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Abstract

In this thesis, we study the influence of long- and short-term dependencies for
sequential recommendation. The problem of recommendation stems from the
enormous amount of content that is provided by companies such as Spotify and
Netflix. By treating consumption behaviour of a user as a sequence, the task
of recommendation turns into a problem of predicting the next movie and or
song in a sequence. Previous work has focused on the usage of various recurrent
models and personalized recommendations by integrating user information in a
Gated Recurrent Unit (GRU)[1]. Our first contribution consists of the extension
of this previous work by performing a thorough analysis of the hyperparameters
and methods of preprocessing that were used. We find that the integration of
user information is not as significant as was portrayed in previous work. For our
second contribution we studied the influence of long- and short-term dependen-
cies on our models. As some recurrent models are said to have difficulties with
handling longer sequences [2], we employ a Differentiable Neural Computer,
which uses an external memory component. We find that long-term dependen-
cies have less of an influence on recommendation effectiveness than anticipated.
As we decrease the size of our training set, while keeping it temporally close to
the evaluation set, we find that the decrease in Recall@k scores is not linear,
meaning that most of the important information is temporally closest to our
evaluation set. When evaluating various sequence lengths, and even when dis-
tinguishing between popular, semi-popular and unpopular items, there does not
seem to be a clear relation between the resulting scores and the corresponding
sequence lengths. We conclude that if runtime is key, one might consider using
a smaller dataset and shortening sequence lengths. This could be of importance
to companies, such as Netflix, which deal with a tremendous amount of data.
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Chapter 1

Introduction

In this current day and age, people are flooded with media. Platforms such
as Netflix and Spotify offer thousands of songs and videos to their following.
As such, it becomes increasingly hard for users to choose what they would find
entertaining. Recommender systems can ease this pain by suggesting songs
and/or movies, which we will refer to as items, by learning from historical user
behavior. If we see user behavior as a sequence of actions, where a single action
would be the consumption of an arbitrary item, then recommendation becomes
a problem of predicting the next item in a particular sequence.
Recurrent Neural Nets (RNNs) are commonly used in sequence prediction tasks,
such as NLP studies, where a RNN is used to e.g. predict the next word in a
sentence. Just like predicting the next word in the sentence, it can also be used
to predict the next item in a sequence for a particular user.
Traditional RNNs suffer from the vanishing gradient problem, which is a prob-
lem where the gradient becomes too small for the weights to be updated ef-
fectively. The Gated Recurrent Unit (GRU), originally introduced by Cho et
al. [3] aims to solve this problem. Donkers et al. [1], in their work, focused on
the integration of user information to personalize the task of recommendation.
Through their experiments they show that the user-based GRU outperforms the
vanilla GRU and other more traditional approaches such as Matrix Factoriza-
tion or K-Nearest Neighbours (KNN). We first analyze and extend their work
by performing additional experiments.
In previous work, the sequences were of length 20, meaning that one assumes
that an item that was consumed 20 timesteps prior to predicting the next to-be
consumed item, still influences the prediction of the model. We are keen to
ascertain if short- or long-term behaviour of users influences the capabilities of
our models. We perform experiments with various sequence lengths (i.e. 5, 10,
20 and 50), which allows us to capture the importance of long- and short-term
dependencies for the task of recommendation. According to Graves et al. [2],
RNNs have difficulties with storing and accessing information over longer time
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8 CHAPTER 1. INTRODUCTION

periods and in their work they show that for the copy-task1, the LSTM fails to
perfectly reproduce sequences with a sequence length that is larger than 20. As
we are experimenting with longer sequence lengths than previous work, we are
unsure if the GRU will be able to perform adequately when dealing with longer
sequences as it is similar to the LSTM2. To supplement this, we experiment
with the Differentiable Neural Computer (DNC), which is a recurrent network
with an additional external memory component that is used to store sequence
information. Our experiments show whether or not various sequence lengths
influence the predictive prowess of our models and if a model that is developed
to handle longer sequences has a positive impact on the given task.
To summarize, the contribution of this work is twofold. First, we extend the
work, performed by Donkers et al. to further investigate the LastFM dataset,
the hyperparameters that were found for the GRU and the importance of the
user dimension for the task of recommendation. Secondly, we find whether
long- and short-term dependencies are of importance for the task of sequential
recommendation and how well each sequence length fares with respect to the
popularity of items. As GRU networks are known to have difficulties with longer
sequences [2], we also employ a DNC.
The remainder of this report is divided into several chapters. Chapter 2 dis-
cusses related work for the task of recommendation and the models that we
employ. Section 3 elaborates on our experimental setup. Section 4 discusses
our results, which are divided into the extension of previous work and our ad-
ditional work regarding variable sequence length. Finally, in chapter 5 and 6
we conclude our work and discuss future work. The code for this work can be
found on Github3.

1A task where the model gets fed a sequence, after which it is expected to reproduce the
sequence perfectly.

2The main difference here is that the LSTM has an additional Sigmoid gate that governs
the inner workings of the model.

3https://github.com/mickvanhulst/long-short-term-dependencies-recommender-systems

https://github.com/mickvanhulst/long-short-term-dependencies-recommender-systems


Chapter 2

Related work

This chapter introduces related literature, divided into two sections. The first
section discusses previous work related to sequence prediction for the task of
recommendation. The second section discusses previous work related to the
DNC.

2.1 Recommender task

As mentioned in the introduction, this work turns the recommendation prob-
lem into a sequential prediction problem. This approach bases itself on the
temporal dimension, which carries with it, an inherent ordering, consisting of
the consumption behaviour of a particular user.
When training RNNs with long sequential time series data, the vanishing gra-
dient problem may arise. This problem arises, if the gradient of the error with
respect to the model’s parameters at early time steps goes to zero (as a result
of multiplying too many numbers that are < 1). Cho et al. [3] and Hochreiter
et al. [4] introduced the Gated Recurrent Unit (GRU) and Long short-term
memory (LSTM) respectively, which both aim to solve this problem.
Devoogth et al. [5], in their work, focused on using vanilla LSTM networks
and solely used this inherent ordering to recommend items based on sequences.
Donkers et al. [1] performed similar experiments, but they used GRU networks,
rather than LSTM networks. Donkers et al. also experimented with a GRU
which incorporated user information and showed that by incorporating such in-
formation, the measured scores improved. Lastly, Wu et al. [6] implemented a
RNN for the Netflix challenge such that they could predict ratings for user/item
combinations. A point of critique here is that the inputs for their network con-
sisted of tuples with values (user, movie, timestamp). Looking at the data that
was used, it is clear that there was a temporal overlap between training and test
data. As such, part of the timestamp information that was used for training was
also available in the test data. In their report, they claim to be able to ’predict
future trajectories’, but this seems a bit far fetched as future information was
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10 CHAPTER 2. RELATED WORK

used. In real world scenarios, this information would not be available.
The aforementioned previous work all focused on as coined by Villatel et al.
[7], short-term predictions. Villatel et al. their work focused on extending that
research by also considering long-term predictions. In their work, short-term
predictions were defined as predicting the next item in the sequence, while long-
term predictions were defined as a set of most probable next occurring items in
a particular sequence occurring further along the consumption behaviour of a
user. Although this work focuses on short-term predictions, meaning the predic-
tion of the next item in the sequence, future work could include the enhancement
of this work by performing experiments regarding long-term predictions.

2.2 GRU

The GRU, originally introduced by Cho et al. [3] aims to solve the vanishing
gradient problem. To understand how Donkers et al. [1] have altered the stan-
dard GRU by adding a user-dimension, it is important to understand the inner
workings of the vanilla GRU and how the gates that govern the GRU interact.
The GRU has two gates, namely the update and the reset gate. As can be seen
in Figure 2.1 [8], they both receive a concatenation, consisting of the previous
hidden state (zero if the current item is the first item of the sequence) and an
item originating from a sequence. After this concatenation is processed by a
linear layer, the output is fed to the Sigmoid gate. These Sigmoid functions
squash the inputs between zero and one to determine how much of an influence
the current input has over updating the current hidden state. To find candidate
values to add to the hidden state, the tanh activation function is used. The
output of this function can be positive or negative, which allows for an increase
or decrease of the state. The last step updates the hidden state, which consists
of a multiplication of the update gate with the output of the tanh activation,
thus determining how much of a change will occur and if it will be positive
or negative. This result is added to a multiplication of the reset gate and the
current hidden state1, which in turn returns the new hidden state.

1If the current hidden state is zero, which occurs if the item being processed is the first
item out of a sequence, then the hidden state becomes the output of the multiplication of the
update gate with the output of the tanh activation.
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Figure 2.1: GRU cell with equations

Donkers et al. [1] proposed three methods for incorporating user informa-
tion. This work focuses on the one that performed best, namely the attentional
user-based GRU. This model incorporates an additional (Sigmoid) gate which
determines the influence of item-based and user-based information. Figure 2.2
shows this process. One can observe that the user- and item-input complement
each other, meaning that if the influence of the user-input is low, then the in-
fluence of the item-input is high (and vice-versa). After the aforementioned
process, the remainder of the internal workings of the attentional user-based
GRU is identical to that of the vanilla GRU.

Figure 2.2: Attentional user gate

As we have now explained the internal workings of both the GRU and the
user-based GRU, we feel it is of importance to elaborate on the intuition behind
why these models are used for the task of recommendation. The GRU is a RNN,
meaning that it processes sequential information. As we have stated prior to
this section, consumption behaviour of a particular user is the result of the
inherent ordering of the temporal dimension. By using a recurrent model, we
can utilize this dimension and process the information in the same order as the
user consumed it. The usage of the user-based information, which was proposed
by Donkers et al. [1], comes from the intuition of personalization, meaning that
we may find recurrences in the consumption behaviour of a specific user.



12 CHAPTER 2. RELATED WORK

2.3 DNC

As stated by Graves et al. [2], RNNs have difficulties storing and accessing in-
formation over longer time periods. A type of model to address this issue, is
called a Memory Augmented Neural Network (MANN), which uses an external
memory-component. This allows for more ‘slots’ to store information. This
research focuses on a differentiable MANN, namely the DNC, which was origi-
nally introduced by Graves et al. [9]. The intuition behind using this model for
the recommender problem is similar to that of the GRU. The difference here is
that the DNC has the capability to store additional information in its memory
component, which we expect to be of importance when dealing with longer se-
quences.
The sections below briefly introduce the DNC, its components, why these com-
ponents might be suitable for the task of recommendation and improvements
proposed in the literature. As a brief introduction to the model might not be
sufficient to fully grasp the mechanics of the DNC, we encourage readers to read
the original paper by Graves et al. [9] and the bit-by-bit guide to the equations
of the DNC [10]. These sources grant further insight into the foundations of the
DNC.

2.3.1 Overview

A DNC consists of three main components, namely a controller, the memory
component and the output of the DNC. As we are working with sequences, the
operations are recurrent. This means that the model does not only use an input
item, but also prior information which is stored by the memory component. An
important note here is that the memory is not global, but is reinitialized for each
sequence that is processed. The only global components are the weights that
are improved iteratively, which is why it is highly important that the memory
component is also differentiable. As the DNC gets fed a single input item, which
originates from a sequence, it combines this with the current memory state and
then feeds this to the controller. The controller, in our case, is either a vanilla
or user-based GRU. This allows for a comparison between both models with
and without the extra memory capacity. The output of the controller is used
twice. First, the output is used to update the memory component, whose inner
workings are explained in a separate section due to its complexity. Second, the
output of the controller is added to the output of the memory to form the final
output of the DNC. This process is repeated for each item in the sequence up
until the entire sequence is processed. Figure 2.3 illustrates this process.
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Figure 2.3: Illustration process DNC

2.3.2 Memory component

The memory component is composed out of memory cells. The number of
memory cells and the length of each cell is predefined by the user. The DNC
performs two operations on the memory component, namely a read and a write
operation.
The read operation is performed by a read head. A read head is a set of weights
that is used to address the memory component. The DNC has at least one read
head, where each read head has its own respective weights. These weightings
are used to access memory slots. The read head generates a distribution over
all the memory locations and will thus gain partial access to each memory cell.
The write operation is performed by a write head. The DNC has a singular
write head, and, as with the read heads, the write head consists of a set of
weights that is used to determine to which degree each memory location can be
written to at a certain timestep. Just as the read head, the write head generates
a distribution over all the memory locations.
Both the read and write operations require weightings. These weightings are
obtained by using three memory addressing schemes.
Content-based addressing: The first memory addressing scheme is called
content-based addressing. This allows for access to memory locations which are
similar to a given lookup key k. The lookup key k is the result of processing
the output of the controller. Equation 2.1 is used to determine how similar the
output of the controller is to a particular memory cell. Besides the lookup key
k, M denotes the memory matrix, β denotes a scalar with β ∈ [1,∞) and D is
defined as the cosine similarity.
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C(M,k, β)[i] =
exp (D(k,M [i, ·]))β∑N
j=1 exp (D(k,M [j, ·]))β

(2.1)

The cosine similarity can be seen in Equation 2.2. If two vectors have the
same orientation, then the angle between these vectors is zero degrees. This
results in the maximum value of the function, which is 1. If they have the exact
opposite direction, then D returns the minimum value, which is -1. An inherent
property of the cosine similarity is that the resulting score does not base itself
on the magnitude of the vector, but bases its score solely on the orientation of
two vectors [10].

D(u,v) =
u · v
‖u‖‖v‖

(2.2)

If one were to only use content-based addressing, then this would restrict
the capability of the write and read heads to access memory. An example here
is that the task of copying a sequence, such that the DNC repeats the sequence
completely once the input sequence has finished, requires a form of incremental
addressing. This cannot be done by content-based addressing, and, as such,
the read and write heads combine content-based addressing with other memory
addressing schemes. Content-based addressing is combined with dynamic mem-
ory allocation and temporal memory linkage for reading and writing operations
respectively [10].
For the task of recommendation this component’s importance comes from the
fact that it is able to find memory cells that are similar to previous inputs,
meaning that it finds similarities between the current input and information
that has already been stored, which offers a form of generalisation.
Temporal memory linkage: The second memory addressing scheme is called
temporal memory linkage. Temporal memory linkage bases its approach on the
temporal linkage matrix. The temporal linkage matrix stores probabilities that
indicate if a certain memory location was written to after another memory lo-
cation. If we denote i as the rows and j as the columns of the matrix, then the
probability that location i was written to after location j is stored as Lt(i, j),
where Lt is the temporal linkage matrix at timestep t. Using this matrix, we
can then move backward or forward in time by shifting attention to locations
written before or after a given weight matrix2 for a given timestep. The re-
sulting weightings are called backward and forward weightings respectively. As
mentioned previously, the weightings that are generated by the temporal mem-
ory linkage scheme are combined with the content-based weightings to compute
the final read weighting. This weighting is used to produce the output of the
memory component that is combined with the output of the controller to pro-
duce the final output of the DNC for a particular timestep [10].
For the task of recommendation this component’s importance comes from the
fact that it is able to perform incremental addressing. If, for example, several
items often occur subsequently, then the temporal linkage matrix is responsible

2This weight matrix consists of the previous write weighting for t− 1.
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for capturing this phenomenon.
Dynamic memory allocation: The third and last memory addressing
scheme is called dynamic memory allocation. The objective of this scheme
is to find an allocation weighting that indicates to what degree each location
can be written to and does this by expressing how much an arbitrary mem-
ory cell is being used by the model. To compute this allocation weighting, the
model first computes a usage vector where each value is between zero and one,
indicating how much a position in the memory cell is ‘in use’. This vector is
sorted in ascending order, which in turn grants a list, consisting of indices that
indicate to what extend memory cells are being used. Based on the previous
calculations, the allocation weighting is calculated which in turn is combined
with the results of the content-based addressing scheme to generate the write
weighting. This write weighting is used to compute the new memory matrix at
a particular timestep [10].
For the task of recommendation this component’s importance is not as clear
as the other memory-addressing schemes as it is responsible for writing, rather
than reading. Reading operations directly influence the output and aid us in
obtaining a prediction. Dynamic-memory allocation is solely responsible for
which memory cells will be altered. It does, however, prevent that memory
cells that carry important information for subsequent reading operations, are
altered. This indirectly results in better predictions.

2.3.3 Proposed improvements

After the initial publication by Graves et al. Csordas et al. [11] proposed three
changes with respect to memory addressing and supplied a PyTorch implemen-
tation of the DNC which is used and altered accordingly for this work. The first
proposal is regarding content-based addressing, this component is used to find
memory cells that are similar to a given look-up key. To find these similar cells,
a similarity score is calculated (see Equation 2.1). Here the entire key and entire
cell value are compared to produce a similarity score. This means that the cell
value is also used in the normalization part of the cosine similarity measure,
while it is unknown during search time, resulting in an unpredictable score. To
solve this, Csordas et al. propose the masking of the part that is unknown and
should not be used in the query, which results in more dynamic key-value sepa-
ration. The second proposal is regarding deallocation and content-based look-up.
Within the DNC, the usage of all memory cells are recorded. The computation
of this usage vector is based on two opposite forces acting in different direc-
tions. The decremental force acts when a certain location has been read at the
previous timestep as that may be an indication that the contents of a certain
location are no longer required. The incremental force acts when a location was
written to at the previous timestep as the location has not yet had a chance to
be read. When allocating memory, the cell with the lowest usage is chosen for
allocation [10]. Deallocation of such a cell is done by element-wise multiplica-
tion with a retention vector. This indicates how much of the current memory
should be kept. The problem here is that it does not affect the actual mem-
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ory, but just the usage vector, allowing the content-based look-up to find the
deallocated data. To solve this, Csordas et al. propose to zero out the memory
contents by multiplying every cell of the memory matrix by the corresponding
element of the retention vector. The third and last proposal is regarding the
Sharpness of the Temporal Link Distributions. The temporal linkage matrix is
used to read memory cells in the same order as they were written. On every
write, all elements of this matrix are updated, meaning that the links related to
previous writes are weakened and the new links are strengthened. If the weight
that is used for the temporal linkage matrix is not one-hot, links for all non-zero
addresses will be reduced and the noise from the current write will be included.
When performing multiple iterations, the linkage matrix is multiplied by itself,
making the problem worse as the noise is also included. This ultimately results
in a flat distribution for the long-term-present cells. Csordas et al. propose the
exponentiation and re-normalization of the temporal linkage distribution, such
that the model is able to control the importance of non-dominant elements.



Chapter 3

Experimental setup

3.1 Data

The experiments in this thesis use the freely available LastFM dataset, con-
sisting of approximately 19.5 million song played by a set of nearly one thou-
sand users1. The dataset contains tuple values of the format (user, timestamp,
artist, song). This dataset was also used by Donkers et al. [1], making it a
fitting dataset to compare results. Another reason for choosing this dataset is
mentioned in Donkers et al. their work, where they mention that in one session,
users generally listen to more than one song in a row, e.g. they listen to entire
playlists and/or albums in one sitting. Factors such as the mood of a user de-
termine which title will be listened to next. Donkers et al. compare it to the
underlying grammar in NLP studies, where there exist dependencies between
succeeding events. Such relations are much less obvious when recommending
movies as people in this case generally do not watch multiple items in one sit-
ting.
The dataset can be divided into ten disjoint datasets, which will be used sepa-
rately for our experiments. Each subset, consisting of ten percent of the total
dataset, is divided into a training, validation and test set such that the dataset
sizes match the previous work performed by Donkers et al. [1]. This means
that for each subset, 90 percent of the user’s sequence is used for training and
the remaining 10 percent is equally divided among the validation and test set.
Figure 3.1 shows how the different data subsets are used. All data folds are pre-
processed by removing items (i.e. songs) that occur less than 20 times, meaning
that if an item does not occur 20 times in a fold, it is removed. Items that do
not occur in the training set, are removed from the test and validation set.

1https://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/, last accessed date:
22-06-2019
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Figure 3.1: Subsets for various experiments (E: Embedding size experiment, S:
Various sizes training set, SL: Various sequence lengths). Note that the two
empty boxes depict 20% of the unused data of the dataset, with the exception
of the first experiment, which uses the entire dataset.

3.2 K-Fold Cross Validation

To ensure that the results are not solely the result of choosing a specific dataset,
we perform K-Fold cross validation for our experiments. As aforementioned,
the dataset can be divided into ten disjoint dataset, which we utilize for cross
validation. Figure 3.2 shows our training process of a singular. The number of
epochs are found by training a model on the training set and observing when
the model starts to overfit by using the validation set. As soon as this occurs,
the model stops the training process and stores the number of epochs, after
which a new model is trained on a merged dataset, consisting of the training
and validation set. This procedure is often referred to as EarlyStoppage. The
final model is then used to predict on the test set.

Figure 3.2: Training process per fold.

3.3 Hyperparameters

The hyperparameters for the GRU, are copied from Donkers et al. [1] their work.
This means that our GRU and thus also the controller consists of one layer with
a hidden dimension of 1000. The embedding layer has the same dimension as the
hidden layer. To prevent our model from overfitting, we apply dropout to both
the user and item dimension, with a keep probability of 0.8 and 0.5 respectively.
Furthermore, we apply a gradient cap of 5.0 and apply weight decay to the
parameters of the user-based dimension, which is set to 0.01. After experiment
3, we fix our hyperparameters due to computation limitations. This means that
we have not performed a hyperparameter optimization step for the DNC. We
set the number of read heads, the memory size and the memory width and to
1, 128 and 128 respectively. Additionally, the size of the embedding and hidden
layer is set to 128. The set of hyperparameters is summarized in Table 3.1 and
3.2. Similar to Donkers et al. their work, we employ the Adam optimizer with
a learning rate of 0.001 for both models.
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Table 3.1: Hyperparameters models

Component Hyperparameter Exp 1-3 Exp 4

GRU/Controller DNC Embedding Size 1000 128
Hidden size 1000 128
User drop-out 0.5 0.5
Item drop-out 0.8 0.8
Layers 1 1

Memory DNC Memory size - 128
Memory width - 128
Number of read heads - 1

Table 3.2: Hyperparameters for training

Hyperparameter Value

Batch size 1000
Learning rate 0.001
User weight decay 0.01
Gradient cap 5

3.4 Evaluation

We evaluate our test set by calculating the Recall@k score, with k = 20 and
k = 1. The Recall@20, in the case of this work, measures if the true class is
in the 20 most-likely recommended items by the model for a particular data
point. The Recall@1 measures if the most-likely recommended item was in fact
the true class. In Information Retrieval studies, the measure that is used is also
referred to as the Success Rate (SR). We will, however, refrain from using this
reference, such that our work aligns with previous work.
In comparison to previous work performed by Donkers et al. [1], we do not
report the Mean Reciprocal Rank (MRR). The reason for this is described by
Fuhr in [12], where he describes that the difference between the ranks 1 and 2
is the same as between the rank 2 and ∞. Reciprocal Rank is not an interval
scale, but an ordinal scale and one cannot meaningfully compute the mean for
an ordinal scale.
We employ the Categorical cross-entropy loss function for the optimization of
our models.
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Chapter 4

Results & Discussion

This chapter is divided into two sections. The first section focuses its attention
on the extension of previous work performed by Donkers et al. [1]. Here we do
not strive to improve the work, but rather find meaning behind the choices that
were made by the respective work. The second section focuses on exploring the
influence of long- and short-term dependencies for the recommender task.

The results that are reported in this chapter are also documented in table
format in Appendix A, which is for readers which want to have insight in the
specific scores that were found during our experiments.

4.1 Extension previous work

4.1.1 Experiment 1: Dataset sample

The work of Donkers et al. [1] introduced a user-based GRU. As previously de-
scribed, we focus on the attentional user-based GRU, which is a GRU with an
additional attentional gate that determines the importance of the user informa-
tion for a particular user-item combination. In their work, the authors took a
subsample of 10 percent of the original training data, which suggests a random
subsample. A brief exchange by email with the authors clarified that rare items
were also removed, but it remains unclear how their sample was taken exactly,
and what the threshold was for removing rare items. It is, however, highly
important to know how a sample was taken. If temporal boundaries were not
respected, meaning that the sample was random, then user consumption pat-
terns were broken. To explore the dataset, we perform a 10 fold operation with
the user-based GRU and vanilla GRU over the entire dataset and report the
results. Figure 4.1 shows the results for the aforementioned models on the 10
disjoint subsets of the LastFM dataset. We observe a variance between the re-
sults of the two models for a particular subset, and between the various subsets.
We also observe that our scores are much higher than those reported in [1] and
that the difference between the scores of the user-based and vanilla GRU is not
as large, although one can observe that the user-based GRU always outperforms
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the vanilla GRU.
We performed some preliminary tests such as refraining from the usage of
EarlyStoppage and training for the same number of epochs as reported in [1],
which had little impact on the resulting Recall@k scores. We hypothesized that
the higher scores might also be the result of our threshold setting for remov-
ing items that occur scarcely. As we decrease the threshold setting, it becomes
increasingly difficult for the model to make correct predictions, making the prob-
lem more complex. We expected the importance of user information to increase
in this setting as the model is expected to make predictions for items that occur
rarely, resulting in a decrease in Recall@20 scores, but most importantly in a
larger gap between the scores of the two models. This would show that with
a lower threshold, the importance of the user-based model increases. Figure
4.1 shows the scores with the threshold of removing items, which we coined as
r = 2 and r = 20, meaning that items had to occur at least two or twenty times
respectively. We observe that the scores for r = 2 are higher than those reported
in [1] and that the significance of the user-based model does not increase with a
lower threshold. This leads us to the conclusion that our hypothesis was false.
After these extensive preliminary tests, we conclude that we are unable to re-
produce the scores of previous work, meaning that our scores indicate that the
performance of the attentional user-based GRU is less significant in comparison
to previous work, which is most likely due to a different method of preprocessing
the data.
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(a) Recall@20

(b) Recall@1

Figure 4.1: Recall@k for ten disjoint folds in temporally increasing order.

4.1.2 Experiment 2: Subsample size

Previous work used a subsample of 10 percent for their work [1], but did not vary
the amount of data for training. For this experiment, we measure the impact of
the amount of training data on the predictive performance of our models. To
perform this experiment, we took 20 percent of the dataset (see Figure 3.1) and
carried out 10 different experiments where for each experiment the length of the
training sequence for each user was decreased by 10 percent, while the validation
and test set remained unchanged for all experiments. To make this experiment
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as fair as possible, the 20 percent subsample was preprocessed as two separate
samples of 10 percent each, such that we could remove rare items, after which
they were merged and processed equally for the remainder of the experiments.
Figure 4.2 shows the resulting Recall@20 and Recall@1 scores on the test set.
We observe that for this respective subsample, the Recall@20 does not seem to
decrease linearly, indicating that the most important data is hidden in the part
temporally closest to the test set. This leads us to two observations, first being
that if runtime is of importance, then one might decide to decrease the dataset
further as, for example, the difference between 1.8 million and 1 million training
sequences only resulted in a decrease of around 0.01 Recall@20. Second being
that this shows that it is of importance to merge the validation and training set
as the validation set consists of the sequences temporally closest to the test set.
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(a) Recall@20

(b) Recall@1

Figure 4.2: Recall@k scores as training data decreases.

4.1.3 Experiment 3: Embedding size

Another finding that peaked our interest was the size of the embedding layer.
Google [13], in one of their articles, mentions that it is common for NLP tasks
to use

4√
Z to determine the size of the embedding layer, with Z being the

number of unique items in a dataset. Per data fold, our number of unique
items equals approximately 18 thousand, which means that an embedding size
of 1000 is much higher than

4
√

18000 ≈ 12. Although this is not an NLP task,
it is interesting to see whether or not the general consensus regarding the size
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of an embedding layer generalizes to the recommender task. We performed an
experiment to test various embedding settings with a subset of our dataset (see
Figure 3.1). Figure 4.3 displays the average validation loss over the three folds.
We report the validation loss as this is commonly used for hyperparameter op-
timization, while Recall@k is used as a measure of success. We observe that
the loss decreases as the embedding size increases. In comparison to what is
advised for NLP tasks, the size of the embedding layer is much higher, which
leads us to think that there is less of an obvious relation between the items in
the sequences than with, for example, sentences (which are common in NLP
tasks). In NLP tasks, embedding is used such that items that occur in the same
’context’ are represented near each other in the embedding space. For the task
of recommendation, the model does not seem to benefit as much from such a
method as one might expect.
Before analyzing our results, we hypothesized that the model might be creating
its own one-hot encoding. We, however, observe that for the user-based GRU,
the embedding size of 4096 results in a lower validation loss than for the embed-
ding size of 8192. For the vanilla GRU, we also calculated the validation loss
when setting the embedding size equal to the number of classes, which grants
the GRU the opportunity to create its own one-hot encoding. This resulted in
a validation loss of ≈ 6.178, which shows that the model is not just creating its
own one-hot encoding, but is finding some relationship between the items. We
were unable to perform the same test for the user-based GRU due to limitations
in the available computational resources. We, however, find this additional test
unnecessary as we already determined that a lower embedding size resulted in a
lower validation loss. These results show that our hypothesis was false and that
there is a relation between the items, but as aforementioned, it is most likely
not as present as for NLP tasks, resulting in a higher optimal value for the size
of the embedding layer.
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Figure 4.3: Validation loss as embedding size increases.
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4.2 Experiment 4: Variable sequence lengths

We experimented with various sequence lengths, to find whether or not short-
and long-term dependencies influence the predictive prowess of our model. Con-
trast to the previous experiments, we also employ the DNC for this experiment
as it was mentioned to more effectively memorize longer sequences than other
RNNs[2].
Figure 4.4 shows the results for sequence lengths 10, 20, 50. At first we were
tempted to also test sequence length of 100. During the training process for the
user-based model GRU, however, we noticed that EarlyStoppage was triggered
early, causing a huge drop in the Recall@k. This lead us to assume that for
the user-based GRU, the validation set of sequence length 100 was not a good
representation of the training set, causing it to halt the training process early.
An explanation for this could be that if we have e.g. 700 users and want to
create sequences of length 100, then we only have 700 data rows, while with a
sliding window approach, we would have 66.500 rows for a sequence length of
5. Enlarging the dataset might further solve this problem, but we leave this
for future work. The resulting Recall@k scores are the averaged scores over a
3-Fold operation (see Figure 3.1 for the folds that were used). We observe, that
in general the sequence length does not seem to influence the resulting Recall@k
scores tremendously. This seems to be an indication that longer sequences and
thus long-term dependencies do not result in large increases in the Recall@k
scores, meaning what users listened to a longer time ago, does not seem to in-
fluence the short-term behaviour of a user. Besides this conclusion, we do make
a few observations.
There is a difference between the models and sequence length combinations
that perform best with respect to the Recall@k scores. For the Recall@20, a
sequence length of 10 seems to perform best for the user-based models, while for
the vanilla models, a sequence length of 20 is more optimal. For Recall@1 the
best performing sequence length is a sequence length equal of 5 for all models,
except for the vanilla DNC. This leads us to our second observation, which is
that there is a difference between sequence lengths that perform best for user-
based models and for the vanilla models. We are unsure what causes this result,
but there is one finding that seems to be explainable.
The vanilla DNC is outperformed by all user-based models for the Recall@20
scores. However, if we look at the Recall@1 scores, the vanilla DNC outperforms
all other models for sequence lengths that are larger than 5. If we look at the
original tasks for the DNC, like the copy-task, it leads us to think that the DNC
is particularly good at memorizing sequences perfectly. When reporting the Re-
call@20 score, a model is not expected to memorize the sequences perfectly as
the true class of the sequence only needs to be in the top 20 most likely predicted
items. As such, this gives models a higher chance to guess correctly. When re-
porting the Recall@1 score, there is less room for error in comparison to the
Recall@20. If the DNC is able to memorize certain reoccuring sequences per-
fectly, then it seems likely that the DNC outperforms the other models, which is
something that we are tempted to assume is occurring here. As was mentioned
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by Graves et al. [2], when sequences get longer, regular RNNs have difficulties
memorizing the sequences, which aligns with our thought process that is elabo-
rated above. Our thought process does not align with the Recall@1 scores which
were obtained for the user-based DNC. This model seems to perform poorly for
longer sequence lengths. We are unsure why this is the case, but it might be
due to the underrepresentation of sequence- and user-combinations, causing the
user-based DNC to generalize poorly to the test set.

(a) Recall@20

(b) Recall@1

Figure 4.4: Recall@k scores for variable sequence lengths.

Figure 4.5 depicts the item distribution for the training data of fold 7 (see
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Figure 3.1). Here we observe a huge item imbalance, which leads to the hypoth-
esis that the recommender system is primarily good in capturing the listening
behaviour from popular items and would thus perform poorly in a (realistic)
setting where it is expected to also recommend items that are less popular. To
test this hypothesis, we divide our classes into three categories: popular, semi-
popular and unpopular. To achieve this, we determine the item occurrences of
items for the training set of a particular fold, after which we create three equal
sized bins, which we base on the inherent ordering of the list of item occurrences.
This means that the weights are unique for each respective fold.

Figure 4.5: Item distribution training set of singular fold

Figures 4.6 and 4.7 show the respective Recall@20 and Recall@1 scores for
popular, semi-popular and unpopular items. Our hypothesis, however, regard-
ing the differences in results for the aforementioned categories, seems to be false.
The recommender system returns similar results for the aforementioned cate-
gories of popularity. Our aforementioned observations seem to also be present
for the different categories as, for example, the vanilla DNC outperforms the
other models, with respect to the Recall@1, for sequences lengths longer than
five. To conclude, even when looking into different categories of popularity,
it does not seem like the sequence length has a tremendous influence on the
resulting Recall@k scores.
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(a) Popular

(b) Semi-popular

(c) Unpopular

Figure 4.6: Recall@20 scores for popular, semi-popular and unpopular items
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(a) Popular

(b) Semi-popular

(c) Unpopular

Figure 4.7: Recall@1 scores for popular, semi-popular and unpopular items
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Conclusion

In this work, we extended previous work [1] by exploring the LastFM dataset
and the settings that were used for their experiments. After which we exper-
imented with various sequence lengths, the usage of a model that was shown
to generally perform better than other (recurrent) models when dealing with
longer sequences [2] and the difference in the models their performance on pop-
ular, semi-popular and unpopular items.

We found that our approach reduced the significance of the user-based GRU,
which in comparison to previous work, is most likely due to a different method
of preprocessing the data.

As the embedding size increased, we found that the respective validation
loss also increased, which seems to be an indication that, in comparison to e.g.
NLP tasks, there is less of an relationship between items in sequences for the
task of recommendation.

Long-term dependencies did not seem to be an important factor for our mod-
els. As we decreased the size of the training set, while keeping it temporally
close to the evaluation set, the scores did not decrease linearly. This is an indica-
tion that a big portion of the data that results in our Recall@k scores is present
in the data temporally closest to the test set (i.e. short-term dependencies).
Furthermore, when increasing sequence lengths and when reporting several cat-
egories with respect to popularity, we found that there does not seem to be a
clear relation between different sequence lengths and an increase or decrease
in the resulting Recall@k scores. The vanilla DNC was shown to have higher
Recall@1 scores than other models for longer sequence lengths. When reporting
the Recall@1 score, there is less room for error in comparison to the Recall@20.
We explain the results by assuming that the DNC was able to memorize the re-
occuring sequences perfectly, resulting in the vanilla DNC outperforming other
models.

We conclude that when working with sequential data, it is highly important
to respect the temporal boundaries as failing to do so, might result in scores
that cannot be used to evaluate recommender systems. There seems to be an
indication that a large portion of the information that is responsible for the
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resulting Recall@k scores is temporally closest to the evaluation set, meaning
that if runtime is key, one could consider using a smaller dataset and shortening
sequence lengths. This could be of importance to companies, such as Netflix,
which deal with a tremendous amount of data.

An important note here is that the results for experiment 4 are subject
to discussion as we fixed our hyperparameters due to the limited computation
resources available to carry out this study.



Chapter 6

Future work

In future work, we plan to extend our research by performing a full hyperparam-
eter search, which may be the reason why we found that longer sequences did
not seem to clearly increase the performance of our models. This does, however,
mean that if the models for longer sequence lengths become more complex, then
training time would increase even more then it already has1.

Besides the improvements of our work, we also see room for improvement
by incorporating the temporal dimension in our models, which was suggested
in Donkers et al. their work[1]. An example of integrating this dimension could
be the time difference between consuming items by users. This could perhaps
teach the model to recognize when sessions end, and therefore better anticipate
the likely changes in consumption behaviour.

1As aforementioned, training models took increasingly longer as we increased the sequence
length
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Appendix A

Tables results experiments

A.1 Experiment 1: Dataset sample

Table A.1: Recall@20 scores for 10 different subsets

Fold User-based GRU r=20 Vanilla GRU r=20 User-based GRU r=2 Vanilla GRU r=2

1 0.353 0.349 0.322 0.317
2 0.373 0.350 0.322 0.314
3 0.395 0.375 0.335 0.322
4 0.395 0.384 0.339 0.327
5 0.400 0.390 0.347 0.334
6 0.366 0.341 0.310 0.299
7 0.386 0.361 0.315 0.309
8 0.328 0.319 0.283 0.276
9 0.346 0.323 0.293 0.285
10 0.369 0.348 0.308 0.301

Table A.2: Recall@1 scores for 10 different subsets

Fold User-based GRU r=20 Vanilla GRU r=20 User-based GRU r=2 Vanilla GRU r=2

1 0.257 0.255 0.251 0.249
2 0.270 0.251 0.247 0.245
3 0.280 0.267 0.248 0.246
4 0.291 0.287 0.267 0.264
5 0.285 0.280 0.264 0.260
6 0.252 0.239 0.236 0.233
7 0.277 0.260 0.244 0.244
8 0.216 0.213 0.209 0.208
9 0.244 0.227 0.223 0.222
10 0.259 0.243 0.235 0.235
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A.2 Experiment 2: Subsample size

Table A.3: Recall@20 scores for different sizes for the training set

User-based GRU Vanilla GRU Size training set in thousands

0.402 0.395 1851
0.401 0.394 1665
0.397 0.393 1478
0.394 0.388 1292
0.389 0.381 1106
0.390 0.380 919
0.389 0.370 733
0.378 0.355 547
0.358 0.324 360
0.322 0.295 174

Table A.4: Recall@1 scores for different sizes for the training set

User-based GRU Vanilla GRU Size training set in thousands

0.285 0.282 1851.0
0.284 0.282 1665.0
0.282 0.282 1478.0
0.281 0.275 1292.0
0.276 0.271 1106.0
0.272 0.271 919.0
0.276 0.261 733.0
0.265 0.249 547.0
0.246 0.221 360.0
0.214 0.200 174.0
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A.3 Experiment 3: Embedding size

Table A.5: Cross-entropy loss for different embedding size

User-based GRU Vanilla GRU Embedding size

6.861 7.861 32.0
6.622 7.620 64.0
6.445 7.334 128.0
6.303 7.072 256.0
6.225 6.847 512.0
6.147 6.610 1000.0
6.064 6.390 2048.0
5.966 6.208 4096.0
5.971 6.148 8192.0
- 6.178 Number of unique classes

A.4 Experiment 4: Variable sequence lengths

A.4.1 Base scores

Table A.6: Recall@20 scores for various sequence lengths

Model type Sequence length 5 Sequence length 10 Sequence length 20 Sequence length 50

Vanilla GRU 0.253 0.268 0.274 0.269
User-based GRU 0.282 0.290 0.289 0.283
Vanilla DNC 0.259 0.264 0.274 0.263
User-based DNC 0.289 0.293 0.288 0.283

Table A.7: Recall@1 scores for various sequence lengths

Model type Sequence length 5 Sequence length 10 Sequence length 20 Sequence length 50

Vanilla GRU 0.181 0.186 0.188 0.181
User-based GRU 0.190 0.180 0.178 0.180
Vanilla DNC 0.187 0.180 0.180 0.163
User-based DNC 0.179 0.175 0.164 0.166
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A.4.2 Popularity scores

Popular

Table A.8: Recall@20 scores for popular items and various sequence lengths

Model type Sequence length 5 Sequence length 10 Sequence length 20 Sequence length 50

Vanilla GRU 0.261 0.277 0.282 0.278
User-based GRU 0.285 0.293 0.292 0.289
Vanilla DNC 0.264 0.273 0.284 0.274
User-based DNC 0.290 0.297 0.292 0.291

Table A.9: Recall@1 scores for popular items and various sequence lengths

Model type Sequence length 5 Sequence length 10 Sequence length 20 Sequence length 50

Vanilla GRU 0.174 0.179 0.179 0.173
User-based GRU 0.181 0.171 0.169 0.172
Vanilla DNC 0.177 0.171 0.172 0.156
User-based DNC 0.168 0.165 0.156 0.159

Semi-popular

Table A.10: Recall@20 scores for semi-popular items and various sequence
lengths

Model type Sequence length 5 Sequence length 10 Sequence length 20 Sequence length 50

Vanilla GRU 0.242 0.259 0.257 0.249
User-based GRU 0.276 0.282 0.281 0.265
Vanilla DNC 0.250 0.252 0.259 0.241
User-based DNC 0.285 0.283 0.276 0.265

Table A.11: Recall@1 scores for semi-popular items and various sequence lengths

Model type Sequence length 5 Sequence length 10 Sequence length 20 Sequence length 50

Vanilla GRU 0.188 0.194 0.195 0.182
User-based GRU 0.199 0.186 0.185 0.179
Vanilla DNC 0.197 0.189 0.185 0.165
User-based DNC 0.188 0.181 0.167 0.166

Unpopular

Table A.12: Recall@20 scores for unpopular items and various sequence lengths

Model type Sequence length 5 Sequence length 10 Sequence length 20 Sequence length 50

Vanilla GRU 0.239 0.252 0.267 0.262
User-based GRU 0.279 0.290 0.288 0.285
Vanilla DNC 0.255 0.254 0.265 0.253
User-based DNC 0.293 0.295 0.289 0.279
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Table A.13: Recall@1 scores for unpopular items and various sequence lengths

Model type Sequence length 5 Sequence length 10 Sequence length 20 Sequence length 50

Vanilla GRU 0.191 0.197 0.203 0.199
User-based GRU 0.206 0.197 0.192 0.199
Vanilla DNC 0.203 0.195 0.196 0.177
User-based DNC 0.199 0.193 0.180 0.182


	Introduction
	Related work
	Recommender task
	GRU
	DNC
	Overview
	Memory component
	Proposed improvements


	Experimental setup
	Data
	K-Fold Cross Validation
	Hyperparameters
	Evaluation

	Results & Discussion
	Extension previous work
	Experiment 1: Dataset sample
	Experiment 2: Subsample size
	Experiment 3: Embedding size

	Experiment 4: Variable sequence lengths

	Conclusion
	Future work
	Appendices
	Tables results experiments
	Experiment 1: Dataset sample
	Experiment 2: Subsample size
	Experiment 3: Embedding size
	Experiment 4: Variable sequence lengths
	Base scores
	Popularity scores



