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Abstract

As the use and impact of machine learning models expands, criticism grows
on our lack of deeper understanding on the behaviour of these models. Shap-
ley values are at present presumably the most popular method for interpret-
ing the behaviour of these models. However, clarity lacks on how to take
care of available knowledge on causal relationships between input variables
when calculating Shapley values. When this is handled inadequately, it can
leave us with counter-intuitive explanations for our models’ behaviour. This
work introduces causal Shapley values which provide a theoretical substan-
tiated view on how causality should be taken into account when calculating
the Shapley value.
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Chapter 1

Introduction

Many machine learning models have a high black-box degree. Despite the
fact that these models may have a good predictive ability, this does not
guarantee that these models behave in the way we want them to (think for
example about models that discriminate on gender or race [7]). Without
any interpretation on the behaviour of these models, undesired behaviour
can easily go unnoticed. According to the European commission, a human
should be in command on when and how to use an AI system [3]. But
this leaves humans with an impossible task. Professionals working with
these models are unable to judge the validity of a models’ output without a
further interpretation on why this output was generated. Furthermore, the
GDPR includes that in case of automated decision-making one needs to be
able provide “meaningful information about the logic involved, as well as
the significance and the envisaged consequences of such processing for the
data subject” in Art. 13 section 2 under f [16], Art. 14 section 2 under g
[17] and Art. 15 section 1 under g [18]. These requirements coupled with
our shallow understanding of model behaviour cause a need to find ways to
better interpret our models.
Shapley values aim at providing us such an interpretation and are presum-
ably the most popular method for interpretable machine learning nowa-
days. However, clarity lacks on how to take care of available knowledge on
causal relationships between input variables when calculating Shapley val-
ues. When this is handled inadequately, it can leave us with counter-intuitive
explanations for our models’ behaviour. Since methods for interpretable ma-
chine learning are in demand and will have a significant impact once they
find their way into practice, we need them to be able to deal with causal
knowledge in a proper way.
Aas et al. [1] came up with a method to take into account the correlation
between features when calculating Shapley values, although without consid-
ering the causal structure. Janzing et al. [5] argue that do-calculus should
be used in order to derive the Shapley values in a way that respects the
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causal structure. Remarkably, they conclude based on this that the ‘stan-
dard’ Shapley values are the ones preferred after all. Frye et al. [2] propose
asymmetric Shapley values, which we will see later on is a different type of
solution than the one of Aas et al. [1], Janzing et al. [5] and our selves.
In this work, we follow the line of thinking of Janzing et al. [5] in the sense of
using do-calculus to derive the Shapley values. However, we conclude that
this does not lead to the ‘standard’ Shapley values, but to ‘causal’ Shapley
values. We outline how these so-called causal Shapley values can be derived
instead.
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Chapter 2

Background

Section 2.1 describes the idea behind Shapley values, why Shapley values are
considered to be the fair distribution value and the build-up of the Shapley
equation. Section 2.2 provides background knowledge about probability
distributions and causal structures in order to understand the idea behind
conditional and causal Shapley values.

2.1 Shapley values in game theory

Shapley values are a game theory concept which expresses a fair way to
divide the pay-out of a game amongst its players [11]. It calculates the
difference in outcome when one specific player does not perform in the game
versus when the player does. An example is given in figure 2.1.

Figure 2.1: Three ice hockey players play a game and get a pay-out of 15.
When orange does not play, the pay-out is 11. The marginal contribution
of the orange player in this example is 4.

The difference in pay-out can be calculated for all possible coalitions of
players, as denoted in figure 2.2.
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Figure 2.2: All possible coalitions of three players. The coalitions in which
we can leave out orange to calculate the marginal contribution are outlined
in red.

The Shapley equation (specifics are elaborated in section 2.1.1) sums over
all these marginal contributions and weighs them in such a way that the
resulting value satisfies the following properties [11]:

• Efficiency: the sum of the contribution values should add up to the
pay-out of the game with all players.

• Symmetry: if two players contribute equally to all coalitions, they
should get the same contribution value.

• Dummy: if a player does not affect the outcome in all possible coali-
tions, this player should have a contribution value of zero.

• Additivity: if we run two separate games, the contribution values of
the players are just the sum of the contribution value of the individual
games.

These properties make them to be considered the fair way to divide the
pay-out.

2.1.1 Shapley equation

The Shapley value of player i of a game with value function v is,

φi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!︸ ︷︷ ︸
weight factor

(v(S ∪ {i})− v(S))︸ ︷︷ ︸
marginal contribution

. (2.1)

Here N is the set of all players, n is the total number of players and |S| is
the number of players in subset S ⊆ N . We sum over all subsets of N that
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do not contain i, in which we add the weighted marginal contribution of i.
Figure 2.3 shows an example in which we calculate the fair pay-out (P = 15)
of three ice-hockey players based on Shapley values.

Figure 2.3: Calculation of fair pay-out per player based on Shapley val-
ues. The first column denotes which players participate, the second column
denotes the pay-out for that set of players, and the third, fourth and last
column denote the marginal contribution of the orange player, purple player
and blue player respectively (if relevant). Beneath the table we see the Shap-
ley value which is an addition of all the separate marginal contributions in
which we weigh them by a factor.

2.1.2 Permutation-based Shapley equation

Equivalently, the Shapley equation can be written in another form using
permutations,

φi(v) =
1

n!

∑
r∈R

[v(P ri ∪ {i})− v(P ri )] . (2.2)

Here P ri is the set of players that precedes i in permutation r, and R =
S(N) is the set of all permutations of players N . When calculating the
Shapley value of i with this variant, we sum over all possible permutations
r ∈ R in which we add the marginal contribution of i. The permutation-
based equation is more intuitive in the sense of how we weigh the marginal
contributions, as we just divide by the number of permutations. In figure 2.4
the same example as in figure 2.3 is shown, but this time the permutation-
based variant of the Shapley equation is used.
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Figure 2.4: Calculation of fair pay-out per player based on Shapley values
(permutation based variant). The first column denotes all different orders of
players orange, purple and blue. The second, third and last column denote
the marginal contribution of the orange, purple and blue player respectively
for that permutation. Beneath the table we see the Shapley value which is
an addition of all the separate marginal contributions in which we divide by
the total number of permutations.

2.2 Probability distributions and causal structures

This section provides background materials in order to understand the con-
ditional en causal Shapley values.

2.2.1 Conditional probability

When we want to know the probability of an event, given that another
event has occurred, we use the conditional probability. This is defined as
the probability that both events occur divided by the probability that the
conditional event occurs,

P (X|Y ) =
P (X,Y )

P (Y )
.

These probabilities can also be called the observational conditional proba-
bilities, since we calculate the probability of X when we observe Y .

2.2.2 Conditionally independent

Two variables X and Y are called independent, denoted X ⊥⊥ Y , when
X does not provide additional information about Y , and vice versa, and
therefore, P (X,Y ) = P (X)P (Y ). Furthermore, two variables can also be
independent given a certain set of variables, X ⊥⊥ Y | Z, subsequently,
P (X,Y |Z) = P (X|Z)P (Y |Z).
When X ⊥⊥ Y | Z we say that X and Y are conditionally independent given
Z.
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2.2.3 Causal structure

Pearl defines a causal structure as a directed acyclic graph (DAG) in which
the nodes represent variables and the edges represent a direct functional
relationship between the two variables it connects [9]. This causal struc-
ture defines the architecture of the model, but does not specify the precise
function by which these variables are linked.

2.2.4 Causal model

Subsequently, Pearl defines a causal model as a combination of a causal
structure D and a set of parameters ΘD, where these parameters ΘD should
obviously be compatible with the causal structure D [9]. These parameters
assign a function vi = fi(pai, ui) to each vertex Vi ∈ V , where pai are the
parents of Vi and ui is a random disturbance factor. This definition is in
line with the causal Markov condition or Markov assumption, which says
that every node Vi ∈ V is independent of all non-descendants of Vi given
the parents of Vi [13].

2.2.5 D-separation

If Z d-separates X and Y in causal graph G, then X ⊥⊥ Y | Z is guaranteed
to hold. Z d-separates X and Y when every path π = (X, V1, ...,Vn, Y )
with n ≥ 0, satisfies one of the following conditions.

• π contains a collider X → Vi ← Y, with Vi /∈ Z and Vi is not an
ancestor of any node in Z;

• π contains a non-collider Vi where Vi ∈ Z.

Two examples on graphs and d-separation are given in figure 2.5.
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Model A

Y

V1X

Model B

Y

V1X

Figure 2.5: In model A, X and Y are d-separated by the empty set, i.e.,
Z = {}. The only path between X and Y is via V1 which is a collider, which
makes that the empty set already satisfies the conditions for d-separation.
Notice that by adding V1 to Z one would open the path and X and Y would
then not be d-separated anymore. In model B, X and Y are d-separated by
Z = {V1}. The only path between X and Y is via V1 which is a confounder,
this makes that we need to add it to Z in order to satisfy the conditions for
d-separation.

2.2.6 Do-operator: interventional conditional probability

Pearl’s do-operator, P (Y |do(X = x)), is used to compute the effect of a cer-
tain intervention X = x on an another variable Y [8].This operator informs
us how we should calculate the probability distribution when we are dealing
with an intervention rather than with a passive observation. It enforces that
the effect we measure is due to the effect of the variable we intervene on and
is not confounded by other factors.
For some cases we can rewrite the do-operator and thereby calculate the
probabilities by intervention from the probabilities by observation. Do-
calculus specifies the three rules stated below to do so [10]. It was proven
to be complete to the identifiability of causal effects [4][12]. This means
that if the do-operator can not be removed by applying these rules, then the
causal effect is not identifiable. We can then not calculate the probabilities
by intervention based on the probabilities by observation.

Do-calculus

Let X,Y, Z and W be sets of nodes in a causal DAG G. We specify GW as
a copy of graph G in which we delete all arrows in graph G that point into
W . Furthermore, we define GW as a copy of graph G in which we delete all
arrows in graph G that emerge from W .

Rule 1: insertion/deletion of observation. If X ⊥⊥ Y |Z,W holds in
graph GW̄ then we can apply rule 1,

P (Y |X,Z, do(W )) = P (Y |Z, do(W )).
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Graph G

Y

WX Z

Graph GW̄

Y

WX Z

Figure 2.6: Example in which rule 1 applies. We can see that X and Y are
d-separated by W and Z in graph GW̄ .

Rule 2: action/observation exchange. If X ⊥⊥ Y |Z,W holds in graph
GWX then we can apply rule 2,

P (Y |do(X), Z, do(W )) = P (Y |X,Z, do(W )).

Graph G

Y

WX Z

Graph GWX

Y

WX Z

Figure 2.7: Example in which rule 2 applies. We can see that X and Y are
d-separated by W and Z in graph GWX .

Rule 3: insertion/deletion of action. If X ⊥⊥ Y |Z,W holds in graph
G
W,X(Z)

in which X(Z) is the set of nodes of X which are not ancestors of

any Z-node in GW then we can apply rule 3,

P (Y |do(X), Z, do(W )) = P (Y |Z, do(W )).
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Graph G

Y

W Z

X

Graph G
W,X(Z)

Y

W Z

X

Figure 2.8: Example in which rule 3 applies. We can see that X and Y are
d-separated by W and Z in graph G

W,X(Z)
.
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Chapter 3

Shapley values for machine
learning

A translation of the game-theory concept Shapley values can be made for
machine learning models. In this translation, we see the outcome of a model
as the pay-out, and the features as players. The Shapley values are used
to distribute contribution to the models outcome fairly among the features.
However, to do so we need to calculate the expected outcome of the model
when we only know the values of some of the features. The next section
shows how we can do this.

3.1 Expected value of a model

If we want to use the Shapley equation for machine learning models we
somehow need to calculate the outcome of the model without knowing all
the feature values. The most natural way to do this, will probably be to use
the expected outcome of the model as value function;

v(S) = E[f(XS̄ , xS)].

Here XS̄ is the set of (unknown) stochastic variables and xS is the set of
(known) realizations of variables. In order to calculate the expected out-
come of a model f we need to integrate over all possible values of the un-
known features XS̄ , weigh them by the probability that they appear P (XS̄)
and multiply them with the outcome for that specific realization f(XS̄ , xS).
Here, the known feature values are on indices S ⊆ N with N = {1, . . . , n}
the set of all feature indices and unknown feature values are on S̄ = N \ S.
Using the marginal probability distribution results in,

E[f(XS̄ , xS)] =

∫
dXS̄ P (XS̄)f(XS̄ , xS) .
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We will refer to the case of using this as the value function as the marginal
Shapley values.

3.2 Properties of Shapley values for machine learn-
ing

Notice that specifying,

v(S) = E[f(XS̄ , xS)],

does not change the structure of the Shapley equation and therefore the
properties as stated in section 2.1 are preserved. When we translate those
properties to ‘machine learning language’ this results in,

• Efficiency: the sum of the contribution values of all features add up
to the difference between the outcome of the model for this specific
realisation and the overall expected value of the model. Likewise,

n∑
i=1

φi = f(x)− E[f(X)].

• Symmetry: if two features contribute equally to all coalitions, they get
the same contribution value. So if,

E[f(XS∪i, xS∪i)]− E[f(XS̄ , xS)] = E[f(XS∪j , xS∪j)]− E[f(XS̄ , xS)],

for all S ⊆ N\{i, j} then,
φi = φj .

• Dummy: if a feature does not affect the outcome in all possible coali-
tions, this feature has a contribution value of zero. So if,

E[f(XS∪i, xS∪i)] = E[f(XS̄ , xS)]

for all S ⊆ N\{i} then,
φi = 0.

• Additivity: if we run two separate models, the contribution values of
the features are just the sum of the contribution value of the individual
models. This enables us to easily calculate the Shapley values over
ensemble models.
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3.3 Approximating Shapley values

Štrumbelj et al. [14][15] proposed an algorithm to approximate the marginal
Shapley value, as displayed in algorithm 1. The basic idea is to sample ran-
dom instances of the data, mix the random instance with the instance of the
data at hand, and calculate the marginal contribution of i. This is repeated
for random permutations of the features and random data instances. The
sampling of random instances is a replacement for integrating over all pos-
sible values of the unknown features. Since the data instances are randomly
sampled they respect the probability distribution of the data.

Algorithm 1 Approximating marginal Shapley value φi of the feature i
for model f for instance of data x ∈ X, given features N , data X, and
parameter m.

1: procedure ApproximateShapley(i,N,X, x,m)
2: R← S(N) . Set of all permutations of features N
3: φi ← 0
4: for 1 to m do
5: r ← getElement(R) . Select random permutation of features.
6: S ← P ri . Features that precede i in r
7: z ← getElement(X) . Select random instance from data.
8: c← f(zS∪i, xS∪i)− f(zS̄ , xS) . Contribution of i
9: φi ← φi + c

10: end for
11: φi ← φi

m
12: return φi
13: end procedure

3.4 Taking dependencies into account

This section discusses three approaches to calculate Shapley values, all of
which take dependencies between variables into account. The first approach
uses conditional probability distributions, the second the interventional con-
ditional probability distributions, and the third abandons the symmetry ax-
iom of Shapley values.

3.4.1 Conditional probability distribution

Aas et al. [1] argue that dependencies between features should be taken into
account by using the conditional probability distribution, to which we will
refer to as the conditional Shapley values,

v(S) = E[f(XS̄ , xS)|XS = xS ] =

∫
dXS̄ P (XS̄ |xS)f(XS̄ , xS) .
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They compare different methods for approximating the conditional proba-
bility distribution in their work. The next section will show how using the
conditional probability distributions can result in unwanted effects.

3.4.2 Interventional conditional probability distribution

Janzing et al. [5] argue that the interventional conditional probability dis-
tributions should be used instead of the observational (conditional) distri-
butions. They base this argumentation on the do-calculus as introduced
in section 2.2.6. They illustrate how the observational conditional distri-
butions gives problems with the following example. Consider the function
f(x1,2) = x1, in which x1, x2 are binary variables. In addition,

P (x1, x2) =

1
2 if x1 = x2

0 otherwise

which creates a confounding effect between x1 and x2. The overall causal
structure is therefore as in figure 3.1. We see that x2 is irrelevant to the
output.

Y

X1 X2

O1

Figure 3.1: Causal structure with X1, X2 the input variables, O1 an unob-
served variable and Y = f(x) the output of the model.

This gives the following conditional expectations for f

E[f(X1,2)] =
1

2
E[f(x1, X2)|x1] = x1

E[f(X1, x2)|x2] = x2

E[f(x1,2)] = x1.

Hence,

φ2 =
1

2

(
x1 −

1

2

)
+

1

2

(
x1 − x1

)
=
x1

2
− 1

4
6= 0.
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When using marginal expectations we get,

E[f(X1,2)] =
1

2
E[f(x1, X2)] = x1

E[f(X1, x2)] =
1

2
E[f(x1,2)] = x1.

Hence,

φ2 =
1

2

(
1

2
− 1

2

)
+

1

2

(
x1 − x1

)
= 0.

When we use the conditional expectations, it would seem as if x2 has an
influence on the output. This is a result of confounding between x1 and
x2. This is in contrast with the marginal expectations in which confounding
does not affect the Shapley values. With this example they show that the
observational conditional expectations might not always create the desired
effect.
Surprisingly, after Janzing et al. [5] make this observation, they formally sep-
arate the real-world object features from the input features to the model.
This leads them to conclude that the marginal expectations coincide with
the interventional ones. Based on this research, Lundberg et al. [6] jus-
tify an interventional interpretation of their TreeSHAP algorithm that uses
marginal expectations.
In this work we follow the line of thinking from Janzing et al. [5] that the
interventional conditional distributions should be used instead of the obser-
vational ones. However, in contrast with their work, we want to know the
effect of the real-world features on the models’ output. This entails that we
do take into account the effect that a variable has on the output via other
input variables, but we do not take into account confounding effects of other
variables.

3.4.3 Asymmetric Shapley values

Frye et al. [2] propose asymmetric Shapley values in which they implement
their philosophy that “if Xi is known to be the deterministic causal ancestor
of Xj , one might want to attribute all the importance to Xi and none to Xj”.
They do this by only considering the permutations that are consistent with
the causal ordering. In addition, they propose on-manifold data sampling
which is equivalent to using the conditional probability distribution. This
is not appropriate for all cases from a causal perspective as we have seen
in the section 3.4.2. Nonetheless, the concept of asymmetric Shapley values
can be separately applied from choosing the value function v(S), therefore
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we could apply this asymmetry concept to causal Shapley values as well.
Although the idea is interesting, it is not necessary to use the asymmetry in
order to calculate the Shapley values in a causal way as we will see in the
next chapter.
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Chapter 4

Causal Shapley values

To deal with relationships between input features we propose causal Shapley
values,

v(S) = E[f(XS̄ , xs)|do(Xs = xs)] =

∫
dXS̄P (XS̄ |do(XS = xS))f(XS̄ , xS) .

In other words, we are going to use the interventional conditional probability
distributions to calculate the expected outcome of the model. Hereby, we
take into account that we intervene on the variables XS when we calculate
the probability of the unknown features having a specific value. By doing
so, we do take into account the effect that a variable has on the output
via other input variables, but we do not take into account confounding
effects of other variables. In case that there are no causal paths between the
input variables, we can rewrite the do-operator in the causal Shapley values
calculation using rule 3 of the do-calculus (in 2.2.6). This then results in
the marginal Shapley values. When we do have causal paths however, this
leads to something different as we will see in section 4.1, which gives an
algorithm for approximating the causal Shapley values. Finally section 4.2
will illustrate the results of the marginal, conditional and causal Shapley
values for some examples.

4.1 Approximating causal Shapley values

Algorithm 2 shows a way to approximate the causal Shapley values. This
algorithm uses the rules of do-calculus to convert conditioning by interven-
tion to conditioning by observation (if possible). Hereafter, we can use the
approach presented in [1], in which a multivariate Gaussian distribution
is assumed, to sample from the conditional distribution. As the resulting
conditioning set may differ per intervention, we sample all feature values
separately from each other. And as the value of the other feature values
may differ depending on whether i needs to be sampled, we should sample
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all features other than i two times. It is good to note that this algorithm
only works when it is possible to convert conditioning by intervention to
conditioning by observation. This is typically not the case when there is a
causal path between two variables and also a confounder between those two
variables. For the causal structures of the examples in the section 4.2 this
algorithm does work.

Algorithm 2 Approximating causal Shapley value φi of the ith feature
for model f for instance of data x ∈ X, given features N , data X, causal
structure G and parameter m.

1: procedure ApproximateCausalShapley(i,N,X, x,G,m)
2: R← S(N) . Set of all permutations of features N
3: φi ← 0
4: for 1 to m do
5: r ← getElement(R) . Select random permutation of features.
6: S ← P ri . Features that precede i in r
7: O ← orderOnCausality(S ∪ i, G) . Ancestors before children.
8: αS∪i ← SampleFeatureValues(X,x,O, S,G)
9: O ← orderOnCausality(S̄, G) . Ancestors before children.

10: βS̄ ← SampleFeatureValues(X,x,O, S,G)
11: c← f(αS∪i, xS∪i)− f(βS̄ , xS) . Contribution of i
12: φi ← φi + c
13: end for
14: φi ← φi

m
15: return φi
16: end procedure

17: procedure SampleFeatureValues(X,x,O, S,G)
18: for j in O do
19: A← POj . Features that precede j in O
20: Z ← applyDoCalculus(j, A ∪ S,G) . Rewrite do-operator
21: zj ← Sample(x,X, j, Z) . Sample from conditional distribution.
22: end for
23: return z . Return all sampled features
24: end procedure

4.2 Results of different approaches

A few examples of combinations of causal structures, functions and their
marginal, conditional and causal Shapley values are shown in this section.
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4.2.1 Example 1a: direct relationship

Table 4.1 gives the different Shapley values for the causal structure as de-
scribed in figure 4.1. In this structure there is a direct relationship between
the input variables. The results in table 4.1 show that the marginal Shapley
values do not attribute any contribution value to X1, whereas the condi-
tional Shapley values and the causal Shapley values do. As X1 and X2

both cause the same effect in the output, the attribution of the conditional
and causal Shapley values in which each of the two input variables gets half
seems intuitive as they provide the same information about the output.

Y

X1

X2

P (X1 = 1) = 1
2

X2 =

1 if X1 = 1

0 otherwise

f(x1,2) = x2

Figure 4.1: Causal structure with X1, X2 binary input variables and Y =
f(x) the output of the model.

Table 4.1: The Shapley values for the possible data points regarding the
structure in figure 4.1. For the first data point we need to explain the
difference between f(x1,2) = 0 and the average E(f(X)) = 1

2 , which is −1
2 .

When using the marginal expectations, all of this is attributed to X2 and in
the cases of the conditional expectations and the causal expectations this is
divided over both X1 and X2. For the second data point the same applies
but than for a difference of 1

2 .

Marginal Conditional Causal

φ1 φ2 φ1 φ2 φ1 φ2

X1 = 0, X2 = 0, f(x1,2) = 0 0 -1
2 -1

4 -1
4 -1

4 -1
4

X1 = 1, X2 = 1, f(x1,2) = 1 0 1
2

1
4

1
4

1
4

1
4

4.2.2 Example 1b: direct relationship

Table 4.2 gives the different Shapley values for the causal structure as de-
scribed in figure 4.2. In this structure there is a direct relationship between
the input variables. Different from example 1a, however, this time X1 as
well as X2 influence the output. The results in table 4.2 show that the
marginal Shapley values and the conditional Shapley values attribute the

20



same contribution value to X1 and X2. The causal Shapley values attribute
more to X1 than to X2. It seems fair to attribute more to X1 than to X2,
since X1 influences the model output both directly and via X2.

Y

X2

X1 P (X1 = 1) = 1
2

X2 =

1 if X1 = 1

0 otherwise

f(x1,2) = 1
2x1 + 1

2x2

Figure 4.2: Causal structure with X1, X2 binary input variables and Y =
f(x) the output of the model.

Table 4.2: The Shapley values for the possible data points regarding the
structure in figure 4.2.

marginal conditional causal

φ1 φ2 φ1 φ2 φ1 φ2

X1 = 0, X2 = 0, f(x1,2) = 0 −1
4 −1

4 −1
4 −1

4 −3
8 −1

8

X1 = 1, X2 = 1, f(x1,2) = 1 1
4

1
4

1
4

1
4

3
8

1
8

4.2.3 Example 2: multiple direct relationships

Table 4.3 gives the different Shapley values for the causal structure as de-
scribed in figure 4.3. In this structure there are multiple direct relationships
between the input variables. The results in table 4.3 show that the marginal
Shapley values do not attribute any contribution value to X1 or X2, whereas
the conditional Shapley values and the causal Shapley values do. This seems
more intuitive for the same reason as in example 1.
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Y

X3

X1 X2P (X1 = 1) = 1
2 P (X2 = 1) = 1

2

X3 =

1 if X1 = 1 or X2 = 1

0 otherwise

f(x1,2,3) = x3

Figure 4.3: Causal structure with X1, X2, X3 binary input variables and
Y = f(x) the output of the model.

Table 4.3: The Shapley values for the possible data points regarding the
structure in figure 4.3.

marginal conditional causal

φ1 φ2 φ3 φ1 φ2 φ3 φ1 φ2 φ3

X1 = 0, X2 = 0, X3 = 0, f(x1,2,3) = 0 0 0 -3
4 -1

3 -1
3 -1

3 -1
3 -1

3 -1
3

X1 = 0, X2 = 1, X3 = 1, f(x1,2,3) = 1 0 0 1
4 - 1

12
1
6

1
6 - 1

12
1
6

1
6

X1 = 1, X2 = 0, X3 = 1, f(x1,2,3) = 1 0 0 1
4

1
6 - 1

12
1
6

1
6 - 1

12
1
6

X1 = 1, X2 = 1, X3 = 1, f(x1,2,3) = 1 0 0 1
4

1
12

1
12

1
12

1
12

1
12

1
12

4.2.4 Example 3: direct relationship and confounder

Table 4.4 gives the different Shapley values for the causal structure as de-
scribed in figure 4.4. In this structure there is both a direct relationship and
a confounding relationship between the input variables. The results in table
4.4 show that the marginal Shapley values do not attribute any contribution
value to X1, the conditional Shapley values attribute value to all three vari-
ables and the causal Shapley values attribute the contribution to both X1

and X3. The causal Shapley values seem the most logical for this example.
As X1 causes change in the output, so it should get some attribution value.
X2 however does not cause change in the output, it only correlates with X1

because of the confounder O1 and should therefore not get any contribution
value.
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Y

X3

X1 X2

O1 P (x1, x2) =

1
2 if x1 = x2

0 otherwise

X3 =

1 if X1 = 1

0 otherwise

f(x1,2,3) = x3

Figure 4.4: Causal structure with X1, X2, X3 binary input variables, O1 an
unobserved variable and Y = f(x) the output of the model.

Table 4.4: The Shapley values for the possible data points regarding the
structure in figure 4.4.

Marginal Conditional Causal

φ1 φ2 φ3 φ1 φ2 φ3 φ1 φ2 φ3

X1 = 0, X2 = 0, X3 = 0, f(x1,2,3) = 0 0 0 -1
2 -1

6 -1
6 -1

6 -1
4 0 -1

4

X1 = 1, X2 = 1, X3 = 1, f(x1,2,3) = 1 0 0 1
2

1
6

1
6

1
6

1
4 0 1

4

4.2.5 Conclusion

The previous examples have shown that the causal Shapley values provide
intuitive explanations as they attribute value to the features that cause
a difference in output and do not attribute to features that accidentally
correlate with other features that influence the output.
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Chapter 5

Conclusions

This work has introduced causal Shapley values. They show how to take
into account the causal structure of the data when calculating the Shapley
value. In case of no causal paths, the causal Shapley values boil down to
the marginal Shapley values. But in case that we do have causal paths,
the causal Shapley values do not boil down to either the marginal Shapley
values or the conditional Shapley values. In order to understand what this
does boil down to, we need to have some idea of the underlying causal
structure, because then we can try to figure out how to rewrite the do-
operator in the calculation of the causal Shapley values. Rewriting the
do-operator, however, might not always be possible. Furthermore, the user
may not always be able to fully specify the causal structure of the input
variables. Therefore future work involves finding methods to approximate
the causal Shapley values in such a way that it is easy for the user to provide
the necessary knowledge on the causal structure and such that the effect is
always identifiable.
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