Radboud University

MiNe s

()
“Uerrer

Step aside! A fuzzy trip down side-channel lane

Side-channel assisted fuzzing in embedded systems

Gerdriaan Mulder

13 November 2020

Master thesis

Radboud University, Nijmegen

Institute for Computing and Information Sciences

Supervisor Second reader
Dr. Ir. Erik Poll Prof. Dr. Lejla Batina
Radboud University, Nijmegen Radboud University, Nijmegen

erikpoll@cs.ru.nl lejla@cs.ru.nl

Abstract

This thesis investigates how to integrate side-channel information of an embedded sys-
tem into the feedback loop of a fuzzer. Fuzzers, such as AFL, try to find many execution
paths of a fuzzing target by mutating input values such that the target’s output changes.
Side-channels, such as execution time, expose additional information about a running
system. We developed a custom communication interface program that operates be-
tween AFL and the smartcard, to provide input filtering and report execution results to
AFL. In this thesis, we perform experiments using differential fuzzing with DiFFuzz, and
mutational/evolutionary fuzzing with AFL. We present two case studies: a custom, pass-
word checking applet on a Java Card smartcard, and an unprovisioned SIM (Subscriber
Identity Module) card. The password checker implements both a timing-sensitive, and
a constant-time password checker. First, we find that, for execution distinguishability in
differential fuzzing with DIFFuUzz, the timing side-channel’s measurements need to have
nanosecond precision. Next, we fuzz the password checking applet with status words as
a pseudo side-channel in AFL. The password checker reports three status words: length
correctness using (1) overall message length and (2) the value of the length parameter in
the message, and overall password correctness (3). We show that AFL finds the correct
password length (2), but is not able to find the correct password (3) directly. Next, we
use status words in AFL to find all possible instructions of a SIM card (instruction set dis-
covery). We show that AFL finds the instruction set in about 30 minutes of fuzzing time,
which is twice as slow as a brute-force approach under the same conditions. Finally,
we fuzz the password checking applet with timing as side-channel information in AFL,
in addition to status words. We show that AFL uses the timing side-channel, because it
focuses on the timing-sensitive password checker, and that AFL finds the correct password
length (2). However, AFL does not find the correct password (3) due to the password’s

complexity and the misinterpretation of the overall message length (1).

Contents

1 Introduction

2 Preliminaries
2.1 Fuzzers . ..
2.2 Side-channels
2.3 Smartcards .

3 Related work

4 Case studies

4.1 Java Card applet: PasswordEqQ o oo

4.2 Unprovisioned simcard 0

5 Experiments
5.1 Experiment 1:
5.2 Experiment 2:
5.3 Experiment 3:
5.4 Experiment 4:
5.5 Experiment 5:
5.6 Experiment 6:

6 Future work

7 Conclusion

the DIFFUzz paper
Exposing a timing side-channel in a Java Card applet . . .
Using DiFFuzz to fuzz a Java Card applet on a smartcard .
Status words as pseudo side-channel information for AFL
Smartcard instruction set discovery using status words

Status words, timing, AFL, PasswordEq

8 Acknowledgements

A Smartcard communication

16

18
18
20

22
24
28
31
36
39
46

51

53

55

59

A.1 Communication setup 59

A.2 Tools: GlobalPlatformPro 61
A.3 Applet installationo 62
Code listings 65
B.1 Java Card applet PasswordEq 65
B.2 Supporting scripts, and fuzzing target for Section 5.3 68
B.3 Communication interface program 75

Chapter 1

Introduction

The security of embedded systems can be hard to assess due to their restricted nature.
Apart from their small physical size, they have limited processing power, memory, stor-
age, and instruction set. Introspection of software running on an embedded system, such

as a smartcard is more difficult compared to software running on a PC.

Embedded systems vary in architectural design, and may not be designed to protect
secrets adequately. One way to find flaws in embedded systems is by analysing their
side-channels. Some operations take more time to execute than others (timing side-
channel), while other operations consume more power (power side-channel). By closely
monitoring such side-channels, or other informational channels, we can learn more about
the inner workings of an embedded system. For example, monitoring an informational

channel in passports makes it possible to identify the country of origin[27].

Another way to learn about the way embedded systems (or programs in general) work
is by fuzzing[25] the target. Typically, a program or system (fuzzing target) gives pre-
dictable results when it processes input it expects. However, when that input gets
distorted, the fuzzing target may crash. Crashes reveal previously unknown execution
paths and are used by a fuzzer to generate new inputs that may trigger another (un-

known) execution path.

This thesis combines these three topics: fuzzing, side-channels, and smartcards. More
specifically, we aim to integrate the information from side-channels of a Java Card smart-
card into the fuzzer AFL. Ideally, the fuzzer finds inputs that trigger new execution paths

more efficiently.

We focus on the following research questions:
1. What fuzzers are already using side-channel information?
2. How can we safely interface a Java Card smartcard with the fuzzer AFL?
3. How can we provide the fuzzer AFL with side-channel information?

As for the structure of this thesis, we provide preliminaries in Chapter 2 on fuzzers,
side-channels, and smartcards. Please read this chapter if you are unfamiliar with any
of the these topics. In Chapter 3, we provide related work. We present two case studies
in Chapter 4: Java Card smartcard with a custom applet, and a SIM card. In Chapter 5,
we performed experiments on those case studies; they are presented, along with their

results in Chapter 5. Finally, we propose future work (Chapter 6), and conclude our
work (Chapter 7).

Chapter 2

Preliminaries

In this chapter, we present the necessary background information regarding the topics
covered in this thesis. These topics are: fuzzers (Section 2.1), side-channels (Section 2.2),
and smartcards (Section 2.3). Below, we enumerate the concepts introduced for each
topic. If you are unfamiliar with some of the concepts and/or terms used, you can find

more information about them in the referred sections.

For the remainder of this thesis, we assume the reader is familiar with the terms and

concepts presented in this chapter.

Fuzzers (Section 2.1) fuzzing, fuzzing target, fuzzing input, {white, gray, black}-box

fuzzing, {generational, mutational, evolutionary, differential} fuzzing, AFL, DIFFuzz

Side-channels (Section 2.2) {timing, power} side-channel, constant time execution,

resource consumption, code coverage, branching operations,

Smartcards (Section 2.3) contact(less) smartcards, smartcard terminal, Answer To

Reset (ATR), personalization | provisioning, ISO7816, APDU, status words, Java Card

2.1 Fuzzers

One of the first, or according to anecdotal evidence, the first occurrence of the term
fuzzing dates back to 1988. Barton Miller was logged in on a UNIX machine through a dial-

up connection during a thunderstorm. This thunderstorm caused noise on the telephone

line that led to random characters being sent, instead of the intended characters. That
effect caused common UNIX utilities to crash due to “faulty input”. Miller coined the

4

term fuzz, saying that he “wanted a name that would evoke the feeling of random,

unstructured data.”[17]. In that time, Miller wrote the following assignment:

Operating System Utility Program Reliability - The Fuzz Generator

The goal of this project is to evaluate the robustness of various UNIX
utility programs, given an unpredictable input stream. This project has
two parts. First, you will build a "fuzz" generator. This is a program
that will output a random character stream. Second, you will take the
fuzz generator and use it to attack as many UNIX utilities as possible,
with the goal of trying to break them. For the utilities that break,

you will try to determine what type of input cause the break.

Miller and two graduate students systematically tested about 90 utility programs[23].
More than 24 % of the tested utilities would either crash or loop indefinitely on their
(random, long) inputs. Among those utilites were the popular editors vi and emacs, and
the c-shell csh. Most crashes were caused by incorrect usage of arrays or pointers, such
as null pointer dereferences, out-of-bounds array access, and unbounded input. Even
though this research has been around for 30 years, both the crash causes and fuzzing

techniques are still actual today.

In the following sections, we cover general fuzzing terminology (Section 2.1.1), various
types of fuzzing techniques (Section 2.1.2, and the fuzzer AFL (Section 2.1.3) in more
detail.

2.1.1 Terminology
In this section, we introduce and explain the terms used in this thesis regarding fuzzing.

The idea behind a fuzzer is to test many inputs against a fuzzing target. In general, we
want to know what inputs cause what behaviour (e.g. execution path) in the fuzzing
target. Fuzzing targets may be anything that process input. Common examples are text
editors, web browsers, and data processing libraries, but the same principles can also be

used for embedded systems such as smartcards.

Fuzzers can have various degrees of insight into their fuzzing target. We distinguish

three levels of insight, using the commonly used terms white-box, gray-box, and black-
box. In white-box fuzzing, the fuzzer has full access to the source code of the fuzzing
target. In gray-box fuzzing, the fuzzer can observe the fuzzer target’s internals during
execution[21]. In black-box fuzzing, the fuzzer can only query the fuzzing target and

record its response.

2.1.2 Fuzzing techniques

With regards to techniques used in fuzzing, we can distinguish the following forms:
generational, mutational, evolutionary, and differential fuzzing. We briefly explain the

various methods.

Generational fuzzing uses a predefined (file) format, and generates inputs conforming
to that format. Mutational fuzzing uses a few initial (valid) inputs, and mutate these

inputs along the way[21]. AFL (Section 2.1.3) is an example of a mutational fuzzer.

Evolutionary fuzzing is a subset of mutational fuzzing. It uses genetic algorithms to
mutate inputs. Genetic algorithms combine features from ‘parent’ inputs to gener-
ate ‘children’ inputs. The children inputs are evaluated using some fitness function.
Only children that pass this fitness test will be used for future input generation and

mutation[26].

Differential fuzzing compares the behaviour of a fuzzing target given either different

inputs, or given the same input but in different versions of the fuzzing target[24].

2.1.3 AFL

AFL, short for american fuzzy lop[l], is a mutational, evolutionary fuzzer that aims at
being practical, configuration-less, and fast. It offers a simple textual user interface for
runtime inspection of the fuzzing process. The tool is known for finding vulnerabili-
ties in a number of imaging libraries (1ibpng, ImageMagick, 1ibtiff), as well as web
browsers (Mozilla Firefox, Apple Safari, Internet Explorer), common security software
and libraries (gnutls, openssh, gnupg), and many other tools and libraries®. In the fol-

lowing paragraphs, we explain how AFL works, based on its technical documentation[15].

AFL instruments the source code of the fuzzing target such that it can keep track of how

many times a certain branch is hit at runtime. At each branching point, the code given

!The nearly-complete “bug-o-rama trophy case” can be found at [1]

in Code 2.1 is inserted.

cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location A prev_location]++;
prev_location = cur_location >> 1;

Code 2.1: Instrumentation code inserted by AFL at branching points[15]

The array shared_mem (also called shared memory map) effectively saves tuples of the
form (source branch, destination branch). It preserves directionality, such that
it can distinguish execution paths with the same start and end branch, but different
intermediate branches. For example, an execution path A -> B -> C -> D -> E -> F
(containing tuples AB, BC, CD, DE, EF) is different than A -=> B -> C -> E -> D -> F
(containing tuples AB, BC, CE, ED, DF), even though both paths start at A and end in F.

AFL only saves inputs that add new tuples to the shared memory map, because this

means the fuzzer found a previously unseen execution path.

In Figure 2.1, we show a general impression of AFL’s shared memory layout. On the left,
you see prev_location, on the top cur_location. Each intersection has a background
colour, varying from white to dark gray. This indicates the number of times AFL hit the

execution path (tuple) from prev_location to cur_location.

cur_ location

location

prev__

::::::'.;:D

Figure 2.1: Shared memory map in AFL

Next to source code instrumentation, AFL has a dumb and smart mode. In the dumb
mode, AFL starts the fuzzing target, feeds it an input, and records the exit code. AFL
repeats this procedure for each input. Consequently, the fuzzing target needs to be

restarted for every input.

In the smart mode, AFL has more control over the fuzzing target. AFL acts like a command

and control server: it starts the fuzzing target once, and the fuzzing target waits for
commands from AFL. The fuzzing target has access to the shared memory map of AFL
(Figure 2.1) to inform AFL about execution paths. This shared memory map is about
64 KB in size.

2.2 Side-channels

Side-channels are observable effects of the execution of a program. For smartcards (Sec-
tion 2.3) in general, the side-channels timing, and power are the most relevant. Timing
side-channels are based on a program’s execution time, whereas power side-channels are
based on a program’s power usage. In this thesis, we only cover timing side-channels
(Section 2.2.1).

We consider two applications for side-channels:
1. uncovering a secret

2. guiding a fuzzer

Uncovering a secret The first application is based on the program processing secret
data, but doing it in such a way that it directly influences the control flow, or that
processing is heavy in terms of resource usage. By observing the side-channel, an attacker

can reconstruct the secret data?, as we will see specifically for timing in Section 2.2.1.

Guiding a fuzzer For the second application, we distinguish two approaches:
1. to find two inputs that result in minimum and maximum resource consumption
2. to find enough inputs that result in the biggest code coverage

As an example fuzzing target for these two cases, we consider an input validation function

that only processes the complete input when the first character is an M.

In the approach using minimum and maximum resource consumption, the fuzzer receives
feedback in the form of, for example, the execution time, the number of executed instruc-

tions, or power usage of the fuzzing target. The fuzzer tries to find inputs that result

2This could be done through something as small as 1 bit, see for example ‘Squeezing a key through
a carry bit’ from the 34th Chaos Communication Congress (2017): https://fahrplan.events.ccc.de/
congress/2017/Fahrplan/events/9021.html

https://fahrplan.events.ccc.de/congress/2017/Fahrplan/events/9021.html
https://fahrplan.events.ccc.de/congress/2017/Fahrplan/events/9021.html

in lower or higher resource consumption. For example, low resource consumption could
indicate that the input is invalid, and that input processing quickly stops. High resource
consumption could indicate that additional code paths are visited to fully process the
input. Consider the fuzzing target example from the previous paragraph. When looking
at resource consumption, every input of any length is discarded equally fast (low resource
consumption). However, when the first character matches, it takes longer to process the

input (high resource consumption).

In the code coverage approach, the fuzzer receives feedback in the form of, for example,
exit codes, or branching information of the fuzzing target. The fuzzer tries to find inputs
that result in different exit codes, or in higher number of visited branches. Consider the
example fuzzing target shown above. For example, the exit codes could indicate the
input is valid or invalid (i.e. does start, or does not start with the character M). The
branching information could inform the fuzzer that inputs starting with M and of length
larger than 10 characters visit different branches than those having a length smaller than

7 characters.

2.2.1 Timing

Timing side-channels provide information about a program based on the time it takes
to execute (a part of) it. As a toy example, we consider two programs slow and fast,
that simply print the supplied arguments. However, slow takes 5 seconds to print one
argument, and fast takes 2 seconds to print one argument. Printing 4 arguments with
slow takes 20 seconds, whereas this takes 8 seconds for fast. Both programs do the

same, but they can be distinguished by their runtime: the timing side-channel.

The timing side-channel can be mended by making sure both programs print an argument

in equal time. This is called constant time execution.

In a more real-world example, we consider the following program that compares an input
PIN® with a stored PIN. In Code 2.2, we will identify the timing side-channels present,
and in Code 2.3 we will repair the program to make it run in constant time. We assume

an attacker can query both functions without constraints.

3Personal Identification Number

10

B W N

© 0 g O ut

11
12
13

var storedPIN []int{3, 1, 7, 8, 2}

func CheckPIN(inputPIN [Jint) bool {

if len(inputPIN) != len(storedPIN) {
return false

}

for index, digit := range inputPIN {
if storedPIN[index] != digit {

return false

}

1

return true
Code 2.2: Vulnerable PIN checker, in Golang

In line 4, we see that the input PIN length is compared to the stored PIN length. This on
itself is a timing side-channel: when an attacker increases the length of the input PIN,
they can derive whether the length was correct. Both a too short and too long PIN would
take an equal amount of execution time. The PIN of correct length takes a bit longer to

execute, because the program is able to continue.

In line 7-10, the input PIN is compared with the stored PIN, digit by digit. If an input PIN
digit does not match with the stored PIN digit at the same index, we see that the function
returns false directly. This means the execution time of this function is directly related
to the number of incorrect PIN digits. An attacker can simply try all possibilities for a
single digit, measure the execution time, derive whether a single digit was correct, and

then move on to the next digit until they found the stored PIN.

This is troublesome, because we are dealing with secrets. An attacker that is able to
observe side-channels, like the ones we’ve seen above, can derive the stored secret. In
general, secrets, or any (derived) part of them, should stay out of comparison operations,

such as the if statements we have seen in Code 2.2.

In Code 2.3, we see a constant-time implementation for the PIN checker, specifically the

part where each input digit is compared to the stored digit.

11

B W N

© 0 g O ut

11
12

var storedPIN []int{3, 1, 7, 8, 2}

func CheckPIN(inputPIN [Jint) bool {
if len(storedPIN) != len(inputPIN) {
return false // Still a timing side-channel!

}
pinCorrect := 0@
for index := range inputPIN {
pinCorrect += storedPIN[index] A inputPIN[index]
1

return pinCorrect ==
Code 2.3: Constant-time PIN checker, in Golang

The main difference with regards to Code 2.2 is that we process all input digits before
saying if the PIN was correct. This means an attacker cannot determine through execution

time if their first, second, or n-th digit was correct.

We use two operations for this: addition, and the XOR operation. In short, the XOR
operation returns the difference of the left and right operand: a XOR b = 0 when both
operands are equal, or 1 when they differ*. Consequently, after XOR-ing all stored PIN
digits with input PIN digits, and adding them, a result of 0 means that all input PIN digits

were equal to all stored PIN digits; a non-zero result means at least one digit mismatched.

This approach executes in constant time, because the execution time is not directly

related to the number of incorrect input PIN digits.

2.3 Smartcards

Smartcards are embedded systems that offer a wide range of (security-related) appli-
cations in a small form factor. Common examples are payment, telephony®, or access

cards. In the following sections, we give background information about smartcards.

First, we give a short overview of smartcard concepts in Section 2.3.1. Then, we look at
the standardized data exchange format in smartcards: Application Protocol Data Unit
(APDU) in Section 2.3.2. Finally, we look at a specific implementation of a smartcard we

use in this thesis, called Java Card in Section 2.3.4.

4 Another way of looking at XOR is using a XOR b = a + b mod 2, given that a and b are binary digits.
5Subscriber Identity Module, or SIM

12

2.3.1 Concepts

In this section we introduce the following concepts regarding smartcards: ISO7816,
contact(-less) smartcards, smartcard terminal, Answer To Reset (ATR), personalization /

PTrovisioning.

Smartcards are standardized through various parts of the ISO7816 suite. These stan-
dards dictate physical form factor and electrical properties, as well as command and

response structures[20].

We distinguish contact and contactless cards. Contact cards have a recognizable gold-
plated section that is divided in several pads. These pads are used for data exchange, and
power supply to the card. The smartcard terminal® is the device that communicates with
contact smartcards through these pads. Contactless cards lack such an array of pads.

Instead, they use radio waves both as power source and for data exchange.

When inserting a contact smartcard into a smartcard terminal, the smartcard is reset,
and the smartcard sends an ATR: Answer To Reset. This message informs the smart-
card terminal about the smartcard’s capabilities and state. Different smartcards can be
grouped, or sometimes uniquely identified, by this message”. The exact structure of an
ATR is out of scope for this thesis. Contactless smartcards have an equivalent message

type.

Personalization (or: provisioning) is the process of configuring a smartcard application
tailored to the user. For example: setting a PIN for a payment card, or attaching a phone

number to a SIM card.

2.3.2 Application Protocol Data Unit

An APDU (Application Protocol Data Unit) is the basic structure for ISO7816-4 commu-
nication between a smartcard and a smartcard terminal. Seen from a high level point of
view, the terminal sends an APDU to the smartcard, the smartcard processes the input,
and responds to the command. The structure of the command APDU and response APDU
are different. To give an idea of the contents of these APDUs, we show the structure of a
command APDU in Table 2.1. The response APDU is more simple and we give its structure
in Section 2.3.3.

6 Another common term is smartcard reader
"See for example this online ATR parser: https://smartcard-atr.apdu.fr/

13

https://smartcard-atr.apdu.fr/

Code | Size (bytes) | Description Mandatory?

CLA 1 | Class (ISO7816-4, 5.4.1) Yes

INS 1 | Instruction (ISO7816-4, 5.4.2) Yes

P1 1 | First parameter (ISO7816-4, 5.4.3) Yes

P2 1 | Second parameter Yes

Lc 0, 1, 3 | Number of extra command data bytes (1-65535) | No

DATA Lc | Command data No, unless Lc is set
Le 0-2 | Expected number of response bytes No

Table 2.1: Structure of a command APDU

2.3.3 Status words

The response APDU contains Le bytes of response data and two bytes containing the

status:
e RESP n bytes (n=Le)
« SWi1 byte
. SW2 1 byte

When we use the term status words, we refer to the concatenation of status bytes SWi
and SW2.

ISO7816 defines a ‘success’ and an ‘error’ range for status words. Status words of the
form Ox9nnn are considered ‘success’, whereas those of the form Ox6nnn are considered
‘error’. For example, 0x9000 means ‘no error’, and 0x6D00 means ‘instruction not sup-

ported’.

2.3.4 Java Card

Java Card is a facility to run programs written in Java on embedded systems. It focuses
on security applications, interoperability, and provides mechanisms to securely run mul-
tiple applets on the same device. Java Card applets will run on any embedded platform
that implements the Java Card specification. This makes it possible to write an applet
once, and use it on hardware from different vendors. However, it only supports a rather

limited subset of Java’s functionality. For example, not all data types are supported, nor

14

is garbage collection. Java Card uses the data structures we have seen in Section 2.3.2

and Section 2.3.3 to communicate with the smartcard terminal.

15

Chapter 3

Related work

In this chapter, we look at publications that are (in)directly related to our thesis’ topics:

fuzzing, side-channels, and smartcards.

Fuzzing The work of Liang, Pei, Jia, Shen, and Zhang contains[22] a survey of the
state of the art in fuzzing. They researched three aspects of fuzzing research: key prob-
lems and techniques, usuable fuzzers and their application domain, and future research
opportunities. The application domains vary from network protocols, compilers, and
general purpose applications. The authors looked at key problems, like scalability and
handling crashing test cases, over a number of different fuzzers, with each fuzzer hav-
ing varying success in each problem domain. The authors like to see the integration of

fuzzing as part of the software development cycle.

In another survey paper[21], Li, Zhao, and Zhang review the currently available fuzzing
solutions, with a focus on coverage-based fuzzing. They show various applications (or
targets) for fuzzing: file formats, kernels, and protocols. The paper gives an overview
on how to collect seed inputs (to start fuzzing with) and selecting new seeds, what to do
for generating test cases (e.g. through machine learning), and how to fuzz applications

efficiently.

Side-channels In our thesis, we experimented with DiFFuzz [24]. This tool finds
side-channel vulnerabilities in Java programs, by comparing the number of executed
instructions between different inputs. This is an example of an approach that uses a

side-channel to guide the fuzzer (Section 2.2), specifically: the side-channel guides the

16

fuzzer in finding two inputs that result in minimum and maximum resource consumption.
Internally, DIFFuzz uses fuzzers KELINCI and AFL. Their code base is available online,
which made it an interesting tool to research. We will see more about DI1FFuzz in
Section 5.1 and Section 5.3.

In [28], Vermoen, Witteman, and Gaydajiev reverse engineered a (further undisclosed
type of) Java Card smartcard using power analysis. They recorded each Java Card
bytecode’s power trace, and devised a way to generate templates of those instructions
for later recognition. Using these templates, they could convert a power trace back to
Java Card bytecode again. The authors found that the countermeasures against power

analysis in their researched Java Card were “not very effective”.

Smartcards Aarts, De Ruiter, and Poll performed automatic inference learning on
smartcards, specifically EMV bank cards[16]. The authors used bank cards from several
banks in The Netherlands, Sweden, Germany, and the UK. Although all cards follow
the EMV specifications[4], the authors found identical implementations of the Maestro
applications on Dutch bank cards. In general, the learned model of each card was

different. We used this idea as inspiration for a discovery experiment (Section 5.5).

17

Chapter 4

Case studies

4.1 Java Card applet: PasswordEq

This thesis focuses on integrating side-channel information of a smartcard in a fuzzer.
For experimental purposes, it is useful, if not necessary, to have fine-grained control
over the fuzzing target. In our case, this control comprises installing custom software
(i.e. applets) on the fuzzing target. Since we can install our own software, we can define
what the software does, and how it reacts given some input. This enables us to introduce,

amplify or reduce side-channels effects on the fuzzing target.

For this thesis, we created a Java Card applet containing a password checker as fuzzing
target. The password checker contains a timing side-channel in one of the operations it

can execute. The source code can be found in Section B.1.

The password checker contains a hardcoded password, and two implementations for
comparing input with the stored password. One implementation contains a timing side-
channel, whereas the other compares the input in constant time (Section 2.2.1). We
show in Chapter 5 why: the timing side-channel can be uncovered with very little effort
and hardware. Another feature is that we can customize the status words (Section 2.3.3)
returned by the applet. In that way, we know what to expect when running the fuzzer
against the applet, and thereby verify our approach in using this side-channel as input

for the fuzzing process.

In the following paragraphs, we give more details about the implementation.

18

The applet contains two instructions for checking input with the stored password: safe
and unsafe. The safe version uses a constant-time implementation for comparing input
with the stored password, that is, it compares all the input bytes up until the length of
the stored password, but does not return when one input byte is incorrect. The unsafe
version compares the input with the stored password byte-wise. When one byte of input
does not match the password at the same position, the function returns. The unsafe

version has a timing side-channel.

The applet returns a limited set of status words, at specified points in the execution
flow. There are several checks that return conditions not satisfied, when P1 and P2
are not 0x00, incorrect class when the first byte is not 0xBA, incorrect length when the
data length parameter is not 0x0A (decimal 10), password correct as 0x90FF, password
incorrect as 0x66FF, and of course instruction not supported when the instruction byte
is not 0x80 or 0x82.

We use this applet for the following experiments. We show in Section 5.2 that mi-
nor/hardly observable timing differences can be observed using standard smartcard
communication tools, be it in milliseconds. In Section 5.3, we use an existing fuzzer
that optimizes for ‘cost’ to look for a timing side-channel. When using milliseconds, the
distinction is barely visible. However, when using nanosecond precision timing, we can
see the difference between the safe and unsafe instructions. In Section 5.4, we use status
words returned by the applet as input for vanilla AFL. The idea is that AFL tries to max-
imize the number of status words observed, because we use the shared memory of AFL
and AFL uses that to determine what input hit what code path. Ideally we would want
the smartcard applet to be instrumented, but that is difficult if not impossible especially
for smartcards in the wild, e.g. banking cards, activated SIM cards, etc. Finally, we use
the timing side-channel of the PasswordEq applet in Section 5.6 to find out if AFL is able

to find the stored password using this timing information.

4.1.1 Implementation details

Now, we give a more thorough description of the Java Card applet PasswordEq. This
applet contains a static password of 10 bytes (0x49484746454443424140) that we as-
sume is safely stored on the smartcard. The applet contains some input checks: it
checks the CLA byte (0xBA), both P1 and P2 bytes (0x00), and the number of bytes
received in total. If the input does not match the expected values, the applet returns
SW_CLA_NOT_SUPPORTED, SW_INCORRECT P1P2, or SW_CONDITIONS_ NOT_SATISFIED, re-

19

spectively. Moreover, we check that the Lc byte contains the correct value (0x04) for
the length of the data sent. The applet returns SW_WRONG_LENGTH if that is not the case.

The applet supports the following instructions:
1. 0x80: INS_TRY_ PASSWORD UNSAFE
2. 0x82: INS_TRY PASSWORD SAFE

Both instructions receive a password of 10 bytes as input. Both instructions return either

of the following codes:
« RET_PASSWORD_CORRECT
e RET_PASSWORD_INCORRECT

The first instruction checks each byte of the input with each byte of the stored password.
When the check fails at some point (be it the first input byte, or the last), it returns

that the password is incorrect. Otherwise, it returns that the password is correct.

The second instruction uses a so-called constant time implementation for checking the

input against the stored password. In short it executes the following algorithm:
1. Set the variable passwordEq to 0
2. XOR! each input byte with the corresponding password byte
3. Add that result to passwordEq
4. Check if the result is non-zero
5. Return the appropriate return code

This method is considered constant time, because a) every input byte is processed, regard-
less of its correctness, and b) the checks are simple, non-branching operations: addition

and exclusive or.

4.2 Unprovisioned simcard

In order to ascertain the validity of using status words as input for a fuzzer, we used

the framework built for the PasswordEq applet, and simply substituted the smartcard

'In short, the XOR operation returns the difference of the left and right operand, where 0 means both

operands are equal, and 1 means the operands differ.

20

with an unprovisioned simcard?. The idea is that we can match status words with corre-

sponding instructions, perhaps with varying P1/P2 values to uncover non-documented
instructions.

In Section 5.5, you can find the experimental setup, and results.

2The simcard belonged to a now-defunct company

21

Chapter 5
Experiments

In this chapter, we present the experiments performed with DIFFUzz (Section 5.1 and Sec-
tion 5.3), GlobalPlatformPro tools (Section 5.2), and vanilla AFL (Section 5.4, Section 5.5,

and Section 5.6). In the next few paragraphs, we briefly introduce each experiment.

In Section 5.1, we setup the fuzzer DIFFuzz from [24] as introductory experiment for
fuzzing with side-channels. DIFFuUzz uses the side-channel ‘number of executed branch-
ing instructions’. It runs the same program twice using different inputs, and registers
the difference in number of executed branching instructions, calling this metric “delta”,
denoted by §. DIFFUZZ tries to maximize d: a large value for § indicates the presence of

a side-channel, whereas a small value indicates the absence of it.

In Section 5.2, we use the Java Card applet from Section 4.1 and the GlobalPlatformPro
tools[5] to intuitively show the purpose-built timing side-channel present in the applet.
Although this tool is primarily meant for administrative tasks (installing, removing,
locking, etc.) for Java Card smartcards, we found it also prints timing information when

sending APDUS.

In Section 5.3, we use the Java Card applet (Section 4.1) with the fuzzer DIFFUzZ in

order to find out if DIFFUZz is suitable for fuzzing a smartcard.

In Section 5.4, we use the fuzzer AFL (Section 2.1.3) and status words (Section 2.3.3)
from the Java Card applet (Section 4.1) in order to find the stored password on the

smartcard.

In Section 5.5, we use the fuzzer AFL (Section 2.1.3) and status words (Section 2.3.3) to

22

discover the instruction set of an unprovisioned SIM card (Section 4.2).

In Section 5.6, we use the fuzzer AFL (Section 2.1.3), status words (Section 2.3.3) and a
timing side-channel (Section 2.2.1) from the Java Card applet (Section 4.1) in order to

Materials used in the experiments The Digital Security department of iCIS pro-
vided a dual-boot PC with Ubuntu 16.04.5 LTS to perform experiment 1 (Section 5.1)
and 3 (Section 5.3). We used their OmniKey CardMan 5121 smartcard terminal with
a JavaCOS A40 Java Card smartcard for experiment 2, 3, 4, and 6 (Section 5.2), Sec-
tion 5.3, Section 5.4, Section 5.6), and a privately-owned Lenovo Thinkpad x230% at the

fuzzer side. For experiment 5, we used a privately owned SIM card.

Supporting software In order to execute the experiments with AFL and smartcards
(Section 5.4, Section 5.5, Section 5.6), we wrote a communication interface program
that connects AFL's smart mode (Section 2.1.3) with the smartcard, in order to use
the smartcard as fuzzing target. AFL sends its inputs to the communication interface
program, which in turn performs (optional) filtering, and sends the input as APDU to the
smartcard. The metrics we want to capture (e.g. status words, or timing) are written
in AFL’s shared memory by the communication interface program. In Figure 5.1, you
can see the feedback loop from AFL, through the communication interface program and

smartcard terminal, to the smartcard, and back to AFL through its shared memory.

AFL interface terminal smartcard
f input APDU]
mutating processing
/ status words
\ shared memory /

Figure 5.1: Architecture of AFL communicating with a smartcard

'ntel i5-4590 @ 3.30 GHz, 32 GB memory + 64 GB swap space, 1 TB disk space
2Intel i5-3320M CPU @ 2.60 GHz, 16 GB memory + 8 GB swap space, 250 GB disk space

23

5.1 Experiment 1: the DirFuzz paper

We re-evaluated 10 test subjects from the DIFFuUzz paper[24] as stepping stone into
fuzzing with side-channels. Their approach is to measure resource consumption in two
executions of the same program using two different inputs. The difference in number of
executed instructions is registered. A large difference is an indicator for the presence of
a side-channel vulnerability. The tool tries to find two inputs such that the difference in

executed instructions is maximized.

The paper was particularly interesting, because the tool’s source code is readily available
on GitHub[7]. Their setup contained 8x AMD 8384 (quad-core) @ 2.7 GHz CPUs, 64 GB
memory, and OpenSUSE LEAP 42.3. Our setup differs both in CPU and memory
specifications, as well as the operating system used: Intel i5-4590 @ 3.3 GHz, 32 GB
RAM, Ubuntu 16.04.5 LTS. Nevertheless, the tool was easily up and running in 30-60

minutes, including installing dependencies.

5.1.1 Approach

The source code repository of DIFFuzz[7] included an extensive README with setup in-
structions. Nilizadeh, Noller, and Péasdreanu[24] tested their scripts on an Ubuntu 18.04.1
LTS machine, but aside from some missing packages, these scripts also worked fine on
our Ubuntu 16.04.5 LTS setup.

We used the Git tag® v1.0.0-citable? as basis for our experiments. There are 58 test
subjects in the evaluation directory. Each test subject contains a Java program and a
driver. The Java program is the fuzzing target, for example, a password checker. The
driver connects the fuzzing target to the fuzzer, by passing the input from the fuzzer to

the target and recording the instruction cost.

In the original setup[24], every test subject gets 5 runs with a time limit of 30 minutes per
run. That adds up to about 6 days of runtime. We chose 5 pairs (safe/unsafe, see next

paragraph) of test subjects: Array, unizlogin, passwordEq, k96, apache_ ftpserver_mdb5.

The unsafe version of a test subject contains a side-channel, whereas the safe version
has this resolved. The results report a metric § (“delta”) that indicates the difference in

number of executed branching instructions. This number increases when more branching

3 Gt is a version control system. A tag points to a certain state of a repository
1Git commit hash: 2da71abb45f8fa7fd42cb7aa3e2bd4e508287caf

24

instructions were observed. When ¢ approaches 0, little to no branching instructions were
observed. In short: a high value of § indicates the presence of a side-channel, a low value

of § indicates absence of a side-channel.

It should be clear from the tests that the side-channel has been fixed in the safe version
of the test subject. The pairs we mentioned earlier also appeared in DiIFFUzz, so we can

easily compare results. The estimated runtime was 25 hours.

5.1.2 Results

Our results can be found in Table 5.1. As a reference, the results of the original DiFFuzz
paper[24] can be found in Table 5.2, where applicable.

Recall that § (“delta”) indicates the difference in number of executed branching instruc-
tions. The ‘Average 0’ column shows the averaged value of § over all executed runs
of a test subject: 5 runs per test subject, with a runtime limit of 30 minutes per run.
The column ‘Standard error’ shows the spread of the sampled means. In the column
‘Maximum ¢’, the largest value of § is reported. Finally, the last column ‘Time (s) 6 > 0’
indicates the time it took, in seconds, since the start of a run that the value of § became

larger than 0.

The dashes indicate that the experiment completed successfully, but no difference in
executed instructions were measured. We elaborate on the two cases marked with * in

our discussion section below (Section 5.1.3).

25

Evaluation Average § | Standard error | Maximum ¢ | Time (s) § >0
Array (safe) 1 0 1 5.8 (£ 0.18)
Array (unsafe) 179 7.2 195 2 (£ 0.44)
unixlogin (safe) 1.8 0 2 | 207.20 (:l: 34.16)
unixlogin (unsafe) 2437333341 187911943 | 3200000008 | 82.40 (£ 10.86)
passwordEq (safe) - - -

passwordEq (unsafe) 100 1.8 107 9.00 (£ 1.10)
apache__ftpserver _md5 (safe)* - - - -
apache_ ftpserver_ md5 (unsafe) 151 0 151 1.00 (4 0.89)
apache__ftpserver_salted (safe)* - - - -
k96 (safe) - - - -
k96 (unsafe) 861 878 388310 3695655 1.80 (£ 0.72)

Table 5.1: Results of our DiIFFUzz evaluation

Evaluation Average § | Standard error | Maximum ¢ | Time (s) 6 >0
Array (safe) 1 0 1 7.4 (£ 1.21)
Array (unsafe) 192 2.68 195 4 (£ 0.93)
unixlogin (safe) 3 0 3 510 (:i: 91.18)
unixlogin (unsafe) 2880000008 286216701 | 3200000008 | 464.2 (+ 64.61)
passwordEq (safe) 0 0 0 -
passwordEq (unsafe) 86.4 20.31 127 6 (£ 2.11)
apache ftpserver mdb (safe) 1 0 1 4.2 (£ 1.93)
apache_ ftpserver_ md5 (unsafe) 151 0 151 8 (£ 1.11)
apache ftpserver salted (safe) 176.4 6.25 198 2 (£ 0.73)
k96 (safe) 0 0 0

k96 (unsafe) 338 185 3087339 3.4 (£ 0.98)

Table 5.2: Original results from Di1FFuzz [24]

5.1.3 Discussion

In order to limit the runtime, we chose 5 pairs of test subjects out of the original 58. We
did this by copying a provided shell script (run_evaluation.sh) to run_partial_evaluation.sh,

and commenting all but these 5 pairs of test subjects. However, due to the structure

26

of the original shell script, this needed to be done in three different places. Each indi-
vidual test subject needed a definition in the ‘subjects’, ‘classpaths’, and ‘drivers’ array.
Moreover, each array access is done using integer indices, rather than name-based (“as-

sociative”).

Cases with * We made a mistake in the definition of the ‘subjects’ array. In the
apache__ftpserver cases, we used apache_ ftpserver _salted (safe) where we should have
chosen apache__ftpserver_md5 (safe). However, in the ‘classpaths’ and ‘drivers’ array,
this mistake was absent. As a result, we used the ‘Driver MD5’ on the test subject
apache__ftpserver _salted (safe), whereas ‘Driver_ Salted’ was meant to be used. Inter-

nally, this resulted in an error, but this did not reflect in stopping the fuzzing sessions.

Although we made some minor informational modifications to the shell script (in order to
show the number of subjects and estimated runtime before starting the fuzzing session),
this error could have been prevented by exiting the fuzzing session at any point where

an error occurred. From our point of view, the internals of DIFFUZZ seemed to work fine.

For future projects using DIFFUzz, we recommend to have a closer look at the provided
evaluation scripts, and to improve them with better error handling. An error in one of
the parts should abort the fuzzing session, and provide the user with feedback on how

to solve those errors.

5.1.4 Conclusion

We expected to see little to no values for the difference in executed instructions (§) in
the safe versions of the test subjects, because they were supposed to be free of timing
side-channel leakage. On the other hand, we did expect values for § larger than 0 for

the unsafe versions. The results of our experiments confirm this.

Compared to the results of the original paper[24] (see Table 5.2), our results are similar
in most cases. The most notable difference in the results is the k96 (unsafe) evaluation,
where our Average § and standard error is 200x larger than those from the original
paper. We suspect that this is due to experimental setup differences (either in hardware
or software), or, given the large discrepancy between average and maximum, that this

specific result is incorrectly reported in the paper.

27

5.2 Experiment 2: Exposing a timing side-channel in a

Java Card applet

The GlobalPlatformPro tools[5] make adminstrative tasks around Java Card easily ac-
cessible on a regular PC. Apart from installation and removal of applets on Java Card,
it provides a way to send customized APDUs. Moreover, it provides a timing report for

each executed command in its debug mode.

In this experiment, we use this tool to show the presence of a purpose-built timing side-
channel in the PasswordEq applet from Section 4.1. We use the OmniKey CardMan
5121 as smartcard terminal, and the JavaCOS A40[10] smartcard: a Java Card with
64 KB storage and 1.6 KB of memory. The PasswordEq applet has been loaded on this
smartcard for this experiment. We ran this experiment on a Lenovo x230, running Arch
Linux with the PC/SC toolkit[12], and the aforementioned GlobalPlatformPro tools®.

5.2.1 Approach

The PasswordEq applet (see Section 4.1) contains a hardcoded password, and has two
instructions to compare input from a user with that password. These two instructions,
however, are different in terms of execution time. One instruction executes the com-
parison in constant time (see Section 2.2.1), the other instruction executes the compar-
ison character-per-character. Consequentially, the latter instruction’s execution time

depends on the amount of characters that are match with the hardcoded password.

For the execution of this experiment, we use the GlobalPlatformPro tools[5]. This tool
can be used to send arbitrary APDUS to the smartcard containing the Java Card applet.
Additionally, in debug mode, this tool reports time spent on each command in millisec-
onds. We use this functionality to expose the timing side-channel present in our applet,

PasswordEq.

Example In Code 5.1, we give an example of the approach described above. First, we
explain how the command (line 1) is constructed. Then, we explain the most important

details from the output lines (line 2-5).

®For the interested reader: any system that has PC/SC support can be used for this experiment

28

B W N

ut

$ gp-card --applet 4141414141 --apdu BA80Q000OA41414141414141414141 -d
A>> T=1 (4+0005) 00A40400 05 4141414141 # Select the applet

A<<

(0000+2) (22ms) 9000 # Success

A>> T=1 (4+0010) BA8Q0QO0D QA 41414141414141414141 # Send our password using the unsafe method

A<<

(0000+2) (9ms) 66FF # RET_PASSWORD_INCORRECT

Code 5.1: Debug output of sending an APDU to the PasswordEq applet using gp-card

The command construction (line 1) contains the following elements:

the alias for the GlobalPlatformPro tools executable: gp-card;
the PasswordEq applet identifier, hexadecimal encoded: 4141414141,
the APDU we want to send, hexadecimal encoded: BAB000000A414141414141414141415;

indication for debug mode (in order to get timing information): -d

Each output line (line 2-5) contains the following important elements:

direction (terminal to smartcard: >>; smartcard to terminal: <<);

hexadecimal encoded byte sequences (terminal to smartcard: APDU sent: 00A4040. . .

and BA8O. . .; smartcard to terminal: status words received: 9000 and 66FF);

for status words: the time it took to receive the response in milliseconds (22ms,
9ms)

manually added comment for in-line clarity (#)

As you can see, we can extract the time spent for verifying the password in line 5: 9ms.

We repeated this command for various inputs (correct/incorrect) and methods (un-
safe/safe). The results can be found in Table 5.3

SRecall Table 2.1, the dissection of the example APDU: CLA: BA, INS: 80, P1: 00, P2: 00, Lc: OA, DATA:
41414141414141414141

29

5.2.2 Results

Method | Password used Correct/incorrect | Time spent (ms)
Unsafe 41414141414141414141 | Incorrect 9
Unsafe 49484746454443424140 | Correct 10
Safe 41414141414141414141 | Incorrect 11
Safe 49484746454443424140 | Correct 11

Table 5.3: Comparison of execution time of the passwordEq applet

We repeated these time measurements a couple of times to ensure that the results are

consistent and reproducable across tries.

5.2.3 Discussion

We note that the millisecond precision is somewhat inaccurate, but good enough for

illustrative purposes.

It would be interesting to see whether we can see how many characters were incorrect.
However, given the accuracy of these measurements using the gp-card tool, we do not
think this is possible with this tool. It might be made possible by either modifying the
source code of the tool to report nanoseconds, or exaggerate the timing effect in the

PasswordEq applet itself.

5.2.4 Conclusion

The goal of this experiment was to reveal a purpose-built timing side-channel in the
We observed

different response times in the unsafe case (9 ms vs. 10 ms) but equal response times in

PasswordEq applet (Section 4.1) using the GlobalPlatformPro tools[5].

the safe case: 11 ms.

We conclude that the purpose-built timing side-channel is observable using the Glo-
belPlatformPro tools.

30

5.3 Experiment 3: Using DIFFuzz to fuzz a Java Card ap-

plet on a smartcard

In this experiment, we want to find out if DIFFUzZZz’ approach is also suitable for fuzzing
Java Card applets on a smartcard. More specifically, we want to know if differential
fuzzing also works when provided with timing information, instead of number of executed
branching instructions. Ideally, DiFFuzz finds the timing side-channel present in our

fuzzing target: the PasswordEq applet (Section 4.1).

We use timing information measured from the fuzzer’s perspective. In this way, there is
little to no modification needed on the smartcard itself. It would be interesting future
work to use the actual number of executed branching instructions on the smartcard, and

we give hints for such an approach in Chapter 6 (Future work).

Compared to number of executed branching instructions, timing information is similar
in terms of monotonicity. When a program executes more branching instructions, it also
takes more time execute. Therefore, we think that substituting instruction count with

timing is suitable for differential fuzzing.

5.3.1 Approach

The approach for this experiment is similar to the one performed in Section 5.1. We
use DIFFuzz as fuzzer, but instead of fuzzing many Java programs, we only fuzz a single
Java Card applet, PasswordEq (Section 4.1), on a smartcard. Similar to the fuzzing
targets used in Section 5.1, the fuzzing target for this experiment contains a safe and an
unsafe version. The safe version performs a password check in constant time, whereas

the unsafe version contains a timing side-channel (see Section 4.1 for applet details).

Instead of counting branching operations as the fuzzing target executes, we register time

spent between sending an APDU and receiving the status words.

For this experiment, we used the same PC hardware (Intel i5-4590 @ 3.3 GHz, 32 GB
RAM) and operating system (Ubuntu 16.04.5 LTS) used in Section 5.1. We used the
same smartcard terminal used in Section 5.2: OmniKey CardMan 5121. The JavaCOS
A40 smartcard contained the PasswordEq applet. We used the same number of runs
and maximum runtime per test subject: 5 runs per test subject, and maximum runtime

of 30 minutes.

31

We ran two fuzzing sessions. Their results can be found in Section 5.3.2. In our first
session, the millisecond precision was too low to distinguish the safe and unsafe case. In
the second session, we used nanosecond precision, and that proved to be quite effective:

we could now distinguish more easily between the safe and unsafe case.

5.3.2 Results

In the next paragraphs, we present the results of this experiment. First, we explain the

meaning of each column in the result tables.

DirFuzz generates two inputs that are sent to the PasswordEq applet. For each input, we
register the time spent between sending the input, and receiving the response (execution
time). Then, we use 0 (“delta”) to indicate the difference in execution time between

these two inputs.

The ‘Average ¢’ column shows the averaged value of § over all executed runs of a test
subject (5 runs per test subject, with a runtime limit of 30 minutes per run). The column
‘Standard error’ shows the spread of the sampled means. In the column ‘Maximum ¢’,
the largest value of ¢ is reported. Finally, the last column ‘Time (s) 6 > 0’ indicates the
time it took, in seconds, since the start of a run that the value of 6 became larger than
0.

(I) using millisecond precision In this paragraph, we show the results of the first

fuzzing session.

Evaluation Average § | Standard error | Maximum ¢ | Time (s) 6 >0
JavaCard_ PasswordEq (safe) 1000000 0 1000 000 24.2 (£ 5.35)
JavaCard PasswordEq (unsafe) 1000 000 0 1000000 13.2 (£ 1.95)

Table 5.4: Results of the DiIFFUZzz evaluation, millisecond precision

We note here that our cost measurement was reported in nanoseconds. Therefore, the
difference in cost, d, is also in nanoseconds. The average and maximum ¢ translate to 1

millisecond for both safe and unsafe versions.

Results (II) using nanosecond precision In this paragraph, we show the results

of the second fuzzing session.

32

Evaluation Average § | Standard error | Maximum ¢ | Time (s) 6 >0

JavaCard_ PasswordEq (safe) 488499 54968 623130 11.40 (£ 0.83)
JavaCard_PasswordEq (unsafe) 301404 37135 384562 | 14.80 (+ 2.67)

Table 5.5: Results of the DIFFUzz evaluation, nanosecond precision

We note here that our cost measurement was reported in nanoseconds. Therefore, the
difference in cost, 9, is also in nanoseconds. The average and maximum J translate to

0.5 milliseconds in the safe case, and 0.3 milliseconds in the unsafe case.

5.3.3 Discussion

In this experiment, we encountered both technical, and fundamental problems. The
fundamental problem was the timing precision initially used. The technical problems
comprised: driver changes not working, logical bug, and sign extension bug in the ter-

minal code.

In the following paragraphs, we elaborate on these problems, and how we solved them.

Timing precision Although we claim the cost measurement was reported in nanosec-
onds, given the perfectly rounded results in Results (I), this claim seems not entirely accu-
rate. Indeed, if we take a closer look at the documentation behind Java’s time . Instant[6],
we find that this defaults to milliseconds][3].

In order to solve this problem, we switched to System.nanoTime()[14] for our timing
measurement. However, the documentation made no guarantees on the implemented
resolution, which could still be milliseconds[14]. Fortunately, after we adapted the time
measurement code to use system.nanoTime () instead of time.Instant, it became clear
that the resolution was actually in nanoseconds. Results (II) (Section 5.3.2) show the

effect: we can now distinguish the safe and unsafe cases, in terms of timing.

Driver changes not working In a few preliminary fuzzing sessions, we noticed that
changes to the driver (the component that connects the fuzzing target to DiFFuzz) did
not come into effect after compiling. DiFFuzz would still use an older version of the

driver, instead of the freshly compiled one.

After inspecting the helper scripts more closely, we noticed that an internal component,

33

KELINCI, was still running after we manually stopped the fuzzing session. In the regular
flow, the helper scripts would shut down KELINCI, but these scripts did not account for
manual interruption. Therefore, changes to the driver would never be used, because the
old KELINCI process was still running when restarting the fuzzing session. This was fixed
by making sure these processes were killed both in the regular flow, and when manually
interrupting the fuzzing session. Changes to the driver would now come into effect after

compiling and restarting the fuzzing session.

Logical, and sign extension bug For debugging purposes, we wanted to capture
‘unknown status words’, i.e. status words that we did not program into the applet.
Instead of capturing those, we captured all status words. Consequently, our logs were

i

full of ‘Unknown status word 0x..... We could quickly resolve this logical bug.

However, this logical bug actually revealed another bug! We logged all communication
from and to the smartcard (APDUS, status words, and the aforementioned debug logging).
When summarizing the received status words, we found that one APDU resulted into the
status words 0x90FF, or RET_PASSWORD_CORRECT. However, upon analysis of the APDU
sent, we found that the hexadecimal representation of the sent password was 0x16, 0x45,
0x93, 0x35, 0x5B, 0x00, 0xF2, 0xFF, OxFF, OxFF; nothing close to the expected 0x49,
0x48, 0x47, 0x46, 0x45, 0x44, 0x43, 0x42, 0x41, 0x40 (Section 4.1).

Bytes in Java Card are 8 bits signed integers, this means they range from -128 up to
and including 127 decimal. XORing two bytes yields a byte again. Adding such results
may not fit in a byte. Therefore, we first convert (cast) each byte into a short: 16 bits
signed integers (range: -32 768 up to and including 32 767). However, casting a byte to a
short in Java Card keeps sign information, which is called sign extension. Adding a mix
of positive and negative shorts may yield 0, and this was exactly what happened. This

was fixed by clearing (masking, setting to 0) the upper 8 bits after the cast to short.

5.3.4 Conclusion

In this experiment, we wanted to find out if DIFFUZZ’ approach is also suitable for fuzzing
Java Card applets on a smartcard. More specifically, we wanted to know if differential
fuzzing works when provided with timing information. Ideally, DIFFUzz found the timing

side-channel present on our fuzzing target: the PasswordEq applet.

34

DirFuzz’ approach is suitable for fuzzing Java Card applets on a smartcard. Furthermore,
differential fuzzing also works when using execution time as metric. We found out that
nanosecond precision is better than millisecond precision, because the latter produced

indistinguishable results.

DirFuzz found the timing side-channel, given nanosecond timing precision, because the

safe (constant-time) and unsafe (timing-sensitive) case can be distinguished.

Finally, we would like to state that fuzzing the Java Card applet actually revealed an

unintended side-effect of casting number-like types in Java Card: sign extension.

35

5.4 Experiment 4: Status words as pseudo side-channel

information for AFL

In this experiment, we fuzz a Java Card applet on a smartcard using status words
(Section 2.3.3) as a pseudo side-channel for fuzzer AFL (Section 2.1.3). The smartcard’s
applet (Section 4.1) is under our control, and contains a password of fixed length. The
applet reports information about the password length, and overall password correctness
through status words. We expect that AFL finds the correct password length. Ideally,

AFL also finds the stored password based solely on this side-channel.

We use the term pseudo side-channel, because status words are part of regular smartcard
communication. This also means that they are easily accessible, and do not need addi-
tional, specialized hardware to capture. Moreover, if the source of a smartcard’s applet
is unavailable, status words are—without additional hardware or measurements—the

only informational channel in smartcard communication.

In short, we let AFL generate APDUs (Section 2.3.2), send these to the PasswordEq ap-
plet (Section 4.1) on the smartcard, and feed AFL the returned status words. To speed
up fuzzing, we give AFL an example APDU that already contains the correct class, and
instruction byte. We expect that AFL automatically finds the correct parameter bytes
(P1P2, Section 2.3.2) to interact with this applet. We expect that AFL finds the correct
password length based on these status words. Ideally, AFL finds the stored password.

For this experiment, we use non-modified AFL, version 2.95b, our own communication
interface program (Section 5) for AFL—smartcard communication, a JavaCOS A40 Java
Card smartcard containing the PasswordEq applet (Section 4.1), and the OmniKey

CardMan 5121 smartcard reader. The overall architecture can be found in Figure 5.1

5.4.1 Approach

We use status words (Section 2.3.3) returned by the smartcard’s applet (PasswordEq,
Section 4.1) as side-channel information for the fuzzer AFL. The fuzzing process works as
follows: AFL generates APDUs, the APDU is sent to the smartcard, the PasswordEq applet
processes the APDU, and returns status words upon completion. The returned status

words are registered in AFL’s shared memory (Section 2.1.3).

AFL interprets bytes set in shared memory as hit count for a specific branch (Section 2.1.3).

Smartcards may return status words at any point in their execution. Therefore, we can

36

see these status words as ‘the smartcard applet hit a specific branch’, and use them to

inform AFL of the (rough) execution path of the smartcard.

The status words are registered in AFL’s shared memory. This works as follows: AFL’s
shared memory region is 64 KB large”. Recall that status words are defined as SW1 and
SW2 concatenated (Section 2.3.3). We interpret this concatenation as a 16 bit unsigned
integer. This limits the value of the status words to 0x0000-0xFFFF®, or (decimal) 0
65535. Therefore, we can use the value of the status words as (array) index in AFL’s
shared memory. For example, if the PasswordEq applet returns 0x66FF (“password

incorrect”), we increment shared_memory [0x66FF].

We seeded the fuzzer AFL with the following byte sequence: 0xBA8000000A4141410A. The
applet itself was already selected on the smartcard through the communication interface

program.

5.4.2 Results

We ran a fuzzing session of about 2.5 hours. In this session, AFL generated 2101613
APDUs. Due to filter restrictions, 599496 APDUs were blocked from being sent to the
smartcard. The smartcard returned 1502 118 status words, yielding a global hitrate of
71.5%. On average, we sent just under 129 APDUs per second to the smartcard, and

received just under 92 status words per second.

The distribution of status words returned from the smartcard:

Status message Status words Count | Notes

Wrong P1/P2 0x6A86 | 1140708

Wrong length 0x6700 357285

Incorrect password 0x66FF 3959 | INS_TRY_PASSWORD_UNSAFE (0x80)
Incorrect password 0x66FF 165 | INS_TRY_PASSWORD_SAFE (0x82)
Generic success 0x9000 1

Total 1502118

Table 5.6: Returned status words by the PasswordEq applet, sorted on occurrence

We elaborate on the interpretation of the results in Section 5.4.3.

"To be precise: an array of bytes of length 65 536
81SO7816 defines 0x6nnn and 0x9nnn as standardized ranges for status words[20, Section 5.4.5]

37

5.4.3 Discussion

Interpretation of the results The one APDU that returned status words 0x9000
is the SELECT APPLET command that our communication interface program executes
during communication setup. Apart from that, we see that AFL generated 4 124 APDUS
that conformed to the applet’s expected combination of class, instruction, parameters,
and length specification. AFL also found out the fwo instructions that could be used.
Although the generated ‘passwords’ were incorrect (hence the returned status words
0x66FF), these results indicate that, eventually, the correct password will be generated

by AFL, solely based on the information given through status words.

Additional metrics An interesting additional metric would be “time to first ‘length
correct, instruction correct’”. This metric would indicate the time it takes before the
fuzzer generated an APDU that contains the correct instruction, and the correct length
parameter. In this experiment, this would not be beneficial, because we seeded the fuzzer
with a working, yet incomplete, APDU that would have both the correct instruction, and

a correct length parameter.

5.4.4 Conclusion

In this experiment, we fuzzed a Java Card applet on a smartcard using status words
as pseudo side-channel for the fuzzer AFL (Section 2.1.3). The smartcard’s applet (Sec-
tion 4.1) was under our control, and contained a password of fixed length. We expected
that AFL finds the correct password length. Ideally, AFL found the stored password based

on this pseudo side-channel.

For this experiment, we expected that AFL would autonomously find
1. the correct parameter bytes to interact with the applet, and
2. the correct password length, and
3. the stored password (ideally).

AFL succeeded in (1) and (2), because we registered status words that indicate the pass-
word was incorrect. This means that AFL had already found the correct parameter bytes,
as well as the correct password length. However, AFL did not find the stored password

based on this information.

38

5.5 Experiment 5: Smartcard instruction set discovery us-

ing status words

Status words returned by a smartcard indicate the code path taken given a certain
instruction. Given that different code paths return different status words, fuzzing the
smartcard using status words as side-channel information should steer the fuzzer into

finding more distinct code paths, and thereby increase overall code coverage.

The goal of this experiment is to determine a ‘working’ instruction set for a smartcard
in a black-box approach, using status words as side-channel information for the fuzzer
AFL. We consider a combination of class and instruction byte as working when the smart-
card returns either ‘success’ status words (0x9nnn, see Section 2.3.3), or ‘error’ status
words (0x6nnn) except those that indicate that the class, instruction, or parameters were

incorrect.

We expect that this approach performs faster than a brute-force one, because the fuzzer
is in a feedback loop with the fuzzing target. This should eliminate non-interesting
inputs quickly. In order to compare performance, we assume a brute-force approach has
access to the same information, and is able to make decisions based on the returned

status words.

The fuzzing target is a non-personalized SIM card’. We consider this a black-box ap-
proach, because we do not have access to the source code of the SIM card. We do not ex-
actly know the implemented instruction set, nor the possible status words. Even though
SIM cards are standardized through, e.g. GSM 11.11[19] and various other standards,

this still leaves room for undocumented instructions and status words.

For this experiment, we use a non-personalized SIM card as fuzzing target, non-modified
AFL, version 2.95b, our own communication interface program (Appendix B.3) for AFL—

smartcard communication, and the OmniKey CardMan 5121 smartcard terminal.

5.5.1 Approach

The approach for this experiment is equal to the approach in Section 5.4.1: we use status
words (Section 2.3.3) returned by the SIM card as side-channel information for the fuzzer

AFL. The fuzzing process works as follows: AFL generates APDUS, the APDU is sent to the

9 Although the SIM card is tied to specific telecom operator, which is not active on the market anymore,

personalizing here means assigning a phone number to it

39

SIM card, the SIM card processes the APDU, and returns status words upon completion.

The returned status words are registered in AFL’s shared memory (Section 2.1.3).

We used the byte sequence (hexadecimal encoded) 0xBA8000000a4141410A as seed input
for AFL. Apart from generic safeguards detailed in the next paragraph, we did not setup

any filters that would allow or block specific prefixes for APDUs (Section 5).

As a safeguard, we discard generated APDUs that are smaller than two bytes, or larger
than 261 bytes. The former condition is used to guarantee sending at least the in-
struction byte, otherwise we expect that the card always replies with ‘instruction not
supported’. The latter condition is due to restrictions on the smartcard terminal side,

and consequently the maximum message length that we can sent!?.

5.5.2 Results

We executed a fuzzing session of about 30 minutes. In this session, AFL generated 33 280
APDUSs that could be sent to the smartcard. This does not include the discarded APDUs
that were smaller than two bytes, or larger than 261 bytes, due to restrictions mentioned
in Section 5.5.1. We received 26 421 status words from the smartcard, yielding a global
hitrate of 79.4%. On average, we could send about 17 APDUs per second.

First, we show the occurrence of the received status words, and those that were rejected
before being sent, in paragraph Status words and Table 5.7. Then, in paragraph In-
struction set, we further filter the results, and count the distinct combinations of class,
instruction, parameters, and status words (Table 5.8). Next, we report the 109 dis-
tinct combinations of class and instruction in Table 5.9. Finally, we make a comparison

between this approach, and a brute-force one.

Status words The returned status words can be divided into ‘success’ (0x9nnn) and
‘error’ (Ox6nnn). We registered 20 distinct status words, of which 4 fall in the ‘success’
range, and 16 in the ‘error’ range. The overall distribution can be found in Table 5.7. In
6 859 cases, the generated APDU could not be sent to the smartcard (‘Unknown error’);
this figure is shown separately in Table 5.7. Note that 17 cases with the same error

message did come from the smartcard. We used the GSM 11.11[19] standard to interpret

0The relevant information can be found in the smartcard terminal’s property list, specifically
dwMaxCCIDMessageLength. For the OmniKey CardMan 5121, this is 261 bytes, excluding the header:
https://ccid.apdu.fr/ccid/readers/CardMan5121.txt. More background information can be found
at https://ludovicrousseau.blogspot.com/2014/11/ccid-descriptor-statistics.html

40

https://ccid.apdu.fr/ccid/readers/CardMan5121.txt
https://ludovicrousseau.blogspot.com/2014/11/ccid-descriptor-statistics.html

the returned status words (Notes column). We did not encounter undefined or custom

status words.

In the Status message column, we emphasized three distinct messages: No EF selected,

No error, and Proactive SIM. We briefly elaborate on these messages in the Discussion,

Section 5.5.3.

Status message Status words | Count | Notes

Class not supported 0x6E00 | 18410 | -

Instruction not supported 0x6D00 3791 | -

Wrong P1/P2 0x6B00 3211 | -

No EF selected 0x9400 390 | GSM 11.11[19, 9.4.4]
Wrong length!! 0x6708 149 | Length should be 0x08
Secure messaging not supported 0x6882 126 | -

Wrong length!! 0x676E 66 | Length should be 0x6E
No error 0x9000 63 | -

Proactive SIM 0x9138 34 | GSM 11.11]19, 9.4.1]
Wrong length!! 0x6710 28 | Length should be 0x10
Logical channel not supported 0x6881 23 | -

Wrong length!! 0x6702 22 | Length should be 0x02
Wrong length!! 0x6700 22 | Correct length unspecified
Unknown error 0x6F00 17 | Returned by smartcard
Wrong length!! 0x6703 15 | Length should be 0x03
Function not supported 0x6A81 14 | -

Wrong length!! 0x671A 14 | Length should be 0x1A
Wrong data 0x6A80 13 | -

Wrong length!! 0x6714 12 | Length should be 0x14
Proactive SIM 0x9111 1| GSM 11.11[19, 9.4.1]
Subtotal 26421

Unknown error 0x6F00 6859 | Did not reach smartcard
Total 33280

Table 5.7: Returned status words by the SIM card, sorted on occurrence

1SW?2 indicates the expected length[19, 9.4.6], or 0x00 when “no additional information is given”; the

standard does not clearly specify this last condition

41

Instruction set We filtered the raw results to exclude Class not supported, Instruc-
tion not supported, Incorrect P1/P2, and Unknown error if it did not come from the
smartcard. This gives us 1009 status words. The number of distinct combinations of
class, instruction, parameters, and returned status words is 539. The exact division is
shown in Table 5.8. You can see we found 55 distinct classes, further specified into 109

distinct combinations of class and instruction combination, and so on.

’ Class ‘ Instruction ‘ P1 ‘ P2 ‘ SW1 ‘ SW2 ‘
55 |

109 |
235 |
522
533
539

Table 5.8: Distinct combinations of class, instruction, parameters, and status words

To give an idea of the distribution of class and instruction combinations, you can find

those grouped by class in Table 5.9.

42

Class | Instruction Class | Instruction Class | Instruction Class | Instruction

0x00 Oxa?2 0xb7 0x80 0x00
0x00

0x70 Oxa4d 0xb8 0x80 0xbb 0x60
0x3a 0x80 0xb0 0x40 0x80

0xb9

ox7f 0xcO 0x80 Oxbc 0x80
0x45

0x80 0xc2 0x00 0x00

0xa0 0xbd

Ox4a 0x80 0xd6 0x40 0x80
0x5b 0x00 0xeO 0x70 Oxbe 0x80
0x7a 0x80 Oxed ox7£f Oxbf 0x80
0x86 0x80 0xf2 0x80 Oxc4 0x80
0x8a 0x80 Oxfa 0x81 0xch 0x80
0x8d Oxed Oxal 0x80 0x82 0xc6 0x80

0x80 0xa2 0x80 0x83 0xc7 0x80
0x9a 0x87 Oxa3 0x80 0x84 0xc8 0x80

0x9f Oxa4d 0x80 0x86 0xc9 0x80

0x04 Oxab 0x80 0x87 Oxca 0x80

0x10 Oxa6 0x80 0x88 0xcb 0x80

Oxba

0x12 Oxa’7 0x80 0x8c Oxcc 0x80

0x14 0xa8 0x80 0x8f Oxcd 0x80

0x20 0xa9 0x80 0x90 Oxce 0x80

0x24 Oxaa 0x80 0x98 Oxcf 0x80

0x26 Oxab 0x80 0x9e 0xd4 0x80
0xa0

0x28 Oxac 0x80 0xa0 Oxda 0x80

0x2c Oxad 0x80 0xb0 Oxd4

0xeO

0x32 Oxae 0x80 0xbc 0xe0

0x44 Oxaf 0x80 0xcO Oxfa 0x80

0x88 0xb4 0x80 0xcO Oxfa 0x80

0x98 0xbb 0x80 0xeO

Oxff ox7£f
Oxal 0xb6 0x80 0x£f8

Table 5.9: Extracted instruction set

Comparison with brute-force approach In this experiment, we found 522 distinct

combinations of class, instruction, and parameters in about 30 minutes of fuzzing. Both

43

class and instruction bytes ranged from 0x00 up to and including 0xff. In order to
compare performance with a brute-force approach, we assumed the brute-force approach
has access to the same information, and is able to make decisions based on the returned

status words.

The brute-force approach would have to generate 256 APDUs to determine all possible
class bytes. It would have found 55 distinct classes, and then have to generate, 256
APDUSs per class to find all possible instructions. This gives 56 - 256 = 14 336 APDUS in

total to generate.

We saw in the beginning of this section (Section 5.5.2) that we could send about 17 APDUs
per second to the smartcard on average. Sending 14 336 APDUSs takes 843 seconds, or just
over 14 minutes. This means our fuzzing approach using status words as side-channel
information is a less viable one in terms of time spent in comparison with a brute-force

approach that has access to, and can act upon, the same information.

5.5.3 Discussion

Error messages Table 5.7 shows the distribution of status words returned from the
fuzzing session. We briefly elaborate on the interpretation of these three different mes-

sages:
1. No EF selected (0x9400)
2. No error (0x9000)
3. Proactive SIM (2x: 0x9138, 0x9111)

The first message refers to an Elementary File[19]. These files contain information like
the phone number, unique identifier of the SIM card, etc. This means we hit a command

that wants to perform an action on an EF.

The second message is interesting, because this means a command was completed suc-
cessfully. The next step would be to look up the exact instructions with the 63 returned
status words, and relate them to the GSM specification, but this is beyond the scope of

this experiment.

The third message is part of a ‘proactive SIM’ command. These commands can be sent
by the SIM card to the phone. The last byte indicates the length of the response data.
More information can be found in the GSM 11.14[18] specification.

44

Logging input and output Our communication interface program (Section 5) logs
APDUs sent, and status words received. It also reports if an error occurred after an
APDU was sent. However, each of these log lines were separate. Also, we logged generic
statistics every 10 seconds, interspersing regular log lines with statistics. We wrote a
small log parser that searches for a sign of sending an APDU, and then looks for the
corresponding result in the next lines. Additionally, this log parser splits the APDU into
class, instruction, and parameter bytes, for easy processing afterwards. It would have
been better to combine the generated APDU, and either error message or status words

into one log message.

5.5.4 Conclusion

In this experiment, we wanted to find the instruction set of a smartcard, using status
words as pseudo side-channel. Status words indicate the executed code path, and if
an instruction is implemented. We considered an instruction as ‘working” when the
smartcard did not indicate the class, instruction, or parameters were incorrect. We
used a non-personalized SIM card as fuzzing target, vanilla AFL, and our communication

interface program as described in Section 5 (Supporting software).

We found out that this approach works in finding a working instruction set of a smart-

card.

Our fuzzing approach is a less time-efficient one in comparison with a brute-force ap-
proach that has access to, and is able to act upon, the returned status words. Whereas
our fuzzing approach took about 30 minutes to complete, the brute-force approach would

have done the same in about 14 minutes.

45

5.6 Experiment 6: Status words, timing, AFL, PasswordEq

In this experiment, we fuzz a Java Card applet on a smartcard using a timing side-channel
(Section 2.2.1) in addition to the pseudo side-channel status words (Section 2.3.3, see
also Experiment 4 in Section 5.4). The status words report if the supplied password
length was correct, and if the password as a whole was correct or incorrect. We use
the PasswordEq applet (Section 4.1) that contains a password of fixed length, and two
functions to check an input with the stored password. One function is timing-sensitive,
the other executes in constant time. Ideally, AFL uses the timing information to zoom
in on the timing-sensitive function, because this function leaks how many characters
were correct through the timing side-channel. This information reduces the search space
(worst case) from 256! possibilities to 256 - 10, giving linear search time rather than
exponential. We expect that the fuzzer finds the correct password length, and ideally

also the correct password.

We supply timing information from the execution of the PasswordEq applet (Section 4.1)
to AFL. The idea is that AFL interprets the duration of an execution as ‘the fuzzing
target visited a(nother) code path’ Given that AFL tries to find all code paths, this
interpretation of timing information leads to AFL finding all possible execution times,

including the one where it finds the correct password.

We verify that AFL uses the timing side-channel by comparing results of this experiment
with those of Experiment 4 (Section 5.4). The setup is identical, but we add timing
information in this experiment. We compare the distribution of status words, specifically
those returned by the password checking instructions (timing-sensitive, and constant-
time, see Section 4.1). We expect that, due to AFL using the timing information for
mutating inputs, the timing-sensitive password checking instruction is called more often,

relatively speaking, than the constant-time one.

5.6.1 Approach

We use the PasswordEq applet (Section 4.1) as fuzzing target for vanilla AFL. This applet
contains a purpose-built timing side-channel. We capture status words (see Section 5.4)
as well as the applet’s execution time (explained further on) in AFL’s shared memory. We
use separate memory regions to prevent overlap and possible interference between the

two information sources.

We capture the applet’s execution time, specifically the time between sending an APDU

46

and receiving the status words with our communication interface program (Section 5).
This duration is measured in nanoseconds, because we concluded from our previous
experiment (Section 5.3) that millisecond precision lacks distinguishability between exe-
cutions. The duration of an execution is encoded in AFL’s shared memory by filling up

memory as the duration increases.

We determined that a single execution of a password checking function takes about
11 ms. With nanosecond precision, and the amount of memory we could fill, we could
only register up to 6 ms of execution time. Therefore, we simply lowered the precision to
10ns (nanoseconds). This precision allows up to 60 ms of execution time to be registered

in AFL’s shared memory. This is sufficiently large to capture a single execution.

For this experiment, we use non-modified AFL, version 2.95b, our own communication
interface program (Section 5) for AFL—smartcard communication, a JavaCOS A40 Java
Card smartcard containing the PasswordEq applet (Section 4.1), and the OmniKey

CardMan 5121 smartcard reader. The overall architecture can be found in Figure 5.1.

5.6.2 Results

We ran a fuzzing session of 1 hour and 40 minutes. In this session, AFL generated 90 122
APDUs. Due to filter restrictions, only 76 838 APDUs were sent to the smartcard, and we
received 67169 status words from the smartcard. This gives a global hit rate of 74.5%.
On average, we sent just under 13 APDUS per second to the smartcard, and received just

over 11 status words per second.

The distribution of status words returned from the PasswordEq applet can be found in
Table 5.10.

Status message Status words | Count | Notes

Class not supported 0x6E00 | 28171

Wrong P1/P2 0x6A86 | 17363

Wrong length 0x6700 | 15667

Instruction not supported 0x6D00 3102

Incorrect password 0x66FF 2859 | INS_TRY_PASSWORD_UNSAFE (0x80)
Incorrect password 0x66FF 7 | INS_TRY_PASSWORD_SAFE (0x82)
Total 67169

Table 5.10: Returned status words by the PasswordEq applet, sorted on occurrence

47

5.6.3 Discussion

Comparison with Experiment 4 We first give a general comparison between this
experiment and Experiment 4 (Section 5.4). Then, we verify that AFL uses the timing
side-channel, by comparing the results, specifically the Incorrect password status words,

in this experiment with the results from Experiment 4.

This experiment continued on the approach of Section 5.4, and added timing informa-
tion as side-channel information. The fuzzing session in this experiment was shorter (1
hour, 40 minutes versus 2.5 hours), and AFL generated far less APDUs in this experiment
(90122 versus 2101613). This is also reflected in the average number of APDUs sent,
and status words received in this experiment (13 and 11, respectively versus 129 and 92,
respectively). We think the lower throughput (APDUS per second) is due to the additional

timing information that AFL needs to process.

Now, we verify that AFL uses the timing side-channel by comparing the results from this
experiment with Experiment 4 (Section 5.4). The only difference with Experiment 4
is the addition of the timing side-channel in this experiment. We specifically look at
the status words returned by the two password checking instructions (0x80: 3959 in
Experiment 4 vs. 2859 here, 0x82: 165 in Experiment 4 vs. 7 here, see Table 5.6 in
Section 5.4, and Table 5.10 here. Relatively speaking, in Experiment 4, 96% of all the
Incorrect password status words were returned by the timing-sensitive password checking
function (0x80). In this experiment, this figure is 99.8%, an increase of 3.8 percentage
point. We expected that, by adding information from the timing side-channel to AFL, the
timing-sensitive password checking function was called more often, relatively speaking,
which indicates that AFL uses the timing side-channel to mutate inputs. Otherwise, we
would have expected no change. Our results (96% vs. 99.8%) confirm that AFL uses the

timing side-channel for mutating its inputs.

Password length and password correctness The PasswordEq applet leaks infor-
mation about the password through status words and a timing side-channel. In Sec-
tion 4.1, we saw that the applet returns the status words Incorrect length when the
supplied length parameter is incorrect, and, if the length parameter is correct, returns
the status words Incorrect password (or Correct password) depending on the correctness
of the whole password. We see that AFL is able to guess the password length, because
the applet returned Incorrect password. However, the applet did not return at least one

status word indicating Correct password. This means that AFL did not find the correct

48

password.

We think there are several factors that contributed to this result. First of all, the length
of the stored password, and the possibilities per ‘character’. In our case, we set the
length at 10 bytes, giving each ‘character’ 256 possibilities: 256'°, or about 1.2 - 1024
combinations. It would have been better to limit the total number of combinations,
either by decreasing the total password length, or limiting the number of possibilities
per ‘character’. Secondly, although AFL found the correct length value, when looking into
the actual APDUs sent, AFL did not use this exact length when guessing the password.
Frequently, AFL generated an APDU which passes the ‘correct length’ check, but did not
contain that amount (10) of password bytes. We expected that both a check on the length
of the internal buffer as well as on the length parameter (Lc) would catch such invalid
APDUs'2. Contrary to what we expected, the reported length of the APDU buffer has no
connection to the actual length of the APDU according to the Java Card documentation|2].
This first length check could have leaked information about the correct password length,
both through timing as well as status words. This would have provided AFL with the

information we expected it to get.

Better allocation of AFL’s shared memory We could improve on the shared mem-
ory split, because in this experiment, we used just under half of the memory capacity for
timing. Consequently, we had to make concessions on the timing precision. The other
half is sparsely used, because the number of possible status words returned by the applet
is six (Section 4.1.1). A better approach would be to map the possible status words to

a distinct memory region, and use the rest of the memory for timing information.

5.6.4 Conclusion

In this experiment, we fuzzed a Java Card applet on a smartcard using a timing side-
channel (Section 2.2.1) in addition to the pseudo side-channel status words (Section 2.3.3,
see also Experiment 4 in Section 5.4). We used the PasswordEq applet (Section 4.1)
that contains a password of fixed length, and two functions to check an input with
the password. One function is timing-sensitive, the other executes in constant time.
We expected that AFL finds the correct password length and, ideally, finds the correct

password using the timing side-channel.

12866 Code B.1, lines 91-99

49

Our results show that AFL found the correct password length. We also found that AFL
uses the timing side-channel, but this extra information did not lead to AFL finding the
correct password. We attribute this to the complexity of the stored password (too long,
too many combinations per character), as well as a flaw in one of the password length
checks. This flaw prevented AFL from knowing if the length of the actual password sent,

rather than the reported length (Lc, see Section 5.6.3 for more details), was correct.

50

Chapter 6

Future work

In this chapter, we give ideas for future work.

Fully automated instruction set discovery using side-channels In Section 5.5,
we created a setup that discovered, in a black-box approach, implemented instructions
on a smartcard more efficiently than a brute-force approach. However, we used a pseudo
side-channel: status words. Besides that, analyis needed to be done manually. Future
work could include both using a real side-channel (e.g. timing or power usage), as well
as creating an analysis tool (or simple processing pipeline) that automatically formats
results. The former would improve on the ability to fuzz other (embedded) hardware
than smartcards, whereas the latter makes it more easy to report results on a multitude

of fuzzing targets.

Feeding a power side-channel to AFL In this thesis, we only considered a timing
side-channel for integration with AFL. We briefly mentioned power side-channels in the
preliminaries, and built a preliminary setup for a power tracing experiment. Future work
could study the multi-dimensional information stream that a power tracer captures, and

think of methods for integrating that into AFL.

White-box instrumentation of Java Card applets Similar to AFL’S instrumen-
tation of PC binaries, adding instrumentation to Java Card applets could benefit the
fuzzing process on that platform. For example, on a PC, DIFFUZZ instruments the fuzzing

target beforehand, in order to be able to count the number of executed branching in-

o1

structions. The same approach could be done with a Java Card applet: instrument the
source code, for example by injecting a branch counter near every branching instruction,
recompile the applet, and install it on the smartcard. However, the instrumentation
results need to be communicated on the same communication channel as ‘regular’ input
and output of the smartcard. This would probably require a wrapper protocol imple-
mented both on the fuzzer side, as well as on the applet, to accommodate both regular
protocol, and transfer of results. This could be evaded if either the source or compiled
form are available, and an emulator on PC is available that can be modified to implement

the instrumentation part.

52

Chapter 7

Conclusion

The subject of this thesis was side-channel assisted fuzzing in embedded systems. We
researched this subject, because analysing the internal behaviour of embedded systems is
typically difficult. Software may not be available, either in source or in binary form, and
attaching a debugger is typically not possible. In terms of analysing these embedded
systems, we need to look at (pseudo) side-channels to gather information about the

execution paths of the system.

We considered the following research questions:
1. What fuzzers are already using side-channel information?
2. How can we safely interface a Java Card smartcard with the fuzzer AFL?
3. How can we provide the fuzzer AFL with side-channel information?

For the first research question, we found that the differential fuzzer DiFFuzz [24] uses
the side-channel ‘number of executed branching instructions’ in Java programs for PC.
In Section 5.1, we repeated a subset of their experiments to verify their approach. In our
evaluation, we found similar results, despite having a different hardware and software

setup.

For the second research question, we implemented a communication interface program
that communicates with AFL on the one hand, and with the Java Card smartcard on
the other hand (Section 5). The interface program provides a filtering mechanism, such
that we can prevent certain inputs generated by AFL from reaching the smartcard. For

example, too long inputs can be discarded, or inputs that would modify internal state.

93

For the third research question, we used the setup from research question two, and
created a custom Java Card applet (Section 4.1) that contained a password checker.
This password checker was implemented in both a timing-sensitive and constant-time
way. We provided AFL with the pseudo side-channel status words, in order to find a
stored password (Section 5.4). We found that AFL automatically detected both the
correct instructions to test passwords and the correct password length, but did not find
the stored password. We used status words again in AFL to find an instruction set of a SIM
card (Section 5.5). With half an hour of fuzzing time, AFL found a complete instruction
set, whereas a similar brute-force approach under the same conditions would take just
under 14 minutes. Finally, we added timing information, in addition to status words,
of the Java Card applet to AFL (Section 5.6). We found that AFL used the timing side-

channel and was able to find the correct password length, but not the correct password.

In conclusion, we let the fuzzer AFL safely fuzz a smartcard, aided by the smartcard’s side-
channel information: the pseudo side-channel status words, and a timing side-channel.
In our experiments with a custom password checking Java Card applet, we found that
status words as side-channel information for AFL lets AFL find the length of the stored
password, but not the stored password itself. Adding timing information on top of that
did not result in finding the stored password. In our experiment with a SIM card, we
found that status words alone are suitable to find the instruction set of the smartcard,

but the approach is twice as slow as a brute-force approach under the same conditions.

54

Chapter 8
Acknowledgements

I would like to thank the following people who supported me throughout, or at some
intermediate stage of, this thesis project. Thanks to Niels Samwel, for reviewing early
work on this thesis. Thanks to fukasz Chmielewski, for helping with the setup of a
power trace analysis, which unfortunately did not make it into the final version of the
thesis. Thanks to Daan Sprenkels for reviewing the final draft of this thesis, as well
as being available for bouldering sessions, lunches in the park, borrels in the student

canteens (when they were still open), side-projects, and many things more.

Also thanks to the Digital Security department of the Institute for Computing and
Information Sciences of the Radboud University, for providing the fuzzing hardware and
materials used in Chapter 5: Experiments. Thanks to Erik Poll and Lejla Batina for

their work as supervisor and second reader.

Finally, I would like to thank Judith van Stegeren for supporting me on and with all
aspects throughout this thesis project.

95

Bibliography

1]

2]

american fuzzy lop. http://lcamtuf . coredump.cx/afl/. Fuzzer used in this the-
sis.
APDU (Java Card API and Subsets). http://www.unsads.com/specs/javacard/

2.2.1/javacard/framework/APDU.html#getBuffer (). Java Card API documen-
tation on getting the buffer contents of an APDU.

Clock (Java Platform 8 SE). https://docs.oracle.com/javase/8/docs/api/
java/time/Clock.html#systemUTC--. Java API documentation on the available

system clocks.

EMV Integrated Circuit Card Specifications for Payment Systems, Book 1—4. via

https://www.emvco.com/.

GlobalPlatformPro. https://javacard.pro/globalplatform/. GlobalPlatform-
Pro provides a simple, commandline interface program for interacting with smart-

cards.

Instant (Java Platform 8 SE). https://docs.oracle.com/javase/8/docs/api/
java/time/Instant.html#now--. Java API documentation on querying the system

clock for the current time.

isstac/diffuzz. https://github.com/isstac/diffuzz. Source code repository of

the differential fuzzer called DifFuzz, specifically aimed at fuzzing Java programs.

isstac/diffuzz at v1.0.0-citable. https://github.com/isstac/diffuzz/tree/vl.
0.0-citable. Differential fuzzer called DifFuzz. This links to a specific snapshot

of the source code repository used in this thesis.

o6

http://lcamtuf.coredump.cx/afl/
http://www.unsads.com/specs/javacard/2.2.1/javacard/framework/APDU.html#getBuffer()
http://www.unsads.com/specs/javacard/2.2.1/javacard/framework/APDU.html#getBuffer()
https://docs.oracle.com/javase/8/docs/api/java/time/Clock.html#systemUTC--
https://docs.oracle.com/javase/8/docs/api/java/time/Clock.html#systemUTC--
https://www.emvco.com/
https://javacard.pro/globalplatform/
https://docs.oracle.com/javase/8/docs/api/java/time/Instant.html#now--
https://docs.oracle.com/javase/8/docs/api/java/time/Instant.html#now--
https://github.com/isstac/diffuzz
https://github.com/isstac/diffuzz/tree/v1.0.0-citable
https://github.com/isstac/diffuzz/tree/v1.0.0-citable

[9]

[11]

[19]

Java Archive Downloads - Java ME. https://www.oracle.com/java/
technologies/java-archive-downloads-javame-downloads.html#java_card_

kit-2.2.1-0th-JPR. Java Card 2.2.1 software development kit used in this thesis.

JavaCOS A40 dual interface Java card - 64K. https://www.smartcardfocus.
com/shop/ilp/id~711/javacos-a40-dual-interface-java-card-64k/p/index.

shtml. Java Card smartcard used for experiments in this thesis.

List of supported JavaCard algorithms. https://www.fi.muni.cz/~xsvenda/
jcalgtest/table.html. This website lists the capabilities regarding cryptographic

algorithms supported by various types of Java Card smartcards.

PCSClite project. https://pcsclite.apdu.fr/. PCSClite is used in Linux to

communicate with smartcard terminals, and smartcards.

sfl/go-card: PC/SC client written in Go. https://github.com/sf1/go-card/
tree/master. This library provides an API for interacting with a smartcard using
the PCSC-lite daemon.

System (Java Platform 8 SE). https://docs.oracle.com/javase/8/docs/api/
java/lang/System.html#nanoTime--. Java API documentation on querying the

current timestamp in nanoseconds.

Technical “whitepaper” for afl-fuzz. http://lcamtuf.coredump.cx/afl/
technical_details.txt. Technical description of the internals of the fuzzer amer-

ican fuzzy lop (afl).

F. Aarts, J. De Ruiter, and E. Poll. Formal models of bank cards for free. In
2018 IEEE Sixth International Conference on Software Testing, Verification and
Validation Workshops, pages 461-468, March 2013.

Barton Milller. Foreword for Fuzz Testing Book. April 2008.

ETSI TC-SMG. Digital cellular telecommunications system (Phase 2+); Specifica-
tion of the SIM Application Toolkit for the Subscriber Identity Module - Mobile
Equipment (SIM - ME) interface (GSM 11.14). Standard, European Telecommuni-
cations Standards Institute, 1996.

ETSI TC-SMG. Digital cellular telecommunications system (Phase 2+); Specifica-
tion of the Subscriber Identity Module - Mobile Equipment (SIM - ME) interface
(GSM 11.11). Standard, European Telecommunications Standards Institute, 1996.

57

https://www.oracle.com/java/technologies/java-archive-downloads-javame-downloads.html#java_card_kit-2.2.1-oth-JPR
https://www.oracle.com/java/technologies/java-archive-downloads-javame-downloads.html#java_card_kit-2.2.1-oth-JPR
https://www.oracle.com/java/technologies/java-archive-downloads-javame-downloads.html#java_card_kit-2.2.1-oth-JPR
https://www.smartcardfocus.com/shop/ilp/id~711/javacos-a40-dual-interface-java-card-64k/p/index.shtml
https://www.smartcardfocus.com/shop/ilp/id~711/javacos-a40-dual-interface-java-card-64k/p/index.shtml
https://www.smartcardfocus.com/shop/ilp/id~711/javacos-a40-dual-interface-java-card-64k/p/index.shtml
https://www.fi.muni.cz/~xsvenda/jcalgtest/table.html
https://www.fi.muni.cz/~xsvenda/jcalgtest/table.html
https://pcsclite.apdu.fr/
https://github.com/sf1/go-card/tree/master
https://github.com/sf1/go-card/tree/master
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#nanoTime--
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#nanoTime--
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

[20]

ISO Central Secretary. Identification cards — Integrated circuit cards — Part 4:
Organization, security and commands for interchange. Standard ISO/TEC 7816-
4:2013, International Organization for Standardization, Geneva, CH, 2013.

Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. Cybersecurity, 1(1):6,
2018.

H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang. Fuzzing: State of the art. IEEE
Transactions on Reliability, 67(3):1199-1218, Sep. 2018.

Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of the relia-
bility of unix utilities. Commun. ACM, 33(12):32-44, December 1990.

Shirin Nilizadeh, Yannic Noller, and Corina S. Pasareanu. Diffuzz: Differential
fuzzing for side-channel analysis. In Proceedings of the 41st International Conference
on Software Engineering, ICSE 19, pages 176-187, Piscataway, NJ, USA, 2019.
IEEE Press.

P. Oehlert. Violating assumptions with fuzzing. IEEE Security Privacy, 3(2):58-62,
March 2005.

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and
Herbert Bos. VUzzer: Application-aware Evolutionary Fuzzing. In NDSS, February
2017.

Henning Richter, Wojciech Mostowski, and Erik Poll. Fingerprinting passports. In
NLUUG spring conference on security, volume 1, 2008.

Dennis Vermoen, Marc Witteman, and Georgi N. Gaydadjiev. Reverse engineering
java card applets using power analysis. In Damien Sauveron, Konstantinos Markan-
tonakis, Angelos Bilas, and Jean-Jacques Quisquater, editors, Information Security
Theory and Practices. Smart Cards, Mobile and Ubiquitous Computing Systems,
pages 138-149, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

o8

Appendix A

Smartcard communication

In this chapter, we give an overview on how to setup communication with a smartcard
(Section A.1), an introduction into the GlobalPlatformPro toolset for interacting with

the smartcard (Section A.2), and how to upload Java Card applets (Section A.3).

We use the OmniKey CardMan 5121 smartcard reader (terminal), which connects through
USB to a PC. Our smartcard is the JavaCOS A40[10], a Java Card with 64 KB storage
and 1.6 KB of memory. Although both the smartcard and smartcard terminal support

contactless communication, we only use the contact-based communication method.

The reader of this chapter should be familiar with the Linux command line. We as-
sume the reader has root access to the machine for installing packages, starting system

processes, and performing tasks that require such elevated privileges.

A.1 Communication setup

I runs Linux. Communication with a smartcard reader on this

The machine we use
platform is managed through the pcsclite[12] suite. It comprises a background process
(daemon) called pcscd that takes care of communication with the hardware (i.e. the

reader and the smartcard), and a set of tools to communicate with pcscd.

In our Linux distribution (Arch Linuz), we install the packages pcsclite and pcsc-tools.

We make sure the daemon runs (as root: # systemctl start pcscd, or manually

'Lenovo x230, Intel i5-3320M @ 2.60 GHz, 16 GB RAM

99

W N =

W N =

© 00 N D TR W N

— e
=]

pcscd -f). Next, we run, as root, # pcsc_scan, such that we can observe the com-

munication between the smartcard and the reader.

We now assume the OmniKey CardMan 5121 is connected as the sole smartcard reader
and pcsc_scan runs (as root). When we insert the JavaCOS A40 card, we see the
following output:

Reader 1: OMNIKEY AG CardMan 5121 @1 00

Event number: 7

Card state: Card inserted,
ATR: 3B 9F 95 81 31 FE 9F 00 66 46 53 05 10 00 FF 71 DF 00 00 00 00 00 EC

Code A.1: Output of pcsc_scan when inserting the JavaCOS A40 smartcard

pcsc_scan also tries to interpret the ATR (“Answer To Reset”) bytes which are shown in
hexadecimal form in the last line of Code A.1). Answer To Reset contains the communi-
cation settings of the card. The smartcard reader interprets this in order to communicate

correctly with the card.

At the end of the output, it says:

Possibly identified card (using /usr/share/pcsc/smartcard_list.txt):
3B 9F 95 81 31 FE 9F 00 66 46 53 05 10 00 FF 71 DF 00 00 00 00 00 EC
JavaC0S A22 dual interface Java card - 150K (JavaCard)
http://www.smartcardfocus.us/shop/ilp/id~7@09/javacos-a22-dual-interface-java-card-150k/p/index.
shtml

Code A.2: ATR (Answer-to-Reset) output of the JavaCOS A40 smartcard

We expected it to be identified as the JavaCOS A40, because it says so on the added
label (the card itself has no identifying features). The exact ATR can also be found on the
JCAlgTest web page[11], where it is identified as the Feitian A40. This could mean that
the same ATR describes multiple cards. We briefly show this in the following example,

with another smartcard:

Reader @: OMNIKEY AG CardMan 5121 00 00

Event number: 1

Card state: Card inserted,

ATR: 3B 67 00 00 29 20 00 6F 78 90 00
Lo ol
Possibly identified card (using /usr/share/pcsc/smartcard_list.txt):
3B 67 00 00 29 20 00 6F 78 90 00

ING (previously Postbank Chippas) (chipknip) Netherlands

Rabobank bankcard (dutch)

ASN Bank debit card

SNS Bank debit card

60

12

© 00 N O U W N

NN N = = = e e e e
N B O © 0 3 O U kA W N HFH O

ABN-AMRO Maestro
Code A.3: ATR (Answer-to-Reset) output of an ING banking card

The card inserted was an ING banking card. This example shows that the same ATR is

used in cards from different banks.

A.2 Tools: GlobalPlatformPro

We use the GlobalPlatformPro toolset, available at [5], for interacting with the smartcard.
Throughout this section, we use the alias? gp-card to prevent confusion with PARI/GP,

the computer algebra system, that has gp as command name.

After installing the GlobalPlatformPro tools, we can acquire information about the

smartcard with gp-card --info.

Note: any PC/SC compatible smartcard or device connected with the PC can answer to
gp-card --info. For example, a hardware security token like the Yubico YubiKey com-
municates through PC/SC. Be sure to disconnect other PC/SC-capable devices before

continuing, or explicitly select the reader with gp-card --reader name-of-the-reader.

Output:

$ gp-card --info

GlobalPlatformPro 19.06.16-4-glf6b677

Running on Linux 5.2.5-arch1-1-ARCH amd64, Java 11.0.5 by Oracle Corporation

Reader: OMNIKEY AG CardMan 5121 00 00

ATR: 3B9F958131FE9F00664653051000FF71DF0000000000E C

More information about your card:
http://smartcard-atr.appspot.com/parse?ATR=3B9F958131FE9F00664653051000FF71DF0000000000EC

CPLC: ICFabricator=4090
ICType=7794
OperatingSystemID=86AA
OperatingSystemReleaseDate=7311 (2017-11-07)
OperatingSystemReleaselevel=0187
ICFabricationDate=8037 (2018-02-06)
ICSerialNumber=1601B02A
ICBatchIdentifier=0547
ICModuleFabricator=4090
ICModulePackagingDate=8037 (2018-02-06)
ICCManufacturer=86AA
ICEmbeddingDate=8037 (2018-02-06)
ICPrePersonalizer=86AA
ICPrePersonalizationEquipmentDate=8037 (2018-02-06)

2For the Linux shell bash: alias gp-card='java -jar /usr/share/java/globalplatformpro/gp.jar’

61

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

© 00 N O Uk W N

=
=

ICPrePersonalizationEquipmentID=00000000
ICPersonalizer=0000
ICPersonalizationDate=0000 (2010-01-01)
ICPersonalizationEquipmentID=00000000

Card Data:

Tag 6: 1.2.840.114283.1

-> Global Platform card

Tag 60: 1.2.840.114283.2.2.1.1

-> GP Version: 2.1.1

Tag 63: 1.2.840.114283.3

Tag 64: 1.2.840.114283.4.2.85

-> GP SCP@2 i=55

Tag 65: 1.3.656.840.100.2.1.3

Tag 66: 1.3.6.1.4.1.42.2.110.1.2

-> JavaCard v2

Card Capabilities:

Version: 255 (OxFF) ID: 1 (0x@1) type: DES3 length: 16
Version: 255 (@xFF) ID: 2 (0x02) type: DES3 length: 16
Version: 255 (OxFF) ID: 3 (0x03) type: DES3 length: 16
Key version suggests factory keys

Code A.4: Output of gp-card --info for the JavaCOS A40 smartcard

We can also acquire a list of applets installed on the smartcard using gp-card --list:

$ gp-card --list
Warning: no keys given, using default test key 404142434445464748494A4B4C4DAE4F
ISD: AQ00000003000000 (OP_READY)

Privs: SecurityDomain, CardLock, CardTerminate, CardReset, CVMManagement

APP: 4141414141FF (SELECTABLE)
Privs:

PKG: 4141414141 (LOADED)
Version: 1.0
Applet: 4141414141FF

Code A.5: Output of gp-card --1list of the JavaCOS A40 smartcard

A.3 Applet installation

The output above, Code A.5 shows an applet that has already been installed, identified
by the applet AID 4141414141, In order to install an applet on the JavaCard, we need
a Conwverted Applet, or CAP file. This conversion is done by a tool from the Java Card
Development Kit. We use version 2.2.1 which can be acquired from [9]. Unpack the
archive in a directory. This directory should also contain the Makefile and a couple of

other directories, see further on.

62

00 N O Uk W N

In Code A.6, we provide a Makefile that makes sure our JavaCard applet can be built
from source and installed on the smartcard. The Makefile has been adapted from the

one provided through the Hardware Security course at the Radboud University.

The Makefile uses the GlobalPlatformPro toolset to install the CAP file on the smart-

card. gp-card is called through an internal reference (see line 11 in Code A.6); adapt it

where necessary, or make sure gp. jar is in the subdirectory gp/ relative from where the

Makefile is located. The name of the applet (APPLET_NAME, line 1) is leading for the

directory structure, and where to place the applet’s source code. To create that structure,

run $ APPLET_NAME=yourappletname mkdir -p ${APPLET_NAME}/{bin,src}/{applet, javacard},
and put your applet’s source code in ${APPLET_NAME}/src/applet/${APPLET_NAME}. java.

In order to build and install the applet, run $ make applet in the directory where the

Makefile is located. To remove the built files, run $ make clean.

APPLET_NAME=PasswordEgApplet
APPLET_AID="0x41:0x41:0x41:0x41:0x41"
APPLET_SFX="@xFF"
APPLET_VERSION="1.0Q"

JC_HOME=java_card_kit-2_2_1

JC_PATH=${JC_HOME}/1ib/apdutool. jar:${IC_HOME}/1lib/apduio. jar:${IC_HOME}/1ib/converter.jar:${
JC_HOME}/1ib/jcwde. jar:${JC_HOME}/1ib/scriptgen.jar:${IC_HOME}/1ib/offcardverifier.jar:${
JC_HOME}/1ib/api. jar:${JC_HOME}/1lib/installer.jar:${IC_HOME}/1ib/capdump.jar:${IC_HOME}/
samples/classes:${CLASSPATH}

CONVERTER=java -Djc.home=${JC_HOME} -classpath ${JC_PATH}:${APPLET_NAME}/bin com.sun.javacard.
converter.Converter
GP=java -jar gp/gp.jar

all:

clean:
rm -rf ./${APPLET_NAME}/bin/*
${GP} --delete ${APPLET_AID}

applet: ./${APPLET_NAME}/bin/${APPLET_NAME}.class ./${APPLET_NAME}/bin/javacard/applet.cap

./${APPLET_NAME}/bin/javacard/applet.cap: ${APPLET_NAME}/bin/${APPLET_NAME}.class
Convert to CAP
${CONVERTER} -v -out CAP -exportpath ${JC_HOME}/api_export_files \
-classdir ./${APPLET_NAME}/bin -d ./${APPLET_NAME}/bin \
-applet "${APPLET_AID}:${APPLET_SFX}" applet.${APPLET_NAME} \
applet ${APPLET_AID} ${APPLET_VERSION}

Uninstall old applet
${GP} --uninstall ./${APPLET_NAME}/bin/applet/javacard/applet.cap

63

Install new applet
${GP} --install ./${APPLET_NAME}/bin/applet/javacard/applet.cap

./${APPLET_NAME}/bin/${APPLET_NAME}.class: ${APPLET_NAME}/src/applet/${APPLET_NAME}. java
Compile the applet
javac -source 1.3 -target 1.1 -d ${APPLET_NAME}/bin -cp ${JC_PATH} ${APPLET_NAME}/src/applet/${
APPLET_NAME} . java

Code A.6: Makefile for compiling and uploading Java Card programs

64

Appendix B

Code listings

This appendix contains the most important code snippets used in this thesis. You can
find the source code of the PasswordEq applet (Section 4.1) in Section B.1. The helper
scripts, and fuzzing target used in Section 5.3 can be found in Section B.2. The source

code of the communication interface program (Section 5) can be found in Section B.3.

The full source code is available from https://ghcm.nl/ at the end of November 2020.

B.1 Java Card applet PasswordEq

In Code B.1, we find the source code of the Java Card applet, called PasswordEq, that
checks a supplied password with the stored, static password. Depending on the instruc-
tion given (0x80, 0x82), the applet uses an unsafe or safe method, respectively, for
checking that supplied password. The unsafe method has a timing side-channel on the
number of incorrect bytes in the supplied password, whereas the safe method does not.
The applet is used in Section 5.2 for demonstration purposes, and as fuzzing target in
Sections 5.3, 5.4, and 5.6.

package applet;

import javacard.framework.APDU;
import javacard.framework.Applet;
import javacard.framework.IS07816;

import javacard.framework.APDUException;
import javacard.framework.ISOException;
import javacard.framework.JCSystem;

import javacard.framework.SystemException;

65

https://ghcm.nl/

/*%
'3
*
*
'3
*
*
'3
*
'3
'3
*

*/

PasswordEgApplet is a JavaCard applet that implements a static password checker in two variants.

- the unsafe variant (INS=0x80)
- the safe variant (INS=0x82)
Both use a static command data length of 10 (Lc=0x0A)

@author Gerdriaan Mulder <gmulder@science.ru.nl>

The caller should use class byte CLA=OxBA and give either of two instructions:

The applet returns in SW1-SW2 whether the password was correct or incorrect using @x9@FF and
Ox66FF, respectively. If an error occurred, a standard IS07816-4 error status is returned.

public class PasswordEgApplet extends Applet implements IS07816 {

public static final byte INS_TRY_PASSWORD_UNSAFE

public static final byte INS_TRY_PASSWORD_SAFE

public static final short RET_PASSWORD_INCORRECT

public static final short RET_PASSWORD_CORRECT

(byte)0x80;
(byte)0x82;

(short)0Ox66FF;
(short)@x90FF;

private static final short PASSWORD_LENGTH = (short) 10;
private byte[] cmdPassword;

private byte[] savedPassword = {(byte)@x49, (byte)0x48, (byte)@x47, (byte)Ox46,
(byte)ox45, (byte)ox44, (byte)ox43, (byte)ox42,

/%

* Constructor for the applet.

*/

public PasswordEgApplet() {

/%%

cmdPassword = JCSystem.makeTransientByteArray(PASSWORD_LENGTH, JCSystem.CLEAR_ON_RESET);

register();

(byte)0x41,

(byte)0x40};

* install makes sure the applet is installed on the smartcard

*/

public static void install(byte[] buffer, short offset, byte length)

/x%

* select performs operations when selecting the applet on the smartcard

*/

throws SystemException {
new PasswordEgApplet();

public boolean select() {

/*%

* deselect performs operations when deselecting the applet on the smartcard

*/

return true;

66

64 public void deselect() {

65 }

66

67 /%

68 * process receives a command APDU and performs operations based on the given instructions.
69 *

70 */

71 public void process(APDU apdu) throws ISOException, APDUException {
72 byte[] buffer = apdu.getBuffer();

73 byte cla = buffer[IS07816.0FFSET_CLA];

74 byte ins = buffer[IS07816.0FFSET_INS];

75 byte pl = buffer[IS07816.0FFSET_P1];

76 byte p2 = buffer[IS07816.0FFSET_P2];

77 short 1c = (short)o;

78

79 // Ignore the "SELECT FILE" APDU (0@x0Q0A4)

80 if (selectingApplet()) {

81 return;

82 }

83

84 if(cla != (byte)@xBA) {

85 ISOException.throwIt(IS07816.SW_CLA_NOT_SUPPORTED);
86 }

87

88 if(pl !'= (byte)ox00 || p2 !'= (byte)0x00) {

89 ISOException.throwIt(IS07816.SW_INCORRECT_P1P2);

90 3

91 if(buffer.length < PASSWORD_LENGTH+5) {

92 ISOException.throwIt(IS07816.SW_CONDITIONS_NOT_SATISFIED);
93 }

94

95 1c = buffer[IS07816.0FFSET_LC];

96 if(lc !'= PASSWORD_LENGTH) {

97 // We expect our predefined password length

98 ISOException.throwIt(IS07816.SW_WRONG_LENGTH);

99 }

100

101 // Fill cmdPassword buffer

102 for(short i = @; i < PASSWORD_LENGTH; i++) {

103 cmdPassword[i] = buffer[(short)(IS07816.0FFSET_CDATA+i)];
104 }

105 short passwordEq = 0;

106

107 switch (ins) {

108 case INS_TRY_PASSWORD_UNSAFE:

109 // Compare byte-wise the password and return early when a character did not match.
110 for(short i = @; i < PASSWORD_LENGTH; i++) {

111 if(cmdPassword[i] != savedPassword[i]) {

112 ISOException.throwIt(RET_PASSWORD_INCORRECT);
113 }

114 }

115 break;

116 case INS_TRY_PASSWORD_SAFE:

67

117

118
119
120

121

123
124
125
126
127
128
129
130

132

© 00 N O U W N

e e e e
N O O W N = O

// Add to passwordEq the stored password XOR the provided password. All characters are
compared
for(short i = @; i < PASSWORD_LENGTH; i++) {
//passwordEq += (short)(cmdPassword[i] A savedPassword[i]);
passwordEq += (short)(cmdPassword[i] & @x@QFF) A (short)(savedPassword[i] & Ox@0QFF)

}
if (passwordEq != @) {
ISOException.throwIt(RET_PASSWORD_INCORRECT);
}
break;
default:
ISOException.throwIt(IS07816.SW_INS_NOT_SUPPORTED);

ISOException.throwIt(RET_PASSWORD_CORRECT);

Code B.1: Safe/unsafe password checker

B.2 Supporting scripts, and fuzzing target for Section 5.3

The following two code listings are related to Section 5.3: the experiment with DiFFuzz

and the PasswordEq applet. In Code B.2, you can find the shell script that compiles

and instruments the fuzzing targets for DIFFuzz. Code B.3 contains the overall fuzzing

execution script. They should be executed in order, i.e. first the preparation script, then

the execution script. Both scripts have been adapted from evaluation/prepare.sh and

evaluation/run_evaluation.sh out of [8].

prepare_javacard.sh

HHH S
chmod +x prepare_javacard.sh

./prepare_javacard.sh

#

trap "exit" INT

Prepare javacard_passwordEqg_safe.

echo "Prepare javacard_passwordEg_safe.."

cd ./javacard_passwordEq_safe/

rm -rf bin

mkdir bin

cd src

javac -cp .:../../../tool/instrumentor/build/1libs/kelinci.jar:../1ib/* Driver_PCSC.java -d ../bin

cd ..

rm -rf bin-instr

68

18

19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35

B W N

© 00 g O !

java -cp ../../tool/instrumentor/build/libs/kelinci.jar:./lib/* edu.cmu.sv.kelinci.instrumentor.
Instrumentor -mode LABELS -i ./bin/ -o ./bin-instr -skipmain

cd ..

echo ""

Prepare javacard_passwordEq_unsafe.

echo "Prepare javacard_passwordEg_unsafe.."

cd ./javacard_passwordEq_unsafe/

rm -rf bin

mkdir bin

cd src

javac -cp .:../../../tool/instrumentor/build/libs/kelinci.jar:../1lib/* Driver_PCSC.java -d ../bin

cd ..

rm -rf bin-instr

java -cp ../../tool/instrumentor/build/libs/kelinci.jar:./1ib/% edu.cmu.sv.kelinci.instrumentor.
Instrumentor -mode LABELS -i ./bin/ -o ./bin-instr -skipmain

cd ..

echo

nn

echo "Done."

Code B.2: Shell script for preparing driver and fuzzing target for use in DiFFuzz

run_javacard_evaluation.sh

CAUTION

Run this script within its folder. Otherwise the paths might be wrong!
HH B R

chmod +x run_javacard_evaluation.sh

./run_javacard_evaluation.sh

#

trap "graceful_exit" INT

server_pid="-1"
afl_pid="-1"

confirmQ) {

Ask user.
read -p "Continue with evaluation? " -n 1 -r
echo
if [[! $REPLY =~ A[Yy]$ 1]
then
echo "ABORT."
exit 1
fi

graceful_exit() {
echo "Graceful exit"
if [["$server_pid" != "-1" 1]; then
echo "Killing server: $server_pid"
kill $server_pid
fi

69

if [["$afl_pid" != "-1"]]; then
echo "Killing afl: $afl_pid"
kill $afl_pid

fi

exit 0

A
number_of_runs=5
time_bound=1800 #30min

step_size_eval=30

declare -a subjects=(
"javacard_passwordEq_safe" # JavaCard interface

"javacard_passwordEq_unsafe" # JavaCard interface

D)

declare -a classpaths=(
"./bin-instr/" # "javacard_passwordEq_safe"
"./bin-instr/" # "javacard_passwordEq_unsafe"

D)

declare -a drivers=(
"Driver_PCSC" # "javacard_passwordEqg_safe"
"Driver_PCSC" # "javacard_passwordEg_unsafe"

D)

Check array sizes
if [[${#subjects[@]} != ${#classpaths[@]}]]
then

echo "[Error in script] the array sizes of subjects and classpaths do not match!. Abort!"

exit 1

fi

if [[${#subjects[@]} != ${#drivers[@]} 1]
then

echo "[Error in script] the array sizes of subjects and drivers do not match!. Abort!"

exit 1
fi

NUMsubj=${#subjects[@]}

ETAsec=$((${NUMsubj} *${number_of_runs}*${time_bound}))
echo -n "I've seen ${NUMsubj} subjects. Estimate time to completion: ${NUMsubj} * ${number_of_runs}

* ${time_bound} = ${ETAsec} seconds "
printf "(%.2f hours)\n" $((${ETAsec}/3600))

confirm
echo "Running evaluation as requested..."

subject_counter=0
total_number_subjects=${#subjects[@]}

70

92

97
98
99
100

101
102
103
104
105
106
107

109
110
111
112
113
114
115
116
117
118
119
120

total_number_experiments=$(($total_number_subjects * $number_of_runs))

for ((1=0; i<=$(($total_number_subjects - 1)); i++))
do

cd ./${subjects[i]}/
for j in “seq 1 $number_of_runs’
do
run_counter=$(($run_counter + 1))
echo "[$run_counter/$total_number_experiments] Run analysis for ${subjects[i]}, round $j .."
Start Kelinci server
nohup java -cp ${classpaths[i]} edu.cmu.sv.kelinci.Kelinci ${drivers[i]} @@ > ./server-log-$j.
txt &
server_pid=$!
Start modified AFL
AFL_I_DONT_CARE_ABOUT_MISSING_CRASHES=1 AFL_SKIP_CPUFREQ=1 nohup ../../tool/afl-2.51b-wca/afl-
fuzz -i in_dir -o fuzzer-out-$j -c userdefined -S afl -t 999999999 ../../tool/fuzzerside/
interface @@ > ./afl-log-$j.txt &
afl_pid=$!
Wait for timebound
sleep $time_bound
Stop AFL and Kelinci server
kill $afl_pid
kill $server_pid
Wait a little bit to make sure that processes are killed
sleep 10
done
cd ..
Evaluate run
python3 evaluate_cost.py ${subjects[i]}/fuzzer-out- $number_of_runs $time_bound $step_size_eval
done

Code B.3: Shell script for running the fuzzing process

B.2.1 Fuzzing target

The next code listing is the fuzzing target for DiFFuzz. This part is responsible for
connecting to a smartcard inserted into a smartcard reader, feeding the fuzzing input to
the fuzzing target, and recording the elapsed time between sending the Command APDU,

and receiving the Response APDU in DirFFuzz.

71

© W N U A W N =

NN KN N N N N N = = = e e e
N OO WY RO O 00Ut W N = O

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

import
import
import
import
import

import
import
import
import
import
import
import
import

java.lang.Exception;

java.

java.time.Instant;

lang.String;

java.time.Duration;

java.

javax

javax.
javax.
javax.
javax.
javax.
javax.
javax.

util.List;

.smartcardio

smartcardio

smartcardio

class PasswordEq_PCSC {

public s
public s
public s
public s
public s

.Card;
smartcardio.
smartcardio.
smartcardio.
smartcardio.
.CommandAPDU;
smartcardio.

CardChannel;
CardException;
CardTerminal;
CardTerminals;

ResponseAPDU;

.TerminalFactory;

tatic final byte INS_TRY_PASSWORD_UNSAFE = (byte)0x80;
tatic final byte INS_TRY_PASSWORD_SAFE = (byte)0x82;
tatic final short RET_PASSWORD_CORRECT = (short)@x90FF;
tatic final short RET_PASSWORD_INCORRECT = (short)@x66FF;
tatic long passwordEg_cost = 0;

public static final byte[] PASSWORDEQ_AID = {
(byte)ox41, (byte)ox4l, (byte)@x4l, (byte)odx4l, (byte)Ox4l, (byte)@xFF

53

// 1S07816 select command APDU, class 0x00, instruction OxA4, P1 0x@04, P2 0x00, and applet ID
public static CommandAPDU APDU_SELECT = new CommandAPDU(@x0@, @xA4, 0x@4, 0x00, PASSWORDEQ_AID)

)

// checkPassword_safe returns whether the password was correct. It sets the passwordEq_cost

// such that the fuzzer knows the cost of the operation. Our cost is defined as the "time spent
// checking the password, in nanoseconds"

public static boolean checkPassword_safe(byte[] guess, byte[] pw) {

return checkPassword(true, guess, pw);

// checkPassword_unsafe returns whether the password was correct. It sets the passwordEq_cost
// such that the fuzzer knows the cost of the operation. Our cost is defined as the "time spent
// checking the password, in nanoseconds"

public static boolean checkPassword_unsafe(byte[] guess, byte[] pw) {

return checkPassword(false, guess, pw);

private static boolean checkPassword(boolean safe, byte[] guess, byte[] pw) {
// Setup communication with the card reader, only consider terminals with an inserted card
short appletReturn;

try

{

TerminalFactory termfactory = TerminalFactory.getDefault(Q);
CardTerminals cardTerms = termfactory.terminalsQ);
List<CardTerminal> terminals = cardTerms.list(CardTerminals.State.CARD_PRESENT);

try {

if (terminals.isEmpty()) {

72

52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80

81
82
83
84
85
86
87
88
89
90
91
92
93

94
95
96

97
98
99
100

throw new RuntimeException("Cannot setup communication with reader:
cardTerms);
}
} catch (Exception e) {
System.err.println("exception occurred:
return false;

"

+ e);

// Select the first terminal and connect with the card
CardTerminal t = terminals.get(0);

Card c = t.connect("x");

CardChannel chan = c.getBasicChannel();

// Select the applet

ResponseAPDU reply = chan.transmit(APDU_SELECT);

try {
if ((short)reply.getSW() != (short)0x9000) {

throw new Exception("Cannot SELECT PasswordEq applet: " + reply);

3

} catch (Exception e) {
System.err.println("exception occurred:
return false;

n

+ e);

byte instruction = INS_TRY_PASSWORD_UNSAFE;
if (safe) {
instruction = INS_TRY_PASSWORD_SAFE;

// Construct the APDU for trying a password with the supplied byte array, using the

supplied instruction

CommandAPDU tryPasswordAPDU = new CommandAPDU(@xBA, instruction, 0x00, 0x00, pw);

// Query the applet and save the output, record the time spent
long now = System.nanoTime();

reply = chan.transmit(tryPasswordAPDU);

long afterQuery = System.nanoTime();

try {
appletReturn = (short)reply.getSWQ);

// avoid &% short-circuit
// grep 'Unexpected return code' server-log-1.txt | sort | uniq -c
if (!(appletReturn == RET_PASSWORD_CORRECT || appletReturn ==
RET_PASSWORD_INCORRECT)) {
byte low = (byte)(appletReturn & Oxff);
byte high = (byte)((appletReturn >> 8) & Oxff);
throw new Exception("Unexpected return code: (" + String.format("%x",
appletReturn) + ") Ox"+ String.format("%02x%02x", high, low));
}
} catch (Exception e) {
System.err.println("exception occurred:
return false;

"

+ e);

73

101
102
103
104
105
106
107
108
109
110
111

113
114
115
116
117
118
119
120

122

© 00 N O T W N

e e e e
T W N = O

16
17
18

// Set time spent as passwordEq_cost
passwordEq_cost = Math.abs(afterQuery - now);

} catch (CardException e) {
System.err.println("Unhandled exception:
return false;

"

+ e);

return appletReturn == RET_PASSWORD_CORRECT;

// clearCost resets the passwordEq_cost variable
public static void clearCost() {
passwordEq_cost = 0;

public static long getCost() {
return passwordEq_cost;

Code B.4: Fuzzing target implementation for using a smartcard with DiFFuzz

B.2.2 Sign extension issues from Section 5.3

Code B.5 shows the effect of improper handling of sign extension, as discussed in Sec-
tion 5.3.3: Logical, and sign extension bug. See also the commented passwordEq

variable in Code B.1, line 119, which caused this behaviour.

package main

import (
"t

func main() {
var eq intl6
saved := []byte{0x49, 0x48, 0x47, 0x46, 0x45, 0x44, 0x43, 0x42, 0x41l, 0x40}
cmd := []byte{@x16, @0x45, 0x93, 0x35, Ox5b, 0x00, @xf2, Oxff, Oxff, Oxff}
for n, v := range saved {
xor := int8(v A cmd[n])
if xor <= 127 {
eq += intle(xor)
fmt.Printf("%#02x A %#02x = %+#02x (%4d, %4d): %08bA%08b=%08b\n", v, cmd[n], xor, xor, eq, Vv,
cmd[n], xor)
} else {
eq += intl6(-xor)
fmt.Printf("%#02x A %#02x
cmd[n], xor)

%+#02x (%4d, %4d): %08bA%08b=%08b\n", v, cmd[n], xor, xor, eq, Vv,

74

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

3
}
/% output:
0x49 A 0x16 = +0x5f (95, 95): 01001001/00010110=01011111
0x48 A Ox45 = +0x0d (13, 108): 01001000/01000101=00001101
Ox47 A 0x93 = -0x2c (-44, 64): 01000111/A10010011=-0101100
0x46 A 0x35 = +0x73 (115, 179): 01000110/00110101=01110011
0x45 A Ox5b = +0xle (30, 209): 01000101/01011011=-00011110
0x44 A 0x00 = +0x44 (68, 277): 01000100/00000000=01000100
0x43 A Oxf2 = -0x4f (-79, 198): 01000011/A11110010=-1001111
0x42 A Oxff = -0x43 (-67, 131): 01000010/11111111=-1000011
0x41 A Oxff = -0x42 (-66, 65): 01000001A11111111=-1000010
0x40 A Oxff = -0x41 (-65, 0): 01000000/11111111=-1000001
*/

Code B.5: Code demonstrating the sign extension bug in Section 5.3.3

B.3 Communication interface program

We wrote supporting software (see Section 5) to let AFL fuzz an applet on a smartcard.

This section provides code snippets for the most important parts of that program.

The following two code listings take care of attaching to AFL’s shared memory (Code B.6),

and setting up communication with AFL’s forkserver (Code B.7). These parts are used

0 N O U W N =

NN == = = e e e e
= O © 0 N O Uk W N O ©

in Section 5.
package aflshm

import (
"fmt"
"io"
"Log"
"os
"reflect”
"strconv"
"syscall"
"unsafe"

n

"golang.org/x/sys/unix"

const (
SHM_SIZE = 65536

type SharedMem %[SHM_SIZE]byte

75

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

func AttachSharedMemory(logger io.Writer) (SharedMem, error) {

log.SetOutput(logger)

pid, _, _ := unix.SyscallCunix.SYS_GETPID, 0@, @, @)
log.Printf("[%v] hello", pid)

var shmptr uintptr

var shared_mem SharedMem

var shmHdr xreflect.SliceHeader
var errno syscall.Errno

shmname, in_afl := os.LookupEnv("__AFL_SHM_ID")
if lin_afl {
return shared_mem, fmt.Errorf("not running in afl")

}

log.Printf("[%v] running in AFL, shmid: %v", pid, shmname)
shmid, err := strconv.Atoi(shmname)
if err !'= nil {

log.Printf("[%v] cannot convert shmname %q to integer: %v", pid, shmname, err)
return nil, fmt.Errorf("error converting __AFL_SHM_ID %q to integer: %v", shmname, err)

3

shmptr, _, errno = unix.SyscallCunix.SYS_SHMAT, uintptr(shmid), @, @)

if errno != 0 {

log.Printf("[%v] failed to access shared memory: %v", errno.Error())
return nil, fmt.Errorf("cannot access shared memory: %v", errno.Error())

}

log.Printf("[%v] shm at O@x%x, converting to accessible slice", pid, shmptr)

shmHdr = (#reflect.SliceHeader)(unsafe.Pointer(&shared_mem))

shmHdr.Data = shmptr
shmHdr.Len = SHM_SIZE
shmHdr.Cap = SHM_SIZE

log.Printf("[%v] shm attached, shm[3]: %x", pid, shared_mem[3])
log.Printf("[%v] shmptr: %x, shmHdr: %p, shared_mem: %p", pid, shmptr, shmHdr, &shared_mem)

return shared_mem, nil

W N

© 00 J & !

Code B.6: Library for attaching AFL’s shared memory

package aflshm

import (
"fmt"
"io
"Log"
"math/rand"
"os

"time"

n

n

76

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

D)

"golang.org/x/sys/unix"

const (

FORKSRV_READ_FD = 198
FORKSRV_WRITE_FD = 199

type Status int32
type PID int32

func AttachForkServer(logger io.Writer, shared_mem SharedMem, fuzzFunc func(SharedMem, io.Reader)

Status) error {
log.SetOutput(logger)

pid, _, _ := unix.SyscallCunix.SYS_GETPID, 0@, @, @)
log.Printf("[%v] setting up fork server", pid)
log.Printf("[%v] seeding random generator for PIDs", pid)

rand.Seed(time.Now().UnixNano())

reader := os.NewFile(FORKSRV_READ_FD, "reader")
writer := os.NewFile(FORKSRV_WRITE_FD, "writer™")

status := int32(0)
mockPID := int32(0)

n, err := writeInt32(writer, status)
if n!=4 11 err !=nil {

log.Printf("[%v] (%d/4) cannot write status %d: %v", pid, n, status, err)

return fmt.Errorf("cannot write to forkserver: %v", err)

3

log.Printf("[%v] written status: %d (%@0x)", pid, status, status)

log.Printf("[%v] fork server connected", pid)
for {
n, err = readInt32(reader, &status)
if err != nil && err == i0.EOF {
time.Sleep(1l * time.Millisecond)
continue
} else if err != nil {

log.Printf("[%v] got error reading status: %v", pid, err)

}

// use the forkservers pid
mockPID = int32(2)

n, err = writeInt32(writer, mockPID)
if nl=4 1] err !=nil {

log.Printf("[%v] (%d/4) cannot write mockPID %d: %v", pid, n, mockPID, err)

return fmt.Errorf("cannot write PID to afl: %v", err)

}

77

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

N O Ul W N =

shared_mem[@]++
status = int32(fuzzFunc(shared_mem, os.Stdin))
log.Printf("[%v] (for) statusCh returned: %v", pid, status)

n, err = writeInt32(writer, status)
if n!=4 11 err !=nil {
log.Printf("[%v] (%d/4) cannot write status: %v", pid, n, err)
return fmt.Errorf("cannot write status to afl: %v", err)
}
}
}

func writeInt32(w io.Writer, v int32) (n int, err error) {
b := make([Jbyte, 4)

b[@] = byte(v >> 24)
b[1] = byte(v >> 16)
b[2] = byte(v >> 8)

b[3] = byte(v)
return w.Write(b)

func readInt32(r io.Reader, v *int32) (n int, err error) {
b := make([Jbyte, 4)
n, err = r.Read(b)
if err !'=nil {
return n, err

}
*v = (int32(b[0]) << 24) | (int32(b[1]) << 16) | (int32(b[2]) << 8) | (int32(b[0]1))
return n, err

Code B.7: Library for setting up communication with AFL’s fork server

B.3.1 Smartcard communication library in Golang

Code B.8 contains library code for communicating with a smartcard, based on the PC/SC
client implementation of [13]. It waits until a card is inserted, selects the provided applet
ID, and checks the applet could be selected. Through the Process function, a terminal
program can send APDUs, optionally filtering ‘bad’ APDUs from reaching the smartcard,

and receive status words.
package passwordeq

import (
"fmt"
"Log"
"sort"
"strings"

78

58
59
60

"sync”
"sync/atomic"
"time"

"github.com/sfl/go-card/smartcard"

type SmartCard struct {
mut sync.Mutex
Ctx *smartcard.Context
Card xsmartcard.Card

once sync.0Once
FirstAPDUSent int64 // time.Now().UnixNano()

// updated via sync/atomic

TotalAPDUSent int64

TotalAPDURcvd int64

FinalAPDURcvd int64 // time.Now().UnixNano()

prefixes *PrefixList
isWhiteList bool

func NewSmartCard(withWhitelist bool, appletID []byte) (#SmartCard, error) {
prefixes := NewPrefixList(withWhitelist)

ctx, err := smartcard.EstablishContext()
if err !'= nil {
return nil, err
}
log.Printf("waiting for smartcard™)
reader, err := ctx.WaitForCardPresent()
if err !'= nil {
return nil, err
}
log.Printf("smartcard inserted")
card, err := reader.Connect()
if err = nil {
return nil, err
}

log.Printf("smartcard ATR: %v", card.ATR())

if appletID != nil {
log.Printf("selecting applet ID %x", appletID)
selectAPDU := smartcard.SelectCommand(CappletID...)
response, err := card.TransmitAPDU(selectAPDU)
if err = nil {
return nil, err
}
if response.SW(Q) != uint16(0x9000) {
return nil, fmt.Errorf("expected 0x9000 response when selecting applet, got: %s\n", response)

79

67

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

107
108
109
110
111

sc := &SmartCard{
Ctx: ctx,
Card: card,
prefixes: prefixes,

}

return sc, nil

func (sc *SmartCard) Process(apdu []byte) uintl6 {

// Protect the smartcard from random weird APDUs.
if lenCapdu) < 2 {
return SW_CONDITIONS_NOT_SATISFIED

if lenCapdu) > 261 {
// Cardman 5121 + libccid supports up to 271 bytes including 10 bytes CCID header.
// See compatibility matrix <https://ccid.apdu.fr/ccid/section.html#392>
// See description of dwMaxCCIDMessagelength <https://ludovicrousseau.blogspot.com/2014/11/ccid
-descriptor-statistics.html>
// See USB descriptor info <https://ccid.apdu.fr/ccid/readers/CardMan5121.txt>
return SW_CONDITIONS_NOT_SATISFIED

if !sc.prefixes.Allowed(apdu) {
log.Printf("apdu %x not allowed by prefix filter", apdu)
return SW_CONDITIONS_NOT_SATISFIED

sc.mut.Lock()
defer sc.mut.Unlock()
cmdAPDU := smartcard.CommandAPDUCapdu)
log.Printf("sending command APDU: %s (raw: %@2X)", cmdAPDU.String(), apdu)
sc.once.Do(func() {
// We already have the mutex, so we can set time of first APDU now
sc.FirstAPDUSent = time.Now().UnixNano(Q)
1))
response, err := sc.Card.TransmitAPDU(cmdAPDU)
atomic.AddInt64(&sc.TotalAPDUSent, 1)
if err !'= nil {
log.Printf("error transmitting APDU %s (raw: %02X): %v", cmdAPDU.String(), apdu, err)
if strings.Contains(err.Error(), "broken pipe") {
panic(fmt.Sprintf("broken pipe from pcscd, input: %x, err: %v", apdu, err))
3
return SW_UNKNOWN
}
atomic.AddInt64(&sc.TotalAPDURcvd, 1)
log.Printf("got response APDU: %s (raw: %02X)", response.String(), [Jbyte(response))
sc.FinalAPDURcvd = time.Now().UnixNano()

return response.SW(Q)

80

113
114
115
116
117
118

© 0N U A W N =

NN N N = = e e e e e
W N B O © 03 O Uk W N+~ O

24
25

26

27
28
29
30
31
32
33

func (sc *SmartCard) AddPrefix(prefix []byte) {
sc.prefixes.Add(prefix)
sort.Sort(sc.prefixes)

}
Code B.8: Library for communicating with a smartcard

B.3.2 Smartcard fuzzing program in Golang, fuzzing helper script

Code B.9 provides a commandline interface (CLI) program that connects AFL to a smart-

card, in order to let AFL fuzz an applet on the smartcard.

package main

import (
"bytes"
"encoding/hex"
"flag"
"fmt"
"io"
"io/ioutil"
"Log"
"og"
"sync/atomic"
"time"
"passwordeq"
"passwordeqg/aflshm"
D)
var (
fuzz = flag.Bool("fuzz", false, "setup shared memory and forkserver for AFL™)
pcsc = flag.Bool("pcsc", false, "send commands to the first available smartcard™)
safe = flag.Bool("safe", true, "if true: use INS_TRY_PASSWORD_SAFE, _UNSAFE otherwise™")
stdinHex = flag.Bool("stdinHex", false, "if true, convert hex-encoded input from stdin before
processing™)
logfile = flag.String("logfile", "", "log to this file")
whitelist = flag.String("whitelist", "", "use this file (one prefix, hex encoded per line) as a
whitelist")
blacklist = flag.String("blacklist", "", "use this file (one prefix, hex encoded per line) as a
blacklist™)
applet = flag.String("applet"”, "", "select this hex encoded applet id before continuing")

savedPassword = []byte{0x49, 0x48, 0x47, 0x46, 0x45, Ox44, 0x43, 0x42, 0x41l, 0x40%

checker PasswordChecker

func main() {

81

35 flag.Parse()

36

37 if xlogfile != "" {

38 logger, err := os.Create(xlogfile)

39 if err = nil {

40 log.Printf("cannot use %q as output for logging: %v", xlogfile, err)
41 } else {

42 log.SetOutput(logger)

43 }

44 }

45

46 usingWhitelist := false
47 listFile := ""

48 if swhitelist != "" &% *blacklist !'= "" {

49 log.Fatalf("cannot have both blacklist and whitelist")

50 }

51 if xwhitelist != "" {

52 usingWhitelist = true

53 listFile = xwhitelist

54 }

55 if xblacklist != "" {

56 listFile = xblacklist

57 }

58

59 prefixList := readPrefixList(listFile)

60 var sc xpasswordeq.SmartCard

61 var err error

62 if xpcsc {

63 log.Printf("setting up smartcard communication™)

64 var appletID [Jbyte

65 if xapplet !'= "" {

66 // Read in hex encoded applet id

67 appletID, err = hex.DecodeString(*applet)

68 if err != nil {

69 log.Fatalf("cannot decode applet ID %q: %v", xapplet, err)
70 }

71 }

72

73 sc, err = passwordeq.NewSmartCard(usingWhitelist, appletID)
74 if err = nil {

75 log.Fatalf("err setting up smartcard communication: %v", err)
76 }

77 defer sc.Ctx.Release()

78 defer sc.Card.Disconnect()

79

80 log.Printf("successfully connected to card")

81 if prefixList != nil {

82 log.Printf("setting prefixes using list file %q; is whitelist: %v", listFile, usingWhitelist)
83 for _, pfx := range prefixList {

84 log.Printf("adding prefix %x", pfx)

85 sc.AddPrefix(pfx)

86 }

87 }

82

88
89
90
91
92
93
94
95
96
97
98
99
100
101

102
103
104

106
107
108
109
110

112
113
114

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

138

// Log statistics every 10 seconds
go funcQ {
ticker := time.NewTicker(1@ * time.Second)
defer ticker.Stop(Q)
for {
<-ticker.C
sent := atomic.LoadInt64(&sc.TotalAPDUSent)
recv := atomic.LoadInt64(&sc.TotalAPDURcvd)
timespanNs := atomic.LoadInt64(&sc.FinalAPDURcvd) - atomic.LoadInt64(&sc.FirstAPDUSent)
duration, _ := time.ParseDuration(fmt.Sprintf("%dns", timespanNs))
sentRate := float64(sent) / duration.Seconds()
recvRate := float64(recv) / duration.Seconds()

log.Printf("==== SMARTCARD STATISTICS: sent/recv, rate: %d/%d (%d), %.2f/%.2f /s, ratio
recv/sent: %.4f%% ====", sent, recv, recv-sent, sentRate, recvRate, float64(recv)/float64(sent
)%100.0)
}
1O
}
// Choose between sending it to a smartcard or to our local instance
if xpcsc {
checker = sc
if checker == nil {
log.Fatalf("could not set checker to smartcard instance", sc)
3
} else {
checker = passwordeq.NewGolangChecker(savedPassword)
}

var checkerInput [Jbyte
if Ixfuzz {
// Read input from stdin
log.Printf("reading from stdin")
data, err := ioutil.ReadAll(os.Stdin)
if err !'= nil {
log.Fatalf("could not fully read stdin: %v", err)
1
checkerInput = data

if xstdinHex {
log.Printf("converting hex-encoded %q into bytes", data)
hexData, err := hex.DecodeString(string(data))

if err != nil {
log.Fatalf("could not convert stdin to hex string: %v", err)
}
checkerInput = hexData
}
log.Printf("checkerInput: %@2X", checkerInput)
status := checker.Process(checkerInput)
log.Printf("got status: %x", status)
0s.Exit(@)

83

139 }

140

141 // Setup shared memory

142 shm, err := aflshm.AttachSharedMemory(log.Writer())
143 if err !=nil {

144 log.Fatalf("cannot setup shared memory: %v", err)
145 !

146 log.Printf("shm: %p", &shm)

147

148 err = aflshm.AttachForkServer(log.Writer(), shm, fuzzTimedPasswordEq)
149 if err !=nil {

150 log.Printf("err from attaching forkserver: %v", err)

151 }

152}

153

154 func fuzzPasswordEq(shm aflshm.SharedMem, stdin io.Reader) aflshm.Status {
155 input, _ := ioutil.ReadAll(stdin)

156 sw := checker.Process(input) // uintl6

157 shm[sw]++

158 return aflshm.Status(int32(sw))

159 }

160

161 func fuzzTimedPasswordEq(shm aflshm.SharedMem, stdin io.Reader) aflshm.Status {
162 input, _ := ioutil.ReadAll(stdin)

163

164 // We use the space shm[@x0000]--shm[@x5fff] (24575 decimal) as timing storage. We use 0-255 per
memory space, yielding 6266625

165 // possible "ticks'. We stay below 0x6000 to not interfere with IS07816 defined status words for
'errors'. With a pause of 1@ns

166 // after each tick, we can span 62666250ns, or 62ms for one command. Otherwise, we panic,
stopping the entire process.

167 var semaphore uinte4 = 1

168 go funcQ) {

169 var incrementsLeft uint8 = 255

170 var currentAddress uintl6 = 0

171 for atomic.LoadUint64(&semaphore) != 0 {

172 if incrementsLeft == 0 {

173 incrementsLeft = 255

174 currentAddress++

175 3

176 if currentAddress > uintle(@Ox5fff) {

177 panic("currentAddress out of range: @Ox5fff")

178 }

179 shm[currentAddress]++

180 incrementsLeft--

181 // sleep 10ns

182 time.Sleep(1@ * time.Nanosecond)

183 3

184 1{@)]

185 sw := checker.Process(input) // uintle
186 atomic.StoreUint64(&semaphore, @)

188 shm[sw]++

84

195

197
198

200
201
202
203
204
205
206
207
208
209
210

211
212
213
214

© 0N U A W N =

e e e e e
N O U W N = O

18

return aflshm.Status(int32(sw))
}

func readPrefixList(filename string) [][Jbyte {
if filename == "" {
return nil
}
contents, err := ioutil.ReadFile(filename)
if err != nil {
panic(fmt.Sprintf("cannot read prefixlist %q: %v", filename, err))
3
splitted := bytes.Split(contents, [Jbyte("\n"))
prefixList := make([][]byte, len(splitted))
for i, line := range splitted {
if len(line)%2 '= @ {
panic(fmt.Sprintf("error on line %d: hex-encoded values not multiple of 2"))
}
decodedLen := hex.DecodedLen(len(line))
prefixList[i] = make([]byte, decodedLen)
n, err := hex.Decode(prefixList[i], line)
if err != nil || n != decodedLen {
panic(fmt.Sprintf("cannot decode line %d (written %d of %d bytes): %v", i, n, decodedLen, err
D)
1
3
return prefixList

}
Code B.9: CLI program for fuzzing a smartcard with AFL

Code B.10 provides a wrapper shell script to start fuzzing a smartcard with AFL and the
CLI program from Code B.9. It does some pre-flight checks, and provides logging of the
output of both AFL and the CLI program.

#!/bin/bash
set -x

FUZZER=$(which afl-fuzz 2>/dev/null)
WHICHRET=$?

if [${WHICHRET} != "@"]; then
echo "Cannot locate binary afl-fuzz through which: ${FUZZER}"
if [! -f "/usr/bin/afl-fuzz"]; then
echo "Did not find afl-fuzz in /usr/bin, exiting"
exit 1
fi
echo "Manually setting FUZZER to /usr/bin/afl-fuzz"
FUZZER="/usr/bin/afl-fuzz"
fi

if [! -d "in_dir"]; then

85

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

v

echo "Please provide an input directory named 'in_dir
exit 1
fi

if [! -d "fuzzer_out"]; then
echo "Please provide an output directory named 'fuzzer_out'"
exit 1

fi

if [! -d "log"]; then
echo "Please provide a logging directory named 'log'"
exit 1

fi

TARGET="./go-passwordeq-cli"

if [! -f ${TARGET}]; then
echo "Cannot find target binary ${TARGET}, exiting"
exit 1

fi

LOGFN="date +%Y¥m%dTH¥HIM%S-afl-pweq"
echo "Capturing output in 'log/${LOGFN}-{afl,golang}side’..."

killall go-passwordeq-cli
PCSCD=$(pgrep pcscd)
if [-z ${PCSCD}]; then

echo "pcscd not running, exiting"

exit 1
fi

AFL_I_DONT_CARE_ABOUT_MISSING_CRASHES=1 AFL_SKIP_BIN_CHECK=1 ${FUZZER} -i in_dir/

-0 fuzzer_out/ -m

2048 -t 5000000 -- ${TARGET} -fuzz -pcsc -logfile "log/${LOGFN}-golangside" "${@}" | tee -a "

1og/${LOGFN}-aflside"

Code B.10: Wrapper shell-script for logging output from Code B.9, and calling AFL

86

	Introduction
	Preliminaries
	Fuzzers
	Side-channels
	Smartcards

	Related work
	Case studies
	Java Card applet: PasswordEq
	Unprovisioned simcard

	Experiments
	Experiment 1: the DifFuzz paper
	Experiment 2: Exposing a timing side-channel in a Java Card applet
	Experiment 3: Using DifFuzz to fuzz a Java Card applet on a smartcard
	Experiment 4: Status words as pseudo side-channel information for afl
	Experiment 5: Smartcard instruction set discovery using status words
	Experiment 6: Status words, timing, afl, PasswordEq

	Future work
	Conclusion
	Acknowledgements
	Smartcard communication
	Communication setup
	Tools: GlobalPlatformPro
	Applet installation

	Code listings
	Java Card applet PasswordEq
	Supporting scripts, and fuzzing target for Section 5.3
	Communication interface program

