MASTER THESIS
INFORMATION SCIENCES

AN,

Q
S
iorrer

YiNe S

RADBOUD UNIVERSITEIT

The Coderclass Decoded

Analyzing a new extracurricular course

Author: Main supervisor/assessor:
Jory van Keulen Erik Barendsen
4038053 e.barendsen@cs.ru.nl

Second assessor:
Sjaak Smetsers
s.smetsers@cs.ru.nl

Abstract

This study investigates a new secondary school computer science elective
course in Amsterdam, the Netherlands, called the Coderclass. Because this
elective course has a curriculum that deviates from the standard Dutch
computer science curriculum, a case study is performed into the curriculum’s
content, learning objectives and student attitudes of the first year of the
elective course.

A conceptual analysis of the Coderclass first year modules is performed and
compared to other computer science curricula. In this analysis, it becomes
apparent that several categories are much more focussed on in the Coderclass
in comparison to peer curricula, such as programming and modeling, while
others are underrepresented, such as intelligence and society.

Learning objectives are then extracted from module goals and assignments
and are found to focus on cooperation, debugging and testing, decomposing,
designing, generalization, initiative and planning, modeling, understanding
and writing a program, and understanding general computer science concepts.
The learning goals are then compared to the core 2016 Dutch computer
science curriculum to point out that the Coderclass focuses much more on
the core domain of programming while focusing less on the core domains
of interaction and architecture. It also becomes clear that the learning
objectives found are in line with a widely accepted definition of computational
thinking, and that Coderclass students will learn to think like a computer
scientist.

Furthermore, student attitudes on the Coderclass are analyzed through
learner reports in which the general positivity on student confidence, satisfaction
and judgement on the elective course is expressed by Coderclass students.

Finally, a new module Entrepreneurship-0 is developed as a contribution
to the Coderclass curriculum, and specifics of this module are discussed.

Contents

1 Introduction 4
1.1 Structure of this thesis 5
2 Background 6
2.1 The curricular spiderweb L oL 6
2.2 Content e 8
2.3 Aims & Objectives 11
2.3.1 Computational thinking 11
2.3.2 student attitudes 12
3 Aim of the study 15
3.1 Context of thestudy 15
3.1.1 The Metis Montessori Lyceum & The Coderclass . . . 15
3.1.2 Dutch CS Education 18
3.2 Research questions 21
4 Methodology 22
4.1 Conceptual content, 22
4.1.1 Conceptual analysis 22
4.1.2 Comparing the Coderclass to other CS curricula . . . 23
4.2 Learning objectives o 0oL 25
4.2.1 Learning objective analysis 25

4.2.2 Comparing the Coderclass learning objectives to the
2016 Dutch CS learning objectives 26
4.2.3 Computational Thinking in the Coderclass 26
4.3 Student attitude outcomes 27
5 Results 29
5.1 Conceptual content L oL 29
5.1.1 Conceptual analysis 29

5.1.2 Comparing the Coderclass to other CS

curricula L 38
5.2 Learning objectiveso 44
5.2.1 Learning objective analysis 44

5.2.2 Comparing the Coderclass learning objectives to the
2016 Dutch CS learning objectives
5.2.3 Computational thinking in the Coderclass
5.3 Student attitude outcomes L.

6 Conclusion

7 Enriching the Coderclass
7.1 Module preparation according to PCK model
711 Whatand why
7.1.2 Possibilities and limitations
7.1.3 Approach of education
7.1.4 Assessment

8 Enriching the Coderclass
8.1 Module preparation according to PCK model
81.1 Whatand why
8.1.2 Possibilities and limitations
8.1.3 Approach of education
81.4 Assessment

9 Discussion
9.1 Findings
9.2 Limitations of the study
9.3 Futureresearch,
9.4 Recommendations to Coderclass

Appendices
A List of categories and their concepts

B Entrepreneurship Module Coderclass
B.1 Module Ondernemerschap-0

References

65

69
71
71
71
72
74

75
7
7
7
78
80

81
81
82
83
83

85

86

89
89

91

Preface

As the world moves further into the digital age, the education of its inhabitants
must also be updated to match this progression. As my own secondary
school computer science course was somewhat outdated, even for its time,
it was my great interest to see new initiatives on various computer science
courses, and I have chosen to commit my master’s thesis on a brand new
elective course in Amsterdam by performing an in-depth analysis on “the
Coderclass”.

The research for this thesis was performed during an analysis of the 2016-
2017 Coderclass academic year of the Metis Montessori Lyceum (MML) in
Amsterdam. The thesis itself was written and improved throughout 2017-
2019.

During the research, I have collaborated with the MML and have made
several visits to their Coderclass in Amsterdam. To perform the analysis
itself, I have been given access to many documents and sources that are
used in teaching the students of the Coderclass, such as the course wiki
containing the course modules.

Apart from the analysis performed for this research, I have also been asked
to contribute to the Coderclass course by creating a new module. This
module is the starting module for the course involving entrepreneurship and
is also mentioned further on in the thesis.

I want to thank Erik Barendsen, who has been a great supervisor and has
helped me in performing my research and writing this thesis. Furthermore, I
would also like to thank Hakan Akkas, one of the founders of the Coderclass,
who has shown me great hospitality and has helped me attain the data
needed to perform this study. Finally, I would like to thank the MML and
the Coderclass students who have allowed me to observe several Coderclass
classes and have particularly helped in performing an attitude outcome
analysis.

Chapter 1

Introduction

Like anywhere else in the world, Computer Science (CS) is an essential topic
in the Netherlands. However, the Netherlands only features a formal CS
course in upper secondary school, which does not include lower secondary
school, and is in contrast to other countries. To close the gap between
the Netherlands and other countries on this subject, more and more CS
educational initiatives are arising, even in the junior classes of secondary
education. The main problem of this is that secondary schools create these
new CS courses on their initiative, which can result in a lot of entirely
different curricula that are often quite different from the formal Dutch CS
curriculum. Furthermore, schools often do not know for sure if they are
doing it right. All of this leads up to the necessity of studying these new
initiatives, and the Coderclass is no exception. But how does one study and
compare wholly new and different CS curricula? How do we ‘decode’ the
Coderclass?

This thesis aims to perform a case study on such a new CS initiative. By
performing a case study into a new CS elective course called “the Coderclass”,
using different tools such as conceptual analysis and attitude learner reports,
one possible method of studying and comparing CS curricula is described.
The Coderclass features a new CS curriculum by its own design and is
performed at the Metis Montessori Lyceum (MML) in Amsterdam. Coderclass
students start their CS course as early as their first year in secondary school.
This study will also help the Coderclass in figuring out where they stand
regarding their new curriculum by analyzing and discussing their specific
course materials and student attitude outcomes. The result of this will
help the newly founded Coderclass determine how it holds up compared to
the general Dutch CS course and other CS curricula, and possibly provide
a method of analyzing new CS curricula by providing results of different
research methods in which some may be more useful than others. Finally,
this study will also feature a contribution to the Coderclass in the form of

a new module as part of the research.

1.1 Structure of this thesis

This thesis will begin with various background material on educational CS
research that is relevant to this study (chapter 2). In chapter 3, the aim
of the study is explained, and research questions are given, after which the
methodology of performing the study is given in chapter 4. In chapter 5, the
results of the study are shown extensively. Chapter 6 answers the research
questions in the form of conclusions. Chapter 7 features the specifics of
the contribution that was made to the Coderclass as part of the research.
Finally, a reflection on the thesis is made, and a discussion on the methods
is featured in chapter 8.

Chapter 2

Background

This chapter features background information on various topics that are
of importance for this research. To discover specifics of the Coderclass
curriculum (such as content and learning objectives), their teaching and
learning environment is first mapped out and then used as an oversight to
explain background information on other important topics related to this
study.

2.1 The curricular spiderweb

To determine the specifics of a curriculum (such as learning objectives), it
helps first to map out the different areas of the curriculum. An often-used
method of doing so is the “curricular spiderweb” of Van den Akker (2004).
This spiderweb allows one to analyze a curriculum from the top down by
splitting it into several different aspects. It begins with the rationale of
the curriculum, which forms the center of the spiderweb, to which nine
strands of educational subdomains are connected. Ideally, each one of these
subdomains is also connected to the others, thus forming a spiderweb (see
figure 1). These subdomains each aim to answer a specific question about
the curriculum, as shown in table 1. Several of these strands (in particular
Content and Aims & Objectives) are of importance to this study as they
will help determine the Coderclass curriculum specifics.

Figure 1: Van den Akker’s curricular spiderweb

Rationale Why are they learning?

Aims & Objectives To what aim are they learning?

Content What are they learning?

Learning activities How are they learning?

Teacher role What is their teacher’s role with learning?
Materials & Resources | With what are they learning?

Grouping With whom are they learning?

Location Where are they learning?

Time When are they learning?

Assessment How is their learning assessed?

Table 1: Van den Akker’s curricular spiderweb: sub domains and the
questions they can answer.

2.2 Content

To analyze a curriculum according to the curricular spiderweb, the spiderweb
subdomain of content is of the highest importance. This domain explains
the topics and concepts that are taught in an educational course. Thus, a
conceptual analysis of the curriculum’s content is required.

Such an analysis can be performed in many different ways. The methodology
used in this study is an adaptation of Barendsen and Steenvoorden (2016).
In their research, several curricula were investigated through conceptual
analysis. These are the former Dutch CS curriculum, the 2012 French CS
curriculum, the 2012 Computing at School (CAS) guidelines, the 2011 CSTA
standards and the new 2016 Dutch CS curriculum.

During these analyses, CS subjects were classified based on knowledge areas
of the CS curriculum. These knowledge areas are then clustered in smaller
categories. The course and its documents are scanned for codes that relate
to these categories, after which they are used to get a global overview of
occurrences of codes in each category. The outcomes can then be used to
see which concepts occur most and which concepts are not covered by the
course, and can also be used to compare different courses. The results of
these analyses show that data, architecture, networking, algorithms, and
engineering cover the most significant parts of the studied specifications,
but that there are differences in emphasis. An overview of the concepts and
knowledge categories is given in table 2, and the outcome of the research is
given in figure 2.

Knowledge category ‘

Included ACM/IEEE knowledge areas

Algorithms

Algorithms and complexity (AL)

Parallel and distributed computing (PD)

Algorithms and design (SDF/AL)

Remark: concepts about data
structures are covered by Data

Architecture

Architecture and organization (AR)

Operating systems (OS)

System fundamentals (SF)

Modeling

Computational science (CN)

Graphics and visualization (GV)

Data

Information management (IM)

Fundamental data structures (SDF/IM)

Engineering

Software engineering (SE)

Development methods (SDF/SE)

Remarks: also contains ideas on collaboration;
concepts without an engineering component
are covered by programming

Intelligence

Intelligent systems (IS)

Mathematics

Discrete structures (DS)

Networking

Networking and communication (NC)

Programming

Programming languages (PL)

Platform based development (PBD)

Fundamental programming concepts (SDF/PL)

Security

Information assurance and security (IAS)

Remark: concepts about privacy
are covered by society

Society

Social issues and professional practice (SP)

Usability

Human-computer interaction (HCI)

Table 2: Knowledge categories.

CSTA

Algorithms (44)
Engineering (40)
Architecture (37)
Society (30)
Networking (27)
Programming (25)
Data (23)
Security (13)
Modeling (12)
10. Intelligence (11)
11. Mathematics (8)
12. Usability (2)

13. Rest (0)

e B Al ol

o

(Total: 272)
Netherlands 2007

Architecture (13)
Data (12)
Engineering (10)
Networking (4)
Rest (4)
Programming (3)
Usability (3)
Modeling (2)
Security (1)
Algorithms (0)
Intelligence (0)
Mathematics (0)
Society (0)

el

RN

(Total: 52)

@)
>
%)

Algorithms (44)
Networking (40)
Architecture (38)
Data (33)
Programming (19)
Engineering (17)
Mathematics (5)
Security (4)
Society (2)
Intelligence (1)
Modeling (0)
Rest (0)
Usability (0)

A R R o e

— p—

(Total: 203)
Netherlands 2016 (core)

Programming (18)
Engineering (17)
Data (11)
Society (10)
Architecture (9)
Security (7)
Algorithms (6)
Usability (3)
Networking (2)
Intelligence (0)
Mathematics (0)
Modeling (0)
Rest (0)

SOXNNUN R L=

-y

(Total: 83)

France

1. Data (28)
2. Programming (15)
Architecture (14)
Networking (14)
Algorithms (13)
Mathematics (8)
Society (5)
Engineering (4)
Modeling (4)
Intelligence (2)
9. Rest (1)
10. Security (0)
Usability (0)

(98]

Nons

oo

(Total: 108)

Netherlands 2016 (complete)

1. Programming (22)
2. Architecture (19)
Society (19)

3. Data (18)
Engineering (18)
Usability (18)
Security (16)
Algorithms (14)
Networking (11)
Modeling (7)
Mathematics (4)
9. Intelligence (3)
10. Rest (0)

PR

(Total: 169)

Figure 2: Lists of knowledge categories for each curriculum document,
sorted from most to least occurring concepts. The number of concept
occurrences in each category is displayed between parentheses. The total
number of concept occurrences in the document is given at the end of each
list.

10

2.3 Aims & Objectives

The second strand of the curricular spiderweb that is of importance to
this study is the Aims & Objectives strand. This particular strand of
the spiderweb focuses on answering the question “To what aim are they
learning?”. While Content specifies the what, Aims € Objectives focusses
more on the why. This strand contains curriculum specifics such as learning
objectives but can also include aims that are more focused on the student’s
attitude of the subjects. One particular learning objective that is of importance
to new CS curricula is computational thinking. Computational thinking and
student attitudes are first addressed before heading further into the study.

2.3.1 Computational thinking

A particular learning objective that is often mentioned in a present-day CS
curriculum is computational thinking (CT). CT is a term that took off in the
CS community when an article about computational thinking was published
in an ACM Communications journal by Jeanette Wing. According to Wing
(2006), CT is a way for humans to solve problems by reformulating a difficult
issue into an easier one that we can solve by means of thinking recursively
and using recognition, interpreting, abstraction conceptualization, and analysis
to solve a problem, and not just problems in CS; CT can be used to solve
problems in any context. The general definition of CT given by Wing
and adhered to by many is thinking like a computer scientist, and that
“computational thinking involves solving problems, designing systems, and
understanding human behavior, by drawing on the concepts fundamental to
computer science” (p. 33). According to Wing, CT should be taught to
everyone, not just computer scientists, and integrated into other disciplines
besides CS. Since this article in 2006, the term has increasingly been used
in the shaping of courses for students in primary and secondary education.

CT often appears in CS curricula, intended or not, by making students think
like a computer scientist. This can be achieved through various methods,
one of which is programming behind a computer. Other methods involved
unplugged ways of teaching, such as making a student solve an algorithmic
problem on paper. The usability and necessity of teaching CT in secondary
education is still a source of many discussions today.

Researchers and CS educators now work with several descriptions of CT,
with the value of abstraction being CT’s keystone (Grover & Pea, 2013) or in
other words, a “focused approach to problem-solving using thought processes
that utilize abstraction, decomposition, algorithmic design, evaluation, and
generalizations” (Selby & Woollard, 2013). According to Grover and Pea
(2013), the following elements are now widely accepted as comprising CT,

11

and form the basis of curricula that aim to support its learning and assess
its development.

e Abstractions and pattern generalizations (including models and simulations)

e Systematic processing of information

e Symbol systems and representations

e Algorithmic notions of flow of control

e Structured problem decomposition (modularizing)
o Iterative, recursive, and parallel thinking

e Conditional logic

e Efficiency and performance constraints

e Debugging and systematic error detection

Grover and Pea’s list of CT elements will also be used as the definition of
CT in this study.

2.3.2 student attitudes

An important aim of an educational course in recent days is to change the
way a student thinks about the subjects covered in the course and for the
students to be able to use what they learn in their everyday lives. Many
sources have already stressed the importance of student’s attitudes towards
modern science curricula and learning outcomes, such as Council et al.
(1996) and Binkley et al. (2012).

One method of modeling these student attitudes that is used in this study
are the learner reports created by De Groot (1980). According to De Groot,
learning outcomes can be characterized as knowledge and skills that have
been attained by students in a course. These are things students can speak
or write about, and thus learning outcomes can be translated into a form in
which a student can report their learning experiences. De Groot classifies
two different kinds of learning: learning about rules and exceptions, and
learning about the world around you and yourself, thus objectively learning
about rules and exceptions about the world, and rules and exceptions about
yourself. A model of this characterization is given in figure 2 (Eijk, 1984).
In this model, students are asked about their learning experiences. The
learning reports will help determine the connections, student attitudes, and
concepts discovered and used by the students in any given curriculum.

12

LEARNING LEARNING
RULES EXCEPTIONS
A
W Rules of the world Surprises of the world
Q
R Answers and methods Exceptions
L
D TESTABLE or DEMONSTRABLE REPORTABLE
S Rules regarding myself: Surprises regarding myself:
E
L Capacities and limitations Exceptions to preconceptions
F
COMMUNICABLE
C

Figure 3: Classification of all Learning Objectives According to De Groot
(From: Van Eijk, 1984).

As mentioned before, learner reports point out student attitudes as a way to
judge learning outcomes, which is not a new concept. Klop (2008) divides
the attitudes into 3 separate components:

e Cognitive component: evaluation using opinions and knowledge
e Affective component: emotions and how people feel about things
e Behavioral Component: behavioral intentions

The motivation of students is assumed to have an impact on these attitudes
and whether they are positive or negative. The motivational ARCS model
of Keller (1984) categorizes motivation into 4 factors: Attention, Relevance,
Confidence and Satisfaction (ARCS). These motivational factors can then
be connected to the attitude components by Klop (2008). The Satisfaction
factor appeals to the affective attitude component, whereas Relevance and
Confidence contribute to the cognitive component. Klop’s components and

13

Keller’s ARCS model will form the basis of learner report analysis for this
study.

14

Chapter 3

Aim of the study

The primary aim of this research is to study the Content and Aims &
Objectives strands of the curricular spiderweb for the first year of the Coderclass.
While doing this, the aim is to determine the course content, learning
objectives, and student attitude outcomes. This is done by performing a
conceptual analysis in order to find out the content and learning outcomes

of the curriculum, and by performing an analysis on learner reports filled in
by the Coderclass students to discover student attitude outcomes.

Secondary aims of this research include comparing the results of the conceptual
analysis to different CS curricula (including the general 2016 Dutch CS
curriculum) as previously analyzed by Barendsen and Steenvoorden (2016),
and finding out in what way (if any) CT is included in the learning objectives
of the Coderclass.

More context on the Coderclass itself and the current situation of Dutch
CS curriculum will first be given to achieve these goals.

3.1 Context of the study

3.1.1 The Metis Montessori Lyceum & The Coderclass

The MML in Amsterdam is the home of the new project “Coderclass”
(https://coderclass.nl/), an elective course in which motivated secondary
education students are introduced to CS through a weekly 5-hour program.
During these 5 hours, they can work at their own pace to learn about
several areas of CS. Once they have enough knowledge about a particular
subject, they are awarded a badge. This badge then allows them to work
on a practical issue (often related to actual businesses) with a group of
fellow students who have also attained this badge. During this practical
assignment, they use what they have learned to create something in a group
environment. This is done using a “light version” of the SCRUM developing

15

method. The Coderclass also has strong ties to several I'T businesses, who
provide them with realistic challenges and guest lectures for the students.
The Coderclass is a rather new course and still relies much on trial-and-error
to improve the quality of the course.

When the analysis for this study was performed, the Coderclass had just
ended their first year of the course. After the first year of core subject
teaching and having attained the minimum yearly program each year, students
gain more options to develop skills and specialize in areas they are most
passionate about as they can choose the modules they take in the course.
Even in their first year, students gain some opportunity to choose an additional,
optional module they are interested in to add to their education. However,
as these optional modules and specializations are not part of the intended
basic direction of the curriculum, they are not included in the analysis.

Figure 4: The Metis Montessori Lyceum in Amsterdam

The Coderclass through the curricular spiderweb

Several visits to the MML were made during the study, in which observations
of classes were performed. During these visits, additional information about
other strands of the curricular spiderweb was gained by performing semi-
structured interviews with the staff of the Coderclass. By combining these

16

additional sources of information, the Coderclass can be viewed from the
top-down through the curricular spiderweb (with the exception of Aims &
Objectives and Content, as these are the main focus of the study and are
analyzed further on):

Rationale: Why are they learning?

Coderclass students are learning about CS at an early age, so they get
used to CS practical matters that they could benefit from in their life,
and possibly in their professional careers.

Learning activities: How are they learning?

Students in the Coderclass learn about CS through reading and making
assignments about a specific topic in modules, after being given an
introductory lecture in class by teachers or guest lecturers. After they
have mastered this material, they are given a badge to show their
mastery. Then, they gain practical experience by using the material
they have learned in one or more practical assignments that they
perform in bigger groups. These practical assignments often required
skills learned in multiple modules.

Teacher role: What is their teacher’s role with learning?
The teachers have a huge part in creating the course from scratch
by creating and editing the modules if needed. They are also tasked
with explaining the theory and assignments amongst the students and
helping them when they need guidance. They are responsible for the
assessment of the modules and (practical) assignments done by the
students.

Materials & Resources: With what are they learning?

The Coderclass uses a wiki to spread the theoretical and practical parts
of the course, which students open on laptops they bring themselves, or
on computers that are present in the computer lab. The students also
have access to a forum environment (Out-Of-Bounds) in which they
can ask questions regarding the course. Fellow students and teachers
can then help them with their questions.

Grouping: With whom are they learning?

Coderclass students start each module by doing assignments on their
own to get acquainted with the material. When the teachers deem
they have sufficient knowledge of the material, a badge is awarded to
them for possessing the required knowledge. Then, they are divided
into groups to use the knowledge they gained in a larger practical
assignment.

Location: Where are they learning?
The Coderclass course is given in a special computer lab inside the

17

MML. Some of the classes are also given on location at specific CS-
related businesses (mostly by guest lecturers), where the Coderclass
students perform practical assignments.

e Time: When are they learning?

The Coderclass students are required to be present on the MML for 5
hours each week. The schedule differs according to the school’s lecture
rosters. Homework is also given to the students, in particular for the
theoretical parts of the course. The homework is mostly done from
home, but can also be done during class if the student has enough time.
Practical assignments are mostly performed during classes (which means
students can work together and ask for guidance if necessary), but
students can also work on this from their homes.

e Assessment: How is their learning assessed?
Their teachers assess the students’ work and assignments. Whenever
a student is finished with a specific module, they can request a badge
for it. The teachers will then assess the work done by the student
in order to see if they have sufficiently finished all assignments and
gained the skills required to achieve the badge. When they deem the
student has done so, the badge for that specific module is awarded.
Practical assignments are assessed similarly. When a group of students
is finished with their work, the completed work can be assessed by their
teachers, who will grade them for their work.
The Coderclass has no final exam or tests, assessment of students is
primarily done by the badge system explained above, and the assessment
on the practical assignments made.

3.1.2 Dutch CS Education

In the Netherlands, CS is an elective subject. There has long been a CS
curriculum for students in upper secondary education. This curriculum was
established in 1998, had some minor adjustments in 2007 (Schmidt, 2008)
and had a complete reform in 2016. The Dutch government decides what
curriculum is used for every subject during primary and secondary school
(including CS). The government often relies in part on curriculum research
performed by scientists to make these decisions.

After elementary school (which, in the Netherlands, is completed at 12 years
old), students move on to one of three types of secondary education. Only
two of these (havo and vwo) offer CS as a subject and will be discussed, as
the third does not typically involve a longer CS curriculum. The first of the
two (havo; in Dutch: hoger algemeen vormend onderwijs) is a curriculum
of five years (grades 7 through 11) that focuses on preparing students for
professional education. The second of the two (vwo; in Dutch: voorbereidend

18

wetenschappelijk onderwijs) is a curriculum of 6 years (grades 7 through
12) and prepares students for further education at a university. The Dutch
government decides what curriculum is used for every subject and how they
are assessed. A curriculum is formulated as a set of learning objectives
that students should have mastered on the completion of the subject. These
curricula are often quite abstract descriptions of the intended learning outcomes,
as only the ‘what’ is decided by the government and the ‘how’ is left to
the schools (Barendsen, Grgurina, & Tolboom, 2016). To help build a
curriculum from the core learning objectives, it is also necessary to build
and improve smaller domains of the curriculum. Because of this, learning
objectives are often grouped into domains. Each of these domains is subdivided
into one or more subdomains and is then specified by a specific learning
objective.

The 2007 version of the CS curriculum held 18 learning objectives (Tolboom,
Grgurina, et al., 2008) and was presented as shown in table 3.

Domain Subdomains

A: Informatics in perspective Science and technology, society, study and
career, the individual

B: Terminology and skills Data representation in a computer, hardware,
software, organizations

C: Systems and their structures | Communication and networks, operating
systems, systems in practice, development
of information systems, information flow,
information analysis, relational databases,
human-computer interaction, system
development life cycle

D: Usage in a context

Table 3: Domains and subdomains in CS, 1998 curriculum after 2007
revision (Barendsen et al., 2016)

Despite several evaluations of the curriculum over the years, there have never
been major changes to it. This neglect led to a new study as ordered by the
Ministry of Education into the teaching of CS and its curriculum (Tolboom,
Kriiger, & Grgurina, 2014). By the end of this new study, it was confirmed
that the situation was worrying and in need of an update. This led to the
decision made by the Ministry of Education to reform the curriculum. The
new, reformed curriculum was adopted as the new informatics curriculum
in 2016.

The new 2016 curriculum’s core consists of a set of skills that address CS

19

specific skills, general scientific skills, and technical skills. Besides the skills,
the core curriculum also consists of five knowledge domains and finally, a
set of elective themes. An overview of these domains and themes is given in
table 4.

Elective themes

Core Curriculum

Domain A Skills Domain G Algorithms, computability, and logic
Domain B Foundations Domain H Databases
Domain C Information Domain I Cognitive computing

Domain D Programming | Domain J Programming paradigms

Domain E Architecture | Domain K Computer architecture

Domain F Interaction Domain L Networks

Domain M Physical computing

Domain N Security

Domain O Usability

Domain P User experience

Domain Q Social and individual impact of CS
Domain R Computational science

Table 4: Domains of the 2016 CS curriculum (Barendsen et al., 2016)

Many Dutch universities and businesses also offer a wide range of curricula
involving CS, which are all different from one another (as they are usually
not influenced by the government), but are often inspired by research done
into CS curricula and education.

With this in mind, this study aims to contribute to these CS curricula

studies and to place the Coderclass analysis in context by comparing it to
the 2016 CS curriculum (among others).

20

3.2 Research questions

This study will focus on discovering the conceptual content, learning objectives,
and student attitude outcomes in the first year of the Coderclass. Special
attention is given to computational thinking and how it is involved in the
learning objectives. Furthermore, only the first year of the Coderclass is
analyzed, as it the Coderclass had just finished their first year of the course
by the time of the analysis done for this study. The entire six-year curriculum
and the long term benefits will not be part of this analysis.

To sum up the previous information into a set of research questions, this
study aims to answer the following research questions:

Conceptual content

1. What is the conceptual content of the first year of the Coderclass?

2. How does the content of the Coderclass compare to other CS curricula?
Learning objectives

3. What are the learning objectives in the first year of the Coderclass?

4. How do the learning objectives of the Coderclass compare to the Dutch
Computer Science learning objectives?

5. In what way do the learning objectives of the Coderclass involve Computational
Thinking?

Attitude outcomes

6. Which learning outcomes can be determined concerning Coderclass
student attitudes?

21

Chapter 4

Methodology

An extensive analysis of the first year of the Coderclass was performed to
answer the research questions. The methodology of research for each topic
of this study is included in this chapter.

4.1 Conceptual content

To determine the conceptual content set out for the first year of the Coderclass,
the strand of Content of Van den Akker’s curricular spiderweb is relevant.
This strand answers the question “What are they learning?”.

4.1.1 Conceptual analysis

In order to find out the answer to this question, an in-depth analysis of the
learning material and documents of the Coderclass was performed. These
documents feature the modules that all students work within their first year,
and contain the concepts they learn about and the assignments they must
finish. The main goal of this analysis was to discover which concepts are
taught in the Coderclass so that an accurate representation of the conceptual
content in the first year can be given. This analysis began by using an
adaptation of the conceptual characterization of a curriculum that was
developed by Barendsen and Steenvoorden (2016). Their characterization
is a conceptual analysis method used to analyze the conceptual content of
a curriculum. The starting point of the method was a classification of CS
subjects in terms of knowledge categories, based on the “knowledge areas”
of the computing curricula. These knowledge areas were then clustered in
small categories. Then, the curriculum and documents were scanned for
codes that relate to these categories and then used to get a global overview
of occurrences of codes in each category. The outcomes could then be used
to see which concepts occur most, which concepts are not covered by the
curriculum, and could also be used to compare different curricula. The

22

coding of these categories was done through qualitative analysis software
called Atlas.ti, which helps systematically uncover and analyze issues that
are hidden in data. Their method of analysis of a curriculum through
coding in Atlas.ti is copied in this thesis and was used in the analysis of
the Coderclass.

To code in Atlas.ti, auto-coding using specific terms related to knowledge
categories as determined by Steenvoorden (2015) (see Appendix 8.1) was first
used to start the analysis in a deductive manner. Then, the analysis was
broadened by inductively scanning the documents for additional terms and
concepts. When one of the terms was found somewhere in the documents,
it was decided whether the hit would indeed relate to the specific knowledge
category. This decision was made by scanning the context and omitting
occurrences that cover the same concept and context as an earlier coded
occurrence in order to avoid a distorted final tally. Concepts can occur
multiple times in a knowledge category but are only coded if they appear
with different context or meaning. This was also done by coding fragments
of text that include context for these concepts, rather than simply coding
every concept occurrence. Thus, the unit of analysis in this study are
pieces of text covering a specific concept that relates to one of the twelve
knowledge categories, rather than singling out concept occurrences while
omitting most of the context. The reason for this is because this study
analyses an entire educational year and covers all of the subject material
that is taught in the first year, while this methodology is originally designed
to analyze educational guideline documents.

The results for this analysis are concepts found in each knowledge category.
They are and shown in a general oversight, after which specific concepts
for each knowledge category are listed. Then, connections and specifics of
each knowledge category are discussed, including several examples from the
course modules.

4.1.2 Comparing the Coderclass to other CS curricula

To broaden the perspective on the discovered conceptual content in the
conceptual analysis, the results of the conceptual analysis were then compared
to several other CS curricula by using the data acquired by Barendsen
and Steenvoorden (2016). This was done by comparing the occurrences of
concepts in one curriculum to those of another, and by including visualizations
to simplify the comparison. Since concepts in actual study material were
compared to concepts from educational guideline documents, the focus was
put on the ratio of each knowledge category in regard to the total amount
of concept occurrences to see what each CS curriculum focusses on the most.

23

The Coderclass curriculum was compared with the Dutch 2016 CS curriculum
(both the core and total curricula), the US teacher organization standards
for K-12 computer science CSTA, the English Computing at School curriculum
(CAS) and the French CS curriculum.

Results in this sections are visualized, after which some of the more interesting
differences between the Coderclass and the other CS curricula are discussed.

24

4.2 Learning objectives

In order to discover the learning objectives set out for the first year of
the Coderclass, the subdomain of Aims & Objectives of van den Akker’s
curricular spiderweb was used. This subdomain answers the question “To
what aim are they learning?”.

4.2.1 Learning objective analysis

Two different analyses have been made to discover the learning objectives
in the first year of the Coderclass. First, the learning objectives of each
separate module are analyzed and classified into core CS domains according
to the 2016 Dutch CS curriculum domains of Barendsen et al. (2016). These
learning objectives are discovered through the analysis of the following two
sources:

e The requirements for attaining the badge in each module:
Before Coderclass students start a new module, they are shown an
overview of the module they are about to tackle. Among other data,
this overview contains a list of requirements of what must have been
done in order to adequately finish the module and achieving the badge
for that module. These requirements have been analyzed and reverse
engineered into a set of overall skills.

e The assignments in each module: To gain a better insight into
the learning objectives in each module and their requirements, the
assignments within the modules have been analyzed and reverse-engineered
into overall skills to complement the initial learning objectives given
at the beginning of the module.

To protect the content of the Coderclass modules, which is intellectual
property, these lists of requirements and explicit assignments will not be
explicitly shown in this thesis.

Through analysis of these sources, learning objectives have been extracted

and classified in the core domains of Skills, Foundations, Information, Programming,
Architecture, and Interaction (Table 4). They are only classified into core
domains and not elective themes, as this analysis only focuses on mandatory
modules of the Coderclass and not the elective ones. The core domains of the

2016 Dutch CS curriculum are also mandatory throughout the curriculum

and give a better representation of the learning objectives than the elective
themes.

Next, the same sources and the results of the previous analysis have again
been analyzed to discover recurring learning objectives in order to present

25

the main learning objectives for the entire first year of the Coderclass (whereas
the first analysis presented learning objectives per module).

4.2.2 Comparing the Coderclass learning objectives to the
2016 Dutch CS learning objectives

After extracting learning objectives from each Coderclass module, they were
compared to the 2016 Dutch CS learning objectives as described by the
Dutch SLO national expert center for curriculum development (Barendsen
& Tolboom, 2016). Through this comparison, it is possible to see in what
way the first year of the Coderclass adheres to the overall 2016 Dutch CS core
curriculum and on what areas the Coderclass focuses on different learning
objectives.

This was done by specifically looking into the subdomains of each of the
core CS domains and reviewing how often each subdomain is present in the
modules of the first year of the Coderclass, through linking the learning
objectives to the subdomains (using Atlas.ti) and finally using the tally
of each occurrence of the CS subdomain to see how much the Coderclass
focuses on the separate subdomains of learning objectives. The tally of each
subdomain is displayed, and the specifics of the comparison are discussed in
the results.

4.2.3 Computational Thinking in the Coderclass

The set of recurring learning objectives that have been discovered through
the second, overall Coderclass analysis of the learning objectives have then
been compared with the CT definition of Grover and Pea (2013). As described
earlier in this study, CT has many different definitions, but for this study,
Grover and Pea’s definition of CT was used in this comparison, as their
definition is already mostly in the form of specific learning objectives. Through
this comparison, the learning objectives associated with CT were highlighted,
and an overview of the degree of CT involved in the first year of the Coderclass
was given.

26

4.3 Student attitude outcomes

The final analysis of this study focuses on student attitude outcomes. These
have been analyzed through the use of learner reports, in which the students
themselves describe student attitudes.

Students of the Coderclass were asked to fill in a learning report near the end
of their school year. This learning report is based on the model developed
by De Groot (1980). The learner reports were filled in during class through
an online survey in Google forms during the final session of the academic
year. A few days before this class, students were asked to start thinking
about the things they have learned in the Coderclass and things they have
learned about themselves while in class so that they had a general idea what
to fill in on the survey before the survey date.

The learner reports, filled in by the students, were then used to explore
students’ attitude outcomes towards the Coderclass. These attitudes have
been explored by scanning the results of the learner reports, in which statements
of the form “I have learned (or noticed, experienced) that...” are mostly
encountered. The format distinguishes statements in two ways: (1) learning
about ‘the world’ versus learning about oneself, and (2) learning of generalities
(rules, things that are always the case) versus learning of exceptions (new
issues, surprises). These two dimensions result in a learner report consisting
of four sections. This method is copied from Barendsen and Henze (2015),
who have done this in their paper for the 2015 NARST Annual International
Conference, Chicago, IL. They classified statements from learner reports
containing attitude aspects into the attitude components of Klop (2008)
(Cognitive, Affective, Behavioural components) and the motivational factors
of Keller (1984) (Attention, Relevance, Confidence, Satisfaction components)
so that statements containing student attitudes could be quantified. These
categories (Relevance, Confidence, and Satisfaction) were used as indicators
for the cognitive and affective components of students’ attitudes.

Cognition component;:

e Relevance. Statements in which computer science concepts are connected
to contexts. It was registered whether a connection was made to
personal life or society, respectively.

e Confindence. Statements expressing confidence in the student’s own
capabilities, such as “I have noticed that I am good at ... ”. Positive
and negative statements were distinguished.

Affection component:

27

e Satisfaction. Statements expressing a personal preference or dislike,
for example “I have discovered that I like doing ... ”. Also, in this
category, positive and negative formulations were distinguished.

e Judgment. Statements containing a judgment about a particular phenomenon,
for example, “I have learned that .. is beneficial for the environment”.
Positive and negative judgments were distinguished.

Behavior component:

e Behavioral intention. Statements expressing an intention, such as “I
know now that I want to do ... later”.

An overview of the number of statements in each category and a more
detailed overview of the findings are then presented. Furthermore, this
method also summarizes the findings in terms of the quality aspects of
learning outcomes, which are variation and complexity. This has also been
done for this attitude analysis.

28

Chapter 5

Results

5.1 Conceptual content

5.1.1 Conceptual analysis

Table 5 shows the overview of the number of hits of concepts that were found
during the coding in Atlas. TT of the Coderclass course materials. After that,
each knowledge category is individually discussed (in alphabetical order) by
naming the concepts found during coding and by discussing connections,
specifics, and things that stand out.

Knowledge Number of concept
categories occurrences

Programming | 137
Data 69
Algorithms 42
Architecture | 41
Networking 40
Engineering 38

Modeling 33
Security 16
Mathematics | 11
Usability 10
Society 8
Intelligence 1
(Total:) 445

Table 5: Number of hits of concepts found during coding related
to knowledge category in course materials, sorted from most to least
occurrences.

29

Algorithms

Concepts found: Algorithm, algorithm representation, condition, decomposition,
input/output, instruction, instruction sequence, instruction set, iteration,
optimization algorithm, pattern, problem-solving, redirection, redundancy,
repetition, search algorithm, selection, sequence, step-form algorithm, steps.

Finding concepts in the algorithms knowledge category was mainly done
through defining algorithms as a set of instructions for achieving goals,
made up of pre-defined steps, as well as problem-solving using an algorithm.
Algorithms is also closely related to programming. Principles of problem
solving that are not connected to any specific programming language have
thus been counted as an algorithms concept, while constructions in a programming
language have been counted as a Programming concept. Many of the occurrences
appear in an introduction to patterns in Python-0 module and in the Blender-
0 module where students learn to work with Blender by making specific items
through a step-form algorithm, for example,

“First discover the repetitive pattern. Then write a program that draws this
pattern. Then think about reorienting the turtle so that it can write the
pattern a second time. Then write a loop to draw the entire picture using
repetition” (repetition, Python-0 module).

“Building a snowman; step by step tutorial” (steps, Blender-0 module).
The other occurrences are spread out throughout all of the curriculum
material, as many modules include a degree of algorithms in their content. A
lot of this is focussed around input/output to specific issues, such as “This
time you do not want the output of a command on the computer screen,
but in a file. You can do this with something called a redirection: you tell
Linux that the output doesn’t go to the computer screen but to a certain file”
(input/output & redirection, Raspberry PI-0 module). These have only been
counted when there was a clear algorithmic context to prevent a distorted
final tally.

Architecture

Concepts found: API architecture, communication architecture, console,
coordinate architecture, CPU, emulator, enigma coding machine, file 10,
hardware, Linux architecture, operating system, organization structure, packet
manager, raspberry PI, raspberry PI architecture, responsive design, SD-
storage device, software interface, software package, storage structure, system
controlling, windows architecture.

Most of the concepts found in the architecture knowledge category originate

30

from the Raspberry PI module in which operating systems are discussed,

with a more in-depth theory about Linux, such as the following statements:

“While using the console, you are always on a certain map. The location of
where you are right now is shown (in Linux) in the prompt rule, just before

the § and right after the :” (console, Raspberry PI-0 module).

“Much used software in Linux is usually bundled in what we call packages. A

package contains an entire program. You use apt-get to update the system,

but also to install software. This is done through the command sudo apt

install” (software package, Raspberry PI-0 module).

There are also several bits of theory about the architecture of APIs and

organizational structures: “A different way of looking at a hierarchic structure
s in the form of a tree. The structure of an organization or family is often

shown in such a way.” (organization structure, HTML CSS-0 module).

Data

Concepts found: Array, compression, data representation, data scientist,
data sorting, data storage, data structure, data type, data visualization,
file format, information, information exchange, information manipulation,
information retrieval, inheritance, integer, list, meta-data, object, string,
table, text representation.

The concepts in this category cover working with data and the learning
about data-related concepts. There have been many occurrences of some
concepts that have been omitted from the final tally, as they did not specifically
cover the management of data or structures of it (e.g. “here we have some
data” was omitted and “use this data to create...” was included in the tally).
Furthermore, many instances of a concept have been omitted if nothing new
is told about them (e.g. “An integer is a form of number...” was included
while “here is another integer which we discussed earlier” was omitted).
Many of the occurrences of concepts for data are located in the Raspberry
PI module, where students are being taught how to manipulate data and
files in Linux (especially regarding the storage of data): “The command file
gives information on a file. In Windows, every file has an extension to show
what kind of file it is (like .doc for a word document, .jpg for jpeg picture,
etc.). In Linuz, files can also have extensions, but not necessarily. With the
file command, you can thus discover what a file is.” (data representation,
Raspberry PI-0 module). There are also many Data concepts in the Python-
1 module where students are taught how to use different types of data in their
programming: “Mind the use of the function int()! Int is short for integer.
It is the English name for a whole number” (integer, Python-1 module).
Furthermore, there are a lot of data concept hits in the Data visualization

31

module, as this module is mostly about data manipulation: “You might
have noticed that lists look a lot like strings. That is correct because lists and
strings do share a lot of common traits: they are both row types in Python.
An important difference is that the individual characters in strings cannot be
changed.” (list, Data Visualization in Python-0 module) and finally in the
practical assignments where students are required to visualize/manipulate
data into something the client wants.

Engineering

Concepts found: Requirement, project, project management, collaboration,
collaboration tools, development tools, flowcharting, present products, responsive
designing, SCRUM development, data analysis (engineering), idea pitching,
problem exploration, testing, web development.

Some of the concepts found in the engineering knowledge category are found
in the regular course materials for different modules, covering some requirements
of a specific concept or introducing other engineering concepts such as
responsive designing: “A second part of the answer is the usage of certain
design rules, such as responsive design. With responsive design, we mean
that an HTML-document is designed in such a way that it works well in
every manner of devices, such as mobile phones or a desktop.” (responsive
designing, HTML CSS-0 module).

However, most engineering concepts are found inside the group projects, in
which the students use requirements given by the client to develop something
using SCRUM (and thus get practical experience with engineering): “But
now you have to make a website together. That requires teamwork. Because
before you know it there are multiple versions of the same page. And how
do you solve that problem? You often meed to merge, but that is a time
consuming job. With cloud0 you can work easily on a project with multiple
people” (collaboration tools, Project 1: designing and building a website for
a client),

“Below is a table of requirements which your animation must fulfill. Study
this list well! In the third column you can see how important the requirement
is” (requirements, Project 2: 3D animations in Blender).

Intelligence

Concepts found: Robots.

32

There is only a single occurrence regarding robotics in the core curriculum,
found in the HTML CSS-1 module: “The above CSS is coupled to a piece of
text on Robots. Below is a screenshot of the page of designer tools on robots
that is turned on” (robots, HTML CSS-1 module).

Mathematics

Concepts found: Booleans, logical expressions (AND, OR, NOT operators).

Several modules include theory about tree structures, but often in an architectural
context and are thus not counted for mathematics. The few concept occurrences
in this knowledge category are introductions and applications on logical
operators and booleans. There are more hits on booleans, but they are all

in a programming context and offer no deeper insight into the mathematical
context of the concept. These concepts are primarily found in Data visualization
in Python-0 module and the Python-1 module: “You can even tell the
program that you want all numbers between 30 and 50. This is done with
the € command (meaning AND).” (AND operator, Data visualization in
Python-0 module,

“Farlier at the if-expressions we have used comparisons. If this is true, then
we do that! These expressions are also called boolean expressions. A boolean
expression s a comparison that can only determine whether it is true or not.

It cannot be maybe true or maybe untrue. Here we use the English worts of
true and false.” (booleans, Python-1 module),

“We can also use an or operator. With this, we check whether one of the
two boolean expressions are true. If one of the two gives back true, then the
whole is also true. This way, we can see a big difference between the and-
and or-expressions.” (OR operator, Python-1 module).

Modeling

Concepts found: (3D) animation, data visualization (graphs, piecharts),
box model, client-server model (modeling), document object model, flowchart.

The major part of the concepts in the modeling knowledge category is found
in 2 specific modules. The first is the Blender 3D animation/visualization
module and the 3D animation project coupled to it. To prevent a warped
image of the concepts occurring several times during the same tutorial, each
separate Blender tutorial (in which students practice a new thing about 3D
modeling) has been counted as a single occurrence: “Building a rocket: In

33

this tutorial we will create a rocket through use of the edit tool and other
known tools” (3D animation, Blender-0 module).

The second module is the data visualization course in Python. Most of
the modeling occurrences relate to visualizing (modeling) data: “A different
module we will be using is called Matplotlib. Matplotlib is a Python module
that will be used for plotting graphs. With Matplotlib, we can easily make
graphs out of data. These can be staff graphs, line graphs, histograms, etc.”
(data visualization (graphs), Data visualization in Python-0 module).
There are also a few more hits in the project modules as well as the Javascript
and Python modules: “Visualizing bicycle theft in Rotterdam: create insight
in data and advise your client using data visualization.” (data visualization,
Project 3: Visualize the Bicycle theft).

Networking

Concepts found: Networking, URL, Client-Server Model (Networking),
communication between machines, IP address, protocol, server, server interaction,
browser, search engine optimization, browser standard, domain name, hyperlink,
internet service, network, network address translation (NAT), packet, port
forwarding, search engine, server hosting, web address, web hosting, web
page, web standard, HTTP-request.

Despite the huge amount of concept occurrences of concepts such as link,
website, and page, only those that have a direct connection to teaching
about the concept of networking and communication have been counted as
concept hits for the networking knowledge category. There are many of such
occurrences in the HTML module, as this is web-based programming and
many concepts such as protocols and server communication are introduced
here, for example, “The first part of the answer is standardization. HTML
is the standard for the web. The different browsers try to hold up to this
standard as good as possible. The current standard is HTMLS; this is a
living standard: new developments are added to this in steps. This works well
in combination with the current evergreen browsers: these browsers update
themselves regularly, with minimal trouble for the user. This means that
your browser can probably do much more in a year, without you having to
do much for it.” (browser standard, HTML CSS-0 module).

In the Raspberry PI module, a lot of new occurrences on web servers and IP
addresses are taught, mostly regarding the use of Linux: “On a Linux system
you can easily host your own website! Your website is reachable through the
internet, and everyone can see it if you wish. To do this, we will learn
about the client-server model, which is the basis for all communication on
the internet.” (client-server model (networking), Raspberry PI-0 module).

34

There are also several networking concept occurrences in the projects, particularly
project 4: SMART lighting: “The requesting of websites is done through
so-called HTTP-requests through the HTTP (HyperText Transfer Protocol)
protocol. Your browser (client) asks the website (server) for certain information.
There are many different HTTP-requests. Today, we only need ‘GET’ and
‘Post’. HTTP-GET asks data of the server and HTTP-POST sends data

so that the server can process it.” (HTTP-request, Project 4: SMART
lighting).

In general, more is being taught about the practical use of networking
concepts than the theoretical background of them.

Programming

Concepts found: Python Programming, CSS coding, HTML coding, JavaScript,
command, API, debugging, error, function, parameter, block programming,
event, interactive program, libraries, looping, nesting, programmer, readability
(code), separation of concerns, source code, variables, wiki coding.

Programming gains the highest amount of concept occurrences because
almost every module is connected to a form of programming. Almost every
bit of theory in the modules includes one of the concepts used for this
knowledge area (such as code, functions, programming languages). Many of
these concepts focus on specific programming concepts in a specific language,
mostly Python, and a lot of HTML concepts, for example: “You can see an
html-element as a container with a special meaning. The tag can be used
as a label on which you can write anything about the contents. You can
also use it as a handle, for actions on the element. You can supply the tag
with attributes that describe what happens with the contents. You can use
attributes to shape the contents, like the font or color of the text.” (HTML
programming, HTML CSS-0 module),

“A command is an instruction that a computer can understand and execute.
A computer can only understand simple commands. These small, simple
commands can then be combined to perform more complex assignments.
Such a collection of commands is also called a computer program. Writing
such a program is not easy. Some of these programs contain over a million
lines of commands.” (commands, Python-0 module),

“For-loops in JavaScript: We will briefly explain the notation of a for-loop
in JavaScript below. The notation is the same as in other languages such
as Java and C.” (JavaScript, JavaScript for web-0 module).

Therefore it is safe to say the Coderclass curriculum has a high focus on the
programming knowledge area.

35

Security

Concepts found: System owner/administrator, access rights, administrative
rights, login/password, protection, firewall, security protocol.

Most of the security concepts are found in the modules given about Linux

and the access rights/system admin of the OS: “During the installing of
Linuzx you created your own user account. If done right you are now logged

in with that account. A Linux system also has another user. This user is

called root. The root user is the administrator of the system and is allowed to

do anything. It is the counterpart of the Administrator in Windows. If things

must be changed in the system, then the root user has to do this. The other

users can only use the system. But there is also a possibility to temporarily

get the rights of the root as a normal user.” (system administrator, Raspberry
PI-0 module),

“Because there are multiple users on a system, agreements on what everyone

1s allowed must be made. We have already seen that not just anyone can

add more users or programs. You need administrative rights (superuser).”

(administrative rights, Raspberry PI-0 module).

There are also a couple hits about password protection and security in

general in the Projects, particularly in project 4: SMART lighting: “As

you know, the firewall is a part of the security of a computer(architecture).

It keeps unwanted internet traffic out. An API is used to pass on, change,

or take information without it being blocked by a firewall.” (firewall, Project

4: SMART lighting).

Society

Concepts found: Professional (software), open-source software, digital
rights, ownership, hacking, social media.

The few concepts found in the society knowledge area are mostly found
in the practical assignments or the Blender-0 and Raspberry PI-0 modules:
“You will work with software that is used in daily life by professionals to
make films, commercials, and games.” (professional software, Blender-0
module).

“As you probably have noticed, you cannot just get into your own network
through the internet. This is great because hackers and people with malicious
intent cannot get in easily either!” (hackers, Raspberry PI-0 module),

In the practical assignments there is usually an explanation on why you

36

could benefit from a certain skill in your career or in a professional manner,
or how something can be made more beneficiary for the society: “Another
possibility of making your website more accessible is through means of social
media like Facebook, Twitter, LinkedIn, etc. You can adapt your website for
this too. (social media, Project 1: Design and build a website for a client).
There are also a couple of hits on hacking and open source software throughout
the different modules.

Usability

Concepts found: User-friendliness, efficiency, adaptability, beauty, human-
computer interaction.

There is a rather large amount of references to the interaction of the user
with a program, but usually in a programming or engineering perspective. In
this analysis, only the concept hits regarding usability in the form of the user-
friendliness, adaptability, and efficiency have been coded as usability. These
hits occur in the modules of HTML-CSS-0, Raspberry PI-0, HTML-CSS-1,
Python-2 and Projects 3 & 4: “An operating system is a program that makes
sure a user can work with hardware relative ease and efficiency. Operating
systems have a graphical interface and a textual interface.” (efficiency,
Raspberry PI-0 module),

“When the internet became more popular, the need for more beautiful websites
also rose. HTML was not made for that, and so people made an expansion to
HTML to make more beautiful websites. This solution is called stylesheets.”
(beauty, HTML CSS-1 module,)

“Typical of these smart initiatives is the innovative manner it uses ICT,
through which everything gets even more efficient, better, durable and secure.”
(efficiency, Project 4: SMART lighting).

37

5.1.2 Comparing the Coderclass to other CS
curricula

The number of concept occurrences in each concept knowledge category (as
listed in section 5.1, table 5) can now be used as a conceptual oversight
of the Coderclass curriculum. Furthermore, it can be used to compare the
Coderclass to other CS curricula, to see in what ways they are alike or differ
from one another, according to the same style as the curricula comparison
that was done by Barendsen and Steenvoorden (2016).

Results are presented in two ways. Firstly, the categories for each curriculum,
sorted according to (absolute) number of concept occurrences are listed
in table 6. Secondly, the (relative) distribution of concepts across the
categories for every document is shown in Fig. 4. The Dutch curriculum
consists of a core curriculum and several elective themes. Therefore, the core
curriculum and the curriculum as a whole (including the elective themes)
are distinguished.

The total number of concept occurrences (i.e., coded quotations) is given
at the bottom of each list in Table 6. The reason that France and the
Netherlands have less coded concepts is that the learning objectives are
formulated in a relatively small way, and it often happens that concepts are
mentioned only once. The CAS and the CSTA documents formulate their
guidelines in a more spiral-like way, first formulating learning objectives
for lower grades and after that for higher grades. Figure 4 provides a
global overview of the five documents and how they compare on the twelve
respective knowledge categories and a rest category. Some of the more
interesting differences between the Coderclass and the other CS curricula
will then be discussed for each knowledge area.

Furthermore, it must be noted that the conceptual analysis of the Coderclass
has been an analysis of complete course documents for only the first year,
while the other ones have been analyses of curricula documents (guidelines
rather than actual learning material) of a complete curriculum. For this
reason, the Coderclass has much more total concept occurrences than the
other curricula. This fact makes it hard to compare the Coderclass with
the other curricula accurately. However, for the purpose of this thesis, they
have still been compared, because this provides a decent overview of what the
Coderclass focuses on in their first year, especially on what their strengths
and weaknesses are in specific knowledge categories, as opposed to different
curricula.

38

Coderclass Year 1 CSTA

1. Programming (137) 1. Algorithms (44)

2. Data (69) 2. Engineering (40)

3. Algorithms (42) 3. Architecture (37)

4. Architecture (41) 4. Society (30)

5. Networking (40) 5. Networking (27)

6. Engineering (38) 6. Programming (25)

7. Modeling (33) 7. Data (23)

8. Security (16) 8. Security (13)

9. Mathematics (11) 9. Modeling (12)
10. Usability (9) 10. Intelligence (11)
11. Society (8) 11. Mathematics (8)
12. Intelligence (1) 12. Usability (2)

13. Rest (0)

(Total: 445) (Total: 272)

France Netherlands 2016 (core)
1. Data (28) 1. Programming (18)
2. Programming (15) 2. Engineering (17)
3. Architecture (14) 3. Data(11)

Networking (14) 4. Society (10)
4. Algorithms (13) 5. Architecture (9)
5. Mathematics (8) 6. Security (7)
6. Society (5) 7. Algorithms (6)
7. Engineering (4) 8. Usability (3)
Modeling (4) 9. Networking (2)
8. Intelligence (2) 10. Intelligence (0)
9. Rest (1) Mathematics (0)

10. Security (0) Modeling (0)

Usability (0) Rest (0)

(Total: 108) (Total: 83)
Table 6:

CAS

—

e R o

Algorithms (44)
Networking (40)
Architecture (38)
Data (33)
Programming (19)
Engineering (17)
Mathematics (5)
Security (4)
Society (2)
Intelligence (1)
Modeling (0)
Rest (0)
Usability (0)

(Total: 203)

Netherlands 2016 (complete)

1.
2.

e A

10.

Programming (22)
Architecture (19)
Society (19)
Data (18)
Engineering (18)
Usability (18)
Security (16)
Algorithms (14)
Networking (11)
Modeling (7)
Mathematics (4)
Intelligence (3)
Rest (0)

(Total: 169)

list of knowledge categories for each curriculum documented,

including the first year of the Coderclass curriculum, sorted from most
The number of concept occurrences in each

to least occurring concepts.

category is displayed between parentheses.
occurrences in the document is given at the end of each list.

39

The total number of concept

30,0

25,0

20,0

15,0

10,0

50

0,0

140
12,0
10,0
80
6,0
40
20

0,0

B Coderclass 1st year m NL 2016 Core NL2016 Complete mCSTA mCAS mFrance
30,8

19,7

26,2
21,7
205
18,7
155 163 16,2
1 14,7
13,3 13608 151 131
12,1
10,7 10,8112 107
52 838 94
85 - 20 ’ 83 85 g4
72
65 ’
37
24 I

1
18

Data

2.0
112310

Society

Architecture Networking Algorithms Engineering

10,7

9,5
B4
7,5 74
4,7 48
. 44 ,
. 41 37 36 3,6
25 24 7 25 20 20
-1 1 -rin z
0,0 0,0 0,0 l 0,0 l ' 0000 0.2
|| - —

Mathematics Modeling Security Usability

Figure 5: Relative distribution of concept occurrences across the knowledge
categories. The percentages show the fraction of the concept occurrences
to the respective categories. Categories are sorted according to through
occurrences in Barendsen and Steenvoorden (2016), with the occurrences
from the Coderclass analysis added in front.

Data

The Coderclass scores very well in comparison to the data knowledge category.
Except for the French curriculum (which scores exceptionally high on this

knowledge category), the fraction of data concepts involved in the Coderclass

curriculum is among the highest-scoring curricula. In particular, it has

a higher fraction of this knowledge category than both Dutch curricula.

This is mainly because the Coderclass students work with a large amount

of data and its manipulation in their first year, through the various data

visualization topics and their programming with data files.

40

217
16,2
13,0 |

Programming

40

18
0,0

Intelligence

26,2

94

19
-1
|

Architecture

The fraction of architecture concepts in the first year of the Coderclass
curriculum, while being of moderate size, is smaller than the corresponding
fractions of the other curricula. This is because there are no modules
in the first year that cover computer architecture as the main topic, but
architecture concepts are mentioned several times as background information
in other modules.

Networking

In the networking category, the results between curricula vary. While the
Coderclass has a respectable amount of concepts in this knowledge category,
and the corresponding fraction scores higher than both Dutch CS curricula,
it scores lower than the foreign curricula of CSTA, CAS, and France. The
Dutch CS curricula generally do not include networking topics as much as
foreign curricula, however, the Coderclass covers a lot of networking concepts
during its first year during several net-based modules, such as the HTML
module and the Raspberry PI module.

Algorithms

For the algorithms category, the same situation is present as there is for the
networking knowledge category. While the Coderclass scores slightly higher
than both Dutch curricula, the foreign curricula each score higher due to
an increased focus on this knowledge category compared to the Dutch. The
Coderclass does not feature a module in their first year with the main topic
being on algorithms, yet other modules contain many algorithm concepts.

Engineering

Engineering is the first knowledge area in which the Coderclass curricula
holds a significantly lower fraction of concepts than its Dutch counterparts
(as well as the US-based CSTA curriculum). This is mostly because there
is no specific focus on this knowledge category in any of its first-year core
modules. However, the Coderclass still gains a decent fraction in this knowledge
category because of the group projects students are expected to work on. In
these projects, students are given an introduction to a way of cooperation
that involves engineering concepts, such as working with the use of SCRUM
development. Because of this, the fraction of engineering in the Coderclass is
on par with its English counterpart CAS, and much higher than the French
CS curricula, in which engineering has lower importance.

41

Programming

Programming is the main category in which the Coderclass first-year curriculum
scores significantly higher than every other curriculum it has been compared
to. Coderclass students start in the world of coding very early on in the
course and will encounter programming concepts in almost each of the
modules (of which several are mainly focussed on programming itself, such

as the Python modules). Therefore the Coderclass reaches a fraction of
programming concepts that are highest among its peers.

Society

The society knowledge category is underrepresented in the first year of the
Coderclass, compared to the other CS curricula. Except for the English
CAS curricula, it holds a lower fraction of concepts. None of the Coderclass
modules have a specific focus on a societal topic, nor include a lot of secondary
background material on CS in society. It particularly stands in contrast to
its Dutch counterparts, which include a significantly higher focus on societal
issues within CS.

Mathematics

The mathematics category has a low focus on each of the CS curricula
involved in this comparison, and the Coderclass is no exception. The somewhat
frequent occurrence of concepts covering logical expressions and booleans
throughout the Coderclass modules ensured that its fraction of concepts on
mathematics is on par with the complete Dutch CS curriculum, the CSTA
curriculum, and the CAS curriculum. The French have a somewhat higher
focus on mathematics in their curriculum than the others, while the core
Dutch CS curriculum does not include any mathematics concepts.

Modeling

The Coderclass has a significantly higher fraction of concepts in the modeling
knowledge category than the other CS curricula. This is primarily because
there is a specific module in which the main category is modeling (Blender-0
module), including a similar 3D animation project. Modeling concepts are
also frequently occurring in the data visualization module, which leads to a
higher fraction of modeling concepts than their peers.

Security

The security knowledge category is underrepresented in the first year of
the Coderclass when compared to the other Dutch CS curricula, in which
security has a significant role. The English CAS curriculum also scores

42

slightly higher in comparison. However, when compared to the CSTA and
French curricula, in which security has a low to nonexistent fraction of
concepts, the Coderclass still includes a higher fraction of security concepts.

Usability

The fraction of concepts in the usability knowledge area of the first year

Coderclass curriculum scores lower than its Dutch counterparts, yet the

fraction is higher than the corresponding fractions of the foreign CS curricula.

The complete 2016 Dutch curriculum in particular scores significantly higher

in this knowledge category. The Coderclass only gains concepts in this

category because of less important background information included in several
modules and includes no specific usability focused module in its first year.

Intelligence

Concepts in the intelligence knowledge category are almost nonexistent for
the Coderclass first-year core curriculum, apart from a single hit on robots.
Thus, this category includes a lower fraction than the other CS curricula.
However, the other curricula also feature a relatively low focus on this
category, with the CSTA having the only outlier on intelligence.

43

5.2 Learning objectives

5.2.1 Learning objective analysis

The first part of this analysis is extracting earning objectives through analysis
and reverse engineering of module requirements plus the assignments of each
module. The extracted learning objectives are shown below for each module
and are classified into core CS domains (as described by Barendsen et al.
(2016)):

Coderclass-environment-0

In this first introductory module, students become acquainted with the
wiki environment and Google drive in which the Coderclass operates. The
module focuses mostly on learning how to use these, where to find things,
and how to search for things. As such, the learning objectives in this module
can be classified in the core domains of Skills and Information:

e Skills: students can use their information skills to look for the information
they need and can communicate this back to their teachers through
google drive and their personal wiki page.

e Information: students can identify the information they need to solve
the answers to the questions given and know how to process this in
their wiki/google drive.

Block-programming-0

This module serves as an introduction to programming. It allows students
to become acquainted with solving puzzles through an algorithm in block
programming. The learning objectives in this module can be classified in
the core domains of Skills, Foundations and Programming:

e Skills: students can use their information skills to solve puzzles and
can use the assigned program to develop a solution.

e Foundations: students can use an algorithm to solve a puzzle.

e Programming: students can use the program components available to
them in this module to solve puzzles.

Blender-0
The Blender-0 module introduces Coderclass students to (3D) rendering and
animations, through the use of the Blender tool. In this module, students
create a variety of 3D models and animations. The learning objectives in
this module can be classified in the core domains of Skills, Information and
Interaction:

e Skills: students can use the tool Blender to model certain situations.

44

Information: students can identify the characteristics they need to
model and represent this in their creation in Blender.

Interaction: students can use Blender’s user interface to create elegant
and well-designed models/animations and can make judge the value
of their creation and the Ul used in this module.

HTML-CSS-0

This module introduces students to the web-document language of HTML.
The foundations of the language are used to solve problems and eventually
create a website in HI'ML. The learning objectives in this module can be
classified into the core domains of Skills, Foundations, Information, Programming
and Architecture in some way:

Skills: students can work with HTML to design and develop.

Foundations: students can use the HTML specific (data) structure
and grammar to solve problems and create a website.

Information: students can represent data in their HTML creations in
a valid HTML structure.

Programming: students can use the HI'ML language to develop constructions
and adapt/evaluate them based on the HTML code they write.

Architecture: students can work with nesting and hierarchical structures
in HTML.

Python-0

The Python-0 module serves as the first real programming experience for
Coderclass students, in which they program a turtle to draw all sorts of
figures. Students learn about many programming concepts in this module,
such as loops and functions. The learning objectives in this module can be
classified into the core domains of Skills, Foundations and Programming:

Skills: students can design and experiment with the turtle to create
figures and more by writing code.

e Foundations: students can use algorithms to create the figures they

need.

e Programming: students can develop solutions to making figures by

using the Python programming language and constructions given to
them in advance. They can also inspect their code for errors and
adapt/fix it if necessary.

Raspberry-PI-0
In this module, students learn about using the Raspberry PI, Linux, and

45

gain more knowledge about operating systems, working in a console and
computer architecture in general. They also learn about several concepts
regarding computer security, such as user roles and rights. The learning
objectives in this module can thus be classified into the core domains of
Skills, Information, Architecture and Interaction:

e Skills: students can use their informative skills to find specific files, and
to judge or adapt them. They can also investigate the possibilities of
Linux and Raspberry-PI and draw conclusions from the investigation.

e Information: students can work with data in the Linux OS. This
includes finding, saving, editing, and structuring data.

e Architecture: students can explain the architecture and composition
of Linux and the Raspberry PI. They can also explain the security
aspects related to these architectures.

e Interaction: students can work with a console and more to interact
with the Raspberry PI. They can also reflect on who can access certain
parts of the program and files and how this relates to human interaction.

Data-visualization-in-Python-0

This module serves to further expand the Coderclass student’s experience
with Python through the usage of data visualization. Students learn more
about data specific programming concepts, such as several types of input and
output, particularly about visualizing the output in graphs. The learning
objectives in this module can be classified into the core domains of Skills,
Foundations, Information and Programming:

o Skills: students can use their informative skills and their experience
gained from the Python-0 module to use and process data in their
visualizations.

o Foundations: students can use algorithms and data structures in their
assignment to create their graphs.

e Information: students can use specific data as input to make an
adequate graphical representation as output in Python.

e Programming: students can use the programming language Python to
develop code that will create visual representations of their input.

HTML-CSS-1

The HTML-CSS-1 module continues the HTML learning line and also introduces
the Coderclass students to CSS. By using a free editor called Atom, students
gain experience in using a new user interface to develop a website. Furthermore,
students learn about several forms of layouts and makeup for text and pages,

46

such as fonts, colors, background images, borders, and more. The learning
objectives in this module can be classified into the core domains of Skills,
Foundations, Information, Programming and Architecture:

Skills: students can use their skills learned from HTML-CSS-0 and
the new knowledge gained about CSS to develop a website, through
the use of the editor Ul Atom.

Foundations: students can use the specific (data) structure and grammar
of HTML and CSS to solve problems and create a website.

Information: students can represent data in their HTML-CSS creations
in a valid HTML/CSS structure.

Programming: students can use the HTML/CSS language to develop
constructions and adapt/evaluate them based on the HTML/CSS code
they write.

Architecture: students can work with nesting and hierarchical structures
in HTML/CSS.

JavaScript-for-web-0

This module is intended to broaden the Coderclass student’s website building
skills after having completed the HTML-CSS modules. Students learn how
they can use JavaScript in combination with HTML and CSS by using the
Atom editor. They learn more about CS concepts and also learn about
new things that can be done by using JavaScript, which was not possible
before in just HTML and CSS. The learning objectives in this module can
be classified into the core domains of Skills, Foundations, Programming and
Architecture.

Skills: students can use their skills learned from the HTML-CSS
modules and the new knowledge gained about JavaScript to develop
a website through the use of the editor Ul Atom.

Foundations: students can use the specific (data) structure and grammar
of HTML, CSS, and JavaScript to solve problems and create a website.

Programming: students can combine their HTML/CSS creations with
newly programmed JavaScript code and can create new web-components
using the JavaScript language. students can also debug their code.

Architecture: students can work with nesting and hierarchical structures
in HTML/CSS and JavaScript, and can use a tree structure in their
solutions.

47

Python-1

The Python-1 module continues on the experience gained through the Python-
0 module by introducing Coderclass students to interactive programs in
Python. Students learn to use user-input in their code to determine what
their program does. The learning objectives in this module can be classified
into the core domains of Skills, Foundations and Programming:

e Skills: students can use their skills in Python to design new interactive
programs and write the code to execute them.

o Foundations: students can use algorithms to solve problems.

e Programming: students can use the Python language to create, test,
and debug solutions to the assignments in this module.

Python-2

This module serves as a summary of the previous Python modules by making
Coderclass students use their acquired skills to tackle a larger problem.
This is done through the creating of a word game and the introduction of
flowcharting. The learning objectives in this module can be classified into
the core domains of Skills, Foundations and Programming

e Skills: students can use their previously acquired Python skills to
design, model, and develop a word game. They can also use flowcharting
and explain the way a program works.

e Foundations: students can use an algorithm to create a word game.

e Programming: students can use the Python language to create, test,
and debug a word game.

Pygame-0

This module is a continuation of the Python modules in which the experience
gained thus far is used to develop games. Students use the Pygame library
to start their game developing and gain experience in using coordinates in
an axial system to create figures and animations. The learning objectives
in this module can be classified into the core domains of Skills, Foundations
and Programming:

e Skills: students can use their Python skills in addition to the Pygame
library to design and develop figured and animations in Python.

e Foundations: students can use algorithms to solve the assignments in
this module.

e Programming: students can use the Python language and the Pygame
library to develop, test, and debug solutions to the assignments in this
module.

48

Project 1: Develop and build a website for a client

The first of the Coderclass group projects test the student’s website building
skills by having them develop a website for a client. Students are required to
communicate with a client and determine their wishes to build an appropriate
website for them. Students are also required to fulfill a list of requirements

in their website design while working with planning, deadlines, and the
SCRUM software development method. The learning objectives in this
module can be classified into the core domains of Skills, Foundations, Information,
Programming and Interaction:

e Skills: students can communicate with a client and their group to
come to a website design that each party is happy with while using
the knowledge gained in previous modules in a practical application.
students can also develop and review the website its validity concerning
the requirements.

e Foundations: students can use the specific (data) structure and grammar
of HTML, CSS, and JavaScript to create a website for their client.

e Information: students can determine what their client needs and represent
the client’s wishes in their design while using the HTML and CSS
structures.

e Programming: students can use the HTML/CSS. language to develop
their website and adapt/evaluate it based on the feedback they gain
from the client and each other.

e Interaction: students can reflect on the usability of the website they
build, using the requirements and client wishes to make a good design.

Project 2: 3D animations in Blender

In this project, students are required to use their skills in Blender to create
a bigger animation, which highlights a social issue somewhere in the world
and sends a powerful message. They work with a client with additional
wishes to create the animation. Furthermore, requirements have to be met
in their animation, and students will again work with planning, deadlines,
and SCRUM. The learning objectives in this module can be classified into
the core domains of Skills, Information and Interaction:

e Skills: students can use their Blender skills and can communicate with
the client and their group to come to a valid animation that adheres
to client wishes and requirements.

e Information: students can determine what their client needs and can
represent the client’s wishes in their animation

49

e Interaction: students can use Blender’s user interface to create an
elegant and well-designed animation of their client’s wishes. students
can also judge the social value of a digital artifact such as a Blender
animation and can see how it can be useful to send a powerful message
about a socially relevant issue.

Project 3: Visualize bicycle theft

This project requires students to use their Python data visualization skills
to visualize data provided to them by a client. They learn new visualization
skills, such as importing excel files as input, using aggregation functions,
visualizing new graphs, heat-maps, and more. Furthermore, requirements
have to be met in their animation, and students will again work with
planning, deadlines, and SCRUM. The learning objectives in this module
can be classified into the core domains of Skills, Foundations, Information,
Programming and Interaction:

e Skills: students can use their informative skills and visualization experience
while working in a group to use and process client data in their project
and make sure that it adheres to client wishes and requirements.

e Foundations: students can use algorithms and data structures to create
their data visualizations.

e Information: students can use specific client data as input to create
adequate graphical representations in a structured manner.

e Programming: students can write Python code that will create visual
representations of their input.

e Interaction: students can value the elegance and usability of their
visualization dashboard. students can also value a socially relevant
issue by visualizing data of an important social issue.

Project 4: SMART lighting

This final project requires Coderclass students to build a website that will
serve as a Ul to control a Philips Hue SMART light according to a client’s
wishes. Students use their skills gained in the HTML-CSS modules and
the JavaScript-for-web-0 module to build a dynamic website while learning
about the SMART light’s API, new HTML5 UI components, and client-
server architectures. Furthermore, requirements have to be met on their
website, and students will again work with planning, deadlines, and SCRUM.
The learning objectives in this module can be classified into the core domains
of Skills, Programming, Architecture and Interaction:

e Skills: students can work in groups and with a client, using their
HTML/CSS and JavaScript skills to design and build a dynamic website
to control the SMART light.

50

e Programming: students can code, design, and build a dynamic website
to control the SMART light. students can also value the tidiness and
elegance of their code.

e Architecture: students can explain the structure and function of the
light’s API and their website, and can explain the client-server architecture.

e Interaction: students can create an elegant, dynamic website to control
the SMART lights with. They can also value the usability of the
website.

Recurring learning objectives

Now that learning objectives in each module have been analyzed, it is
possible to come to a more general summary of recurring learning objectives
for the entire first year of the Coderclass. The second learning objective
analysis performed reviews the entirety of the first year of the Coderclass,
rather than looking at each module’s specific learning objectives. When
viewing the entire first year of the Coderclass in a more general approach,
it becomes clear that several general objectives often occur throughout the
curriculum. These general learning objectives are the following:

Cooperation: Coderclass students can work collaboratively with others
to solve problems and create solutions and programs. This includes creating
a program or website for a client and using SCRUM to develop solutions.
This skill is especially used in the four group projects.

Debugging and testing: Coderclass students can use their programming
skills to test their code and determine where faults occur so that they can
fix them. They can use a systematic approach to detecting, diagnosing,
and correcting errors. Many of the harder tasks and assignments in the
various first-year modules (including the bigger group projects) require using
multiple programming skills, and students will often encounter faults and
errors in running the code, which they can now fix.

Decomposing: Coderclass students can solve a problem by tackling it
in smaller steps. This is introduced in Block-programming-0, in which
they tackle puzzles and mazes through step algorithms. It is also included
in many other modules, such as animation and creating through tackling
the problem step-by-step (Blender, HTML-CSS website and JavaScript and
Python assignments).

Designing: Coderclass students can use their creativity to design new
things. In the Coderclass, this mostly represents designing new systems or
programs. Examples include designing their own introductory animation,
websites, data visualization design and control page over controllable smart

o1

lights.

Generalization: Coderclass students can determine shared characteristics
in assignments, and use them to make simpler solutions by sharing these
common features. The main idea of this skill is that students can control
the complexity of their solutions. Many of such generalization issues occur
during the Python oriented modules.

Initiative & Planning: Coderclass students can work with deadlines
for their assignments and projects, and are thus able to plan their work
accordingly. students can also show initiative by helping out others, taking
up leadership, and by asking their teachers for more advanced information
and tasks if they deem they can do more.

Modeling: Coderclass students can use their new skills to make representations
of a real-world issue, system, or situation. This includes creating and
animating in Blender, visualizing data through Python, creating visual games

in Python, and creating informative websites through HTML-CSS. Students
are also able to use given, existing models in their work and adapt them to
their needs.

Understanding and writing a program: students can write code to
execute a program, and they can understand and explain their own code
and that of others. Students can find and correct mistakes in code when
needed and can reflect on their program. This particular programming skill
is especially highlighted in the first year of the Coderclass as this skill is
involved in every module in some way.

Understanding general computer science concepts: Coderclass students
can understand and explain the many issues and concepts learned about the
world of computer science. A better overview of these concepts is given in
section 5.1.

52

5.2.2 Comparing the Coderclass learning objectives to the
2016 Dutch CS learning objectives

After analyzing each separate module for the core CS learning objectives it
is now possible to compare the results to that of the 2016 Dutch CS learning
objectives by looking further into the subdomains of each core CS domain.
Each of the core domains of Skills, Foundations, Information, Programming,
Architecture, and Interaction is analyzed below, by specifying how often the
required subdomains of the 2016 Dutch CS learning objectives are present
in the Coderclass modules. Then, each subdomain is discussed based on the
number of times it was coded throughout the core modules.

Domain A: Skills

The domain of skills is present in every module since every module trains a
specific skill set of the Coderclass in some way. However, these skills vary,
and it becomes apparent that some of the subdomains of skills are more
common than others:

Subdomain Number times subdomain
is present in modules

Al: Using information skills 13

A2: Communicate

A3: Reflect on learning

A4: Orienting on profession and study

A6: Modelling

7
0
2
Ab5: Research 3
6
2

AT: Appreciate and judge

A8: Design and develop 13
A9: Computer science as a perspective 8
A10: Collaboration and interdisciplinarity

A11: Ethical discourse 1
A12: Wielding computer science instruments | 14
A13: Working in context 7

Table 7: Number of times each subdomain of domain A: Skills is present
throughout the Coderclass modules.

e A1: Using information skills: This subdomain has a high presence
in the modules and is thus well represented throughout many of the
modules.

e A2: Communicate: This subdomain is represented mostly through
the projects in which teams of students have to work together and

93

communicate to come to a joint solution to a problem.

AS8: Reflect on learning: This particular skill is not specifically focussed
on in any of the modules.

AJ: Orienting on profession and study: This skill is not particularly
addressed in the modules, but is indirectly mentioned in some of the
modules and projects, in a way that lets the Coderclass students reflect
on what the things they are doing and learning can be used for in
professional life.

A5: Research: Proper researching skills are not yet tested much throughout
the first year. Some of the modules do require students to do a bit of
research, but not yet at the required level.

A6: Modeling: Modeling is trained in several of the modules, in which
students have to analyze a relevant issue and translate it to one they
model, test, and judge.

A7: Appreciate and judge: This skill does not specifically feature much
in the Coderclass modules, as there are not many assignments in which
students have to judge a situation or application in a scientific or
societal manner. However, some personal arguments in judgement are
made throughout some of the modules.

A8: Design and develop: This skill has a high presence in the Coderclass
modules. By use of many digital artifacts, students have to design and
develop all kinds of solutions to problems and execute them throughout
many of the modules and projects.

A9: Computer science as a perspective: The first year of the Coderclass
features a high presence of chances for students to use CS as a perspective
by teaching students about CS specific terms, concepts and relations.

A10: Collaboration and interdisciplinarity: This skill is trained mostly
during the group projects, but is not particularly mentioned in the
other modules.

Al1l: Ethical discourse: This skill is not particularly trained in any
of the modules in the first year of the Coderclass and only has one
occurrence.

A12: Wielding computer science instruments: Because students are
expected to use many forms of digital artifacts and CS-related tools,
this subdomain reaches a high count of occurrence in the modules.

A13: Working in context: Coderclass students are instructed on the
value their newly acquired skills have in a social/professional context,

54

particularly through the group assignments.

Domain B: Foundations
The foundations domain is represented in most of the modules and projects,
but not each of the subdomains is as common:

Subdomain Number times subdomain
is present in modules
B1: Algorithms 7

B2: Datastructures | 5
B3: Automatons 1
B4: Grammars 4

Table 8: Number of times each subdomain of domain B: Foundations is
present throughout the Coderclass modules.

e B1: Algorithms: This foundation is mostly trained throughout the use
of algorithms in many ways, and is present in most of the Coderclass
modules.

e B2: Datastructures: The use of data structures is also present throughout
some of the Coderclass modules in which students use, compare, and
judge data structures for elegance and efficiency.

e B3: Automatons: This foundation does not reach a higher presence in
the modules because the use of algorithms in modules is usually not
specifically defined with finite-state automatons.

e Bj: Grammars: While students have to use a predefined grammar in
some modules, this is not particularly addressed as such.

Domain C: Information

Learning objectives in the information domain occur more than some of the
other domains, as students often need to use, identify, and represent specific
information to achieve a specific goal:

e ('1: Goals: The goals subdomain is well represented because students
gain experience in using information for different goals, and are trained
in looking for the right information and the editing of it.

o (2: Identification: This subdomain is also well represented in the first
year of the Coderclass. students often have to identify the right data
to solve a specific problem in many of the assignments.

95

Subdomain Number times subdomain
is present in modules

C1: Goals
C2: Identification
C3: Representation

C4: Standard representations
Cbh: Structured data

N W 00| |

Table 9: Number of times each subdomain of domain C: Information is
present throughout the Coderclass modules.

o (C3: Representation: Through the use of many artifacts and dealing
with data, Coderclass students gain experience in representing data in
a specific structure, particularly in the data visualization modules.

e (4: Standard representations: Standard representations of data are
made in some of the data visualization modules in which students
have to relate the outcomes.

e (C5: Structured data: While having a lower presence than the other
subdomains, students gain some experience in translation a need for
information into a collection of structured data.

Domain D: Programming

The domain of programming has a high presence in the Coderclass modules
and projects, as was already established in section 5.1. Almost each of the
modules requires students to program, develop, and work with some form
of coding:

Subdomain Number times subdomain
is present in modules

D1: Develop 10

D2: Inspect and adapt | 10

Table 10: Number of times each subdomain of domain D: Programming is
present throughout the Coderclass modules.

e D1: Develop: Coderclass students gain hands-on experience in developing
programs and components using imperative programming languages in
many of the modules and projects. students are also somewhat trained
in using abstraction and code structuring.

o6

e D2: Inspect and adapt: Aside from developing, Coderclass students
are also trained in being able to inspect program components and
explain, evaluate and adapt them throughout their first year.

Domain E: Architecture

The architecture domain is has a lower presence than other domains in the
first year of the Coderclass. While some architectures are discussed in some
modules, such as the Linux OS architecture, the subdomain of Security does
not contain many learning objectives:

Subdomain Number times subdomain
is present in modules

E1: Decomposition | 5
E2: Security 1

Table 11: Number of times each subdomain of domain E: Architecture is
present throughout the Coderclass modules.

e E1: Decomposition: In some of the modules, Coderclass students gain
experience in recognizing architectural elements and start to use them
to interpret digital artifacts and their interaction.

e F2: Security: Architectural elements related to Security do not reach
a high presence in the Coderclass modules. While students gain some
knowledge of Security behind Linux, they are not trained in recognizing
security threats in their first year.

Domain F: Interaction

Interaction does have some importance in the first year’s modules but focuses
mostly on usability. These interaction aspects do appear particularly in
projects where usability and elegance are of importance:

e F'1: Usability: Usability has a higher presence than the other interaction
subdomains in the first year Coderclass modules and assignments.
students gain experience in using, evaluating, and designing interfaces
and judging them on usability and elegance.

e F2: Social aspects: Social aspects occur a few times in some of the
projects, where Coderclass students can see how a certain piece of data
or a program can impact or help their society and themselves.

e ['3: Privacy: This subdomain is not explicitly present in any of the
first year Coderclass modules and projects.

o7

Subdomain Number times subdomain
is present in modules

F1: Usability 6
F2: Social aspects | 2
F3: Privacy 0
F4: Security 1

Table 12: Number of times each subdomain of domain F: Interaction is
present throughout the Coderclass modules.

e [: Security: Interaction elements related to Security have a single
occurrence in the Coderclass modules.

Summary

When summarizing the overview of the comparison between the first year
Coderclass modules/projects and the subdomains of the 2016 CS core exam
program given above, it becomes apparent that the core domains of Interaction
and Architecture are somewhat underrepresented in the first year of the
Coderclass. However, when it comes to the core domain of Programming it
becomes clear that students start to use the skills described in the subdomains
often and should have no problem picking up the learning objectives related
to this domain. Furthermore, apart from subdomains B3 and C5, the
domains of Information and Foundations also have a high presence. When
it comes to the main domain of Skills, the first year of the Coderclass focuses
mostly on some of the subdomains (A1, A2, A6, A8, A9, A12, A13) and less
so on others (A3, A4, A5, A7, A10, A11).

o8

5.2.3 Computational thinking in the Coderclass

The set of general Coderclass learning objectives found through the secondary
analysis in section 5.2.1 can then be compared to one of the more broadly
agreed on definitions of CT. For this study, the definition of CT, as defined
by Grover and Pea (2013), is used in the comparison between CT skills and
Coderclass learning objectives. By comparing the Grover and Pea definition
of CT with the Coderclass learning objectives found in the second part of
section 5.2.1, the degree of CT that arrises within the learning objectives of
the Coderclass can be analyzed and discussed.

In this comparison, it becomes apparent that 5 out of 9 of the overall
Coderclass learning objectives found in 5.2.1 have much in common with
the definitional list of skills defined as CT by Grover and Pea. Table 13
displays each of the Grover and pea CT definitions and shows which of the
Coderclass learning objectives are relevant to that specific definition:

Grover and Pea CT definitions Relevant Coderclass
learning objectives

Abstractions and pattern generalizations | Decomposing, Generalization,

(including models and simulations Modeling
Systematic processing of information Generalization
Symbol systems and representations Modeling
Algorithmic notions of flow of control Decomposing
Structured problem decomposition Decomposing
(modularizing)

Iterative, recursive, and parallel thinking | Generalization, Understanding
and writing a program

Conditional logic Understanding and writing a
program

Efficiency and performance constraints Understanding and writing a
program

Debugging and systematic error detection | Debugging and testing

Table 13: CT definitions by Grover and Pea and the overall Coderclass
learning objectives they aline with.

Each of the Grover and Pea definitions of CT alines to some extent with at
least one of the learning objectives that have been found for the first year
of the Coderclass. Therefore, students of the Coderclass should start to be
able to think like a computer scientist over time and will be able to use CT
to solve problems.

99

However, not all of these CT skills are represented as heavily as the others.
While most of the Gover and Pea CT skills closely are related to programming
and modeling (such as debugging and systematic error detection, iterative,
recursive and parallel thinking, symbol systems and representations etc) and
will thus stand out considering the heavy focus on these areas (as discovered
in section 5.1), some of the CT skills that focus more on other areas like
mathematics or usability are not as well represented. These are conditional
logic and efficiency and performance constraints in particular.

60

5.3 Student attitude outcomes

The learner reports used to analyze the student attitude outcomes were
filled in by a total of 20 Coderclass students and contain a total of 154
statements (on average 7,7 statements per student) of which 105 contained
aspects of attitude components. The overall result of the classification of
the statements made by Coderclass students is displayed in table 14.

Attitude Component | Category Specification | Number of
(Klop, 2008) (cf. Keller, 1984) statements
Cognition Relevance personal life 2
society)

Confidence positive 38

negative 11

Affection Satisfaction positive 24
negative 3

Judgement positive 12

negative 7

Behavior Behavioral intentions 3

Table 14: Distribution of Coderclass students’ statements over attitude
components.

A more detailed overview of the findings of this analysis, organized by
category and including a lot of examples, is presented below.

Relevance

This category includes statements that show the student’s perceived relevance
of the various content they have learned throughout the year in the Coderclass.
There are very few such statements, as most of the students have filled in

about the topics they have learned about without making any connections

to the real world or their personal lives. The two statements that resemble

a connection to personal life are about the students discovering that there

are multiple ways of solving a problem: “I’ve learned that I can use many

different ways to tackle a problem”, and that there are similarities between

the programming languages that they learn about in their first year: “I

noticed many of the programming languages we used are much alike.”

Statements concerning societal relevance are slightly more frequent and
often refer to students now realizing how big the world of computer science
actually is: “I’ve realized even animation is a part of computer science”,
“I’ve noticed that there is much more to the world of computer science than
I thought, like animations and robotics.”. Some of the students have also

61

discovered that this world of CS is so big that they will most likely never be
able to learn everything: “I now know that the world of coding is infinite”,
“I've learned that there is too much information ever to be able to learn it

all.

Confidence

This category contains statements about students’ faith in their own capabilities
concerning the topics they encountered during their first year in the Coderclass.
Most of these statements are positive (38 out of 49 statements). Students
often state their confidence in their own capabilities concerning different
specific topics being taught in the Coderclass, such as visualization in Python:
“Making a graph in Python is actually quite easy”, building websites in
HTML: “I found out I am good in HTML” and animations in Blender:
“Animation is much easier than I thought once I understood it”.

There are also several positive statements about more general skills, such as
programming and building websites in general: “You see websites everywhere
and now I know I can build them too!”. There are also quite a lot of general
statements in which students newfound confidence in areas they did not
initially expect: “I have managed to build things in this class I would never
have thought I was capable of making”, and some praise the Coderclass itself
in their statement: “In the first year in the Coderclass I have learned more
than I have in any other IT related subject”. The most distinguishable
result here is that many of the Coderclass students expected things to be
much harder than they actually were, and often underestimated their own
capabilities.

However, there have also been some negative statements (11 out of 49),
in which the opposite was mostly the case, either expected: “Though I
did expect this class would be very hard and complicated”, or unexpected:
“Things were more difficult than I thought they would be”. Several statements
on a student’s confidence are about more specific concepts, such as the
difficulty of Python: “Programming in Python is hard for me” or reaching
a deadline: “I’ve learned that I am not that good in reaching a deadline”.

Satisfaction

In this category, statements concerning the way students feel about what
they have learned are included. These are almost all positive (24 out of 27).
For the most part, these statements express the students’ joy in specific
concepts that occur during the first year of the Coderclass, particularly
about Blender: “Modeling in Blender was great”, Javascript: “Javascript
was a lot of fun, more so than the other topics”, and Python: “Making

62

games in Python was the most fun I've had in the Coderclass”

Some of the statements discuss a more general topic such as the Coderclass
itself: “5 hours of Coderclass a week is a lot of fun, because you have much
time to work on the modules”, or about programming is much more fun than
the students thought it would be: “I found out programming is much more
fun than I thought”, “I did not expect coding to be this much fun”.

There are also three statements that express a more negative attitude. One
of them expresses a student’s wish for change in the Coderclass: “It would be
nicer and more fun if we could tackle the modules with our own ideas some
more”, and two of the statements state the students’ negative experience
with Raspberry-PI, which are the only Raspberry PI related statements in
this analysis: “I didn’t like Raspberry-Pls”, “I noticed Raspberry-Pls aren’t
as much fun.”

Judgement

This category contains direct judgement made by students. Most of these
statements are quite positive (12 out of 19 judgement statements are positive).
Only a few of these cover a specific concept or digital artifact, such as “I
learned that Trello is a very nifty program”, as most of the judgements made
by students are about a specific concept being taught in the Coderclass, but
are mostly about the Coderclass course as a whole, covering many different
aspects of the Coderclass, such as its creativity: “I’ve learned that the
Coderclass is very creative”, and praising of the teachers: “The teachers
of the Coderclass are very good in what they do and are very creative with
their assignments and projects”.

Some of the judgements made by the students give a more negative view
(7 out of 19). However, two of those are judgements made on the time
they have available for the Coderclass each week and seem to indicate that
the students wish they had more time: “5 hours a week is too little time”,
“5 hours a week is too little. And because of (other) homework, I can’t
always do work for the Coderclass as much as I would want”. The other
negative judgements are about students reconsidering if the Coderclass or
CS in general is really what they initially thought: “I thought computer
science would be perfect for me, but that ended up not being true”, “The
Coderclass is different than I expected because we did more programming
than I thought and did fewer things like editing and making games”. Finally,
one of the judgements reflects a student’s newfound view on collaboration:
“Collaborating with others is rather hard sometimes”.

63

Behavioral intentions

This category includes statements expression intentions. This is the smallest
category with only three statements as students did not express much of their
intentions in their statements. Two of these express intentions of inquisitive
students that have found out new intentions: “I like using a (programming)
language to make something it wasn’t really intended for,” “I found out I
like to move on with different topics before I finished the last one”. The
third statement reflects a student’s intention to ask more questions in class:
“I need to ask more questions; otherwise, I will never solve the problems I
face in class”.

64

Chapter 6

Conclusion

Conceptual content

1. What is the conceptual content of the first year of the Coderclass?

The conceptual content of the first year of the Coderclass consists of
a large list of concepts that appear in the curriculum. These concepts
are divided into knowledge categories to depict which categories the
Coderclass focuses on most, and which categories have a lower amount
of focus during the first year:

= Programming

1)
= Data
= Algorithms
Architecture
= Networking

= Engineering
= Modeling

= Security

= Mathematics
= Usability

= Society

= Intelligence

Figure 6: Concept piechart of displaying the number of concepts found in
each knowledge category.

65

Figure 6 displays the distribution of the concepts found among knowledge
categories. Programming particularly stands out as it contains the
highest amount of concepts. The data knowledge category also contains
significantly more concepts than other categories. Security, mathematics,
usability, society, and intelligence contain a relatively low amount of
concepts.

2. How does the content of the Coderclass compare to other
curricula?

The first year of the Coderclass covers content that is more densely
distributed among certain knowledge categories than others. When
comparing it to several other CS curricula (NL 2016 Core & Complete
curricula, CSTA, CAS, and France), it is clear that the Coderclass
scores much better than others in the knowledge categories of Programming
and Modeling. It also scores above average in the Data and Networking
categories. On the knowledge categories of Algorithms and Mathematics,
the Coderclass scores averagely well in comparison. The Architecture,
Engineering, Security, Usability and Intelligence categories are a bit
underrepresented compared to the other CS curricula. The Society
knowledge category scores particularly low for the Coderclass in comparison.

M Coderclass 1st year m NL 2016 Core NL2016 Complete ®mCSTA ®CAS W France

19,7

262 262
27 27
05
18,7
163 16,2 162
147
133 136 13,1 131 13,0
121
10,7 10,3112 0s 10.7|
) : 94 94
85 - 80 83 BS5 84
55 72
37
24 I

Data Architecture Newworking Algorithms Enginesring Programming

R

10,7

120
12330
55
84
7.5 7.4
47 a4 48
29 1 37 36 36 “
18 I 25 24 25 20 20 18 19
. I I I -
X 05
00 00 00 0,0 0,000 0, 00 i l

Society Mathematics Modeling Security Usability Intelligence

5

Figure 7: Relative distribution of concept occurrences across the knowledge
categories. The percentages show the fraction of the concept occurrences to
the respective categories.

66

Learning objectives

3. What are the learning objectives in the first year of the
Coderclass?

The recurring learning objectives that are present throughout the
first year of the Coderclass are: cooperation, debugging and testing,
decomposing, designing, generalization, initiative & planning, modeling,
understanding and writing a program, understanding general computer
science concepts.

4. How do the learning objectives of the Coderclass compare to
the Dutch Computer Science learning objectives?

In the comparison between the core Dutch CS 2016 Computer Science
learning objective and the Coderclass first-year learning objectives, it
becomes apparent that the core domains of Interaction and Architecture
are somewhat underrepresented in the first year of the Coderclass.
However, the core domain of Programming is very present, and it
quickly becomes clear that students start to use the skills described
in its subdomains very often in their first year and should have no
problem picking up the learning objectives related to this domain.
Furthermore, the domains of Information and Foundations are also
well represented. When it comes to the main domain of Skills, the
first year of the Coderclass focuses mostly on some of the subdomains
and less so on others.

5. In what way do the learning objectives of the Coderclass
involve Computational Thinking?

The set of recurring learning objectives found in most of the Coderclass
first-year curriculum have much in common with one of the more
broadly agreed on definitions of CT by Grover and Pea (2013). 5
out of 9 of the Coderclass learning objectives (Debugging and testing,
decomposing, generalization, modeling, understanding and writing a
program) cover each of Grover and Pea’s definitions of CT to some
extent. Therefore, students of the Coderclass should start to be able
to think like a computer scientist over time and will be able to use CT
to solve problems.

67

Attitude outcomes

6. Which learning outcomes can be determined concerning Coderclass

student attitudes?

Outcomes regarding student confidence, satisfaction, and judgement
on the Coderclass are particularly positive about their first year in
the Coderclass. They express their joy, confidence in their own skill
and positive judgement in both specific modules and in general CS
concepts. The relevance of learned content and the intent to act upon

them is underrepresented in Coderclass student attitudes:

’ Category

|

student’s attitude outcomes

Relevance

Very few statements on personal life. Little more statements on
societal aspects but limited variation and conceptually weak.

Confidence

Varied on conceptual content, but mostly positive statements.

students express their newfound confidence on specific topics and
general skills, particularly on how it was easier than students expected.
The fewer negative statements are quite varied on concepts.

Satisfaction

Particularly positive; statements express how much ‘fun’ was had

in specific modules of the Coderclass curriculum. Various statements
also express joy in more general CS aspects such as programming.
The few negative statements all refer to one specific module.

Judgement

Varied but mostly positive, express judgement about the
Coderclass course as a whole.

Behavioral intent

Present in just a few statements, express various intentions
about things that have been found out during the course.

Table 15: Summary of findings w.r.t. attitude outcomes per category

68

Chapter 7

Enriching the Coderclass

Up until this chapter, this thesis has been about studying the Coderclass.
However, this chapter is about helping it develop, by contributing a new
module for Coderclass students to study.

Before starting the Coderclass study, an arrangement with the Coderclass
teachers was made. While I would be able to study everything I needed and
ask anything, I would have to repay the favor by developing a new module.
By looking at the conceptual analysis it becomes clear that some of the
knowledge areas (particularly society, security, usability and intelligence)
are underrepresented in the first year of the curriculum. Because of this I
wanted to do something with one of these knowledge categories. While some
of these knowledge categories are picked up more over the next couple years
of the Coderclass, the society category seems to stay at a low percentage of
relative distribution of concept occurrences. Because of that, I have chosen
to create a module that focuses more on the society category.

The next step was to determine the subject of the module. After suggesting

some initial ideas that I developed based on my own experiences of my

Information Science education at Radboud university, the Coderclass teachers
and I agreed on a module that focuses on innovation and entrepreneurship.

The main question to be answered being: “How can I turn a revolutionary

idea (specifically involving IT) into a business?”. This module would be

the beginning of a completely new entrepreneurship in IT learning line in

the Coderclass. While this line is optional, it gives Coderclass students the

option of developing an entrepreneurial mind in an IT context.

This module idea is mostly based on one of my own educational experiences,
in which the same idea is applied (albeit in a much broader sense) in a more
advanced setting. In the Software Development Entrepreneurship course at
Radboud University Nijmegen, I had to come up with and develop my own

69

business idea, which ended with a sales pitch in front of a panel of experts.
This experience introduced me to entrepreneurship in a rather fun way, so
the idea was to give Coderclass students a light version of this experience.

The forming and design of this module (of which the front page can be
seen in Dutch in Appendix 9.2) came together by copying the design of other
existing Coderclass modules, while adding an introduction on innovation and
entrepreneurship, including several questions for the students to reflect on.
However, the main body of the module is for the students to be introduced
to the concepts of entrepreneurship and innovation in IT through means of
inspiration. students are asked to reflect on current revolutionary IT ideas
after which they will have to interview some IT startups near them. These
interviews are meant to inspire Coderclass students and to come up with a
new IT business idea themselves. This idea is a start of the entrepreneurial
thinking that the students will be developing during the entrepreneurship
modules. They will have to think about many aspects such as the way they
will be making profits, competition, etcetera. This will all have to be pitched
in a sales talk in front of the class to see how well they have done working
out their ideas, and students will finally be judged on their sales pitch by
their teachers.

To prepare the specifics of this module, I have used a PCK model on lesson
preparation form to help design the setup of the module. PCK stands for
Pedagogical Content Knowledge, a term introduced by Shulman (1986) and
described by him as “that special amalgam of content and pedagogy that
is uniquely the province of teachers, their own special form of professional
understanding” (Shulman, 1987, p. 8). This combination allows teachers to
help students understand complex concepts. The PCK lesson preparation
model used to develop this module helps teachers to prepare a lesson, or even
a subject, in a more methodical manner, so that the teacher will be better
prepared while a student will find it easier to understand. The preparation
for the Entrepreneurship-0 module according to the PCK model is described
in a more systematic manner in the following section.

70

7.1 Module preparation according to PCK model

7.1.1 What and why

What do you want students to learn about this subject? Create specific
learning objectives: “After the lesson (module), the student can ...”. Why
is it important that they can do/know this? (Relevance of subject matter
in regard to core learning goals, and meaning to the students)

Learning objectives

After completion of the module Entrepreneurship-0, the student can:
e explain the concepts of entrepreneurship, innovation and disruption;
e link these concepts to the world of computer science;
e interview an IT startup business, and use the results to gain inspiration;
e explain the concepts of a business plan;
e create a mind-map of a business plan for a business idea involving IT;

e pitch a business idea in front of peers.

Relevance of subject matter

The added value of this module for the Coderclass is that:

students learn about the link between computer science and business;
e students develop an entrepreneurial mind in an IT context;

e this module acts as a basis for the Entrepreneurship line in a fun and
light manner;

e a module that focuses more on the society concept knowledge category
is added;

e it gives students the possibility to come up with an idea they can turn
into a business as part of their education. This can then also be used
in other subjects, such as economics.

7.1.2 Possibilities and limitations

Study the subject matter in regard to expected prior knowledge, student
ideas and thinking level. Which difficulties do you expect on the subject
and the learning objectives for this lesson (module)? What other factors
(such as classroom, ambiance, group orientation, independence, differences
between students etc) influence your teaching on this subject?

71

Areas of concern/points of interest

Students do not need any prior knowledge of entreprenecurship or
business to start this module. The module is meant as a start to
these concepts.

Students do need some prior knowledge about IT related concepts,
in order to come up with an idea which they will turn into a business
proposal. Because of the many different areas they can use to generate
an idea (such as IT in traffic, IT in gaming, etc) no specific knowledge
is required.

Students must to be open to the idea of visiting an IT business and
interviewing them on their ideas, as this is part of the requirements
for completing this module.

Time must be made for the students to pitch their business idea in
front of the entire class.

Students must be able to work in groups, as the project in this module
should be performed in groups of 2 to 4 students, in which they must
collaborate to generate a business idea and create a business plan
mind-map.

The setup for this module generates possibilities for other subjects,
such as economics.

7.1.3 Approach of education

What teaching approach (such as selection and order of the subject matter,

contexts, teaching methods, educational tools, verbal /visual stimuli, representations

etc) do you choose, and why? Your approach should be aimed towards
realizing the learning goals, and assumes the difficulties and assumes the
possibilities and limitations of the starting situation

Approach

The following tools/teaching methods are used in this module:

1.

SO A el

The Coderclass wiki page for the Entrepreneurship-0 module.
Document on google containing subject matter .

Document on google in which the course project is explained.
Module project: The interviews with I'T startups.

Module project: The idea + business plan mind-map.

Module project: The pitch in front of the class.

72

Reason

1. The Coderclass wiki page is the start for every module. Here, students
access all the other necessary documents that are linked to this module,
and they can read what the module is about. As this module is an
elective one, students can easily decide whether this module appeals
to them by reading the summary on the subject.

2. The document with subject matter on google contains the necessary
information for each student to start the module project. This is
the usual manner for Coderclass modules. students must each read
through this document, so that all students in a group have knowledge
of the necessary concepts in the project. The theory in this document
also establishes the link between I'T and business, and forces the student
to start thinking about ideas of their own.

3. The document on google containing the module project is necessary for
students to understand what they are required to do to complete this
module. It contains the requirements of the project and also includes
recommendations and tips to help students on their way.

4. The interviews with I'T startups are meant to inspire students. Interviewing
smaller startups show students that many such businesses start with
just an innovative idea, which they could potentially think of themselves.
Furthermore, this approach introduces students to performing interviews.

5. The idea and business plan mind-map are the core idea behind the
project. students must work together in groups to come up with a
good business idea involving IT and then map out their idea into
a business plan. A mind-map is used to give students the option of
creating a light version of a business plan in which the most important
topics are covered, so that they will not have to create an entire, full-
length business plan. By doing this, students learn to work together in
order to make something of a joint idea, in which they will potentially
become partners. It also forces the students to use the knowledge
gained from the google document in a practical assignment.

6. The pitch of the business idea/plan in front of the class is meant as the
final presentation of this module. By sufficiently pitching their idea,
they can convince their teachers and others that they have picked up
on the concepts of this module and that their idea is (potentially) a
good one. students also gain experience in presenting and winning
over other students.

73

7.1.4 Assessment

How do you discover the prior knowledge and the learning outcomes (students
either understand the subject matter or are confused by it) in regard to this
subject?

This is done through the students’ execution of the module project. By
pitching their idea and mind-map in front of the class, added by any other
documents made by the students, teachers can adequately assess whether
the concept of entrepreneurship in I'T has landed with the students.

74

Chapter 8

Enriching the Coderclass

Up until this chapter, this thesis has been about studying the Coderclass.
However, this chapter is about helping it develop, by contributing a new
module for Coderclass students to study.

Before starting the Coderclass study, an arrangement with the Coderclass
teachers was made. While I would be able to study everything I needed and
ask anything, I would have to repay the favor by developing a new module.
By looking at the conceptual analysis it becomes clear that some of the
knowledge areas (particularly society, security, usability and intelligence)
are underrepresented in the first year of the curriculum. Because of this I
wanted to do something with one of these knowledge categories. While some
of these knowledge categories are picked up more over the next couple years
of the Coderclass, the society category seems to stay at a low percentage of
relative distribution of concept occurrences. Because of that, I have chosen
to create a module that focuses more on the society category.

The next step was to determine the subject of the module. After suggesting

some initial ideas that I developed based on my own experiences of my

Information Science education at Radboud university, the Coderclass teachers
and I agreed on a module that focuses on innovation and entrepreneurship.

The main question to be answered being: “How can I turn a revolutionary

idea (specifically involving IT) into a business?”. This module would be

the beginning of a completely new entrepreneurship in IT learning line in

the Coderclass. While this line is optional, it gives Coderclass students the

option of developing an entrepreneurial mind in an IT context.

This module idea is mostly based on one of my own educational experiences,
in which the same idea is applied (albeit in a much broader sense) in a more
advanced setting. In the Software Development Entrepreneurship course at
Radboud University Nijmegen, I had to come up with and develop my own

75

business idea, which ended with a sales pitch in front of a panel of experts.
This experience introduced me to entrepreneurship in a rather fun way, so
the idea was to give Coderclass students a light version of this experience.

The forming and design of this module (of which the front page can be
seen in Dutch in Appendix 9.2) came together by copying the design of other
existing Coderclass modules, while adding an introduction on innovation and
entrepreneurship, including several questions for the students to reflect on.
However, the main body of the module is for the students to be introduced
to the concepts of entrepreneurship and innovation in IT through means of
inspiration. students are asked to reflect on current revolutionary IT ideas
after which they will have to interview some IT startups near them. These
interviews are meant to inspire Coderclass students and to come up with a
new IT business idea themselves. This idea is a start of the entrepreneurial
thinking that the students will be developing during the entrepreneurship
modules. They will have to think about many aspects such as the way they
will be making profits, competition, etcetera. This will all have to be pitched
in a sales talk in front of the class to see how well they have done working
out their ideas, and students will finally be judged on their sales pitch by
their teachers.

To prepare the specifics of this module, I have used a PCK model on lesson
preparation form to help design the setup of the module. PCK stands for
Pedagogical Content Knowledge, a term introduced by Shulman (1986) and
described by him as “that special amalgam of content and pedagogy that
is uniquely the province of teachers, their own special form of professional
understanding” (Shulman, 1987, p. 8). This combination allows teachers to
help students understand complex concepts. The PCK lesson preparation
model used to develop this module helps teachers to prepare a lesson, or even
a subject, in a more methodical manner, so that the teacher will be better
prepared while a student will find it easier to understand. The preparation
for the Entrepreneurship-0 module according to the PCK model is described
in a more systematic manner in the following section.

76

8.1 Module preparation according to PCK model

8.1.1 What and why

What do you want students to learn about this subject? Create specific
learning objectives: “After the lesson (module), the student can ...”. Why
is it important that they can do/know this? (Relevance of subject matter
in regard to core learning goals, and meaning to the students)

Learning objectives

After completion of the module Entrepreneurship-0, the student can:
e explain the concepts of entrepreneurship, innovation and disruption;
e link these concepts to the world of computer science;
e interview an IT startup business, and use the results to gain inspiration;
e explain the concepts of a business plan;
e create a mind-map of a business plan for a business idea involving IT;

e pitch a business idea in front of peers.

Relevance of subject matter

The added value of this module for the Coderclass is that:

students learn about the link between computer science and business;
e students develop an entrepreneurial mind in an IT context;

e this module acts as a basis for the Entrepreneurship line in a fun and
light manner;

e a module that focuses more on the society concept knowledge category
is added;

e it gives students the possibility to come up with an idea they can turn
into a business as part of their education. This can then also be used
in other subjects, such as economics.

8.1.2 Possibilities and limitations

Study the subject matter in regard to expected prior knowledge, student
ideas and thinking level. Which difficulties do you expect on the subject
and the learning objectives for this lesson (module)? What other factors
(such as classroom, ambiance, group orientation, independence, differences
between students etc) influence your teaching on this subject?

77

Areas of concern/points of interest

Students do not need any prior knowledge of entreprenecurship or
business to start this module. The module is meant as a start to
these concepts.

Students do need some prior knowledge about IT related concepts,
in order to come up with an idea which they will turn into a business
proposal. Because of the many different areas they can use to generate
an idea (such as IT in traffic, IT in gaming, etc) no specific knowledge
is required.

Students must to be open to the idea of visiting an IT business and
interviewing them on their ideas, as this is part of the requirements
for completing this module.

Time must be made for the students to pitch their business idea in
front of the entire class.

Students must be able to work in groups, as the project in this module
should be performed in groups of 2 to 4 students, in which they must
collaborate to generate a business idea and create a business plan
mind-map.

The setup for this module generates possibilities for other subjects,
such as economics.

8.1.3 Approach of education

What teaching approach (such as selection and order of the subject matter,

contexts, teaching methods, educational tools, verbal /visual stimuli, representations

etc) do you choose, and why? Your approach should be aimed towards
realizing the learning goals, and assumes the difficulties and assumes the
possibilities and limitations of the starting situation

Approach

The following tools/teaching methods are used in this module:

1.

SO A el

The Coderclass wiki page for the Entrepreneurship-0 module.
Document on google containing subject matter .

Document on google in which the course project is explained.
Module project: The interviews with I'T startups.

Module project: The idea + business plan mind-map.

Module project: The pitch in front of the class.

78

Reason

1. The Coderclass wiki page is the start for every module. Here, students
access all the other necessary documents that are linked to this module,
and they can read what the module is about. As this module is an
elective one, students can easily decide whether this module appeals
to them by reading the summary on the subject.

2. The document with subject matter on google contains the necessary
information for each student to start the module project. This is
the usual manner for Coderclass modules. students must each read
through this document, so that all students in a group have knowledge
of the necessary concepts in the project. The theory in this document
also establishes the link between I'T and business, and forces the student
to start thinking about ideas of their own.

3. The document on google containing the module project is necessary for
students to understand what they are required to do to complete this
module. It contains the requirements of the project and also includes
recommendations and tips to help students on their way.

4. The interviews with I'T startups are meant to inspire students. Interviewing
smaller startups show students that many such businesses start with
just an innovative idea, which they could potentially think of themselves.
Furthermore, this approach introduces students to performing interviews.

5. The idea and business plan mind-map are the core idea behind the
project. students must work together in groups to come up with a
good business idea involving IT and then map out their idea into
a business plan. A mind-map is used to give students the option of
creating a light version of a business plan in which the most important
topics are covered, so that they will not have to create an entire, full-
length business plan. By doing this, students learn to work together in
order to make something of a joint idea, in which they will potentially
become partners. It also forces the students to use the knowledge
gained from the google document in a practical assignment.

6. The pitch of the business idea/plan in front of the class is meant as the
final presentation of this module. By sufficiently pitching their idea,
they can convince their teachers and others that they have picked up
on the concepts of this module and that their idea is (potentially) a
good one. students also gain experience in presenting and winning
over other students.

79

8.1.4 Assessment

How do you discover the prior knowledge and the learning outcomes (students
either understand the subject matter or are confused by it) in regard to this
subject?

This is done through the students’ execution of the module project. By
pitching their idea and mind-map in front of the class, added by any other
documents made by the students, teachers can adequately assess whether
the concept of entrepreneurship in I'T has landed with the students.

80

Chapter 9

Discussion

9.1 Findings

The first year of the Coderclass involves many of the concepts and skills
students from all over the world learn about in secondary CS education.
However, this study covers just their first year. The actual, 6-year education
will contain much more than what is analyzed in this study and would thus
be a better contribution to the many discussions on CS education and the
problem of the many new CS curricula, by comparing learning objectives or
content to other CS curricula.

Some of the findings were a bit surprising. The learning outcomes of the
Coderclass show a high focus on programming concepts, which was expected,
given the name “Coderclass”. However, the low focus on society concepts
was surprising because society has been a rather big topic in the Dutch
CS community lately (particularly concerning privacy). Furthermore, it is
surprising to see that there is such a low focus on Intelligence and robotics
in the first year. However, this is picked up later in the course.

The findings of the learning objective analysis are also very much in line with
some of the findings of the conceptual analysis. For example, it becomes
clear that the core domain of programming has a huge presence in the
learning goals, which is in line with the high amount of programming concepts
found in the conceptual analysis. Furthermore, the learning objectives that
were determined by looking into the module requirements and assignments
came surprisingly close to the list of elements defined by Grover and Pea
(2013) as the definition of computational thinking. One of the initial goals
of this study was to determine if CT would be involved in the Coderclass at
all, but the degree it did arise in was unexpected.

Student attitudes were more difficult to determine. The initial plan was

81

to determine attained learning outcomes rather than just finding student
attitudes. By looking at the badges achieved by the students, the plan was
to determine which of the requirements of each module were mastered. This
turned out to be unfruitful, as the overview of badges gained by Coderclass
students was unfinished by the time of analysis, and contained far more
than the basic first-year modules and students at the time of completion of
this study. For this reason, student attitudes through learner reports have
instead been used as the main source of determining a form of (self-reported)
learning outcomes.

The difficulty of using learner reports as the main source was that not every
student filled them in a way that was necessary for the analysis. Many
students failed to see (or report) the relevance of their learned skills in their
answers, and have stated some exact things that they learned. While this
has somewhat helped determine what they have learned, it has kept the
Relevance attitude category very low on statements, while there was plenty
to be said about Confidence, Satisfaction, and Judgement.

9.2 Limitations of the study

There are some limitations to the validity of this study. First, it must be
noted that the conceptual analysis of the Coderclass has been an analysis
of complete course documents for the first year of the course, while the
other curricula that have been used for comparison in this thesis have
been analyses of curricula documents (guidelines rather than actual learning
material) of a complete curriculum. For this reason, the Coderclass has
much more total concept occurrences than the other curricula. This fact
makes it hard to compare the Coderclass with the other curricula accurately.
However, for the purpose of this thesis, they have still been compared by
comparing the percentages of the number of concepts in each knowledge
category, because this gives a decent overview of what the Coderclass focuses
on in their first year, especially on what their strengths and weaknesses are
in specific knowledge categories, as opposed to different curricula.

Furthermore, this study has focused on the first year of the Coderclass
curriculum only. An analysis of the full 6-year course will have to be
performed to paint a full picture of the Coderclass. However, due to the
novelty of the Coderclass, there is no material and limited plans for the
later years. By the time of completion of this study, they will have just
started their third year and have used their experience and feedback thus
far to update the modules and plans for their first year as well. While the
main learning line of the first year has remained the same, some of the
analyzed modules have moved to the second year or have changed into an

82

optional module (such as the Raspberry PI-0 module).

This brings up the next limitation of the analysis. During this study, only
the obligated modules (at the start of the first year) have been used in
the analysis. There are optional modules available to the students as well.
They must have chosen and completed at least one of them in their first
year. These optional modules have been omitted from the analysis because
students will not have used most of them during their first year.

9.3 Future research

Future curricular research on the Coderclass could be performed when their
curriculum is fully formed for the full 6-year course. By doing this, a better
overview of content and comparison to other CS curricula can be given.
This thesis could then serve as the basis of an approach to determine the
intended and attained Coderclass curricula.

9.4 Recommendations to Coderclass

The Coderclass can use the results from this study as input to shape the
remaining years of their curriculum. From the conceptual analysis, it is
possible to determine which of the knowledge categories has a low focus
during the first year. This knowledge could be used as input for shaping
the curriculum for the next couple of years. In particular, the Coderclass
could create more content that focuses on society, usability and security
(and possibly engineering), as these knowledge categories are the main ones
in which the Coderclass scores lower than the general Dutch CS curriculum.
Furthermore, mathematics and intelligence are not particularly focused on
during the first year. However, other CS curricula do not focus on these
categories much either. On the other side of the spectrum, the Coderclass
scores exceptionally well in the categories of data, networking, modeling,
and above all, programming. Thus, the Coderclass does not particularly
need to focus on these categories any more than they already do.

On the subject of learning goals, the results of this study show that most of
the learning goal domains of the 2016 Dutch CS curriculum are present, but
that the Coderclass has a lower focus on the domains of architecture and
interaction, particularly on the subdomains of ethics, automatons, security,
and privacy. The Coderclass could use these results to create new learning
goals involving these subdomains to process in future modules. Furthermore,
learning goals that are more reflective in nature, such as learning/study
reflection and orientation to profession and study are not strongly present,
but this is to be expected from a first year’s curriculum.

83

Teaching computational thinking to students is an import topic in recent CS
curricula. From the results of this study, we can state that the Coderclass
is well on their way of doing this in their curriculum and should continue to
do so.

Finally, the attitude outcomes reported by Coderclass students tell that
students are generally very positive and happy with the Coderclass in its
current form. Some students were slightly more negative about the general
difficulty, but this is to be expected from any curriculum. The learner
reports filled in by the students did not contain many statements regarding
the relevance of the thing they learn, and could possibly be taken into
account for other modules. However, it is also possible that students did not
understand the instructions for filling in the learner reports. Furthermore,
several students seem to agree on the fact that 5 hours a week is not always
enough, which could be pointing out an overfilled year plan. Finally, several
students seem to agree on disliking the Raspberry PI module, as this is the
only module specifically named in the negative satisfaction statements. The
Coderclass could work on making this module more enjoyable.

84

Appendices

85

Appendix A

List of categories and their
concepts

Here every concept and term used in the analysis of occurrences is listed as
explained by section 4.1, grouped by each knowledge category. This list was
taken from Steenvoorden, 2015.

Algorithms: algorithm, algorithm representation, algorithm sharing,
ambiguity, breadth first search, complexity, component, computationally
unsolvable, concurrency, data processing, deadlock, decision, decomposition,
depth first search, finite state machine, heuristic algorithm, information
sharing, input, instruction, instruction sequence, instruction set, iteration,
live lock, merge sort, output, parallel processing, parallel stream, parallelisation,
pattern, performance, precision, problem solving, recursion, redundancy,
repetition, resource, search algorithm, selection, sequence, sort algorithm,
steps, task, tractability

Architecture: apis, architecture, assembly code, binary form, binary
switch, bit, byte, chip, circuit, communication layer, compiler, computer,
computer component, cpu, device, digital machine, digital value, electronic
device, embedded system, emulator, execute, execution model, file io, file
system, flip-flop, hand-held technology, hard disk, hardware, hardware component,
hardware problem, hardware sharing, instruction representation, interpreter,
logic circuit, logic gate, low level language, machine, memory, mobile device,
monitor, moore’s law, mouse, numeric value, operating system, overflow,
peripheral, personal computer, physical layer, processor, real time system,
register, sampling, scheduling, single event system, software, system, system
controlling, system design, thread, translation, virtual machine, von neumann
architecture

Data: array, audio format, big data, binary representation, character,

86

character representation, compression, data, data error, data representation,
data set, data storage, data type, data value, database management system,
digital data, document format, file format, floating point, fraction, fraction
representation, hexadecimal number, hexadecimal representation, image representation,
information, information persistence, information representation, information
system, integer, list (data structure), lossless compression, lossy compression,
mark-up language, number representation, persistence, query language, relational
database, relational schema, representation purpose, representation sharing,
retrieving information, sampling frequency, signed integer, sound representation,
storage, string, table, text representation, two dimensional array, unsigned
integer, word

Engineering: chart, clarity, collaboration, communication, correctness,
data analysis, development instrument, digital artifact, documentation, evaluation,
feedback, flowchart, functional design, implementation technique, instances,
object-oriented design, problem, problem exploration, problem statement,
productivity tool, project, project management, prototype, refactor, requirement,
scale, separation, software creation, software development (process), software
life cycle process, solution, specification, stakeholder, teamwork, technology
resource, technology tool, test case, tool, validation, verification, version
control system

Intelligence: artificial intelligence, computer vision, human intelligence,
intelligent behavior, language understanding, machine intelligence, robot
component, robotics

Mathematics: and, binary number, boolean, exclusive-or, graph, logic,
logical expression, not, or, quantization, set, statistical function, tree, truth
table

Modelling: model, simulation

Networking: authentication, bandwidth, browser, client-server model,
communication between machines, cookie, data communication, domain
name service, error correction (network), fault-tolerance (network), firewall,
http request, hyper link, internet, internet service, internet vs web, ip address,
latency, mac address, mail header, network, network address, network component,
network connection, network diagram, network functionality, network message,
network path, network protection, network structure, network traffic, on-
line resource, packet, packet switching, path (network), peer-to-peer, point
to point transmission, protocol, queue (network), receiver, routing, search
engine, search engine ranking, search query, server, server capability, shared
resources (network), spooler (network), transmitter, url, web, web browser,
web page, web page structure, web request, web site, web site address, web

87

site name

Programming: application, argument (of function), arithmetic operation,
assignment, behaviour (of code), boolean operation, bug, class, conditional,
conditional jump, constant, context (of application), control structure, data
structure, divide by zero, efficiency, error, expression, function, high-level
language, html, language, logical operation, looping (programming), method,
mobile computing application (programming), paradigm, parameter, procedure,
program, program creation, programming language, programming technique,
readability (code), recursive function, scope, semantic error, signature, statement,
string manipulation, syntactic error, usability (code), variable

Security: access rights, cryptography, encryption, password, protection,
secure storage, secure transaction, security, web safety and security

Society: appropriateness, bias, career, commercial software, comprehensiveness,
digital rights, ethical behaviour, experience, expression (communication),
free software, hacking, information right, interdisciplinary, international network
(society), law, legal behaviour, limitation of digital machines, open source
development, open source software, ownership (privacy), personal information,
privacy, productivity technology, proprietary software, public domain software,
relevance, software license, software piracy, technology

Usability: adaptability, human computer interaction, user, user dialogue

88

Appendix B

Entrepreneurship Module
Coderclass

Here, a representation of the entrepreneurship module is depicted as offered
as a choice module in the Coderclass. It is in dutch, as the Coderclass is a
dutch course. Only the overview of the module is given, as the content is
the property of the Coderclass.

B.1 Module Ondernemerschap-0

Deze module is bedoeld voor groepen van 2 tot 4 personen. De lesbrieven
kan je eventueel wel zelf doornemen.

In de module Ondernemerschap-0 maak je kennis met ondernemerschap
in de ICT. Door middel van een aantal interviews met (startup) bedrijven
ga je leren hoe je van een idee een geld verdienend bedrijf kunt maken. Je
gaat leren hoe je een bij een innovatief idee een bedrijfsplan kunt maken
en hoe je dit idee vervolgens kunt pitchen (een verkooppraatje geven) om
mensen te overtuigen dat jouw idee een briljant idee is.

Deze module bestaat uit 2 onderdelen:

1. Lesbrieven waarin je de begrippen, tips en tricks leert.

2. Miniproject waarin je zelf een innovatief idee gaat uitwerken met behulp
van een bedrijfsplan, je idee gaat pitchen en interviews gaat doet bij
bestaande (startup) bedrijven.

Lesbrieven
Onderstaande lesbrieven zijn bedoeld als introductie en achtergrondmateriaal
voor het miniproject. De opdrachten hierin hoef je dus niet in te leveren,
maar ze zijn leuk om met je groepje te bespreken of zelf over na te denken
en helpen je bij de uitvoering van het miniproject.

89

1. Lesbrief 1: Ondernemerschap
2. Lesbrief 2: Het bedrijfsplan

3. Lesbrief 3: Interviews

Miniproject - je eigen idee uitwerken
Miniproject: Het uitwerken van een innovatief idee tot een plan en pitch.

Links naar handige documentatie
http://www.mla.dreamstorm.nl/ - E-learning inleiding ondernemersschap
https://www.ikgastarten.nl/ondernemingsplan/ondernemingsplan-voorbeelden/de-
9-bouwstenen-van-het-business-model-canvas - Een uitgebreide uitleg over
het maken van een bedrijfsmodel.
https://www.bnr.nl/nieuws/ondernemen /10321413 /klokhuis-en-kvk-helpen-
kinderen-ondernemen - Ondernemen bij jeugd, inclusief leuke geluidsfragmenten
van leeftijdsgenoten die al ondernemen!

Wanneer verdien je de badge?
Als je het miniproject succesvol hebt uitgevoerd (waarbij je interviews met
bedrijven hebt gedaan, een mindmap van je bedrijfsplan hebt opgesteld en
je jouw idee succesvol hebt gepitched voor de klas) verdien je deze badge.

90

References

Barendsen, E., Grgurina, N., & Tolboom, J. (2016). A new
informatics curriculum for secondary education in the netherlands.
In International conference on informatics in schools: Situation,
evolution, and perspectives (pp. 105-117).

Barendsen, E., & Henze, I. (2015). Teacher knowledge and student attitudes
in context-based science education. NARST Annual International
Conference.

Barendsen, E., & Steenvoorden, T. (2016). Analyzing conceptual
content of international informatics curricula for secondary education.
In International conference on informatics in schools: Situation,
evolution, and perspectives (pp. 14-27).

Barendsen, E., & Tolboom, J. (2016). Advies ezamenprogramma informatica
havo/vwo. slo, nationaal expertisecentrum leerplanontwikkeling.
Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., Miller-Ricci,
M., & Rumble, M. (2012). Defining twenty-first century skills. In
Assessment and teaching of 21st century skills (pp. 17-66). Springer.

Council, N. R., et al. (1996). National science education standards. National
Academies Press.

De Groot, A. (1980). Ower leerervaringen en leerdoelen.[about learning
experiences and teaching goals] in handboek voor de onderwijspraktijk,
10 (november), b. 1-b. 18. Deventer, The Netherlands: Van Loghum
Slaterus.

Eijk, G. H. A. V. (1984). The writing of learning experiences as a learning
tool. In R. Langdon, K. Baynes, & P. Roberts (Eds.), Design education:
Proceedings of the design policy conference (Vol. 5, p. 42-45). London.

Grover, S., & Pea, R. (2013). Computational thinking in k-12 a review of
the state of the field. Educational Researcher, 42(1), 38-43.

Keller, J. M. (1984). The use of the arcs model of motivation in teacher
training. Aspects of educational technology, 17, 140-145.

Klop, T. (2008). Attitudes of secondary school students towards modern
biotechnology.

Schmidt, V. (2008). Vakdossier 2007 informatica. Enschede, SLO.

Selby, C., & Woollard, J. (2013). Computational thinking: the developing
definition.

91

Shulman, L. S. (1986). Those who understand: Knowledge growth in
teaching. Educational Researcher, 15(2), 4-14.

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new
reform. Harvard educational review, 57(1), 1-23.

Steenvoorden, T. (2015). Characterizing fundamental ideas in international
computer science curricula (Unpublished master’s thesis). Radboud
University Nijmegen, Faculty of Science.

Tolboom, J., Grgurina, N., et al. (2008). The first decade of informatics
in dutch high schools. Informatics in Education-An International
Journal(Vol 7_1), 55-74.

Tolboom, J., Kriiger, J., & Grgurina, N. (2014). Informatica in de bovenbouw
havo/vwo: Naar aantrekkelijk en actueel onderwijs in informatica. slo,
nationaal expertisecentrum leerplanontwikkeling.

Van den Akker, J. (2004). Curriculum perspectives: An introduction. In
Curriculum landscapes and trends (pp. 1-10). Springer.

Wing, J. M. (2006). Computational thinking. Communications of the ACM,
49(3), 33-35.

92

	Introduction
	Structure of this thesis

	Background
	The curricular spiderweb
	Content
	Aims & Objectives
	Computational thinking
	student attitudes

	Aim of the study
	Context of the study
	The Metis Montessori Lyceum & The Coderclass
	Dutch CS Education

	Research questions

	Methodology
	Conceptual content
	Conceptual analysis
	Comparing the Coderclass to other CS curricula

	Learning objectives
	Learning objective analysis
	Comparing the Coderclass learning objectives to the 2016 Dutch CS learning objectives
	Computational Thinking in the Coderclass

	Student attitude outcomes

	Results
	Conceptual content
	Conceptual analysis
	Comparing the Coderclass to other CS curricula

	Learning objectives
	Learning objective analysis
	Comparing the Coderclass learning objectives to the 2016 Dutch CS learning objectives
	Computational thinking in the Coderclass

	Student attitude outcomes

	Conclusion
	Enriching the Coderclass
	Module preparation according to PCK model
	What and why
	Possibilities and limitations
	Approach of education
	Assessment

	Enriching the Coderclass
	Module preparation according to PCK model
	What and why
	Possibilities and limitations
	Approach of education
	Assessment

	Discussion
	Findings
	Limitations of the study
	Future research
	Recommendations to Coderclass

	Appendices
	List of categories and their concepts
	Entrepreneurship Module Coderclass
	Module Ondernemerschap-0

	References

