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Abstract

Single view depth estimation models can be trained from
video footage using a self-supervised end-to-end approach
with view synthesis as the supervisory signal. This is
achieved with a framework that predicts depth and cam-
era motion, with a loss based on reconstructing a target
video frame from temporally adjacent frames. In this con-
text, occlusion relates to parts of a scene that can be ob-
served in the target frame but not in a frame used for image
reconstruction. Since the image reconstruction is based on
sampling from the adjacent frame, and occluded areas by
definition cannot be sampled, reconstructed occluded areas
corrupt to the supervisory signal. In previous work [6] oc-
clusion is handled based on reconstruction error; at each
pixel location, only the reconstruction with the lowest error
is included in the loss. The current study aims to deter-
mine whether performance improvements of depth estima-
tion models can be gained by during training only ignoring
those regions that are affected by occlusion.

In this work we introduce occlusion mask, a mask that
during training can be used to specifically ignore regions
that cannot be reconstructed due to occlusions. Occlusion
mask is based entirely on predicted depth information. We
introduce two novel loss formulations which incorporate the
occlusion mask. The method and implementation of [6]
serves as the foundation for our modifications as well as
the baseline in our experiments. We demonstrate that (i)
incorporating occlusion mask in the loss function improves
the performance of single image depth prediction models on
the KITTI benchmark. (ii) loss functions that select from re-
constructions based on error are able to ignore some of the
reprojection error caused by object motion.

1. Introduction

Knowing the depth of your surroundings is essential for
navigating within an environment. We perceive the major-
ity of our depth information visually without any substantial
effort or thought. The importance of depth information be-
comes more apparent when visual stimuli are diminished or
absent. For example visually impaired individuals require

a white cane or guide dog to scan their surroundings for
obstacles. In the animal kingdom, there are numerous ani-
mal species that have evolved to live in low-light conditions
or complete darkness and use echolocation to know where
they are and what surrounds them. Without explicitly learn-
ing how, we are able to perceive the relative distances of
objects in our environment.

Depth information is also important for technologies
such as adaptive cruise control and autonomous emergency
braking or for use in autonomous systems such as robots
and self-driving vehicles. In these systems depth informa-
tion can be used to decide whether to accelerate, brake or
steer. Sonar, radar, and lidar1 are examples of technolo-
gies that can be used to measure this information directly.
As a complementary source of information or as a cost-
effective alternative, depth can be predicted from camera
data. Ground truth depth data collected using one of the
aforementioned techniques can be used to train a depth es-
timation model in a supervised manner. As an alternative,
similar to depth perception in the natural world, it is possi-
ble to train a depth estimation model using a self-supervised
approach, using no ground truth depth information but only
stereo image pairs [3] or video data from a single camera
[11].

A single image depth prediction model can be trained
using image reconstruction as the supervision signal. This
reconstruction is done using image pairs, where the images
are of the same scene, but taken from different positions. If
a depth prediction is made for one of the images from such
a pair, using information about the change of camera posi-
tion, the first image can be reconstructed from the second
image. By minimizing the difference between the original
image and the reconstruction the task of depth prediction is
learned.

The idea of learning depth by image reconstruction was
used by [3] on stereoscopic images with a known fixed cam-
era transformation. [11] showed that it is possible to train
depth prediction models on video data using image recon-
struction as a supervision signal, by adding a parallel net-
work that predicts the image-pair camera transformation
that is required for image reconstruction. The reconstruc-

1Radar that uses laser instead of radio waves
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tion computation will be discussed in further detail in the
methods section.

Compared to using stereoscopic images, learning this
task from video has some unique challenges. Stereoscopic
images can be taken simultaneously capturing a scene at
a single point in time, whereas video frames are inherently
captured at different points in time. If a video contains a dy-
namic scene (e.g. objects are moving) and this is not taken
into consideration during training, moving objects will ap-
pear incorrectly in the reconstructed image and thereby cor-
rupt the learning signal.

The authors of [11] tried to tackle the dynamic scene
problem by predicting a ‘motion explanation mask’ that can
be used to ignore such regions. In later implementations
of their work that are available online2, this mask was dis-
abled, producing better results. In [1] , instance segmenta-
tion masks are used to handle object motion. These instance
segmentation masks are only created for known object cat-
egories, using a pretrained mask R-CNN model [7].

Another challenge is that the camera transformations be-
tween video frames vary, in contrast to the fixed camera-
distance of stereo image pairs. When there is little to no
camera movement, adjacent frames are nearly identical, and
hardly provide any learnable information. [11] attempts
to reduce this problem by filtering out the nearly identical
frames from the training data.

When not taking object motion into account during train-
ing, a model may learn to make incorrect depth predictions
to compensate for the reconstruction mistakes caused by ob-
ject motion. For example, objects that during training were
often observed while they were moving at the same veloc-
ity as the camera, will incorrectly be predicted as being
far away. This happens because the observed behavior of
same-velocity-objects and distant stationary objects is sim-
ilar; Their appearance does not change (much) from frame
to frame. To counter this phenomenon [6] applies a mask
(called automask) to ignore pixels that do not change ap-
pearance from one frame to the adjacent frame. In addition
of ignoring objects which appear static because they move
with the same velocity as the camera, this mask will also
ignore entire frames when the camera does not move.

One of the phenomena encountered when training a
depth prediction model using image reconstruction is called
occlusion. Occlusion relates to parts of a scene that can
only be observed from one of two camera positions. For
example, regions at the image boundaries may move in or
out of view when the camera position changes. Another
cause of occlusion is parallax, where for two different cam-
era positions the apparent position of closer objects changes
more, hiding or revealing what is behind them. Both types
of occlusion effects can be seen in figure 1. Incorporating
these occlusion effects in the loss function during training

2https://github.com/tinghuiz/SfMLearner

can negatively impact the predictive performance of a depth
prediction model since they do not provide meaningful in-
formation about the correctness of the depth predictions.

Figure 1: Effects of occlusion on the reconstructed image. Top:
The image for which the depth prediction is made. Middle: The
next video frame, captured 100ms later. Bottom: Reconstruction
of the first image made by sampling from the next video frame.
The lane markings at the bottom of the image are incorrectly re-
constructed because they are not visible in the next frame. The tree
on the right-hand side of the road appears twice in this reconstruc-
tion. This happens when areas with different predicted depths are
projected to the same area. In other words, the sampling would
have been correct if the tree was not blocking the view.

Various solutions have been proposed to ignore these oc-
clusion effects during training. In [9] a mask is applied in
the loss function to account for occlusion effects at the im-
age boundaries. [6] tackles both types of occlusion at the
same time using a loss function called “Per-pixel minimum
reprojection loss”, which at each pixel location selects the
best reconstruction and ignores the other ones. The idea be-
hind this loss function is that when a pixel is occluded in the
adjacent video frame, a correct reconstruction of the pixel
is unlikely, and the reconstruction of that pixel will not be
used to optimize the depth prediction model.

Since the per-pixel minimum reprojection loss selects
which reconstruction will be used per pixel location, it ef-
fectively creates a binary mask for each of the reconstruc-
tions. This is illustrated in figure 2. The frame which is the
target for image reconstruction is shown at the top of the
figure. On the second row of the figure, two reconstructed
images are shown, made from the next and previous video
frames respectively. A binary map3is located below each of

3Using the word “map”, instead of “mask” since it is not actively used
to mask.
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these reconstructions. These maps display for each pixel of
the reconstruction above it whether it is used or ignored by
the per-pixel minimum reprojection loss.

Figure 2: Top: Image for which the depth prediction is made and
target for image reconstruction. Second row: Reconstructions of
the above image, made from the next and previous video frames re-
spectively. Third row: Map of each reconstructions pixels that are
used/ignored (white/black) by minimum reprojection loss. Bot-
tom row: Examples of occlusion mask for each reconstruction,
black areas are affected by occlusion and should not be used in the
loss function.

From these binary maps, it can be observed that regions
which are mostly black coincide with occlusion effects.
This indicates that per-pixel minimum reprojection loss is
able to ignore occlusion effects successfully. What also can
be observed is that the pixels of the reconstruction target
image for which the contents are visible in both adjacent
frames, still only one of the reconstructions is selected to be
used in the loss, and the other one is ignored.

The hypothesis that I will test in this work is that by
limiting the amount of information which is ignored dur-
ing training to only those regions that suffer from occlu-
sion, more useful information will be available for training
the model. The approach I propose is occlusion mask, a
mask that during training can be used to specifically dis-
card regions that cannot be reconstructed due to occlusions.
The images at the bottom row of figure 2 illustrate the con-
cept. Occlusion mask is based entirely on depth informa-
tion. We will test the hypothesis by incorporating the pro-
posed occlusion mask method into two novel loss functions,
use these loss functions to train depth prediction models,
and compare their performance with that of a model trained
with per-pixel minimum reprojection loss. Additionally we
will compare the behavioral differences of the loss func-
tions, i.e. those that incorporate the proposed method and
the per-pixel minimum reprojection loss, by visualizing the
computed loss on training examples. With the occlusion
mask we hope to improve the performance of future single
image depth prediction models.

2. Method

We start by reviewing the framework introduced by [11]
for training a single-view depth network from unlabeled
video data, including its core concept: image reconstruc-
tion. This will be followed by a review of the loss function
computation of the method and implementation4 by Godard
et al [6], which serves as the foundation for our modifica-
tions as well as the baseline in our experiments. We will
finish the method section by describing our proposed oc-
clusion mask and introducing two novel loss formulations
which incorporate it.

2.1. Self-supervised training

2.1.1 Framework

All of the models in our experiments are trained using the
same framework introduced by [11] consisting of one net-
work predicting a depth map from a single image (i.e. in this
case a frame from a video), and a pose network predicting
camera transformation from two consecutive images (figure
3). The two networks are trained together using the same
loss but can be used separately after training.

Figure 3: (a) Depth network A standard, fully convolutional, U-
Net is used to predict depth. (b) Pose network Pose between a
pair of frames is predicted with a separate pose network. Image
from [6].

The loss used for training is based on warping nearby
frames, to create a new image that conforms (as best as pos-
sible) to the image for which the depth map is being pre-
dicted. This ‘warping’ means that each pixel is sampled at
their new location in the nearby frame, which can be com-
puted using the predictions of the depth map and camera
transformation.

4https://github.com/nianticlabs/monodepth2
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2.1.2 Image reconstruction

A frame is reconstructed by sampling from one of the adja-
cent video frames. Equation 1 shows how the sample loca-
tion in the adjacent frame is computed for each pixel in the
reconstruction. In this equation the subscript is used to indi-
cate the point in time, t is “now”, i.e. the time of the frame
for which when the depth is predicted, t′ is the time point of
the next or previous frame, and t→ t′ is the transition from
one to the other.

The used formulation of the image reconstruction has
the following implicit assumptions [11]: 1) the scene
is static without moving objects; 2) there is no occlu-
sion/disocclusion between the target view and the source
views; 3) the surfaces appear uniformly bright from all di-
rections of view so that the photo-consistency error is mean-
ingful 

xt→t′zt→t′

yt→t′zt→t′

zt→t′

1

 = KTt→t′K
−1


xtzt
ytzt
zt
1

 (1)

We will first describe equation 1 and follow with an ex-
ample that illustrates the computational steps. The pur-
pose of this equation is to compute the sampling location
(xt→t′ , yt→t′) in frame It′ for each pixel at position (xt, yt)
in frame It. In this equation the rightmost column vector
consists of the homogeneous coordinates of a pixel in frame
It where zt is the predicted depth of that pixel. The leftmost
column vector consists of the homogeneous coordinates of
the pixel after projection, i.e. the location at which the pixel
is to be expected in frame It′ given the predicted depth and
camera transformation. The 4x4 camera transformation ma-
trix Tt→t′ contains the rotation and translation of the camera
as predicted by the pose network. The matricesK andK−1

denote the camera intrinsics matrix and its inverse, which
transforms camera coordinates to image coordinates using
camera properties such as focal length and principal point
offset.5

In figure 4a & 4b you can see a picture and its predicted
depth map. Figure 4c shows the outline of an image (the
black rectangle) and its pixels neatly arranged in a grid (the
blue dots). The depth information of 4b can be added to
each pixel in 4c to create the point cloud shown in 4d, where
the dots are bigger when the point is closer to the camera.
4e shows the frame that comes next after frame 4a. The
camera transformation (from 4a to 4e) predicted by the pose
network can be used to calculate where the points of 4d will
end up, this is shown in 4f. Figure 4g shows the points from
4f but with the depth information removed. Frame 4a can

5 To get an idea of how the camera transformation matrix and
the camera intrinsics matrix affect what is seen in an image, you can
have a look at this interactive tool: https://ksimek.github.io/
perspective_camera_toy.html

be reconstructed by sampling at the new pixel positions (4g)
in 4e. Figure 4h shows this reconstruction.

(a) Target image (b) Predicted depth map

(c) Grid of pixel locations (d) Point cloud = grid + depth

(e) Next video frame (f) Point cloud projected to next
frame

(g) Sample locations (h) Reconstructed image

Figure 4: Example of image reconstruction steps. For an image
(a), a depth map prediction (b&d) together with a camera transfor-
mation prediction is used to compute the sample locations (g) in
the adjacent image (e) that can be used to reconstruct (h) the target
image .

Effects of the sample locations can be seen in the recon-
struction, for example pixels where the sample location is
outside of the image (the black rectangle) the closest border
pixel is used instead. Another example is the small area near
the tail light of the (red) car from which there is no sampling
as can be seen in 4g. This area in 4e shows the headlamp
of the car in the rear, which is not visible (occluded) in the
target image 4a.

The sample coordinates (xt→t′ , yt→t′) are continuous
values. The reconstructed frame It′→t can be made by sam-
pling at these projected pixel coordinates in frame It′ using
the (sub-)differentiable bilinear sampling mechanism pro-
posed in [8]. This sampling method linearly interpolates the
values of the four pixels that surround the sample location.

2.2. Baseline loss function

In this section we will discuss the components of the loss
function used in the baseline [6]. The loss used for training
(eq. 2) consists of two components, which will be discussed
in this section. One component is the smoothness loss (Ls)
over the predicted depth map. This loss remains unchanged
in the experiments, and is scaled with smoothness term λ
set to 0.001. The other component of the loss function is
the photometric loss multiplied with a binary mask in order
to ignore certain areas of a reconstruction. This mask (µ
in the equation), called automask is the same in all of the
experiments. The photometric loss (Lp) is computed differ-
ently in each of the experiments.

4
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L = λLs + µLp (2)

The final loss is averaged over each pixel location, the
various scales, and the images in a batch.

2.2.1 Multiple scales

Due to the sampling mechanism described in 2.1.2, the gra-
dient is derived from the difference between the target pixel
value and the pixel value in the reconstruction which is an
interpolation of the four pixels surrounding the sample lo-
cation. Using this gradient will mean that the depth pre-
diction is changed in the direction that moves the sample
location closer to one of the four pixels that surround the
current sample location and that matches the target pixel
most closely.

This change in depth prediction is not necessarily in the
right direction, for example when there is no gradual color
transition of the pixels that lie between the current sample
location and the correct sample location. This can happen
if the current sample location is far from the correct sample
location, or when the scene is complex e.g. many surfaces
with different color gradients, or multiple color gradients in
a single surface.

To prevent getting stuck in these local optima, the loss
(and therefore also the gradient) is usually computed on
multiple scales which allows the gradient to be derived from
larger spatial regions directly.[11] This is done by making
reprojections using the intermediate depth map predictions
of the network, which have a lower resolution.

The authors of [6] observed that projecting the input im-
ages with the resolution of the depth map, has the tendency
to create artefacts when the depth map resolution is low and
there are large low-texture regions in the image. They over-
come this problem by upsampling the predicted depth maps
to the resolution of the input image instead of downsam-
pling the input image to the resolution of the depth map.[6]
This preserves the details in low-texture regions which re-
duces ambiguity. Using this method values in the lower res-
olution depth map will influence a larger spatial region in
the higher resolution reconstruction.

2.2.2 Smoothness loss

There are many incorrect depth map predictions which
could also provide accurate image reconstructions, for ex-
ample in homogeneous regions of an image. To steer the
network to learn more realistic predictions a loss is used
that enforces smoothness of the predicted depth map. In
this implementation an edge-aware smoothness loss is used
(eq. 3) [5].

Ls = |∂xd∗t |e−|∂xIt| + |∂yd∗t |e−|∂yIt| (3)

In this formulation depth discontinuities, i.e. high dispar-
ity gradients (|∂d∗t |), contribute less to the loss when the
image gradients (|∂It|) are relatively high. The used (in-
verse) depth map is normalized (d∗t ) by its mean value. This
normalization is done to prevent that the loss is minimized
by lowering the depth gradients through scaling down the
entire depth map. This would be possible since the other
loss component (i.e. the photometric error) is unaffected
by scale, the depth and pose network would together scale
down their predictions which negatively affects training.
[10]

2.2.3 Automask

A mask, called automask, is used to ignore the stationary
pixels, which come either from objects that move with the
same velocity as the observer or when the camera is not
moving. It is supposed to prevent the pixels which remain
stationary in the image from contaminating the loss. It does
this by ignoring the loss of pixels where the photometric
error of the original, unwarped frame I ′t is lower than the
warped frame It′→t. Equation 4 shows the mask definition
where pe stands for photometric error, which will be de-
scribed in the next section.

µ =

{
1 if min

t′
pe(It, It′) > min

t′
pe(It, It′→t)

0 otherwise
(4)

2.2.4 Photometric error

The photometric error (eq. 5) used in the photometric loss
component is a combination of the L1 loss of the pixel value
differences and the structural similarity (SSIM) index [12]
of the image for which the depth is predicted and its re-
construction made from the adjacent frame . SSIM is used
because it is a measure of structural information change and
the human visual system is adapted to extract structural in-
formation. In the experiments α = 0.85 is used. Figure 5
shows an example of the photometric error (5c) computed
on the target “reference” image (5a) and the reprojected im-
age (5b).

pe(Ia, Ib) = α
1− SSIM(Ia, Ib)

2
+(1−α)‖Ia−Ib‖1 (5)

2.2.5 Per-Pixel Minimum Reprojection Loss

In the baseline per-pixel minimum reprojection loss (equa-
tion 6) is used as the photometric loss . Which means that
at each pixel location, the reconstruction with the lowest
error is used in the loss. This is different to previous self-
supervised depth estimation methods which instead use the
average of the reconstructions.

5



Figure 5: Example of the photometric error Top: The recon-
struction target image. Middle: Reconstruction made from the
next video frame. Bottom: The calculated photometric error be-
tween the target and the reconstruction.

Selecting the reconstruction with lowest error at that
pixel location is done to account for regions in the recon-
struction target (image), that are not visible in some of the
images that are used to make the reconstructions. Even
when the depth of these regions is predicted correctly, a cor-
rect reconstruction is not likely, which would give a high
photometric error for such a region. [6]

Lp = min
t′
pe(It, It′→t) (6)

2.3. Occlusion

2.3.1 The occlusion mask

The hypothesis in this thesis is that by selectively ignoring
only the occluded regions of a reconstructed image, com-
pared with the per-pixel minimum reprojection loss, more
relevant information is available to learn the task of depth
prediction. To this end we design an occlusion mask for dis-
carding regions that cannot be reconstructed due to occlu-
sions. Our solution for the occlusion mask utilizes the pre-
viously unused depth information of the point/pixel cloud
after it has been projected in order to reconstruct the target
image (figure 4f in section 2.1.2).

Figure 6 illustrates the computation steps of the occlu-
sion mask. Consider 6a as the frame for which the depth
map is predicted and the target of the reconstruction, and
6b the previous video frame. Similar to 4f from the exam-
ple in section 2.1.2 , figure 6c shows the projected points,
i.e. where the pixels of the reconstruction target image will
end up after the camera transformation to the previous video

frame. In contrast with that earlier example, we will use the
depth information that is removed from the point cloud vis-
ible in 6c to get the sample locations 6d. This information
gives the depths that are expected at the sample locations.

These depth expectations are visualized in 6e, important
to note is that it is not an actual depth map of a point in
time, but the depths that you would expect to see if you
would sample at the locations of 6d in the depth map of the
previous video frame. Figure 6f show the depth map pre-
diction of the previous frame. Figure 6g shows the depths
that are sampled from the prediction 6f using the sample
locations from 6d. By comparing the expected depths at
the sample locations 6e with the observed depths, i.e. those
sampled from the adjacent frame depth map prediction 6g,
the occluded regions can be determined 6h. When the sam-
pled observed depth is closer than what is expected from
reprojection, it means something is blocking the view (i.e.
occlusion). This occlusion mask can be used to ignore these
regions in the reconstruction 6i.

Equation 7 shows the definition of the occlusion mask,
which indicates which of the pixels of the target image are
visible in the image from which is sampled and thus can be
used to ignore the occluded pixels in the reconstruction. In
this formula zt′∗ is the value of the depth map prediction of
frame It′ sampled at location (xt→t′ , yt→t′), i.e. the loca-
tion after the projection.

If due to variation in the depth map predictions, an object
is predicted closer in the adjacent frame, this could intro-
duce regions that are incorrectly recognized as occlusion.
To avoid this we propose to add the parameter tolerance
so that only regions with a sufficiently high ratio of pre-
dicted and expected (i.e. projected) depth are considered
occluded. In our experiments we used tolerance = 0.3
since this value produced occlusion mask that were good
enough for performing our experiments. See section A of
the appendix for further considerations on choosing the pa-
rameter value.

The second case of equation 7 ignores the occlusion that
is due to projected coordinates being outside of the image
boundaries, just like the principled mask in [9].

ωt→t′ =


0 if zt′∗ > zt→t′ ∗ (1− tolerance)
0 if xt→t′ or yt→t′ outside of image
1 otherwise

(7)

This computation of the occlusion mask does not introduce
any new learnable parameters. Furthermore the adjacent
frames depth map predictions are only used for determining
the occlusion mask and not for backpropagation, therefore
no gradients have to be computed which limits the compu-
tational overhead and thus the additional training time.

6



(a) Target image (b) Previous video frame (c) Projected point cloud

(d) Sample locations
(e) Depths from projected point cloud (f) Predicted depth map of previous

frame

(g) Depths sampled from 6f (h) Occlusion mask (i) Reconstructed image

Figure 6: Example of occlusion mask computation steps. To make a reconstruction (i) of frame (a) from an adjacent frame (b) , sample
locations (d) are computed. This calculation also provides each sample locations expected depth (e). These expected depths (e) can be
compared with the depths observed at the sample locations (g), i.e. the depths sampled from the adjacent frame depth map prediction(f).
This comparison gives the occlusion mask (h), which shows an occlusion when the observed depth at the sample location is closer than the
depth that is expected.

2.3.2 Non-occluded average loss

Equation 8 shows the non-occluded average loss, a photo-
metric loss function that uses the occlusion mask to average
the reconstruction errors. The resulting loss map consists
of the pixel wise average of the non-occluded regions of
the reconstructions. For example, if a region is visible in
both of the adjacent images, the loss for that region will be
the average of both their reconstruction errors. If a region
is only visible in one of the adjacent images, only the re-
construction error of that image is used. When a region is
somehow occluded in both the adjacent images, none of the
reconstruction errors will be used for training the model.

Lp =

∑
t′

ωt→t′pe(It, It′→t)

max(
∑
t′

ωt→t′ , 1)
(8)

2.3.3 Non-occluded minimum reprojection loss

A photometric loss function that more resembles the one
used in the baseline can be seen in equation 9. This loss
function has the same properties as the per-pixel minimum
reprojection loss, however it also incorporates the occlu-
sion mask as a penalty. Per-pixel minimum reprojection
loss uses only one reconstruction per pixel location in the
loss. It is not known whether selecting only one reconstruc-
tion in a non-occluded region has an effect on the trained
model. It is possible that this effect is beneficial to the
model performance. If this were the case, averaging the
non-occluded regions as done in equation 8 might harm per-

formance. We will show experimentally that this is indeed
the case: it helps to consider the per-pixel minimum also for
non-occluded regions.

In equation 9 you can see the photometric loss function
that has the same behavior as equation 6 for non-occluded
regions while further preventing occluded pixels from being
used in the loss function, by using the mask as an additional
error term. The implementation of the photometric error
function has a convenient range of [0, 1], which makes scal-
ing the occlusion mask unnecessary. For the model variant
that uses this photometric loss, the occlusion mask is used
in the same manner in the automask computation, i.e. as an
additional error term on the right hand side of equation 4.
This is done in order to prevent that areas that are occluded
in both adjacent images, will be used to update the model.

Lp = min
t′

(pe(It, It′→t) + (1− ωt→t′)) (9)

3. Experiments
We will evaluate the performance of models trained us-

ing the introduced photometric losses and compare them
with the baseline. Additionally we will visualize the ef-
fect of the photometric loss function on the learning signal
during training using examples from the training set.

3.1. KITTI dataset

In our experiment we will use the KITTI dataset since
it is a widely used dataset in single-view depth estimation
literature. This dataset contains short videos that are cap-
tured while driving through and around Karlsruhe in a car
equipped with multiple cameras, a laser scanner and a GPS

7



Photometric loss Occlusion
mask

Error metrics
(lower is better)

Accuracy metrics
(higher is better)

Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

(a) Average reprojection* 0.117 0.878 4.846 0.196 0.870 0.957 0.980
Non-occluded average reprojection X 0.117 0.936 4.908 0.195 0.874 0.958 0.980

(b) Per pixel min reprojection [6] 0.114 0.915 4.874 0.193 0.877 0.959 0.981
Non-occluded min reprojection X 0.113 0.865 4.789 0.192 0.878 0.960 0.981

Table 1: Results of the models trained with different photometric losses on the KITTI dataset [4]. Best results are in bold. Training is
done using the subset of the Eigen split [2] introduced for monocular training by [11]. *the numbers shown for this model are from table
2 in [6]. δ = max(

dpred
dgt

,
dgt

dpred
) (a) photometric losses that are based on averaging the photometric errors of both reconstructions. (b)

photometric losses that are based on selecting the reconstruction with the lowest reconstruction error. Both types of loss functions (a, b)
get improved result when occlusion mask is incorporated.

system.[4] We will use the split of this dataset introduced
in [2] with the static frames filtered out as described in
[11]. This split uses 33 drives (the short videos) to produce
39,810 triplets for training and 4,424 for validation, and for
testing 697 images sampled balanced from 28 other drives.

3.1.1 Results

The results in table 1 show that incorporating the occlu-
sion mask into the used loss function improves the accuracy
of depth prediction models. The model trained with non-
occluded minimum reprojection loss outperforms the base-
line, i.e. the per-pixel minimum reprojection loss model,
on all metrics. Incorporating the occlusion mask gives a
larger accuracy improvement for the average reprojection
loss function (table 1a) than for the per-pixel minimum re-
projection loss function (table 1b). This can be explained
by the fact that per-pixel minimum reprojection loss already
ignores occlusion effects based on reconstruction error, and
that further improvement can only come from ignoring oc-
clusion effects that are missed by per-pixel minimum repro-
jection loss but are recognized by the occlusion mask.

Although the observed performance improvements val-
idate the benefit of incorporating occlusion mask into the
loss function, the results do not validate the hypothesis,
which states that more useful information is available for
model training if only those regions that suffer from occlu-
sion are ignored. Given this hypothesis, it would be ex-
pected that the non-occluded average reprojection model
outperforms the per-pixel minimum reprojection model.

We can think of various explanations for this result: the
occlusion mask fails to mask occluded regions, the occlu-
sion mask incorrectly masks non-occluded regions, or per-
pixel minimum reprojection loss ignores regions which are
not occluded but that do have a negative effect on train-
ing the model. We will try to answer this question in the
next section by analyzing the loss images created by the
discussed photometric losses.

3.1.2 Visualizing Photometric Losses

In this section we will compare loss images of the two pro-
posed photometric losses (i.e. the non-occluded average
reprojection loss from section 2.3.2 and the non-occluded
minimum reprojection loss from section 2.3.3) with loss im-
ages created by the baselines photometric loss (i.e. per pixel
minimum reprojection loss, section 2.2.5). These loss im-
ages are computed on training examples and provide an idea
of how important the regions of a reconstructed image are
for optimization during training.

We intend to identify the differences between the loss
functions. For example if one of the methods fails to ignore
occluded regions or unexpectedly ignores non-occluded re-
gions. Additionally this analysis can demonstrate whether
the occlusion mask is able to mask occlusion. Since the loss
function is used to guide the learning behavior during train-
ing, we will apply our analysis on the data from the training
set. The loss images are all created using depth predictions
made by the same model, i.e. one trained with per-pixel
minimum reprojection loss. We assume that model choice
has limited influence on the results of this analysis. Training
examples for visualization will be selected randomly as well
as based on the computed loss values. The criterion for se-
lection is a large absolute difference between the computed
per-pixel minimum reprojection loss and the non-occluded
average reprojection loss. To avoid having many similar ex-
amples, we filter the data by only looking at images from
one camera and at every tenth frame recorded.

Figure 7 shows the example with the highest difference
in the computed loss. The first five images of this figure
show the target frame, both reconstructions, and the pho-
tometric errors of the reconstructions. In the photometric
error images, a brighter color means a higher value. The im-
ages of the third row show the calculated binary occlusion
masks, where white areas mean there is no occlusion and
black means there is occlusion. The last three rows show
for each photometric loss, the calculated loss maps, the ab-
solute difference to the baseline photometric loss and if ap-
plicable a mask displaying for each pixel location which of
the photometric errors is used in the loss (black means from
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Figure 7: Visualizing photometric losses: Example with the largest difference between between the per-pixel minimum reprojection loss
and the non-occluded average reprojection loss. (a) The reconstruction target. (b&c) Reconstructions made from video frames adjacent
to the target. (d&e) Photometric errors from (b&c) to (a). (f&g) Occlusion masks depicting which areas are visible of (b&d) and (c&e)
respectively. h, j& m: Visualisations of the computed per-pixel minimum reprojection loss, non-occluded minimum reprojection loss, and
non-occluded average reprojection loss, respectively. (k&n) Absolute differences of (j&m) with (h) (i&l) Masks displaying for each pixel
location which reconstruction’s photometric error is used in the loss (black =1, white=2) by (h) and (j), respectively.

reconstruction 1, white from reconstruction 2). An impor-
tant remark is that the shown loss maps are the photometric
loss where the automask has not yet been applied.

This example has a high absolute difference for the two
loss methods, because there is an area that is occluded in
both of the adjacent frames and per-pixel minimum repro-
jection loss is only able to ignore one of the reconstructions.
This example shows that the occlusion mask (7f+g) is in-
deed able to mask the occluded areas, i.e. the black regions
of the occlusion masks match with regions that are visible
in the target image but not in the reconstructions. The piece
of road that is visible in the target frame is occluded by the

first car in the previous frame (7b) and the tailgating car in
the later frame (7c). Together these occlusions make it im-
possible to reconstruct that area of the target image. What
the example also shows, is that the occlusion mask is able
to handle thin objects, which can be seen by the traffic sign
in 7b,d and f.

The areas that are occluded in both of the adjacent im-
ages are visible as the black regions in the non-occluded
average loss image (7m), because they are directly ignored
using the occlusion mask. In the loss image of the non-
occluded minimum reprojection loss (7j) these areas are
clearly visible as the yellow areas because the occlusion
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Figure 8: Visualizing photometric losses: Example that was randomly selected. In (n) we can see that the per-pixel minimum reprojection
loss is able to ignore some of the reprojection error caused by object motion.

mask is added to the loss, and consequently will be ignored
by the automask.

Figure 8 shows one of the examples that was selected
randomly. We can observe that the per-pixel minimum re-
projection loss is able to ignore some of the reprojection er-
ror that is caused by object motion instead of occlusion. In
the image which shows the loss difference between the non-
occluded average loss and the minimum reprojection loss
(fig8n), we can see that there is a loss difference for moving
objects, in this case the cars, which are not occluded. Al-
though this behavior is not the originally intended effects of
the per-pixel minimum reprojection loss it does help train-
ing, since the current reprojection computation (eq. 1) does
not account for object movement, and consequently any
gradient coming from a moving object can interfere with
learning correct depth predictions.

4. Discussion

The goal of this thesis was to design an occlusion mask
that can be used to specifically discard regions that can-
not be reconstructed due to occlusions and to test whether
this method can help improve the performance of depth
prediction models. We hypothesized that by limiting the
amount of information which is ignored during training to
only those regions that suffer from occlusion, more useful
information will be available for training the model.

Here, we have introduced an occlusion mask that is
based entirely on depth predictions and can be used to
specifically ignore regions where occlusion is expected. We
have shown that incorporating the occlusion mask in the
photometric loss function improves model performance.

Contrary to our hypothesis, the results of our experi-
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ments show that ignoring only regions where occlusion is
expected (non-occluded average loss) did not give better re-
sults compared with per-pixel minimum reprojection loss.
We further investigated this outcome by performing a visual
analysis of the difference between the photometric losses
obtained by both methods.

In the visual analysis of the photometric losses, we ob-
served (in fig. 7) that with the occlusion mask it is possible
to ignore areas of reconstructions that are occluded in both
of the adjacent frames. This is an improvement compared to
the per-pixel minimum reprojection loss which is only able
to ignore one of the reconstructions.

During this analysis we have also discovered (in fig. 8n)
that the per-pixel minimum reprojection loss unexpectedly
reduces the loss being contaminated with photometric error
caused by object motion. This effect takes place because the
per-pixel minimum reprojection loss always ignores one of
the reconstructions at each pixel location based entirely on
a high photometric error, which itself is not caused exclu-
sively by occlusion. The ability to partially ignore moving
objects is useful for models that do not take object motion
into account.

It makes sense that a model which does not take ob-
ject motion into account does not benefit from incorporat-
ing errors caused by object motion into the loss function.
This however does not give a complete answer about the
reason for the observed performance gap between the non-
occluded average photometric loss and the per-pixel mini-
mum reprojection loss. It is possible that for the per-pixel
minimum reprojection loss the improvement in model per-
formance which is gained by ignoring motion artefacts is at
the same time reduced by ignoring regions which are not af-
fected by occlusion or motion and do have a valid gradient.

The question of whether ignoring only the areas of re-
constructions that are affected by occlusion during training
gives a better performing model, remains for models that do
take object motion into account.

It is possible that (partially) ignoring object-motion re-
lated photometric error, as is done by the per-pixel mini-
mum reprojection loss, could be disadvantageous for mod-
els that do take object motion into consideration since it al-
lows the model to achieve a lower loss while making incor-
rect predictions about object movement. Occlusion mask
does not have this problem because it can specifically ig-
nore occlusion effects, while preserving the photometric er-
ror caused by object movement which is valuable informa-
tion when optimizing the model.

Looking back to the implicit assumptions underlying
self-supervised training using image reconstruction6 that

6

1. the scene is static without moving objects;
2. there is no occlusion/disocclusion between the target view and the

source views;

were mentioned in section 2.1.2, and combining them with
our earlier observations we can see that the per-pixel mini-
mum reprojection loss is able to ignore some or most of the
photometric error related to the first two assumptions, i.e.
the scene is static and there is no occlusion. We can imag-
ine that per-pixel minimum reprojection loss is also able to
ignore some of the photometric error related to the third as-
sumption, i.e. surface appearance changes with direction of
view. Or changes in surface appearance caused by a change
in illumination due to moving objects, e.g. shade or reflec-
tion.

5. Conclusion
In this work we have introduced occlusion mask, a

mask that during training can be used to specifically ig-
nore regions that cannot be reconstructed due to occlusions.
Occlusion mask is based entirely on predicted depth in-
formation. We have demonstrated that (i) incorporating
occlusion mask in the used photometric loss function can
improve the performance of single image depth prediction
models. (ii) per-pixel minimum reprojection loss also ig-
nores some of the reprojection error caused by object mo-
tion.
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Appendices
A. Occlusion mask - parameter value

In this work a “tolerance” parameter is introduced in the
implementation of the occlusion mask to prevent incorrectly
recognizing regions as occluded due to variation in the pre-
dicted depth maps of adjacent frames. Due to time con-
straints limited consideration has been put in choosing the
value that was used.

We think that the “optimal” value depends on the perfor-
mance of the model for which it is used. For example if a
model gives almost perfect depth map predictions, the value
could be (very close) to zero. Another example would be a
model that gives more accurate depth predictions for closer
objects than for objects further away. In this situation the
“tolerance” value can be based on the distance to the object.
One of the reasons for not further investigating these options
is that considering that the choice of parameter value is de-
pendent on the network performance, it means that when
future models keep improving, the value choice becomes
less important and just taking a constant value close to zero
will work just fine.

During the design of the occlusion mask when determin-
ing what value to use for the“tolerance” parameter, we for-
got to put the network into evaluation mode, which resulted
in the model producing less accurate depth maps. This
could have resulted in overestimating the depth map pre-
diction variability and thus choosing an unnecessarily high
tolerance value. A consequence of a high value for this pa-
rameter are that some occlusions are not recognized when
“the occluded” and “the occluding” are close, and the ratio
of the distances to them is small. An example of this can be
seen in figure 8 where “the occluding” parts of the moving
car that are close to the road, are not marked as occluding
in the occlusion mask and are visible in the non-occluded
average loss image.
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