MASTER THESIS

COMPUTING SCIENCE
CYBER SECURITY SPECIALISATION

AN,

Q
S
iorrer

YiNe S

RADBOUD UNIVERSITY

Optimizing NTRU using AVX2

Author: First supervisor/assessor:
Oussama Danba dr. Peter Schwabe

Second assessor:
dr. Lejla Batina

July, 2019

Abstract

The existence of Shor’s algorithm, Grover’s algorithm, and others that rely
on the computational possibilities of quantum computers raise problems for
some computational problems modern cryptography relies on. These algo-
rithms do not yet have practical implications but it is believed that they will
in the near future. In response to this, NIST is attempting to standardize
post-quantum cryptography algorithms. In this thesis we will look at the
NTRU submission in detail and optimize it for performance using AVX2. This
implementation takes about 29 microseconds to generate a keypair, about
7.4 microseconds for key encapsulation, and about 6.8 microseconds for key
decapsulation. These results are achieved on a reasonably recent notebook
processor showing that NTRU is fast and feasible in practice.

Contents

1 Introduction

2 Cryptographic background and related work

2.1 Symmetric-key cryptography
2.2 Public-key cryptography oo

2.2.1 Digital signatures

2.2.2 Key encapsulation mechanisms
2.3 Ome-way functions

2.3.1 Cryptographic hash functions
2.4 Proving security Lo
2.5 Post-quantum cryptography oL
2.6 Lattice-based cryptography
2.7 Side-channel resistance L L oL
2.8 Related work o

3 Overview of NTRU
3.1 TImportant NTRU operations
3.1.1 Sampling
3.1.2 Polynomial addition
3.1.3 Polynomial reduction
3.1.4 Polynomial multiplication
3.1.5 Polynomial inversion
3.1.6 Hashing
32 NTRUDPKE
3.2.1 Keypair generationo
3.2.2 Encryption oo oL
3.2.3 Decryption o
3.3 NTRUKEM
3.3.1 Keypair generationo
3.3.2 Encapsulation.,
3.3.3 Decapsulation

4 Optimizing NTRU using AVX2

19
20
20
22
22
23
28
28
29
29
30
30
31
31
31
32

33

4.1 AVX2 features and description 33

4.2 Optimizing crucial operations 35
4.2.1 Multiplication in R/q, 35
4.2.2 Multiplication in S/3. 38
423 Inversionin S/q 39
424 Inversionin S/3 41
4.2.5 Optimizing R/q to S/3 conversion 41
4.2.6 Optimizing cryptographic sorting 42

Results and comparison 43

5.1 Comparison to other submissions 47

Conclusions 49

6.1 Futurework 49

Introduction

Cryptography has become ubiquitous in modern society even though we
may not realize it. Whenever one uses something that is digital there is
almost certainly some kind of cryptography involved. A few examples are:
car doors that unlock when your car key gets close, smart cards that are
used for payment or authentication, online web browsing (including digital
purchases), or just regular instant messaging. For these applications we
require cryptography to be unbroken.

In order for our cryptography to be secure we rely on the hardness of some
mathematical problem such that no amount of achievable processing power
is able to solve that problem. With the advent of quantum computers and
accompanying quantum algorithms it turns out that some of the mathe-
matical problems that are used in practice today are becoming efficiently
solvable. For example, Shor’s algorithm [50] poses a threat to RSA and
Diffie-Hellman (even when using elliptic curves) since it is capable of finding
the prime factors of an integer and solving the discrete-logarithm problem.
Grover’s algorithm [30] is relevant to symmetric-key cryptography and hash
pre-images. It provides a quadratic speedup compared to non-quantum
computers. Both are described in more detail in Section 2.5.

Fortunately, building quantum computers large enough to break these prob-
lems in practice is not yet feasible. However, it seems likely that this will
happen at some point so we should prepare by creating cryptography that
relies on mathematical problems that are still not solvable by quantum com-
puters. This is known as post-quantum cryptography.

The National Institute of Standards and Technology (NIST) set up a “com-
petition” in which (teams of) cryptographers can submit algorithms that
are resistant to quantum computers [53]. These post-quantum algorithms
are reviewed by other cryptographers for their security. While commonly
referred to as a competition it is not quite a competition since a portfolio of
different algorithms will be standardized at the end. Also, what constitutes

a better algorithm is not quite clear yet in the context of post-quantum
cryptography. Besides meeting the security goals of NIST, there is a wide
variety in performance, keysizes, and signature sizes. The competition had
about seventy submissions in the first round. The second round, which is
the current round, has 26 submissions. Some of the submissions from the
first round have been withdrawn due to weaknesses or being incomplete
while others have alternatives that are considered preferable. There are also
some submissions from the first round that have been merged into a single
submission.

In this thesis we will look at the NTRU [48] submission and maximize its per-
formance. NTRU is based on an older cryptosystem with the same name [32].
The original cryptosystem will be shown as NTRU while the cryptosystem
proposed in the NIST competition will be shown as NTRU. NTRU is a merger
of the first round NTRUEncrypt [31] and NTRU-HRSS-KEM ([33] submis-

sions.

This thesis will be separated into chapters. In Chapter 2 some cryptographic
background will be covered that is necessary for the other chapters. Chap-
ter 3 will cover the construction of NTRU and its operations. Chapter 4 will
be about the work that was performed during this Master’s thesis. It aims
to explain the work performed, why certain decisions were made, and the re-
sults of those decisions. Chapter 5 will look at the final results of the AVX2
implementation and how it compares to other submissions in the NIST com-
petition. The thesis closes out with a short conclusion in Chapter 6.

Cryptographic background and
related work

This chapter covers key concepts in cryptography such that the context
around NTRU is clear. The sections about post-quantum cryptography and
lattice-based cryptography are especially important to understand the cryp-
tographic security of NTRU.

2.1 Symmetric-key cryptography

A cryptographic system that uses a secret key that is shared between all
parties involved (typically two parties) is known as a symmetric-key system.
It is possible for the inner workings of the cryptographic system itself to
be a secret as well but is considered poor practice in modern cryptography
because it comes with several problems for only a small gain in short-term
security. The first problem is that such a secret system might contain weak-
nesses an attacker uncovers but the original designers are unaware of. If
a cryptosystem is public there is a higher chance of such weaknesses being
found before they are being exploited. A second reason for why it is con-
sidered poor practice is that the security of the cryptosystem may rely on
the fact that the cryptosystem is secret. Consequently, if the cryptosystem
loses its secrecy then it is permanently compromised. If the cryptosystem is
public then only the key must be kept secret and can be changed if compro-
mised. Finally, a somewhat pragmatic reason, is that in order to rely on a
cryptosystem there has to be some amount of trust in that cryptosystem. A
public cryptosystem allows others to verify the security claims made.

Auguste Kerckhoffs stated in the nineteenth century that a cryptosystem
should not require secrecy and that it should not be a problem if the system
falls into enemy hands [38]. This is now known as Kerckhoffs’ principle and
is one of the first statements that objects to the “security through obscurity”
design.

For modern symmetric-key ciphers there are typically two variants: block
ciphers and stream ciphers. For encryption a block cipher takes a secret
key and a fixed length input which produces an unreadable output, the so-
called ciphertext. Decryption is similar and requires the secret key and the
ciphertext in order to produce the original plaintext. Since block ciphers
work on fixed-length inputs they are commonly used in so called modes of
operation to support longer length inputs. For this to work the input is
(securely) padded to a multiple of the block length and depending of the
mode of operation the secret key is expanded to a keystream.

Stream ciphers differ from block ciphers in that they work per unit of the
input (typically a bit or a single digit). In order to support this, the secret
key is expanded to a pseudorandom keystream of the same length as the
input and is then combined; the combination in practice is typically an
exclusive-or. The specific expansion to the keystream is dependent on which
cipher is used. Due to the fact that block ciphers are used with modes of
operation they can strongly resemble stream ciphers where the unit length
is the block length.

The main disadvantage of symmetric-key cryptography is that a shared key
is necessary. As a result, there must be some way to securely exchange keys
beforehand. Another disadvantage is that both parties must keep the key
secret instead of only on party.

2.2 Public-key cryptography

Public-key cryptography, also known as asymmetric cryptography, differs
from symmetric-key cryptography in that there is no longer a shared key
but a public key and a private key. This idea comes from the 1976 paper
New directions in cryptography [22] by Diffie and Hellman, which proposes to
take a secret key and split it into a private part which can solely be used for
decryption and a public part (available to anyone) which can solely be used
for encryption. Constructing such a system did not happen until later with
RSA [46] being the first public one (in 1973 Clifford Cocks independently
discovered RSA but this was classified information until 1997).

In the same paper they did propose the Diffie-Hellman key exchange where
two parties can establish a shared secret key over an unsecured channel
without an adversary getting to know the secret key. The existence of the
Diffie-Hellman key exchange made symmetric-key cryptography much easier
to use as there is a way to establish a secret key without other channels.
It also made it possible for keys to be used only for one communication
session such that leaking a secret key has no influence on past or future
communication.

Note that public-key cryptography, unlike symmetric-key cryptography, is
only possible for one-way communication as the party which holds the pri-
vate key has no means to send a confidential message to a specific holder
of a public key. There are a few common ways of getting around this. One
option is to use a key exchange algorithm like Diffie-Hellman to agree on
a secret key and then use symmetric-key cryptography. Another option is
to send a symmetric key using public-key cryptography and use that as the
key. One last option: both parties have a keypair such that messages are
encrypted with each other’s public key. Some other mechanism is required
to ensure you have the correct public key.

Definition 1 (Public-key cryptography scheme). A public key cryptography
scheme PKE is a tuple PKE=(KeyGen, Encrypt, Decrypt) of polynomial
time algorithms which are defined as:

o Key generation KeyGen is a probabilistic algorithm that given a security
parameter 1% produces a keypair (sk, pk).

e Encrypt is a (probabilistic) algorithm that, given a message M and a
public key pk, produces a ciphertext c.

e Decrypt is a determunistic algorithm that produces a plaintext M or
possibly an error when given a secret key sk and a ciphertext c.

From the definition of a PKE one can see that encryption can be prob-
abilistic. In order to distinguish between probabilistic and deterministic
encryption the terms probabilistic public-key encryption (PPKE) and deter-
ministic public-key encryption (DPKE) are used. The properties of PPKE
and DPKE are different when proving security and must thus be viewed
separately.

2.2.1 Digital signatures

Besides the fact that public-key cryptography can be used for confidential
communication through encryption and decryption it can also provide au-
thenticity, integrity, and non-repudiation through a scheme called digital
signatures. If one party wants to send some message it can apply a secret
function on that message; this is known as signing and produces a signature
over that message. If the receiver then applies a public function over that
message in combination with the signature, which is called verification, the
output tells you whether the signature belongs to that message and thus
verifying that the secret function was applied correctly.

In practice the secret function requires the private key while the public
function requires the public key. Since there is only one party that holds
the private key only that party is able to produce a valid signature and
thus a valid signature proves that the message indeed came from the holder

of the private key. This provides authenticity of the message. The same
reasoning holds for non-repudiation. Since only the holder of the private
key can produce a valid signature that means that a valid signature is proof
that the holder of the private key sent this message at some point. Integrity
is provided by the idea that if the message, signature, or both are modified
that the signature will no longer match the message thus the message is
no longer guaranteed to be unaltered. This can happen by an adversary or
transmission errors.

The concept of signatures was also described by Diffie and Hellman [22]
and is incredibly important for secure communication. Note that all of
these properties are only guaranteed as long as the private key has not been
compromised. In practice revocation lists exist in order to keep track of
keypairs that have been compromised.

2.2.2 Key encapsulation mechanisms

As described earlier, public-key cryptography can be used to encrypt a se-
cret key which is then decrypted be the receiver such that both parties share
a secret key for use in symmetric-key cryptography. Since symmetric keys
are fairly small there will be some padding involved which must not reveal
any details about the key itself in any way. This can be a tricky process
and thus there is an alternative option called key encapsulation mechanisms
(KEM) [21]. Rather than using a normal public-key encryption algorithm
with as input a padded normal symmetric key we have a specific algorithm
for the establishment of shared secret keys. Typically a random element is
taken as input and is then encapsulated (similar if not identical to encryp-
tion). The receiver decapsulates it (similar if not identical to decryption).
Both parties hash (more detail on hashing later) the random element which
is then used as the shared secret key. The sampling of a random element
has the length that the public-key scheme requires which has the result that
there is no need for padding in a KEM. For the competition NIST provides
an interface for such KEMs besides an interface for public-key encryption
algorithms.

Definition 2 (Key encapsulation mechanism). A key encapsulation mecha-
nism KEM is a tuple KEM=(KeyGen, Encapsulate, Decapsulate) of poly-
nomial time algorithms which are defined as:

o Key generation KeyGen is a probabilistic algorithm that given a security
parameter 1¥ produces a keypair (sk, pk).

e Encapsulate ts a probabilistic algorithm that given a public key pk,
produces a key k and the ciphertext c.

e Decapsulate is a deterministic algorithm that produces a key k when
given a secret key sk and a ciphertext c. In case of failure it can return
an error.

In order to make assertions about the correctness and security of PKEs and
KEMs it is typical to prove these assertions. Proving security is discussed
in Section 2.4.

2.3 One-way functions

A one-way function is a function that is easy to compute but hard to invert.
The implementation of public-key cryptography mentioned above relies on
these one-way functions to be truly one way unless one has some special in-
formation. This subset of one-way functions is known as trapdoor functions.
Some algorithms such as RSA rely on the integer-factorization problem. In
this problem the efficient one-way function is the multiplication of two prime
numbers to form one large integer whereas the inverse is to find the two prime
numbers forming that large integer (which is hard). If the prime factors are
sufficiently large you can not efficiently find the prime factors using classical
computers. If you were able to find the prime factors you can compute the
Fuler totient function which can be used together with the public exponent
e to find the private exponent d.

Other cryptographic schemes such as Diffie-Hellman rely on the discrete
log problem. Given some group G and an element g in that group the
computation of g* = x (where a is a positive integer and x € G) is efficient.
However finding a given G, g, and z is inefficient.

2.3.1 Cryptographic hash functions

A cryptographic hash function H is a one-way function defined as fol-
lows:

H:{0,1}* > {0,1}"

In other words, H takes an arbitrary length input and transforms it into a
fixed length output. The output is known as a hash or digest. In order for a
cryptographic hash function to be considered secure for use in cryptographic
purposes the following properties should hold (of which the first two come
from the definition of a one-way function):

Pre-image resistance Given some hash h it should be difficult to find
an input m that satisfies H(m) = h.

Second pre-image resistance Given some input m; it should be difficult
to find a different input mg for which H(m) = H(ma).

Collision resistance Finding two arbitrary inputs m; and my that are
different for which H(m) = H(mg) should be difficult.

Cryptographic hash functions on their own have some uses such as pass-
word verification but they are typically used as building blocks within other
schemes. For example, hashing a message before signing allows the signature
to be generated over a smaller input which can be beneficial to efficiency de-
pending on the signature scheme. Another use is within HMAC where a hash
function is used to create a message authentication code (MAC). A MAC is
used to provide authenticity and integrity over a message without the use
of public-key cryptography (a single symmetric key is used for both gener-
ation and verification). A final example mentioned earlier is the use within
a KEM where the random element is hashed. This reduces the random ele-
ment to a suitable length to be a session key and means that the chooser of
the random element can not choose a specific session key (although a hash
can be reused by using the same random element twice).

2.4 Proving security

When dealing with cryptography ideally we would be using cryptography
that is provably secure. That is, the capabilities of an adversary are well-
defined and a correct mathematical proof exists that shows that breaking
the cryptosystem requires solving a hard problem. However, in practice this
turns out to be quite difficult and many proofs are not quite correct [44,
36] [9, 51] [15, 27] [43, 19]'. An attacker model might be subtly wrong or
incomplete, assumptions may be too strong and are in fact false, or the
proofs are simply interpreted wrongly.

An alternative approach is to define properties a cryptosystem wants to
reach and proof for a cryptosystem how it accomplishes those properties.
Two of the properties that are commonly used for PPKEs and KEMs are
indistinguishability (IND) and non-malleability (NM). Indistinguishability
describes the notion that an adversary is unable to learn anything about
the plaintext when given a ciphertext [29]. Non-malleability describes the
notion that an adversary can not alter a ciphertext and have the plaintext
be meaningfully altered [23]. Indistinguishability says something about the
privacy of a cryptosystem while non-malleability says something about how
the cryptosystem is tamper-proof. Typically, indistinguishability in a PPKE
is described as a game with a challenger and an adversary that has some
capabilities (depending on his strength) and his target is to break the system.
We will now describe the games and how the strength of the adversary
differs.

!Paper with security proof followed by paper that shows flaws in the proof. In some
cases an alternative proof can be provided such that the security still holds.

10

Definition 3 (IND-CPA). Indistinguishability under Chosen Plaintext At-
tack.

e Challenger generated a keypair (sk, pk).

o Adversary generates two messages m1 and mo of the same length and
sends both to the challenger. The adversary is allowed to do any poly-
nomial time operations including calls to an encryption oracle.

e Challenger randomly chooses one of the two messages to encrypt and
sends the ciphertext to the adversary.

e Adversary is allowed to do any polynomial time operations including
calls to an encryption oracle. The adversary outputs a guess which
plaintext was encrypted.

o [If the guess was correct then the adversary wins.

In the IND-CPA game we would expect an adversary to have no advantage
in winning (in reality, negligible advantage) in polynomial time if the PPKE
is well-constructed. Without the polynomial time constraint an adversary
could theoretically break the system and be always correct.

Definition 4 (IND-CCAL1). Indistinguishability under non-adaptive Chosen
Ciphertext Attack.

e Challenger generated a keypair (sk, pk).

e Adversary calls the encryption or decryption oracle for arbitrary plain-
texts and ciphertexts (some polynomial amount of times).

o Adversary generates two messages mi1 and meo of the same length and
sends both to the challenger.

e Challenger randomly chooses one of the two messages to encrypt and
sends the ciphertext to the adversary.

o Adversary is allowed to do any polynomial time operations including
calls to an encryption oracle. The adversary outputs a guess which
plaintext was encrypted.

o [f the guess was correct then the adversary wins.

IND-CCAL1 is essentially the same as IND-CPA with the addition that an
adversary is allowed to have access to the decryption oracle before receiving
the ciphertext. If a PPKE is IND-CCA1 secure then the expectation is that
the PPKE does not weaken over time.

Definition 5 (IND-CCA2). Indistinguishability under adaptive Chosen Ci-
phertext Attack.

e Challenger generated a keypair (sk, pk).

11

o Adversary calls the encryption or decryption oracle for arbitrary plain-
texts and ciphertexts (some polynomial amount of times)

o Adversary generates two messages my and mo of the same length and
sends both to the challenger.

e Challenger randomly chooses one of the two messages to encrypt and
sends the ciphertext to the adversary.

e Adversary is allowed to do any polynomial time operations including
calls to a decryption and encryption oracle with the exception that
the adversary can not send the challenge ciphertext to the decryption
oracle. The adversary outputs a guess which plaintext was encrypted.

o If the guess was correct then the adversary wins.

IND-CCA2 allows the decryption oracle to be used after receiving the ci-
phertext. The idea here is that using the decryption oracle after receiving
the ciphertext should not reveal anything that can help making the correct
guess. Since IND-CCA2 gives an adversary the most capabilities it implies
that a IND-CCA2 secure PPKE is also IND-CCA1 and IND-CPA secure.
The games are essentially the same for non-malleability. There is one im-
portant fact to note and that is that IND-CCA2 secure implies NM-CCA2
secure [8].

2.5 Post-quantum cryptography

The complexity class P is for decision problems for which solutions can be
found (and verified) in polynomial time and are commonly considered effi-
cient to compute. The complexity class NP (non-deterministic polynomial)
on the other hand is for decision problems where given the answer “yes” to
a problem and the proof, then it is verifiable in polynomial time. One might
imagine that there are other complexity classes such as when the answer is
“no” and the proof is verifiable in polynomial time (known as co-NP). One
of these complexity classes is known as BQP which stands for bounded-error
quantum polynomial time. It describes the set of decision problems where a
solution to a problem can be found by a quantum computer in polynomial
time where the probability of the answer being wrong is at most %

It turns out that some problems relied on in cryptography such as inte-
ger factorization and discrete-logarithm are in fact contained within BQP
(besides being contained within NP; whether this holds for all problems is
not known). Shor’s algorithm [50], showed this by proposing an algorithm
that factors an integer using O((log N)?(loglog N)(logloglog N)) steps on
a quantum computer and some polynomial amount of post-processing on
a classical computer. This algorithm is also able to solve the discrete-

12

logarithm problem. So far only small integers have been factored due to the
fact that building a reliable large quantum computer with enough qubits
has proven to be difficult.

Besides Shor’s quantum algorithm there is also Grover’s algorithm [30]. This
algorithm finds the input belonging to a specific output for a black-box func-
tion in O(v/N) steps rather than O(N) steps. This provides a quadratic
speedup instead of an exponential one like Shor’s algorithm but still sig-
nificantly reduces the amount of attempts needed to brute-force search a
symmetric key or hash preimage. For symmetric-key cryptography a simple
countermeasure is to simply double the length of keys. For hashes it is a
little harder to estimate how much gain there actually is [5] but a doubling
of the hash output size should be sufficient.

Thus far we have seen that the existence of quantum computers pose the-
oretical problems for modern cryptography. However, in practice we have
not yet seen any evidence that any cryptography in use has been compro-
mised. That is not to say we should disregard quantum-resistant cryp-
tography for now. The development of post-quantum cryptography takes
time and so does building confidence in those algorithms [10]. It should
also be considered that any software built today might still be operational
a decade or two from now. Those systems would not be secure anymore
unless someone is willing to support older systems. It should also be con-
sidered that any encrypted information might be stored such that it can be
decrypted when quantum computers breaking cryptography becomes reality.
If the gap between when post-quantum cryptography starts being used and
when quantum computers can break current cryptography is large then that
stored encrypted information will be older. It is for these reasons that ef-
forts such as the NIST post-quantum cryptography “competition” [53] and
PQCRYPTO [45] are working on standardization and implementation of
post-quantum cryptography.

Luckily there exist other problems on which cryptography can rely. These
are currently believed not to be broken by the existence of quantum com-
puters. Some of these will be briefly discussed here while lattice-based cryp-
tography will be discussed in more detail since the security of NTRU relies on
it.

Hash-based digital signature schemes. Hash-based signatures schemes
are conservative in approach and make use of well-known cryptographic hash
properties to build a signature scheme that is resistant to quantum com-
puters. The reliance on hash functions means that the amount of security
assumptions can be small. Another common advantage of using hash func-
tions is that the hash function itself can be swapped out for another hash
function. This provides flexibility in case a hash functions turns out to be

13

a problem or when a specific platform has better support for other hash
functions. The main disadvantage of hash-based signature schemes is that
the signatures tend to be rather large in comparison to other signatures.
Smaller signatures are possible but sacrifice performance. The hash-based
signature scheme XMSS [18] has been published as an informational RFC
and the NIST competition contains SPHINCS™ [6] (which has the advantage
of not being stateful).

Code-based cryptography. Code-based cryptography schemes work by
using error-correcting codes. The typical idea is that some error (below
a threshold) is introduced in the ciphertext depending on the public key.
Only the holder of the private key can efficiently restore those errors and
thus get the corresponding plaintext. The first implementation was proposed
by McEliece [42]. The largest downside is that the size of the public key
required is large. Attempts have been made to add more structure in order
to reduce the size of the public key but most of those attempts have been
shown to have problems [10]. The original McEliece scheme with additions
(such as a KEM with IND-CCA2 security) has been proposed to the NIST
competition as Classic McEliece [12]. Another code-based cryptography
scheme that is in the NIST competition is NTS-KEM [2].

Multivariate cryptography. The idea of multivariate cryptography is
to use quadratic polynomials over a finite field. Given the input for a poly-
nomial it is easy to compute the resulting value; the inverse is not true and
is known to be NP-hard [10]. This is known as the MQ problem. Rainbow,
a second round signature submission that is based on multivariate cryptog-
raphy uses an Unbalanced Oil and Vinegar (UOV) scheme for its security.
It has a large size for the public and private keys as a result but has short
signature sizes. Rainbow does not have a formal proof that connects the
security of Rainbow to the hardness of the M(Q problem; this is also the
case for most of the other submissions that use multivariate cryptography.
The exception is MQDSS [20], MQDSS has a reduction from the MQ prob-
lem. MQDSS has much shorter keysizes than the other submissions but as
a result has large signature sizes.

Supersingular elliptic curve isogeny cryptography. This class of
cryptography started out with a single cryptographic system: Supersingu-
lar isogeny Diffie-Hellman key exchange (SIDH). The idea was to create a
Diffie-Hellman replacement. The key exchange ended up being similar to
Diffie-Hellman with the difference that instead of using finite cyclic groups
or normal elliptic curves, a supersingular elliptic curve is used together with
supersingular isogeny graphs. The result is that SIDH is an easy replacement
for ECDH with a small keysize compared to other post-quantum schemes.

14

The same idea was later used to create a digital signature scheme. In the
NIST competition there is SIKE (Supersingular Isogeny Key Encapsulation)
that makes use of supersingular isogenies.

2.6 Lattice-based cryptography

In order to understand lattice-based cryptography we will first define what
a lattice is. Imagine one has an n-dimensional space which has n-linearly
independent vectors called a basis. An example would be the space R? with
vectors by = (0,1) and bs = (1,0) (these need not be orthogonal). The
lattice is then generated by all integer linear combinations of these vectors.
In the example the result would be a regular tiling of R? with each point
having at least a distance of 1 to another point. See figure 2.1 for a visual
representation.

Definition 6 (Lattice). A lattice £ € R™ with basis vectors by, ..., b, € R"
is defined as the set L(by,...,b,) = {an a; € Z}.
w

o «
. .

Figure 2.1: Lattice over R? with by = (0,1) and by = (1,0)

There are a few well known hard computational problems that exist on
lattices that are interesting:

15

Shortest Vector Problem (SVP) Given some basis B for a lattice, find
the shortest nonzero vector in the lattice £(B). The length is measured by
the norm N (typically the Euclidean norm).

Closest Vector Problem (CVP) Given some basis B for a lattice, find
the point p in the lattice (p € £(B)) such that it is the closest point to a
target vector ¢ (which is not necessarily in the lattice).

Shortest Independent Vector Problem (SIVP) Given some basis B
for a lattice of dimension n, find a linearly independent set of n vectors such
that all vectors are shorter or equal than the n-th successive minima.

These problems can be approximated and are typically known as SVP,,
CVP,, and SIVP,. For SVP, the problem is to find a nonzero vector where
the length is at most a multiple () of the length of the shortest vector.

How lattice problems can be used for cryptography was first shown by Aj-
tai [1]. Ajtai created a family of one-way functions based on the SIS (Short
Integer Solution) problem and showed that the average case of the SIS prob-
lem is at least as hard as solving the approximate SVP in the worst case.
This is noteworthy because it implies that one must be able solve any in-
stance of the approximate SVP in order to compromise the one-way func-
tion instead of only a subset of instances. It was later shown that these
hash functions were also collision-resistant making them cryptographic hash
functions [28].

NTRU [48], as described in the second round of the NIST competition (and
not the original cryptosystem [32]), works on polynomial rings and does
not have a formal proof that it relies on one of the problems above. How-
ever, lattices are still relevant to NTRU in that NTRU can be seen as lattices
with special structure. As a result, attacks based on lattices such as lattice
reduction are applicable to NTRU. In lattice reduction one wants to find a
short basis with nearly orthogonal vectors when given a lattice with a dif-
ferent basis. One algorithm that accomplishes this in polynomial time is
the Lenstra-Lenstra-Lovész (LLL) algorithm [40]. Since lattice reduction
produces short vectors by design it can aid in solving the SVP. The param-
eter sets proposed account for the existence of these attacks and are chosen
somewhat conservatively.

2.7 Side-channel resistance

When working with cryptography it is important to consider that it will
end up running on hardware that can be susceptible to side-channel attacks.
Side channel attacks allow adversaries to gain information about secret data

16

through weaknesses of the implementation rather than the algorithm. FEx-
amples of side channels are timing, power consumption, electromagnetic
radiation, fault behavior, and data remanence. A well-known side-channel
example attack is square-and-multiply exponentiation in RSA. During de-
cryption every bit in the private key corresponds to a squaring, whenever
that bit is a 1 there is an additional multiplication. A power trace of the
decryption will thus reveal whether a bit is a 0 or a 1 due to the difference
in time (and power) it takes. In order to avoid this problem the exponen-
tiation must be implemented in such a manner that the amount of time it
takes is independent of the value of private key. The idea of writing code
that separates execution time from secret data is known as constant-time
code and is essential when implementing cryptography. For designers of
cryptography side-channel attacks are typically not the main focus as it is
in essence an implementation problem. However, it is beneficial to at least
consider since a cryptographic scheme that is full of implementation pitfalls
will result in practical problems and may harm performance if constant-time
code is difficult to achieve.

2.8 Related work

Besides NTRU in the NIST competition (which was formed out of NTRU-
Encrypt [31] and NTRU-HRSS-KEM [33]) there is also NTRU Prime [13].
NTRU Prime differs from NTRU in that the rings chosen avoid special struc-
tures present in other NTRU schemes and a prime ¢ parameter is chosen
instead of a power of two. NTRU Prime, understandably, has a lot of sim-
ilarities to NTRU such as the need for constant-time sorting (given that the
input length is always the same). Bernstein (one of the authors of NTRU
Prime) created djbsort [11] that performs this constant time sorting. Due
to the efficiency of this sorting method and the fact it was already heavily
optimized it found its way into implementations of NTRU.

Other similarities of NTRU and NTRU Prime is that they both need to do
inversion modulo 3 and modulo 2. Bernstein and Yang looked into fast
ged computation and modular inversion [14]. Their method (and code) for
inversion modulo 3 outperformed the optimized code described in NTRU-
HRSS-KEM by a factor of 1.7 and as a result ended up in the optimized
code of NTRU after being adapted to the different parameters.

NTRU-HRSS-KEM was previously optimized [34] using AVX2 before being
merged into NTRU. Many of the techniques used in the implementation were
also applicable within NTRU.

Note that NTRU does not exactly contain NTRU-HRSS-KEM but a vari-
ant called HRSS-SXY. Saito, Xagawa, and Yamakawa [47] slightly tweaked
NTRU-HRSS-KEM in order to eliminate a length-preserving message confir-

17

mation hash in the ciphertext. The result was a slightly more costly DPKE
rather than a PPKE. The NTRU submission is slightly more efficient by elim-
inating a step in the decapsulation routine which offsets the cost of adding
the DPKE a bit.

18

Overview of NTRU

In this chapter the general design of NTRU is described. The first section
will cover the core operations used in NTRU. These are important to fully
understand in order to understand the way NTRU works. Additionally, it is
these core operations that benefit the most from heavy optimization. The
other two sections will give an overview of the NTRU DPKE and KEM. A
full definition of NTRU can be found in the NIST submission [48].

Note that the NIST submission has defined four different parameter sets.
These are known as hps2048509, hps2048677, hps4096821, and hrss701.
The first three come from the NTRUEncrypt submission while hrss701
comes from the NTRU-HRSS-KEM submission. The parameter n, which
determines the amount of coefficients in the polynomials is respectively 509,
677, 821, and 701. While parameter ¢, the modulus that is a power of two,
is respectively 2048, 2048, 4096, and 8192. These instances were chosen to
accomplish the security goals set for the NIST competition. The hps (Hoff-
stein, Pipher, Silverman) and hrss (Hiilsing, Rijneveld, Schanck, Schwabe)
variants are largely the same but differ in some details (such as the sam-
ple spaces and the Lift function). When important, the differences will be
explicitly mentioned. Constants that are used for the variants can also be
found in the NIST submission [48].

Additionally, it should be noted that the NTRU KEM is IND-CCA2 secure
in the random oracle model and has a tight reduction from the OW-CPA
security of the NTRU DPKE. Proven secure in the random oracle model
means that the KEM is provably secure when every cryptographic hash
function has been replaced by a random oracle. A random oracle is a black
box that given an arbitrary input responds with a uniformly random output
from its domain.

19

Before we can fully describe NTRU we must establish some notation that will
be used in the description.

1. ®; is the polynomial (x — 1).

2. @, is the polynomial (2" — 1)(z — 1).
3. R is the quotient ring Z[z]/(®1Dy,).
4. S is the quotient ring Z[z]/(®,,).
)

. R/3 is the quotient ring Z[x]/(3, ®1®P,,). Polynomials have n — 1 coef-
ficients with all coefficients in the set {—1,0,1}.

6. R/q is the quotient ring Z[z]/(q, ®1P,). Polynomials have n — 1 coef-
ficients with all coefficients in the set {—q/2,—q/2+1,...,q/2 — 1}.

7. 5/2 is the quotient ring Z[z]/(2, ®,). Polynomials have n — 2 coefi-
cients with all coefficients in the set {0,1}.

8. S/3 is the quotient ring Z[z]|/(3, ®,). Polynomials have n — 2 coeffi-
cients with all coefficients in the set {—1,0,1}.

9. S/q is the quotient ring Z[z]|/(q, ®,). Polynomials have n — 2 coeffi-
cients with all coefficients in the set {—¢/2,—q/2 +1,...,¢/2 — 1}.

Whenever one sees an operations followed by mod (2, ®,,) then the operation
is performed such that at the end one has n—2 coefficients and all coefficients
are either 0 or 1. This is the case for any of the quotients rings described
above except that some have n — 1 coefficients and other values for those
coeflicients.

3.1 Important NTRU operations

3.1.1 Sampling

In some parts of NTRU there is a need to turn randomness (which is a uni-
formly random sequence of bytes) into polynomials. An example of this is
during the key generation part since NTRU keys are polynomials. Going from
randomness to polynomials is known as sampling in NTRU. There are two
sampling methods in NTRU, they are: sample fg and sample rm. The first
method outputs two polynomials f and g whereas the second method out-
puts two polynomials » and m. The exact algorithm used in the sampling
depends on the variant of NTRU.

In order to illustrate this sampling let us take a look at sample fg for
hps2048509. It takes 4064 random bits (so 508 bytes) and transforms each
byte into a value of -1, 0, or 1 by reducing modulo 3; in practice they are
0, 1, 2 but that is equivalent due to reduction with modulo 3. The result is

20

508 coefficients in the range of {—1,0,1}. The 509th coefficient is always set
to 0. These 509 coefficients are called the f polynomial, which is a ternary
polynomial (every coefficient in the range {—1,0,1}) with the values being
almost evenly distributed (0 occurs slightly more often). A similar process
happens for the ¢ polynomial except that it is a ternary polynomial with
exactly 127 coefficients being equal to 1 (¢/16—1) and exactly 127 coefficients
being equal to -1. The other (509 — 127) — 127 = 255 coefficients are 0. For
hrss it would be similar except that the output polynomials also have a
special property (non-negative correlation property).

Cryptographic sorting

The example above glossed over how exactly the g polynomial is created. We
know that the g polynomial is a ternary polynomial with ¢/16—1 coefficients
set to 1, q/16 — 1 coefficients set to -1, and the remaining coefficients set to
0. The most straightforward implementation would be to simply create such
a polynomial and then randomly permute it by using an algorithm such as
the Fisher-Yates shuffle [39]. However, implementing Fisher-Yates in such a
way that there is no side channel is difficult. It must run in constant time
which is possible but difficult to accomplish as the polynomials are too large
to fit entirely into the processor cache. The result is that some subsets of the
polynomial may be in the cache thus causing a timing difference if elements
from the same part of the polynomial are picked twice. Additionally, picking
random elements from the polynomial must have no bias.

An alternative approach taken by NTRU is to rely on sorting. Sorting also
poses a security problem as sorting is dependent on the input values (as-
suming the length of the array is always the same). The duration of a sort
might reveal something about the g polynomial such as the fact that this
specific g polynomial has a larger amount of ones at the start than typical.
This kind of information gives an attacker slight advantages when trying to
break a cryptosystem. The difference between shuffling and sorting is that
building a constant-time sorting method is easier to accomplish.

In NTRU a carefully designed and implemented sorting algorithm must be
used. To fulfill this requirement an implementation can only use constant-
time operations such as addition, subtraction, and logical operations. This
implementation is also not allowed to use branches that rely on secret data
(such as the values of the array) and must be careful about the effect of
processor caches when accessing memory. These strict requirements seem
problematic since they are difficult to achieve and will likely cost some per-
formance but it can be done. This sorting is only required in the hps variants
of NTRU.

21

3.1.2 Polynomial addition

Polynomial addition is one of the simpler operations present in NTRU. As
the name suggest it involves adding two polynomials together. Since all
polynomials in NTRU have the same length for a specific parameter set, addi-
tion is performed by simply adding each term together and then performing
modular reduction on each resulting coefficient.

Note that NTRU coefficients have maximum values between 2047 (hps2048509)
and 8191 (hrss701). One byte would not be sufficient to store these co-
efficients so two bytes are used in the reference implementation. The
maximum value of a coefficient after addition and before modular reduction
is 2047 + 2047 = 4094 and 8191 + 8191 = 16382. As a result most NTRU
implementations do not have to worry about overflow since the result of
addition still fits within two bytes. Implementations are free to choose sizes
that are not multiples of a byte such as 12 bits for hps2048509 and 14
bits for hrss701 (or even smaller if overflow is dealt with separately). The
expectation is that this is reserved for hardware implementations or for
situations where memory usage is crucial (because a polynomial admittedly
wastes a lot of space; especially for the smaller parameter sets).

3.1.3 Polynomial reduction

Unlike polynomial addition there are some polynomial operations that do re-
sult in polynomials with more coefficients. One such operation is polynomial
multiplication where multiplication of two polynomials with n coefficients
(degree n—1) results in a polynomial with 2n—1 coefficients (degree 2n—2)).
Due to the rings NTRU operates on, all polynomials must have at most n co-
efficients. In order to achieve this we do an operation called polynomial
reduction.

Terms above 2"~ ! are brought back down by subtracting n from the power

and then adding the coefficient of the new term to the term that already
occupies that place. One has to take care that the new value of the coefficient
does not exceed the modulus. A different, perhaps easier, way to view this
is that the resulting polynomial is split up into two parts where the upper
part is added to the lower part using polynomial addition.

Let us take n = 509, ¢ = 2048 and the following excerpt of a resulting
polynomial as an example:

oo+ 10212°10 +20192°% 4+ 1151298 + - -+ + 63222 + 152" + 400

This polynomial is split in two and the upper part of the polynomial be-
comes:
410212t 42019

22

This is then added to lower part which becomes:
11512°% + ... 4 63222 + 10362 + 2419

The last step is to ensure all coefficients are within the range [0,2047] due to
q = 2048. In order to do this, every coefficient is reduced modulo ¢:

11512°% + - .. + 63222 + 10362 + 371

This operation can be fairly expensive for large polynomials which is why it is
often integrated with the computation of other operations. Take polynomial
multiplication for example; there is no need for the resulting polynomial
coefficients to have already been reduced if they are going to be reduced
again during polynomial reduction. The first reduction of the coefficients
can be deferred until the polynomial reduction. There is a risk here that
an overflow will happen since polynomials are added where the coefficients
might be larger than ¢ — 1 (due to the deferment). However, this is not an
issue in practice (especially the reference implementation) as the overflow
that will happen is for 16-bit values. An overflow in 16-bit values is implicitly
the same as reducing modulo 2'6. In all NTRU parameter sets there is no
reduction that is larger than 2'6 which means that implicit reduction modulo
216 does not affect the final result.

3.1.4 Polynomial multiplication

Polynomial multiplication (with polynomial reduction) is an extremely im-
portant and frequent operation in NTRU and is thus the most important
operation to fully understand in order optimize it. It was already briefly
discussed during polynomial reduction but will be covered here in more de-
tail together with a description of what common algorithms exist.

It is important to note that integers can be expressed as polynomials when a
base is given. Take the number 2143 as an example. 2143 can be expressed
as 2-:103+1-1024+4-10'+3-10° which is the polynomial a(x) = 223+ +42+3
evaluated at base 10 (a(10) = 2143). Given a polynomial it is thus also pos-
sible to express it as an integer. As a result of this fact, multiplication
algorithms for integers can also work for our polynomial multiplication in
NTRU. When describing the multiplication algorithms used in the implemen-
tation of NTRU they will assume we are multiplying polynomials since we
have no need for conversion from and to integers.

Schoolbook multiplication

The schoolbook method, also known as long multiplication, for multiplying
polynomials is the most common one and simply multiplies each term of one

23

polynomial with all terms of the other polynomial. That means that for the
multiplication of polynomials with n terms there will be n? multiplications.
Besides the multiplications there are also some additions ((n — 1)? to be
exact) as some terms in the resulting polynomial may come from multiple

multiplications. For example, 225 may come from the multiplication of

2® - 22 and z? - 23. The resulting polynomial has 2n — 1 terms and the

coefficients of those term may exceed the modulus. It is thus required to
apply a polynomial reduction at the end in order for this to work in NTRU
(and the coefficients must also be reduced). An example of the schoolbook
method:
(102% 4 3z + 1)(152° + . + 1) =102 - 1522 + 102% - 2 + 1022 - 1+
3z -152% + 3z - o + 3z - 1+
1-1522 +1-2+1-1
=150z" + 102° + 102” + 452°+
322 + 3z + 152° +z + 1
=150z* + 552° + 282% + 4z + 1
While the complexity of the schoolbook method is O(n?) it is still a rele-
vant algorithm as there is no overhead/setup cost. This is especially rele-
vant when multiplying smaller polynomials as some algorithms require an

up-front computation negating their benefit unless the input is sufficiently
large.

Karatsuba multiplication

Karatsuba’s algorithm for multiplication was discovered by Karatsuba [37]
and requires n'°823 multiplications. The simple case in Karatsuba is for
polynomials with a degree of 1. Given the following two polynomials:

A(z) = a1z + ag
B(l’) =bix + by
The following temporary values can be calculated:

DO = aobo
Dy = a1by
Do = (ap + a1)(bo + b1)

From these temporary values the resulting polynomial C'(x) can be calcu-
lated as follows:

C(ZE) = D1I'2 + (DO,l — Dy — Dl)IL' + Dy

24

One can see that only three multiplications are required rather than four
but this comes at the cost of four additions instead of one. Despite the
additional additions Karatsuba’s algorithm is still considered fast due to
the fact that addition is linear in time while multiplication is not.

In order to apply Karatsuba on larger polynomials it is used in a recursive
fashion. This is known as recursive Karatsuba and is the reason why it is
considered a divide and conquer algorithm. Larger instances of the prob-
lem are split up into smaller instances and then the algorithm is applied
again until the easiest case is reached (typically when schoolbook multipli-
cation becomes the best option or when dedicated processor instructions are
available).

The application of recursive Karatsuba is very similar to that of degree-
1 Karatsuba. An example will illustrate the process. Imagine A(z) and
B(x) to be degree-255 polynomials (thus 256 coefficients). The result is a
polynomial C(z) with degree 510 (511 coefficients). A(x) and B(x) are both
split into upper and lower halves resulting in four 128-coefficient polynomials
(similar to creating aq, ag, b1, and by). These are called A, (x), Aj(z), By(x),
and Bj(z). The temporary values are now computed as:

Dy = AiB
D, = A,B,
Do = (A + Ay) (B + Bu)

These multiplications are computed by using Karatsuba again but this time
degree-127 polynomials are multiplied. This process is repeated until the
degree is one such that degree-1 Karatsuba is applicable. In practice the
degree does not go down to one as it is more efficient to use schoolbook
multiplication at some point.

Dy, D1, and Dy 1 are 256-coefficient polynomials and must be recombined
to form C(z). D; is used for the upper 256 coefficients of C'(z) while Dy
is used for the lower 256 coefficients. Here there is a small difference from
degree-1 Karatsuba. We still compute D1 — Do — Dy but it has to be
placed in the middle such that there are 128 coefficients to the left and
the right. Since there are already 256 coefficients in the middle (128 from
Dy and 128 from Dj) we must add these first before placing the last 256
coefficients in the middle. The result is a degree-511 polynomial C'(X) that
is the multiplication of A(z) and B(x).

In this example the polynomials are of degree 2/ — 1 in order to minimize the
edge cases. In reality Karatsuba can be applied to polynomials on any degree
but requires more effort. An excellent reference which contains many forms
of Karatsuba’s algorithm is the paper Generalizations of the Karatsuba Al-
gorithm for Efficient Implementation by Weimerskirch and Paar [55].

25

Toom-Cook multiplication

Another example of a divide and conquer algorithm is Toom-Cook multipli-
cation, discovered by Toom and improved by Cook. Toom-Cook is similar
to Karatsuba in that it splits the polynomial in parts such that the multi-
plications are of smaller degree. In fact, Karatsuba turns out to be a special
case of Toom-Cook where k = 2 (two parts). The complexity of Toom-Cook
is described by ©(c(k)nl°ek=1/108(k)) " The term c(k) describes the time
spent on additions and multiplications of small constants. One can see that
an increasing k leads to smaller powers but in practice mostly Toom-Cook
3-way and 4-way are used as anything above that becomes difficult to use
due to a rapidly increasing c(k) [56]. Toom-Cook is typically used when the
numbers/polynomials that are multiplied are so large that the speedup over
Karatsuba is worth it.

The computation of Toom-Cook has five separate steps which are:
Splitting

Evaluation

Pointwise multiplication

Interpolation

DA e

Recomposition

The first step is converting the integers that will be multiplied into k part
polynomials and the last step does the same but in reverse. Since NTRU
fully works on polynomials there is no need for these steps. Splitting the
polynomials into k parts is done in a similar fashion as in Karatsuba. If k = 4
and the polynomials have 256 coefficients then they are simply split up into
four polynomials of 64 coefficients. So A(z) would become p(x) = mzx> +
max? + mix + mg and B(z) would become q(x) = n3z® + nox? + nix + ny.
Instead of integers, m; and n; are polynomials of 64 coefficients.

The evaluation step in Toom-Cook is fairly clever as it uses the fact that
r(x) = p(z)q(z) for any value of z. In our example of k = 4 we know that
r(x) (resulting polynomial) will have a degree of 6. If one has 7 (degree + 1)
points on a polynomial then one can find the unique polynomial belonging
to those points. So the evaluation step computes deg(p) + deg(q) + 1 points
on p(x) and ¢(x) so that in the next step we can find deg(p) + deg(q) +1 (7
when k = 4) points on r(x). The points chosen are typically small as they
are easy to compute (they contribute to the ¢ factor mentioned before).
One special point commonly used is = co as it is equivalent to asking for
the limit of the polynomial which is always the highest coefficient. Some
point evaluation examples for p(z) that are not necessarily the fastest way

26

of computing them (g(x) is equivalent):

p(O) = m3(0)3 + m2(0)2 +my (O) + myo = My
p(1) = m3(1)* + ma(1)* + ma(1) + mo = mg + mg + m1 +mo
p(=2) = m3(—2) + ma(—2)% + my(—2) +mo = —8mz + 4msy — 2my + mg

p(oo) = ... = mg

Note that m; and n; were polynomials so those additions and multiplications
with small numbers are operations on polynomials. However, they are inex-
pensive operations compared to multiplication. Another observation is that
these point evaluations can also be viewed as a matrix-vector multiplication.
This is important for the interpolation step later.

The pointwise evaluation step is fairly simple in that it computes r(z) =
p(x)q(z) for deg(p) + deg(q) + 1 points. Taking the polynomials above there
would be 7 multiplications of 64-coefficient polynomials. This is the most
expensive part of Toom-Cook but is still more efficient than computing the
multiplication of two 256-coefficient polynomials using (recursive) Karat-
suba or schoolbook multiplication. Since the multiplications of these smaller
polynomials may still be relatively large it is possible to apply Toom-Cook,
Karatsuba, or schoolbook multiplication again. This is essentially the same
idea as recursive Karatsuba.

Interpolation is the last relevant step in Toom-Cook. Given the points on
r(z) it finds the coefficients of r(x). To accomplish this the idea is to es-
sentially do the evaluation step in reverse. It is for this reason that viewing
evaluation as a matrix-vector multiplication is important as we can simply
multiply by the inverse of the matrix to get back to our vector (which are
the coefficients of our polynomial r(z)). The points chosen for evaluation
are chosen in such a way that a matrix inverse exists. Finding r(x) is thus
simply a matrix multiplication. Using a matrix inverse for polynomial inter-
polation is just one of the many different techniques (Gaussian elimination
is another). Recall that polynomials were initially split which means that
the polynomials contained within r(x) must be recombined to form a sin-
gle polynomial. Similar to Karatsuba there will be some overlap of these
parts that must be dealt with, this is normally part of the recomposition
step.

27

3.1.5 Polynomial inversion

Multiplying a polynomial and its inverse results in 1 which effectively cancels
out a polynomial. It is for this reason that inversion is used a few times
throughout NTRU. Finding the inverse is a fairly slow operation which is why
it benefits from optimizations.

In the reference implementation of NTRU there are two separate algorithms
used for computing the inverse. The first algorithm is the “Almost Inverse
Algorithm” [49] and is used for finding a polynomial close to the inverse
polynomial. It is not quite the inverse (hence Almost Inverse) but each
coefficient is a distance a removed from the actual value. This is sufficient
for NTRU to work. Since the algorithm itself does not run in constant time
it was adapted in the implementation of NTRU such that it is. The other
algorithm is first computing the inverse modulo 2 (using the Almost Inverse
algorithm) and then bringing it back to inverse modulo ¢ by using a variant
of Newton iteration [52].

In the optimized implementation, the Almost Inverse algorithm is no longer
used so we will not discuss that algorithm here. Instead, the optimized
implementation uses three distinct algorithms for inversion. The implemen-
tation of those algorithms differs per specific parameter set and as such they
will be discussed later in Chapter 4.

3.1.6 Hashing

Cryptographic hashing is used in the NTRU KEM during the encapsulation
and decapsulation process. For all parameter sets there is only one hash
function and that is SHA3-256. The implementation is provided by NIST
for the competition such that all submissions have access to the same SHA3-
256 performance. It is undesirable that some submission performs better due
to a better implementation of their hash function as the implementation of
this hash function is in theory available to all submissions. Submissions
are free to use an alternative implementation or other hash functions if
they so desire. Providing an implementation of SHA3-256 also provides
incentive to use a standard hash function rather than one built specifically
for the cryptosystem. Since the hash function is provided there is little gain
in looking at the implementation of the hash function. It is sufficient to
know that the cryptographic hash function takes arbitrary length input and
outputs 256 bits.

28

3.2 NTRU DPKE

3.2.1 Keypair generation

The keypair generation for the NTRU DPKE is described in Algorithm 1. The
input seed is typically random such that the keypair generated is random.
Reusing the seed results in the same keypair since it is deterministic. The
output h is the public key and the tuple (f,f,,h,) is the private key. Since the
public and private key consist out of polynomials they are converted to byte
arrays (known as packing) before being exchanged or stored. This makes
it possible for implementations of NTRU to be interoperable as the internal
format to store polynomials may be different across implementations.

Let us take the polynomial f as an example of the packing routine. Poly-
nomial f lives in S/3 which means every coefficient has a value in {0, 1, 2}.
When packing this polynomial it is possible to put 5 coefficients into a sin-
gle byte. Imagine 5 coefficients all having the maximum value of 2. First
we put one coefficient in a byte which now has the value of 2. Then we
multiply this byte with 3 and add the next coefficient which makes for a
value of 2 -3 + 2 = 8. We multiply with 3 again and add another coeffi-
cient which has the result 8 - 3 + 2 = 26. Note that this is equivalent to
2-942-3+4+2 = 26. After doing this for all 5 coefficients the byte now
has the value 2-81 +2-274+2-9+2-3+ 2 = 242. Any combination of
5 coefficients will result in a unique byte value which is why it is possible
to store b coefficients in a single byte. The unpacking routine works the
same but in reverse. Note that the time division takes is dependent on the
values which means it is not safe to use for implementation due to creating
a side channel. Instead, division is performed by multiplication and logical
shifts.

Algorithm 1 KeyGen’(seed)

(f,g) « Sample_fg(seed) with f,g € S/3
f, < (1/f) mod (q, ®,)

h+ (3-g-f,) mod (q,®19,)

h, < (1/h) mod (g, ®,)

f, < (1/f) mod (3, ®,)

return ((f, f,, hy), h)

For efficiency reasons some of these operations may be swapped or computed
differently. For example, f, can already be computed between step 2 and 3
and then packed. Another example is not computing f, and using f instead
in step 3 and call it h’. Then after step 4 (in which h’ and mod (g, ®19,,)
were used) you first multiply h’; with f in mod (g, ®1®,,) in order to cancel
out the previous f. Then you multiply by f modulo (¢, ®,,). The result is

29

identical to hy. Since h’#h we also need to multiply h’, with 3-g twice such
that we get h and not h’. This whole chain of operations avoids one very
costly inversion for the cost of four additional multiplications.

3.2.2 Encryption

The encryption takes two inputs. The first input is the public key h while
the second input is the plaintext (length of supported plaintext can be found
in the specification [48]). Both of these are packed so they are unpacked first
before being used. Public key h was packed into bytes and is unpacked as
R/q while the plaintext was packed into bytes and is unpacked as S/3. The
output c is the ciphertext in R/q and is packed into bytes.

Algorithm 2 Encrypt(h, (r, m))
1: m’ < Lift(m)
2: ¢ < (r-h+ m’) mod (¢, 019,)
3: return c

The Lift operation does as it suggests and takes it takes a polynomial from
one domain to another domain. For hps Lift is simply ensuring the poly-
nomial is in S/3 (which is the identity operation since unpacking already
returns a polynomial in S/3). For hrss input polynomial m has the follow-
ing operation applied: ®1-S3(m/®;). Like before, these operations may be
reordered for efficiency as long as the output ¢ does not change.

3.2.3 Decryption

Decryption takes the packed private key as input which is unpacked before
being used. Additionally it takes the packed ciphertext ¢ as input. The
output depends on whether decryption succeeds or not. If the decryption
succeeds then the output is a tuple (r, m, 0) which contains the plaintext.
Otherwise it is the tuple (0, 0, 1).

Algorithm 3 Decryption((f, f,, hy), c)
if ¢ # 0 (mod (g, ®1)) return (0, 0, 1)
a <+ (c-f)mod (g, 019,)

m « (a - f,) mod (3,®,)

m’ < Lift(m)

r < ((c —m’) - hy) mod (¢, ®,)

if (r, m) € £, x L,;, return (r, m, 0)
else return (0, 0, 1)

Note that the algorithm for decryption says to return whenever something
goes wrong. In reality this is not the case as it leads to a timing side channel.

30

Imagine some adversary modifies ¢ but still ensures step 1 passes. This is
possible since no secret information is used for that step. During step 6
if we return immediately an adversary can tell whether r, m, or both are
in the sample spaces. Allowing this timing channel to exist is giving the
adversary unnecessary advantages. Thus, in practice, a fail flag is set and
the execution is always continued until the end.

3.3 NTRU KEM

3.3.1 Keypair generation

The NTRU KEM keypair generation is essentially the same as the DPKE
keypair generation except that an additional uniformly random 256-bit bit-
string s is generated and added to the private key. This bitstring s is used
during the decapsulation process.

Algorithm 4 KeyGen(seed)
1: ((f, £, hy), h) < KeyGen’(seed)
2: 8 <g {0, 1}256
3: return ((f, f), hy, s), h)

3.3.2 Encapsulation

Different from encryption the encapsulation process only takes the public
key as input as the key. The encapsulation process takes 256 uniformly
random bits known as coins and uses it as the source for the polynomials r
and m. These are then used as the “plaintext” for the encryption routine.
Note that the encryption routine takes a packed plaintext as input which
means (r, m) is immediately packed and unpacked; this can be avoided
during implementation. The hash of the tuple (r, m) is the key that is
generated in this KEM. The idea is that the other party can decrypt the
ciphertext such that it receives (r, m) and then hashes it to generate the
same key.

Algorithm 5 Encapsulate(h)
1: coins <—g {0,1}256
2: (r, m) < Sample_rm(coins) with r,m € S/3
3: ¢ < Encrypt(h, (r, m))
4: k < Hi(r, m)
5: return (c, k)

31

3.3.3 Decapsulation

The decapsulation process decrypts the ciphertext and if it fails it returns
a pseudorandom key instead of the actual key. In NTRU-HRSS-KEM an
error symbol was produced but in HRSS-SXY this was changed to produce
a pseudorandom key. The idea of producing a pseudorandom key instead of
an error symbol is known as implicit rejection and ensures that actual usage
of the key will fail.

Algorithm 6 Decapsulate((f, f,, hy, s), h)
(r, m, fail) < Decrypt((f, f,, hy), c)
k1 — Hl(I‘, m)

ko < Ha(s, c)

if fail = 0 return k;

else return ko

The parameter s in the private key is needed in the generation of the pseu-
dorandom key in order to ensure that every keypair produces a different
pseudorandom key for a specific ciphertext. Generating a uniformly ran-
dom s during the keypair generation prevents having to do this every time
decapsulation occurs.

32

Optimizing NTRU using AV X2

The goal of this thesis was to optimize NTRU using AVX2. One of the many
considerations in the NIST competition is the performance of candidates.
In order to get a better understanding of the real-world performance it is
necessary to have optimized implementations, because reference implemen-
tations tend to not have a focus on performance. The belief was that an
AVX2 implementation would be the fastest achievable software implementa-
tion of NTRU on recent Intel processors. An AVX-512 implementation could
potentially be faster but is far from common even on the newest processors.
Note that the focus was on performance and as such other implementations
could do better in the categories of memory usage, binary size, and power
consumption.

Since the hrss701 parameter set came from the NTRU-HRSS-KEM sub-
mission and was already optimized using AVX2 [34], the target of this Mas-
ter’s thesis was initially the hps parameter sets. After some reconsideration
(mostly wanting to see the limit of NTRU) the thesis restricted itself to the
hps2048509 parameter set. The optimizations performed are applicable on
other parameter sets but were not implemented.

The most costly operations were suspected to be the polynomial operations
and these suspicions were confirmed by profiling the execution of NTRU (using
perf). The optimizations performed are discussed in the following sections.
The reference implementation generates Known Answer Test (KAT) val-
ues such that other implementation can verify their behavior against the
reference implementation. The KATs were used to confirm the optimized
implementation of hps2048509 behaves identical to the reference implemen-
tation.

4.1 AVX2 features and description

AVX is an instruction-set extension for x86(-64) processors which adds 256-
bit vector registers and instructions to operate on such registers (AVX2 adds

33

more instructions). These registers are called vector registers since a single
instruction operates on multiple data elements in the register. This concept
is known as single instruction multiple data (SIMD).

Since NTRU coeflicients are 16 bits in size it is possible to store 16 coefficients
in one AVX2 register and do a single instruction that operates on 16 coeffi-
cients at a time. An example of where this would be faster is in polynomial
addition. A naive implementation would loop through all coefficients (all
509 of them) and add them one by one. Each addition requires loading a
pair of coefficients from memory and storing the result back to memory.
Optionally a modular reduction can be applied depending on whether the
polynomial has to be in the ring again. An implementation using AVX2
would be able to load (and store) 16 coefficients at a time ([2%2] = 32 itera-
tions in total) and do a vpaddd instruction which adds them together. This
can be followed by a vector logical AND instruction to perform the modu-
lar reduction. For processors where the vector instructions are fast enough
(which is practically all AVX2-capable processors) this will outperform the
non-AVX2 implementation.

In reality, compilers can heavily optimize the first implementation in the
example above using many different techniques such that the gap between
non-AVX2 and AVX2 is much smaller (but still exists). In fact, some compil-
ers might even generate AVX2 instructions to perform the first implementa-
tion. This is known as auto-vectorization and would be ideal. Unfortunately,
auto-vectorization is unreliable and there are many cases where a compiler
would not vectorize while a programmer would. It is for this reason that an
AVX2 implementation is beneficial to write.

While manually writing assembly or intrinsics, a programmer must keep a
few facts in mind. Firstly, some registers are callee-saved which means that
at the end of a function they must be the same as before the function started.
This requires these registers to be stored somewhere else temporarily (such
as in memory) or to not use them.

Secondly, the ordering of instructions is important in order to avoid long
dependency chains where instructions are waiting on the result of other in-
structions. This is less of a problem when working on out-of-order execution
processors.

Thirdly, some instructions have a higher throughput than others. Through-
put is how many instructions of the same kind can be executed per clock
cycle. Also, some instructions have a longer latency which is the amount of
cycles since the start when the result is available, this is important in depen-
dency chains. These numbers may vary wildly per processor. An example of
this are the pext and pdep instructions which perform well on Intel proces-
sors while on AMD Zen-based processors they perform significantly worse

34

(a factor 18 difference). A programmer must be aware of this in order to
produce fast assembly. The instruction tables by Fog [25] are an extremely
good resource on this front.

Finally, AVX2 instructions consume a fair amount of power and thus gen-
erate a lot of heat. A processor typically compensates for this by lowering
the clock speed and turning off the AVX2 part of the core when not in
use [41]. This can come at a performance penalty if the programmer does
not constantly feed the core with enough AVX2 instructions due to the time
required for clock speeds to adjust and the AVX2 part turning on [26].

4.2 Optimizing crucial operations

For the optimizations below we typically assume that the polynomials have
n = 512 and not n = 509 as it makes it easier to implement in AVX2
if we can work on a multiple of 16 coefficients (each coefficient being 16
bits). Afterwards some correction is needed to account for the fact that
three additional coefficients are used. The internal representation using
n = 512 should not affect the outcome of the computation (compared to
using n = 509); we always work with the top coefficients set to zero.

The operations in NTRU were optimized until profiling showed that only the
optimized implementations remain significant. At that point the only way
to gain a noticeable speedup is to find other techniques to improve the
performance of the optimized implementations even more.

The code of the AVX2 implementation can be found on GitHub in the NTRU
repository [54]. It will appear in the NTRU package for the NIST submission
at a later time.

4.2.1 Multiplication in R/q

Multiplication in R/q is the most common multiplication in NTRU and is the
function that has received the most optimization. In this multiplication we
want to multiply two 512-coefficient polynomials in R/q which will result in
a single 1023-coefficient polynomial (stored as 1024 coefficients to make it
easier). Instead of immediately reducing modulo 2048 on every coefficient
we wait until we perform polynomial reduction first such that we only have
to reduce modulo 2048 once and only on 512 coefficients and not on 1024
coefficients. The three extra coefficients are masked out at the start such
that they have no influence on the final polynomial. After reduction the
polynomial has 512 coefficients and not 509 so there is some correction for
that as well.

The multiplication is implemented using Toom-Cook 4-way, Karatsuba mul-
tiplication, and schoolbook multiplication. These algorithms were described

35

in detail in Section 3.1.4 so we will assume one is familiar with them. Toom-
Cook 8-way was briefly considered but was not chosen as there would be too
much overhead from evaluating and interpolating 15 points. We will now
describe the sequence of operations that was used for the full multiplica-
tion.

Toom-Cook 4-way is applied such that there are 7 multiplications of 128-
coefficient polynomials. These multiplications of 128-coefficient polynomials
are further broken down with two levels of Karatsuba multiplication for
a total of 7-3-3 = 63 multiplications of ((512/4)/2)/2 = 32-coefficient
polynomials. The evaluation of points is combined with Karatsuba in the
implementation and the 7 points used for evaluation are 0, oo, 1, -1, 2, -2,
and 3.

The 63 multiplications of 32-coefficient polynomials can be viewed as a 64
by 32 matrix. Transposing this matrix, in blocks of 16 x 16 because that is
the maximum amount of coefficients 16 AVX2 registers will fit, allows the
multiplication to be performed in a vectorized fashion. Transposing is neces-
sary as coeflicients are sequential in memory and would thus be sequentially
stored in AVX2 registers while we would like each coefficient to be in a sepa-
rate AVX2 register. If each coefficient is in a separate AVX2 register then it
is possible to do operations on entire registers in order to perform operations
for many polynomials in one instruction. Applying Toom-Cook 4-way twice
instead of following it up with two levels of Karatsuba was also considered
but meant that there would be 49 multiplications of 32 coefficients which
would still result in a matrix of 64 by 32. In addition there would be another
7 point evaluations and more complex interpolation.

Instead of 63 multiplications of 32-coefficient polynomials, the implementa-
tion does three more levels of Karatsuba after transposing which has the
result that we would be multiplying 4-coefficient polynomials. This is suffi-
ciently small to compute using schoolbook multiplication without having to
write to memory at all during the computation. Once all 4-coefficient poly-
nomial multiplications are completed the implementation reconstructs the
256-coefficient polynomials, of which there are 7, that result from the point-
wise multiplication step. Interpolation is performed by multiplying with the
inverse matrix of the matrix we used when evaluating points. While this in-
verse matrix has many fractions implying that we need to do floating point
arithmetic it is entirely possible to do this with integer arithmetic. Finding
such a sequence of steps that was reasonable to implement was done in the
implementation of NTRU-HRSS-KEM [34] and was reused in this imple-
mentation. During interpolation, the polynomial reduction is also applied
and then finally the reduction modulo 2048 is performed. The result is a
multiplication in R/q.

36

In order to assess how well this strategy performs we ideally want to com-
pute a lower bound on the required CPU cycles. Computing a completely
accurate lower bound is tricky in large polynomial multiplication as there
are many combinations of multiplication algorithms that can be used. As
mentioned above, other combinations were considered and none of them
seemed better but it is by no means exhaustive and it is possible that some
combination will outperform this combination slightly. It is possible to do
multiplication using the number-theoretic transform (NTT) but due to the
choice of parameters for NTRU (¢ being a power of two and the degree of the
polynomials being prime) this was not beneficial [34, 13].

What is possible to do is calculate how close the implementation is to the
lower bound of this combination of algorithms. To do this we start from the
inside out as it makes reasoning easier. In the end all the multiplications
boil down to 7-3-3-3-3-3 = 1701 multiplications of 4-coefficient polynomi-
als. Multiplying 4-coefficient polynomials requires 4> = 16 multiplications of
coefficients for a total of 1701 - 16 = 27216 coefficient multiplications. Since
a coefficient is 16 bits and AVX2 is used, it is possible to do 256/16 = 16
multiplications in one instruction (since 16 fit in a register). The resulting
coeflicients are 32 bits but we only keep the lower half so that the multipli-
cation results fits into a single AVX2 register. This works as it is implicitly
reducing modulo 2'® which is a multiple of g. As a result there is a theoret-
ical minimum requirement of 27216/16 = 1701 AVX2 vpmullw instructions.
However, this is purely the multiplication instruction. Every multiplication
requires two source registers with 16 coefficients each. To get these coeffi-
cients in registers they must be loaded from memory. Recall that the last
operation is a Karatsuba multiplication which means that one load can be
used for three multiplications and there are thus 1701/3 = 567 memory
loads (alignment is assumed here thus we use vmovdga). The 1701 mul-
tiplications would produce 1701 - 7 = 11907 coefficients which would need
11907/16 = 744.1875 aligned stores. Besides multiplications, loads, and
stores there are also additions that must be accounted for. There are 1701
multiplications that are computed using schoolbook multiplication. Each
schoolbook multiplication of 4-coefficient polynomials has (4 — 1)2 = 9 co-
efficient additions. The result is a total of 1701 - 9 = 15309 coefficient
additions. Due to AVX2 we can do these in batches of 16 coefficients for a
total of 15309/16 = 956.8125 vpaddw instructions. In addition to the coeffi-
cient additions in the schoolbook multiplication there are also additions due
to Karatsuba. At the end there are 567 levels of Karatsuba where each in-
stance has 4 additions. Two of these additions are additions of 4-coefficient
polynomials while the other two are subtractions (which is essentially an ad-
dition) of 8-coefficient polynomials. We require 567-2-4+4567-2-8 = 13608
coefficient additions in Karatsuba. This is an additional 13608/16 = 850.5
vpaddw instructions. At this point the estimation of the lower bound is

37

detailed enough to get a view of the implementation. The fact that other
Karatsuba levels also require additions and potential loads and stores is
ignored as they are a minor amount of the total cycles and are for more
difficult to estimate. Using the instruction tables [25] for Skylake on the
calculations above results in a theoretical lower bound of 1701 - 0.5 = 850.5
cycles. This number assumes perfect instruction scheduling, that instruc-
tions never block other instructions due to not enough execution units being
available, and that instructions do not depend on each other. The lowest
bound is thus the longest sequence of a single instruction type because all
other instructions types could have been executed in the meantime due to
processors being out-of-order. In reality this will never be the case but
quantifying how many instructions are blocked is nigh impossible. Assum-
ing that instruction types do not execute out-of-order will lead to a “lower”
bound that is higher than reality. Experimentally, we measured a median
amount of 1418 cycles over 10000 iterations without function-call overhead.
Given the fact some instructions are left out of the lower bound and that
the implementation performs 64 - 3 -3 - 3 = 1728 multiplications it seems
the implementation is very close to the lower bound for the 64-way parallel
multiplication.

Point evaluation takes about 156 cycles, transposing cost about 1222 cycles,
and the interpolation and recomposition cost about 743 cycles. As a result,
one multiplication in R/q costs about 3539 cycles. The cycle count mostly
consists of transposes and the 64-way parallel multiplication. We have seen
that the 64-way parallel multiplication is near the lower bound and can not
be improved much further. Transposes are necessary when data is contin-
uous in memory and vectorization is wanted. The implementation does a
fairly standard sequence of vector unpacks followed by vector insertions and
vector permutes. It is unlikely significant speedup can be gained there. As
a result, if one wanted to speed up the multiplication in R/q even more it
seems that a different approach must be taken.

4.2.2 Multiplication in S/3

For the multiplication in S/3 the multiplication in R/q is reused. It turns
out that the coefficients of the polynomial can have a maximum value of
509 - 4 = 2036 after all the multiplications and summations. This is just
below the 2048 that is used as modulus in the multiplication in R/q and
thus has no effect on the values of the coefficients. After multiplying in R/q
one would extract the last coefficient, double it, and then broadcast it across
the vector such that each word (16 bits; the size of one coefficient) has the
doubled last coefficient. This vector is then added to 16 coefficients at a time
and then each coefficient is reduced modulo 3. The result is multiplication
in S/3. The last step is equivalent to the reference implementation except

38

vectorized using AVX2. This is an easy way of implementing multiplication
in S/3 but it is not the fastest way. As expected, the performance of this
implementation is nearly identical to that of multiplication in R/q except
that about 124 cycles are added for a total of around 3663 cycles.

An alternative method that would be faster is to do Karatsuba recursively
five times such that one has 3% = 243 multiplications of 16-coefficient poly-
nomials. These coefficients occupy two bits each (their values were in
{—1,0,1}) which means a bitsliced implementation is possible for the mul-
tiplication of the 16-coefficient polynomials. In a bitsliced implementation
one vector would hold one bit while another vector would hold the other
bit [16]. For multiplication of the coefficients one would operate on entire
AVX2 registers. Since each vector holds one bit per coefficient one can put
256 coefficients in a single AVX2 vector. Due to the coefficients being stored
in 16 bits despite only occupying two bits there would have to be some pre-
and post-processing going from 16-bit coeflicients to 2-bit coefficients and
vice versa. Additionally, some transposing would have to happen since the
2-bit coefficients would be continuous in memory. Similar to multiplica-
tion in R/q these operations would take a good chunk of the total cycle
count.

Multiplication in S/3 using the first implementation consumes about 15%
of the total time spent in decryption and as such the alternative implemen-
tation can never provide more than a 15% speedup for decryption (and that
would only be the case if it cost 0 cycles). Given that a decent amount of cy-
cles would be consumed by transposing/processing in addition to performing
the actual multiplications it seems likely that the alternative implementa-
tion would only speedup decryption with five to ten percent. While faster,
it is considerably more work to implement for very little gain. This is the
only performance optimization known that has been left out.

4.2.3 Inversion in S/q

In order to perform fast inversion in S/q, the implementation does two sep-
arate steps. The first step is to find an inverse in S/2 which turns out to be
very efficient. The second step is to bring the inverse in S/2 to an inverse in
S/q by doing eight multiplications in R/q. Why and how this exactly works
in described in NTRU Technical Report #014 [52]. We will focus here on the
inversion in S/2 (and the multiplication in S/2 that is necessary) since mul-
tiplication in R/q was already optimized. For the inversion in S/3 a different
algorithm is applied as this technique does not apply there. The algorithm
used for inversion in S/3 is not faster than using this technique [14].

In order to perform the inversion in S/2 we start with the observation that
271 =1 (mod (2, ®,)) [35]. Equivalently we can say that f2° -2 = f~!

39

(mod (2, ®509)). Implementing this exponentiation using an addition chain
of 1, 2, 3, 6, 12, 15, 30, 60, 63, 126, 252, 504, 507 takes 12 multiplications
in S/2 and 13 multi-squarings. This addition chain is the shortest addition
chain possible [24] but there may be other addition chains with an equal
length. The difference in performance is negligible as they tend to have about
the same step size. The polynomials in NTRU use 16 bits per coefficient but
when working in S/2 this is unnecessary as every coefficient is simply a bit.
Polynomials in S/2 can thus be represented as a bitstring which is beneficial
when trying to square or multiply polynomials in S/2. This conversion
process uses the pdep and pext instructions; recent AMD processors may
benefit from doing this the naive way. Note that in the implementation
we actually do inversion in R/q for the efficiency reasons mentioned in the
description of the NTRU DPKE keypair generation. However, the code is
equivalent so this should not matter.

The inversion in S/2 consumes 2043 cycles of which 332 cycles are spent
converting to and from bitstrings. Bringing the inverse from S/2 to R/q
through the multiplications in R/q costs about 30705 cycles. We will now
discuss fast multiplication and multi-squarings in S/2.

Multiplication in S/2

Multiplication in S/2 makes use of the vpclmulqdq instruction which al-
lows multiplication of 64-bit polynomials over GF(2*) (in our case simply
GF(2)). The existence of this instruction makes it worthwhile to convert
the polynomials into bitstrings as a single 64-bit polynomial multiplication
can be executed in a single cycle.

The 512-coefficient polynomials (that are 512 bits long) have two levels of
Karatsuba applied such that there are 9 multiplications of 128-coefficient
polynomials. Then we apply one instance of schoolbook multiplication so
that we end up with 36 multiplications of 64-coefficient polynomials. These
36 multiplications are computed using vpclmulqdq. Afterwards a polyno-
mial reduction is performed and the last three bits are masked out (since
n = 509 and not 512). The result is that a single multiplication in S/2
takes just about 47 cycles. We need 12 multiplications in S/2 in order to
implement the exponentiation which has a total of 564 cycles.

Multi-squarings in S/2

It turns out that squaring followed by polynomial reduction in S/2 is the
same as doing a bit permutation on the bits of the polynomial [34]. More
interestingly, repeated squaring is the same as repeated bit permutations
which in turn is equivalent to a single combined bit permutation. This fact
leads to very fast multi-squarings and was already realized in the implemen-

40

tation of hrss701. During that work, a tool was written to generate the bit
permutations necessary for the multi-squarings. This tool was reused here to
generate bit permutations necessary for the multi-squarings in hps2048509.
A single multi-squaring costs about 91 cycles, smaller multi-squarings cost
a little less while larger multi-squarings cost a little more. Since there are
13 multi-squarings in total they cost a total of 1183 cycles.

4.2.4 Inversion in S/3

Briefly mentioned before, Bernstein and Yang developed a fast constant-time
ged computation and modular inversion algorithm [14]. In their paper they
performed a case-study in which they applied their algorithm to hrss701
and it outperformed the optimized Almost Inverse implementation by a
factor of 1.7. Based on this result their algorithm was also implemented in
hps2048509.

The code for hrss701 was adapted to work in hps2048509. In the original
code each polynomial required six AVX2 registers since every coefficient was
two bits and there were 701 coefficients ([1922] = 6). In hps2048509 the

256
four polynomials required in the algorithm only require four AVX2 registers
each ([2022] = 4). Reducing the vector sizes is somewhat tricky since

the initial state changes, this requires understanding the representation of
polynomials. The representation of polynomials is different from NTRU in
that the first 64 bits store the coefficients z%, 2%, ..., 2252 and the second
64 bits store the coefficients 2!, 2%, ..., 2?53 and so on. When multiplying
by x this representation has the advantage that one only needs to move
quadwords (64 bits) around. Another difference is that only 2-508—1 = 1015
iterations are necessary compared to 1399 in hrss701. As a result the
hps2048509 version performs better than the hrss701 version. A single

inversion in S/3 costs 23031 cycles.

4.2.5 Optimizing R/q to S/3 conversion

In the decryption of NTRU some a is computed modulo (g, ®1®,) and is
subsequently used in a reduction modulo (3, ®,). a must thus be converted
from R/q to S/3. In the code of NTRU this is done using the poly_Rq-to_S3
function. Since decryption is a fast operation in NTRU this function stood
out in profiling (about 8% of the total). A straightforward conversion to
AVX2 was implemented that processes 16 coefficients at a time rather than
one. The result is that R/q to S/3 conversion takes about 179 cycles or just
below 1% of the decryption time.

41

4.2.6 Optimizing cryptographic sorting

As mentioned before, NTRU requires constant-time sorting during sampling
for the hps variants. The constant-time sorting algorithm used in the opti-
mized implementation of hps2048509 is the AVX2 version of djbsort. This
sorting algorithm relies on sorting networks for its constant-time guarantees
and was initially developed for use in NTRU Prime [13]. About 1814 cycles
are consumed by the crypto_sort function.

42

Results and comparison

Performance testing was performed on an Intel i5-8250u (at 3.20GHz) us-
ing gce 9.1.0. This Intel processor uses the Kaby Lake microarchitecture
which is essentially the same as the Skylake microarchitecture (no changes
in instruction performance). TurboBoost and HyperThreading were dis-
abled. Both the reference and AVX2 implementation were compiled using
the O3 optimization flag. Additionally, the AVX2 implementation used
-march=native. The median amount of cycles for each operation was mea-
sured over 10000 runs. The NTRU DPKE operations were not included
as NTRU technically only specifies a KEM. The DPKE exists as a central
building block in the construction of this KEM. Besides the Kaby Lake mi-
croarchitecture we have also measured two other microarchitectures. The
Haswell-based Intel i7-4770k at 3.50GHz using gcc 6.3.0 and the Zen-based
AMD Ryzen 5 1600 at 3.20GHz using gcc 9.1.0. Ideally the Haswell ma-
chine would use the same frequency and compiler but this was not possible.
Since most of the code is handwritten AVX2 (thus no compiler influence)
and the clock speed is only about 10% higher we considered this valuable
enough to include. Haswell is interesting to benchmark as it is the first
microarchitecture from Intel that supports AVX2 and is thus a baseline
performance.

The AVX2 implementation of hps2048509 performs quite a bit better than
the reference implementation for all processors, especially when generating
keypairs and decapsulating. Encapsulation is quite a bit faster but the
speedup is not as large due to the reference encapsulation already being
quite a bit faster than the other two. Note that the encapsulation (and key
generation) in hps2048509 requires 2413 random bytes. This is a fairly large
number of random bytes and retrieving these from the operating system
using the getrandom syscall or reading from /dev/urandom directly costs
about 60% of the total cycle count. For the measurements here an alternative
approach is taken where only 32 random bytes are retrieved which are then
put through the SHAKE128 XOF to produce 2413 bytes. This reduces the

43

cycle count by about 14000 cycles on Kaby Lake which is quite substantial.
For the Zen architecture it is around 70000 cycles as the RDRAND instruction
which the Linux kernel uses for randomness is much slower than on Intel
processors. If one did not need these random bytes or a much smaller amount
then encapsulation would outperform decapsulation.

From Table 5.1 we can see that the Kaby Lake architecture performs best
when using AVX2 instructions whereas Haswell and Zen are about a factor
2 behind. Haswell being slower than Kaby Lake can be largely explained by
the fact that Skylake (and later) has two integer vector-multiplication units
whereas Haswell has only one. This has the effect that it doubles the max-
imum throughput for multiplications. In the table we can indeed see that
multiplication in R/q and S/3 (both heavily using vector multiplication) are
almost twice as slow in Haswell. Since inversion in R/q is dominated by the
eight multiplications in R/q we see the same slowdown in inversion in R/q.
Inversion in S/3 is faster in Kaby Lake due to another vector execution unit
having the ability to perform shifts and general improvement to the vector
execution units such as faster conversion instructions. The Zen architecture
is much newer than Haswell and generally outperforms Haswell (and even
Skylake [26]) except when working with vector instructions. Zen vector units
are 128-bit wide which means 256-bit vector instructions must occupy two
execution units rather than one (or take twice as long in the vector multi-
plication case). Additionally, it has the same amount of vector execution
units as Haswell and not Skylake. These facts cause execution units to be
much less often available and thus incur a performance penalty. For the
same reasons that Haswell is slower than Skylake, Zen is even slower than
Haswell in polynomial multiplication and inversion. Despite that, Zen still
performs similar to Haswell in encapsulation and decapsulation due to other
operations such as the SHAKE128 computation outperforming Haswell. In
the Zen 2 architecture some 256-bit instructions do occupy only one execu-
tion unit and as a result will likely have similar performance to Skylake (or
slightly slower but still faster than Haswell). The exact details about Zen 2
have not yet been published except statements that the “datapath”, floating
points unit, and Load/Store units have been doubled in width (thus being
256-bit).

In order to understand what can still be optimized in the AVX2 implemen-
tation we have looked at the cycle-count breakdown of the key generation,
encapsulation, and decapsulation. The key generation of the NTRU KEM con-
sists out of 50.23% of polynomial multiplication in R/q and all the functions
that use it (multiplication in S/3, multiplication in S/g, inversion in R/q)
since it is difficult to profile separately, 25.27% of inversion in S/3, 16.32%
in gathering 32 bytes of randomness and computing SHAKE128, 3.19% of
sampling which includes cryptographic sorting, 2.79% of inversion in R/q
(including inversion in R/2, multiplication in R/2 and the multi-squarings),

44

and 1.38% of packing the polynomials to bytes. The other 0.82% is spent in
various small functions throughout the implementation such as memcpy. The
only part of code that is not optimized using AVX2 and is worthwhile look-
ing at in more detail is the computation of SHAKE128. It is likely that the
performance can be improved somewhat or an alternative method to gather
2413 random bytes might be possible. Packing of polynomials could also be
interesting but does not seem very friendly to vectorization and would as a
result maybe be faster.

The cycle-count breakdown for encapsulation is as follows: 56.60% in gath-
ering 32 bytes of randomness, computation of SHAKE128, and computation
of the SHA3-256 hash. It is difficult to profile these separately since both
SHAKE128 and SHA3-256 use the Keccak permutation but it seems the
vast majority comes from the computation of SHAKE128. 13.79% comes
from multiplication in R/q and any function that relies on it, 12.38% for
packing and unpacking polynomials, 11.90% for sampling (including sort-
ing) of polynomials r and m, 2.19% for reduction modulo 3 which is used
in sampling and unpacking, 1.26% for the Lift operation, and finally 1.88%
for miscellaneous operations (memcpy, function-call overheads, and so on).
There are two targets here that are potentially interesting. The first target
is computation of SHAKE128 which is used for randomness; this was already
discussed during key generation. The other target is the packing and un-
packing of polynomials. Currently encapsulation samples polynomials and
packs them only for them to be immediately unpacked by the encryption.
This can be avoided by merging the two. Since this is irrelevant to AVX2 it
was left out but has become much more noticeable due to decreased cycle
counts for other operations.

Cycle-count breakdown for decapsulation is as follows: 51.87% is spent on
polynomial multiplication in R/q and the functions that rely on it, 25.94%
is spent on the SHA3-256 operation, 13.39% on the packing and unpacking
of polynomials, 3.62% in the decapsulation itself for checking that r and m
are in the message space, 1.39% for reduction modulo 3 in the unpacking
of polynomials, 0.99% for conversion from R/q to S/3, 0.80% on the Lift
operation, and the other 2.00% is spent on miscellaneous operations.

With the AVX2 optimizations NTRU requires about 29 microseconds on the
Intel i5-8250u processor at 3.20GHz to generate a keypair. Encapsulation
takes about 7.4 microseconds and decapsulation takes about 6.8 microsec-
onds. These processing times are sufficiently small enough for NTRU to be
considered a practical quantum-resistant KEM.

45

Table 5.1: Cycle counts of operations in NTRU for both the reference imple-
mentation and the AVX2 implementation as well as the speedup the AVX2

implementation provides.

Reference cycles | AVX2 cycles | Speedup

Multiplication in R/q 304,786 3,550 85.86x
Multiplication in S/3 293,455 3,677 79.81x

Inversion in R/q 3,343,846 30,533 | 109.52x

Inversion in S/3 1,568,070 23,039 68.06x

Kaby Lake R/q to S/3 2,225 178 12.50x
sample_fixed type (crypto_sort) 33,209 2,870 11.57x

KEM keypair generation 6,164,431 91,358 67.48x

KEM encapsulation 357,890 23,773 15.05x

KEM decapsulation 859,044 21,870 39.28x
Multiplication in R/q 623,296 6,876 90.65x
Multiplication in S/3 625,000 7,136 87.58x

Inversion in R/q 6,041,188 60,712 99.51x

Inversion in S/3 3,049,048 49,956 61.03x

Haswell R/q to S/3 4,568 352 | 12.98x
sample_fixed type (crypto_sort) 66,268 6,736 9.84x

KEM keypair generation 12,321,490 186,308 66.14x

KEM encapsulation 746,760 46,956 15.90x

KEM decapsulation 1,895,960 42,204 44.92x
Multiplication in R/q 482,368 9,024 53.45%
Multiplication in S/3 489,312 9,376 52.18x

Inversion in R/q 5,355,456 112,128 47.76x

Inversion in S/3 2,397,312 55,072 43.53x

Zen R/q to S/3 3,968 544 7.29x
sample_fixed type (crypto_sort) 56,224 7,840 7.17x

KEM keypair generation 10,689,696 246,720 43.33x

KEM encapsulation 659,456 44,960 14.67x

KEM decapsulation 1,490,688 45,760 32.58x

46

5.1 Comparison to other submissions

In this section we will compare the NTRU KEM to several KEMs in the NIST
competition. Ideally comparisons should be fair in that they all provide
the same amount of security. Defining how many bits of security a KEM
has is difficult in the post-quantum setting and as such NIST has defined
five security categories which say something about how much computational
resources are necessary to break a KEM. A KEM that lies in the first cat-
egory should at least require computational resources comparable to those
required for a brute-force key search on a block cipher with a 128-bit key.
Security level five is the same except for a block cipher with a 256-bit key.
The hps2048509 parameter set aims for a security level of one. As such, we
will compare against other submissions with parameters aiming for the same
security level. There may still be some variation on security but comparing
only against exactly the same security is not doable. All of the comparisons
will be using lattice-based cryptography such that we can compare within
this subcategory of submissions.

Comparisons are made on keysizes, ciphertext sizes, cycle counts, and
whether an implementation is constant-time. Knowing whether an imple-
mentation is constant-time is important as it may cause a heavy performance
in order to reach. Gathering performance results is tricky due to different
architectures and testing setups. For comparison we will take our NTRU
Haswell results as it is the most common architecture tested.

In Table 5.2 we see that the optimized implementation of NTRU is among
the fastest and the sizes of the keys are among the smallest. Combined with
the fact that NTRU has had over 20 years of cryptanalysis it is a promising
submission.

47

Table 5.2: Comparison of six lattice-based KEMs. Cycle counts were measured us-
ing an Intel i7-4770k unless states otherwise. Cycles contains key generation (K),
encapsulation (E), and decapsulation (D). Bytes contains secret key size (sk), public

key size (pk), and ciphertext size (c).

parenthesis. ct? indicates whether the implementation is constant-time.

Scheme is followed by the parameter set in

’ Scheme ‘ Type ‘ ct? ‘ Cycles ‘ Bytes ‘
NTRU [48] IND-CCA2 KEM | yes | K: 186,308 | sk: 935
(hps2048509) E: 46,956 | pk: 699

D: 42,204 | c: 699
NewHope [4] IND-CCA2 KEM | yes | K: 68,080 | sk: 1888
(NH-512-CCA-KEM) E: 109,836 | pk: 928
D: 114,176 c: 1120
CRYSTALS-KYBER [17] | IND-CCA2 KEM | yes | K: 33,428 | sk: 1632¢
(KYBER512) E: 49,184 | pk: 800
D: 40,564 | c: 736
FrodoKEM [3] IND-CCA2 KEM | yes | K: =~1,384,000" | sk: 19888
(FrodoKEM-640-AES) E: ~1,858,000° | pk: 9616
D: =~1,749,000° | ¢ 9720
NTRU Prime [13] IND-CCA2 KEM | yes | K: 940,852¢ | sk: 1600
(sntrup4591761) E: 44,788¢ | pk: 1218
D: 93,856¢ | c: 1047
Round5 [7] IND-CPA KEM | yes | K: ~57,6007 | sk: 16
(R5ND_1KEM_0d) E: ~94,900? | pk: 634
D: ~45,000¢ | c: 682

% Secret key size can be reduced to just 32 bytes but at the cost of about 53% increased

decapsulation time.

® Intel i7-6700 (Skylake) at 3.4GHz. Compare against Kaby Lake results above.
¢ Intel Xeon E3-1275 v3 (Haswell) at 3.5GHz. ntrulpr4591761 is an alternative if key

generastion is a problem but comes at the cost of increased cycle counts for encapsulation and

decapsulation.

¢ MacBook Pro 15.1” with Intel i7 2.6GHz (unknown what microarchitecture).

48

Conclusions

In this thesis we have seen what post-quantum cryptography is and why
it is necessary. Concretely, we have looked in detail at the lattice-based
cryptography scheme NTRU which uses polynomial rings for its operation.
These operations allow for construction of a secure deterministic public-key
encryption scheme and a corresponding key encapsulation mechanism.

In order to get a better view of the practical performance of NTRU for the
NIST competition we have implemented NTRU using AVX2. This implemen-
tation was performance focused and showed significant speedup compared
to the reference implementation without, to our knowledge, sacrificing the
security of the implementation. The time consumption of NTRU in the opti-
mized AVX2 implementation is low enough to be considered practical and in
turns shows that it is possible to use quantum-resistant cryptography using
modern hardware.

6.1 Future work

In this work we have only considered the hps2048509 parameter set and
for future work it would make sense to consider the other parameter sets.
Specifically hps4096821 would be interesting to look at since the polynomi-
als are quite a bit larger. hps2048677 would not be as interesting since it
would have quite a bit of overlap in the implementation with hrss701 due to
both having the polynomial with 704 coefficients be the closest multiple of
32 coefficients. Note that the code for polynomial inversion in S/3 has been
generalized by Bernstein (after being manually adapted for hps2048509) in
order to support different size polynomials.

Outside of the other parameter sets there are likely some small optimizations
that can be made to hps2048509. One of these optimizations is the alter-
native implementation of multiplication in S/3 discussed in 4.2.2. A quick
calculation shows that it will likely improve decryption cycles by about five

49

to ten percent. Another optimization would be to merge sampling and en-
cryption in encapsulation since encryption currently immediately unpacks
the polynomials that the sampling packs. In Chapter 5 we have seen how
much this can save. One last smaller optimization that is worth looking
into is a more efficient method to expand from 32 bytes of randomness to
2413 bytes of randomness. Currently this is done using SHAKE128 which
is already much better than retrieving 2413 random bytes from the operat-
ing system but is still a large majority of the cycle count in encapsulation.
Outside of small optimizations it might also be worthwhile to look at per-
formance specifically for AMD processors as most of the optimizations in
this thesis only consider AVX2 on Intel processors.

Other possibilities for future work are focusing on memory usage, binary size,
and power consumption. For memory usage it should be possible to choose
coefficients with smaller sizes that are not a multiple of a byte. The binary
size of the AVX2 implementation is quite a bit larger than the reference
implementation. The AVX2 implementation unrolls every single loop for
performance but causes the same instruction sequences to repeat. Another
source of duplication is the code for polynomial reductions and modular
reduction. These are needed a few times and it is beneficial for performance
to have this code duplicated.

50

Bibliography

Miklds Ajtai. “Generating hard instances of lattice problems”. In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of
computing. ACM. 1996, pp. 99-108.

Martin Albrecht, Carlos Cid, Kenneth G. Paterson, CJ Tjhai, and
Martin Tomlinson. “NTS-KEM”. In: NIST submissions (2019). URL:
https://nts-kem.io/.

Erdem Alkim, Joppe W. Bos, Léo Ducas, Patrick Longa, Ilya Mironov,
Michael Naehrig, Valeria Nikolaenko, Chris Peikert, Ananth Raghu-
nathan, Douglas Stebila, Karen Easterbrook, and Brian LaMacchia.
“FrodoKEM Learning With Errors Key Encapsulation”. In: NIST sub-
missions (2019). URL: https://frodokem.org/files/FrodoKEM-
specification-20190702.pdf.

Erdem Alkim, Léo Ducas, Thomas Poppelmann, and Peter Schwabe.
Post-quantum key exchange - a new hope. Cryptology ePrint Archive,
Report 2015/1092. 2015. URL: https://eprint . iacr.org/2015/
1092.

Matthew Amy, Olivia Di Matteo, Vlad Gheorghiu, Michele Mosca,
Alex Parent, and John Schanck. “Estimating the cost of generic quan-
tum pre-image attacks on SHA-2 and SHA-3". In: International Con-
ference on Selected Areas in Cryptography. Springer. 2016, pp. 317—
337.

Jean-Philippe Aumasson, Daniel J. Bernstein, Christoph Dobrau-
nig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas
Hiilsing, Panos Kampanakis, Stefan Ko&lbl, Tanja Lange, Martin M.
Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rech-
berger, Joost Rijneveld, and Peter Schwabe. “SPHINCS™”. In: NIST
submissions (2019). URL: https://sphincs.org/data/sphincs+-
round2-specification.pdf.

o1

https://nts-kem.io/
https://frodokem.org/files/FrodoKEM-specification-20190702.pdf
https://frodokem.org/files/FrodoKEM-specification-20190702.pdf
https://eprint.iacr.org/2015/1092
https://eprint.iacr.org/2015/1092
https://sphincs.org/data/sphincs+-round2-specification.pdf
https://sphincs.org/data/sphincs+-round2-specification.pdf

[16]

Hayo Baan, Sauvik Bhattacharya, Scott Fluhrer, Oscar Garcia-
Morchon, Thijs Laarhoven, Rachel Player, Ronald Rietman, Markku-
Juhani Olavi Saarinen, Ludo Tolhuizen, Jose Luis Torre Arce, and
Zhenfei Zhang. “Round5 KEM and PKE based on (Ring) Learn-
ing with Rounding”. In: NIST submissions (2019). URL: https://
roundb. org/Supporting_Documentation/Round5_Submission.pdf.

Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rog-
away. “Relations among notions of security for public-key encryption
schemes”. In: Annual International Cryptology Conference. Springer.
1998, pp. 26-45.

Mihir Bellare and Phillip Rogaway. “Optimal asymmetric encryption”.
In: Workshop on the Theory and Application of of Cryptographic Tech-
niques. Springer. 1994, pp. 92-111.

Daniel J Bernstein. “Post-quantum cryptography”. In: Encyclopedia
of Cryptography and Security (2011), pp. 949-950.

Daniel J. Bernstein. djbsort: Intro. 2017. URL: https://sorting.cr.
yp.to/ (visited on 07/24/2019).

Daniel J Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich,
Rafael Misoczki, Ruben Niederhagen, Edoardo Persichetti, Christiane
Peters, Peter Schwabe, and Nicolas Sendrier. “Classic McEliece: con-
servative code-based cryptography”. In: NIST submissions (2017).
URL: https://classic.mceliece.org/nist/mceliece-20171129.
pdf.

Daniel J Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and
Christine van Vredendaal. “NTRU Prime: reducing attack surface at
low cost”. In: International Conference on Selected Areas in Cryptog-
raphy. Springer. 2017, pp. 235-260. URL: https://ntruprime.cr.yp.
to/ntruprime-20170816.pdf.

Daniel J Bernstein and Bo-Yin Yang. “Fast constant-time ged com-
putation and modular inversion”. In: CHES2019. 2019. URL: https:
//gcd.cr.yp.to/safegcd-20190413.pdf. Forthcoming.

Dan Boneh and Matt Franklin. “Identity-based encryption from
the Weil pairing”. In: Annual international cryptology conference.
Springer. 2001, pp. 213-229. URL: https://crypto.stanford.edu/
~dabo/papers/bfibe.pdf.

Tomas J Boothby and Robert W Bradshaw. “Bitslicing and the
Method of Four Russians over larger finite fields”. In: arXiv preprint
arXiv: 0901.1413 (2009). URL: https://arxiv.org/abs/0901.1413.

92

https://round5.org/Supporting_Documentation/Round5_Submission.pdf
https://round5.org/Supporting_Documentation/Round5_Submission.pdf
https://sorting.cr.yp.to/
https://sorting.cr.yp.to/
https://classic.mceliece.org/nist/mceliece-20171129.pdf
https://classic.mceliece.org/nist/mceliece-20171129.pdf
https://ntruprime.cr.yp.to/ntruprime-20170816.pdf
https://ntruprime.cr.yp.to/ntruprime-20170816.pdf
https://gcd.cr.yp.to/safegcd-20190413.pdf
https://gcd.cr.yp.to/safegcd-20190413.pdf
https://crypto.stanford.edu/~dabo/papers/bfibe.pdf
https://crypto.stanford.edu/~dabo/papers/bfibe.pdf
https://arxiv.org/abs/0901.1413

[18]

[21]

22]

[23]

[24]

Joppe Bos, Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyuba-
shevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. “CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM”.
In: 2018 IEEE European Symposium on Security and Privacy (Eu-
roS€P). IEEE. 2018, pp. 3563-367. URL: https://eprint.iacr.org/
2017/634.

Johannes Buchmann, Erik Dahmen, and Andreas Hiilsing. “XMSS - a
practical forward secure signature scheme based on minimal security
assumptions”. In: International Workshop on Post-Quantum Cryptog-
raphy. Springer. 2011, pp. 117-129. URL: https://eprint.iacr.org/
2011/484.pdf.

Debrup Chakraborty, Vicente Hernandez-Jimenez, and Palash Sarkar.
“Another look at XCB”. In: Cryptography and Communications 7.4
(2015), pp. 439-468. URL: https://eprint.iacr.org/2013/823.

Ming-Shing Chen, Andreas Hiilsing, Joost Rijneveld, Simona Samard-
jiska, and Peter Schwabe. “MQDSS specifications”. In: NIST submis-
sions (2019). URL: http://mqdss.org/files/MQDSS_Verlpointl.
pdf.

Ronald Cramer and Victor Shoup. “Design and analysis of practical
public-key encryption schemes secure against adaptive chosen cipher-
text attack”. In: SIAM Journal on Computing 33.1 (2003), pp. 167
226. URL: https://eprint.iacr.org/2001/108.

Whitfield Diffie and Martin Hellman. “New directions in cryptog-
raphy”. In: IEEE transactions on Information Theory 22.6 (1976),
pp. 644-654. URL: https://ee.stanford.edu/~hellman/publicati
ons/24.pdf.

Danny Dolev, Cynthia Dwork, and Moni Naor. “Nonmalleable cryp-
tography”. In: SIAM review 45.4 (2003), pp. 727-784.

Achim Flammenkamp. Shortest Addition Chains. URL: http://wwwh
omes.uni-bielefeld.de/achim/addition_chain.html (visited on
07/24/2019).

Agner Fog. Instruction tables: Lists of instruction latencies, through-
puts and micro-operation breakdowns for Intel, AMD and VIA CPUs.

1996-2018. URL: https://www.agner.org/optimize/instruction_
tables.pdf (visited on 07/24/2019).

Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs: An
optimization guide for assembly programmers and compiler makers.
1996-2018. URL: https://www.agner.org/optimize/microarchite
cture.pdf (visited on 07/24/2019).

93

https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2011/484.pdf
https://eprint.iacr.org/2011/484.pdf
https://eprint.iacr.org/2013/823
http://mqdss.org/files/MQDSS_Ver1point1.pdf
http://mqdss.org/files/MQDSS_Ver1point1.pdf
https://eprint.iacr.org/2001/108
https://ee.stanford.edu/~hellman/publications/24.pdf
https://ee.stanford.edu/~hellman/publications/24.pdf
http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf

[28]

[29]

[30]

[35]

[37]

David Galindo. “Boneh-Franklin identity based encryption revisited”.
In: International Colloguium on Automata, Languages, and Program-
mang. Springer. 2005, pp. 791-802. URL: https://eprint.iacr.org/
2005/117.

Oded Goldreich, Shafi Goldwasser, and Shai Halevi. “Collision-Free
Hashing from Lattice Problems”. In: Studies in Complexity and Cryp-
tography. Miscellanea on the Interplay between Randomness and Com-
putation. Springer Berlin Heidelberg, 2011, pp. 30-39. 1SBN: 978-3-
642-22670-0. DOI: 10.1007 /978-3-642-22670-0_5. URL: http:
//www.wisdom.weizmann.ac.il/~oded/COL/cfh.pdf.

Shafi Goldwasser and Silvio Micali. “Probabilistic encryption”. In:
Journal of computer and system sciences 28.2 (1984), pp. 270-299.

Lov K Grover. “A fast quantum mechanical algorithm for database
search”. In: arXiv preprint quant-ph/9605043 (1996). URL: https :
//arxiv.org/abs/quant-ph/9605043.

Jeffrey Hoffstein, Cong Chen, William Whyte, and Zhenfei Zhang.
“NTRUEncrypt: A lattice based encryption algorithm”. In: NIST sub-
missions (2017). URL: https://www.onboardsecurity.com/nist-
post—quantum-crypto-submission.

Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. “NTRU: A ring-
based public key cryptosystem”. In: International Algorithmic Number
Theory Symposium. Springer. 1998, pp. 267-288.

Andreas Hiilsing, Joost Rijneveld, John M Schanck, and Peter Schwabe.
“NTRU-HRSS-KEM”. In: NIST submissions (2017). URL: https :
//ntru-hrss.org/data/ntrukem. pdf.

Andreas Hiilsing, Joost Rijneveld, John Schanck, and Peter Schwabe.
“High-speed key encapsulation from NTRU”. In: International Con-
ference on Cryptographic Hardware and Embedded Systems. Springer.
2017, pp. 232-252. URL: https://eprint.iacr.org/2017/667.

Toshiya Itoh and Shigeo Tsujii. “A fast algorithm for computing mul-
tiplicative inverses in GF(2™) using normal bases”. In: Information
and computation 78.3 (1988), pp. 171-177. URL: https://core.ac.
uk/download/pdf/82657793. pdf.

Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu. “Breaking
and repairing GCM security proofs”. In: Annual Cryptology Confer-
ence. Springer. 2012, pp. 31-49. URL: https://eprint.iacr.org/
2012/438.

A. Karatsuba and Yuri Petrovich Ofman. “Multiplication of Many-
Digital Numbers by Automatic Computers”. In: Proceedings of the
USSR Academy of Sciences (1963).

o4

https://eprint.iacr.org/2005/117
https://eprint.iacr.org/2005/117
https://doi.org/10.1007/978-3-642-22670-0_5
http://www.wisdom.weizmann.ac.il/~oded/COL/cfh.pdf
http://www.wisdom.weizmann.ac.il/~oded/COL/cfh.pdf
https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/quant-ph/9605043
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission
https://ntru-hrss.org/data/ntrukem.pdf
https://ntru-hrss.org/data/ntrukem.pdf
https://eprint.iacr.org/2017/667
https://core.ac.uk/download/pdf/82657793.pdf
https://core.ac.uk/download/pdf/82657793.pdf
https://eprint.iacr.org/2012/438
https://eprint.iacr.org/2012/438

[42]

[43]

[44]

[45]

[46]

(48]

Auguste Kerckhoffs. “La cryptographie militaire”. In: Journal des sci-
ences militaires 9 (Jan. 1883), pp. 5-38. URL: https://petitcolas.
net/kerckhoffs/crypto_militaire_1_b.pdf.

Donald E Knuth. Art of computer programming, volume 2: Seminu-
merical algorithms. Addison-Wesley Professional, 2014.

Arjen Klaas Lenstra, Hendrik Willem Lenstra, and Laszlé Lovész.
“Factoring polynomials with rational coefficients”. In: Mathematis-
che Annalen 261.4 (1982), pp. 515-534. URL: https://www.math.
leidenuniv.nl/~hwl/PUBLICATIONS/1982f/art.pdf.

Gregory Lento. Optimizing performance with Intel Advanced Vector
Extensions. 2014. URL: https://computing.1llnl.gov/tutorials/
linux_clusters/intelAVXperformanceWhitePaper.pdf (visited on
07/24/2019).

Robert J. McEliece. “A public key cryptosystem based on algebraic
coding theory”. In: Technical report, NASA (1978). URL: https://
ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF.

David A McGrew and Scott R Fluhrer. “The security of the extended
codebook (XCB) mode of operation”. In: International Workshop on
Selected Areas in Cryptography. Springer. 2007, pp. 311-327.

David A McGrew and John Viega. “The security and performance
of the Galois/Counter Mode (GCM) of operation”. In: International
Conference on Cryptology in India. Springer. 2004, pp. 343-355. URL:
https://eprint.iacr.org/2004/193.

PQCRYPTO. Post-quantum cryptography for long-term security.
2019. URL: https://pgcrypto.eu.org/ (visited on 07/24/2019).

Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A method for
obtaining digital signatures and public-key cryptosystems”. In: Com-
munications of the ACM 21.2 (1978), pp. 120-126. URL: https://
people.csail.mit.edu/rivest/Rsapaper.pdf.

Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. “Tightly-
secure key-encapsulation mechanism in the quantum random oracle
model”. In: Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques. Springer. 2018, pp. 520-551.
URL: https://eprint.iacr.org/2017/1005.

John M. Schank, Cong Chen, Oussama Danba, Jeffrey Hoffstein, An-
dreas Hiilsing, Joost Rijneveld, Peter Schwabe, William Whyte, and
Zhenfei Zhang. “NTRU”. In: NIST submissions (2019). URL: https:
//csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptogr
aphy/documents/round-2/submissions/NTRU-Round2.zip.

95

https://petitcolas.net/kerckhoffs/crypto_militaire_1_b.pdf
https://petitcolas.net/kerckhoffs/crypto_militaire_1_b.pdf
https://www.math.leidenuniv.nl/~hwl/PUBLICATIONS/1982f/art.pdf
https://www.math.leidenuniv.nl/~hwl/PUBLICATIONS/1982f/art.pdf
https://computing.llnl.gov/tutorials/linux_clusters/intelAVXperformanceWhitePaper.pdf
https://computing.llnl.gov/tutorials/linux_clusters/intelAVXperformanceWhitePaper.pdf
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://eprint.iacr.org/2004/193
https://pqcrypto.eu.org/
https://people.csail.mit.edu/rivest/Rsapaper.pdf
https://people.csail.mit.edu/rivest/Rsapaper.pdf
https://eprint.iacr.org/2017/1005
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/NTRU-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/NTRU-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/NTRU-Round2.zip

[50]

[51]

[52]

[53]

[54]

[55]

Richard Schroeppel, Hilarie Orman, Sean O’Malley, and Oliver
Spatscheck. “Fast key exchange with elliptic curve systems”. In:
Annual International Cryptology Conference. Springer. 1995, pp. 43—
56.

Peter W Shor. “Algorithms for quantum computation: Discrete log-
arithms and factoring”. In: Proceedings 35th annual symposium on
foundations of computer science. IKEE. 1994, pp. 124-134. URL: http
s://pdfs.semanticscholar.org/6902/cb196ec032852ff31ccl178c
a822abf67b2f2.pdf.

Victor Shoup. “OAEP reconsidered”. In: Annual International Cryp-
tology Conference. Springer. 2001, pp. 239-259. URL: https://eprin
t.iacr.org/2000/060.

Joseph H. Silverman. “Almost inverses and fast NTRU key creation”.
In: Technical Report #014 (1999). URL: https://assets.onboardsec
urity.com/static/downloads/NTRU/resources/NTRUTech014.pdf.

National Institute for Standards and Technology. Post-Quantum Cryp-
tography — CSRC. 2019. URL: https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography (visited on 07/24/2019).

NTRU Team. NTRU parameter sets for the second round of the NIST
process. 2019. URL: https://github.com/jschanck/ntru (visited on
07/24/2019).

André Weimerskirch and Christof Paar. “Generalizations of the Karat-
suba Algorithm for Efficient Implementations.” In: IJACR Cryptology
ePrint Archive 2006 (2006), p. 224. URL: https://eprint.iacr.org/
2006/224.

Alberto Zanoni. “Toom-cook 8-way for long integers multiplication”.
In: 2009 11th International Symposium on Symbolic and Numeric Al-
gorithms for Scientific Computing. IEEE. 2009, pp. 54-57.

o6

https://pdfs.semanticscholar.org/6902/cb196ec032852ff31cc178ca822a5f67b2f2.pdf
https://pdfs.semanticscholar.org/6902/cb196ec032852ff31cc178ca822a5f67b2f2.pdf
https://pdfs.semanticscholar.org/6902/cb196ec032852ff31cc178ca822a5f67b2f2.pdf
https://eprint.iacr.org/2000/060
https://eprint.iacr.org/2000/060
https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf
https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://github.com/jschanck/ntru
https://eprint.iacr.org/2006/224
https://eprint.iacr.org/2006/224

	Introduction
	Cryptographic background and related work
	Symmetric-key cryptography
	Public-key cryptography
	Digital signatures
	Key encapsulation mechanisms

	One-way functions
	Cryptographic hash functions

	Proving security
	Post-quantum cryptography
	Lattice-based cryptography
	Side-channel resistance
	Related work

	Overview of NTRU
	Important NTRU operations
	Sampling
	Polynomial addition
	Polynomial reduction
	Polynomial multiplication
	Polynomial inversion
	Hashing

	NTRU DPKE
	Keypair generation
	Encryption
	Decryption

	NTRU KEM
	Keypair generation
	Encapsulation
	Decapsulation

	Optimizing NTRU using AVX2
	AVX2 features and description
	Optimizing crucial operations
	Multiplication in R/q
	Multiplication in S/3
	Inversion in S/q
	Inversion in S/3
	Optimizing R/q to S/3 conversion
	Optimizing cryptographic sorting

	Results and comparison
	Comparison to other submissions

	Conclusions
	Future work

