

Metastases Detection in Lymph Nodes
using Transfer Learning

Master’s Thesis Computing Science – Data Science

MICHEL KOK

August 2019

SUPERVISORS

RADBOUD UNIVERSITY, ICIS

Prof. dr. ir. Arjen de Vries

Chris Kamphuis, Msc

RADBOUD UNIVERSITY MEDICAL CENTER, DIAG

Dr. Geert Litjens,

Pétér Bándi, Msc

SECOND READER

Dr. Francesco Ciompi

3 | P a g e

TABLE OF CONTENTS

1 Introduction .. 5

1.1 Problem statement ... 5

1.1.1 Architecture .. 5

1.1.2 Training set size ... 6

1.1.3 Learning rate ... 6

1.1.4 Elastic Weight Consolidation .. 7

1.2 Background ... 7

1.2.1 Deep convolution neural networks ... 7

1.2.2 Transfer learning ... 11

1.2.3 Related work ... 14

2 Data ... 15

2.1 Dataset 1: Breast ... 16

2.2 Dataset 2: Colon .. 17

2.3 Dataset 3: Head-Neck ... 17

2.4 Preprocessing .. 18

2.4.1 Converting raw data .. 18

2.4.2 Generating masks.. 18

2.5 Data usage ... 19

2.6 Data augmentation ... 20

2.6.1 Test time augmentation .. 21

3 Experiments .. 22

3.1 Architecture .. 22

3.1.1 Learning procedure ... 22

3.2 Transfer learning ... 24

3.2.1 Developing bounds ... 24

3.2.2 Regular transfer learning procedure ... 24

3.2.3 Parameter 1: Training set size ... 24

3.2.4 Parameter 2: Learning rate ... 25

3.2.5 Parameter 3: Elastic Weight Consolidation .. 25

4 Results ... 27

4.1 Architecture .. 27

4 | P a g e

4.2 Transfer learning ... 27

4.2.1 Colon ... 28

4.2.2 Head-neck ... 29

5 Discussion .. 30

5.1 Architecture .. 30

5.2 Training set size ... 31

5.2.1 Dataset quality .. 31

5.2.2 Dataset differences ... 34

5.3 Learning rate ... 34

5.4 Elastic Weight Consolidation .. 35

5.5 Conclusion ... 35

Bibliography .. 37

Supplements ... 40

A. Colon transfer learning ... 40

5 | P a g e

1 INTRODUCTION

1.1 PROBLEM STATEMENT
Cancer is the leading cause of death worldwide [1]. When someone is diagnosed with cancer, chances of

survival plummet once the cancer has metastasized, as metastasized cancer is responsible for over 90%

of cancer-related deaths. Different types of cancer spread via blood or via the lymphatic system from its

tumorous origin to other parts of the body.

Challenges like CAMELYON16 [2] indicate the potential of machine learning techniques for pathology. The

goal of this challenge was to detect metastasized breast cancer in the first lymph node where the lymph

drains to from the tumor region, the so-called sentinel lymph node. In clinical practice, once somebody is

diagnosed with breast cancer the sentinel lymph node is often used to investigate whether the tumor has

metastasized, as this is most likely to contain tumor cells [3]. The sentinel lymph node is excised and

analyzed by a pathologist. Given that this examination is tedious and time-consuming, the CAMELYON16

challenge was hosted [4, p. 2].

Submissions to the CAMELYON16 challenge achieve similar effectiveness as “an expert pathologist

interpreting slides without time constraints” [2, p. 2208]. Follow-up studies have outperformed the

winners’ solution [5] and have even led to a digital assistant called LYNA designed to be used in clinical

practice [6].

Most submissions to the CAMELYON16 challenge exploit deep convolutional neural networks (25 of 32) –

including the submission yielding the highest effectiveness [2]. These networks are trained to perform

well on a specific task. However, these networks can sometimes be finetuned to related tasks [7]. The

learned information is transferred to a new task, hence the umbrella term of transfer learning. For

example, many networks are first trained to recognize images by training on the ImageNet dataset[8], and

then trained on a specific image analysis task at hand.

In general, in this master’s thesis project, it is asked to what extent transfer learning can be applied when

creating a network for the CAMELYON16 challenge and transferring the information to different cancer

metastases. Specifically, four aspects corresponding with the four subquestions below are singled out

when trying to answer this question.

1.1.1 Architecture

Regarding the submissions to the CAMELYON16 challenge, it was concluded that the chosen architecture

only plays a marginal role, and that “auxiliary strategies to improve system generalization and

performance seemed more important” [9, pp. 2205–2207]. These strategies for example deal with stain

variations or address class imbalance [9]. For transfer learning the network should be able to grasp the

data structures in the CAMELYON16 dataset well, before it can even be used to do transfer learning.

Smaller architectures are easier and faster trained with less data. On the other hand, there is less capacity

to store the structure of the data. So, ideally, there is a minimal architecture that fits the data well enough.

Liu et al. used Inception (V3) [10] in their solution. This architecture has been used to achieve the current

state of the art results on the CAMELYON16 dataset [5], [6]. They experimented with several ‘versions’ of

Inception V3. A slimmed-down architecture, for example, uses fewer neurons per layer and is therefore

less prone to overfitting and computationally less heavy. The number of trainable parameters is reduced

6 | P a g e

from roughly 200 million to 300,000. In Keras [11] or Tensorflow [12] this can be achieved by setting the

following two parameters: depth_multiplier=0.1 and min_depth=16. Performance only slightly decreased

when using this slim architecture.

However, this still results in a many-layered architecture exploiting ingenious structures. To see whether

a simple, straightforward convolutional neural network will do, the first subquestion is if the architecture

can be made smaller and simpler while maintaining performance when auxiliary strategies remain the

same.

1.1.2 Training set size

Transfer learning is often applied in image analysis in a straightforward manner. First, a model is trained

on some source task. Then, a network is created to train for the target task and, importantly, this network

is initialized with values learned during the source task. Transfer learning comes in handy when there is

limited training data for the second task or when the data is expensive. The second model already

incorporates much information from the source task before training is started, and thus its weights only

have to be finetuned. Machine learning problems in the domain of histopathology often deal with small

datasets, and corresponding annotations are expensive. This domain is therefore suitable for transfer

learning.

Usually, transfer learning in the histopathological domain only occurs where the first task is to train on

the ImageNet challenge [8]. The task is to learn to classify an image in one of 1000 classes, e.g. dog or car.

However, the ImageNet dataset does not contain histopathological images. Datasets of different types of

cancer in lymph nodes are more closely related than ImageNet as the lymph nodes are the main part of

both datasets and only the specific tumor regions are specific per dataset. Datasets containing

histopathological images may therefore be preferable to NatureNet as a source dataset.

Depending on the domain and how related the source and target tasks are, a different amount of training

data is required to adequately finetune the network to the new task. An important aspect when

transferring weights is how big the size of the training set should be. In general the smaller the training

set used to finetune the network the better, as transfer learning can then be applied to small, related

datasets. Therefore, the second subquestion is to what extent training set size matters when the

straightforward approach to transfer learning is applied between different histopathological systems.

1.1.3 Learning rate

The following two aspects focus on the fact that convolutional neural networks are connectionist systems.

This entails that there is no separate memory except for the connections in the model. When training a

network, the weights on the connections are optimized towards the task at hand. However, when

finetuning towards a new task, the connections are altered and thus performance on the old task

decreases. This effect is more severe the more the network is allowed to change its parameter

configuration during transfer learning. This phenomenon is referred to as catastrophic forgetting.

This is not necessarily a problem. Most people that use ImageNet as their source model do not care about

their performance on the ImageNet challenge, but only about performance on the target task. High target

performance can mostly be achieved faster and cheaper by using the learned structures in the data from

the source model. However, sometimes performance on the initial task needs to be contained. For

example, there are certain benefits to having one single model that can detect different types of cancer

7 | P a g e

in the lymphatic system. The model does not miss rare cancer types and can do with much less training

data compared to using many models where every model detects only one specific cancer type.

One of the ways to overcome this is to use a very small learning rate. This prevents the network from

altering the weights with high values, as it can only marginally tune them in the right direction. On the

other hand, the network may not be able to learn the new dataset as well as would have been the case

with a high learning rate. This leads to the third question: what is the effect of the learning rate when

doing transfer learning?

1.1.4 Elastic Weight Consolidation

Another, more sophisticated method is Elastic Weight Consolidation [13]. It is one of the recent

techniques that has successfully been applied in several domains. This does not require any alternative

learning rate or architecture but uses a different loss function. This loss function updates parameters in

such a way that the new solution is as close as possible to the solution space of the source task. Using this

alternative loss function, EWC aims to achieve good performance on both the source and target task.

Therefore, the fourth question is to what extent we can prevent forgetting using EWC.

For the remainder of this chapter, the background of this project is provided. In the second chapter three

datasets are described, each containing lymph nodes of different regions. To answer the research

questions, experiments are done which are described in chapter 3 and of which the results are provided

in the fourth chapter. Finally, the last chapter answers the research questions using the obtained results.

1.2 BACKGROUND
The background of this project consists of three parts. As the majority of solutions to the CAMELYON16

challenge used deep convolutional neural networks, these are first described. Then, the exact definition

of transfer learning is given, including the description of EWC. Third, related work is discussed in general.

1.2.1 Deep convolution neural networks

As with all supervised machine learning techniques the aim is to learn a model or function 𝑓(𝑥, 𝜃) = 𝑦

that is good at predicting the right label 𝑦 for unseen data samples 𝑥. Often these functions have the

additional input 𝜃 which is typically used to denote parameters or weights of the function. Fitting such a

function means finding the optimal weights 𝜃 for 𝑓. This function should resemble the data distribution

in general. For example, when faced with a classification problem, samples from class A should be

separated from samples of class B by the hyperplane described by 𝑓 . Underfitting 𝑓 would mean a

function that does not adequately distinguish between elements from 𝐴 and 𝐵. Overfitting 𝑓 means that

all training samples are perfectly distinguished but that the model is bad at distinguishing unseen test

data. This means that 𝑓 has learned the training set ‘by heart’ instead of the general distribution of the

data.

1.2.1.1 Training procedure

Giving input (𝑥, 𝜃) to the model yields a prediction label ŷ. The difference between this prediction and

the ground truth is computed by a loss function. Given the loss function 𝐿𝑖 for a training sample, a cost

function 𝐽 can be defined as well:

8 | P a g e

𝐽 =
1

𝑁
∑ 𝐿𝑖

𝑁

𝑖=1

(1)

where there are 𝑁 samples in the training set. During training the aim is to find the global minimum of

this cost function. In other words: to obtain predictions of the whole dataset that are as close to the

ground truth as possible.

To find this global minimum, optimizers or optimization functions are used. Almost all currently used

optimizers are variants of gradient descent [14]. A training procedure is typically started with random

weights, resulting in a random position somewhere on the cost function. The best direction along which

the weights should be changed towards, is then given by the gradient ∇ of the cost function. Especially for

layered models that have many parameters, computing gradients can be computationally heavy. Weights

are then altered as follows:

𝜃 = 𝜃 − 𝜂∇𝜃 𝐽(𝜃) (2)

where 𝜂 is the learning rate parameter. This influences by how much the gradient should update the

current weights. When the loss function is differentiable the gradient computation is efficient and feasible

with the backpropagation algorithm that exploits the chain rule [15].

Often the dataset is too big to fit into memory at once, so the data is loaded into memory sequentially via

mini-batches. Gradient descent can then be defined for 𝑛 training examples as follows:

𝜃 = 𝜃 − 𝜂∇𝜃 𝐽(𝜃; 𝑥(𝑖:𝑖+𝑛); 𝑦(𝑖:𝑖+𝑛)) (3)

However, (3) is vulnerable to get stuck in a local minimum, especially when a low learning rate is used.

Simply increasing the learning rate is often not an option, as this causes the algorithm to make bigger

steps. These big steps prevent from gradually descending down the slope and approaching the minimum.

This makes it harder to find the exact global minimum as only big steps are taken along the cost function.

Another drawback is that every weight is updated according to the same learning rate.

One of the most used variants of the intuitive gradient descent function is Adaptive Moment Estimation

(Adam) [16]. Basically, this method computes adaptive learning rates for each parameter in 𝜃 based on

previously seen gradients. This generally results in faster convergence and works well in practice [14].

In summary the procedure consists of three steps. First a mini-batch is sampled from the training dataset.

Second, a so-called forward pass in which predictions are computed on the mini-batch. The cost as a

combination of losses is then computed by comparing the predictions to the ground truth. Last, the

gradients of the cost function are computed by the backpropagation algorithm which are used to update

the parameters of the model.

1.2.1.2 Convolutional neural network models

Solutions to the CAMELYON16 challenge use a procedure like this to distinguish tumor from non-tumor

cells. The contemporary state-of-the-art models obtained by this procedure comprise millions of trainable

parameters and are called convolutional neural networks.

9 | P a g e

1.2.1.2.1 Artificial neural network

Artificial neural networks consist of

a number of layers that each

contain artificial neurons. An

artificial neuron receives several

input values with associated

weights and a bias. As datasets are

possibly non-linear, the neuron

applies a non-linear function to this

weighted input.

Formally an artificial neuron can be described as

𝑦 = 𝑓 (∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑖

) (4)

where 𝑤 ∈ 𝜃 and 𝑏 is a bias which can be used to shift the activation function 𝑓.

The layers of neurons are connected by

using the output of layer 𝑛 as input for

neurons in layer 𝑛 + 1 . The first layer

usually receives the input from an

external data source and a random set of

weights, while the last layer outputs the

final prediction per class. The term ‘deep

learning’ or ‘deep networks’ often refers

to networks using multiple (or many)

hidden layers in the model, see Figure 1.2.

The last layer contains the number of

output classes.

1.2.1.2.2 Convolutional neural network

A special type of neural networks specifically designed for image analysis are convolutional neural

networks (CNN). The input of a convolutional neural network is a numerical matrix representing an image

and many layers in a convolutional neural network are 2D-convolutions.

Figure 1.1: Analogy between real and artificial neurons by Lee et al. [10]

Figure 1.2: Fully connected layered neural network by Lee et al. [10]

10 | P a g e

A convolutional operation requires an

input matrix and a kernel (often also

referred to as filter) and adding the

element-wise multiplication as illustrated

in Figure 1.3 [17]. The values in the kernel

correspond to the weights in an artificial

neural network. The aim of the training

procedure is therefore to find the best

values of the filters. The result of a

convolutional operation is a feature map.

This feature map exists of values that have

information of multiple pixels which is one

of the big advantages when treating

images. The layers are not fully connected

as not all input values are necessary to compute one output value. The values in the feature map thus

contain information of a region of the original input matrix. Due to the convolutional operation the feature

map size is always reduced with respect to the input matrix. Typically when many convolutions have to

be done, the input matrix is padded before the convolution to compensate for these decreasing sizes.

Convolutional layers are often followed by a pooling layer. This layer connects e.g. a region of 2x2 in the

feature map and outputs the maximum or average value of this region. The network will become less

sensitive to small shifts or distortions in the data and the size of the feature maps is effectively reduced

[18]. A contemporary CNN builds up an increasingly complex representation of the data over the layers

and contains millions of parameters. With such numbers the network can easily overfit on the training

data. Therefore, a third important type of layer worth mentioning is a dropout layer, that randomly drops

neurons [19]. This forces the network to not rely on single neurons and keep generalizing the learned

patterns.

1.2.1.2.3 Contemporary example: Inception V3

Although successors have been are already

around for multiple years already [20], Inception

V3 is still widely used and achieves many state-

of-the-art results in imaging challenges – like

CAMELYON16. Inception V4 adds more Inception

modules to the architecture, and the

architecture as a whole is a little bit simplified

[20]. Liu et al. show that Inception V3 can already

adequately fit the dataset – even with less

parameters than the standard Inception V3

network prescribes [5]. Both Inception-ResNet

V1 and V2 typically require less training data to converge, but their effectiveness is generally a little lower

than Inception V3. So, the successors seem to target tasks that need deeper models or have smaller

datasets. So, given Inception V3 produces the current state-of-the-art result, and that there is enough

data to train a model that is less sophisticated than the standard Inception V3, the focus here lies on

Inception V3.

Figure 1.3: The convolution operation by Yamashita et al. [9]

Figure 1.4: Inception module [13].

11 | P a g e

The first Inception network paper describes the so-called Inception module which is depicted in Figure 1.4

[21]. This module makes the network wider instead of only deeper as there are a number of different

convolutional operations at the same level which are then concatenated and given as input to the next

layer. This means that the network is able to learn which size of convolutions contributes most without

the network becoming extremely deep.

Deep networks can suffer from a vanishing gradient problem [22]. As the output of most activation

functions is between 0 and 1, and the gradients are computed via the chain rule, the gradients in the first

layers become exponentially smaller with a high number of layers. As a result, these layers – or eventually

the whole network – could stop learning. One-by-one convolutions reduce input channel size and are

computationally cheaper than doing 5x5 convolutions. Successors of Inception V1 implemented several

variants of this module that are mostly computationally cheaper. E.g. replacing a 5x5 convolution with

two 3x3 convolutions reduces computation already and then doing 3x3 convolutions sequentially as a 3x1

and 1x3 convolution reduces computation time again. Inception architectures stack 9 or 10 of these

modules onto each other which makes the network still deep. So, the new way of computing the

convolutions in the Inception module together with some technical solutions to minimize effects of the

vanishing gradient and speed up computation describe the changes from Inception V1 to Inception V3

[10].

1.2.2 Transfer learning

A contemporary CNN often has many layers and thus many trainable weights. During training the weights

of a CNN are optimized towards the specific task at hand. In recent years, many techniques have been

proposed to transfer these weights from some source domain to a different target domain [7].

1.2.2.1 Formal definition

Weiss et al. emphasize the importance of the relation between a source and target domain when they

describe transfer learning as “a need to create a high-performance learner for a target domain trained

from a related source domain” [7, p. 1] and “for transfer learning to be feasible, the source and the target

domains must be related in some way.” [7, p. 19] In fact, humans tend to learn in a similar fashion. For

example, a skilled guitarist will learn to play the piano much faster than a non-musician, as the guitarist

can transfer his musical knowledge from playing guitar to playing piano. In this case, the transfer is made

possible as there is the common higher domain of music that links both subdomains. In the same fashion,

a pathologist specialized in lymph nodes with breast cancer, can with relatively little effort learn to detect

colon cancer metastases in lymph nodes as well. So, although the specific types of cancer are different,

there is the shared upper domain of the lymphatic system.

Transfer learning can formally be defined as follows: a domain 𝐷 consists of a feature space 𝜒 (i.e. the

dataset) and marginal probability distribution 𝑃(𝑋) where 𝑋 = {𝑥1, … , 𝑥𝑛} ∈ 𝜒 . A learning task 𝑇 can

then be defined by the label space 𝑦 and a predictive function 𝑓(̇ ∙). Transfer learning happens between

a given 𝐷𝑠𝑜𝑢𝑟𝑐𝑒 and corresponding 𝑇𝑠𝑜𝑢𝑟𝑐𝑒 on the one hand and 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 on the other. The

goal is to optimize 𝑓𝑡𝑎𝑟𝑔𝑒𝑡(∙) where 𝐷𝑠𝑜𝑢𝑟𝑐𝑒 ≠ 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 or 𝑇𝑠𝑜𝑢𝑟𝑐𝑒 ≠ 𝑇𝑡𝑎𝑟𝑔𝑒𝑡. In the case of detecting

metastasized cancer in different lymph nodes, the dataset is different but the task remains the same.

Because 𝐷𝑠𝑜𝑢𝑟𝑐𝑒 ≠ 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 it follows that 𝑋𝑠𝑜𝑢𝑟𝑐𝑒 ≠ 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 and this is what Weiss et al. call

heterogeneous transfer learning [7].

12 | P a g e

The predictive function 𝑓𝑠𝑜𝑢𝑟𝑐𝑒(∙) contains the iteratively updated weights after training on the source

domain. Common practice when doing transfer learning with CNNs is to use the network that is trained

on the source dataset and continue to train on the target dataset with additional iterations of updating

the network weights. So, the weights parameter of 𝑓𝑡𝑎𝑟𝑔𝑒𝑡(𝑋𝑡𝑎𝑟𝑔𝑒𝑡 , 𝜃𝑡𝑎𝑟𝑔𝑒𝑡) is not initialized at random –

as is usually done – but initialized with 𝜃𝑠𝑜𝑢𝑟𝑐𝑒 . When training, a lower learning rate can be used as the

network already performs well on a related dataset, and thus only needs some finetuning. As basic

structures in the data are often learned in the lower layers, the lowest layers are often ‘frozen’. This means

that the weights in those layers will not be updated at all when training on the target dataset.

1.2.2.2 Catastrophic forgetting

However, there are still several (and often many) weights that are changed during transfer learning. So,

the weights for 𝜃𝑠𝑜𝑢𝑟𝑐𝑒 are finetuned to perform also on 𝑇𝑡𝑎𝑟𝑔𝑒𝑡. And as 𝜃𝑠𝑜𝑢𝑟𝑐𝑒 ≠ 𝜃𝑡𝑎𝑟𝑔𝑒𝑡, the network

will probably perform worse on the source dataset after transfer learning. In other words, there is no

memory in CNNs except for the learned connections. Function 𝑓𝑠𝑜𝑢𝑟𝑐𝑒(∙) is the predictive function as well

as the memory at once. During transfer learning the connections are altered as 𝑓𝑠𝑜𝑢𝑟𝑐𝑒(∙) transitions to

𝑓𝑡𝑎𝑟𝑔𝑒𝑡(∙), thus affecting the previously learned information. This characteristic phenomenon of CNNs (or

all connectionist systems) is called catastrophic forgetting.

If aiming to learn a specific task with limited data, transfer learning is still often applied. E.g. Inception V3

is often first trained on the ImageNet dataset, where it learns basic image structures and is then finetuned

to the specific task at hand. The lost performance on the ImageNet dataset is not important in that case.

However, when developing a model that needs to do well on different domains, catastrophic forgetting

needs to be dealt with. In clinical practice one system detecting cancer in lymph nodes can be preferred

over many models each responsible for one type of cancer. It is often not feasible to hire pathologists

specialized in one cancer type only. A hospital may prefer to deal with one system only which can be

applied in all tumor types in the lymphatic system. In this way new, unknown or rare types of tumor will

not be ignored, whereas with specialized models, chances are that there is no system for it.

1.2.2.3 Elastic Weight Consolidation

As contemporary CNNs often have

millions of parameters, there are multiple

unique sets of parameter configurations

that perform well on a task. All possible

sets of parameters – the solution space –

that perform well enough are denoted by

𝜃∗ and depicted as ellipses in Figure 1.5.

To prevent from catastrophic forgetting, a

configuration should be found that has

good performance on both tasks. So the

aim is to find a solution 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 that is

‘close’ to the previously found solution

𝜃𝑠𝑜𝑢𝑟𝑐𝑒 . Specifically, ‘close’ means that

𝜃𝑡𝑎𝑟𝑔𝑒𝑡 ∈ 𝜃𝑠𝑜𝑢𝑟𝑐𝑒
∗ . In Figure 1.5 the goal is to end up where both ellipses overlap and there is low error for

both tasks.

Figure 1.5: Elastic Weight Consolidation by Kirkpatrick et al. [5, p.3522].

13 | P a g e

The naïve way of transfer learning is depicted by the blue line. The model is adapted such that a low error

on 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 is achieved without any constraints. It is successful in learning the new task, but by changing

its weights, its parameters have changed weights in such a way that performance on 𝑇𝑠𝑜𝑢𝑟𝑐𝑒 is lost.

To constrain the parameters to stay close to 𝜃𝑠𝑜𝑢𝑟𝑐𝑒 , an option that is often explored is the use of some

quadratic penalty like the 𝐿2 regularization. It penalizes weights that are farther away from the original

solution in a quadratic manner. Only solutions that lie relatively close around 𝜃𝑠𝑜𝑢𝑟𝑐𝑒 are accessible. In

Figure 1.5 the possible solutions that can be obtained by transfer learning are constrained to a circle with

the radius depicted by the green line. However, this green line demonstrates why this is not a great

solution. The weights are being adjusted towards the solution space of the target task, but it is not able

to reach good performance on 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 due to the constraint. Moreover, by changing the weights, it has

moved away from the low error space of 𝑇𝑠𝑜𝑢𝑟𝑐𝑒 and thus has also forgotten the previous task.

Kirkpatrick et al. [13] observe that using a quadratic penalty assumes that all weights are equally

important in obtaining good performance on a task. In terms of Figure 1.5 it can be described as the

assumption that the solution space is a circle. However, Kirkpatrick et al. argue that some weights are

more important than others in solving a problem. This explains why, in Figure 1.5, the shape of the solution

spaces is like an ellipse and not a circle.

Therefore, their aim is to find a penalty that is greater for weights that affect performance most. The

constraint when doing transfer learning should not be a circle but an ellipse as well. Ideally, the shape of

the constraint is equal to the solution space of the source task.

Another way to understand the idea is to image the circle that describes the possible target solution space

with 𝐿2 regularization, but then stretched like some elastic fabric towards parameters that affect

performance least. This explains why this method is names Elastic Weight Consolidation (EWC).

It is thus essential to find the importance per parameter. Kirkpatrick et al. use a probabilistic perspective

towards the training procedure to compute this importance. Given the available data 𝐷 the training

problem can be defined with Bayes’ rule as follows:

𝑝(𝜃|𝐷) =
𝑝(𝐷|𝜃)𝑝(𝜃)

𝑝(𝐷)
(𝐵𝑎𝑦𝑒𝑠′ 𝑇ℎ𝑒𝑜𝑟𝑒𝑚)

log 𝑝 (𝜃|𝐷) = log 𝑝(𝐷|𝜃) + log 𝑝(𝜃) − log 𝑝 (𝐷) (5)

where log 𝑝 (𝐷|𝜃) is the negative loss for the problem. To apply this function to transfer learning, the

dataset is split per task:

log 𝑝 (𝜃|𝐷) = log 𝑝(𝐷𝑡𝑎𝑟𝑔𝑒𝑡|𝜃) + log 𝑝(𝜃|𝐷𝑠𝑜𝑢𝑟𝑐𝑒) − log 𝑝 (𝐷𝑡𝑎𝑟𝑔𝑒𝑡) (6)

Note that by defining the posterior as 𝑇𝑠𝑜𝑢𝑟𝑐𝑒 this formula can be applied for many sequential tasks. Also,

all information of the source task is captured in the posterior log 𝑝(𝜃|𝐷𝑠𝑜𝑢𝑟𝑐𝑒) obtained by (5) . It

describes exactly the possible solution space. There is no (catastrophic) forgetting when the problem is

defined in this Bayesian manner. Moreover, the posterior “must contain information about which

parameters were important to task A and is therefore key to implementing EWC.” [13, p. 3522]

14 | P a g e

Unfortunately, the true posterior is computationally intractable as this involves high-dimensional

integrals. However, there are ways to approximate the posterior. Kirkpatrick et al. use a Gaussian with a

𝜇 given by the parameters 𝜃𝑠𝑜𝑢𝑟𝑐𝑒
∗ . To compute the variance, 𝑛 Fisher matrices should be computed. A

Fisher matrix calculates the covariance matrix of 𝜃𝑠𝑜𝑢𝑟𝑐𝑒 for a sample input. One of the advantages of this

approximation is that it “can be computed from first-order derivates alone and is thus easy to calculate

even for large models” [13, p. 3522]. Once these matrices are computed for 𝑥𝑖 ∈ {x0 … x𝑛 ∈ 𝐷𝑠𝑜𝑢𝑟𝑐𝑒} and

averaged, the diagonal can be used as the diagonal precision for the Gaussian distribution that

approximates the posterior. So, the Fisher matrix is used to approximate the importance of every

parameter.

With this Gaussian approximation, the loss 𝐿 when using EWC is defined as

𝐿(𝜃) = 𝐿𝑡𝑎𝑟𝑔𝑒𝑡(𝜃) + ∑
𝜆

2
 𝐹𝑖(𝜃𝑖 − 𝜃𝑠𝑜𝑢𝑟𝑐𝑒,𝑖

∗

𝑖

)2 (7)

where 𝑖 labels every parameter and 𝜆 indicates the importance of 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 compared to 𝑇𝑠𝑜𝑢𝑟𝑐𝑒 . The

regularization is thus implemented as a quadratic penalty like 𝐿2, but including now the Fisher matrix that

approximates the importance of every parameter – as if the 𝐿2 constraint is pulled like elastic fabric. This

allows for less important weights to be altered more than the more important parameters. The possible

solution space thus obtained is an ellipse approximating the ellipse that depicts the low error space for

𝑇𝑠𝑜𝑢𝑟𝑐𝑒 in Figure 1.5.

1.2.3 Related work

The CAMELYON16 challenge was followed by the CAMELYON17 challenge and although these challenges

are closely related, the tasks are slightly different. Where CAMELYON16 focusses on slide level analysis,

attention shifted to patient level analysis in the CAMELYON17 challenge and much more data was

included [4], [9]. At the start of this project, the results of this challenge were not officially published. Also,

much more data would have to be processed. As CAMELYON16 data is already able to achieve very high

performance on itself, and the goal of this research is not to improve upon the existing state-of-the-art,

this data is not included. However, one could expect to improve upon the findings by using the extra data.

Transfer learning has obtained quite some attention over the years. As commonly done with the Inception

architecture, in histopathological image analysis transfer learning is sometimes applied by pretraining on

ImageNet [8]. Both tasks are then related by the general upper domain of ‘image’, but the shared image

structures are apparently good enough to achieve state-of-the-art performance [23]. Komura and

Ishikawa state that “no networks learned from tasks using other pathological images are available” [24,

p. 38] and they still appear to be unavailable as of now.

In recent years several methods have been proposed to prevent from catastrophic forgetting.

Experiments regarding catastrophic forgetting do not seem to be used in the domain of histopathology,

but are usually conducted in well-known imaging tasks like the dataset [13], [25]. Although on some tasks

it is outperformed by other methods like Incremental Moment Matching [26], EWC has generally been

effectively used in different imaging areas with continual learning.

15 | P a g e

2 DATA

When diagnosed with cancer, often a lymph node is excised and placed upon a glass slide for analysis by

a pathologist [2]. These glass slides containing tissue can also be digitized via a high-speed whole slide

scanner. These scanners are able to scan at a very high resolution (e.g. 240 nm per pixel). One digitized

glass slide amounts to an image with “a size on the order of 10 gigapixels.” [4, p. 2] The technique to

acquire a digitized histopathology slide is called whole slide imaging and the obtained results are called

whole slide images (WSIs).

All glass slides are stained with hematoxylin and eosin (H&E). Hematoxylin colors the cell nuclei and eosin

mainly stains the extracellular matrix and cytoplasm in a slightly lighter shade [27]. It is a basic stain and

used in daily practice as it is cheap and reliable. As can be seen from the stained slides in Figure 2.1 this

staining results in a pink-purple colored slide. The slight variations in color and size are caused by different

lab circumstances, scanning equipment, staining protocols or tissue types.

Figure 2.1: Low-resolution examples of different Whole Slide Images.

Three datasets containing lymph nodes of different lymphatic regions are used. After providing details of

these datasets, the general preprocessing steps taken to process WSIs are described.

16 | P a g e

2.1 DATASET 1: BREAST
The first dataset contains 399 sentinel lymph nodes (SLNs) in the breast, made available by the Radboud

University Medical Center (UMC) and the Utrecht University Medical Center. This dataset was available

for the CAMELYON16 and part of the CAMELYON17 challenges [4]. All CAMELYON16 slides are used for

this project, including a test set of 129 slides that was published only after the challenge had ended.

There are 159 slides with and 240 without metastasized breast cancer. Metastases is clinically divided in

three categories based on the size of the largest available metastasis [4, p. 2]. The details of the

metastases division for this dataset are provided by the CAMELYON challenge and are shown in Table 2.1.

A visual example of the different categories is shown in Figure 2.2.

Isolated tumor cells (ITCs) are ignored in the CAMELYON16 challenge as “the clinical value of having only

isolated tumor cells in an SLN is disputed” [2, p. 2200]. Therefore, there are no slides in the CAMELYON16

dataset that only contain ITCs.

Table 2.1: Division of classes in CAMELYON16 data.

CLASS SUBCLASS DESCRIPTION COUNT PER
SUBCLASS

COUNTS
PER CLASS

METASTASIS 159
 Macro-

metastasis
Larger than 2 mm 82

 Micro-metastasis Larger than 0.2 mm and/or
containing more than 200
cells, but not larger than 2
mm

77

 ITCs Single cells or clusters
containing less than 200 cells

0

NO
METASTASIS

 240

TOTAL 399

Figure 2.2: Different sizes of breast cancer metastases by Litjens et al [6, p.4].

After the CAMELYON16 challenge, a few changes have been made to the dataset. Originally, one slide was

duplicated and has therefore been removed. Another slide was wrongly indicated to contain no metastasis

and an annotation was added to describe the tumor region. Furthermore, 15 slides are not exhaustively

17 | P a g e

annotated. Exhaustive annotations are still not available for all slides. In this project the improved dataset

– but still including non-exhaustively annotated slides – is used. This is the same dataset used by Liu et al.

in their state-of-the-art solution [5].

2.2 DATASET 2: COLON
The other two datasets used in this project are not publicly available. They are however accessible within

the Radboud UMC. The second dataset is provided for by the Rijnstate hospital and contains lymph nodes

extracted around the colon. The dataset consists of 138 contain metastasized colon cancer and 102 slides

not containing any metastasis, making a total of 240 WSIs.

Table 2.2: Division of classes for colon data.

A difficulty with this dataset is the variation in annotations.

Some annotations were very accurate and detailed, while

others roughly marked the area containing metastases, see

Figure 2.3. In the other datasets used, the annotations are

always very detailed.

Figure 2.3: Detailed annotations in the left slide, while on the right annotations coincide and include background.

2.3 DATASET 3: HEAD-NECK
Table 2.3: Division of classes for head and neck data.

A small dataset containing lymph nodes

extracted from the junction of the head

and neck, is also made available by the

Amsterdam University Medical Center

(location: VUmc). This dataset has been

annotated by medicine students. Some

of these annotations have been

checked by a pathology resident at the

Radboud UMC. The details can be

found in Table 2.3.

CLASS COUNT PER CLASS

METASTASIS 138

NO METASTASIS 102

TOTAL 240

CLASS SUBCLASS COUNT PER
SUBCLASS

COUNT
PER
CLASS

METASTASIS 23
 Annotations

checked by
resident.

5

NO
METASTASIS

 8

TOTAL 47

18 | P a g e

2.4 PREPROCESSING

2.4.1 Converting raw data

All scanned slides were initially available as MRXS files – the

proprietary format of the used 3DHistech scanner. Different

scanners store WSIs in different ways. In order to prevent

from altering algorithms to handle different file formats, the

WSIs are converted to the open source Tagged Image File

Format (TIFF) using the ASAP package [28]. A TIFF image file

is stored as a series of small JPEG compressed image tiles

(512x512 pixels) on different magnification levels. At the

highest magnification used in these datasets at 20X which

corresponds with ~0.24 micrometer pixel spacing.

The annotations are stored as polygons. These polygons consist of a list of coordinates describing the

tumor border and are stored as a list in eXtensible Markup Language (XML) [4]. The ASAP package provides

tools to parse and display the annotations and to create or alter existing annotations as well [28].

2.4.2 Generating masks

Only part of the slide contains the lymph node tissue. As the gigapixel images are already computationally

heavy to process, a tissue mask of all WSIs is computed. The removal is done by applying a not yet

published, in-house developed tissue segmentation model. It has the same architecture as the fully

convolutional neural network in [29], but it has been trained with much more data. Moreover, it can be

used on a range of levels as the new model is resolution agnostic.

Annotations are delivered in XML-format which are converted to a mask as well. For WSIs including

metastases, the two masks are combined by addition. This results in the following pixel mask values:

0. Background

1. Normal tissue

2. Tumor tissue

Figure 2.5: Example of a generated mask. The mask in the right slide displays the three pixel values with a different color.

Figure 2.4: Annotations are stored as polygons.

19 | P a g e

2.5 DATA USAGE

2.5.1 Training

The input size for the Inception and NatureNet architectures should be 299x299 and 128x128 pixels

respectively. Although the final LYNA paper processed the images at the maximum level of magnification

(i.e. 0.25 micrometer pixel spacing) [6], the networks were trained using input data with ~0.5 micrometer

pixel spacing. This ensures that the network is provided enough context, especially the NatureNet as the

input size is only 128x128 pixels. This extra context may help the network to distinguish better between

different tissue types as well. Liu et al. already outperformed the CAMELYON16 winners’ solution by using

the ~0.5 micrometer spacing value in the first LYNA paper and using a higher spacing value speeds up the

training procedure and requires much less memory [5].

It is common practice to keep the distribution during training equal per class. However, the datasets suffer

from major class imbalances [4], [5]. The majority of the WSIs do not contain metastases and even the

slides that do contain metastasis only a part of the whole slide contains metastasized cancer. This is not

per se a problem of the dataset, but these characteristics reflect clinical practice. Therefore, the original

tumor to non-tumor distribution in the dataset should not be ignored altogether by sampling an equal

number of patches per class.

Therefore, the following patch sampling strategy was adopted. Every epoch an equal number of WSIs per

class is opened. These slides are chosen at random with a 1:1 ratio of the slide containing metastases or

not. Patches are then sampled from these slides randomly with a 3:1 tumor to non-tumor ratio

(background patches are ignored) to account for the majority of tissue being non-cancerous. The patch

label is the value of the central pixel (or the upper left neighbor in case of the 128x128 patches) in the

patch. These patches are all normalized on all RGB-channels from [0, 255] to [0, 1].

2.5.2 Inference

There are two ways of doing inference. First, inference can be done in a fully-convolutional manner [30].

This results in a pixelwise prediction heatmap based on the input patch as shown at the left in in Figure

2.6 and referred to as a heatmap. However, deep architectures containing many convolutional layers

must usually pad the input image with zeros at several stages [10]. The classification layer gets used to

these padded and then cropped images during training. However, a test patch does not go through a

process that adds padding at several stages upon inference. This means that there will be inference

points that have an input field of view that is not similarly subjected to zero-padding as it was during

training, leading to false results and cause the network to lose performance significantly.

To prevent this from happing one could use a different approach. An alternative way of doing inference

divides a test image into Regions Of Interest (ROI) of 128x128 pixels, based on the patch extraction

process of [5]. To give the network some context and to achieve the same input size as during training, a

patch of 299x299 is cropped centered on the ROI. Each of these patches is classified and the resulting

confidence value counts for the ROI it was centered on. This means that the confidence score for one

ROI is the same for all the 128x128 pixels. The original image is padded with zeros around the edges to

not go out of bounds when extracting the patches. The heatmap thus obtained consists of tiny squares

that cover 128x128 pixels on the level with 0.5 micrometer pixel spacing. All pixels in this square share

the confidence value, as displayed on the right in Figure 2.6.

20 | P a g e

Figure 2.6: The difference in the obtained heatmaps when using a fully convolutional (left) or a ROI-based approach (right).

2.6 DATA AUGMENTATION
Often, augmentation is done to compensate for a

shortage of training data. As the CAMELYON16

dataset contains many slides and each slide contains

around 10,000 to 400,000 (median 90,000) 299x299

patches [5], the need for augmentation is not

obvious. Still, every patch used during training is

augmented twice due to differences in WSIs that

occur during clinical practice.

There is no natural orientation of the tissue as it can

be put on the slide in many positions. Glass slides can

be used horizontally or vertically depending on tissue

or hospital practice. The network should be

indifferent to position of tissue. Figure 2.7 displays

the spatial augmentation used which are achieved by

rotating a patch 0, 90, 180 or 270 degrees and

flipping the original patch vertically followed by

rotating again to any of the four multiples of 90

degrees. This gives eight possible augmentations.

One of these eight spatial augmentations is included

per originally sampled patch.

Second, staining can be different due to a number of factors as depicted in Figure 2.1. To compensate for

these differently colored WSIs the color of the training patches is augmented. Figure 2.8 depicts the

maximum differences in color augmentations on the HSB color space. The hue-channel is perturbed

between -0.4 to 0.4, saturation and brightness between -0.25 and 0.25. These augmentations are followed

by perturbing the contrast between -0.75 and 0.75. These ranges follow the approach by Liu et al. [5] who

optimized these ranges during training.

Figure 2.8: Color augmentations.

Figure 2.7: Rotation augmentations.

21 | P a g e

2.6.1 Test time augmentation

During test time augmentation, every ROI of the image is rotated in all eight possible directions, see Figure

2.7. So, the network sees all patches from 8 perspectives. All these patches are then classified by the

network and the result will be the geometric mean of the eight obtained heatmaps.

22 | P a g e

3 EXPERIMENTS

In the CAMELYON16 challenge, the task is ‘only’ to distinguish metastasized tumor from tissue not

containing cancerous cells. However, these classes are not easily divided as both “can be highly

heterogeneous” [31]. For example, fat tissue also belongs to the ‘normal’ class and there is no

differentiation between different types of tumor. As with CAMELYON16, the goal is to distinguish

metastases from other tissue. When speaking of ‘normal’ regions or slides, this means all types of tissue

that simply do not contain any metastases.

3.1 ARCHITECTURE
To answer the question if the architecture can be made smaller and simpler while maintaining

performance when auxiliary strategies remain the same, two networks are trained. For reference, the slim

version of Inception (V3) is used [10]. The Inception architecture has been used to approach the current

state of the art results on the CAMELYON16 dataset [5], [6]. The smaller and simpler architecture consists

of only five convolutional layers and a final softmax activation function. This architecture is referred to as

‘NatureNet’ and is compared to the slim Inception architecture.

3.1.1 Learning procedure

The CAMELYON16 challenge demonstrated that current state of the art performance is comparable with

expert pathologists [2]. After this challenge the LYmph Node Assistant (LYNA) was developed – first

described in [5] but later improved leading to [6]. Both algorithms outperformed the winning solution of

the CAMELYON16 challenge [6]. To achieve comparable performance with the current state of the art,

developing the source model closely follows the approach taken to develop LYNA and uses the

CAMELYON16 data.

3.1.1.1 Training

The original train-test distribution of the CAMELYON16 challenge is kept intact. This means that 129 (49

tumor – 80 no tumor) of the 399 WSIs are used only for evaluation. The other 270 slides are randomly

split in a training (80%) and validation (20%) set preserving tumor non-tumor ratio.

To develop the source model the total number of images open in memory and available for sampling per

epoch is limited to 100 for computational reasons. Per training epoch the network uses 25600 batches of

32 patches and during validation 3200 batches of 32 patches. The Adam optimizer [16] is used with an

initial learning rate of 0.05. This learning rate was multiplied by 0.5 every four epochs1 that the network

did not improve on patch level validation accuracy. The training stopped after 12 consecutive epochs that

did not improve the network. This means that during these 12 epochs the learning rate is decreased twice.

3.1.1.2 Inference

One of the advantages of NatureNet is that it can be applied to the test set in a straightforward fully

convolutional manner [30]. The Inception architecture can also be applied in a fully convolutional way.

However, as this is a much deeper network, there is a lot more zero-padding [10]. When using the

1 See for the exact definition of an ‘epoch’ section 2.5.

23 | P a g e

Inception architecture, roughly 20% of the image is affected by this. Therefore, when using the Inception

architecture, the ROI-based approach is used to do inference.

3.1.1.3 Evaluation

From the obtained heatmaps performance is measured on three different levels. Slide-level and lesion-

level metrics are statistical analyzed by a bootstrapping approach [32]. Randomly, 𝑛 samples from the test

set are chosen which over which the metric is computed, where 𝑛 is the length of the test set. The 2.5 and

97.5 percentile are reported. In correspondence with Liu et al. this procedure is repeated 2000 times [5].

3.1.1.3.1 Slide-level: ROC-AUC

First, the network needs to be able to distinguish slides containing metastases from slides containing

normal tissue only. An intuitive approach here is used as the highest confidence score in the whole slide

is simply used as the confidence score for the whole slide. To evaluate the scores, the area under the

curve of the receiver operating characteristic curve (ROC-AUC) is computed.

3.1.1.3.2 Lesion-level: FROC

Second, the network needs to identify lesions (chunks of tumor cells). Lesions were identified from the

heatmap by adopting the non-maxima suppression method by Liu et al [5]. The non-maxima suppression

method repeats two steps:

1. Report the highest value as a lesion.

2. A circle with some radius 𝑟𝑙𝑒𝑠𝑖𝑜𝑛 zeros out the region in the heatmap centered on the reported

lesion.

These two steps are continued until the highest value found is below a certain minimal threshold 𝑡𝑙𝑒𝑠𝑖𝑜𝑛.

From the reported coordinates and the confidence value at those coordinates a free-response receiver

operator characteristic curve (FROC) can be computed [33]. This curve should be interpreted as plotting

the true-positive fraction against the mean number of false-positive detection in slides free from

metastasis [2]. When computing the FROC score, ITCs are ignored in correspondence with the

CAMELYON16 challenge. Computing the FROC score requires setting two hyperparameters. The radius

𝑟𝑙𝑒𝑠𝑖𝑜𝑛is set to the ROI size of 128 pixels. In correspondence with Liu et al. a conservative threshold of 0.5

is chosen for 𝑡𝑙𝑒𝑠𝑖𝑜𝑛.

3.1.1.3.3 Pixel-level: adapted Dice

These slide- and lesion-level evaluation metrics were also used in CAMELYON16. To obtain high

effectiveness for these metrics it is not very important to identify metastases on pixel-level. Identifying

the center of lesions will also suffice to get high scores. However, to adequately measure performance on

new datasets, pixel level performance is informative. Pixel level effectiveness in image segmentation is

usually measured with the Dice score – which is equivalent to the F1 score. The problem at hand is not a

segmentation challenge but identifying metastases on pixel-level comes close. Contrary to a segmentation

challenge, there are many slides that do not contain metastases. As false positives can occur, the Dice

metric is adapted as follows:

 𝑑𝑖𝑐𝑒′(𝑥)(: {
𝑑𝑖𝑐𝑒(𝑥) if 𝑥 contains tumor regions

1 − 𝑑𝑖𝑐𝑒(𝑥) otherwise
(8)

24 | P a g e

For slides not containing tumor regions 𝑑𝑖𝑐𝑒′ inverts the Dice score for mistaken predictions. A Dice score

can only be computed from a binary image. To obtain this binary image from the heatmap requires a

certain threshold 𝑡𝑝𝑖𝑥𝑒𝑙 after which every confidence value below 𝑡𝑝𝑖𝑥𝑒𝑙 will be 0 and every pixel value

above 𝑡𝑝𝑖𝑥𝑒𝑙 becomes 1.

To find the optimal 𝑡𝑝𝑖𝑥𝑒𝑙 value, a subset of the CAMELYON16 test data is used. Specifically, this subset

consists of 15 slides containing no tumor, 15 slides with micro-metastases and another 15 containing

macro-metastases – all chosen randomly from the total test set. This subset is also used to obtain the

optimal value for hyperparameter for Dice computation.

3.2 TRANSFER LEARNING
Experiments for subquestions 2 – 4 will be carried out simultaneously as one would expect the training

set and EWC to have an effect on the learning rate and vice versa. Therefore, experiments to answer

these questions are combined based on these three parameters.

3.2.1 Developing bounds

To see how effective transfer learning in general is, it makes sense to compute a lower and an upper

bound of effectiveness on the target task. The lower bound can be found by applying the source model

on the test images from the colon and head and neck dataset – i.e. without any extra training. To obtain

an upper bound, a network can be trained from scratch with all available training data of the target type

of data in the same way as described when developing the source model. However, this is only an option

for the colon dataset as the head and neck dataset is so small that it is probably insufficient to train a

sophisticated network architecture like Inception and all data is already used during transfer learning.

3.2.2 Regular transfer learning procedure

The described, straightforward approach of doing transfer learning is applied to all available training sets.

Cells and tissue shape, size and color may look a bit different compared to the source dataset. Because

even the very basic information can differ, all layers will be trainable. However, the learning rate is kept

lower than 0.001 and multiplied by 0.5 every three consecutive non-improving epochs and after nine

epochs in which the network did not improve, training is stopped.

A maximum of 50 images are open for sampling during an epoch. Per training epoch the network uses

3200 batches of 32 patches and during validation 1600 batches of 32 patches. The tumor to non-tumor

ratio, patch extraction process, normalization and augmentation are not altered compared to the

development of the source model.

3.2.3 Parameter 1: Training set size

A well-trained source model that achieves excellent effectiveness is a prerequisite for all types of transfer

learning. The architecture with highest effectiveness is therefore used as the source model to do all

transfer learning experiments. The setup (e.g. way of doing inference, evaluation metrics) is largely the

same as when developing the source model. Anything done differently will be described explicitly.

To find out to what extent training set size matters, several experiments on the colon dataset are done.

For all experiments on the colon dataset, the test set consists of 50 WSIs randomly sampled from the

dataset with a 1:1 slide label ratio, i.e. 25 images with and 25 images without metastasis. Several training

sets are created to experiment with the amount of data required to do transfer learning. In order to

25 | P a g e

compare the differences in dataset, the first training set consists of 12 WSIs. As with the head-neck

dataset, the training-validation split is 6-6. Training sets are created with 10 and 20 training images. Those

two datasets have the same additional validation set of 10 WSIs. So, these training sets consists of

respectively 20 and 30 WSIs. The smaller training sets are subsets of the biggest training set. The different

datasets are summarized in Table 3.1. The head-neck dataset cannot be used to experiment with different

training set sizes as the highest possible training to validation ratio is 6:6. Experiments are run

independently of each other, so training on 20 images does not mean including 10 images after training

on 10 images first.

Table 3.1: Dataset splits for the different experiments.

DATASET TRAINING SET SIZE VALIDATION SET SIZE TEST SET SIZE

COLON
 6 6 50
 10 10 50
 20 10 50
HEAD-NECK
 6 6 12

3.2.4 Parameter 2: Learning rate

The source network has already learned most of the information available. Therefore the learning rate

during transfer learning is usually decreased by a big factor. When a very low learning rate is already able

to perform well on the target dataset, chances are that only a little bit of forgetting will occur. On the

other hand, there is a risk that the training procedure will get stuck in a local minimum as the learning

rate is not big enough to get out of it.

As the third subquestion asks for the effect of the learning rate, two different learning rates are chosen

that are typical learning rate values. First, the experiments are done with a very small learning rate of only

10−5 , which is based on the assumption that almost all information has already been learned. Second, a

fairly aggressive learning rate of 10−3 is used. As the difference in order of magnitude of these learning

rates is large, the difference in performance will highlight what effect the learning rate has on transfer

learning.

This experiment can be done on the colon dataset as well as on the head-neck dataset. Only the

annotations that were checked by the pathology resident were used as training data. Slides that were not

checked were used only as potential test data. There are 10 test slides to get a test set that is on the one

hand representative enough of the data and, on the other hand leaves training data to do transfer

learning. Only a very small training set can be created: 6 WSIs containing metastasis and 6 WSIs not

containing metastasis.

3.2.5 Parameter 3: Elastic Weight Consolidation

The extent to which EWC prevents catastrophic forgetting, while minimizing loss of effectiveness on the

source task, is being investigated for all regular transfer learning experiments. First, effectiveness of the

networks obtained after doing regular transfer learning on the source data is measured. Then, another

network will be trained with the same setup, except that EWC is included during training.

EWC can be implemented by first computing the Fisher matrix of the source model. This Fisher matrix and

the trainable weights of the source model can then be used to compute the constraint per layer. In Keras,

26 | P a g e

this constraint can be implemented by setting the bias_regularizer and kernel_regularizer parameter for

convolutional layers and the beta_regularizer for batch normalization layers to the constraint. The

bias_regularizer should only be set if indeed a bias is used in this layer.

Also EWC cannot be measured separately from other settings. Therefore, experiments with different

training set sizes and learning rates are all done with and without EWC. So, every experiment is defined

by the three different parameters: training set size (6, 10, 20), EWC (yes or no) and learning rate (10−3 or

10−5). All combinations of these parameters define the experiments for the subquestions 2 – 4.

27 | P a g e

4 RESULTS

4.1 ARCHITECTURE
There is a notable difference in effectiveness between the two different architectures as displayed in Table

4.1. Test time augmentation on the Inception architecture behaves according to expectation by improving

effectiveness on the CAMELYON16 metrics.

Table 4.1: Architecture results.

ARCHITECTURE TEST TIME
AUGMENTATION

FROC ROC-AUC DICE

NATURENET
  0.560 (0.556 – 0.562) 0.852 (0.850 – 0.854) 0.792
INCEPTION
  0.737 (0.739 – 0.743) 0.961 (0.960 – 0.962) 0.863
 ✓ 0.750 (0.753 – 0.757) 0.972 (0.971 – 0.972) 0.857

4.1.1.1 Hyperparameters

As the ROC and FROC indicate that the Inception architecture

performs better than the NatureNet, the tuning of 𝑡𝑝𝑖𝑥𝑒𝑙 (i.e. to

binarize the heatmap) is done with heatmaps generated by the

Inception network. The Dice score is computed for different

threshold in a range from 0.75 to 0.95. Combined, the scores are

best at a threshold of 0.85. However, there is a peak for micro-

metastases at a threshold of 0.9. Because The difference with 0.9

is marginal (0.85: 0.800, 0.9: 0.799) and to prevent the network

from missing small tumor regions, the threshold is set to 0.9.

4.2 TRANSFER LEARNING
As experiments on training set size, learning rate and EWC are not

tested independently of each other, they are reported at once.

The results of applying the source model (Inception architecture) on both target datasets are reported in

Table 4.2. Furthermore, the upper bound for the colon dataset is reported after the exact same training

procedure and architecture that is used to get the highest results on the CAMELYON dataset.

Table 4.2: Lower and upper bounds for target datasets.

 DATASET FROC ROC-AUC DICE

LOWER BOUND
 Head-Neck 0.341 0.950 0.205
 Colon 0.229 (0.249 – 0.255) 0.896 (0.894 – 0.899) 0.664
UPPER BOUND
 Colon 0.528 (0.532 – 0.539) 0.970 (0.967 – 0.970) 0.845

Figure 4.1: Hyperparameter optimization.

28 | P a g e

4.2.1 Colon

Results of transfer learning on the colon dataset are visually summarized in Figure 4.2. Exacts results for

transfer learning on the colon dataset can be found in Supplement A.

Figure 4.2: Experimental results on the colon dataset.

The rows display effectiveness on the colon and CAMELYON16 dataset respectively. The difference in

learning rate is displayed by comparing the plots on the left with those on the right. On the x-axis the size

of the training set is shown. Training set 0 means directly applying the network trained on CAMELYON16.

So, these correspond to the results reported for CAMELYON16 in section 4.1 without test time

augmentation.

As most of the lines are relatively horizontal after adding target data, in general, colon results do not

benefit from adding much data. A small dataset suffices to achieve maximum performance. Rather, with

the higher learning rate effectiveness on two of the three metrics decreases after adding data. Adding

data, however, does slightly improve the effectiveness scores on the source dataset.

The effect of increasing the learning rate on the other hand is big, especially for the FROC metric as it

increases substantially. However, the countereffect of this – catastrophic forgetting – occurs as can be

seen from the dotted line, as results on the CAMELYON16 dataset are significantly lower.

Elastic weight consolidation in general decreases results on the target dataset. However, the changes are

not big, and with the high learning rate the ROC metric is even improved. With the high learning rate, the

effects of catastrophic forgetting are mitigated by using EWC.

29 | P a g e

4.2.2 Head-neck

Results for the head-neck dataset are not along the same lines as the colon dataset. The network

performs best on the target dataset when using EWC and the aggressive learning rate. Scores on the

CAMELYON16 challenge however drop very quickly, even with the lower learning rate. Performance on

the source task is best when disabling EWC and using the higher learning rate.

Table 4.3: Results on the head-neck dataset.

Learning
rate

EWC Test set FROC ROC DICE

0.001  Head-neck 0.460 0.900 0.551
 CAMELYON 0.554 (0.555 – 0.561) 0.919 (0.917 – 0.919) 0.808

0.001 ✓ Head-neck 0.512 0.950 0.581
 CAMELYON 0.427 (0.427 – 0.434) 0.901 (0.899 – 0.902) 0.794

0.00001  Head-neck 0.488 0.500 0.488
 CAMELYON 0.446 (0.462 – 0.468) 0.906 (0.903 – 0.906) 0.790

0.00001 ✓ Head-neck 0.492 0.450 0.497
 CAMELYON 0.448 (0.448 – 0.453) 0.901 (0.900 – 0.903) 0.788

30 | P a g e

5 DISCUSSION

When interpreting the results the focus will be on the FROC-score as identifying tumorous regions is

eventually the most important task and there are “approximately twice as many tumors as slides.” [5, p.

5] Based on the results of the experiments, answers to the research questions are formulated in this

chapter. Further, limitations of this project and future work are discussed per question and in general.

5.1 ARCHITECTURE
Although the architecture should not make a big difference, the results show that using a minimal network

like NatureNet, does not suffice to adequately fit the data. NatureNet can be applied fully convolutional,

leading to pixel level predictions. When looking at Figure 2.6, one would expect the fully convolutional

approach to have a higher Dice score. It is much more detailed around the edges and detects very small

regions. However, NatureNet performs worse than Inception on the Dice metric. So, this drawback of

using a bigger network like Inception, i.e. not being able to apply the network fully convolutional, is

apparently compensated for by the sophisticated architecture. So, although Bejnordi et al. stated that the

architecture is less important than auxiliary strategies [2], this does not mean a straightforward, simple

convolutional neural network will do the job. For future work, one could find out to what extent the results

of the Inception architecture can be approached by a slightly more complex architecture than NatureNet

but that can still be applied in a fully convolutional manner.

Table 5.1: Comparing architectures.

In Table 5.1 the obtained results are compared to the

winners’ solution and to the current state-of-the-art

solution by Liu et al. The approach by Wang et al. does not

use a single system but uses an additional network for lesion

detection. The obtained scores by a single system are

relatively close to these CAMELYON16 winners who report a FROC of 0.807 and ROC of 0.994 [2], [34].

The obtained scores for the Inception architecture are slightly lower than the scores reported by Liu et al

[5]. They report a FROC of 0.855 (0.810 – 0.897) and ROC-AUC of 0.986 (0.967 – 1.00).

Although the approach followed here closely resembles that of Liu et al., there are several differences

that may explain the gap in performance. First, they used a somewhat different patch sampling approach

where all available patches are seen during training. However, it is unlikely that this causes the difference.

In their approach, every slide is divided into ROIs of 128x128 pixels which are then viewed by the network

during training. This guarantees that all training data is seen during one epoch. When sampling randomly,

this cannot be guaranteed. However, when sampling large numbers, as is the case, it approaches seeing

the full dataset. Moreover, random sampling has the benefit that a ROI with offset (50, 26) is possible

where otherwise only multiples of 128 are valid offsets.

Second, they train with validation metrics of the challenge, which may tune the network a bit more

towards the metrics at hand. However, our approach does not need to perform high on specific metrics

and is therefore not trained with these metrics. Our network is trained with patch-level accuracy as this

is computationally less heavy. The accuracy reported during training is reflected in the metrics upon

evaluation.

 FROC ROC
Liu et al.
(SOTA – slim version)

0.855 0.986

Wang et al. (Winner) 0.807 0.994
Proposed 0.750 0.972

31 | P a g e

Third, and this is probably responsible for the biggest gap, they use an ensemble of multiple networks to

obtain their final score. Their technical description of the solution speaks of no less than 10 networks, but

“gave diminishing returns after 3 models” [5, p. 7]. A limitation of the study at hand is that it has not been

analyzed experimentally which difference is mainly responsible for the gap in performance, as this

(especially the last reason) is computationally heavy.

5.2 TRAINING SET SIZE
The second subquestion was to what extent training size matters when the straightforward approach to

transfer learning is applied between different histopathological systems. First, it must be noted that,

although not done before, transfer learning is possible between different histopathological systems.

Scores on the target datasets obtained via transfer learning are even higher than training on the target

dataset from scratch. This not only means that a network trained on the CAMELYON16 dataset will likely

be performing well when detecting other cancer metastases in lymph nodes, but that it benefits from

being initialized with these weights. The network is thus better in discriminating normal from tumor tissue

when information of the CAMELYON16 challenge is available.

In Figure 4.2 the training set size is displayed on the x-axis. As the performance lines are more or less

horizontal amongst these different sizes, it can be concluded in general that the training set size does not

seem to matter a great deal. However, the size does change the scores in some interesting ways. It seems

that training with less data is beneficial. Effectiveness on two of the three metrics on the target dataset

decreases when the amount of data is increased.

5.2.1 Dataset quality

There are two remarkable trends visible in the scores. First, effectiveness on the colon set is always

significantly lower than on the CAMELYON16 dataset as FROC score never exceeds 0.5. Second, when

adding data effectiveness on the target task becomes slightly lower.

The CAMELYON16 dataset is a relatively ‘clean’ dataset. Annotations are accurate and mostly complete,

and the scanned quality of the slides is high. The colon set is of inferior quality as there is colon tissue and

annotations are not as accurate. This begs the question of whether the quality of the colon dataset is

responsible for this loss in performance. Both trends in the scores can then be explained as effectiveness

is indeed worse when the data is bad and that adding data actually means corrupting the data, which

explains why effectiveness drops when data is added.

5.2.1.1 Cleaning the dataset

This suspicion is enhanced by the fact that the colon dataset originally contained 58 more WSIs. When

doing the first experiments results were very low (under 0.2). Consequently, many experiments were

conducted excluding the possibility of there being a problem with the model or training procedure.

Experiments were done by freezing different Inception-modules, by training with different learning

rates, and using a different amount of training data. Lastly, the optimizer was changed from Adam to

SGD as this latter optimizer does not use an adaptive function. With a very sophisticated trained model

like the source model, Adam can cause some basic weights to be only minimally updated as these

weights did not need updating before. On the target data these weights sometimes need finetuning as

well. With SGD all parameters are updated by the same factor – also the ‘seemingly’ less important

weights.

32 | P a g e

However, all these changes did not improve the results. The highest possible FROC score of 0.184 is then

obtained when training on 40 slides with a learning rate of 0.001 and all layers trainable. Training from

scratch only slightly improved this result.

To find out whether the original dataset was responsible for these low results, the data was inspected by

a PhD student doing image analysis research regarding colon tissue at the Diagnostic Image Analysis Group

at the Radboud UMC. Especially, the worst performing WSIs – two slides had over 800 false lesion

detections – were inspected. The student found that the network was correct in detecting these lesion

detections, but that the tissue was not annotated as it was a tumor region in colon tissue and not in the

lymph node – this slide contained both a lymph node and colon tissue. The student also found that there

were several slides containing tumor that were not annotated as such, quite some slides having large out-

of-focus regions due to some scanning problem and that in some WSI no lymph nodes were present (or

only marginally) while there was colon tissue – with or without tumor cells – present on the slide.

5.2.1.2 Lower performance in general

The dataset was filtered by removing 58 images. This resulted in the colon dataset as described in Section

2.2. Results greatly improved, but results are still significantly lower than for the CAMELYON16 dataset,

even after training from scratch. Although the PhD student is not a pathologist, and the dataset is probably

still not equal to the CAMELYON16 dataset in terms of accuracy and scanning quality, it is unlikely that the

poorer quality of the dataset is fully responsible for the loss in performance.

Otherwise, one would expect results from EWC to be higher as more information is incorporated from the

source dataset than training without EWC, but on the colon dataset EWC slightly decreases performance

on the target task. Moreover, upon inspection of the worst performing test slides, other factors appear

to cause the confusion of the model. Three slides containing many false positive lesion detections are

shown in Figure 5.1 and Figure 5.2. The false positives in first image are caused by the tissue being

inflammatory, while the other two contain necrosis. So, in a sense, the lymph node looks abnormal,

Figure 5.1: Inflammatory tissue.

33 | P a g e

although the anomaly is not cancerous. Lastly, experiments on the colon dataset used a relatively high

number of epochs during training, even with the high learning rate.

Figure 5.2: Lymph nodes full of necrosis (red tissue).

All this leads us to believe that detecting colon metastases is a harder task than detecting breast cancer

metastases. In the future one may try improving upon effectiveness by doing hard negative mining which

typically increases performance if the dataset contains rare, hard cases. Furthermore, one may investigate

to what extent colon metastases is harder to detect and why.

5.2.1.3 Lower performance when adding data

However, the conclusion that colon metastases is harder to detect does not explain why the results

decrease when using 20 instead of 10 training images. This appears to be caused by the model slightly

overfitting towards the second task when using 20 training images. When training on 10 and 20 images,

the validation set remains the same and has a size of 10. The training on 10 images reported 0.966 patch-

level accuracy after 17 epochs where 20 images reached 0.968 after 24 epochs. So, the latter model

appears to have slightly overfitted on the training set. The patch level accuracy for training with six images

is even higher. However, to compare results of this training set with the head-neck dataset, the validation

set only contains six images. The high accuracy is probably due to the validation set being very small.

Therefore, this network also quickly overfits. A straightforward solution would be to add to the validation

set in order to prevent this from happening. If the extra data is not available, careful tuning of the learning

rate may also mitigate overfitting effects.

34 | P a g e

5.2.2 Dataset differences

Although to answer this research question, experiments on the head-neck dataset were not included,

there are differences when observing the results of the head-neck dataset. The size is the same as the

smallest colon training set size, but results are hardly comparable.

For the colon dataset, additional training does improve effectiveness. However, effectiveness remains

low. This can have multiple reasons. First, it can be due to the test set being too small. Especially for the

FROC metric, a few more false detections can greatly influence the score with a test set this small. In the

colon test set, some rare cases were observed in the test set. However, effectiveness on most of the

slides was much better, thus compensating for these rare test cases. With the current size of the head-

neck test set, there is no such room for compensation.

Second, unlike the colon dataset, head-neck data may be easier to learn or, third, the dataset size in

general can be too small to learn the new domain. The models with the higher learning rate overfit the

training set, as effectiveness on the test set is not high but patch-level accuracy during training was as

high as 0.991. With the lower learning rate, the patch-level accuracy reaches 0.971, which is a little

higher but comparable to training accuracies reported for the colon dataset. With the lower learning

rate, the maximum score is obtained already after 1 epoch. So, only a little training seems to be

sufficient and using a higher learning rate tends to overfit the dataset quickly. However, for both

learning rates, high effectiveness – even on the source dataset – cannot be achieved, which indicates

that the dataset is too small.

To sum up, learning on the new images increases effectiveness notably, but there are only small

differences between different training set sizes. However, this conclusion is dependent on the target

domain. Differences should be sought in the size of the training-validation set in correspondence with the

learning rate, when the model is unable to perform on both source and target tasks.

5.3 LEARNING RATE
To answer what the effect of the learning rate is, when doing transfer learning, five different conclusions

can be distinguished. First, and most obvious, the higher learning rate is necessary to properly tune the

network towards the target task. Performance on the target task is always higher when using the more

aggressive learning rate.

Second, however, the more aggressive learning rate sometimes appears to be a little too aggressive.

During training the network tends to overfit quickly, especially when a small training and validation set is

used. This is discussed for the colon dataset in the previous section, but this extends also to the head-neck

dataset.

Third, when using the lower learning rate, there is relatively little effectiveness loss on the source task.

When, on the other hand, using the higher learning rate, catastrophic forgetting occurs as effectiveness

drops on the source task. So, training with the lower learning rate does prevent from forgetting as it can

just take smaller steps in altering the weights obtained by training on the source task. This is clearly visible

from all experiments on the colon dataset. However, this is not the case for the head-neck task. For some

domains it may therefore be necessary to use a learning rate that is in between both learning rates that

have been experimented with, as the smaller is unable to learn the target data well and the larger overfits.

35 | P a g e

The fourth effect that the learning rate has, is that having an extra dataset can also be used as extra

training data. Namely, effectiveness on the CAMELYON16 is increased after doing transfer learning. This

is probably caused by the network seeing more tissue of a different kind, which can cause it to be a little

more nuanced in difficult tissue parts. Although not effective for transfer learning, it is one of the

unexpected outcomes of the experiments. If increased effectiveness on the source dataset is the goal,

then the lower learning rate is better used.

Fifth, the learning rate is dependent on the type of data. Whereas on the colon dataset, effectiveness is

best with the higher learning rate, on the head-neck dataset results are lower. These lower results are

due to overfitting as training ended after an obtained patch level accuracy of 0.991 during training. It

could be that the structure in the head-neck slides is learned faster compared to the colon dataset.

However, this is just an indication as this is only based on experiments with a very small number of slides.

It could also just be that the used slides are relatively easy cases.

5.4 ELASTIC WEIGHT CONSOLIDATION
EWC can effectively be used to prevent catastrophic forgetting from happening. It comes at a very small

cost, as effectiveness on the target task is sometimes for some metrics slightly worse. When only

interested in the target task, EWC is maybe better left out. When aiming for good performance on both

source and target tasks, EWC should be implemented. Especially when using the larger learning rate,

which appeared to be essential to tune sufficiently towards the target task, EWC has a huge effect.

Namely, effectiveness on the CAMELYON16 without EWC drops, but remains stable when EWC is

implemented.

This conclusion is supported by all experiments on the colon dataset, but not by the experiment on the

head-neck dataset with the higher learning rate, but, as explained in the previous paragraph, this is due

to the network overfitting the target dataset.

5.5 CONCLUSION
In general, in this master’s thesis project, it is asked to what extent transfer learning can be applied when

creating a network for the CAMELYON16 challenge and transferring the information to different cancer

metastases.

On the one hand, some domains are in general harder to learn. Although the domains share the upper

domain of the lymphatic system, and effectiveness increases after transfer learning, results are still not

close to CAMELYON16 performance. Even when training from scratch, the effectiveness scores were

significantly lower. Whereas six training slides would suffice for the colon dataset, this was not enough

data to tune towards the head-neck dataset.

On the other hand, transfer learning based on the CAMELYON16 challenge is possible. The architecture

cannot be simple but does not need to be huge either. With a relatively high learning rate, the network is

able to finetune towards the target dataset. Catastrophic forgetting then does occur but this can be

prevented by exploiting EWC, which approaches maximum performance on the target task while

maintaining high performance on the source task.

Transfer learning can thus be used to increase performance on both the source and target tasks. When
developing a model that is related to the lymphatic system, initializing this model with CAMELYON16

36 | P a g e

weights is beneficial. A small amount of the target dataset can suffice to tune the network effectively
towards the task at hand. This offers a range of possibilities for small or expensive datasets containing
different types of cancer in lymph nodes. It is possible to use a single system to detect multiple types of
cancer in the lymphatic area. The combined model is more effective than training from scratch. All this
can be achieved with less training time and resources.

Future work could focus on optimizing the hyperparameters to achieve maximum performance. A high-
quality dataset with verified annotations by pathologists can greatly contribute to comparing the
effectiveness to the CAMELYON16 challenge and with regards to clinical practice. Different lymphatic
domains can be added to analyze EWC in a continual learning setting. This could then be used to develop
a single system distinguishing metastases from normal lymph node tissue in all of the lymphatic area.

37 | P a g e

BIBLIOGRAPHY

[1] H. Ritchie and M. Roser, “Causes of Death,” Published online at OurWorldInData.org, 2018.
[Online]. Available: https://ourworldindata.org/causes-of-death.

[2] B. Ehteshami Bejnordi et al., “Diagnostic Assessment of Deep Learning Algorithms for Detection of
Lymph Node Metastases in Women With Breast Cancer,” Journal of the American Medical
Association, vol. 318, no. 22, p. 2199, Dec. 2017.

[3] A. E. Giuliano et al., “Effect of Axillary Dissection vs No Axillary Dissection on 10-Year Overall
Survival Among Women With Invasive Breast Cancer and Sentinel Node Metastasis: The ACOSOG
Z0011 (Alliance) Randomized Clinical Trial.,” Journal of the American Medical Association, vol. 318,
no. 10, pp. 918–926, 2017.

[4] G. Litjens et al., “1399 H&E-stained sentinel lymph node sections of breast cancer patients: the
CAMELYON dataset,” GigaScience, vol. 7, no. 6, Jun. 2018.

[5] Y. Liu et al., “Detecting Cancer Metastases on Gigapixel Pathology Images,” arXiv preprint
arXiv:1703.02442, 2017.

[6] R. Steiner, David F MacDonald et al., “Impact of deep learning assistance on the histopathologic
review of lymph nodes for metastatic breast cancer,” The American journal of surgical pathology,
vol. 42, no. 12, pp. 1636–1646, 2018.

[7] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” Journal of Big Data,
vol. 3, no. 1, p. 9, Dec. 2016.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional
Neural Networks,” in Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097--1105.

[9] P. Bandi et al., “From detection of individual metastases to classification of lymph node status at
the patient level: the CAMELYON17 challenge,” IEEE Transactions on Medical Imaging, pp. 1–1,
2018.

[10] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture
for Computer Vision.” pp. 2818–2826, 2016.

[11] F. Chollet, “Keras.” 2015.

[12] M. Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous systems.” 2015.

[13] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in neural networks,” Dec. 2016.

[14] S. Ruder, “An overview of gradient descent optimization algorithms,” Computing Research
Repository, vol. abs/1609.0, 2016.

[15] P. J. Werbos, “Beyond regression : new tools for prediction and analysis in the behavioral sciences,”
1974.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980.

[17] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: an overview

38 | P a g e

and application in radiology,” Insights into Imaging, vol. 9, no. 4, pp. 611–629, Aug. 2018.

[18] J. G. Lee et al., “Deep Learning in Medical Imaging: General Overview,” Korean J Radiol, vol. 18, no.
4, pp. 570–584, 2017.

[19] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way
to prevent neural networks from overfitting,” The Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1929–1958, 2014.

[20] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet and the impact
of residual connections on learning,” in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[21] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 1–9.

[22] Y. Bengio, P. Simard, and P. Frasconi, “Learning Long-term Dependencies with Gradient Descent is
Difficult,” IEEE transactions on neural networks 5.2 (1994), vol. 5, no. 2, pp. 157–166, Mar. 1994.

[23] Y. Xu et al., “Large scale tissue histopathology image classification, segmentation, and visualization
via deep convolutional activation features,” BMC Bioinformatics, vol. 18, no. 1, p. 281, May 2017.

[24] D. Komura and S. Ishikawa, “Machine Learning Methods for Histopathological Image Analysis,”
Computational and Structural Biotechnology Journal, vol. 16, pp. 34–42, 2018.

[25] B. Pfülb, A. Gepperth, S. Abdullah, and A. Kilian, “Catastrophic forgetting: still a problem for DNNs,”
in International Conference on Artificial Neural Networks, 2018, pp. 487–497.

[26] S.-W. Lee, J.-H. Kim, J. Jun, J.-W. Ha, and B.-T. Zhang, “Overcoming catastrophic forgetting by
incremental moment matching,” in Advances in neural information processing systems, 2017, pp.
4652–4662.

[27] J. K. C. Chan, “The Wonderful Colors of the Hematoxylin–Eosin Stain in Diagnostic Surgical
Pathology,” International Journal of Surgical Pathology, vol. 22, no. 1, pp. 12–32, 2014.

[28] G. J. S. Litjens, “Automate Slide Analysis Platform (ASAP),” 2018. [Online]. Available:
https://github.com/geertlitjens/ASAP. [Accessed: 01-Dec-2018].

[29] P. Bandi et al., “Comparison of different methods for tissue segmentation in histopathological
whole-slide images,” 2017 IEEE 14th International Symposium on Biomedical Imaging, pp. 591–
595, 2017.

[30] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–
3440.

[31] G. Litjens et al., “A survey on deep learning in medical image analysis,” Medical Image Analysis,
vol. 42, pp. 60–88, 2017.

[32] B. Efron, “Bootstrap methods: another look at the jackknife,” in Breakthroughs in Statistics,
Springer, 1992, pp. 569–593.

[33] D. P. Chakraborty, “Recent developments in imaging system assessment methodology, FROC
analysis and the search model,” Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 648, pp. S297–S301, Aug.

39 | P a g e

2011.

[34] D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. Beck, “Deep learning for identifying metastatic
breast cancer,” arXiv preprint arXiv:1606.05718, 2016.

40 | P a g e

SUPPLEMENTS

A. COLON TRANSFER LEARNING
Exact results of all experiments done on the colon dataset. The results are given in the two tables below,

with the former having a learning rate of 10−5 and the latter 10−3.

Training –
Validation
slide ratio

EWC Test set FROC ROC DICE

6 – 6  Colon 0.497 (0.500 – 0.507) 0.938 (0.936 – 0.940) 0.802
 CAMELYON 0.751 (0.750 – 0.754) 0.977 (0.976 – 0.977) 0.861

6 – 6 ✓ Colon 0.455 (0.458 – 0.466) 0.917 (0.914 – 0.918) 0.802
 CAMELYON 0.759 (0.756 – 0.760) 0.979 (0.978 – 0.979) 0.859

10 – 10  Colon 0.467 (0.474 – 0.482) 0.946 (0.944 – 0.947) 0.812
 CAMELYON 0.765 (0.765 – 0.770) 0.975 (0.975 – 0.976) 0.862

10 – 10 ✓ Colon 0.424 (0.434 – 0.442) 0.931 (0.930 – 0.934) 0.808
 CAMELYON 0.763 (0.763 – 0.767) 0.974 (0.973 – 0.975) 0.862

20 – 10  Colon 0.496 (0.500 – 0.508) 0.946 (0.945 – 0.948) 0.803
 CAMELYON 0.773 (0.774 – 0.779) 0.981 (0.981 – 0.982) 0.867

20 – 10 ✓ Colon 0.425 (0.426 – 0.434) 0.925 (0.923 – 0.926) 0.804
 CAMELYON 0.768 (0.768 – 0.772) 0.978 (0.977 – 0.978) 0.863

41 | P a g e

Training –
Validation
slide ratio

EWC Test set FROC ROC DICE

6 – 6  Colon 0.595 (0.598 – 0.605) 0.976 (0.975 – 0.977) 0.802
 CAMELYON 0.652 (0.655 – 0.661) 0.958 (0.957 – 0.959) 0.819

6 – 6 ✓ Colon 0.575 (0.571 – 0.578) 0.982 (0.981 – 0.982) 0.812
 CAMELYON 0.738 (0.739 – 0.744) 0.986 (0.986 – 0.986) 0.853

10 – 10  Colon 0.586 (0.595 – 0.603) 0.962 (0.960 – 0.963) 0.823
 CAMELYON 0.447 (0.449 – 0.454) 0.920 (0.919 – 0.921) 0.792

10 – 10 ✓ Colon 0.573 (0.578 – 0.586) 0.986 (0.985 – 0.987) 0.826
 CAMELYON 0.755 (0.754 – 0.759) 0.978 (0.977 – 0.979) 0.860

20 – 10  Colon 0.565 (0.571 – 0.579) 0.976 (0.976 – 0.977) 0.808

 CAMELYON 0.635 (0.638 – 0.643) 0.938 (0.936 – 0.938) 0.827

20 – 10 ✓ Colon 0.540 (0.544 – 0.552) 0.992 (0.992 – 0.992) 0.791
 CAMELYON 0.759 (0.758 – 0.763) 0.980 (0.980 – 0.981) 0.855

