels.

42 CHAPTER 6. RESULT ANALYSIS

Feature Map Visualizations

Depth 5 Depth 9 Depth 13 Depth 16

Depth 1

Figure 6.1: Feature map visualizations on varying depths.

6.4. GRADCAM 43

Saliency

Original

(a) (b) (c)

Figure 6.2: Examples of saliency maps for three images. A higher saliency
corresponds to a higher color intensity. Every row corresponds to a different
class. Every column corresponds to a different image.

44 CHAPTER 6. RESULT ANALYSIS

GradCAM

Original

(b) ()

Figure 6.3: Examples of GradCAM maps for three images. A higher color
intensity corresponds to a larger gradient. Every row corresponds to a different
class. Every column corresponds to a different image.

Chapter 7

Discussion

This chapter is available upon request.

45

46

CHAPTER 7. DISCUSSION

Chapter 8

Conclusion

This chapter is available upon request.

47

48

CHAPTER 8. CONCLUSION

Glossary

Notation

Description

Symbol

Page
List

convergence

convex

data pipeline

feature

feeding

finetuning

multivariate dataset

one-hot

overfitting

Training a model until convergence means that
the model is trained such that a given (loss) met-
ric does not change anymore.

Optimization functions that are convex have
only one optimal solution, i.e. a global optima or
minima. When a function is non-convex, more
than one solution exists. Not every solutions
found by a non-convex optimization may be op-
timal.

All steps that are taken for retrieving the data
up to using the data for a machine learning
model.

Neural Networks learn abstract patterns in the
data, these are called features.

In the context of neural networks, feeding an in-
put is referred to presenting the neural network
with some input and computing an output.
Finetuning a neural network involves training a
neural network on data using a very low learning
rate. This ensures that the original knowledge
is not lost but is specialized towards the data
used for finetuning.

Datasets with two or more features.

A one-hot encoded vector is a vector containing
only zeros except for one element, which is a
1. For example, if the maximum value is 5 and
the number 2 should be one-hot encoded, the
one-hot encoding is given as [0,0,1,0,0,0].
When a model has overfitted, it has fitted the
training data to an extent that is does not gen-
eralize well to unseen data.

16

16

25

15

20

49

50 Glossary
Notation Description Symbol Page
List

photoset A collection of photographs of a user. P 5

ranking A list that is explicitly ordered from best to 5
worst.

representation A defining description.)

spatial information This refers to the information that may be 11
gained from one sample, e.g. the visibility of a
dog in an image.

temporal information This refers to the information that may be 11

user

gained from looking at the ordering of pho-
tographs in a photoset.

The person creating a summarization. U

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... Zheng,
X. (2015). TensorFlow: Large-scale machine learning on heterogeneous
systems. Retrieved from http://tensorflow.org/ (Software available
from tensorflow.org)

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S.,
... Asari, V. K. (2019). A state-of-the-art survey on deep learning theory
and architectures. Electronics, 8(3), 292.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Bouhini, C., Géry, M., & Largeron, C. (2016). Personalized information retrieval
models integrating the user’s profile. In 2016 ieee tenth international con-
ference on research challenges in information science (rcis) (pp. 1-9).

Chan, D. M., Rao, R., Huang, F., & Canny, J. F. (2018). t-sne-cuda:
Gpu-accelerated t-sne and its applications to modern data. CoRR,
abs/1807.1182 . Retrieved from http://arxiv.org/abs/1807.11824

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal Statistical
Society: Series B (Methodological), 39(1), 1-22.

Edunov, S., Ott, M., Auli, M., & Grangier, D. (2018). Understanding back-
translation at scale. CoRR, abs/1808.09381. Retrieved from http://
arxiv.org/abs/1808.09381

Farfade, S. S., Saberian, M. J., & Li, L.-J. (2015). Multi-view face detection
using deep convolutional neural networks. In Proceedings of the 5th acm
on international conference on multimedia retrieval (pp. 643-650).

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
... Adam, H. (2017). Mobilenets: Efficient convolutional neural networks
for mobile vision applications. CoRR, abs/1704.04861. Retrieved from
http://arxiv.org/abs/1704.04861

Hu, J., Shen, L., & Sun, G. (2017). Squeeze-and-excitation networks. CoRR,
abs/1709.01507. Retrieved from http://arxiv.org/abs/1709.01507

Jones, K. S., Walker, S., & Robertson, S. E. (2000). A probabilistic model of
information retrieval: development and comparative experiments: Part 2.
Information processing & management, 36(6), 809-840.

Jung, A. B. (2018). imgaug. https://github.com/aleju/imgaug. ([Online;
accessed 30-Oct-2018])

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei,
L. (2014). Large-scale video classification with convolutional neural net-

ol

http://tensorflow.org/
http://arxiv.org/abs/1807.11824
http://arxiv.org/abs/1808.09381
http://arxiv.org/abs/1808.09381
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1709.01507
https://github.com/aleju/imgaug

52 References

works. In Proceedings of the iece conference on computer vision and pattern
recognition (pp. 1725-1732).

Kiefer, J., & Wolfowitz, J. (1952, 09). Stochastic estimation of the maximum
of a regression function. Ann. Math. Statist., 23(3), 462-466. Retrieved
from https://doi.org/10.1214/aoms/1177729392 doi: 10.1214/aoms/
1177729392

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998). Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11), 2278-2324.

Lipton, Z. C. (2015). A critical review of recurrent neural networks for sequence
learning. CoRR, abs/1506.00019. Retrieved from http://arxiv.org/
abs/1506.00019

Lloyd, S. (1982). Least squares quantization in pcm. IEEFE transactions on
information theory, 28(2), 129-137.

Ma, S., & Dai, Y. (2011). Principal component analysis based methods in
bioinformatics studies. Briefings in bioinformatics, 12(6), 714-722.
Maaten, L. v. d. (2009). Learning a parametric embedding by preserving local

structure. In Artificial intelligence and statistics (pp. 384-391).

Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-sne. Journal of
machine learning research, 9(Nov), 2579-2605.

MclInnes, L., Healy, J., & Astels, S. (2017, mar). hdbscan: Hierarchi-
cal density based clustering. The Journal of Open Source Software,
2(11). Retrieved from https://doi.org/10.21105%2Fjoss.00205 doi:
10.21105/joss.00205

MclInnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold
approximation and projection for dimension reduction. arXiv preprint
arXiw:1802.03426.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference
on machine learning (icml-10) (pp. 807-814).

Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation
functions: Comparison of trends in practice and research for deep learning.
arXiv preprint arXiv:1811.03378.

Olah, C.; Mordvintsev, A., & Schubert, L. (2017). Feature visualization. Distill,
2(11), eT.

Olah, C., Satyanarayan, A., Johnson, I., Carter, S., Schubert, L., Ye, K., &
Mordvintsev, A. (2018). The building blocks of interpretability. Distill.
(https://distill.pub/2018 /building-blocks) doi: 10.23915/distill.00010

Olivas, E. S., Guerrero, J. D. M., Sober, M. M., Benedito, J. R. M., & Lopez,
A. J.S. (2009). Handbook of research on machine learning applications
and trends: Algorithms, methods and techniques - 2 volumes. Hershey,
PA: Information Science Reference - Imprint of: IGI Publishing.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 2(11), 559-572.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019).
Language models are unsupervised multitask learners.

Richter, F. (2017, 8B). Smartphones cause photography boom.
Statista. (https://www.statista.com/chart /10913 /number-of-photos-
taken-worldwide/)

https://doi.org/10.1214/aoms/1177729392
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1506.00019
https://doi.org/10.21105%2Fjoss.00205

References 53

Robertson, S. E. (1977). The probability ranking principle in ir. Journal of
documentation, 33(4), 294-304.

Roth, H. R., Lu, L., Seff, A., Cherry, K. M., Hoffman, J., Wang, S., ... Sum-
mers, R. M. (2014). A new 2.5 d representation for lymph node detec-
tion using random sets of deep convolutional neural network observations.
In International conference on medical image computing and computer-
assisted intervention (pp. 520-527).

Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al. (1988). Learning
representations by back-propagating errors. Cognitive modeling, 5(3), 1.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... others
(2015). Imagenet large scale visual recognition challenge. International
journal of computer vision, 115(3), 211-252.

Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., & Batra,
D. (2016). Grad-cam: Why did you say that? visual explanations from
deep networks via gradient-based localization. CoRR, abs/1610.02391.
Retrieved from http://arxiv.org/abs/1610.02391

Setio, A. A. A., Ciompi, F., Litjens, G., Gerke, P., Jacobs, C., Van Riel, S. J.,

. van Ginneken, B. (2016). Pulmonary nodule detection in ct images:
false positive reduction using multi-view convolutional networks. IEEFE
transactions on medical imaging, 35(5), 1160-1169.

Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convo-
lutional networks: Visualising image classification models and saliency
maps. arXw preprint arXiv:1312.6034 .

Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving
for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.

Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, E. (2015). Multi-view
convolutional neural networks for 3d shape recognition. In Proceedings of
the ieee international conference on computer vision (pp. 945-953).

Sun, Y., Chen, Y., Wang, X., & Tang, X. (2014). Deep learning face representa-
tion by joint identification-verification. In Advances in neural information
processing systems (pp. 1988-1996).

van Gerven, M., & Bohte, S. (2018). Artificial neural networks as models of
neural information processing. Frontiers Media SA.

Werbos, P. J., et al. (1990). Backpropagation through time: what it does and
how to do it. Proceedings of the IEEE, 78(10), 1550-1560.

Wiener, J. (2014, 10). Facebook’s top open data problems. Facebook Research.
(https:/ /research.fb.com/facebook-s-top-open-data-problems/)

Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R.,
& Toderici, G. (2015). Beyond short snippets: Deep networks for video
classification. In Proceedings of the ieee conference on computer vision and
pattern recognition (pp. 4694-4702).

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2016). Under-
standing deep learning requires rethinking generalization. arXiv preprint
arXiw:1611.03530.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2015). Learn-
ing deep features for discriminative localization. CoRR, abs/1512.04150.
Retrieved from http://arxiv.org/abs/1512.04150

http://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1512.04150

	Introduction
	Background
	Neural Networks
	The Basics of Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks

	Related Work
	Multi-image Classification
	Information Retrieval

	Transfer Learning
	Transferring Domain Knowledge

	Used Dimensionality Reduction Techniques
	Principal Component Analysis
	t-Distributed Stochastic Neighbor Embedding
	Uniform Manifold Approximation and Projection
	Comparison

	Data Pipeline
	User Data Retrieval
	Data Preprocessing

	User Quantification
	Methods
	User Vector
	Neural Network Architectures

	Experimental Setup
	Data
	Training Procedure
	Experiments

	Results
	Architecture

	Clustering
	User Vector Visualization
	Clustering Algorithms
	Gaussian Mixture Models
	k-Means

	Determining Partitioning Quality
	Clustering Evaluation

	Learning Personal Relevance
	Result Analysis
	Training a Neural Network for Visualization
	Architecture
	Dataset Construction
	Results

	Generating Optimal Image Inputs
	Saliency Maps Generation
	GradCAM

	Discussion
	Conclusion
	Glossary
	References

