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Abstract

Origin semantics introduced by Bojanczyk is a fine grained semantics for
transducers, that not only expresses the relation between input and output
words, but also includes a function that given an output position returns
the input position where it was produced: the origin. In this thesis we study
resynchronizations, a tool to relax the notion of origin while maintaining de-
cidable containment and equivalence. We study the notion of containment
up to some unknown resynchronization, and show that this forms a pre-order
strictly in between classical and origin containment. Using a notion of desyn-
chronized blocks we observe the non-existence of this resynchronization and
show this containment is undecidable for one-way finite state transducers,
which was an open problem.
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Chapter 1

Introduction

The study of transducers, models describing a function or relation between
words, is pervasive in computer science. Since the beginning of automata
theory a model called finite state transducers has been researched. These
transducers are an extension of normal automata that also produce output.
These finite state transducers share similarities with finite automata. How-
ever differently from automata, for transducers features as non-determinism
or the ability to move both ways in a word (two-way transducers) does
impact expressiveness. Together with the fact that many natural problems
like equivalence and containment of transducers are undecidable [Iba78], this
class seems less robust than the regular languages.

To tackle these problems Mikotaj Bojariczyk proposed a refined seman-
tics [Bojl4] in which transductions do not only compute a partial function
from word to word, but also retain the origin of every output position.
Transducers now not only compute a relation between input and output
word but produce objects called origin graphs which are a relation between
input word and output word and comes with an extra function mapping ev-
ery output position to an input position. With this extra piece of information
about how the output was computed from the input, there seems to form a
more robust class. The equivalence of origin transductions is decidable, and
it allows more natural algebraic characterizations [Bojl4, BMPP18].

This equivalence and containment of transducers under origin semantics
however differs from equivalence and containment with the classical seman-
tics where one is only interested in the underlying relation of input and
output words. In origin semantics two transducers are only equal if they
compute the same origin graphs, so also the origin mapping must be equal.
This equivalence is much stricter than the one in the classical sense, so this
motivates the use of resynchronizations to study an intermediate notion of
containment and equivalence that tells the input and output word are the
same, and the origin mapping shares some similarity.

Resynchronizations as discussed in [BMPP18] are a tool to express simi-



larity between different origin graphs that have the same underlying relation.
These resynchronizations relate origin graphs that have the same input and
output word but in which the origin mapping differs in a regular way. With
a given resynchronization it is possible to expand the origin containment to
containment up to some resynchronizer. That is all graphs are contained
but the origins are allowed to change in a defined way. When restricting
to bounded regular resynchronizers, which allow only a bounded number of
origins to be redirected to each position, this containment is decidable in
PSPACE [BMPP18], which is not more difficult than containment between
NFAs.

In this thesis we study containment up-to some unknown bounded reg-
ular resynchronization. For two transducers T7,7T» we say a transducer T}
resynchronizes to 75 if there exists a bounded regular resynchronizer such
that 77 is contained in 75 up to an unknown regular resynchronizer. This
relation is studied in [BKM™19] where they call it the synthesis problem
and show it to be decidable for a subset of transducers called k-ambiguous.
The general case is left open.

To solve this open problem we study the expressiveness of relations that
bounded regular resynchronizers can describe. In order to witness the ab-
sence of a bounded regular resynchronizer we introduce a notion of desyn-
chronized, and prove that there exists a bounded regular resynchronizer
inducing a relation if and only if there exists a bound on the desynchroniza-
tion. Using this result we build a reduction from a problem called INFTAPE
on Turing machines asking whether a given Turing machine uses an infinite
amount of tape. By using a domino construction that is used in the proof
that the Post Correspondence Problem is undecidable [Pos46], we reduce
INFTAPE to resynchronizibilty of one-way finite state transducers. This
shows the resynchronizability relation is undecidable for one-way finite state
transducers.



Chapter 2

Preliminaries

2.1 Languages, automata and algebra

While classically finite automata are often used to express the regular lan-
guages, in this thesis we use two other formalisms, that express exactly the
same class of languages. First we use Monadic second order (MSO) logic
on strings. Secondly we consider an algebraic classification using monoids.
Both techniques will be used later on in the thesis, MSO will be used to
relate positions in a word and the monoid representation is used in the
technical proof of Lemma 5.10.

2.1.1 MSO for words

A word can be expressed by a relational structure on the universe of posi-
tions of the word. This universe consists of a set of integers distinguishing
the positions and the structure is given by predicates for the labels of the
positions, and the order in which the positions occur.

Definition 2.1. Given an alphabet 3, a word w € ¥*, can be represented
by the structure w = (dom(w), <,a € X), in which:

o dom(w) ={1,2,...,|w|} the set of positions of s

e < a binary relation on positions x < y means T s a position occurring
before y or x = y.

e a €Y a unary label predicate stating if the label of position x has label
a. a(x) is valid if and only if position x is labeld with an a.

An MSO formula is defined by the following grammar where a ranges
over an alphabet.

g =a(x) |z<y|zeX|rg|IXo | oAV | g



We allow the operators A, —,3 in which 3 can quantify over both sets
and elements. We use uppercase letters for variables ranging over sets of
positions, and lowercase letters for single positions. For example if ¥ is an
alphabet then Jz.a(x) on the structure of a word w € ¥* means there exists
a position z € dom(w) which is labeled a € X.

Note that most of the usual combinators like V, vV, = can be created using
the combinators which exist. For instance also other useful formula such as
successor s(x,y), first(x) and last(x) can be constructed:

s(z,y) =z <yAVz (2 <y —z<ux)
first(z) =Vy.x <y

last(x) =Vy.y < x

We will use the interval notation [y,z] in 3z € [y, z].¢) as shorthand
notation for the formula Jz.(x < 2z Ay < x) — 9, and (y, z) for the open
interval Jz.y <z Az < 2.

If ¢ is an MSO formula and w = (w, <,a) an MSO structure w € ¥* a
word. We will write w |= ¢ if w is a valid model for ¢. With classical MSO
semantics meaning the formula ¢ is true in the model of w.

Definition 2.2. The language of an MSO sentence ¢ denoted as [¢] is
given by:
[¢] ={w | we X" and w |= ¢}

The class of languages that can be generated by MSO-sentences are
exactly the regular languages. An important result known as the Biichi-
Elgot-Trakhtenbrot theorem shown in the sixties [Biic60, Elg61, Tra61]. At
some point in this thesis we will also use the notation w = ¢ for some word
w € ¥* and MSO-formula ¢ by which we mean the MSO-structure of w:
w = (dom(w), <, a).

Example 2.3. Some examples of languages defined by MSO formulas
o L1 ={w | every a is followed by a b}
p1 =Va.a(x) — (Jy.s(y,z) A b(y))
o Ly ={w| |w| is even}

w2 = IX. (V. first(x) -z € X
Vedast(z) » o ¢ X
VeVyx € X Ns(z,y) >y & X
VeVyx & X Ns(z,y) >y e X



e L3 ={w | w does not have an occurence of abba}

w3 = VoVyVzNVu. (s(x,y) A s(y, z) As(z,u)) —
—(a(z) Ab(y) Ab(2) A a(u))

Free variables

We only discussed languages described by closed MSO sentences. However
in this thesis we will also use MSO formulas with free variables. Extra
information can be added by extending the alphabet, so that the values of
the free variables is specified in the word. This way MSO formulas with free
variables can be intuitively seen as a regular language.

For example consider the MSO formula s for the successor relation with
two free first order variables x and y.

s(r,y) =z <yAVz. (2 <y —z<ux)

Now it makes no sense to talk about words which satisfy s but when x and y
are fixed positions in a word w € ¥* we can check the validity of s. If a word
w with positions z and y satisfies s we write w,x,y = s. To demonstrate
this we can decorate words with the positions chosen for z, y:

w: a b ¢ b a w: a b ¢c b a w: a b ¢ b a

X X X
y y y
(a) w,z,y =5 (b) w,z,y s (c) w,z,y s

These decorations can be added as an extension to the alphabet X, for
every free variable add a boolean b € B the the alphabet where a 1 € B
indicates the position is in the free variable and 0 € B says the position is
not in the free variable. To indicate what are the chosen positions z,y we
get a word w’ over the extended alphabet v’ € ¥ x B2.

a b ¢ b a a b ¢ b a a b ¢ b a

w:l0 0 1 0 0 w:{0 0 0 1 0 ww:/1 0 0 0 0
00 01 0 0O 0 01 0 0 0 01 0
(a) w' €s (b) w’ & [s] (c) w' & [s]

Given an MSO formula ¢ with k free variables X7, ... X} on structures
over the alphabet ¥. Given a word w € ¥ x B* an element = € dom(w)
labeled (a, b1,bo,...,b) for some letter a € ¥ this represents the element
xz € X; if and only if b = 1 for ¢ = 1,2...,k. The language of ¢ is a
language over the alphabet ¥ x BF.



While the example uses a first order free variable this can be seen as a
special case of a second order variable with an extra restriction that it only
contains one element. This implies that any MSO formula with free variables
can be seen as a regular language over an extended alphabet indicating the
positions which are element of the free variables. For this reason when
referring to MSO formulas we will sometimes call them regular properties.

2.1.2 Monoids recognizing languages

Another way to express exactly the class of regular languages is via an
algebraic approach using finite monoids. This characterization gives some
powerful tools which we use in this thesis.

A set M equipped with a binary operator - : M x M — M is called a
monoid if the operator - is associative and there exists an identity element
e € M such that for every a € M, a-e = e-a = a. Sometimes written as
a monoid M = (M, -, e). However when it’s clear from the context we will
just call the set M a monoid.

A monoid morphism is a function between monoids preserving the struc-
ture of the monoid.

Definition 2.4. Let M = (M, 1y, 1), N = (N, -, 1,,) be monoids then the
function f: M — N is called a morphism if and only if:

e the identity is preserved: h(1,,) =1, and
e the structure is preserved: h(a -m b) = h(a) -, h(b) for every a,b € M.

We call the monoid on X* the free monoid where the identity element is
the empty word € and the binary operator is given by string concatenation.
The alphabet ¥ is called the generators of the free monoid. For every monoid
M = (M,-,1,,) and function f : 3 — M, this can be extended in a unique
morphism from the free monoid. This unique morphism is denoted by f* :
¥* — M and defined by f*(¢) = 1,,, and f*(aw) = f(a) - f*(w).

A monoid M together with a function f : 3 — M and a subset U C M
is said to recognize the language L C ¥* if L is exactly the pre-image of U
under the morphism f* which is the unique morphism to the free monoid
generated by f.

L={w|weX*and f*(w) e U}

Theorem 2.5. A language is reqular if and only if it is recognized by a finite
monoid.

Proof. (=) On an alphabet X let NFA N = (Q,0: Q — P(Q),F C Q,I C
Q). We now build a monoid M and function f : ¥ — M to recognize
the language of N. Let the set of the monoid M = P(Q) — P(Q) since



@ is finite this is a finite set with identity element 1(P) = P and binary
combinator which is function composition - : M x M — M as (a-b)(P) =
b(a(P)) for all P C Q.

Now we define the homomorphism f : ¥ — M by f(a)(P) = U,cp d(a, q).
This can be extended in the homomorphism f* : ¥* — M by f*(¢)(P) = P
and f*(wa) = f*(w) - f(a). The intituition for f* is that describes all the
paths the NFA can take on the input word. Now for every word w € 3, w
is accepted by the NFA N if and only if f*(w)(I) N F # (), which intuitively
means that the automaton is able to reach a final state with a run of the
automaton.

(<) Given a finite monoid M = (M, -, 1) with the homomorphism
f Y — M and subset U C M. The language recognized by M is also
recognized by DFA D = (M, 6,1,U) with §(¢,a) = q -m f(a). Now if a word
w € ¥* is in the language of M than f*(w) € U the § function has the same
behaviour as f*(w) so 6*(1,w) € U so w is also accepted by D. O

Example 2.6. Given the alphabet ¥ = {0,1} and the natural morphism
f X = M with M being the additive group Z/27.

Ly={w | we{0,1}" |w|; is even}

Ly ={w | we{0,1}" |w|; is odd}

Where the language Lg is recognized by the monoid M, morphism f and
subset {1} € M. The language L is recognized by the monoid M, morphism
f and subset {0} C M.

Ramsey factorization forests and the factorization forest theorem

A common and much used result in automata theory is that when the size
of words grows beyond a certain point every run of a finite automaton must
have a repetition of states. The run between this repetition can be repeated
not changing the outcome of the automaton and thus producing a larger
word. This argument is often used to prove languages are not regular and
is called the pumping lemma.

For the main result of this thesis the argument of repetition is not suf-
ficient, and we use a deep theorem by Simon [Sim90]. The theorem can be
interpreted as that there exists a repetition of behaviors rather than rep-
etitions of states. While in nature both theorems look alike, this theorem
is in fact more powerful. In this section we will shortly introduce Ramsey
factorization and give some example of basic intuition in the theorem. More
details and an overview of the theorem in different subclasses of semigroups
can be found in [Col13].

Let M = (M,-,1) be a monoid and w € M* a word over the monoid. A
factorization tree is then a tree in which each node is labelled by a monoid



111 2 1 1 1 0 2 2 2

Figure 2.3: Ramsey factorization tree

element m € M and either a leaf, or an internal node with children. The
value of each node is the product of it’s children with the binary monoid
operation. A factorization tree is called Ramsey if it has following structure.

Definition 2.7. (Ramsey factorization) A Ramsey factorization tree is a
tree in which each node is either:

e a leaf
e a node with two children

e a node in which all the children are labelled by the same idempotent
value e € M.

In Figure 2.3 an example Ramsey factorization is given on the monoid
M = ({0,1,2},+,0) which is the additive group Z/3Z. The edge high-
lighted in blue is from the node where the third rule is used and indicates
the repetition of behavior. Note the difference from loops because the word
belonging to the values are in fact different.

Theorem 2.8. (Simon’s factorization forest theorem) For all monoids M
and all words on the monoid uw € M™, there ewists a Ramsey factorization
tree for u with f of height at most k = 3|M| — 1.

The k = 3|M| — 1 is an overestimation but for our purposes this does
not matter. The fact that there exists a bound on the height of the Ramsey
factorization tree that is not dependent of the length of the word provides the
notion of repetition of behavior. Given a regular language L € ¥*, we know
by Theorem 2.5 that there exists a monoid M and a function f: ¥ — M
such that the monoid M with morphism f* : ¥* — M recognizes exactly
the language L. Every word ajas...ar € L can be represented as a word
mi1...mp € M* by applying the function f that is for every 1 < i < n,
m; = f(a;). Now using the pigeon hole principle and the factorization



forest theorem we can conclude that for every n € N there exists a length
m € N such that for any larger word u € L, |u| > m there exists a Ramsey
factorization tree for u that has a node with at least n children.

For n > 3 This means all the children of the node have the same idem-
potent element in the monoid and thus the value of the children are a factor
in the word that have idempotent behavior in the monoid.

2.2 Transducers

Extensions of automata that produce output are called transducers. The
definition is obtained by extending the transition functions of normal au-
tomata so that it does not only consume a word, but also produce output
on every transition. This way an automaton will not recognize a language of
words but recognize a relation between input and output words, this relation
realised by a transducer is called a transduction.

Definition 2.9. A two-way non-deterministic transducer (2NT) is given
by T = (Q,%,T,6,q0, F) a 6-tuple consisting of:

e () a finite set of states

X, T the finite input and output alphabet respectively

0:Qx (XU{F,He}) xQx{L,R} xT* the transition relation, where
F, ¢ X are markers indicating the beginning and end of the input
word, and L, R are for the directions left and right

qo the initial
o ' C (Q the set of final states.

Every transition (q,a,q', D,v) € § means that the automaton is in state
q € Q reads an a € X U {F, 1, e} outputs v € I'*, transitions to state ¢’ € Q
and moves the reading head to the left if D = L or to the right if D = R.
As a diagram this transition is given as

OO

Transition (¢, a,q’, D,v) € 6

A run of a transducer T on the input word w € X* is obtained by
applying the transition relation of the automaton on the word F w - where
F, - are the markers preventing the automaton of running out of bounds.
We also don’t allow the automata to produce output on the end markers

10



F, . So for every state q,¢' € Q if (¢,F, ¢, D,v) € § then direction D = R
and the output v = ¢. If (¢,,¢',D,v) € § then D = L And v = e. This
makes sure the automaton does not go out of bounds or produce output on
the end markers.

The first step in the run of the automaton is in (go, 1) meaning that
the reading head is on the first letter a; of the input word w = a1...a,
and the automaton is in the initial state gg. A possible step from any
configuration (g¢,4) to the next configuration (¢’,’) if it is in the transition
relation (q,a;,q’, D,v) € § where a; is the ith letter in the input w, v € T*
is the output produced by the transition, and i’ is decided by the direction
D from the direction. If the direction D = L the reading head will go one
position to the left so #/ =i — 1 if D = R the reading head will go one place
to the right and i/ = i+ 1. We will write these transitions as (q,7) — (¢', )
where b is the output produced 6 > (q,a;,¢',d € {L,R},b). A run of a
transducer M on the input word w is given as (qo, 1) =, -+ =, (qy,1) for
some 0 < i < |w|. A run is valid if ¢ € F a final state.

The semantics of a given two-way transducer M, [M] : ¥* x I'* is a
relation of input and output words given by [M] = {(w,v) | w € ¥* and v €
I} if on input word w there exists a valid run (go,1) =4, -+ —w, (gf,1)
where v = vivg...v, € I'" is the concatenation of all the outputs on the
transitions that is: 6 > (¢, a;, D, ¢iy1,d € {L, R}, v;).

A transducer is two-way deterministic 2DT if there are no ¢ transitions
and for every input letter a € ¥ U {, 4} and state ¢ € @ there is at most
1 transition rule (g,a, D, q’,v) for some ¢ € Q,D € {L,R},v € T*. The
relation that a deterministic transducer describes is functional as there is at
most one run valid on each input word.

A transducers is called one-way non-deterministic 1NT if every tran-
sition is right moving, this means that every in ¢ has directen R. Addi-
tionally like in normal automata we require these 1NT's to stop at the end
of the word. More precisely run of a 1NT on a word w € X* given by
(g0, 1) =4, .. (gy,1) is only valid if ¢y € F' is a final state and ¢ = |w| the
final position in the word. As an exception we have that ¢ transitions do
not move the tape head. Since 1NT's only move in one way the direction D
on transitions is omitted.

A one-way deterministic transducer 1.DT is a transducer that is both one-
way and deterministic. In contrast with the normal automata, the extension
of the model with left transitions and the addition of non-determinism does
change the class of transductions that is recognized.

\DT # INT # 2DT # 2NT

The class which in literature is called the regular transductions is the
class exactly recognized by 2DT's as this is also precisely the class accepted
by functional M SOT transductions [EH01] and streaming string transducers

11



[AC10]. More on the expressiveness and classifications off these different
models are discussed in [BDGP17].

Example 2.10. The 2DT Ty = (Q,%,T,6,q0,{qr}) on input and output
alphabet ¥ = T' = {a,b} that computes the transduction w — ww". This
transducer is given by the diagram:

blb, R blb, L
ala, R ala, L

e, L /Q F,e,R

Transducer T

Example 2.11. The INT Tt = (Q,%,1',0,q0,{qr}) on input and output
alphabet ¥ = T' = {a, b} that computes the full relation [T,y = ¥* x I'*.
Given by the diagram:

ela ale
elb ble

Transducer Ty

Example 2.12. The 2NT T3 = (Q,%,I',0,q0,{qr}) on input and output
alphabet ¥ = T’ = {a, b} that computes the relation [T3] = {(w,w™) | w €
X* and n € N}

blb, R ble, L
ala, R ale, L

Transducer Tj

12



Chapter 3

Origin semantics

3.1 Introduction

The notion of origin semantics was introduced by Bojariczyk in [Bojl4].
The main idea is that transducers not only produce a relation on input
and output word, but also have information on where in the input word an
output letter was produced: the origin. While in the classic semantics this
information is thrown away, in the origin setting this information is kept.
A run of the transducer now not only results in a pair of input word and
output word, but also the origin of each output position. Such an object as
in Figure 3.1 with a pair of input word, output word and the corresponding
origin of where each output position originates in the input word is called
an origin graph.

Input: a b ¢
Origin:
Output: ¢ b a

Figure 3.1: Possible origin graph that has input abc and output cba

The origin semantics of a transducer is the set of origin graphs that it
produces. Origin semantics is more fine grained because origin graphs also
contain the origin of every output position.

It is important to note that this is indeed a different semantics than
the classical semantics. For example a run on a transducer abc — cba can
be computed in many different ways as seen in Figure 3.2, all producing
different origin graphs while being the same in the classical sense. However
if one would regard the reverse transduction w +— w’ the most natural
solution in all frameworks describe the same origin semantics.

These new semantics for the transducers prove to be interesting since
they have some promising results indicating a more robust class than trans-

13



Input «a b c Input a b c Input: a b c

Output ¢ b a Output c b a Output: ¢ b a

Figure 3.2: Origin graphs have input abc and output cba

ductions under classical semantics. Origin semantics allow a machine in-
dependent characterization of the regular transducers and a natural char-
acterization of some of the natural subclasses including FO-definable and
order-preserving [Bojl4]. Furthermore equivalence of the origin semantics
of 2NT's is decidable in PSPACE [BMPP18] whereas equivalence of the
classical semantics is known to be undecidable.

3.2 Definitions

In this section we will give a more formal definition of origin graphs and
origin semantics. In literature there exists a lot of slightly different defini-
tions for origin graph, in this thesis we follow a slightly modified definition
from [DFL18].

Definition 3.1. On input alphabet 32 and output alphabet I' an origin graph
o = (u,v,orig) is a triple where

o (u,v) € X* x I'* the pair of input and output word.

e orig: {1,2,...,|v|} = {1,2,...,|ul} the origin function mapping ev-
ery output position to an input position.

For an origin graph o = (u, v, orig) we introduce the functions in(c) = u
and out(o) = v to regain the input word and the output word of the origin
graph.

In this thesis we only discuss finite state transducers, however for dif-
ferent models there also exists natural ways of defining origin information.
For the finite state transducers as discussed in the preliminaries the origin
semantics are defined in the natural way as follows.

e finite state transducers

The origin of an output position is the input position in which the read-
ing head of the automaton is when that output position is produced.
Given a run of T on input word u = agay ...a, with m transitions
(Gi1, 1) =1 (Qigs%2) —wy =+ —w, (4f,%m), then the origin graph pro-
duced by this run o = (u, v, orig) has input u output v = vivy... v,
where v; = (gj, aij) the output produced by the transitions. For ev-
ery position in the subwords x € v; the origin map orig(z) = i; the
position of the tape head in which it was produced.

14



ala, R ale, R ala, L

@””%”@
Po b1

) Transducer Tjq ) Transducer T2

Figure 3.3: Definitions of T;q, Tj4r

(a) Origin graphs of Tj r

Figure 3.4: Origin semantics of T4, T;4r

Definition 3.2. The origin semantics of a transducer T from X to I’
denoted by [T], is the set of origin graphs produced by T.

Two transducers are called origin equivalent when they produce the same
origin graphs. Intuitively the equivalence relation of these new semantics are
smaller than the classical semantics. Where transducers are equal under the
classical equivalence if they compute the same relation, they are only equal
under origin semantics if they also have the same origins.

For transducers classical equivalence does not imply origin equivalence.

Lemma 3.3. For two transducers 11,15 :

[Th] = [13] # [T1]o = [12]0
Proof. Follows from Example 3.5. 0

The reverse of this implication is true. One can see that origin semantics
really are a refinement of the classical semantics.

Lemma 3.4. For two transducers T1,T5:

[T1]o = [T2]0 = [T1] = [12]

Proof. By definition if two origin graphs are equal, they have the same input
and output. ]

Example 3.5. Two transducers T;q and Ti;r on the singleton input and
output alphabet ¥ =T = {a}. Where T;y computes the identity from left to
right, and Tiyr computes the identity from right to left. Both transducers
are given by the following diagrams
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ala, R ale, R ala, L

e Fle, L @ Fle, L @ e, R

Transducer T;q Transducer T, r

These two transductions both describe the relation [T;q] = [Tigr] = {(a™,a™) | n €

N}. However the origin graphs produced are different. For example on the
: 5
mput a:

Output a a

1

Input  a a

a Output a a a a a

a a Input a a a a a

Origin graph by T;q Origin graph by T;yr

To demonstrate multiple interesting origin behaviors, we give three trans-

ducers Tfirst, Trandom, Tlast Which on alphabets ¥ =T' = {a, b} all compute
the function (a™b)™ — (ab)™.

Example 3.6. Given three INT's as Tirst, Trandoms Liast 01 alphabets 3 =

' = {a,b} given in Figure 3.5. Possible origin graphs are given in Figure
3.6.

(b) Transducer T} qndom (¢) Transducer Tjqs¢

Figure 3.5: Transition diagrams for Tt st, Trandoms T first
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Input: @ a a a pInput: a a a a pInput: a a a a b

N 4

Output: a Output: a b Output: a b

Figure 3.6: Possible origin graph produced by T'first, Trandoms Tlast respec-
tively.

While these examples are all equivalent [Ttirst] = [T1ast] = [Trandom]
they are all different in origin semantics. The only origin containment re-
lations that hold are [Ttirst]o € [Trandom]o and [Tiast]o € [Trandomlo since

the first and last are also one of the random cases.
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Chapter 4

Resynchronizations

4.1 Resynchronizations

Since a transduction can have different origin information while maintaining
the same originless semantics, one can be interested in a relation between
origin graphs with different origins. We call a relation that relates origin
graphs with different origin information a resynchronization. In recent work
a framework for resynchronizations and the containment problem for regular
transducers up to resynchronization is discussed [BMPP18]. A framework
is proposed which consists of regular resynchronizations defined with MSO
formulas. This is based on the idea of resynchronizations for rational trans-
ducers as described in [FJLW16]. Because of the regular character of MSO
definable languages these resynchronizers are sometimes also called regular
resynchronizers. In this section we will discuss these regular resynchroniza-
tions.

Resynchronizers describe a relation on origin graphs that share the same
input and output but the origin information can be different in a described
way. The main part of regular resynchronizers is an MSO sentence that
describes if an origin is allowed to 'move’ from a position to another po-
sition. The rest is useful to deal with non-determinism and to add some
expressiveness.

The resynchronizer is equipped with output parameters O to express
regular properties on the output word. Then there is an MSO formula ~
over the input word that is responsible for moving origin mappings. This
formula can not access the output types O directly but uses output types to
know the output parameters for a single output positions. If x is an output
position labelled with @ € I" and by, bo,...,b,, € Bwhereb; =1 < z € O;
then we note the output type 7 € I' x B™ to be 7 = (a, by, ba, ..., bp).

Definition 4.1. An MSO resynchronizer R is a tuple (a,_ﬂ, v,08) with n in-
put parameters I = (I, ..., I,) and m output parameters O = (O1,...,0n):

e o) an MSO formula over the input word with input parameters I.
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e 3(0) an MSO formula over the output word with output parameters
0.
o y(7)(I,z,y) an MSO formula over the input word for every output-type

7 € I' Xx B" for n output parameters, and free variables x,y indicate
the source origin and target origin.

o (1, 7)(I,2,2") an MSO formula over the input that constrains the
origins z, 7 of two consecutive output positions with type T,7’.

The input and output parameters I and O are used to express regular
properties of the input word and output word, using the MSO formula «
and (. They also add expressiveness to deal with non-determinism to keep
a consistent pick between the different input positions, as demonstrated in
example 4.6.

The v and ¢ formulas describe how origins are allowed to change. They
both only are over the input part of the origin graph, and can only ac-
cess fixed regular properties of the output word via the type of the output
parameters which are encoded in the type of the output position.

Given an origin graph o input parameters and output parameters are
a subset of the input or output positions respectively. Thus on ¢ an in-

terpretation on n input parameters are given by I = Iy,..., I, where all
i € [1,n],I; C dom(in(c)) and the same for m output variables O =
O1,...,0n C dom(out(c)). For every position z € dom(out(c)) we say

the output type of z is 7 = (a, b1, ba, ..., by) € I' x B™. Where a is the label
of the output position z and for 1 < i < m if x € O; then b; = 1 otherwise
b; = 0.

Definition 4.2. An MSO resynchronizer R describes a relation [R] on ori-
gin graphs, defining the relation on origin graphs o = (u,v,orig) and o’ =
(u', v, orig")) defined by (o,0") € [R] if and only if u=u' and v ="', there
exists input parameters [ = I, ..., I, C dom(u), O = O1,...,0, C dom(v),
and the following requirements hold.

o (u,l) Fa
. (0,0)F§

e For every output position x € dom(v) with the type of x type(x) =
7 and the origin of x in o is orig(x) = y while in o’ the origin is
orig'(xz) = z, we have (u,1,y,z) = v(T)

e For all consecutive pairs of output positions x,x’ € v with output type
7,7 (u,I,orig' (z),orig (2')) | 6(7, 7).

The ¢ formula is used to constrain the relation, which is of little use in
this thesis so for the most part we will assume 6 = T so that the relation is
only restricted on the movement of the origins by ~.
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4.2 Examples

To illustrate the functionalities of the relation these resynchronizers define
we show some examples. Since we don’t use the § function in this thesis
all examples have § = T, for an example illustrating the usefulness of the ¢
function see [BMPP18]. In the example origin graphs arrows will represent
the origins in o, and dotted lines the origins in o’.

Input: ...orig(x)... coorig(x) ...

Output: ce T

Figure 4.1: Notation to express (o,0’) € [R]

Example 4.3. The resynchronizer without parameters Ryni, = (o, 8,7,0)
with o = =T and for every output type 7,7 € T, v(7) =T and 6(7,7') =
T. This is called the universal resynchronizer and will resynchronize any
two pair of origin graphs that share the same input and output.

Example 4.4. The resynchronizer without parameters Ry; = (T, T,v,T)
that only use v to shift origin by 1 place. For every output type T € I the

formula v(7)(y, 2) = s(y,z) V s(z,y)

Input: a a

Output: p a

Example 4.5. A resynchronizer without parameters that moves the origin
of the first letter of a sequence of a’s to the last letter. R = (T,T,v,T).
Where for every output type T the formula

V(). 2) = (y=2) Nb(y)
v
(y<=z
A (Vo € [y, z].a(x))

A (Va.s(z,y) — —a(z))

A (Va.s(z,z) = —a(z))

)

Note that in this resynchronization on the identity function over (a*b)*
can have arbitrary many output positions for which the origin moves arbi-
trary many places.
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Input: a

aaba/b
a b a b

Example 4.6. The resynchronizer from Example 4.5 but with one input
parameter that chooses a random a in the sequence of a’s to redirect to.
Rrandom = (o, T,7, T), where a ensure that Iy only has one input position
in every sequence of a’s and vy redirects the first a to this chosen a.

Output:

e a(l1) = V. (a(z) Nz € ) = Vy. (aly) AVz € [z,y].a(z)) = —~y €

LVy=x

o Y(7)(y,2) =aly)y AN—aly—1) 2 ze [ ANNVwy<w<zVz<w<
y = a(w))

Input: a Input: a

a a/b a a/b
a b a’ b

Figure 4.2: Multiple origin graphs in R,andom

Output: Output:

4.3 Containment up to resynchronization

Using these resynchronizers one can expand the notion of origin contain-
ment of transducers, by talking about the origin containment up-to some
resynchronizer R. In contrast to containment of the classic semantics this
new notion for containment for 2NT's is decidable in PSPACE as shown in
[BMPP18].

Definition 4.7. For a given resynchronizer R and two transducers T1, Ts we
say Ty C, R(T5) if for every origin graph o' € [T1], there exists o € [T3],
such that (o,0’) € [R].

In other words this means that 77 is contained in the resynchronization
expansion of T5. Verbally we say T} is contained in 75 up to R.

Example 4.8. Let Tfrsi, Trandom, Tlast be the transducers from Ezample 5.6
and Rfyrst-to-last; Rrandom be the resynchronizers from Examples 4.5,4.6. Then
we have Tlast c Rﬁrst-to-last(Tﬁrst) and Tmndom c Rmndom(Tﬁrst)- All trans-

ducers compute the same relation, one only needs to observe the replacements
done by the resynchronizers.
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We will show that this new notion of containment is not transitive and
not reflexive. For a fixed resynchronizer R, it might not be the case that
for every transducer T', we have that T' C, R(T'). Also it is not transitive.
Given transducers T, T3, T5 and it is the case that T} C, R(T3) and T C,
R(T3) it might not be the case that 71 C, R(73). This can be seen by the
example resynchronizer Ry; from Example 4.4, that shifts the origin with
one position.

4.4 Bounded resynchronizers

Note that the universal resynchronizer from Example 4.3 will relate any
two graphs that share the same input and output. This will cause the con-
tainment relation to boil down to originless equivalence. Which will render
containment up to resynchronization undecidable. Since T} C, Rypniv(T2) if
and only if [T1] C [T2] and this classical containment problem is known to
be undecidable.

If we restrict the containment problem to bounded resynchronization
the problem becomes decidable [BMPP18]. The intuition of bounded resyn-
chronization is that for every input position z only a bounded number of
positions get redirected to z.

Definition 4.9. (Boundedness) A regular resynchronizer R = (a, 3,7,0)
has bound k if for all inputs u, input parameters I, output types T € T x B",
and target positions z € dom(u), there are at most k distinct valid source
positions y1, ... yx € dom(u) formally (u,I,y;, z) = v(7) foralli=1,... k.
A regular resynchronizer is bounded if it is k-bounded for some k € N and
unbounded if there is no such k € N.

Of the examples from Section 4.2 only the first one is not bounded.
Example 4.6 is interesting since there is no bounded resynchronizer without
parameters that describes this relation.

Since our research focuses primarily on bounded regular resynchroniz-
ers when not specified by saying resynchronizer we mean bounded regular
resynchronizer. The question whether a given regular resynchronizer R is
bounded is decidable [BMPP18].
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Chapter 5

Resynchronizability relation

In this chapter we will be interested in the containment up to an unknown
bounded resynchronizer. Resynchronizers form a fixed relation between ori-
gin graphs, but in this chapter we are interested whether there exists a
bounded resynchronizer that relates the origin graphs of two transducers.
This is what we call resynchronizability, transducers are resynchronizable
if the origin graphs they produce can be related by a bounded resynchro-
nizer. The way the computation is done might be different, but not too
incompatible.

Definition 5.1. (Resynchronizability) We define <: T x T where Ty < Ty if
and only if there exists a bounded resynchronizer R such that Ty C, R(T5).

This relation is an interesting one since it expresses something interme-
diate of the classical and origin containment. From the definition it follows
that for two transducers 17 and 715, if 77 < T5 then they are also contained
in the classical sense [T1] C [72]. The opposite is not the case as can be
seen by Example 5.2. Let us recall that for 2NT's classic containment was
undecidable and for origin semantics it is decidable. It could be the case
that this new containment relation forms a decidable relation that is bigger
than origin containment.

Example 5.2. Let us give an example of two transducers Tgys, Tan with
[[Tﬁrst]] = HTall]] = {(an, am) ‘ n,m & N}; and Tall = Tﬁrst but Tﬁrst ﬁ Tall-
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Transducer Tgys

Indeed, we have Ty C R(Tfrst) where R uses only y(z,y) = (z = first),
which is bounded. However, if we for some R had Tgrg C R(Tqu), then
R must redirect arbitrary many positions to the first one, and therefore it
cannot be bounded. As can be seen in the origins graphs to be related:

Input: a_a a a Input: a a a a

Output: a a a a a a QOuiput: a a a a a a
(a*,a, orig) € [Thrstlo (a*,ab, orig") € [Tl

The argument above is a bit informal but later with Lemma 5.10 we
provide a method to formally prove this statement.

The problem of finding an unknown resynchronization is also studied in
[BKM™19] where they call it the synthesis problem for resynchronizers. A
2NT T is called unambigious if for every input word there is at most one
possible run of T

Theorem 5.3. [BEM' 19] Given two unambigious 2NTs Ty, Ty the problem
whether T1 < Ty is decidable.

For general 2NT this problem is left open, we show in Theorem 5.20
that it is in fact undecidable. Before showing the undecidability result we
will show this relation forms a preorder, and introduce a tool to witness the
non-existence of a bounded resynchronizer to satisfy a relation.

5.1 Relational properties

In this section we will prove some relational properties for the resynchro-
nization relation. We will prove the relation forms a preorder, and we will
prove that it is different from classical equivalence.

For many properties of this relation, we don’t need to regard the § func-
tion in the resynchronizer, since this only make the relation smaller.
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Lemma 5.4. Given a resynchronizer R = (a, 8,7,0) and two transducers
Ty, Ty such that Ty C, R(T»), then the containment Th C, R'(Ts) also holds
with resynchronizer R = (T,T,~,T).

Proof. Note that the obtained relation R’ is bigger: [R] C [R']. Now for
every pair o/ € [T1], there exists a corresponding pair (o,0’) € R such
that o € [T2],, we know that (¢/,0) € R so also (0,0") € R’ which implies
Ty Co R/(Th). O

Given we can leave out the functionality of the § filter function we can
show that the class of bounded resynchronizers is closed under composition.
This will be a key ingredient in proving the transitivity of our < relation.

Lemma 5.5. Given two bounded resynchronizers Ry = (o, f1,71, 1), R2 =
(g, B2,72, T) it is possible to construct a bounded resynchronizer R3 such

that [R3] = [R1] o [R2]

Proof. Given Ry = (a1,01,71, 1) and Ry = (g, 2,72, T) we construct
R3 = (ag,ﬁg,’}g, T) such that [[Rg]] = IIRl]] OﬁHRQ]].

Both aq, ag have some input parameters I; = (I, ..., 1), Ir = (I}, ..., I}).

These act as MSO predicates over the input string in(c), since in these
resynchronizers the input part of the origin graph does not change at all we
can simply combine these input parameters I3 = (I, ..., I,, If,...I). Now
construct ag such that (in(c), I3) = ag implies that (in(o), ;) E a1 and
(in(0), I2) = a3

az(lz) = ar(Iy,..., In) Nao(TY, ..., 1)

Similar to a3 construct (3 based on the truth values on (7, 32. For
output parameters O; = (Oy,...0,),02 = O},... 0., we construct output
parameters O3z = (O1,...,0,, O},...0)).

B3(03) = B1(01) A B2(02)

We can define 3 directly by quantifying of input positions and finding
an intermediate position. Since we want to track an interpretation of the
output parameters Os in the type 7 So we need to massage that a bit. For
given 7 = I' x B where 7 gives a valuation for both O1, Oy we call 7
the projection on the first part containing the valuation of O; and 75 the
equivalent for Oy

73(7-)(]37 x, Z) = Ely’yl (Tl)(fla z, y) A 72(72)(f27 Y, Z)
This completes the construction, we now verify that [Rs] = [Ra] o [R1]

and that it is bounded.
[R3] C [Ra]o[Ri]: for any (o1, 03) by definition for some input parame-

ters I = (I1,..., In,Ii,...,I/,) and output parameters O = (Oy, ..., 0y, O}, ..

the following holds
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e (in(o1),I) E agequivalently (in(o1),I) = a1 (I, ..., I)Aao(I], ..., 1))
which implies (in(o1), ({1,...1)) E a1 and (in(o1),I1,...,I]) FE oo

e (out(c1),0) = B3 equivalently to previous case (out(o1), (O1,...0,) =
B1 and (out(01), (01, 0p,) | B

e We know for pairs of output type 7 and output position z there was
some souce x for this target which satisfy (in(o1),1,z,2) E v3(7).
Rewritten with the definition of 3 we know there exists a y such that

(in(o1), (I1, ..., In),z,y) E () and (in(o1), (11, ..., 1},), ¥, 2) E y2(T)

Combining this we know that there exists a o2 such that (o1,02) € [Re]
and (092,03) € [R2] thus (01,03) € [R2] o [R1].
[R1] o [R2] C [Rs]: if there exists (01,02) € [R1] and (02, 03) € [R2]

o (in(o1),(I1,... 1)) | a1 and (in(o1),1],...,1;,) = az implies that

(in(o1),I) Eaa(l,...,In) (I, ..., I]) or (in(o1), I3) = a3 equiv-
alently

e Assuming (out(o1),(O1,...0y) | f1 and (out(o1), (0}, 05,) = B2 we
know (out(ay),O3) = B3 similar to the a case.

e For every output position of type 7 = I' x B"*™ if this output position
in origin graph oy has origin = then ~v;(71)(I1, x,y) for some y that is
the origin of this output in o9, by assumption of Ry there exists some
position z such that vo(m2)(l2,y, 2) where z is the origin in o3. Which
are exactly the two conditions for 43,50 conclude (in(o1),I3,z,2) =

¥3(7)

Now we know that (o1,03) € [R3] thus [Ri] o [R2] C [Rs], so also
[Rs] = [Re] o [R1].

This relation is also bounded since R; and Ry are also bounded. So we
know that for some n,m € N R; is n-bounded and Ry is m-bounded. These
bounds imply that for every origin graph o, output type 7, input parameters
I and target position z, there are at most m sources 1, ..., ym € in(c) such
that (in(o), I, y;, z) = 72(72) for all 1 < i < m. For each of these positions y;
there are at most n sources x; such that (in(c), I, z;,v;) = v1(m1) so for every
output position z there are at most bounded n * m input positions x; such
that there exists an y; for which ~;(x;, yi) A v2(vi, 2) which implies there are
only bounded number of sources x; such that (in(o), I, z;,2) = v3(r). O

Lemma 5.6. =< is transitive, if Ty =< T and Ty < T3, then Ty =< T3.

Proof. Assume T1 C, Ri(T3) and Ty C, Ry(T3) for bounded resynchronizers
Ry, Ry that do not use the § part, this does not lose generality by lemma
5.4. Then T7 C, (Ry o R2)(T3). We know for every o1 € [T1], there is a
o9 € [T2], such that (o2,01) € [R1] and for every o9 € [T3], there is a
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os € [T3], such that (o3,02) € [R1]. So also for every o1 € [11], there is a
o3 € [T5], such that (o3,01) € [R1] o [Re] O

Note that this transitivity property is a slightly different than the ques-
tion whether regular resynchronizations are closed under composition, that
is given two regular resynchronizations R, Ry is it possible to construct R3
such that [Rs] = [Ri] o [Rz]. In order to prove this one would need to
drop the assumption that § = T in both Rj, Ry. This problem is still open
[BMPP18] and might be interesting for further work.

We define T ~p Ty if T} < Ty and T < Ti, which is the equivalence
closure of resynchronizability. This equivalence relation is not the same
as the originless semantic equivalence [T1] = [T»], since it is possible to
construct a pair of transductions 77, T such that [T1] = [T2] but 71 £ T.
To show this, we make use of Example 3.5. On a one letter input and output
alphabet ¥ = I" = {a} take the transducer T}, that outputs the identity from
left to right, and T,;r that outputs the identity from right to left. By this
definition we know that [T;4] = [Tj4r] but we will see that [T;4]0 # [Tiqr]o

Lemma 5.7. For the transducers T;q and T, r there is no bounded reqular
resynchronizer R such that T;q C, R(Ti4r).

Proof. 1. Fix an arbitrary R = («, 3,7, ), with n; input parameters and
m, output parameters such that T,y C, R(T;4z). We can assume
a=0=46=T using lemma 5.4.

2. For an arbitrary £ € N we show that there is a length N € N, input
parameters I € (B™)"Y, and an output-type 7 € I' x B™°. Such that
there are k distinct sources x1,...xy € [1, N], and one target position
y € [1, N] such that Vi € [1, k], (a’V,I,2i,y) = (7). This would show
that R is unbounded.

3. For all output types 7 the formula ~(7) is a MSO sentence with vari-
ables I and first order variables ,y modeling source and target. For
every type 7 this MSO-sentence recognizes a regular language over
the alphabet ¥ x B™*2 and therefore there is a monoid M, and a
morphism f, : ¥ x B%*2 — M, recognizing the language of ~(7),
where the booleans encode the n input parameters I and the source
and target = and y.

Pick the type 7; with the largest corresponding monoid M;,, and let
7 M} — Mz, be the evaluation morphism in M,. Using the Simon’s
factorization forest theorem[Sim90], we know that there is H € N such
that for any word u = mimg...myg € M, there is an idempotent
e € M, and a factorization of u into u = mejes...exrom’ with m =
MY .. My, €5 = My, 1M 42+ ..My, and m = My yo+1 -+ - M, such
that for all j € [1,k + 2|, m(e;) = e. This property also holds for all
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output types 7 on the monoid M;, as we chose M, of maximal size,
and the bound H increases with the size of the monoid.

4. We consider the word a’¥ with N = 2me*+1([ + 1). Let 0,0’ be the

origin graphs produced by Tjq and T,z on a® .

Input: a a -+ a a Input: a, a --- a ,a
Output: a a -+ a a Output: a”~ a -+ a “a

(a) Shape of o € [T;4]o- (b) Shape of o’ € [T;4r]o-

5. Since ¢’ is the only graph in [Tj;r], with same input as o, and we
assumed T;q C, R(T;4r), then we must have (¢/,0) € R. Thus there
exists input parameters I and output parameters O witnessing that
(¢',0) € R.

6. Pick the output type 7 which occurs the most in the first half of the
word. The types 7 are element of I' x B for the fixed m, output
parameters, so since |I'| = 1 there are 2™ output types 7;. The 7

N

we pick that occurs the most in the first half occurs at least 525 =
2%+ _ [ 41 times in the first half of the word. In all the positions

2mo

x where the output type is 7, we have by the shape of the reversal of
the origin arrows that (a™,I,2, N — ) = (7).

7. In the first half of the word pick the last element x;,s with type 7 we
know that (a™, I, 2jast, N — Tiast) = (7). Let w € ¥ x B"*2 be the
encoding of (a™, I, x4, N — Zjast). This word w will be accepted by
the monoid M, with morphism f;.

8. Split the word w in parts w = w;...w; where all the blocks have
exactly one position with output type 7. In the first half of the word
there are at least H + 1 blocks since there were at least that much
occurrences of output positions with type 7. Before the position .t
there are at least H blocks wy, wa, ..., wy. Which under the morphism
fr form a word on the monoid M.

9. Using Simon’s factorization theorem, there is an idempotent e € M, a
factor u = wjusg ... ugso in the first half of w, and a strictly increasing
sequence 41,12 ... %42 such that each u; is of the form Wil o Wiy
and f7(u;) = e.

The following steps will modify the word w the idea is demonstrated
in this picture where the solid arrow represents the source and the
dashed arrow the target:
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Idempotents

Llast
a a a a “ .. a a a “ .. a PR a
/7\
/
/
/
/
/
/
a/ a a (1/ .. a a (1/ .. a e a
initial w
Idempotents u
a a a a a a a - ,a -+ G
a a a’ a a a a a a

editted w’ with possible new sources

10. By construction there is a position z’ with type 7 in us9, there is a
corresponding element y = N — 2/ in the second half of the word
such that (a™,I,2',y) = ~(r). We pick the corresponding word
w' € (¥ x B%*T2)* that is accepted by monoid M,. The subword
U = UjUg . .. Ugto is now changed to ujubus...ugio, where ub is the
same as uz only the boolean representing the source will be 1 in posi-
tion &’ and for i # 2 we still have f,(u;) = e the idempotent element
of M.

11. Change ujubus . . . ugy2 tou’ = ugubub. this word is still accepted since
it does not change the element of the monoid M, under the morphism.
It can change the length of the word and the input parameters I,
but since it is projected on the same element in the monoid M, it is
accepted. This new word w” possibly changes in length and contents.

Let the new length be |w”| = N’ and input parameters I'.

12. The word ' with input parameters I’ and target y has k distinct
sources « for which (™', ', z,y) = (7). This can be done by swap-
ping the block with the source position z in the sequence of idempo-
tents without changing the element of the monoid under the morphism.
Change the subword u' of w” by u; = ujububub* for 0 < i < k.
All these different subwords u; have the same length and input pa-
rameters, and a different source positions x; so for all these positions
(CLN,, I/7 Lis y) ): 7(7—)

Since for every k € N, R is not k-bounded there exists no bounded
resynchronization R such that T;y C, R(T;4r). O
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This proof demonstrates that there exists two transducers 17,75 that
are contained in the classical semantics [77] C [T>] but not in our resyn-
chronizability relation 77 =< T5. This is interesting because it indicates that
our new equivalence relation =< is strictly between classic containment and
origin containment, which could make it a decidable relation. However we
show in Theorem 5.20 it is not.

The example transducer used in Lemma 5.7 use the property that the
identity on the single letter alphabet is the same in reverse order. One
might question if it is possible to construct a pair of classically equal trans-
ducers T1,T> with T} #p T5 which do not use this two-way property. It
turns out that it is possible to construct a pair of one-way non-deterministic
transducers with these requirements as seen in example 5.8.

Example 5.8. Consider the INT’s Tone-two, L two-one 0N 6 unary alphabet
¥ =T = {a} which both will describe the relation [Tone-two] = [Tiwo-one] =
{(@™,0™) | ny,meNandn <m <2xn}

ala alaa

Transducer Type-two Transducer Tipo-one

Transducer Tone-two will first output single a’s and then at some point
non-deterministically go to a state from which it will only output aa for each
a read from the input. The transducer Tiyo-one Will do the same but first out-
putting aa’s and after that outputting a’s. For any pair in the (a™,a™) € [11]
there is exactly one origin graph in o € [Tone-twollo with in(o) = a™, out(o) =
a™ and one origin graph o' € [Tiwo-one]o with in(c’) = a™, out(c’) = a™.
Examples of these origin graphs are given in Figure 5.2.

Input: ¢ a a a Input: ¢ a a a
Output: a a¢ a a a a Output: a a¢ a a a a
(a) Example 0’ € [Tone-twolo (b) Example o € [Tiwo-one)o

Figure 5.2: Example origin graphs of Tyne-two, 1 two-one-

It can be proven in the way as Lemma 5.7 that Tiwo-one %D Tone-two- We
are interested in what we need in order to use this proof structure and see
if we can generalize this.
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5.2 Desynchronized blocks

We have seen an example of a relation between origin graphs which can’t
be generated by a bounded resynchronizer. In order to classify when resyn-
chronization is not possible we introduce a tool to recognize a pattern which
implies the non-existence of a bounded resynchronizer. The proof of this
tool is a generalization of the proof of Lemma 5.7.

Definition 5.9. Given two origin graphs o, o’ with in(o) = in(o’), out(c) =
out(c’), a factor u of in(c) is called a desynchronized block, if the subgraph
of uw in o has no shared output positions with the subgraph induced by u in
o'

In other words this means that in a pair of origin graphs o,o’ if the
input positions v form a desynchronized block, that the output produced
by u in o is produced by different input positions in ¢’. We call the size of
the desynchronized block the number of input positions in u that produce
output.

Now an observation is that the resynchronization realizing Example 3.5
and 5.8 contain desynchronized blocks of arbitrary length. In the following
picture a desynchronized block of size 5 is demonstrated in the origin graph
relating the words (a'?,a!'?), where the solid arrows are the origins in Tjq,
and the dashed arrows the origins in T} r.

Q
Q
S|
Q
IS]
Q
e
S|

desynchronized block T;4, T;4r

Lemma 5.10. Given a resynchronizer R, if for any number d € N there is
a pair of two origin graphs (o,0’) € [R] that have a desynchronized block of
size greater than d. Then R is not bounded.

Proof. This proof has the same style as the proof of Lemma 5.7, but in a
more generalized way, for simplicity we don’t deal with input and output
parameters, a full proof is given in the appendix. Given an R = (a, 3,7, 9)
such that the first property holds. Assume a = =9 = T. Now we show
that for any k € N there exists (0,0’) € R, a target position y, and k distinct
source positions z; € {z1,xa,...,x} such that (z;,y) | 7.

Take a monoid M,a morphism f : ¥ x B2 — M describing the regular
language of «v. Let m : M* — M be the evaluation morphism in M, there
is a H € N such that for any word u = mime...mpg € MH, there is a
idempotent element e € M and a factorization of u into u = mejes...epm’
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with m = my...m,e; = my,1mi 42...my;, and m' = my_,41...mHq,
such that for all j € [1,k 4+ 2], 7(e;) = e.

By assumption there exists a pair of origin graphs (o,0’) € [R] that
have a desynchronized block u of size H + 1. Thus there are H 4 1 positions
in w that produce output and none of this output is produced by u in o’.
Split this word u = wjug ... uy4+1 with every subword u; containing exactly
one input position that has output. We choose as source input z € ugi
the input position that produced output in ug41. Since ugy1 is a part of a
desynchronised block we know that the corresponding target input position
y for which (in(o),z,y) = 7 is not part of u. The word that is formed w €
(X x B?)* has zeroes everywhere except in the input positions x marked as
the source and y marked as the target position. So the sequence ujus ... ug
in w is padded with all zeroes.

Given this word w € ¥ xB?, since the sequence u; . .. up contains at least
H times a positions that produces output the evaluation under the morphism
M there is a sequence of v; ... vy, € (X x B2)* for which the image f(vz) =e;
are idempotent elements ejey...ep € M*, for which m(e;) = e and every
word corresponding v; contain at least one position producing output.

Now change w to w’ by removing the original source and target position
xz,y. Placing the new source in vy replacing the sequence vivs . ..v; by the
sequence v1v5vs . .. vk, where v} contains the new source input position zg ,
this position is in the desynchronised block, so there is a target positions v’
such that in(o), zg,y’ = v pick this as target in the new word w’. This new
word w’ is accepted by the monoid M, since it is also a model of . In the
next step change the sequence vivhus ... v, in the sequence vouhvs=2 this
changes the word w’ in a word w” but not the evaluation so this w” is still
accepted by M and thus a valid model for . Since f (v2) = e the idempotent
element you can move blocks of v9 around v} producing k different positions
m1(w”), i,y = 7, where 1 (w”) € ¥* is projection on the first component.
This construction is shown in Figure 5.3 where the arrows represent the
source, and dashed arrows the target. Since k is arbitrary chosen this proves
that this resynchronization is not bounded.

O

This tool for resynchronizers translate to a property for transducers.
When we now there must exist pairs of origin graphs with unbounded desyn-
chronized blocks in the resynchronization, it can not be bounded.

Lemma 5.11. Given two transducers Ty, Ty if for all d € N there is an
origin graph o € [T1], pair such that for all graphs o' € T3], such that
in(c) = in(o’), out(o) = out(c’) and (¢’,0) have a desynchronized block
larger than d then Ty A Tb.

Proof. Assume there would exists a bounded resynchroniser R witnessing
T) < T,. For any d there is an origin graph o € [T1], such that for all
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Desynchronised u Desynchronised u

idempotents idempotents
/—H . /—H .
01v2V3 ... Vg UH+1 Y input 01v2V3 ... Vg UuH4+1 Y input
h P
! e
1 e
1 P <
1 -
1 -
L L L L P WA L ;o L L 7 L L L L )
output output
(a) word with source ug 41 target y (b) word with source ugy; target y’

Desynchronised u

idempotents

/—/%

VvV ... VoVR UR 41 y' input
1 1 1 1 1 1 J

(¢) All possible sources z;

Figure 5.3: Edits of w with desynchronized block u

o' € [T3], that have the same in put output pair have a desynchronized
block larger than d. Since T} C, R(T%), for this origin graph o there must
be a corresponding o’ € [T2], and (0’,0) € [R]. Thus any choice of o’
would result in a desynchronized block larger than d. By lemma 5.9 this
resynchroniser R can’t be bounded, so we reach a contradiction and know
that T1 f TQ. OJ

5.2.1 Classification of unresynchronizable origin graphs

The definition of desynchronized block from Lemma 5.9, is only one di-
rection. While the pattern is enough to show unboundedness of a resyn-
chronizer the reverse is not implied. For our main result the implication
of desynchronized blocks is enough, but one might be interested to classify
resynchronization that can’t be bounded. In this section we will refine the
notion of desynchronized to obtain a classification for resynchronizers that
are not bounded.

Definition 5.12. (Desynchronized position) Let o = (u, v, orig), o’ = (u,v,orig’)
be two origin graphs with the same input and ouput word. Given an interval

of input positions x;xiy1...xj, we say position T,, i < n < j is desyn-
chronized for interval [i,j] if there exists an output position y for which
orig(y) = xn, and orig'(y) & {zi, zit1,...,z;}.
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Informally that says an input position in the interval which has an output
that is redirected outside the interval. A pair of origin graphs (o, 0’) is said
to have k-bounded desynchronization k € N if for every interval [i, j],4,j €
dom(in(c)) there are at most k distinct input positions z,,...,z., with
i1 <c1,...,cp < j which are desynchronized.

Definition 5.13. (Bounded desynchronization) Let [R] be a relation on
origin graphs, then [R] is said to have bounded desynchronization if there
exists some k € N such that for every pair of graphs (o,0’) € [R] these
graphs have k-bounded desynchronization.

Note that this is not a symmetric notion so the desynchronization from
o to o’ might be different than the reverse. A good example of a relation
that has bounded desynchronization one way and not the other way is the
relation relating the origin graphs of the transducers from Example 5.2.

Now we claim a resynchronizer is bounded if and only if the relation has
bounded desynchronization. Before we introduce this lemma we first show
that it is possible to construct a bounded resynchronizer R4, that computes
all possible related origin graphs with desynchronization at most 1.

The construction of R, is based on the following observation on a resyn-
chronization with 1 desynchronization bound. Let R; be a resynchronization
with desynchronization 1. This means that for every interval there is at most
1 input position which gets redirected outside this interval. Now for input
word u = 1 ...z, let 0 = (u,v,0rig), o’ = (u,v,orig’) be origin graphs such
that (0,0") € Ry and let y € dom(v) be an output position with orig(y) =i
and orig’(y) = i’ we can claim the following:

If the origin moves right i < i’ then for all j € [7,#'], if an output positions
y' € dom(v) has origin orig(y’) = j then:

1. it does not move right: orig’(y') < orig(y'), if orig’ (v') > orig(y’)
then on the interval [4, j| both i and j would be desynchronized which
can’t be the case.

2. does not move left of i: i < orig'(y’) , if i > orig’(y’) then on the
interval [i, j] both i and j would be desynchronized which can’t be the
case.

This behaviour is demonstrated in this picture in which the red arrow
would make the resynchronization 2-bounded instead of 1-bounded, and thus
is impossible.

. . ) g )
P 7 P ] ] .../71// - j 7 - ] Z,
N // v’\\ //‘l
\\n .7 N -
e ~ -
4 ~ -
//// “ // \\\
Y y/ Y y/
First case Second case
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Lemma 5.14. Let 0,0’ have desynchronization-bound of 1, then for ev-
ery input position x € dom(u) and output-position y € dom(v) for which
orig(y) = x then for every target t € [z, orig (y)], v’ € dom(v) with orig(y’) =
t then for the new target orig’(y') =1t':

t—z| >t —x|At>x -t >ant<z—t <z

If the origin moves left the same kind of analogy holds. By these require-
ments we construct a resynchronization which guesses sources and target for
right and left moving distortions. For both right and left moving distortions
according the requirements the resynchronization will only distort a guessed
source to a guessed target if there is not another guessed source between
it. In addition with MSO we make sure a left moving distortion does not
overlap with a right moving distortion.

Definition 5.15. The resynchronizer Rq, that guesses right and left moving
distortions with the input parameters Ir,, 11, IR,, Ir,. The input parameters
IR, (resp. Ir.)are used to indicate the source of the right (resp. left) moving
distortions. The input parameters I, (resp. Ir,) are used to indicate the
targets of these right (resp. left) moving distortions. Now construct our -y
to ensure the above described requirements.

Yz y) ==y
V(zelgp, NyelIp, Nz <yA(Nze (z,y).z<IR,)
V(zelp, Nyelp, Ny<zANze (z,y)z<IL,)

Example 5.16. To demonstrate this behavior we show how Rg, relates two
graphs of Toy to Thre. Since it only has right moving distortions we only
show the parameters Ig,, I, and assume Ir,, = I, = (.

IR, :

In.:

S

Input:

Q-—--—0Q B
Q--F/Q O =

Q-44-20 O =
Q-/---299 O H
Q----00 © =

Output:

Example 5.17. Another example shows how this resynchronizer Rq, relates
two graphs in which every origin is moved right with exactly 1 position.
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I, 1 1 1 1 1

I, 1 1 1 1 1

Input: a a a a a
Output: d d d d a

By construction of our v and the way it interacts with the input param-
eters we see that at most 3 distinct sources (the input position closest in
I, Ir, and the position itself) are valid for a every target position. So this
resynchronizer is in fact bounded. Now we proof that it calculates every
possible graph of desynchronization at most 1. It does in fact compute more
since it does not take into account the second requirement for 1 bounded
relations, however it relates at least the pairs that we require.

Lemma 5.18. If 0 = (u,v,o0rig) and o' = (u,v,orig’) are origin graphs,
and the desynchronization of these graphs has 1-bound on desynchronization
then it is related by Ry, : (0,0") € [Ra,]-

Proof. Let 0 = (u,v,orig),c’ = (u,v,orig") be such arbitrary graphs with 1-
bounded desynchronization. We derive the input parameters Ir,, 1., IRr,, 1,
for Ry, that witness that (0,0’) € [Rq,]. For every y € dom(v):

e origin stays equal orig(y) = orig’(y), then we do nothing

e origin moves left orig(y) < orig’(y) then orig(y) € Ig, and orig'(y) €
Ig

t

e origin moves right orig(y) > orig’(y) then orig(y) € I, and orig’(y) €
Iy,

t

Now for input positions orig(y), orig’ (y) we can derive (u, I, orig(y), orig’ (y))
~ since for the three cases:

o orig(y) = orig'(y) thus (u, I, orig(y), orig'(y)) = v

e We know that orig(y) € Ir, and orig’(y) € I, and there can’t be
another input positions z € dom(u) with orig(y) < z < orig'(y) for
which z € Ip, since this only happens if there exists an output position
that has origin z and moves right which can’t happen by by Lemma
5.14

e Analogous to the right moving distortions
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Since the § function can be chosen T by Lemma 5.4 we see that the
resynchronizer is compositional. So we can freely construct a resynchronizer
that Rg, o Ry, or for any n € N compute the resynchronization Rj .

Lemma 5.19. For a set on pairs of origin graphs S there exists a bounded
resynchronizer R such that S C [R] if and only if S has bounded desynchro-
nization.

Proof. (=) Assume S has no bounded desynchronization then for arbitrary
k € N there exists an interval [i,j] with desynchronization k. This is a
desynchronized block of size k, since k is chosen arbitrarily R is not bounded.

(<) Assume there is a bound n € N for desynchronization in S. Then
S C IRyl 0

5.3 Undecidability of resynchronizability

Theorem 5.20. Given two non-deterministic one-way transducers Ty, Ts
the question whether T1 < Ty is undecidable.

In order to prove this we make a reduction inspired from the proof that
Post Correspondence Problem (PCP) is undecidable as described in for ex-
ample [Sip06]. To show indecidablity of the resynchronizability relation we
use the problem that asks if a Turing machine M uses a bounded amount
of tape. The reduction shares a lot of ingredients from the reduction from
HALT to PCP [Pos46]. Instead of the halting problem (HALT) we use a
modified version of this problem, but the main parts are the same.

5.3.1 The infinite tape problem

We will reduce from the problem called INFTAPE. Which is version of the
halting problem that detects whether the Turing machine uses an infinite
amount of tape instead of whether it stops.

Definition 5.21. The decision problem INFTAPE decides if a Turing ma-
chine uses infinite tapecells on the empty input.

INFTAPE = {n € N | M,, uses unbounded part of tape on the empty input}

For this problem it might not be too surprising that it is undecidable,
here we prove that INFTAPE is undecidable by a reduction from the halting
problem on the empty input string.

Lemma 5.22. For a deterministic Turing Machine M it is undecidable
whether M € INFTAPE.
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Proof. Proof this by reducing the halting problem on an empty tape ¢ —
HALT ,which we know is undecidable, to INFTAPE. Consider deterministic
Turing machine M, we construct a new Turing machine M’ which simulates
M by writing the full configurations of M (state, contents of tape, and the
position of the tape head) on the tape. This new machine M’ will stop if and
only if the computation of M stops. If M does not stop it will keep writing
configurations and thus means M’ will use infinite amount of tape cells
regardless of the tape usage of M. So M € e—HALT <= M’ ¢ INFTAPE.
Since e—HALT is undecidable so is INFTAPE. O

5.3.2 The PCP domino game

Before introducing the reduction let us first introduce the Post correspon-
dence problem, which is usually done with dominos. Say you have a set of
dominos D where each domino has a top text and bottom text, and Z is the
finite set of indices of the tiles.

D ={(u1,v1),..., (un,up) | uj,v; € ¥*,i € I}

Now PCP asks the following question. Is there some sequence of tiles
with indices 4145 . .., such that the dominos top and bottom part produce
the same word?

Uiy Uiy« « - Uj,, = Vi Vg - .. U5

n

Example 5.23. Let us have a set of dominos D which are

Index : 1 2 3
Top : a ab bba
Bottom : baa aa bb

Now we see this instance is a valid instance of PCP since we can con-
struct a sequence of indices ( 3231) such that the top and bottom part of the
corresponding tiles are the same since bba - ab - bba - a = bb - a - bb - baa:

Index : 3 2 3 1
Top bba | | ab M n
Bottom : bb aa m M

5.3.3 Turing machine to tiles

We can use these tiles to simulate a Turing machine on the dominos. In
order to keep track of the computation history of the Turing machine M we
model the full configuration of the Turing machine in strings. To capture
a full configuration of a Turing machine we need the current contents of
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the tape, position of the tape head and state of the finite control automata.
For a given Turing machine M = (Q, X, qo, ¢, 0) The configuration can now
be represented by w € ¥*@Q%*. On an alphabet ¥ = {a, b} a configuration
might look like abggba which represents a tape with abba where the tape head
is on the second b and the control automata is in gg € . A full computation
history of Turing machine is now given as all consecutive configurations
divided by a seperation token # & 3. So the maybe infinite sequence of
configurations models the computation history of M. Let A = XU Q U {#}
be alphabet of this history, then we call Histy; € A* U A¥ the computation
history of M.

The computation history of a Turing machine M = (Q, X, qo, ¢y, ) can
be build in an instance of the domino game with these full configurations.
Based on M we can construct set of tiles Dy with indices Z = {1,...,|Ds|},
where foreach (u,v) € Dy, u is the top part of the domino and v the
bottom part. We make the construction such that the bottom and top parts
combined both make the configuration history but the bottom part is one
configuration delayed. Construct this set of tiles Dy to contain each of the
following tile:

e A copy tile (a,a) for every a € ¥ U {#}

e A right transition tile (pa, bq) for every right moving transition §(p, a) =
(g, b, right)

e A left transition tile (cpa,qcb) for every ¢ € ¥ U {B} and d(p,a) =
(g, ¢, left)

e A right expansion tile (¢#, ¢B#) for every state ¢ € Q

e a left expansion tile (#qa, #Bqa) for every ¢ € Q,a € X.

Example 5.24. Let M = (Q,{a,b}, qo,q¢,0) be a Turing machine that will
read a’s write b’s and stops when the whole word is read

a,b | right

Then the computation of M can be expressed with the following dominos:

Index : 1 2 3 4 5 6
rops o] [v] [#] [w#] [oe] o]
Bottom : u n q0 B M
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These are all the tiles we need in our construction, now if we want to sim-
ulate M on the input a® we add the tile which only has the initial state on
the bottom tile:

Index : 7
Top :
Bottom : qoaa#

Now there is only one sequence of dominos that starts with tile 7 in which
the top part is a prefix of the bottom part:

Index : 7 5 1 3 2 5 3 2 2 4 2 2 6 3
Z T N A
R e I 3

Now the computation the content on the dominos expresses exactly the
computation history of M.

We skip some technical details from the original reduction since we don’t
need it for our proof. While in PC'P the top part needs to be equal to the
bottom part, in our construction this can’t happen because the state gy only
occurs on the bottom part of a tile. This can be fixed by adding tiles that
remove all input symbols when ¢y is reached, but in our case this will not
be a problem so we leave these tiles out.

Another technical detail is the first tile which we silently added in Ex-
ample 5.24. This tile does not need to be part of the set Djs since we will
force a transducer to start with this first tile.

For these reasons we don’t have the full property of PCP that the top
part is equal to the bottom part, but in our reduction we don’t care and we
only care that by this construction we have that if the top part is a prefix
of the bottom part, then the bottom part is a prefix of the computation
history of M.

Lemma 5.25. Given a Turing machine M and the set of tiles Dy with
indices as described above. Given a sequence of indices i1 .. .1 € let the top
parts of the corresponding tiles be given by u = u;, ...u;, , the top parts
starting with the initial configuration given by v = qo#v;, ... v, and the
computation history of M on the empty input given by Histyr. Then

uC v=9C Histy

Proof. This can be proved using induction, but this is also true by construc-
tion of which more can be read in [Pos46, Sip06]. O
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5.3.4 Tiles back to transducers

We now build two 1NT"’s that will output the top and bottom parts of the
dominos Djs. To do so let A = Q U {#, B} UX be the alphabet to have all
characters needed to build the configuration history of the Turing machine
M. Now consider the set of domino’s Djy; to model the computation history
of M with indices Z = {1,...,|Dys|}. We now build two non-deterministic
one-way transducers Ty, Tyiown that will have input alphabet 7 the indices,
and output alphabet A which contains all content on the domino’s. Let
isy ---%s, € I* be the sequence of tiles that describe Histy, then the output
of the two transducers roughly looks like this. The only difference might be
that there are intermediate transitions to expand the tape with B’s.

Example 5.26. The behaviour of Ty, Tiiown outputting a prefix of Histys.

Input is, Tso lsg .- is,, lspiq
Output Ty Qo F# s1 HF S22 ... H# Sp_1 H SpHFSpt
Output Tyown qo#s1 # s2 # 83 ... # sy # St

On input 41 . . .4 the transducer T, will start by outputting go# and
continue to output the top part of the tiles v;, ... v;, thus describing a func-
tion 77 .. ’Lk — QO#Uil ce UGy

On the same input transducer T3, will output the bottom part of the tiles
Uj, - ..U, . This transducer however is also allowed to non-deterministically
output anything that is not a prefix of u; and from that point output any-
thing in A*. The transducer Ty, is also allowed to output anything at the
end of the word, this is in order to catch up the one configuration it is
delayed by construction.

In the figure both transducers Ty, Tijown With the set W; the set of valid
non-prefixes of wu;:

Wi = {ue A* | |u] < |ug] and Ju| Z ui]}

ile, e|T

z'|v,~ E‘P
o (OQD (")
— S0 S1 — ] D1
Transducer Typun, Transducer T,

By construction on input word i ...%; the only way Tyown outputs
qo#fui, - .. u;, is that the origins of u;; is exactly the input position i;.
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The same thing holds for transducer T, outputting v;, ... v;, . Additionally
by construction of the tiles if on the same input word i; ...4; the output
v = vj, ...v; generated by Ty, is a prefix of the output w = qo#u;, ... u;,
if v, w describe a prefix of the computation history of M.

Lemma 5.27. M € INFTAPE = Tyoun 2 Tup

Proof. We assume M € INFTAPE so we know that uses an infinite amount
of tape. For any k € N let v be the prefix of the computation history
v C Histys witnessing a configuration that uses k + 2 tapecells. Now by
our construction there exists a sequence of indices i = igiy ..., that rep-
resents this computation history in the top part of the tiles v = v;, ... v;,.
Q#Viy - - -Viy = QoFS1F ... #5n+1 is produced by Ty, as origin graph
o€ [[Tdoum]]o-

The origin graph o’ of Ty, that has the input in(o’) = ig ...y and out-
puts exactly the computation history out(c’) = qo#so# ... #Sn+1 18 out-
putted only when the automata ends in p;. Since every configuration of the
Turing machine in particular s,, is outputted with delay in 7T;,,, so the input
positions producing s, have no output positions in common, so the input
positions that produce s, are a desynchronized block. Since s,, uses at least
k + 2 tapecells this has to take at least k input positions to produce with
our tile construction. This block is a desynchronized block of size at least k
and o, 0’ are the only origin graphs with this exact input and output so by
Lemma 5.11 we can conclude Tyoun 2 Tup- O

Lemma 5.28. M ¢ INFTAPE = Tyoun = Tup

Proof. To show this we construct a bounded resynchronizer R such that
Taown So R(Tup)

Since M ¢ INFTAPE there exists a bound £ € N on the tape M
uses. We build a resynchronizer without input and output parameters:R =
(T, T,~,T) where v is given by v(z,y) = Vocjcpyo® = y +i. This is a
bounded resynchronization since for any word w and target y there are only
k + 3 distinct sources z; such that (w,z;,y) = 7.

Now to show that Tyoun Co R(Typ) we prove that for every o € [Tyouwnlo
there exists a o’ € [Ty], for which (0/,0) € [R]. Let 0 € [Taownlo be
an arbitrary origin graph with input i = iyis...4,, 0 = (i,v,o0rig) then
the construction of our transducers the output v = qo#v;, ...v;, the exact
bottom parts of the sequence of tiles i.

Now either the bottom part of the tiles @ = u;, ... u;, form a prefix of v
or they don’t:

e If 4 C v then by Lemma 5.25 we have v C Histy;. The transducer
Typ can output this word v;, ...v;, in state py with exactly one con-
figuration delay as seen in Example 5.24 and the table in Example
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5.26. Let o’ be this origin graph with in addition the last configura-
tion outputted at the end in state p;. Since there is a bound & on tape
usages of M and the encoding of this configurations takes at most k+2
positions we can conclude that (¢/,0) € [R]

o If 4 [Z v then in order to output v. The transducer Ty, has to go to
the state py, at the point the tiles are not equal anymore. From this
point T, can mimic Ty, as close as possible and catch up at the
end. This run produces the origin graph ¢’ € T, and since at any
point before it goes to p; the shift is at most £+2 and does not change
after we can conclude (¢/,0) € [R]

O
Combining all lemma’s gives us a proof of Theorem 5.20.

Proof. By Lemma 5.27 and Lemma 5.28 we know that Ty <X Ty <=
M ¢ INFTAPE. By Lemma 5.21 INFTAPE is an undecidable problem. The
construction in these Lemmas is effective, thus deciding whether Tjo,n, =< Toyp
is undecidable for non-deterministic one way transducer. O

This proof extends to any class of transducers that include the class of
INTs in particular it proves the open problem from [BKMT19] for 2NT
case. Since the reduction does not use parameters the following collorary is
the most general one.

Corollary 5.29. Given 11,15 two 1NT'’s, it is undecidable whether there
erists a bounded reqular resynchronizer R without parameters such that
Ty Co R(T3).
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Chapter 6

Conclusions

In this thesis we recalled how regular resynchronizers can be used in order
to expand the notion of equivalence for the origin semantics of a transducer
with respect to the classical semantics. We used bounded regular resyn-
chronizers to form a resynchronizability relation relation on two transducers
T1 = T5 that states whether there exists a bounded regular resynchronizer
R such that Tj is contained in T5 up to R. We showed that this relation
forms a preorder intermediate of the undecidable classical containment and
the decidable origin containment.

In order to prove transducers are not resynchronizable we studied what
behavior is possible to resynchronize using bounded regular resynchronizers.
We introduced a notion of desynchronized and proved that a regular resyn-
chronizer is bounded if and only if it has bounded desynchronization. This
helped us to prove the non-existence of a bounded regular resynchronizer
that witnesses the < relation.

With this tool witnessing unresynchronizability we could make a reduc-
tion from INFTAPE to the resynchronizability relation < for 1NTs. A
direct corollary is that this solves the open problem stated in [BKM™19]
asking whether this problem is decidable for the general case of 2NTs.

A very natural follow-up question would be to extend this construction to
the decidability of the equivalence closure ~p. Preliminary results indicate
the same proof works to show this relation undecidable. In order for the
same structure to work, one has to modify T3y, Tiiown to be equal in classic
semantics. Another interesting question for further research would be if
the approach of extending containment with the distortion relation would
yield decidable results on the singleton alphabet. For the distortion relation
it is also interesting to see if the §-formula is compositional. That would
solve the problem stated in [BMPP18] whether, given resynchronizations
Ri1, Ry, it is possible to (effectively) find a resynchronization Rs such that
[Rs] = [R1] o [Re].

Another interesting question is how this undecidability proof generalizes
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in different classes of transductions. This follows directly for classes in which
the class of one-way non-deterministic transductions are contained. But
there are some classes like NSST and MSOT which are incomparable with
the class of non-deterministic one-way transducers and for which it would
be interesting to see if the undecidability proof can be reproduced in that
machine model, or that in fact this resynchronization relation is decidable.
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Appendix

Lemma 5.10 Given a resynchroniser R, if for any number d € N there is a
tuple of two origin graphs (o, ¢’) € [R] that have a desynchronised block of
size greater than d. Than R is not bounded.

Proof. 1. Let R = («,3,7,0) with n input parameters and m output
parameters. We can assume o = § = § = T, since the definition of
bounded is only based on v if R = (T, T,~, T) is not bounded than
also R is not bounded.

2. For an arbitrary k& € N we show that there is a word w € ¥*, [ €
(B™)Y, an output-type 7, k distinct sources z1, ...z € [1, N], and one
target position y € [1, |w|] such that Vi € [1,k], (w, I,z y) = v(7).
This shows that R is unbounded.

3. For all output types 7 the formula (7) is a MSO sentence with vari-
ables I and a first order variable z,y modeling source and target. For
every type 7 this MSO-sentence recognizes a regular language, and
therefore there is a monoid M, and a morphism f, : ¥ x B2 — M.,
recognizing the language of ~(7), where the booleans encode the n
input parameters I and the source and target x and .

Pick the type 7; with the largest corresponding monoid M;,, and let
7w : M* — M be the evaluation morphism in M. Using the Simon’s
factorization forest theorem[Sim90], we know that there is H € N such
that for any word u = mimg...myg € M there is an idempotent
e € M and a factorization of u into u = mejesy...epom’ with m =
MY .. My, €5 = My, 1M 42+ .. My, and m = My yo+1 -+ - M, such
that for all j € [1,k + 2], 7(e;) = e. This property also holds for
M = M, for any output-type 7, as we chose M, of maximal size, and
the bound H increases with the size of the monoid

4. Pick the smallest graph (o, ¢’) € [R] that has a desynchronised block
of size N > |X| « 2™(H + 1). By our assumption this pair of graphs
exists.

5. Pick the output type 7 which occurs the most in the positions of the
desynchronised block that produce output v = in(c). The types 7
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10.

11.

are element of I' x B™ for the fixed m output parameters, so there
are |X| * 2™ output types 7. The 7 we pick that occurs the most in
the desynchronised block occurs atleast |2\]X2m = ‘E‘T;ﬁ(ﬁfl) =H+1

times in the desynchronised block.

In the desynchronised block of the word pick the last element that
produces output ;.5 With type 7 we know that (w, I, 244, y) = v(7),
where y is not a part of the desynchronised block. Let w € ¥ x B"+2
be the encoding of (w, I, 214, y). This word w will be accepted by the
monoid M, with morphism f.

Split the word w in parts w = wj...w; where all the blocks have
exactly one letter that produce output with output type 7. There are
at least H 4+ 1 blocks in the desynchronised block for since at least
that much occurrences of output positions with type 7 that produce
output. Strictly before the position x4 there are at least H blocks
Wiy Wit 1, - - -, Wit i, Within the desynchronised block.

Using the result from the Simon’s factorization, there is an idempotent
e € M, a factor u = ujug ... ugyo in the desynchronised block of w,
and a strictly increasing sequence i1, ... 442 such that each u; is of
the form w;;11...w;,_,, and fT(uj) =e.

By construction there is an element 2’ with type 7 in usg, there is a
corresponding element g, that is not part of the desynchronised block
such that (w, I,2',y') = (7). We pick the word w’ € ¥ x B"*?2 that
is accepted by monoid M. The subword u = wjuy...ugys is now
changed to ujubug ... ugro where uy = (m1(u2),1,0,77(u2)). In this
equation 7 (ug) is the left projection which gives the part of ug which
is in % and 7y is the right projection representing the booleans for the
input parameters B". For all ¢ # 2 the blocks u; are still represented
by the same element in the monoid f’.r (u;) = e the idempotent element

of M.

Change ujubus . . . u1o to w' = ujuhuk. this word is still accepted since
it does not change the element of the monoid M, under the morphism.
It can change the length of the word and the input parameters I,
but since it is projected on the same element in the monoid M, it is
accepted. This new word w” € £ x B"*2, input parameters I’ source
z' and the target v/

The word 71 (w”) with input parameters I’ and target y has k dis-
tinct sources x for which (m1(w”),I’,x,y) = (7). This can be done
by swapping the block with the source position z in the sequence of
idempotents without changing the element of the monoid under the
morphism. Change the subword u’ of w” by u; = uyububul ™" for
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0 < i < k. All these different subwords u; € ¥ x B"T2 have the same
left projection in ¥, the same input parameters, and a different source
positions z; so for all these positions (m(w”), I, x;,y) = (7).

O
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