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Abstract

In this thesis, we see that the increasing complexity and scope of testing critical (em-
bedded) software systems, as well as relying on error-prone test and input selection by
testers, calls for a new way of testing, namely model-based testing. This technique is slowly
gaining ground, mostly in larger companies and longer running projects, but is not yet
widely adopted. In this thesis, we argue that this problem exists due to the time and
effort that has to be invested in creating and maintaining the models suitable for model-
based testing. This is why this thesis proposes a solution in the form of a tool, which
can generate models suitable for model-based testing from Unified Modelling Language
(UML) diagrams to make model-based testing more accessible. UML is often already used
in projects to document what has to be implemented, improve communication, reduce the
number of software defects, and improve the quality of the software. In this thesis, we
researched the syntax and semantics of sequence diagrams, as well as the transformation
process from these diagrams to labelled or symbolic transition system to create a tool
capable of transforming UML diagrams to TorXakis input models. This tool was then
used in a case study, to generate models from sequence and class diagrams from which
we were able to test an embedded system. Future work should research the possibility to
generate models for a real-time model-based testing tool to be able to test (embedded)
software systems subject to timing constraints below 100 milliseconds.
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1 Introduction

With the increasing complexity and scope of software systems, the probability that such a
system contains bugs or faults also increases. Especially in embedded software, applications
can potentially be dangerous when the software (or hardware) contains a fault. The impact
of this can be seen by the current developments in the field of autonomous vehicles, where
collisions have happened due to software faults, which have resulted in casualties [1]. Another
concern is often the cost of a software bug. It is not always possible to perform over-the-
air updates for embedded systems that have already been released, as they are not always
connected to the internet. This means that fixing bugs when the product is already released,
may require performing updates in the field or even a recall, which can be costly1. Moreover,
fixing a bug after release may not be possible in some cases, as such a bug could destroy the
system. This was the case for the flight failure 501 of the Ariane 5 launch vehicle, which
exploded 40 seconds after initiation of its flight sequence due to a software fault [2].

There are multiple techniques available to check the quality of software and spot and pre-
vent all kinds of failures. Probably the most well-known technique is testing, which evaluates
the software by observing its executions on actual valued inputs [3]. It is estimated that,
during the development of a system, 50% of the time and cost is used for testing the sys-
tem [4]. There are many different approaches available when it comes to testing. Systematic
software testing belongs to one of the most important and widely used techniques for testing
software [5]. However, creating test cases for this approach is often a tedious and lengthy
process. Even though the execution of the test cases can be automated, it cannot be guar-
anteed that there are no faults left in the system, as it is impossible to test with all possible
input combinations. Moreover, most test cases are created to make sure that each feature of a
system under test (SUT) works properly. However, these test cases are usually not capable of
finding faults in sequences of features [6]. The creation of the test cases therefore depends too
much on the person that selects the input, which is why this process is often error prone [7].

This calls for a new way of testing, namely model-based testing [8]. In model-based test-
ing, test cases are generated from a model, which is a specification that is based on the
implementation of the SUT. These test cases can be generated and automatically executed
by a model-based testing tool (e.g.UPPAAL TRON [9], TorXakis [10], JTorX [11], Graph-
Walker [12]), to find faults that only show up when a sequence of test cases is performed [5].
The tool achieves this by stepping through the model, sending the specified input to the SUT
and checking if the output matches with expected output. When the tool encounters different
output than expected, it will stop and report that a potential fault is found. Then, either a
fault in the system is found, or the created specification model does not correspond to the
desired behaviour of the system. Mohacsi et al. [13] states that other benefits may include:

• Improved quality of specification artefacts.

• More of the defects are found at an early stage of the project due to model creation.

• Improved test case quality due to systematic model coverage.

• Improved quality of SUT due to faster and more efficient testing.

Model-based testing is used in the industry but does not seem widely adopted. However,
the technique does seem to get some grip, as some commercial companies have spawned,

1https://www.celerity.com/the-true-cost-of-a-software-bug/
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such as Axini2 and Tricentis3, who provide model-based testing solutions as their primary
business model. Related work shows that model-based testing is currently mostly being used
in the transportation and automotive software domain [8, 13]. Gustafsson states that one
of the reasons for the low adoption rate could be that a lot of effort and time needs to be
invested in creating and maintaining the models that are needed for the model-based testing
tools [6]. This is plausible, as most model-based testing tools require input models based on
the specification of the SUT, which often have to be created with a specific modelling tool or
syntax. Mohacsi et al. [13] strengthens this argument by stating that, due to the initial cost,
the project needs to have a certain number of test cycles before model-based testing pays off.
This means that in small or low budget projects, model-based testing does not seem like a
viable option.

A solution to this problem may come in the form of Unified Modeling Language (UML)
diagrams. UML has a status as an industry standard for modelling and is frequently used
by the industry, to the point that it is part of many undergraduate university curricula in
Information Technology fields [14, 15, 16]. UML diagrams are often already created in the
projects design phases. The reason for this is that these diagrams make it easier for the
developers to understand what has to be implemented, improves communication, reduces
the number of software defects, improves the quality of the software, and provides valuable
documentation [16]. These diagrams would also improve the testing process if they could be
used to generate input models for a model-based testing tool.

In this work, UML sequence diagrams, in combination with UML class diagrams, have
been chosen as the diagrams that will be supported. The reason for this is that the research is
performed at the company Inspiro, which mainly uses sequence and class diagrams to model
their systems. Also, TorXakis will be used as the model-based testing tool of choice, as part
of the development of this tool is performed at the Radboud University. The main research
question this work aims to answer is:

• Can we generate input models for the model-based testing tool TorXakis from UML
sequence and class diagrams to improve on the testing process of embedded software?

The main research question can be answered by answering the following sub-questions:

• What are the syntax and semantics of sequence diagrams?

• Which type of model is most suitable as an intermediate model representation, from
which an input model for the model-based testing tool TorXakis can be generated?

• What are the options to add types and variables to the UML diagrams, such that
TorXakis can generate input based on these types?

• What are the options to add constraints to parameters, such that TorXakis can generate
input based on these constraints?

In this thesis, Chapter 2 describes the related work that exists in this field of research.
Chapter 3 explains the syntax and semantics of sequence diagrams, which is needed to extract
the necessary information from the diagram to generate an input model for a model-based
testing tool. Chapter 4 explains the theoretical background of model-based testing with
labelled transition systems and TorXakis. Chapter 5 describes what is needed to convert

2https://www.axini.com/nl/
3https://www.tricentis.com/
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sequence diagrams to a model suitable for model-based testing. Chapter 6 gives an example
of how the proposed solution can be used in a practical setting. Chapter 7 describes the case
study executed on some real hardware and software made by Inspiro. Chapter 8 explains the
obtained results and contains the discussion. Finally, Chapter 9 provides the conclusion and
future work on this research.
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2 Related Work

This chapter describes some of the research and techniques related to this work, which can
be categorized into three groups. The first group of related work researched ways to convert
or transform UML (sequence) diagrams into other (mathematical) representations. However,
they differ from our approach, as these intermediate representations are mostly used to trans-
late UML diagrams into other diagrams, or for formal verification techniques such as model
checking. The second group of related work researched how to generated or derive test cases
from UML (sequence) diagrams, that often make use of some intermediate model represen-
tation from which the test cases can be generated. The final group contains some research
that is closely related to this work, where UML diagrams are used to create an intermediate
model-representation, from which test cases can be derived and automatically executed.

In the field of converting sequence diagrams into other (mathematical) representations,
Grønno et al. [17] proposed a technique to transform sequence diagrams to state machines
by using graph transformation. The transformation technique utilizes concrete syntax-based
graph transformation rules, which are implemented in a tool called the attributed graph
grammar system (AGG)4. This approach differs from other approaches, as the other men-
tioned approaches all use abstract syntax, instead of concrete syntax, to translate to other
representations. Kundu et al. [18] introduced an approach to convert the XML Metadata
Interchange (XMI) representation of UML interaction diagrams into control flow graphs. The
paper identifies some difficulties that can occur when creating control flow graphs and pro-
poses a conversion procedure to overcomes these difficulties. Brasil et al. [19] transformed
behavioral diagrams, including: state machines, sequence diagrams, activity diagrams, etc.
into transition systems for formal verification with model checking. A slightly more advanced
approach is taken by Cartaxo et al. [20] which proposes a technique to convert sequence
diagrams into labelled transition systems, instead of regular transition systems.

In the field of extracting test cases from UML diagrams, Muthusamy et al. [21] proposed
a new approach to derive test cases from sequence diagrams. In their work, they first con-
vert the sequence diagram from to the XMI format, also used in this work and explained
in chapter 3.2, from which a sequence dependency graph is created. Then, test cases are
generated from this graph, based on path coverage by using the “iterative deepening” depth-
first search algorithm. Oluwagbemi et al. [22] proposed another technique to automatically
generate test cases from UML diagrams. This technique also utilizes the XMI format to ex-
tract the necessary information from the sequence diagrams. However, instead of a sequence
dependency graph, a dependency flow tree is used as the intermediate model representation.
The test cases are then generated from the dependency flow tree based on coverage criteria
such as model-flow, conditional-flow, element-flow and data-flow coverage. Panthi et al. [23]
also proposed a technique to automatically generate test cases from sequence diagrams. They
first convert the sequence diagram in a sequence graph, after which the sequence graph is
traversed to collect the predicate functions. These predicate functions are transformed into
source code, from which an extended finite state machine (EFSM) is created. The resulting
state machine is then used to generate test cases.

In the field of executing the derived test cases from UML, Dahlweid et al. [24, 25] developed
a tool called RT-Tester to transform a subset of UML/SysML diagrams into an intermediate
model-representation, from which automatically executable test cases are derived. This subset

4http://www.user.tu-berlin.de/o.runge/agg/
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includes composite structures or block diagrams to express the structure of the SUT, as well
as state machines and operations to express the behaviour of the SUT. Similar to our work,
the information of a sequence diagram is extracted from the XMI representation. From this
information, an internal model representation is created, where instead of labelled transition
systems, Kripke structures are utilized. The Kripke structures allow for the generation of the
test cases and model checking. The main difference between Kripke structures and labelled
transition systems is that Kripke structures have labelled states instead of labelled transitions.
RT-Tester has a build-in test executor which can be seen as a model-based testing tool such
as TorXakis.
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3 Syntax and Semantics of Sequence Diagrams

A sequence diagram is a variant of an interaction diagram, which is part of the Unified
Modeling Language (UML) standard. UML was created by the Object Management Group
(OMG) to provide the tools for analysis, design, and implementation for system architects and
software developers [26]. Sequence diagrams give a specification of a system, which shows how
objects or other instances behave and communicate with each other. Sequence diagrams can
have multiple purposes [27]. For instance, they can be useful for design and documentation, to
graphically show the communication flow to a developer, which is often easier to understand
than a textual explanation. Sequence diagrams are often intuitive enough that stakeholders
can understand them without the need for background knowledge in computer science, which
makes them very useful in explaining the communication flow of a system.

As mentioned before, sequence diagrams are a variant of the interaction diagram, of which
there exist other forms, namely: communication diagrams, interaction overview diagrams, and
timing diagrams. However, in this research, we will only focus on sequence diagrams. The
syntax and semantics of UML diagrams are described in the OMG UML specification [26].
With the update to version 2.0 of this specification, the expressiveness of the language was
highly increased, but the semantics were not precisely defined. This allows for the creation
of hard to interpret diagrams, which leads to some problems [28].

Page 595 of the UML specification describes sequence diagrams as follows: “A sequence
diagram is the most common kind of interaction diagram, which focuses on the message in-
terchange between several lifelines” [26]. In the purest form, a sequence diagram consists out
of lifelines and messages between these lifelines. The lifelines represent the objects or other
instances that communicate with each other. The messages represent the actual communica-
tion that takes place between the lifelines. Figure 3.1 illustrates a simple sequence diagram,
where a client sends a request message to the server, which is replied to with a reply message.
This is an example of synchronous communication between two instances, where the sender
of the message waits for the reply before sending another message. Other forms, such as
asynchronous communication, are also included in the specification.

Figure 3.1: Example of a sequence diagram
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There are a lot of tools available that are able to model sequence diagrams5. However, most
modelling tools only implement a subset of the full UML specification. This can be seen when
we compare the UML modelling tools Modelio6 and StarUML7. StarUML includes the concept
of lost and found messages, specified on page 574 of the UML specification [26], whereas
Modelio does not. Related work also often includes only a subset of the full specification.
The reason for this is that considering the full specification is often not feasible. Micskei et
al. [28] researched this by comparing the elements that get mentioned in multiple research
papers about sequence diagrams, which shows that certain elements do not seem important
or used much. In our research, where we model the communication between two instances,
certain elements such as the creation and deletion of objects are not relevant. This is why,
in this work, we will also only focus on a subset of the sequence diagram specification. The
sequence diagram notation consists of graphic nodes and graphic paths. The subset of graphic
nodes includes lifelines and combined fragments (optional, alternative and loop). The subset
of graphic paths includes: synchronous, asynchronous and reply messages.

3.1 Syntax

3.1.1 Concrete syntax

The concrete syntax of an interaction are the elements and their notations in sequence di-
agrams [28]. An example of the concrete syntax of messages and lifelines can be seen in
Figure 3.2, where Lifeline 1 and Lifeline 2 represent the lifelines of the sequence diagram.
The vertical dotted line describes the time-line for a process. Time increases down the line,
but the distance between events does not describe any unit of actual time. It only tells us
that a non-zero amount of time has passed [26]. The arrows between the lifelines represent
the messages. Here, the arrows with filled arrowheads represent synchronous messages, which
always wait for a reply. A line with an unfilled arrowhead represents the asynchronous mes-
sages. In the example in Figure 3.2, the asynchronous message is only sent after the reply to
the synchronous message as been received.

Figure 3.2: Lifelines with messages Figure 3.3: Combined fragments

5https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
6https://www.modelio.org/
7http://staruml.io/
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A combined fragment can be seen in Figure 3.3, where the box that contains the alt in-
teraction operator represents the concrete syntax of a combined fragment. The interaction
operands separate the different sequences of events that can be executed. If the guard in the
interaction operand is satisfied, the sequence of events in this interaction operand will be exe-
cuted. There are multiple types of combined fragments, which are explained in Section 3.3.2.

3.1.2 Abstract syntax

The abstract syntax of interaction diagrams, given in chapter 17 of the UML specification,
contains the information of the elements in the diagram and the relations between them [26].
Each element and their relations that make up the interaction diagram is illustrated by
meta-modelling with class diagrams throughout the chapter. The top-level abstract syntax
of an interaction diagram is shown in Figure 3.4. We can see here that an interaction dia-
gram can contain multiple interaction fragments. An InteractionFragment can exist in the
form of Interaction, OccurrenceSpecification, ExecutionSpecification or StateInvariant [28]. A
CombinedFragment, shown in Figure 3.3, is also an InteractionFragment, which can contain
multiple InteractionFragments in its InteractionOperand. This shows that there can be mul-
tiple levels of nested InteractionFragments within an interaction diagram [26]. The semantics
of some of these fragments are explained in Section 3.3.

Figure 3.4: Abstract syntax interaction [26]

The sequence diagram variant of an interaction diagram also contains lifelines and mes-
sages along with the interaction fragments. The abstract syntax for lifelines is shown in
Figure 3.5. This figure shows that, among other things, a lifeline is named, is contained in an
interaction diagram, and is covered by InteractionFragments. These fragments contain the
necessary information about the occurring events on a lifeline.

The abstract syntax for messages is shown in Figure 3.6. This abstract syntax diagram
shows, among other things, that messages are of a certain sort and kind, is contained in
an interaction diagram and can have as much as two MessageEnds. These MessageEnds
have to be either a sendEvent or receiveEvent, but only one is allowed. The sendEvent
contains the link to the sender of the message, e.g., a lifeline. The receiveEvent contains

8



Figure 3.5: Abstract syntax lifelines [26]

the link to the receiver. The MessageEnd is a MessageOccurrenceSpecification, which is an
OccurrenceSpecification fragment, which in turn is an InteractionFragment.

Figure 3.6: Abstract syntax messages [26]

If we omit some information and extra features and only show the lifelines, messages and
fragments that hold the necessary information about the relations, we end up with the dia-
gram shown in Figure 3.7. Here we can easily see that an interaction diagram consists out
of lifelines, messages and (interaction)fragments. The messages have MessageEnds, which
are a variant of a MessageOccurrenceSpecification. This MessageOccurrenceSpecification in-
herits from OccurrenceSpecification, which inherits from InteractionFragment. The relation
between the lifelines and messages can be seen in the relation between OccurrenceSpecifica-
tion and Lifeline. Here, the lifeline covers a list of OccurrenceSpecifications, which can be the
MessageEnds, which is either a sendEvent or receiveEvent.

9



Figure 3.7: Abstract syntax simplified

3.1.3 Relation between concrete and abstract syntax

Figure 3.8 illustrates the relation between concrete and abstract syntax. The left side contains
the concrete syntax of a sequence diagram. This sequence diagram contains two lifelines: a

and b, where a sends an asynchronous message m1 to b. The right side illustrates the abstract
syntax, which shows that every element is contained in an interaction diagram. The elements
are the lifelines, message and MessageOccurrenceSpecifications (fragments) that contain the
information about the sender and recipient of the message.

Figure 3.8: Relation between concrete and abstract syntax [28]

3.2 XMI file format

Modelling tools often use different data structures and file formats to save and interpret UML
diagrams. The OMG group tried to combat this by developing a standard that should make it
possible to exchange models between different tools [29]. This standard encodes the abstract
syntax of a diagram to an XML document or schema, which allows for post-processing in the
form of validation, code generation and much more. Many tools implement this standard or
have plugins available to export to and import from the XMI file format8. However, not all
tools generate the same XMI output for the same model [30], which introduces compatibility
issues.

8https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
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If we model the sequence diagram from figure 3.8 with the tool Modelio and export it
to XMI, it will generate the XMI output shown in Figure 3.9. Here, some of the randomly
generated identifiers have been replaced with more readable identifiers. The packagedElement
contains the information about the type of the diagram, which is uml:Interaction. Within
this packagedElement, the two lifelines, the message and fragments are visible. For example,
the lifeline a’s coveredBy attribute is linked to the fragment 1. This fragment’s message
attribute is linked to message 1 and finally, the sendEvent of this message is linked back to
fragment 1.

Figure 3.9: XMI output of sequence diagram

3.3 Semantics

The semantics of sequence diagrams are also given in the UML specification, though only
informally [26]. Also, with these given semantics, Micskei et al. [28] states that there are two
significant challenges. Firstly, the descriptions of the semantics are scattered throughout the
text, which makes it hard to determine the precise semantics. Secondly, parts of the semantics
are not specified in detail on purpose to allow the use of UML in many domains. This means
that the modeller has to choose the variation of semantics for his/her particular domain, which
is not always explicitly defined. This is why other research often proposes its own semantic
interpretation for sequence diagrams [28]. For simplicity, only the semantics of the selected
elements will be explained. The following sections give a summary of the semantics of basic
interactions, fragments and combined fragments, based on the UML specification [26]. For
some of the elements, a decision had to be made on what semantic interpretation would be
adopted in this work. These decisions are based on the comparison of the proposed semantics
in Micskei et al. [28].

3.3.1 Semantics of basic interactions

Interactions illustrate the behaviour of a system, where the communication between partici-
pants exists in the form of messages. The central concept of the semantics of an interaction
can be defined as a pair of sets of traces, represented by the set of valid and invalid traces [28].

11



A trace can be seen as a sequence of event occurrences, described by OccurrenceSpecifica-
tions. The invalid set of traces can only be present if messages are contained in a combined
fragment that has the Negative (Neg), or are on the outside of a combined fragment with the
Assertion (Assert) operator. These operators are not included in our selection, so the set of
invalid traces can be ignored in this work. All other included traces are part of the set of
valid traces.

The only form of OccurrenceSpecifications in this work are MessageOccurrenceSpecifica-
tions. These MessageOccurrenceSpecifications represent either the sendEvent or receiveEvent
of a message, where the sendEvent should always occur before the receiveEvent. The signa-
ture of a message can either refer to an operation or a signal. In this work, we will only
consider the operation signature. With this signature, the messageSort can be either synch-
Call, asynchCall or reply. When the messageSort is a reply, it is the return of a synchCall.
An operation can also carry arguments, which are described by ValueSpecifications.

For a message to be able to exist, the sendEvent and receiveEvent should be linked to
participants, represented by lifelines. As mentioned before, these lifelines describe the time-
line of a process, where time increases down the line. The events that occur on a lifeline are
executed in order. For example, if two messages occur on a lifeline, and the second message is
further down the line, it will be sent after the first message is sent and received. The ordering
is determined based on the order of OccurrenceSpecifications events.

Consider the example sequence diagram in Figure 3.10. The events of message m1 are
!m1 and ?m1, where !m1 denotes the sendEvent of the message, and ?m1 denotes the re-
ceiveEvent of the message. However, since there can be more lifelines, some of the proposed
semantics propose that the elements of the message should be encoded in tuples in the form
of (sender, receiver,message) [28]. Also, to differentiate between two messages that have
the same name, a unique identifier should be added to the tuple. Now message m1 can be
encoded in tuple (0, A,B,m1) and message m2 can be encoded in tuple (1, C,B,m2).

Figure 3.10: Sequence diagram sd1

The UML specification states that occurrences on the same lifeline must occur in the same
order as they are specified, even for the receiving of messages sent by different objects [26].
This why when only the valid traces are considered, the standard interpretation of the se-
quence diagram sd1 in Figure 3.10 is !m1 · ?m1 · !m2 · ?m2. The order of the sendEvents does
not matter because they are not related, but ?m1 has to be received before ?m2 [28].
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3.3.2 Semantics of combined fragments

Combined fragments are different from traces, in the sense that they do not add traces
themselves, but only alter the ordering of the already present traces. As mentioned before,
combined fragments are regions highlighted with an InteractionOperator such as alt. Depend-
ing on the operator, the combined fragment also contains one or more InteractionOperands.
Each of these InteractionOperands can be seen as a full sub-sequence diagram. Moreover, a
sequence diagram itself can also be seen as a CombinedFragment with the “seq” operator.
This operator applies sequential composition, also known as weak sequencing, to all fragments
in the diagram. The rules of weak sequencing are such that, when OccurrenceSpecifications
share the same lifeline, the ordering is maintained. However, OccurrenceSpecifications on
different lifelines from different operands may come in any order [28].

For readability, the tuple notation is omitted in this example of weak sequencing in Fig-
ure 3.11, as well as future examples. Here, the messages m1 and m2 share lifeline b. How-
ever message m3 does not share lifelines with the other messages. This means that the
send and receive events of message m3 can come at any time, as long as the events of m2
come after the events of m1. As an example, the traces !m3 · ?m3 · !m1 · ?m1 · !m2 · ?m2,
!m1 ·?m1 · !m2 · ?m2 · !m3 · ?m3, and !m1 · !m3 · ?m1 · !m2 · ?m3 · ?m2 are all valid.

Figure 3.11: Weak sequencing example

The opposite of weak sequencing is strict sequencing. With strict sequencing, the order of
sending and receiving messages is strictly maintained. While weak sequencing is the default,
it introduces decidability issues, which is why some of the proposed semantics in Micskei
et al. [28] introduce synchronization on entering and exiting fragments to eliminate these
decidability issues. Most of the time, synchronization on entering and exiting fragments
is adopted when sequence diagrams are used for verification purposes. In this work, weak
sequencing will not be an issue, as lifelines will always be shared when communicating with
the environment, maintaining the ordering. This is explained further in Section 5.1.

The interaction operators for combined fragments considered in this work include: opt,
alt and loop. Both opt and loop can only contain a single interaction operand. However,
alt may contains one or more interaction operands. Each operand also contains a guard. If
none of the guards are satisfied, none of the interaction operands in the combined fragment
will be executed. Otherwise, if the guard of an operand is satisfied, this operand will be
executed. If multiple operands have guards that are satisfied, which operand is executed will
be determined non-deterministically. Some proposed semantics remove the non-determinism
by executing the first operand guard that evaluates to true [28]. However, in this work, the
non-deterministic choice is maintained.
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• The opt operator is short for option and acts as a single if-then statement.

• The alt operator is short for alternatives and acts as a switch or if/else statement where
the guards are the conditions. If multiple guards are satisfied, at most, one of the
operands will be executed non-deterministically [26].

• The loop operator will repeat over its events until the condition of the guard is unsat-
isfied. The guard includes three values. The first value describes the minimum number
of iterations, the second value the maximum number of iterations, and the third value
describes the loop guard. This means that when the minimum number of iterations
is not yet reached, even if the loop guard is not satisfied, the loop will continue its
iterations. The loop will terminate if the loop guard is not satisfied or the maximum
number of iterations is reached. The OMG specification states that weak sequencing is
in effect between the iterations of the loop [26]. This means that the send events of the
messages will always be in order. However, it is not known in what order the messages
will be received, or even if they will be received before the next iteration starts. This
introduces the same issues as mentioned before, which is why strict sequencing will be
applied between loop iterations in this work [28]. This results in an interpretation of a
loop that is similar to loops in programming languages.

Consider sequence diagram sd2 in Figure 3.12. To easily calculate the set of traces in
this sequence diagram, the guards in the combined fragment hold a True or False value
to decide whether the guard is satisfied or not. In a regular sequence diagram, the guard
contains a value that is not yet evaluated. This means that to calculate the set of traces
in a diagram where the satisfiability of the guards is not yet known, all possible combina-
tions of guard evaluations have to be included in the set. In this case, the satisfiability of
the guards is known, meaning that the standard interpretation of sequence diagram sd2 is:
!m1 · ?m1 · !m2 · ?m2 · !r2 · ?r2 · !m2 · ?m2 · !r2 · ?r2 · !m3 · ?m3 · !m4 · ?m4 · !r4 · ?r4 · !m5 · ?m5.

Figure 3.12: Sequence diagram sd2

14



4 Model-based Testing

Model-based testing is a technique that is used to test a system in search of bugs [6]. In
model-based testing, a model has to be created, which should be based on a specification
of the system under test (SUT) [5]. This specification describes the desired behaviour of
the SUT. From this model, a model-based testing tool can generate a large number of test
cases, which can then be executed automatically on the SUT. Separately performing the
generation and execution steps is called batch test case derivation or off-line testing. There
is also a method available that combines these steps, which is called on-the-fly test case
generation [31] or on-line testing.

There are different approaches possible when it comes to model-based testing. These
different approaches depend on the kind of model used, which quality aspects are being
tested, and what the level of accessibility and observability of the system is [5]. In model-
based testing, the SUT is often regarded as a black box, which means that no internal details
of the SUT can be seen. Moreover, the SUT is only accessible by providing some input
and observing the output of the SUT, which can often be tested based on the requirement
specification knowledge. The opposite of black-box testing is white-box testing, also called
structural or glass box testing. White-box testing is a technique that uses the source code as
a basis for generating the test cases [32]. Here, the internals are known, and the test cases
are designed to structurally test, e.g. all different branches in a piece of code.

4.1 Labelled transition systems

A modelling formalism is needed to describe a system with a model. Such formalisms can
exist in the form of specification languages or mathematical structures. A UML sequence
diagram, as described in chapter 3, is an example of a graphical specification language. An
example of a model formalism that is described by a mathematical structure is a Labelled
Transition System (LTS) [31]. The formal definition of labelled transition systems, taken
from Tretmans and Stoelinga et al. [5, 31] is given below.

Definition 4.1. A Labelled Transition System (LTS) is a tuple 〈S, s0, L, T 〉, where

• S is a non-empty set of states;

• s0 ∈ S is the initial state;

• L is a set of labels;

• T ⊆ S × (L ∪ {τ})× S, with τ /∈ L, is the transition relation.

We write s
µ−→ s′ if there exists a transition labelled µ, from state s to state s′, or formally

(s, µ, s′) ∈ T . If no such transition exists for any s, we write s
µ9. Moreover, if we take the

previous transition and there exists another transition s′
µ′−→ s′′, we can compose transitions

by writing s
µ·µ′−−→ s′′. In general for a transition from state s0 to, for example state s2 and an

arbitrary number of transitions, we write s0
µ0·µ1·...·µn−−−−−−−→ s2. A transition labelled τ , describes

an internal action in the system that is not observable from the environment. Suppose σ ∈ L∗
is a sequence of labels, then we write s

σ
==⇒ s′ if there exists a sequence % ∈ (L∪ τ)∗ such that

s
%−→ s′, where σ can be obtained from % by omitting all τ ′s.

We write s
σ

==⇒ if there exists a state s′ such that s
σ

==⇒ s′. When reasoning about labelled
transition systems, e.g. A = 〈S, s0, L, T 〉, we write A

σ
==⇒ instead of s0

σ
==⇒. The traces of a
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labelled transition system are all possible sequences of labels. For the traces of LTS A, we
write traces(A), of which the definition is traces(A) = {σ ∈ L∗|s σ

==⇒}. An example of a
simple labelled transition system A can be seen in Figure 4.1. If we take definition 4.1 of an
LTS, we can explicitly write LTS A and the traces(A) as:

A = 〈{s0, s1, s2, s3}, s0, {a, b, c}, {(s0, a, s1), (s1, b, s2), (s1, c, s3)}〉
traces(A) = {ε, a, a · b, a · c}

s0start s1

s2

s3

a

b

c

Figure 4.1: Labelled transition system A

Each transition in a Labelled Transition System contains a label. These labels do not
yet describe which transitions model input to our SUT, nor which transitions model output
from our SUT [5]. We can extend the labelled transition system with inputs and outputs
by splitting the set of labels L in two sets: LI and LO. Here, the set of input actions are
contained in LI , and the set of output actions are contained in the set LO. The following
definition of labelled transition systems with inputs and output originates from Tretmans and
van den Bos et al. [5, 33].

Definition 4.2. A Labelled Transition System (LTS) with inputs and outputs is a tuple
〈S, s0, LI , LO, T 〉, where

• 〈S, s0, LI ∪ LO, T 〉 is a labelled transition system in LT S(LI ∪ LO), where LT S(L) is
the class of all image finite and strongly converging labelled transition systems with
labels in L;

• LI and LO are sets of input labels and output labels, which are disjoint LI ∩ LO = ∅.

In labelled transition systems with inputs and outputs LT S(LI , LO), transitions that
denote inputs are usually prefixed with ‘?’ and transitions that denote outputs are prefixed
with ‘!’. If a state s ∈ S has no outgoing transition with an output label, the state is quiescent

(δ), written by s
δ−→ s. to compute the traces(p) that include quiescence, where p is a labelled

transition system 〈S, s0, LI , LO, T 〉, we write Straces(p) = { σ ∈ (LI ∪ LO ∪ {δ})∗ | s
σ

==⇒ }.
Here, Straces stands for suspension traces.

Consider LTS B with inputs and outputs, shown in Figure 4.2. The set of possible inputs
LI consists of {?a, ?b, ?c} and the set of possible outputs LO consists of {!d}. The system

only produces an output when the transition s2
!d−→ s0 is taken. This means that states s0

and s1 are quiescent, shown with an outgoing transition labelled with δ. Quiescent states in
future examples of transition systems will not include an outgoing transition labelled with δ,
to increase readability.
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s0start s1 s2

δ

?a

?b, δ

?c

!d

Figure 4.2: Labelled transition system B

To be able to describe the outputs an LTS produces after a number of transitions are
taken, we write out(p after σ). Here, p is the transition system, e.g. LTS B, and σ is the
sequence of labels along a path that is taken through the system, which can contain zero or
more transitions. Some examples for LTS B are given below:

out(B after ε) = {δ}
out(B after ?a) = {δ}

out(B after ?a·?a) = ∅
out(B after ?a·?b · δ·?b) = {δ}
out(B after ?a·?b·?c) = {!d}

out(B after ?a·?b·?c·!d·?a·?c) = {!d}

4.2 The implementation relation ioco

In model-based testing, the goal is to have a specification (model) of the system and com-
pare this specification to the actual implementation. This comparison between specification
and implementation is also called the implementation relation. The ioco implementation
relation is an example of such a relation, and tells us that there should be an input-output
conformance between an implementation and specification. This means that any output that
an implementation i produces should be specified in specification s. The specification s may
specify a larger set of outputs, but as long as the implementation produces a subset of this
set of outputs, i ioco s.

Implementation i requires a different transition system, namely an Input-Output Transi-
tion system (IOTS), where IOTS(LI , LO) ⊆ LTS(LI , LU ). These do not differ from labelled
transition systems other than that they are input enabled. This means that in any state of the
system, it is always prepared to receive any of the specified input actions. From a real-world
standpoint, this makes sense, as a user is always able to press any button on, e.g. a coffee
machine, even when the machine is in the process of making coffee. Definition 4.3 of the ioco
implementation relation originates from Tretmans and Stoelinga et al [5, 31].
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Definition 4.3. Given a set of input labels LI and a set of output labels LO, the relation
ioco ⊆ IOTS(LI , LO)× LTS(LI , LO) is defined as follows:

i ioco s ⇔def ∀σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ)

Figure 4.3 illustrates an example of two transition systems i and s where ioco holds. Here
i ioco s because for all possible Straces(s), the out set of i after ?a is a subset of the out
set of s after ?a, as {!b} is a subset of {!b, !c}.

out(i after ε) = {δ} ⊆ out(s after ε) = {δ}
out(i after ?a) = {!b} ⊆ out(s after ?a) = {!b, !c}
out(i after ?a·!c) = ∅ ⊆ out(s after ?a·!c) = {δ}

s0start

s1

s2

?a

?a

!b

?a

i

s0start

s1

s2 s3

?a

!b !c

s

Figure 4.3: Implementation i and specification s with ioco

4.3 Symbolic transition systems

Symbolic Transition Systems (STS) add data, variables and data-dependent conditions to
labelled transition systems [33]. These additions are needed when dealing with, e.g. loops
that need a loop counter to count the number of iterations that the loop has executed. Data-
dependent conditions can be seen as guards, which are also supported in sequence diagrams.
The following definition originates from van den Bos et al. [33].

Definition 4.4. A Symbolic Transition System (STS) with inputs and outputs is a tuple
〈L, l0,Vl,mini,Vp,ΓI ,ΓO,R〉, where:

• L is a set of locations;

• l0 ∈ L is the initial location;

• Vl is a set of location variables;

• mini ∈ T (∅)Vl is the initialization;
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• Vp is a set of gate parameters such that Vp ∩ Vl = ∅;
• ΓI is a set of input gates;

• ΓO is a set of output gates;

• R ⊆ L× (ΓI ∪ΓO ∪{τ})×V∗p ×TBool(Vl ∪Vp)×T (Vl ∪Vp)Vl ×L is the switch relation.

We require that ΓI ∩ΓO = ∅ and denote Γ = ΓI ∪ΓO. Terms are defined with T , where Ts(X)
means the set over all terms over variables X ⊆ X with sort s ∈ S. Here, S is a nonempty set
of sort names, Xs is a set of variables of sort s and X is the set of all variables. This means
that TBool(X) is the set of all terms of sort Bool, which can be True or False, over variables
X. The function sortt : T (X )→ S gives the sort of a term. The function sortg : Γ→ S∗,
associates a sequence of sorts to a gate. (l1, λ, p0 . . . pk, φ, ψ, l2) ∈ R are the elements of a
switch, with source location, gate, parameters, guard, assignment, and destination location,
respectively, and we require that:

• p0 . . . pk is a sequence of distinct variables

• sortg(λ) =sortt(p0 . . . pk)

• φ ∈ TBool(Vl ∪ {p0, . . . , pk})
• ψ ∈ T (Vl ∪ {p0, . . . , pk})Vl

In Figure 4.4 STS C is shown, which illustrates an example with variables and data-
dependant conditions. The STS first initializes variable v0 to 0 with mini { v0 := 0 }.
Then input increment is sent with parameter n. This transition also assigns the value of this
parameter to variable v0. Finally, output result is expected where a data-dependant condition
is used to check that the parameter r is incremented by one. This is done by checking if r
equals v0 + 1.

C = ({s0, s1, s2}, s0, {v0}, {v0 := 0}, {n, r}, {?increment}, {!result}, {r0, r1})
Int = sortg(?increment) = sortg(!result)

r0 = (s0, ?increment, n, True, { v0 := n }, s1);
r1 = (s1, ?result, r, [[ r == v0 + 1 ]], id, s2);

s0mini { v0 := 0 } s1 s2

?increment(n)
{ v0 := n }

!result(r)
[[ r == v0 + 1 ]]

Figure 4.4: Symbolic Transition System C
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4.4 TorXakis

TorXakis is a model-based testing tool of which the research and development are carried out
as part of the NWO-TTW project 13859: SUMBAT: Supersizing Model-Based Testing, as
well as part of the Enable-S3 program, which is under the responsibility of ESI (TNO) with
Philips as the carrying industrial partner. TorXakis is open-source, available on GitHub9 and
utilizes on-the-fly (on-line) test generation. Figure 4.5 illustrates the required architecture for
testing with the model-based testing tool TorXakis. The tool requires a .txs input model file
which contains the information it needs for which channels (a gate that includes a network
address) can be used for connecting to the test harness, as well as the actual model of the
system under test. The test harness is an adapter that forwards the inputs that are being sent
by TorXakis via sockets to the SUT, and sends the output that the SUT produces via sockets
back to TorXakis for evaluation. This harness is needed as not all applications communicate
via sockets, which means a translation step is required.

Figure 4.5: Model-based testing architecture

The input model file has to be written in specific syntax, as TorXakis has a built-in com-
piler. The model file has at least each of the following segments: CHANDEF, MODELDEF
and CNECTDEF, which define the connection to the SUT. There can also be a multiple of
other segments: TYPEDEF, FUNCDEF, PROCDEF and STAUTDEF that hold the infor-
mation about the types used in the model and the model of the SUT itself. More information
can be found on the TorXakis wiki10.

4.4.1 Channel definition (CHANDEF)

The channel definition segment contains the information of all channels that are available
for communication between TorXakis and the SUT. This segment does not yet specify the
direction of defined channel (input or output). Also, when defining a channel, a type has
to be supplied. These types can be one of the standard types: Int, Bool, String or Regex,
but can also be user-defined by using the TYPEDEF keyword (see Section 4.4.4). During
testing, TorXakis will automatically generate a value of the specified type. In the example

9https://github.com/TorXakis/TorXakis
10https://github.com/TorXakis/TorXakis/wiki
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below, the channel definition named “ChanDefs” defines two channels: InputChannel and
OutputChannel, that both carry type Int.

CHANDEF ChanDefs : :=
InputChannel : : Int ;
OutputChannel : : Int ;

ENDDEF

4.4.2 Model definition (MODELDEF)

The model definition segment defines the direction of the available channels, as well as the
behaviour of the model. Here, the numerous process definitions (see Section 4.4.6) and state
automaton definitions (see Section 4.4.7) can be assigned to the model to describe the be-
haviour of the SUT. In the example below, the model definition named “Model” assigns the
direction of the previously defined channels. Also, a process definition called “process”, is
appended to the behaviour of the model, where the communication channels are supplied to
the process definition between the square brackets. Here, optional arguments can also be
supplied between the parentheses.

MODELDEF Model : :=
CHAN IN InputChannel
CHAN OUT OutputChannel

BEHAVIOUR proce s s [ InputChannel , OutputChannel ] ( )
ENDDEF

4.4.3 Connection definition (CNECTDEF)

The connection definition segment contains the information to set up the socket connections
to the test harness of the SUT. Here, each channel is assigned an IP-address and port. Also,
channels that are defined as input channels send input to the SUT. This means that from
the perspective of the model-based testing tool, these channels output to the SUT. This is
why they are prefixed with they keywords CHAN OUT and vice versa for output channels.
The ENCODE and DECODE keywords specify how data should be encoded or decoded to
make sure that the recipient is able to interpret the data. In the example below, the output
of TorXakis is assigned to the input channel of the SUT, which is defined to be on IP-address
localhost and port 9999. Also, all input data is encoded to a string before it gets sent to
the SUT. The opposite holds true for the input to TorXakis, where the output of the SUT is
received from the previously defined ip-address and port, and the data is decoded to a string.

CNECTDEF Sut : :=
CLIENTSOCK

CHAN OUT InputChannel HOST ” l o c a l h o s t ” PORT 9999
ENCODE InputChannel ?x −> ! t oS t r i ng ( x )

CHAN IN OutputChannel HOST ” l o c a l h o s t ” PORT 9999
DECODE OutputChannel ! f romStr ing ( x ) <− ?x

ENDDEF
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4.4.4 Type definition (TYPEDEF)

A type definition allows for user-defined types. As mentioned before, the standard available
types are Int, Bool, String and Regex. Possible type definitions are, for instance: records,
recursive data types or enums. TorXakis automatically generates type checking and predefined
functions such as equality on user-defined types. In the example below, a recursive list of
integers is defined.

TYPEDEF L i s t : :=
Ni l | Cons { head : : Int ; t a i l : : L i s t }

ENDDEF

4.4.5 Function definition (FUNCDEF)

Function definitions allow for user-defined functions to prevent duplicate code. In the example
below the function checks if the supplied argument x is a valid 32bit integer by checking if
its value is in between the maximum and minimum allowed values.

FUNCDEF i s V a l i d i n t 3 2 ( x : : Int ) : : Bool : :=
(−2147483648 <= x ) /\ ( x <= 2147483647)

ENDDEF

4.4.6 Process definition (PROCDEF)

The process definitions can describe an actual process in the model of the SUT. In the
example below, the channels are passed to the process definition named “test”. Then TorXakis
generates an integer for input x for which the guard between the square brackets holds, and
sends it on the InputChannel to the SUT. The sequence operator >-> denotes that after
the input is sent, the next step is performed. Here, the process waits for output on the
OutputChannel. If the output is received, the process checks if the value of the output value
of x equals the input value of x, and if the guard holds. If both hold, the process calls itself
to repeat the process. If any steps in the sequence trigger a fault, TorXakis gives an error
that the output was not as expected, or no output was received. The process example below
describes a system that returns the supplied input as output. Often, a process definition is
defined for each state in a labelled or symbolic transition system.

PROCDEF t e s t [ InputChannel , OutputChannel : : Int ] ( ) : :=
InputChannel ?x [ [ i s V a l i d i n t 3 2 ( x ) ] ]

>−> OutputChannel ! x [ [ i s V a l i d i n t 3 2 ( x ) ] ]
>−> t e s t [ InputChannel , OutputChannel ] ( )

ENDDEF

4.4.7 State automaton definition (STAUTDEF)

The state automaton definition allows for modelling both labelled and symbolic transition
systems. This means that the STAUTDEF is able to keep track of variables. Each symbolic
transition system can be defined within a single STAUTDEF. The following example describes
the same system as the previous process definition example (see Section 4.4.6), but also keeps
track of the variable y, which can be manipulated by the expression between the curly brackets.
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STAUTDEF t e s t [ InputChannel , OutputChannel : : Int ] ( ) : :=
STATE s0 , s1
VAR y : : Int
INIT s0

TRANS s0 −> InputChannel ?x [ [ i s V a l i d i n t 3 2 ( x ) ] ] {y := x}
−> s1

s1 −> OutputChannel ! y [ [ i s V a l i d i n t 3 2 ( y ) ] ]
−> s0

ENDDEF
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5 From Sequence Diagrams to Model-Based Testing

We developed the tool sd2txs to transform UML sequence diagrams to an input model that
is suitable for model-based testing with TorXakis. The tool performs some steps that are
required for the transformation, which can be seen in Figure 5.1. The first step extracts the
semantics from the abstract syntax. This is achieved by exporting the sequence diagram to
an XMI file, which is then parsed to get access to the objects and relations between them.
From these objects and relations, an intermediate model representation in the form of a
symbolic transition system is created. Chapter 2 shows that related work also often makes
use of intermediate model representations. A reason for this is that sequence diagrams do
not have a good representation of repetitive, recursive, or conditional sequences, suppressing
many control and interface details. On the contrary, an STS provides a global, monolithic
description of the set of all possible behaviours of the system. This results in STSs being highly
testable models, where a path on the STS can be taken as a test sequence [20]. Moreover,
an STS can easily be visualized with a tool like GraphViz11 to spot possible mistakes in the
modelling process, and can be used to generate the TorXakis input model file. It is also
possible to perform formal verification such as model checking on the intermediate model
representation, as when the model does not contain data and variables, it is based on the
labelled transition system mathematical structure that can be translated to, e.g., a Kripke
Structure. In this section, all the mentioned required steps are explained in detail.

Figure 5.1: Architectural Diagram sd2txs

5.1 From model (XMI) to Symbolic Transition System (STS)

The first step is to extract the information about the objects and the relations between them
from the sequence diagram by using the exported XMI file. An example of such an XMI file
can be seen in Figure 3.9. The extracted information can then be used to build the STS, for
which most of the steps with some minor changes, could be used directly from Cartaxo et
al. [20]. We also introduce the concept of Host in this section. This concept can be seen as the

11https://www.graphviz.org/
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environment that is able to send input and receive output from the SUT. The environment
can be thought of as a user that is interacting with interfaces of the SUT by, e.g., pressing
buttons. These interfaces are represented in a sequence diagram by all lifelines other than
Host, which together form the SUT. This enables us to make a closed system, which does
not communicate with the outside world, an open system that is able to communicate via
multiple interfaces.

1. The states of the STS are natural numbers prefixed with s, numbered in increasing
order according to the transitions that need to be added;

2. State s0 represents the initial state of the system, i.e., the state that represents the
initial requirements for the scenario represented in the sequence diagram to occur. The
initial state has an input arrow to mark the start;

3. For each new transition, a new state is created;

4. For each message (in the order they appear) of the sequence diagram, if the message is:

(a) From Host to SUT, a transition with a switch containing which interface of the
SUT is communicating and the message content prefixed with ‘?’ (input) is created;

(b) From SUT to Host, a transition with a switch containing which interface of the SUT
is communicating, and the message content prefixed with ‘!’ (output) is created;

A difference with the approach of Cartaxo et al. [20] is that their approach tries to trans-
late sequence diagrams to labelled transition systems, whereas our approach uses symbolic
transition systems. However, symbolic transition systems are just labelled transition systems
with data, data-dependent conditions, and variables added. When combined fragments, data,
and variables are not present in the sequence diagram, the resulting intermediate model rep-
resentation is just an LTS. This means that the steps remain mostly the same, except for
a difference which can be spotted in step 4, where the proposed translation by Cartaxo et
al. [20] contains extra edges and states in the form of steps and expectedResults. These edges
carry the information of input and output, where the message edges occurring after steps are
input, and the edges that occur after expectedResults are output.

An example of these extra edges can be seen in LTS ltsm0, in Figure 5.2, translated from
sequence diagram sdm0. However, in the case of a labelled transition system with inputs
and outputs, explained in Section 4.1, these extra edges are not needed because the direction
of the message can be encoded directly in the edge by using the prefixes ? or !. Also, as
explained in Section 3.3.1, the lifeline that receives the input or sends the output should be
encoded in the edge. Since all modelled communication is to or from the model-based testing
tool (Host), the Host does not have to be encoded in the edge. When taking these described
properties into account, it results in STS stsm0, which can also be seen in Figure 5.2. The
sequence diagram sdm0 in this figure shows lifeline a represented by class A, which is a class
in a class diagram. The reasoning behind this will be explained in Section 5.3.2.

As explained in Section 3.3, the semantics of sequence diagrams boils down to a set of
traces. However, as can be seen in step 4, the only traces that are included in the STS are
the input traces that get sent by the Host, and the output traces that are received by the
Host. This means that not all traces in the sequence diagram should be considered, but only
the ObservableTraces, which are the sequences of messages sent or received by the Host, as
these are the only events that can be observed from the environment.
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sdm0 ltsm0 stsm0

Figure 5.2: Transformation of sequence diagram sdm0 to ltsm0 as proposed by Cartaxo et
al. [20] and to stsm0 as proposed in this thesis

All messages in ObservableTraces are either sent or received by the Host. Section 3.3.1
explains that all messages must occur ordered on the same lifeline, which is why we can
abstract away from the sendEvents and receiveEvents and just write the message name instead
of the events. Also, for readability, the examples have different message contents, such that
it is possible to abstract away from the tuple notation, and the prefixes that describe input
and output. Now the ObservableTraces of sdm0, written as ObservableTraces(sdm0), is the
set: {m1 · r1}. The resulting STS stsm0 should be able to traverse the same paths that are
present in the sequence diagram.

Figure 5.3 illustrates that only the observable traces are considered, where lifelines A and
B are present in the sequence diagram sdm1. These lifelines resemble the different interfaces
of a SUT, but the collection of these interfaces should still be seen as a single black box.
This means that there is no way to observe communication between the lifelines themselves.
Only the messages m1, r1, m3, and r3 that pass through the border of the black box can
be observed. The Host can still send and receive messages from all present interfaces, but
cannot observe the internal communication: m2, r2 and m4, between the lifelines. This
results in stsm1, which produces completed traces {m1 · r1 ·m3 · r3} that are observable for
the Host. It is up to the modeller to decide whether to model internal communication or not.
Omitting the internal communication reduces the amount of work to create a testable model.
However, this internal communication may provide valuable documentation to developers or
other stakeholders.

As explained in Section 3.3.2, combined fragments do not add new traces to the sequence
diagrams, but can alter the ordering of the traces. If combined fragments are considered in
the subset of used components in sequence diagrams, each interaction operator: alt, loop and
opt require an extra rule.

5. For each interaction operand in a alternative flow, a transition must be created with
label τ and the corresponding guard, as well as a transition where every guard is included
in a negation of a disjunction, e.g., (¬A)∧ (¬B)∧ (¬C), to skip the combined fragment
if none of the guards are satisfied. Also, when the combined fragment exits, a transition
labelled τ for each operand is added to merge the multiple interaction operands.
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sdm1 stsm1

Figure 5.3: STS stsm1 generated from sequence diagram sdm1 with multiple interfaces (life-
lines)

6. For each conditional loop, a transition labelled τ must be created, which includes the
proper loop condition at the beginning of the loop. Another τ -transition must be created
to go back to the initial state of the loop. Also, a τ -transition must be created to exit
the loop, which includes the loop condition where the guard is negated.

7. For each optional flow, a transition labelled τ must be created, which includes the guard,
as well as a τ -transition with a negated guard.

Figure 5.4 shows the complex sequence diagram sdm2 that contains multiple lifelines and
several (nested) combined fragments. When creating the STS by applying the rules stated
above, stsm2 is the result. Here, stsm2 illustrates that only the ObservableTraces were
included.

Cartaxo et al. [20] proposes a similar solution that only included the rules for the alt
and loop operators. In their proposal, the condition is encoded in the label instead of in the
guard. In our solution, the guards are separated from the labels, such that the τ -transitions
can be eliminated in future work. If τ -transitions can be avoided by introducing more guards,
the model gets smaller, which means that fewer transitions have to be traversed when using
a model-based testing tool. Also, τ -transitions could add unwanted quiescence behaviour,
which we may want to avoid. However, the 7-step algorithm to build an STS with the use of
τ -transitions is easier to implement, especially when nested combined fragments with different
operators are included in the sequence diagram.

For a sequence diagram that contains combined fragments, all possible ObservableTraces
in sequence diagram sdm2 can be found by computing the partial orders on its set of events [28].
This means that all possible combinations of satisfied guards have to be considered for
each interaction operand in the combined fragments. This results in the following set of
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sdm2 stsm2

Figure 5.4: STS stsm2 generated from sequence diagram sdm2 with Combined Fragments

ObservableTraces, which should be the same as the τ -abstracted paths of stsm2:

ObservableTraces(sdm2) = { m1 ·m1 ·m3 ·m4 ·m6, m1 ·m3 ·m4 ·m6, m3 ·m4 ·m6,

m1 ·m1 ·m3 ·m6, m1 ·m3 ·m6, m3 ·m6,

m1 ·m1 ·m3 ·m7, m1 ·m3 ·m7, m3 ·m7,

m1 ·m1 ·m3, m1 ·m3, m3 }

As explained in Section 4.1, Straces include quiescence. However, sequence diagrams do
not model quiescence explicitly. In sequence diagrams, input or output is always eventually
expected, except for the final state. However, the final state will always exit the model.
Thus, if quiescence is observed from an implementation, the timeout is set too short due to
the system still being busy, or the system is unresponsive, resulting in an implementation is
not input-output conform with the specification.

Sequence diagrams allow for modelling non-determinism. However, TorXakis is not always
able to handle non-determinism. This means that it is possible to model a specification that
conforms to the implementation, whereas TorXakis will report a failure during testing. An
example of this can be seen in Figure 5.5, where each sequence diagram contains a combined
fragment with the alt operator. The interaction operands in these combined fragments both
have a guard that evaluates to True, meaning that one of the interaction operands will be
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executed non-deterministically. However, this can result in race conditions. This can be seen
in sequence diagram sda, which shows a diagram that is faulty. Here, TorXakis will first send
a message ?m1, which will be answered by either !A or !A · !B. However, as soon as !A has
been received, TorXakis will send ?m2, because the first interaction operand conforms to this
behaviour. If the SUT then still replies with !B, it will trigger a fail in TorXakis because a !C
was expected. sdb does not trigger a race condition, as TorXakis expects only output, which
is why TorXakis will not send an unexpected message to the SUT.

sda sdb

Figure 5.5: Example race condition with non-deterministic sequence diagrams

This example shows that it is possible to model incorrect models. TorXakis expects
synchronous communication between Host and SUT. However, it is possible to model asyn-
chronous communication. Often this will work fine, but when combined fragments with mul-
tiple interaction operands are present, and the model then offers a choice between input and
output, race conditions can occur when multiple guards evaluate to True. There are multiple
ways to combat this. An option is to enforce that multiple guards can never evaluate to True,
to eliminate non-determinism that leads to race conditions. Another option is to build in a
check in the sd2txs tool, which monitors if, at any time, a choice between input and output
is offered. An option would also be to explicitly model asynchronous communication, by e.g.,
queues in the TorXakis model [34]. When these non-deterministic combined fragments are
not used, all events occur ordered, deterministic, and without quiescence. This means that if
the model is modelled correctly and TorXakis reports that a test failed, the implementation
is not input-output conform with the specification.

5.2 From STS to model-based testing with TorXakis

It is now possible to use the created STS for the generation of a .txs input file, which can be
used with the model-based testing tool TorXakis. As mentioned in Section 4.4.7, TorXakis
supports the state automation definition (STAUTDEF). The STS is used to translate to such
a STAUTDEF, along with some types and channels. Figure 5.6 shows such a translation from
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stsm1 to txsm1, where txsm1 includes some TYPEDEF and a STAUTDEF. The STAUTDEF
consists out of the STATE, INIT and TRANS segment where:

• The STATE definition in txsm1 includes every state present in stsm1;

• The INIT definition shows the initial state s0 and holds the initialization of the variables;

• The TRANS definition contains the transitions of the model with format: state →
communication→ state;

stsm1 txsm1

Figure 5.6: TorXakis STAUTDEF txsm1 generated from STS stsm1

Here, the left-most state resembles the state connected to the beginning of a transition
in stsm1, and the right-most state section resembles the state connected to the end of this
transition. The communication section resembles what communication should occur when
the transition is traversed. The communication section consists of:

• The name of the channel, e.g. InSut0 ;

• A value prefixed with the ‘?’ or ‘!’ operator where:

– The operator ! denotes that the data item is fully specified: a known value is
communicated;

– The operator ? denotes that the data item is not fully specified: (part of) the
value that is communicated is unknown;

• A condition (optional), encompassed within square brackets ‘[[ ]]’;

• A variable update section (optional), encompassed within curly brackets ‘{ }’, where
the values of variables can be altered;

As can be seen in txsm1, the communication section can also hold keyword EXIT, which
exits this current state automation definition. In the example, no variables are present, which
is why the INIT section does not contain any initialization of variables. Also, only the prefix
‘?’ will ever be used, as most of the time, the data items are not fully specified. When they
are fully specified, it is shown in the condition, where x == M(”m1”) means that the variable
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x should equal M(”m1”), which results in the string M(”m1”) being sent as input on channel
InSut0.

In txsm1, multiple channels are shown: InSut0, OutSut0, InSut1 and OutSut1. These
channels map to the lifelines in sdm1 in Figure 5.3, where every lifeline functions as an
interface that is able to communicate by using their input and output channels, coupled to
a specific IP-address and port. To support multiple different message formats on a channel,
each channel must have its own type definition. This is where the TYPEDEFs in txsm1 come
in. When types are not explicitly specified for messages in sequence diagrams, the default
type M(v) is used, where v is a string that contains the message as a string. The Request and
Reply fields in the TYPEDEFs are examples of other message types. Section 5.3.2 explains
how these other message types can be defined.

Figure 5.7 illustrates STS stsm2 with combined fragments, generated from sdm2 (see Fig-
ure 5.4). Combined fragments in a sequence diagram introduce τ -transitions in the resulting
STS. It is possible to represent these τ -transitions TorXakis model by using the ISTEP key-
word. The keyword ISTEP only replaces the name of the channel and the value. This means
that it is possible to append both conditions and variables to an ISTEP transition. Sequence
diagram sdm2 also contains an extra lifeline. This means that two more channels are added:
InSut2 and OutSut2. These channels also have its own type definitions, namely: ITypes2

and OTypes2. Other than these two extra channels, the Host in sdm2 communicates with the
same lifelines as in txsm1, which means that the channels and types defined in txsm1 have to
be used.

stsm2 txsm2

Figure 5.7: TorXakis STAUTDEF txsm2 generated from STS stsm2
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Just generating the STAUTDEFs and TYPEDEFs is not enough to compile the .txs file
and test with the model-based testing tool TorXakis. For this, three more segments have to
be generated, namely: CHANDEF, MODELDEF, and CNECTDEF. CHANDEF is explained
in Section 4.4.1 and describes the mapping between the channels and types. MODELDEF is
explained in Section 4.4.2 and contains all channels that are included in the model and which
direction they have (input or output). CNECTDEF is explained in Section 4.4.3 and contains
the IP addresses and ports of the SUT(s), and which input and output channels belong to
which SUT. Figure 5.8 shows the generated CHANDEF, MODELDEF, and CNECTDEF.

Figure 5.8: CHANDEF, MODELDEF and CNECTDEF

Note that BEHAVIOUR field in the MODELDEF calls a process definition call overarch-
ing proc. The reason for this is that every sequence diagram translates to a single STAUT-
DEF in the full .txs model file. To support being able to test multiple sequence diagrams,
an overarching process definition has to be defined with a recursive implementation. Its im-
plementation chooses any of the models non-deterministically and executes it. When the
model has finished executing and has exited, the overarching process definition recursively
calls itself, enabling it to choose another model to execute. This process repeats itself un-
til it is manually halted. Figure 5.9 shows such an overarching process definition where all
the previously defined models m0, m1 and m2 are included in the non-deterministic choice
options.

Figure 5.9: Sequence diagram nested combined fragments

5.3 Extra features

This section explains the extra features added to the tool sd2txs. These features range
from graph visualization to support for user-defined typed message formats, variables, and
expressions.
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5.3.1 Visualize STS with Graphviz

The tool sd2txs has built-in support to visualize the generated STSs. Each separate STS
is used as input to generate a .dot file. The dot format is one of the supported formats
by the open-source graph visualization software Graphviz12, which represents the structural
information as diagrams of abstract graphs and networks. Most figures with labelled or
symbolic transition systems in this thesis were generated from sequence diagrams by using
the built-in visualization feature.

5.3.2 User-defined typed message formats, variables and expressions

TorXakis communicates with sockets, which is why the CNECTDEF segment in a TorXakis
model file requires an IP-address and port to know how to communicate with a SUT. At first,
the idea was to supply this information as arguments when executing the tool. However, the
opportunity to supply the IP-address and port to a class came with the introduction of class
diagrams. Figure 5.10 shows class diagram cdm3. The class diagram contains class A, with
attributes ip and port. This is also why all the lifelines in this chapter, other than Host, have
a yellow box next to their name, which illustrates that the lifeline represents a class in a class
diagram.

Along with the IP-addresses and ports, class diagrams also allow for user-defined message
formats. TorXakis is able to automatically generate values for the basic data types Bool, Int
and String. This means that when the type is known by using a typed attribute in a class,
the user can supply a static value or define a variable to take advantage of this. Figure 5.10
shows such an example, where the user-defined message formats Request and Reply are defined
within class diagram cdm3. Both message formats have the same two attributes: type with
type string and value with type integer, resulting in message formats Request(string, integer)
and Reply(string, integer).

cdm3 sdm3

Figure 5.10: Class diagram cdm3 and sequence diagram sdm3

The use of these message formats is illustrated in sdm3, where the first synchronous request
and reply show the static use of the message formats. Here the type parameter of the Request

12https://www.graphviz.org/
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message has value “increment”. The quotes show that a string value is supplied instead of a
variable. The value parameter also has a static value of 0. The Reply message illustrates the
expected result, where that the “increment” string should be echoed back, and that the value
is incremented by 1. The second synchronous request and reply show the combined use of
static and dynamically valued parameters. Here the type parameter still shows use of a static
value “increment”. However, the value parameter does not contain an integer but a variable.
This lets TorXakis know that a random integer value has to be generated for this variable.

When defining a variable in a sequence diagram, it gets saved in the TorXakis model. This
means that the variable can be reused in other message parameters that have the same type.
These variables can also be used in expressions. The second Reply message in sdm3 illustrates
this, where the expected integer output parameter value should contain value: x+1, meaning
that in the expected output, the randomly generated variable x should have been incremented
with 1.

Figure 5.11 shows the TYPEDEFS with types Request and Reply generated from class
diagram cdm3 and the STAUTDEF generated from sequence diagram sdm3. Here, the VAR
segment shows that a variable vi0 has been defined with type Int, denoting the type variable x.
In the INIT section, the variable vi0 gets initialized to value 0. On the third line of the TRANS
segment is generated from Request(“increment”, x). Here, the variable vi0 gets initialized to
the value of v2(x), where it looks at which type in which channel is being used and returns
the value of the variable with that name. In this example this is channel InSut0 which has
type ITypes0. The guard isRequest(x) denotes that type Request is used. In this type,
variable v2 exists, which is then returned. Also note that the guard v1(x) == “increment”
enforces that the variable v1 in type Request has to contain value “increment”.

The fourth line of the TRANS segment is generated from Reply(“increment”, x + 1).
Here, the guard checks that variable v1 in type Reply contains value “increment”. The guard
checks that variable v2 in type Reply equals value vi0+1, where vi0 is the variable previously
assigned to the value of x.

Figure 5.11: TorXakis input model txsm3 with types

The UML specification mentions an alternative way to assign values to variables [26]. This
alternative assignment would work for static value assignment, e.g. Request(“increment”, x
= 1), where variable x will now hold value 1. However, when we want to let TorXakis
generate a value, this syntax does not suffice. This is why the current syntax was adopted.
We could still adopt the UML specification syntax by specifying what kind of variable we
want TorXakis to generate. For example, if TorXakis has to generate an integer, we could
define Request(“increment”, x = Int). This enables reassignment of variables and makes it
more clear to a user if a variable is fresh or used. A problem still remains with scoping of
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variables. For example, if a variable is declared in a combined fragment and used outside
of this fragment, it is possible that the combined fragment was skipped. This means that
the variable could have been referenced before it was assigned. To solve this, a compiler
would need to be added to the sd2txs tool that checks for scoping issues when variables are
referenced before assignment.

5.3.3 Callable (user-defined) TorXakis library functions

To allow for constraints on generated parameters, support for callable (user-defined) TorXakis
library functions has been added. This means a user can call a function, defined in a different
.txs files, from a sequence diagram by satisfying its signature. These different .txs files
can either be predefined libraries of functions or files with specialized user-defined functions.
Figure 5.12 gives an example of a few library functions in txslib, which are included in the
lib.txs file, which can be found in the tool. The user is completely free to add more functions
to this library or other self-defined libraries. Sequence diagram sdm4 shows how the library
functions can be called. For TorXakis to find the library functions, TorXakis has to be started
with the library file included in the command, e.g., torxakis lib.txs model.txs.

txslib sdm4

Figure 5.12: Call (user-defined) TorXakis library functions inRange and isValid int8 t in
txslib from sequence diagram sdm4
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6 Practical Example: Calculator

This chapter will give a practical example to illustrate how an actual application can be tested
by using sequence diagrams, class diagrams and the model-based testing tool TorXakis. The
practical example comes in the form of a Python calculator application that supports the
following four operations:

1 def add(x, y):

2 return x + y

3

4 def subtract(x, y):

5 return x - y

6

7 def multiply(x, y):

8 return x * y

9

10 def divide(x, y):

11 if y != 0:

12 return int(x // y)

13 return 'division by zero'

The supported operations are modelled in the class diagram cdcalculator in Figure 6.1. To
call an operation, the user-defined message format Expression has been created that contains
a parameter lhs with type integer, a parameter operator with type string and a parameter rhs
with type integer. Examples of the messages can be seen in sdmultiply. Here, the operations
themselves are internally modelled, which means that they cannot be observed from the
outside. However, the results are still observable because the adapter encodes the result in
the user-defined message format Result that contains an integer value as a parameter.

cdcalculator sdmultiply sdincrement

Figure 6.1: Calculator application modelled in UML

The sequence diagram sdmultiply shows two input messages with format Expression. The
first one illustrates a message with only static values, where the goal is to test if the calculator
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produces the correct result 36, when it calculates 6 ∗ 6. The second message with format
Expression shows a message with static and dynamic values, where the operator is statically
defined, and the values will be dynamically generated. This example tests if the calculator
returns the value of x× y for any values of x and y.

Sequence diagram sdincrement shows that the same thing can be modelled in different ways.
Here, an extra message format Increment, containing a parameter value with type integer is
used, which can also be seen in cdcalculator. In sdincrement The first input message uses the
Increment message format, where the result should contain input value incremented by 1.
However, it is also possible to model this by using the Expression message format, where only
one of the parameters is dynamically generated. This example shows that a user is free to
choose his/her own message formats.

The divide operation has to be modelled differently, as division by 0 is not allowed.
Sequence diagram sddivision in Figure 6.2 shows this, where the first Expression message
explicitly tests division by zero. Here, the expected output is a message Error, with error str
“division by zero”. The second Expression message has dynamic variables y and z. This
means that most of the time, the calculator will return the value of y

z . However, the slight
chance exists that the generated value of z will equal 0. This is where a combined fragment
with the interaction operator alt can be used. Here, we model that we expect the error
message as output when z == 0, and the result message with value y

z when not(z == 0).

Figure 6.2: Sequence diagram sddivision

For the model-based testing tool to be able to communicate with the calculator application,
an adapter is needed. The adapter contains the code that communicates with sockets, parses
the messages, calls the corresponding functions and builds the reply messages. The code
below shows how the messages are parsed, how the functions are called, and how the reply
messages are being built for the calculator application.
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1 def handle(self, current_test):

2 # Extract function name before brackets

3 message_name = current_test[:current_test.index('(')]

4 # Extract parameters

5 arguments = current_test[current_test.index('(')+1:-1]

6 # Remove whitespace

7 arguments = arguments.replace(' ', '')

8 # Split on comma's

9 arguments = arguments.split(',')

10 if message_name == 'Expression':

11 # Convert to tuple

12 x, op, y = tuple(arguments)

13 # Convert x and y to integers

14 x = int(x)

15 y = int(y)

16 if op == '"+"':

17 return 'Result(' + str(calculator.add(x, y)) + ')'

18 elif op == '"-"':

19 return 'Result(' + str(calculator.subtract(x, y)) + ')'

20 elif op == '"*"':

21 return 'Result(' + str(calculator.multiply(x, y)) + ')'

22 elif op == '"/"':

23 r = calculator.divide(x, y)

24 if type(r) == int:

25 return 'Result(' + str(r) + ')'

26 else:

27 return 'Error("' + str(r) + '")'

28 elif message_name == 'Increment':

29 x = int(arguments[0])

30 return 'Result(' + str(calculator.add(x, 1)) + ')'

31 else:

32 raise LookupError('Message: ' + message_name + ' not supported')

Now everything is ready to start with the model-based testing process. First, the calculator
application has to be started, which waits for a connection with the model-based testing tool.
Then, when the model-based testing tool is started with the corresponding model file, the
command tester Model Sut can be executed to create the connection between the calculator
and model-based testing tool. Finally, the command test n can be executed, where n is the
number of test steps. The output of TorXakis is shown below:

TXS >> tester Model Sut

TXS >> Tester started

TXS >> test 10

TXS >> .....1: IN: Act { { ( InSut0, [ Expression(-69,"/",0) ] ) } }

TXS >> .....2: OUT: Act { { ( OutSut0, [ Error("division by zero") ] ) } }

TXS >> .....3: IN: Act { { ( InSut0, [ Expression(51,"/",53) ] ) } }
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TXS >> .....4: OUT: Act { { ( OutSut0, [ Result(0) ] ) } }

TXS >> .....5: IN: Act { { ( InSut0, [ Increment(-93) ] ) } }

TXS >> .....6: OUT: Act { { ( OutSut0, [ Result(-92) ] ) } }

TXS >> .....7: IN: Act { { ( InSut0, [ Expression(69,"+",1) ] ) } }

TXS >> .....8: OUT: Act { { ( OutSut0, [ Result(70) ] ) } }

TXS >> .....9: IN: Act { { ( InSut0, [ Expression(6,"*",6) ] ) } }

TXS >> ....10: OUT: Act { { ( OutSut0, [ Result(36) ] ) } }

TXS >> PASS

The output of the calculator adapter is shown below, which shows that the ten tests
(inputs and outputs) have passed.

Starting listening on localhost port 9990

1: IN: Calculator, Expression(-69,"/",0)

2: OUT: Calculator, Error("division by zero")

3: IN: Calculator, Expression(51,"/",53)

4: OUT: Calculator, Result(0)

5: IN: Calculator, Increment(-93)

6: OUT: Calculator, Result(-92)

7: IN: Calculator, Expression(69,"+",1)

8: OUT: Calculator, Result(70)

9: IN: Calculator, Expression(6,"*",6)

10: OUT: Calculator, Result(36)

Other side closed connection, closing socket...

[Pass] -> Passed 10 tests

39



7 Case Study: Stairlift Remote and Receiver

This chapter describes the case study that has been performed, to test the created tool on a
real embedded product. The system under test is a radio frequency (RF) remote and receiver
module, used to control a stairlift. The remote has three buttons: up, down and park, which
will act as the inputs of the SUT. In the tested configuration, the RF remote sends commands
on a frequency of 915MHz when a button is pressed. The remote will repeat the commands
with an interval of 60 milliseconds for as long as the button is pressed, after which at most
11 stop commands will be sent with the same interval.

Figure 7.1 shows the architectural diagram that illustrates the connectivity between all
components. Here it can be seen that the remote is controlled by the USB-OPTO-RLY88
relay module to automate the button presses. The relay module can be controlled via serial
communication by using a Universal Asynchronous Receiver-Transmitter (UART). The re-
ceiver is connected to an FTDI USB serial cable to read the received commands. Both the
relay module and FTDI cable can be accessed by using the pyserial13 Python library, which
is why both adapters have been created with the Python programming language.

Figure 7.1: Architectural Diagram Case Study

Figure 7.2 shows the hardware setup with, from left to right: RF Receiver, USB Relay
Module and the RF Remote.

Figure 7.2: Hardware Setup Case Study

13https://pypi.org/project/pyserial/
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7.1 Protocol

The interface protocol specification is a document created by Inspiro to explain the technical
details. This document contains some sequence diagrams to illustrate the communication
between remote and receiver, which can be seen in Figure 7.3. The document also explains
that the RF remote can send the following commands:

• Lift command up, Hex: 0xEE

• Lift command down, Hex: 0xED

• Lift command park, Hex: 0xE7

• Lift command stop, Hex: 0xEB

• Security command (optional), Hex: 0xFB

The security command is only included with the first 10 of every 100 messages of a
consecutive sequence and is only useful when infrared remotes are used. The interface protocol
specification states that, when a button is pressed, the expected number of received commands
will be based on the corresponding lift command and the time the button is pressed (see
timing details in Figure 7.3). The specification also states that when the button is released,
11 stop commands will be sent. The exact reason why specifically 11 stop commands are sent
is unknown, because the used protocol was adopted from an earlier revision of the remote,
which was not made by Inspiro. However, this earlier revision of the remote used infrared
to communicate, which is why it is speculated that the reason for the high stop command
count was to be sure that the receiver receives at least one stop command in case signals get
blocked. To give an example: if the “up” button is pressed for 1.2 seconds, we expect to
receive 1.2

0.06 = 20 up commands, 0 down commands, 0 park commands, 11 stop commands
and (optionally) 10 security commands.

Communication flow Timing details

Figure 7.3: Interface protocol specification sequence diagrams

The initial setup tests, quickly showed that there were always fewer up, down or park
commands received than initially expected. After some research and looking at the electrical
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schematics, it became clear that the microcontroller on the remote is only powered when a
button is pressed. This means that the microcontroller has to start up and initialize before the
RF transmission can begin. Measurements showed that it took an average of 217 milliseconds
to receive the first message in the receiver adapter when a button is pressed. The actual time
the microcontroller needs to start up and initialize is lower with around 137 milliseconds, as
the previously mentioned time of 217 milliseconds includes the transmission, processing and
reading of the RF signal.

Another detected anomaly was that the number of stop commands received, varied be-
tween 11 to 14, instead of the documented 11 stop commands. Asking about this and some
digging in the code revealed that the receiver sends stop commands itself when no more
commands are received within a certain amount of time. Depending on the timing of the
last received command, 1 to 3 extra stop commands are sent to the stairlift for safety pur-
poses. This is why the number of stop commands received, differed from the documented
11 stop commands. The problem with these findings is that the number of commands that
will be received varies non-deterministically. For instance, the microcontroller can start up
more quickly than expected, resulting in more received commands. Moreover, the number of
received stop commands can differ with each transmission, or commands can be lost due to
the unreliable nature of RF transmissions.

7.2 Different modelling strategy due to timing constraints

At first, the idea was to create sequence diagrams that closely resemble the sequence diagrams
in Figure 7.3. The reason for this is that these sequence diagrams give proper documentation
of how the communication protocol should work. This yielded the sequence diagram shown
in Figure 7.4.

Figure 7.4: Initial sequence diagram
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However, after creating the adapters and running the tests, it became clear that the testing
process could not keep up with the communication speed between the RF remote and receiver.
The button was sometimes not released fast enough, such that no more up commands would
be received. Because the sequence diagram states that no more up commands should be
received after the button is released, TorXakis gives an error that it received an up command
but expected a stop command. This is unfortunate, as the sequence diagram in Figure 7.4
diagram provides a clear overview of how the protocol works, which why it would be useful
to be able to use this diagram for testing to be able to test what is documented.

Measurements seem to confirm that the 60-millisecond window between transmissions is
often too small to release the button before another command is received. This problem exists
because of a combination of actions, which introduce extra latency between each transmission.
Figure 7.5 shows the actions that have to be performed between each transmission. These
actions are numbered and clarified below:

Figure 7.5: Actions between transmissions

1. Receive and process the message on the receiver and send the serial data to the receiver
adapter;

2. Process the received data on the receiver adapter and send a response to TorXakis via
sockets;

3. Receive and process the response in TorXakis, move to the next state in the STAUTDEF
and send a release request from TorXakis to the remote adapter via sockets;

4. Receive and process the request in the remote adapter and send a command to release
the button(s) to the relay board;
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Step 3 seems to introduce the most latency, where measurements between 15-35ms were
taken. The difference between the lowest and highest value in this range shows that the
latency TorXakis and the socket communication introduces, can vary quite a bit. The other
actions also introduce some latency, which is harder to measure because these steps are
mostly performed on hardware. This case study shows that, when testing real-time systems,
the added actions could introduce enough latency to let the test fail while it should not have
failed. This means that when dealing with (embedded) software where timing constraints are
below 100 milliseconds, TorXakis is often not fast enough to test a system.

7.3 Requirements

The requirements specification created by Inspiro does not mention specific requirements to
test for the RF remote and receiver. As explained in the previous sections, testing with the
exact number of expected commands is also not feasible. This is why we have defined our
own requirements based on the interface protocol specification. The requirements, shown
in Table 1, are grouped into categories and sorted by identifier. The categories are defined
below:

• The SB category contains the single button press requirements, which shows the ex-
pected behaviour for when a single button is pressed and released;

• The MB category contains the multiple button press requirements, which shows the
expected behaviour for when multiple buttons are pressed and released at the same
time;

• The SW category contains the switching button press requirements, which shows the
expected behaviour for when first a button is pressed, and then a different button is
pressed after a small delay;

• The G category contains the general requirements that should always hold;

As mentioned before, the security commands only add value for communication with
infrared remotes, which is why they will be ignored while testing the RF version of the
remote and receiver.

ID Requirement

SB-01 The receiver always eventually receives at least 11, and at most 14 stop com-
mands, after a button is released and no more buttons are pressed.

SB-02 When the “up” button is pressed, the receiver does not receive down or park
commands.

SB-03 When the “down” button is pressed, the receiver does not receive up or park
commands.

SB-04 When the “park” button is pressed, the receiver does not receive up or down
commands.

SB-05 The receiver receives the same number of up commands as time the “up”
button was pressed, divided by 60. It is accepted if the number of received
commands is plus or minus 1 of what was expected.

SB-06 The receiver receives the same number of down commands as time the “down”
button was pressed, divided by 60. It is accepted if the number of received
commands is plus or minus 1 of what was expected.
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SB-07 The receiver receives the same number of park commands as time the “park”
button was pressed, divided by 60. It is accepted if the number of received
commands is plus or minus 1 of what was expected.

MB-01 When multiple buttons are pressed at the same time, no button commands
are received.

MB-02 When multiple buttons are pressed at the same time, the number of received
stop commands is at least the time pressed, divided by 60, with a maximum
of time pressed, divided by 60 + 14.

SW-01 The receiver receives the same number of commands as time the first button
was pressed, divided by 60. For the first button press, it is accepted if the
number of received commands is plus or minus 1 of what was expected. Also,
the receiver receives the same number of commands as time the second button
was pressed, divided by 60. For the second button pres, it is accepted if the
number of received commands is between a range of plus 1 to plus 4 of what
was expected, as the microcontroller is already started up.

SW-02 The receiver receives the number of received stop commands that fit in the
time between button presses, plus the regular amount of stop commands after
the second button is released (see SB-01).

G-01 The last 11 received commands do not contain up, down or park commands.

Table 1: Requirements

7.4 Testable UML sequence and class diagrams

From the requirements, the following three test cases can be identified:

1. Single: a single button (up, down or park) is pressed for an arbitrary amount of time,
and then released.

2. Multiple: multiple buttons (2 or 3) are pressed at the same time, for an arbitrary
amount of time, and then released.

3. Switch: a button is pressed for an arbitrary amount of time, and then released. A
delay between 200ms and 700ms happens where no buttons are pressed, after which a
different button is pressed for an arbitrary amount of time, and then released.

For every test case, only the corresponding requirements category has to be satisfied.
Except for the general requirements G, which has to hold for all test cases. The class diagram
cdstairlift illustrated in Figure 7.6 has been created to test these test cases. This class diagram
contains the remote and receiver (sub)systems under test, as well as the multiple message
formats: SingleButtonPress, MultipleButtonPress, SwitchButtonPress and Result. Here, the
prefix of the ButtonPress message format corresponds to the test cases enumerated above and
is used for the input to the remote. The Result message format is used for the output from
the receiver and is the same for all test cases and contains the number of received up, down,
park and stop commands, as well as a value that depicts if the last 11 received commands
were not up, down or park.

The sequence diagram sdSingleButtonPress in Figure 7.7 shows the up single button press
variant of the Single test cases. The sequence diagrams with test cases in this category test
all requirements in category SB. Which button is pressed (up, down or park) can be identified
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Figure 7.6: cdstairlift

by the first argument of the SingleButtonPress message format, which specifies the button
that has to be pressed. The second argument contains a function call to generate a value
for time pressed. The function call (explained in Section 5.3.3) generates this value based on
the range of a uint8 t, which is a value between 0 and 255. This value resembles the amount
of commands we expect to receive, as it is multiplied by the time between transmissions (60
milliseconds) in the adapter to get a time in milliseconds. The sequence diagram also shows
the communication between the remote and receiver. However, as explained in Section 5.1,
internal communication will not be included in the generation of the symbolic transition
system. The inner communication in the sequence diagram resembles the Communication
flow sequence diagram in Figure 7.3. The main difference here is that the press and release
actions are all included in the initial SingleButtonPress message. The reason for this is
explained in Section 7.2.

The Result messages in the sequence diagrams contain the expected output. For example,
sdSingleButtonPress presses the up button for a specified amount of time x. The expected result
message should then contain: x± 1 up commands, 0 down commands, 0 park commands, 11
to 14 stop commands and the string “only stop”. The sequence diagrams sdMultipleButtonPress

and sdSwitchButtonPress in Figure 7.7 test the other requirement categories MB and SW.
Category G should always hold for all test cases.

A small Python script has been written that executes the SUT and TorXakis 25 times
with each time 500 test cases. If TorXakis discovers an error prematurely or finishes the 500
test cases, the performed tests are logged and the traces to replay the test are saved.
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(a) sdSingleButtonPressUp

(b) sdMultipleButtonPress

(c) sdSwitchButtonPressUpDown

Figure 7.7: Sequence diagrams for Single, Multiple and Switch button press test cases
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8 Results and Discussion

8.1 Results

This section provides the results obtained from the case study described in Chapter 7. The
outcomes from the three executed test cases (Single, Multiple and Switch) are shown in
Table 2.

Category Single Multiple Switch Total

Tests executed 790 279 884 1953
Tests failed 0 1 24 25

Fail rate 0.0000% 0.0036% 0.0271% 0.0128%

Table 2: Test results first run

From the 1953 performed tests in total, 25 failed. From these 25 failed tests, 24 fails
belong to the Switch test case and only a single fail belongs to the Multiple test case. Based
on the fail message, and after studying the software and electrical schematics, we discovered
why these tests failed. All of the 24 Switch test cases failed due to too few commands being
received from the second button press. However, in 22 of the 24 Switch test cases, this was
due to a delay that was above 620 milliseconds. The reason for this is that the microcontroller
will shut itself down after all the commands have been sent, which is based on the 11 stop
commands (11 × 60 = 660 milliseconds) that the remote sends after the button is released.
This means that the microcontroller has to start up again, which takes some time. All the
failed Switch test cases showed that one fewer stop command was received than expected.

The remaining 2 Switch test cases failed because the generated value for the times the first
button should be pressed was 0. This means that the button is only pressed for the average
startup time of the microcontroller (around 137 milliseconds). Then the button is released
before the microcontroller is able to send an up, down or park command, a delay happens,
and another button is pressed. Even though 0 up, down or park commands are sent during
the first button press, the microcontroller is still already started up, shown by the extra stop
commands received during the delay in between button presses. This is why we would expect
more commands from the second button press. However, the second button press does not
result in the expected number of commands, and the reason for this is still not known.

The only Multiple test case that failed contained a park byte, while the requirements
say that when multiple buttons are pressed at the same time, none of the up, down or park
commands should be sent. Why this happened once out of the 279 multiple button presses, is
still not known. When the test trace is replayed, it does not produce the same result. To see
if other faults can be identified, the requirement SW-01 for the switch test cases was relaxed:

SW-01 - The receiver receives the same number of commands as time the first button
was pressed, divided by 60. For the first button press, it is accepted if the number of received
commands is plus or minus 1 of what was expected. Also, the receiver receives the same
number of commands as time the second button was pressed, divided by 60. For the second
button pres, it is accepted if the number of received commands is between a range of plus 0
to plus 4 of what was expected, as the microcontroller is already started up.
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Also, the delay between button presses in the SW test cases was changed from a range of
200ms to 700ms, to a range of 100ms to 500ms. This was altered to avoid the microcontroller
automatically shutting down after it has sent all the stop commands when the delay is too
long. With these updated requirements, the tests were rerun for a full night. The obtained
results for the second test run are shown in Table 3.

Category Single Multiple Switch Total

Tests executed 4440 1502 4525 10467
Tests failed 1 5 1 7

Fail rate 0.0002% 0.0033% 0.0002% 0.0007%

Table 3: Test results second run

Interestingly, the fail rate of the test cases decreased a lot but fails still appeared. The
fail messages of the test cases show that the reasons for the fails differ greatly in this second
test run. First of all, a Single test case has failed while this has never happened before. The
fail message indicates that quiescence was the received output, which means that no output
at all was received until the timeout of 20 seconds was reached. The Multiple test cases all
failed for the same reason as in the previous test run, where a park command was received
while this should not happen. The failed Switch test case received a stop command too many.
All of the identified fails resulted in the following failed requirements:

• SB-01: due to quiescence, whereas stop commands were expected;

• MB-01: due to instances where a park command had been received while multiple
buttons were pressed;

• SW-01: due to receiving too few commands when the first button press is just long
enough to start up the microcontroller;

• SW-02: due to too many received stop commands in a single fail instance of the Switch
test case;
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8.2 Discussion

8.2.1 Test results

During testing of the remote and receiver, some faults were found, as well as inconsistencies
with regard to the documentation. First of all, the communication flow sequence diagram
in Figure 7.3 does not show the 1 to 3 extra stop commands that the receiver will send to
the stairlift when no RF has been received for a timeout period. Secondly, the time between
pressing the button and sending commands via RF is not explicitly documented, which is
caused by the startup time and initialization of the microcontroller. This is especially an
issue when counting the number of received commands and comparing them to the expected
number of received commands.

Some unexpected behaviour was noticed when executing the test cases. For instance,
some test cases failed because either too many or too few commands were received. The
most exciting failures happened when the first button was only pressed for long enough to
start up the microcontroller, then during the second button press, a few more commands are
expected as the microcontroller does not have to start up. This is always the case when the
first button is pressed long enough to send a command. However, in the case that the first
button was only pressed for long enough to start up the microcontroller, these commands
were not received, while the number of received stop commands was as expected.

Some actual faults were identified during the second test run, where the Multiple test case
sent a park command while no up, down or park commands should have been sent. Moreover,
a test case failed because of quiescence (no output). These test results showed that the remote
and receiver sometimes behave unexpectedly. Due to the nature of RF being error-prone and
limited code and hardware inspection, it is still unclear whether the detected faults are due
to the RF protocol, hardware, software or even timing issues on the host PC. However, the
faults that occurred were not entirely random. This might indicate that the cause of the
faults does indeed reside in the hardware or software.

The identified faults are probably not even noticeable in regular use, which could be the
reason why they were never found before. Finding what caused the faults is also hard, as
executing precisely the same test sequences again, does not reproduce the same fault.

8.2.2 Sequence diagrams as specification

Sequence diagrams model scenarios and do not give a full specification of a system. State
machine diagrams often give a more complete model of the system. However, sequence dia-
grams are easier to understand and offer documentation to stakeholders with different levels
of technical background knowledge. They are also easier to create in the early stages of a
project, as they can be based on use cases and requirements, which are often created in the
initial stages of the design phase.

Because sequence diagrams only model scenarios, a lot of them are needed to model every
scenario in a state diagram, which means that it becomes hard to test every path in a system.
Features such as data, data-dependent constraints and variables give some more options to
the creator of the diagram to test different a single function with generated constrained input
data without having to model every possible input value. However, the user has to supply
self-defined functions to perform coverage-based testing, which is often more interesting than
randomized testing.
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8.2.3 Verbose messages

When using regular messages or message formats with only static values or variable as ar-
guments, the readability of sequence diagrams does not degrade. However, when adding
expressions or function calls, the messages in a sequence diagram can become long and ver-
bose, which harms the readability of the sequence diagram. Reduced readability defeats the
purpose of sequence diagrams as documentation for developers or stakeholders. However, it
may still be simpler to create more advanced tests by using verbose sequence diagrams than
by creating test cases with a different framework. These sequence diagrams should only be
created as test cases that are not used as documentation.

8.2.4 Limitations

The main limitation that we encountered was that we were unable to model and test real-
time behaviour. Section 7.2 in the case study illustrated this well, where all timing behaviour
had to be set up in the message, and all results also had to be fully processed before they
could be sent in the output message. This is also why the sequence diagrams created look so
different from the sequence diagrams in the interface protocol specification. The main reason
for this is that TorXakis communicates with sockets. Sockets give the user many interfacing
options, but they sometimes introduce enough latency to make it impossible to test time-
critical applications. This is especially a problem in embedded systems, as these systems are
often subject to real-time constraints [35].

The UML modelling tool Modelio does also does not support the notion of time in an
actual unit between events in a sequence diagram. However, there are ways in Modelio to
add constraints to almost every object in sequence diagrams, which means that this feature
could be added with a special syntax for timing constraints. Another option could be to add a
timing diagram that relates to a single or sequence of events in a sequence diagram to specify
the timing constraints.
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9 Conclusion and Future Work

9.1 Conclusion

In this thesis, we explored the possibility to transform UML sequence and class diagrams
to models suitable for model-based testing, to reduce the effort and time needed to create
and maintain these models, with the intent to make model-based testing more accessible for
smaller projects and smaller companies. Based on the performed case study with the created
sd2txs tool, it can be concluded that by only creating some small and straightforward sequence
diagrams, we were able to create an input model for the model-based testing tool TorXakis
that was able to test a remote and receiver for a stairlift thoroughly. Some weird behaviour
was observed during testing, which may indicate the presence of bugs in the software or
hardware.

The performed case study highlighted a shortcoming with TorXakis when it comes to test-
ing embedded systems with timing constraints. Due to this shortcoming, a different modelling
strategy had to be adopted to combat the time-critical actions modelled by the sequence dia-
grams present in the interface protocol specification documentation. These original sequence
diagrams documented the protocol well. The sequence diagrams created with the different
modelling strategy were able to test the embedded system by letting the adapter deal with
the time constraints but, unfortunately, did not provide the same level of documentation.
The reason for this is the decrease in readability, intuitiveness, and usefulness of the sequence
diagram. Seeing that the primary goal of creating UML diagrams is to provide visual docu-
mentation for a system, the sd2txs tool is currently better suitable for (embedded) software
that is not subject to timing constraints.

In this thesis, we also researched the syntax and semantics of sequence diagrams, from
which it can be concluded that the syntax is well standardised and clearly defined. Available
tooling mostly abides by this standard, but many tools do not offer the full set of specified
syntax. This is also the case for the export to XMI functionality. Some tools do not offer
this functionality, and from the tools tested, it became clear that with the same model, tools
often produce different XMI output. This research also showed that the semantics of sequence
diagrams are not clearly defined, difficult, and sometimes ambiguous. This is why other
research often chooses to define their own interpretation of the semantics or uses predefined
semantics from other research, to be able to reason formally about sequence diagrams.

Furthermore, we have shown that labelled and symbolic transition systems are most suit-
able as an intermediate model representation, as the TorXakis modelling language is based
on these types of transition systems. This means the decision to adopt labelled transition
systems as an intermediate model representation was quickly made, which later switched to
symbolic transition systems when data, variables, and data-dependent constraints were added.
These concepts can be added to the UML sequence diagrams by using a class diagram. With
this type of diagram, users are able to define custom message formats with typed attributes,
which can be populated with static values or variables that get a dynamically generated value
from TorXakis. These variables can be reused by the user in the sequence diagram on other
message formats attributes that have the same type. Constraints to the generation process of
the typed value can be introduced by calling user-defined TorXakis library functions directly
from the sequence diagrams. These extra features allow for more freedom and flexibility in
the creation of the testable model but reduce the readability and documentation value of the
sequence diagram.
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9.2 Future work

Some ways to improve or extend this research are listed below:

• In the case study, a different modelling strategy had to be adopted due to timing
constraints in the SUT. Currently, the sd2txs tool does not support extracting timing
constraints from the XMI model, nor does TorXakis support real-time testing. To be
able to test real-time systems, support for extracting timing constraints from the XMI
model, as well as support for generating a model for a real-time model-based testing
tool have to be added;

• During testing, some of the test cases failed. However, it is still not known what the
cause of these failures is. Future work could include debugging the code and hardware
to find out what caused the failures;

• A formal proof has to be given that when translation a sequence diagram to a symbolic
transition system, the system is able to produce exactly the same set of traces and does
not introduce unwanted quiescence behaviour because of the τ -transitions that were
added;

• Support for asynchronous communication or enforcing a ban on non-determinism has
to be added in the model generation part of sd2txs. The non-determinism examples
have shown that race conditions can occur when allowing asynchronous communication
in combination with non-determinism;

• During testing, it became evident that TorXakis uses a Gaussian random number gen-
erator to generate integers in a specific range. However, edge cases are often more
interesting. Currently, edge cases can be generated more frequently by calling a library
function that is designed to return the desired edge cases. However, it would be inter-
esting if TorXakis would offer the option to generate edge cases to speed up the testing
process;

• The intermediate model representation, deduced from the sequence diagrams, could
be used in case studies with formal validation techniques such as model checking. A
generator should be added to the desired file format, as the current generators include a
dot file generator for visualisation and a TorXakis model file generator for model-based
testing;

• Sequence diagrams model scenarios and do not give a full specification of a system.
State machine diagrams often give a more complete model of the system, which is why
support for these diagrams would have to be implemented in the sd2txs tool to give
more freedom to the tester;

• Comparing the XMI export feature of different modelling tools showed that the XMI
output is not always precisely identical when the same model is exported to XMI [30].
This means that supporting the XMI output from Modelio, does not imply that the
XMI output from, e.g., Enterprise Architect is also supported. To be able to support
multiple modelling tools, either the tools have to abide by the same standard, or support
for each tool has to be implemented in sd2txs;

• The sequence diagram to STS transformation algorithm could be optimised, to eliminate
the need for τ -transitions in the STS when combined fragments are present in the
sequence diagram;
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