
Unsupervised 
out-of-distribution detection

in digital pathology
Thesis for the degree of Master of  Science 

in Computing Science –Data Science specialization

by Gabriel Raya

November 2020



Master Thesis Computing Science
Data Science

Radboud University

Unsupervised out-of-distribution
detection in digital pathology

Author: Gabriel Raya Rodŕıguez
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Abstract

Despite huge success, deep neural networks are still not reliable enough to work under
critical conditions. As they are susceptible to data drawn from a distribution different
to that of the training data, mistakenly assigning high confident predictions to such
out-of-distribution (OOD) inputs. A natural approach to overcome this issue is to use a
deep generative model (DGM) to reconstruct the probability density of the training data
and use the likelihood estimates to find whether a new data point x∗ comes from the
training data distribution. However, in this thesis, we found that DGMs are susceptible
to OOD inputs, as their likelihood estimates are poorly calibrated. This happened when
we tested a variational autoencoder (VAE) over several image data sets. To mitigate
this problem, we propose using a Bayesian Variational Autoencoder (BVAE) and an
Ensemble of VAEs to robustify the OOD detection score by estimating the epistemic
uncertainty of the likelihood model.
While experimental results show improvements over VAEs on simple tasks, these meth-
ods do not scale to more complex tasks such as digital pathology. Perhaps surprisingly,
in our setting, we found that BVAEs and VAEs do not account directly for the typical
set of the data distribution. Therefore, making direct use of the likelihood estimates
is not enough to sufficiently model in-distribution inputs. For this reason, we further
investigate the problem of typicality in VAEs and use the density of states estimator
(DoSE) to measure the frequency of various model statistics. We empirically demon-
strate how DoSE outperforms the former approaches and show how it can be used in
digital pathology when training a model solely on healthy tissue to detect tumor tissue
as OOD samples yielding an AUROC score of 0.84.
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Nomenclature

Acronyms / Abbreviations

AI Artificial Intelligence

OOD Out-of-distribution

InD In-distribution

NN Neural Network

DNN Deep Neural Network

BNN Bayesian Neural Network

MCMC Markov Chain Monte Carlo

SGMCMC Stochastic Gradient Markov Chain Monte Carlo

KL Kullback-Leibler

ELBO Evidence lower bound

DGM Deep Generative Models

VAE Variational Auto Encoder

BVAE Bayesian Variational Auto Encoder

RP Random Prior

i.i.d Independent and identically distributed

Symbol / Definition

qφ(z|x) Estimated posterior probability function, also known as probabilistic
encoder, inference/recognition network

pθ(x|z) Likelihood of the generating true data given the latent vector z, also
known as probabilistic decoder

p(x) probability density function

z ∼ p(z) random variable z sample from a density function p(z)

Var(x) variance of a random variable x

σx standard deviation of a random variable x

H(x) Entropy of a random variable x

DKL(q||p) KL-divergence of distribution q and p
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Chapter 1

Introduction

I can live with doubt and uncertainty. I think it’s much more interesting
to live not knowing than to have answers which might be wrong.
—Richard .P. Feynman

Over the last few years, deep neural networks (DNNs) have made remarkable progress in
many fields, ranging from applied to fundamental research, e.g., physics, biology, health,
computer vision, autonomous driving cars, among many others. As a result, complex
decision systems such as autonomous cars, medical diagnosis, and cybersecurity use
this technology. Despite this considerable success, DNNs are still not reliable enough
to work under dataset shift, a common phenomenon present in machine learning when
the conditions in which the model is trained are entirely different to those in which
the model is used, representing a critical problem to AI safety. As an example, let us
consider the case of a pathologist who makes use of a computer-aided diagnosis (CAD)
system to identify whether a patient has a tumor. The CAD system, powered by a
DNN, tested and verified under controlled conditions, is then deployed ‘in the wild‘,
and therefore susceptible to different sources of uncertainty that were not present at
training time. Consequently, the system could give erroneous medical diagnosis with
high confidence, possibly resulting in patient neglect that could lead to fatal results.
Similarly, an autonomous car could present undesired behaviors under inputs that the
DNN is unfamiliar with.
To illustrate this failure, let’s consider the example shown in Figure 1.1. A classifier is
trained on samples X = {x1, ..., xn} from the CIFAR10 [Krizhevsky, 2009] dataset. We
assume that these samples are drawn independently from the same distribution p(X).
Since the model is only exposed to samples from p(X) at training time, these are also
known as in-distribution samples. By adjusting the configuration on the model parame-
ters, the model learns to classify the ten different classes (airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, truck) with a 94% accuracy on the test set. What if a user
decides to test the model with a new input x∗ from a distribution q(X) 6= p(X), e.g.,
an image from the SVHN dataset?. These samples are also known as out-of-distribution
(OOD) samples since they come from a distribution different than the training distri-
bution. Figure 1.1 shows how the model not only assigns incorrect predictions to OOD
samples, but it does so with high probability. For example, Figure 1.1b shows how an
OOD input x∗, with the corresponding label ‘3‘, is incorrectly classified as ‘bird‘ with
maximum probability. This failure in DNNs is known as the out-of-distribution problem.
OOD detection allows us to measure how a model generalizes to domain shift, detect-
ing if the model knows what it knows [Lakshminarayanan et al., 2017], a fundamental
assessment to safety-critical applications.
This vulnerability of DNNs has motivated the development of several approaches to de-
tect such OOD samples by estimating predictive uncertainty estimates in supervised
learning settings [Gal and Ghahramani, 2016, Lakshminarayanan et al., 2017]. How-
ever, these supervised learning OOD methods are task-specific, requiring labeled data,
which is expensive to obtain most of the time. Some supervised methods may also
require q(X) to be specified at training time, which is not always possible, e.g., when
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(a) Predictions for in-distribution data. (b) Predictions for OOD data.

Figure 1.1: DNNs fails to detect OOD inputs. A model trained on samples from the
CIFAR10 dataset classifies in-distribution inputs from the test set with a 94% accuracy.
However, when the model is evaluated on inputs from the SVHN dataset, the model
incorrectly classifies these OOD inputs with high probability. The bottom row shows
the probabilities predicted by the model for a given new input x∗ (top row).

anomalous data is rare. On the other hand, unsupervised learning OOD distribution
methods are task agnostic techniques that can leverage large amounts of unlabelled
data to reconstruct the data density under the model. A possible advantage of unsu-
pervised methods over discriminative models is that by modeling a density instead of
just class boundaries, one could capture more relevant information required for effective
OOD detection. Therefore, the unsupervised approach to detect such OOD samples is a
promising avenue in digital pathology, where annotated training data is expensive and
abnormal samples are challenging to obtain.
In this thesis, we study the problem of detecting out-of-distribution samples in a real-
world digital pathology task using solely unlabeled data as in-distribution samples.
Specifically, we want to train a model using only normal class data, data from the
‘healthy‘ class, and detect tumor tissue or anomaly as out-of-distribution data. There-
fore, we research the following question:

How can we effectively determine whether a new test input x∗ was drawn from the
training distribution p(X) or from other distribution q(X) 6= p(X) using only unlabeled
data?.

To answer this question, we first started investigating how random prior networks,
a method that has been successfully used to estimate high-quality uncertainty esti-
mates for regression tasks [Osband et al., 2018], could be used to detect OOD sam-
ples on image data. Empirically, we show that while this approach works well for
regression tasks, it does not scale to image data sets, such as CIFAR10 and PCam
[Veeling et al., 2018], contrary to what [Ciosek et al., 2020] recently showed. We pointed
out that [Ciosek et al., 2020] mistakenly evaluated their method to detect OOD samples
by testing OOD scores against the train set rather than the test set. As a result, we
show their approach does not generalize well to unseen samples, and consequently, their
experiments do not support their findings. For this reason, we further explore the use of
likelihood-based deep generative models (DGMs) (e.g., variational autoencoders, auto-
regressive models, or flow-based models). Specifically, we investigate whether variational
autoencoders (VAE) [Kingma and Welling, 2014, Rezende et al., 2014] can be used for
anomaly detection. Likelihood-based DGMs are commonly employed to reconstruct the
data distribution p(X) by maximizing the likelihood p(X|θ) under the model param-
eters θ. One can use a one-sided threshold on the model log-likelihoods as a decision
rule to identify OOD samples from in-distribution samples. This approach resides in the
idea that the likelihood under the model parameters p(X|θ) represents the ‘probability
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of the data under the model parameters,’ explaining how well a specific configuration
of the model parameters explains the data and, therefore, in-distribution data should
have higher likelihoods than out-distribution data. Historically, this approach has re-
mained to work on low dimensional data, as shown by [Bishop, 1994]. However, we
found that this is not the case for higher-dimensional data, such as images. We found
that VAEs often assign higher likelihoods to OOD samples than in-distribution sam-
ples, as recently noted by [Nalisnick et al., 2018], who empirically showed this failure on
flow-based models, VAEs, and PixelCNNs. Not surprisingly, the lack of robustness of
DGMs to OOD inputs could be explained by the deterministic behavior of deep neu-
ral networks, providing only a single point estimate for the model parameters without
confident bounds, and therefore not acknowledging the possibility that other plausible
models could have explained the data as well. To robustify this phenomenon, we study
the uncertainty present in a variational autoencoder’s model parameters, also known as
epistemic uncertainty. We take both Bayesian and non-Bayesian approaches to model
this source of uncertainty. The Bayesian approach leads to a Bayesian Variational Au-
toencoder (BVAE) [Daxberger and Hernández-Lobato, 2019], while the non-Bayesian
approach leads to an ensemble of VAEs [Lakshminarayanan et al., 2017]. BVAEs ac-
count for model uncertainty by placing a posterior distribution over the decoder and en-
coder parameters. Computing the full posterior distribution over the model parameters
requires Bayesian inference, which has been challenging to use in deep learning due to its
high computational cost. Instead, we used a scaled adaptive version of Stochastic Gra-
dient Hamiltonian Monte Carlo (SGHMC) [Chen et al., 2014, Springenberg et al., 2016]
that allows sampling from the posterior distribution in a Metropolis Hasting framework
using a mini-batch-based optimization scheme. The resulting model provides samples
from the posterior distribution that we used as a set of hypotheses to estimate agree-
ments’ variability to compute metrics to detect potential OOD samples. The resulting
samples can be seen as an ensemble of VAEs. For this reason, we also implement an
ensemble of VAEs [Lakshminarayanan et al., 2017] to compare the effectiveness of both
Bayesian and non-Bayesian approaches to detect OOD samples.
Our empirical results show that the BVAE provides more robust scores than the tradi-
tional VAE when the VAE likelihoods are poorly calibrated. However, in some cases,
we observe that the variability across the BVAE posterior samples for in-distribution is
similar to that for OOD inputs, and so the information of a new OOD sample x∗ is not
enough to be detected as a potential OOD input. We report similar results to BVAEs
with an ensemble of VAEs.
We close this work by discussing the problem of typicality in VAEs and illustrate that
OOD methods that solely rely on the poorly calibrated likelihoods are not robust enough.
A possible reason is that VAEs, trained under the Maximum Likelihood principle, do not
maximize the typical set due to high dimensions’ norm sensitivity. We implement the
density of estates estimator (DoSE) [Morningstar et al., 2020] to measure the frequency
of various model statistics using a one-class Support Vector Machine (SVM) or Kernel
Density Estimator (KDE) to estimate the ‘probability of the model probability.’ We
empirically demonstrate how DoSE outperforms the former approaches and show how
it can be applied to digital pathology when training a model solely on healthy tissue to
detect tumor tissue as OOD samples. All the methods are first validated on standard
image dataset benchmarks, e.g., MNIST, Fashion-MNIST, CIFAR10, and SVHN.
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1.1. THESIS CONTRIBUTIONS

1.1 Thesis contributions

The main contributions of this thesis are as follows:

• A review of current unsupervised methods for out-of-distribution detection with a
particular focus on VAEs.

• We empirically demonstrate that random prior networks do not scale to large
datasets for OOD detection and point out that [Ciosek et al., 2020] mistakenly
evaluated their method to detect OOD inputs.

• We empirically show the now well-known problem that VAEs sometimes assign
higher likelihoods to OOD samples and provide an in-depth analysis of this failure.

• We describe how to estimate epistemic uncertainty in DGMs using Bayesian in-
ference and deep ensembles with automatic gradient differentiation tools.

• We provide an analysis of the problem of typicality in VAEs and show how DoSE
can be applied to digital pathology yielding an AUROC score of 0.84 on a model
trained solely on healthy tissue to detect tumor tissue as OOD samples.

1.2 Thesis outline

This thesis discusses the fundamental problem of out-of-distribution detection in an un-
supervised setting. Even though the motivating application is in digital pathology, the
methods discussed here can be used in a broader range of applications.

The thesis is structured as follows :

• Chapter 2 provides the theory necessary to understand this work.

• Chapter 3 presents a brief introduction to Digital Pathology and introduces the
digital pathology data that used in the rest of this work.

• Chapter 4 briefly describes random prior networks [Ciosek et al., 2020], presents
the empirical results obtained when used for OOD detection, and demonstrates
how [Ciosek et al., 2020] mistakenly evaluated their method to detect OOD inputs,
and consequently, their experiments do not support their work.

• Chapter 5 shows how VAEs sometimes assign higher likelihoods to OOD sam-
ples. It presents the results obtained by BVAEs and an ensemble of VAEs, and it
experimentally shows the problem of typicality by using DoSE.

• Chapter 6 presents the results obtained in this work and suggests possible future
avenues of research.

1.3 Code

The code is available online at https://github.com/gabrielraya/uncertainty-estimation.
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Chapter 2

Bayesian Modeling
in Deep Learning

Bayesian modelling allows to express the degree of plausibility over the esti-
mated functions θ̂ using the framework of probability theory [Depeweg, 2019].

This section presents the majority of the theory this work builds upon and is neces-
sary to understand the later chapters. Section 2.1 and 2.2 discuss the frequentist and
Bayesian approaches of deep neural networks. Section 2.3 presents a brief overview
of modern approaches to approximate inference. Section 2.4 discusses the sources of
uncertainty present in deep learning and introduces some standard metrics to measure
uncertainty. Section 2.5 and 2.6 introduce Variational autoencoders and Bayesian Vari-
ational autoencoders, respectively. Section 2.7 presents the problem of typicality in deep
generative models.

2.1 Single point estimates in neural networks

We start this section by defining the classical statistical problem of parameter estimation.
Given i.i.d data X = {x1, ..., xn} sampled from a parent distribution p(X|θ), the goal of
parameter estimation is to find θ. For this, we rely on methods of parameter estimation.
There are two classical approaches from the point of view of statistics: frequentist and
Bayesian.
In the frequentist approach, the most common used method of parameter estimation
is maximum likelihood estimation (MLE). MLE aims to maximize the likelihood function
L(X; θ). The likelihood is simply the joint probability density function (p.d.f) for our
n measurements X given θ. Because the xi are assumed to be independent, the joint
p.d.f becomes the product of p.d.f’s for the individual xi, and therefore the likelihood
can be re-expressed as the sum of the logs by the log rule as shown in equation 2.1. A
parameter θ̂MLE is then estimated under MLE by equation 2.2.

L(X; θ) = L(x1, x2, ..., xn; θ) =

n∏
i=1

fi(xi; θ) =

n∑
i=1

log fi(xi; θ) (2.1)

θ̂MLE = argmax
θ

p(x|θ) = argmax
θ

n∏
i=1

p(xi|θ) = argmax
θ

n∑
i=1

log p(xi|θ) (2.2)

We emphasize the fact that MLE provides a single point estimate θ̂MLE by using the
subscript MLE . Deep neural networks learn such single point estimate θ̂MLE , typically
by a gradient descent method (i.e., backpropagation). Therefore DNNs are determinis-
tic functions that directly do not take into account epistemic/model uncertainty since

this single set of weights θ̂MLE does not guarantee that our model will generalize well
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2.2. FULL DISTRIBUTION ESTIMATES

(a) CNN (b) Bayesian CNN

Figure 2.1: Comparing single point estimates with full distribution estimates in deep
learning. (Left) A Convolutional Network (CNN) with single point-estimates as param-
eters. (Right) A CNN with probability distributions over parameters. (Image taken
from [Laumann, 2018]).

to unseen data because there will always be many plausible models that could have
explained our data better. This is one of the reasons that MLE leads to generalization
issues and undesirable behavior against OOD inputs.

2.2 Full distribution estimates

In contrast to the frequentist approach, the Bayesian approach estimates a full
posterior distribution p(θ|X), as a consequence that now θ is a random variable.
This randomness in the parameters allow us to incorporate epistemic uncertainty. To
estimate the full posterior distribution p(θ|X) we must apply Bayesian theorem :

p(θ|X) =
p(X|θ)p(θ)
p(X)

=

∏n
i=1 p(xi|θ)p(θ)∫ ∏n
i=1 p(xi|θ)p(θ)dθ

(2.3)

This posterior distribution describes how likely our set of random variables θ1, ..., θn is to
take on each of its possible states, placing higher probabilities on settings which are more
likely to have generated the data. The uncertainty in the model parameters can then be
measured as the variability of disagreement among the posterior samples. Therefore, the
Bayesian framework brings us a way to measure uncertainty [Murphy, 2012]. To estimate
the posterior distribution we must compute the normalization constant (evidence) p(X):

p(X) =

∫
p(X|θ)p(θ)dθ (2.4)

Inference for a new data point x∗ yields to compute the so called expected likelihood :

p(x∗|X) = Ep(θ|X)[p(x
∗|θ)] =

∫
p(x∗|θ)p(θ|X)dθ (2.5)

Equation 2.5 translates uncertainty in the model parameters into uncertainty in predic-
tions. Broadly, Bayesian modelling in deep learning can be summarized as follows:

1. Learning → p(θ|X) = p(X|θ)p(θ)
p(X)

2. Inference → p(x∗|X) =
∫
p(x∗|θ)p(θ|X)dθ

However, doing inference in Bayesian modelling requires marginalizing out over all the
possible configuration of θ and computing the model evidence, which are intractable
since modern neural networks often contain millions of parameters, and therefore, we
need to rely on approximate inference methods.
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2.3. APPROXIMATE INFERENCE

2.3 Approximate Inference

The target of Bayesian inference is to estimate the posterior over the model’s parameters
p(θ|X) (eq. 2.3), which is generally intractable and therefore approximate inference
is required. There are two common families of methods used to approximate this: 1)
variational inference (VI) or 2) sampling methods (e.g., MCMC) [Bishop, 2006].

2.3.1 Variational Inference

Variational Inference (VI) [Hinton and van Camp, 1993], also known as Variational Bayes
(VB), approximates the posterior distribution over the model parameters p(θ|X) with a
parameterized variational distribution qφ(θ) ∈ Q from a family of distributions Q with
variational parameters φ. The main idea behind VI is to cast the task of finding the pos-
terior distribution into an optimization problem [Blei et al., 2017, Jordan et al., 1999]

q∗φ(θ) = argmin
qφ∈Q

DKL[qφ(θ)||p(θ|X)] = argmin
q

∫
qφ(θ) log

qφ(θ)

p(θ|X)
dθ (2.6)

By adjusting the variational parameters φ we aim to find a distribution q∗φ(θ) that
minimizes the Kullback-Leibler (DKL) divergence with the true posterior p(θ|X):

DKL[qφ(θ)||p(θ|X)] = Eqφ(θ)[log qφ(θ)− log p(θ|X)] (2.7)

= Eqφ(θ)[log qφ(θ)− log
p(X|θ)p(θ)
p(X)

] (2.8)

= log p(X) + Eqφ(θ)[log qφ(θ)− log p(X|θ)− log p(θ)] (2.9)

To avoid the intractable model evidence log p(X) (Eq. 2.4), we can derive a bound to
log p(X) on eq. 2.9, by making use of the non-negativity of the DKL. This bound is
known as the Evidence Lower Bound or ELBO:

log p(x) ≥ ELBO = Eqφ(θ)[log p(X|θ)− log qφ(θ) + log p(θ)] (2.10)

= Eqφ(θ)[log p(X|θ)]−DKL(qφ(θ)||p(θ)) (2.11)

Maximizing the ELBO is equivalent to minimizing the VI objective of equation 2.6,
which approximates to maximizing the log p(x). The ELBO decomposes in two terms:
the first term is called as data term, it measures how well the model parameters explain
the data, and the second term, the KL divergence, sometimes known as the regularizer
term, penalizes the variational posterior for differing with the prior.
VI is efficient and easy to scale to large data. However, the freedom to choose the
variational family of distributions induced bias.

2.3.2 Markov Chain Monte Carlo

Under some circumstances, the model evidence is not required to building a Markov
with p(θ|X) as the stationary distribution. Eq. 2 can be then approximated as:

p(x∗|X) =
1

M

M∑
m=1

p(x∗|θm); θm ∼ p(θ|X) (2.12)

However, in practice, when working with high dimensional datasets, sampling can be
very slow, specially when the true distribution is highly correlated, making traditional
MCMC methods unsuitable for deep learning.
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2.3. APPROXIMATE INFERENCE

Hamiltonian Monte Carlo (HMC)

Hamiltonian Monte Carlo [Duane et al., 1987, Neal, 2012], depicts an analogy to a fic-
titious dynamical system by defining a Hamiltonian function in terms of the target
distribution from which we want to collect samples with an auxiliary variable in a
Metropolis-Hasting framework. In this setting, a model’s parameter space can be seen
as an uneven surface with position variables θ. The probability of a specific configura-
tion of the posterior density is p(θ|x) ∝ exp (−U(θ)). Therefore, the posterior density
is related to the system’s potential energy as follows:

log p(θ|X) ∝ log p(X, θ) = −U(θ) (2.13)

with potential energy given by

U(θ) = −
∑
x∈X

log p(x|θ)− log p(θ) = − log p(X, θ) (2.14)

This implies that at each configuration, the height is inversely related to the probability
under the posterior distribution. To sample from p(θ|X), HMC introduces an auxiliary
momentum variable r. This allows to define a proposal joint distribution of (θ, r) and,
with it, the Hamiltonian function H(θ, r)

logπ(θ, r) ∝ −U(θ)− 1

2
rTM−1r = −H(θ, r) (2.15)

M is the fictitious mass associated with each parameter. The Hamiltonian function
H(θ, r) measures the total energy of the system, the potential and kinetic energy. To
get samples, HMC simulates the Hamiltonian dynamics:{

dθ = M−1rdt

dr = −∇U(θ)dt
(2.16)

The Hamiltonian dynamics leave π invariant, allowing us to get samples from the target
distribution p(θ|X) by sampling first from π(θ, r) and then discarding the resulting r
samples. This allows a more efficient exploration of the parameter space than random
walk MCMC proposals. However, in practice, we cannot simulate exactly this fictitious
continuous system, and instead, we consider a discrete system. MH steps must be
implemented to compensate for the discretization error. A new sample is then saved
every fixed number of steps.
However, a well-known limitation of HMC methods is that the required gradient compu-
tation ∇p(X|θ) to simulate the Hamiltonian dynamics is infeasible to compute to large
datasets [Chen et al., 2014]. A limited condition of using HMC in deep learning.

2.3.3 Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)

An obvious approach to scale HMC to large dataset is simply to apply a stochastic
gradient modification to HMC by replacing ∇U(θ) of Eq. 2.16, which requires iterating
over the entire dataset X, by a noisy estimate ∇θŨ(θ, X̃) based on a minibatch X̃ ⊂ X
as follows:

∇θU(θ,X) ≈ ∇θŨ(θ, X̃) = −|X|
|X̃|

∑
x∈X̃

∇θ log p(x|θ)−∇θ log p(θ) = ∇θU(θ,X) + v

(2.17)
Notably, [Chen et al., 2014] showed that this ‘naive‘ approach no longer leads the de-
sired target distribution as the stationary distribution since the stochastic gradient ap-
proximation introduces a noise v ∼ N (0, 2Bε) normally distributed. They proposed
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2.3. APPROXIMATE INFERENCE

Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) as a scalable variant of HMC
with friction term C added to the momentum update from Eq. 2.16. The inclusion of
the friction term counteracts the noise v introduced by the stochastic gradient estimates,
maintaining the desired target distribution p(θ|X) as the stationary distribution that
results in the following updates:{

dθ = M−1rdt

dr = −∇Ũ(θ)dt− CM−1rdt+ v
′
; v

′ ∼ N (0, 2(C − B̂)dt)
(2.18)

B̂ is an estimate of the gradient noise. In practice, the continuous system is transformed
to ε-discretization, so dt = ε. M is often set to the identity matrix M = I, B̂ = 0. C, the
friction term is commonly identified as the momentum decay. The authors showed that
there is a connection between SGHMC and SGD with momentum by defining v = εM−1r
(the momentum in SGM parlance) and rewriting 2.18 with v in a ε-discretization manner
as follows:{

∆θ = v

∆v = −ε2M−1∇Ũ(θ)− εM−1Cv +N (0, 2ε3M−1(C − B̂)M−1)
(2.19)

If we define η = ε2M−1, α = εM−1C, β̂ = εM−1B̂{
∆θ = v

∆v = −η∇Ũ(θ)− αv +N (0, 2(α− β̂)η)
(2.20)

with learning rate η > 0, and momentum term (1 − α). When the noise is removed
(via C = B̂ = 0), SGHMC reduces to SGD with momentum, making it suitable to
scale to large datasets, and therefore to deep learning. Following these updates 2.18 θ
is guaranteed to be distributed according to p(θ|X). SGHMC marries the efficiencies
in parameter space exploration of HMC methods with the computational efficiencies of
stochastic SGD-based optimization techniques. However, SGHMC omits the metropolis
step as it requires computation over the entire dataset, and therefore presents a bias
that grows with the value of the step size.

To alleviate this problem [Springenberg et al., 2016] proposed a more robust variant
of SGHMC [Chen et al., 2014] based on a scaled adaptation of SGHMC. This bias is
avoided by the burn-in procedure used to adapt its own hyper-parameters during the
initial stages of sampling.

In Figure 2.2 we compare SGHMC with Scale adapted SGHMC in a toy example for a
bimodal target distribution p(θ|X) = 1

2N (x;µ = θ0, σx =
√

2)+ 1
2N (x;µ = θ0+θ1, σx =√

2). The data was created using this scheme : xi =
√

(2)α1 + θ0 if k < 0.5 else x =√
(2)α2 + θ0 + θ1, such that k ∼ U(0, 1) and α1, α2 ∼ N (0, 1) with θ = {θ0 = 0, θ1 = 1}.

We observed how adaptive scale SGHMC cancels out the bias present in SGHMC and at
the same time provides a better exploration of the parameter space. We use automatic
gradient differentiation tools1 to implement the samplers. This example motivates the
use of Adaptive Scale SGHMC to estimates epistemic uncertainty in deep learning.

1We used the PyTorch implementation from https://github.com/automl/pybnn, who uses a variant
of SGHMC to scale the magnitude of the noise used during sampling
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2.4. UNCERTAINTY IN DEEP NEURAL NETWORKS

Figure 2.2: Contrasting sampling efficiency from a Gaussian mixture 1
2N (x;µ = θ0, σx =√

2) + 1
2N (x;µ = θ0 + θ1, σx =

√
2) where θ0 = 0, and θ1 = 1, using [Left] SGHMC

versus [Right] Adaptive scale SGHMC during 1000 steps, with burn-in = 100 (red) and
steps after burn-in =9900 (black) with learning rate η = 0.01, and momentum decay of
0.01. Adaptive scale SGHMC provides a better exploration of the parameter space.

2.4 Uncertainty in deep neural networks

Modelling in deep learning, as in any science, requires making assumptions that allow
us to synthesis the complexity of the world. This simplify abstraction is a consequence
of lack of information to fully describe the nature of the system or due to the physical
limitation of the machine to embedded all the information [Pearl, 1988]. As a result,
uncertainty is intrinsically present in our model’s predictions. Some possible sources of
uncertainty we can consider are as follows:

• There may be inherent noise in the data due to stochastic generative processes or
unpredictable variations in the system’s performance [Hora, 1996].

• There may be different plausible models that can explain the data.

• Limited knowledge to choose the right model to our task.

The first one is known as irreducible or aleatoric uncertainty. The other two are
known as model or epistemic uncertainty. While aleatory uncertainty is irreducible, one
can reduce the epistemic uncertainty by gathering more data. In this work, we only
consider model uncertainty caused by the uncertainty in the parameters.

2.4.1 Measuring Epistemic Uncertainty

Bayesian approach

Bayesian modeling has the ability to capture model uncertainty. One way to obtain the
uncertainty about the model parameters is as follows:

σ2(Ep(θk|X)[p(x
∗|θk)]); θm ∼ p(θ|X) (2.21)

This model uncertainty reflects the variability induced by different models. The variance
in the predicted likelihoods captures dissimilarity among explanations given by different
parameter configurations.

15



2.5. VARIATIONAL AUTOENCODER

(a) 50 samples ∼ p(θ|X) (b) 50 Ensembles

Figure 2.3: Contrasting model uncertainty estimation for Bayesian approach (SGHMC)
vs Non-Bayesian (Deep ensembles) on a regression toy example. a) Adaptive scale
SGHMC taking 50 samples from the posterior. b) 50 independent random initialed
trained models. Credible intervals correspond to ±3 standard deviations. Both models
were trained using 2000 epochs.

Non-Bayesian approach

Deep ensembles [Lakshminarayanan et al., 2017], is a non-Bayesian approach that in-
dependently trains an ensemble of models, providing a model combination that yields
a more robust model. Similar to Eq. 2.21 the predictions are combined by averaging
each model’s predictions. The difference is that each θ1, ..., θm is not a sample from the
posterior distributing p(θ|X) but an independent randomly initialized trained model.
This frequentist idea of repeating our experiments several times presents another way
to estimating model uncertainty. We use randomization-based ensembles to quantify
model uncertainty on VAEs in Section 5.3.2.
Nevertheless, this work’s focus is unsupervised learning; we use a regression toy example
to illustrate the quality of predicted uncertainties obtained from these two approaches.
We used the same toy regression problem from [Hernández-Lobato and Adams, 2015]
with 20 training input points x generated by sampling uniformly at random in an interval
of [−4, 4]. Each target y, is generated as y = x3+ε where ε ∼ N(0, 9). We trained a neural
network with one hidden layer and 100 hidden units using Adaptive Scale SGHMC.
However, HMC methods directly get uncertainties; choosing the right burn-in rate and
sampling rate from the posterior is challenging. Appendix 7.1 shows experiments using
5,20,30,50 ensembles/posterior samples.

2.5 Variational Autoencoder

Variational autoencoders (VAEs) [Kingma and Welling, 2014, Rezende et al., 2014] pro-
vide a principle framework for learning deep latent variable models p(x, z|θ) and cor-
responding inference models q(z|x, φ) with intractable marginal likelihood p(x|θ) =∫
p(x|z, θ)p(z)dz, where x are observable input variables, and z are continuous latent

variables. We assume that p(x, z|θ) = p(x|z, θ)p(z) factorizes into a likelihood p(x|z, θ)
of x given z and θ and a prior distribution p(z) over z. Analogous to Eq. 2.6 and Eq.
2.11, we can derived an ELBO to approximate log p(x) as follows:

logp(x) ≥ ELBO = Eq(z|x,φ)[log p(x|z, θ)]−KL[q(z|x, φ)||p(z))] (2.22)
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2.5. VARIATIONAL AUTOENCODER

(a) Data (b) Samples (c) Data Manifold (d) Interpolations (e) Latent Space

Figure 2.4: VAE on the MNIST dataset with input data x ∈ R28x28 and latent codes
z ∈ R2. a) Samples from the train set. b) Data generated from the trained VAE. c)
Data Manifold. d) Interpolations in the latent space: The n-dimensional vector µ. e)
Behavior in the latent space; each test data point xi is mapped to the latent space under
the recognition model qφ(z|x) : xi → zi. Model trained for 200 epochs, learning rate of
0.001, batch size of 256.

VAEs can be seen as two but independently parametrized models whose mean and vari-
ance are given by a deep neural network. The encoder or recognition model qφ(z|x)
approximates the posterior pθ(z|x) with the variational parameters φ. The decoder
or generative model pθ(x|z) helps the recognition model to learn meaningful represen-
tations of the data with the generative parameters θ. The recognition model is the
approximate inverse of the generative model pθ(x|z) according to Bayes’ rule. The main
advantage of the VAE framework over traditional Variational Inference (VI) is that now
the recognition model is a stochastic function of the input variables, in contrast to VI
where each data-case has a separate variational distribution,which is inefficient for large
data-sets [Kingma and Welling, 2019]. The recognition model uses a set of parame-
ters, the variational parameters φ, to estimate the variational posterior that is obtained
with a simple forward pass through the recognition model qφ(z|x) and as such is called
‘amortized variational inference‘ [Gershman and Goodman, 2014]. However, sampling
from the stochastic approximate posterior induces sampling noise in the gradients re-
quired for learning. To alleviate this problem, an unbiased estimate of the ELBO can
be obtained via the ‘reparametrization trick‘ as follows:

ELBO ≈ 1

K

K∑
k=1

log p(zk)− log qφ(zk|x)︸ ︷︷ ︸
KL term

+ log p(x|zk)︸ ︷︷ ︸
Reconstruction term

; zk ∼ qφ(z|x) (2.23)

In practice, the prior is commonly chosen to be an isotropic Gaussian p(z) = N (z; 0, I),
the variational posterior takes the form of qφ(z|x) = N (z;µφ(x), σφ(x)2 · I), the gen-
erative model pθ(x|z) can take the form of a Gaussian distribution for continuous x or
Bernoulli for binary inputs x, and typically setting k = 1 is sufficient. Unless specified
otherwise, we used these settings on the rest of this work.

Both the variational parameters φ and the generative parameters θ are jointly learned by
maximizing the ELBO, equivalently to minimizing the negative ELBO. Once a model is
trained, to generate data that resembles the true underlying generative process consist
of : 1) sampling a latent code from the prior zi ∼ p(z) and 2) pass it through the
generative model pθ(x|zi). The probabilistic encoder qφ(z|x) creates codes that represent
or disentangle semantically meaningful statistically independent and causal factors of
variation in the data [Kingma and Welling, 2019]. We illustrate this in Fig. 2.4 for the
MNIST data set using a Bernoulli decoder and a 2-dimensional latent space.
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2.5. VARIATIONAL AUTOENCODER

(a) Data (2-D slide) (b) Generated data (c) 2D Latent Space (d) Log-likelihoods

Figure 2.5: VAE toy example for OOD detection. VAEs can be use to reconstruct the
density of the model and then use to detect OOD inputs. The model was trained on a)
16-dimensional in-distribution data for 50 epochs, a learning rate of 0.01, latent space
= 2, and Adam optimizer. We plot a 2-D slice of this in-distribution (blue) and OOD
(red) data. b) 2-D slice of the generated data by the VAE. c) 2D Latent space. d)
Histogram of VAE log-likelihoods. VAE log-likelihoods yield to an AUROC =0.9999

2.5.1 VAEs for out-of-distribution detection

VAEs are likelihood based models that theoretically could be used to detect out-of-
distribution data. Since VAEs (approximately) maximize the probability p(X|θ) of the
training data X under the model parameters θ. For a new input x∗, one can estimate the
density p(x∗|θ) under the generative model θ [Bishop, 1994]. If p(x∗|θ) > λ, where λ is a
threshold, then x∗ under the generative model θ is in-distribution, OOD otherwise. To
get an estimator p̂(x, |φ, θ) of the probability p(x|θ) of an input x under the generative
model, one can use importance sampling w.r.t the variational posterior q(zk|x, φ) as
follows:

p̂(x|θ, φ) = Eq(z|x,φ)

[p(x|z, θ)p(z)
q(z|x, φ)

]
' 1

K

K∑
k=1

p(x|zk, θ)p(zk)

q(zk|x, φ)
; zk ∼ q(z|x, φ) (2.24)

where p̂(x|θ, φ) is both dependent of the parameters θ and φ to emphasis the dependence
on the variational parameters φ of the proposal distribution q(z|x, φ).

Figure 2.5 illustrates this natural approach to use likelihood-based models to detect
out-of-distribution inputs. We fit a VAE on a 16-dimensional toy example. The in-
distribution data x ∼ N (0,Σ), while OOD data ∼ N (16,Σ), where Σ ∈ R16x16 is a
positive definite matrix created at random. We observe in Figure 2.5b that VAE gener-
ates data like the training data plotted as a 2D-slice. The estimated likelihoods (using
Eq. 2.24) are well calibrated, assigning higher likelihoods to in-distribution data and
lower to OOD. However, this does not hold for higher-dimensional data. We demon-
strate this in the following sections, as recently demonstrated by [Nalisnick et al., 2018],
likelihood based approaches in general sometimes assign higher densities to OOD inputs.
This questions the use of DGMs (e.g., VAEs) for reliable density estimation detecting
OOD inputs. To alleviate this problem, we proposed using Bayesian Variational Au-
toencoders to capture epistemic uncertainty. Consequently, θmle is not a point estimate
anymore, but a random variable.
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2.6. BAYESIAN VARIATIONAL AUTOENCODER

2.6 Bayesian Variational Autoencoder

VAEs are trained using approximate Maximum Likelihood Estimation (MLE). As a
result of this, single point estimates (θMLE) of the model parameters are obtained. A
Bayesian Variational Autoencoder instead, infers a distribution p(θ|X) over the model
parameters. And thus, to obtain the marginal likelihood one must integrate out both
the latent variable z and model parameters θ as follows

p(x|X) =

∫ ∫
p(x, z|θ)p(θ|X)dθ =

∫ ∫
p(x|z, θ)p(z)dzp(θ|z,X)dθ (2.25)

(a) A VAE (b) An Ensemble of M
VAEs

Figure 2.6: Illustration of a VAE vs a BVAE.

To generate samples, one must now
draw a z ∼ p(z) from the prior and
a θ from the posterior p(θ|X), and
then generate x ∼ p(x|z, θ). Therefore,
training a BVAE requires Bayesian In-
ference in both posteriors p(z|x,X) over
the latent variables and p(θ|x,X) over
the model parameters. In this work, we
learn both the posterior of the model
parameters θ and the variational parameters φ. Together with latent variable z, the
parameters φ, θ are learned jointly using adaptive scale SGHMC and the ELBO as ap-
proximation to log p(x). The resulting BVAE provides M samples {θ, φ}Mm=1 from the
posterior of the encoder and decoder, θm, φm ∼ p(θ, φ|X), which can be seen as an
ensemble of M VAEs as shown in Figure 2.6.

Detecting OOD using BVAEs

[Nalisnick et al., 2018] showed that DGMs sometimes assign higher likelihoods to OOD
inputs than in-distributions. We motivate the use of BVAE and esembles of VAEs by the
following toy example. Let’s consider a similar setting as in Figure 2.5 but for a higher
dimensional space with x ∈ R28x282 where OOD inputs come from the same Gaussian
but with mu = 30 rather than µ = 0. Figure 2.7a shows the likelihoods obtained from a
VAE, showing a strong overlap with likelihoods obtained for OOD inputs. An AUROC
sore of 0.68 reflects that likelihoods estimates from VAEs are poorly calibrated for high
dimensional data. The BVAE now generates samples from the posterior, we discard
samples within a burn-in phase of B = 1 epoch and store a sample (of both encoder
and decoder parameters) after every D = 1 epoch, and use the last recent ten samples.
With these 10 samples we compute the average over the predicted likelihoods from each
sample (b), the variability of the predictions among the samples (c), and the Effective
Sample Size (ESS) (c), proposed by [Daxberger and Hernández-Lobato, 2019] to detect
OOD in a BVAE. Table 2.1 reports the AUCROC scores for M = {5, 10, 15, 18} samples,
and due to space constrains, we only compare an ensemble of 5 VAEs.
[Daxberger and Hernández-Lobato, 2019] demonstrated using the ESS as a score to
OOD detection has a relation with information theory since it measure the level of
information for the model given a new x∗ in a sequential Bayesian setting. We refer the
reader to the paper for more details.
In this work, we consider both Bayesian and non-Bayesian approaches to quantify epis-
temic uncertainty. However, we do not study the influence of the prior since this is out
of the scope. We emphasize that the quality of Bayesian Modelling Average depends
on the choice of the prior [Minka, 2000] and thus could improve the results presented in
this work.

2Same dimension as MNIST samples
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(a) VAE Log-likelihoods (b) Expected log p(x|θ) (c) BVAE Uncertainties (d) BVAE ESS

Figure 2.7: VAE toy example for OOD detection. BVAE measures of the expected
likelihood, the uncertainties as result of measuring the variability across the ensembles
and the ESS score.

Metrics M = 5 M = 10 M = 15 M = 18 5 Ensembles

Expected Log-likelihoods 0.7971 0.8267 0.8841 0.8852 0.7207
Standard deviation 0.8524 0.8709 0.8844 0.8837 0.8529
ESS 0.7707 0.77940 0.7754 0.7752 0.7384

Table 2.1: AUROC scores on an out-of-distribution 784-dimensional toy example using
the expected likelihoods, standard deviation and ESS score over 5,10,15,18 samples from
a BVAE and on an ensemble of 5 VAEs.

2.7 Typicality

A very intriguing property of high dimensional distributions is that samples concentrate
in an annulus ratio of

√
(dim). The Gaussian Annulus Theorem [Blum et al., 2020]

formalizes this idea. Let’s consider a 100 dimensional Isotropic Gaussian distribution
with zero mean and unit variance. We use a similar plot to [Morningstar et al., 2020],
and show in Figure 2.8 (a) a 2-D slice of this distribution. Although we would expect to
find most of the samples around zero (the point with the highest density), we observe
while the mean (red) has the highest likelihood, it is clearly atypical since samples
(black dots) concentrates in lower likelihoods, as shown in (c), around a spherical shell
of
√

(100), as pictured in (b).

(a) Euclidean norm (b) Euclidean norm (c) - log-likelihood

Figure 2.8: (a) A two dimensional projection of a 100 dimensional multivariate normal
distribution (Image from [Morningstar et al., 2020]). The origin is shown in red. We
show measurements of 100,000 random draws from this distribution: (b) The observed
norm of the draws, (c) the negative log-likelihood

This property of high dimensional distributions suggests that a possible reason why
VAEs sometimes assign higher likelihoods to OOD data is that the data’s typical
set may not intersect with the region of high likelihood. Specifically, even when a
VAE perfectly maximizes the likelihood of the data under the model parameters, this
does not guarantee that the in-distribution data reside in the regions of the highest
probability distribution given by the trained VAE. First, let’s formalize the defini-
tion of the typical set. The typical set of a probability is the set whose elements
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have an information sufficiently close to that of the expected information (entropy)
[MacKay, 2003, Cover and Thomas, 2006]

Definition 2.7.1 (ε-Typical set). For a distribution p(x) with support x ∈ X the ε-

typical set A
(n)
ε [p(x)] is comprised of all N sequences that satisfy

A(n)
ε [p(x)] =

{
x ∈ ANx :

∣∣∣ 1

N
log2

1

p(x)
−H[p(x)]

∣∣∣} (2.26)

where H[p(x)] is the entropy of the unknown data distribution and εR+ is a small
constant

The phenomenon of typicality in DGMs has been recently studied by various works
[Choi et al., 2018, Nalisnick et al., 2019, Morningstar et al., 2020]. In this work, we fol-
low ideas from [Morningstar et al., 2020] who proposed the Density State of Estimators
(DoSE). DoSE is inspired from statistical physics, where the probability of observing a
particle in a given state is governed by the state’s probability and the system’s geometry.
The DoSe codifies these ideas and proposes several statistics to model the number of
different configurations that describe the system. To account for the typical set in prac-
tice, the DoSE method constructs an estimation on several summary statistics of the
in-distribution data. Particularly, we build the DoSESVM [Morningstar et al., 2020]
by creating a N x M dimensional matrix for N training samples with M statistics per
sample. We first run Principal Component Analysis (PCA) to learn a whitening trans-
formation. Then we apply a one-class Support Vector Machine (SVM) to model the
frequency of these statistics in the in-distribution test set. Therefore, for a new test
point x∗ if it does not resemble similar frequency on theses statics, then x∗ is a potential
OOD sample. For the DoSe method, we computed the following statistics:

1. The approximate posterior prior divergence KL(q(z|x)||p(z)). This measure re-
sembles the goodness of fit between the approximate posterior q(z|x) and the prior
p(z)

2. posterior entropy H(q(z|x)). This can be understand as the uncertainty generated
by the approximate distribution by the encoder network given a new test point
x∗.

3. The approximate posterior/prior cross-entropy H(q(z—x),p(z)), or mutual infor-
mation.

4. The reconstruction loss p(x|z)

5. The negative log-likelihoods

In all cases, the intractable expectation of the posterior distribution is estimated using
Monte Carlo approximation with 16 samples.
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Chapter 3

Digital pathology

Digital pathology has emerged with the digitization of patient tissue samples on glass
slides and the use of whole slide images (WSIs)[Pantanowitz et al., 2018]. WSIs result
from scanning a glass slide in a high-resolution digital file using WSI’s scanners. A
single WSI typically contains trillions of pixels from which thousands of examples of
cancerous cells in the form of patches can be extracted. Consequently, the introduction
of WSIs has enabled the collection of massive amounts of data needed to train complex
deep learning architectures. As a result, deep learning has been successfully applied to
digital pathology to automatically analyze WSIs in applications such as prostate cancer
and identification of metastases in sentinel lymph nodes [Litjens et al., 2016] using image
analysis techniques such as object detection, segmentation, and classification. The suc-
cess of deep learning in these applications in digital pathology depends, in part, on the
reliability of the predictions and the amount of available annotated data. Specifically, a
well-calibrated model should be accurate for classes seen during training while assigning
high uncertainty estimates to unseen classes or irregularities. Recent efforts have been
made to provide uncertainty estimates in the predictions of the deep learning models
[Lakshminarayanan et al., 2017, Gal, 2016], and some such as [Linmans et al., 2020] in
the context of digital pathology. However, most of these approaches train a discrimi-
native model in a supervised fashion, requiring annotated data. Collecting such precise
annotations is expensive and prone to human error since it requires trained pathologists
to do this task manually. On the other hand, unsupervised learning techniques require
no annotations and can leverage large amounts of image data sampled from WSIs. For
this reason, a promising approach in digital pathology is to train a model solely on nor-
mal class (e.g., healthy tissue) and use this model to detect train data as in-distribution
and any other data type as out-of-distribution.
To this end, we first train all our models exclusively on normal lymph node tissue (in-
distribution) without having access to annotations. We evaluate the performance to
detect out-of-distribution samples using metastasized breast cancer. In the rest of this
work, we will refer to normal lymph node tissue as ‘healthy tissue‘ and metastasized
breast cancer as ‘tumor‘. The data we used comes from the Camelyon16 challenge
[Ehteshami Bejnordi et al., 2017]. Figure 3.1 shows two WSIs at different resolutions.
On the left, we show a WSI from the ‘healthy‘ class. There is some background present
in the WSI. Features from the healthy class can be visualized better as we zoom deeper
in the WSI, e.g., the lower right image. On the right, we show a WSI from the ‘tumor‘
class. We see in blue the annotations where the cancer has metastasized.
We test our model on two variants that we referred to as PCam32 and Camelyon.

PCam32

We used the Kaggle competition Histopathologic Cancer Detection. A modified version
of PCam dataset [Veeling et al., 2018] containing 96x96 color images labeled as either
“healthy tissue” or “tumor” sample from WSIs of the Camelyon16 dataset. The data
was center cropped in 32x32 pixels. A single 32x32 image is consider to be ‘tumor‘ if at
least 1 pixels is labelled as tumor. We cleaned the data by thresholding the Frobenius
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Figure 3.1: Images from in-distribution and OOD at different resolutions. Left: A WSI
sampled from in-distribution showing ‘healthy tissue‘. Right: A WSI sampled from
OOD diagnosed with ‘tumor‘.

norm for each sample in the dataset to remove possible white images mostly covered by
background information. The final dataset has a data split of 88851, 26182, 17824 for
train, test and OOD test respectively. The first two rows in Figure 3.2 show samples
from the healthy and tumor class respectively.

Camelyon

We manually selected regions from the WSIs of the Camelyon16 dataset, with either
healthy or tumor tissue and sampled patches of 32x32 pixels. The resulting dataset is
a set of images of 32x32 pixels. All the pixels in the 32x32 image are normal tissue or
tumor; e.g., in one image from the tumor class, each pixel contains information taken
from the metastasized breast cancer regions only. Data split of 200000, 20000, 20000
for train, test and OOD test respectively. The last two rows in Figure 3.2 show samples
from the healthy and tumor class respectively.

Figure 3.2: Two variant of images from in-distribution and OOD from Camelyon16.
First two rows corresponds to PCam32 from ‘healthy‘ and ‘tumor tissue‘, followed by
Camelyon correspondingly. Last row show same variant but as a grid of images.

We observed that PCam32 contains more data variability (e.g., color, shapes) than
Camelyon, and less information about the out-of-distribution signal in the tumor sam-
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(a) Healthy tissue

Pcam

(b) Tumor tissue
Pcam

(c) Healthy tissue

Camelyon
(d) Tumor tissue

Camelyon

Figure 3.3: Samples from PCam32 and Camelyon visualized as a grid of images.

ples. In the rest of this thesis, we present these datasets as image grids as shown in
Figure 3.3.
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Chapter 4

Random prior networks

This chapter introduces random prior networks [Ciosek et al., 2020], the first approach
we investigated in this thesis. We motivate using random prior networks in digi-
tal pathology by the promising state-of-the-art results on out-of-distribution detection
shown in [Ciosek et al., 2020]. Particularly in hard tasks such as CIFAR10 vs. SVHN
with an AUC score of 0.95 using unlabeled data. Unfortunately, we found a severe flaw
in how the authors validated their experiments, and consequently, this flaw may inval-
idate their work. Specifically, they calculated AUC scores between in-distribution and
out-of-distribution samples using the train set rather than the test set. This error can
be found directly in the author’s code (line 145) and in Table 1 of their paper, where
they compare Train vs. cat/deer, Train vs. vehicles, Train vs. excluded, Train vs.
SVHN. To illustrate whether this method scales well to image datasets, we reproduced
their experiments using the authors’ code1 and report the results obtained using the
proper validation test set vs. in-distribution and out-distribution samples. This imple-
mentation yields an AUC score of 0.59 in the CIFAR10 vs. SVHN task rather than the
authors’ presumed score of 0.95. Even when this method work for regression tasks, as
already shown by [Osband et al., 2018], we show in this section that it does not scale
to higher dimensional datasets such as CIFAR10 or PCam32. Therefore we caution the
use of random prior networks to high dimensional datasets.

4.1 Method

The paper shows that for a new point x∗, under some reasonable assumptions, a con-
servative estimate of the uncertainty in expectation over an ensemble of B = {1, ..., i}
networks pairs ({hi(x), fi(x)}) is obtained using Equation 4.2. This requires using the
Mean Square Error (MSE) of Equation 4.1 of a predictor network {hXfi(x)} trained on
unlabeled training data x = {x1, ..., xn} to match a fixed random network fi(x), also
referred to as the prior network, and estimating the variance v̂(x∗) across the ensembles.
Both the prior and the predictor are training using the same MSE objective function of
Equation 4.1.

σ̂2
µ(x) =

B∑
i=1

1

MB
||f(x)− hXfi(x)||2 (4.1)

Each prior and predictor network has M number of outputs. The subscript Xfi in the
predictor network {hXfi(x)} is used to state dependence on the data.

σ̂(x∗) = max(0, σ̂2
µ(x∗) + βv̂(x∗)− σ2

A) (4.2)

Note that if the number of ensembles B = 1, estimating uncertainties reduces to 4.1,
as v̂(x∗), the variance across the ensembles goes to zero. The aleatoric noise σ2

A in the
implementation is not considered.

1https://github.com/microsoft/conservative-uncertainty-estimation-random-priors
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Figure 4.1: First row shows 5 prior-predictor pairs before training. Second row shows
the trained prior-predictor pairs after 200 epochs for 20 equidistant training points
xi ∈ [−5, 0]. Third row shows the uncertainty estimate as the shaded blue area for 40
equidistant points xi ∈ [−5, 5] obtained after having a trained predictor network.

4.2 Experiments

4.2.1 Regression Task

We start the experiment section by reproducing the the 1D regression toy example as
shown by [Ciosek et al., 2020]. We used feed-forward neural networks with 2 layers of
128 units each and a 1-dimensional output layer. A predictor is trained on 20 equidistant
training points xi ∈ [−5, 0] to match its corresponding prior networks fi. The first row
show the state of the 5 prior(red)-predictor(green) pairs before training. During training
each prior network is evaluated on the unlabeled training data and the predictor aims to
match its output by minimizing the MSE between its prediction and the output of the
prior. In the second row we see how the predictor matches the prior’s random pattern
after 200 epochs. Finally, the last row shows how at test time, for a new point x∗, the
uncertainty estimates (shaded blue area) increase as we go far from the training data,
e.g. for points x′i ∈ [0, 5], and small uncertainty estimates in regions close to the training
points xi ∈ [−5, 0].
Continuing with this 1d regression example, we explore the effect of the depth on each
hidden layer in the estimated uncertainties. This is motivated by the fact that prior net-
works approach a Gaussian Process as the layer’s width goes to infinity. Table 4.1 reports
AUC scores for the baseline (second column) as computed by [Ciosek et al., 2020], a
2 layers NN, each layer with 128 units for both prior and predictor networks. Third
column reports results obtained when increasing the depth of the layers of the prior to
1000 units instead of 128 in each layer. The last column report the results when both
the prior and predictor layer’s depth are increased to 1000 units. The results show that
increasing the layer’s depth produces higher uncertainty estimates in regions far from the
training domain and so, the separation between in-distribution and out-of-distribution
samples is clearer. This yield to a higher AUC score of 0.99 when at the prior layer’s
depth is increased to 1000 compared to an AUC score of 0.96 when the depth is only
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OOD Score (AUCROC)
Method [Ciosek et al., 2020] Wfi = 1000 Wfi,hi = 1000

Train vs Excluded AUC 0.96375 0.99625 0.99625
Test vs Excluded AUC 0.96249 0.99250 0.9925

Table 4.1: Evaluating OOD on a 1-d toy regression task. An ensemble of 5 prior-
predictor networks is trained on in-in-distribution data xi ∈ [−5, 0], and tested in out-
of-distribution data xi ∈ [0, 5]. (Second column) Results obtained when the prior
and predictor networks are a 2-layer NN with 128 hidden units in each layer. (Third
column) The prior is now increased to 1000 units in each layer. (Third column) Both
prior and predictors are now increased to 1000 units in each layer.

128 units in each layer. We observed not change when the predictor network is also
increased to 1000 units in each layer.

4.2.2 Random prior on image datasets

We now continue our study of estimating uncertainties fitting prior networks on image
datasets. First, we reproduced the CIFAR10 experiments as described in [Ciosek et al., 2020].
The results reported in the paper consist of training a model on the classes {bird, dog,
frog, horse}, we refer to this set as the ‘Train‘ set. The classes {cat, deer, airplane,
automobile, ship, truck} are excluded from the training set and cosider as OOD sam-
ples. The model is then tested on this excluded set, on a subset of only cats and deers,
on samples coming from the vehicles class, and on the SVHN dataset. The AUC score
reported are always computed using the ‘Train‘ set. Figure 4.2a shows the results for
an ensemble of B = {1, 5, 10} prior-predictor networks. This results as computed here,
were reported on their paper. We address this issue by using the proper validation test
set vs. in-distribution and out-distribution samples. We report these results in Figure
4.2b.
A more sever flaw is found on the reported histogram in Figure 3 [Ciosek et al., 2020].
The authors reported a histogram of seen vs. unseen data. The unseen data histogram
is the result of plotting a combined set of the uncertainty estimates obtained from the
test and excluded set. The seen data histogram is the plot of the uncertainties obtained
from the train set, the same data the model was exposed to during training. This
can be seen directly from their code (Line188). Testing the quality of uncertainties in
this way is mistaken. In Figure 4.3 we show the results using the proper validation
test set. We only plot the uncertainties obtained from the test set and compare them
with the uncertainties obtained from the excluded set. We see that both histograms
overlap significantly which shows that using the uncertainties estimated from random
prior networks on this task as proposed by [Ciosek et al., 2020] is not a good measure
to detect OOD samples. This experiment yields an AUC score of 0.59.

Finally, we test this approach in our pathology task. For this, we use the PCam32
datset to train a model using only on the ‘healthy‘ class. To detect out-of-distribution
samples, we test the model on the ‘tumor‘ class expecting the model to give high uncer-
tainties to the sample coming from this class, and to obtain low uncertainties to samples
coming from the ‘healthy‘ class. However, as shown in Figure 4.4, we observe that the
uncertainty estimates coming from the test set overlap significantly with the uncertain-
ties estimated from the tumor class. This results in an AUC score of 0.4073. The model
was train using the same training configurations used in the paper for the CIFAR10
experiments (200 epochs, learning rate of 1e-4, Adam optimizer, and an ensemble size
of 1). Similar results were obtained using more ensembles.
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(a) AUC scores between in-distribution and out-of-distribution samples using the train set
rather than the test set as reported by [Ciosek et al., 2020]. Results obtained by directly using
the authors’ code.

(b) Results obtained using the proper validation test set vs. in-distribution and out-distribution
samples. This shows that the proposed method by [Ciosek et al., 2020] do not scale well for
high dimensional data.

Figure 4.2: Comparing results obtained by [Ciosek et al., 2020] with results obtained by
properly evaluating OOD using the test set instead of the train set.

Figure 4.3: Similar to Figure 3 in [Ciosek et al., 2020] but using test vs excluded data
sets instead. Random prior networks perform poorly, both histograms for the test and
excluded overlap considerably.

4.3 Discussion

In this section we empirically demonstrate that the theoretical justification provided
by [Ciosek et al., 2020] for the use of random priors to obtained conservative estimates
in the context of deep learning do not scale to large datasets such as images. Con-
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Figure 4.4: Estimated uncertainties using PCam dataset after running the model for
200 epochs, learning rate: 1e-4, using Adam optimizer, ensemble size= 1 (same training
setting in the paper). AUC: 0.4073. Similar results were obtained using more ensembles.

trary to what the authors claimed, we pointed out that they mistakenly evaluated their
experiments by calculating AUC scores between in-distribution and out-of-distribution
samples using the train set rather than the test set. Besides the CIFAR10 experiment
presented in the paper, we provided an extra experiment to show how this approach
does not scale for image data and therefore for digital pathology.
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Chapter 5

Experiments

This chapter provides implementation details for our experiments and demonstrates how
using the frequency of various model statistics helps to detect OOD samples.

Section 5.1 introduces the datasets we used in our experiments and provide hyper-
parameters settings for each case. Section 5.2 explores VAEs as a natural approach to
detecting out-of-distribution. Section 5.3 measures epistemic uncertainty and uses it
to detect OOD samples using a Bayesian VAE or an ensemble of VAEs. Section 5.4
empirically shows how different model statistics can be used to outperform previous
approaches. Finally, section 5.6 provides a failure study and remarks.

5.1 General Settings

We consider six datasets for all the experiments: FashionMNIST, MNIST, SVHN, CI-
FAR10, Pcam32, and Camelyon. Figure 5.1 shows samples of these datasets. One
remark about OOD samples from the PCam32 dataset is that the image is consider to
be tumor even when at least there is 1 pixel with tumor information in the 32x32 image.
Contrary to this, in the Camelyon dataset, each OOD sample has 32x32 pixels of tumor
information. For more details about PCam32 and Camelyon dataset we refer the reader
to Chapter 3.

(a) FashionMNIST (b) MNIST (c) SVHN (d) CIFAR10 (e) PCam32 (f) Camelyon

Figure 5.1: Datasets

We use these datasets to train VAEs, BVAEs, and ensembles of VAEs. All models have
the same encoder architecture. We use convolutional neural networks with padding set
to 1 in each layer of the encoder network and place a non-linearity ReLU function after
each convolution operation. Table 5.1 shows the architecture used for the encoder. The
decoder is the transposed architecture of the generator. We use a standard normal

Operation Kernel Strides Output Channels
Convolution 3 x 3 1 x 1 32
Convolution 3 x 3 2 x 2 64
Convolution 3 x 3 2 x 2 128
Convolution 3 x 3 s x s 256

Table 5.1: Encoder architecture used for the VAE model. s = 3 for images of size of 28
x 28, otherwise s = 5
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prior p(z) = N(0, I) for the latent variables z, an approximate posterior qφ(z|x) =
N(z;µφ(x),Σφ(x)), where µφ(x) is the mean vector, and Σφ(x) is a diagonal covariance
matrix. For the continuous cases, we use a Gaussian decoder p(x|z) = N(x;µθ(z), I),
where µθ(z) is the mean vector (we did not learn the covariance matrix of the decoder).
In the results, we make a remark for cases where we use a Bernoulli decoder.
For VAEs, we used Adam optimizer with learning rate of 0.001. For BVAEs we used
scale adaptive SGHMC with step size of 0.001 and momentum decay of 0.05. All our
experiments are implemented in Python using the Pytorch [Paszke et al., 2017] deep
learning framework. We measure the performance on OOD detection using the Area
Under the ROC curve (AUCROC) on the in-distribution test set and several OOD
datasets.

5.2 VAEs for OOD detection

In this section, we investigate whether VAEs can be used for anomaly detection. We
expect to see a well-calibrated VAE assigns higher likelihoods to in-distribution data
compared to out-of-distribution data. However, we showed that VAEs sometimes assign
higher likelihoods to OOD than to in-distribution samples.

To ensure the latent space provides enough flexibility to learn meaningful representations
of the data, in Table 5.2 we present an ablation study across different dimensions of the
latent space and measure the likelihoods in average bits per dimension (BPD, lower
means better). We choose the values that lead to the best likelihoods on average BPD
and use this same configuration for all the experiments.

Dataset Epochs z = 2 z = 8 z = 16 z = 32

VAE

Mnist† 200 0.27 0.18 0.17 0.17
FashionMnist† 200 0.47 0.43 0.43 0.43
FashionMnist 200 0.16 0.10 0.10 0.10
SVHN 200 0.09 0.06 0.04 0.04

z = 32 z = 64 z = 128 z = 256

CIFAR10 1000 0.10 0.08 0.08 0.08
PCam32 1000 0.17 0.15 0.13 0.13
Camelyon 1000 0.25 0.20 0.18 0.17

Table 5.2: Average bits per dimensions (BPD) for different dimensions of z, latent space,
for a VAE trained for 200 and 1000 epochs. .
†
p(x|z) ∼ Bernoulli

When training a VAE on MNIST with Bernoulli decoder, FashionMNIST, and SVHN
with a Gaussian decoder, the optimal latent space size is z = 16 using 200 epochs.
For FashionMNIST with Bernoulli decoder the optimal latent space is z = 8. For
CIFAR10, PCam32 and Camelyon it is z = 64, 128, 256 correspondingly using 1000
epochs. Figure 5.2 shows samples generated by the VAE with such configuration. The
images generated under the model parameters xgenerated ∼ p(x|z, θ) are visually similar
to those from the in-distribution data as a consequence that the VAE approximates
the (unknown) data distribution p∗(x) with the model distribution p(x|θ) under the
model parameters θ. This may suggests that VAEs likelihoods can be used to detect
OOD samples. Particularly, we may expect to get low likelihoods for OOD samples
and high likelihoods to in-distribution samples. In Table 5.3, we report likelihoods in
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(a) FashionMNIST

(b) CIFAR10

(c) MNIST

(d) Pcam32

(e) SVHN

(f) Camelyon

Figure 5.2: Samples generated by a VAE trained on (a) FashinMNIST, (b) CIFAR10 (c)
MNIST, (d) Pcam32, (e) SVHN and (f) Camelyon datasets. These samples are visually
similar those from the in-distribution data 5.1

average BPD (lower is better) obtained from these trained models but tested with in-
distribution and OOD samples. In the upper right side, We observed that a model
trained on CIFAR10 assigns lower BPD to samples from the SVHN dataset than to
samples from the CIFAR10 dataset. This phenomenon is intriguing since the model
was not trained on SVHN data and neither generates samples like SVHN. We follow
the same notation used by [Nalisnick et al., 2018], showing the average BPD for the
training data (CIFAR10-Train), the in-distribution test data (CIFAR10-Test) and the
out-of-distribution test data (SVHN-Test). This notation allows us to observe if the
model generalizes well to unseen in-distribution data. For example, we see that this
model assigns slightly lower BPD to the training data (CIFAR10-Train) than to the in-
distribution test data (CIFAR10-Test). We report the normalized histograms in Figure
5.3c of the log-likelihoods (higher is better) of the three splits. We see that SVHN test
set is shifted to the right hand side of the plot (highest likelihood).
Continuing with this study, a VAE trained on FashionMNIST assigns similar likelihoods
to samples from the MNIST dataset. This is again intriguing since the model did
not was exposed to any sample from the MNIST dataset, and however the model still
assigns similar likelihoods to these samples. Figure 5.3a shows the histogram of the
log-likelihoods of the three splits. This phenomenon is not symmetric. Figure 5.4
shows that likelihoods are properly calibrated for a VAE trained on MNIST and tested
on FashionMNIST. Similarly, CIFAR10 does not have higher likelihoods under a VAE
trained on SVHN.
We find similar results for our digital pathology datasets. Figure 5.3b shows a complete
overlap between log-likelihoods obtained from a VAE trained solely on healthy tissue and
tested on Tumor tissue. This results is not surprising, since the information content of
samples from the PCam32 tumor class overlapped with samples from PCam32 healthy.
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Dataset Avg BPD

VAE trained on FashionMNIST†

FashionMNIST-Train 0.4281
FashionMNIST-Test 0.4360
MNIST-Test 0.4378

VAE trained on MNIST†

MNIST-Train 0.1705
MNIST-Test 0.1746
FashionMNIST-Test 3.8490

(a) FashionMNIST case

Dataset Avg BPD

VAE trained on CIFAR10†

CIFAR10-Train 0.0350
CIFAR10-Test 0.0362
SVHN-Test 0.0223

VAE trained on SVHN†

SVHN-Train 0.0156
SVHN-Test 0.0171
CIFAR10-Test 0.0477

(b) CIFAR10 case

Table 5.3: Average bits per dimensions calculated on VAE for FashionMnist for different

dimensions of the latent space. †p(x|z) ∼ Bernoulli

This is because an image sample from the PCam32 dataset is considered to be tumor
if at least 1 pixel out of the 32x32 pixels is tumor, while the rest of the pixels are
healthy tissue. However, more striking results were obtained when we tested the model
on Camelyon. Figure 5.3d shows how a model trained on healthy class assigns higher
log-likelihoods to the tumor class. Contrary to [Nalisnick et al., 2018] who showed that
FashionMNIST vs MNIST assigns higher likelihoods to data from MNIST, we found
that this problem can be solved by using a Gaussian decoder instead of a Bernoulli
decoder to model the data. Nonetheless, we conclude this section by warning that using
only the log-likelihoods estimated by a VAE is not a informative statistic for anomaly
detection. In the next section we estimate epistemic uncertainty in VAEs and use it to
discriminate between in-distribution and OOD samples.

33



5.3. EPISTEMIC UNCERTAINTY

5.3 Epistemic Uncertainty

We now estimate the epistemic uncertainty in VAEs using a Bayesian VAE and an
ensemble of VAEs. We use this information to discriminate between in-distribution and
OOD samples using several metrics. Particularly, we use the Expected likelihoods (ELL),
the Effective Sample Size (ESS), the standard deviation (σ) across the posterior samples
predictions and the entropy. Following [Daxberger and Hernández-Lobato, 2019], for
BVAEs we discard samples within a burn-in phase of B = 1 epoch and store a sample
(of both encoder and decoder parameters) after every D = 1 epoch, and use the last
recent ten samples to compute the metrics. We use an ensemble of 10 VAEs and compute
the same metrics.

5.3.1 Bayesian Variational Autoencoders

To check that BVAEs provide similar generative properties to VAEs, we take the last
sample of the posterior distribution of the model parameters, obtained by training the
BVAE using SGHMC, and use it to generate new data. Figure 5.5 shows data generated
by the BVAEs using the ‘optimal‘ latent space values as obtained from Table 5.2. We
observe that data generated from the BVAEs are similar to those from the VAEs. Both
models were trained using the same number of iterations.
We present the results obtained from a BVAE in Table 5.4. ESS and σ outperform
the likelihood scores from VAEs when the log-likelihoods are poorly calibrated. For
example, a BVAE trained on FashionMNIST with a Bernoulli decoder and tested on
the MNIST test set, the AUCROC scores are improved from 0.5992 to 0.94666 and

(a) Trained on FashionMNIST, Test on MNIST

(b) Trained on PCam32 Healthy, Test on Tumor

(c) Trained on CIFAR10, Test on SVHN

(d) Trained on Camelyon Healthy, Test on Tu-
mor

Figure 5.3: Histogram of VAE log-likelihoods for FashionMNIST vs MNIST, CIFAR10
vs SVHN, Pcam32 Healthy vs Tumor, and Camelyon Healthy vs Tumor.
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(a) Trained on MNIST, Test on FashionMnist (b) Trained on SVHN, Test on CIFAR10

Figure 5.4: Histogram of VAE log-likelihoods for MNIST vs FashionMNIST, and SVHN
vs CIFAR10. Note that both models assign lower log-likelihoods to the OOD test sets
yielding an AUCROC score of 0.99 and 0.94 respectively. This illustrates the asymmetric
property of VAEs compare to Figures 5.3a and 5.3c

(a) FashionMNIST

(b) CIFAR10

(c) MNIST

(d) Pcam

(e) SVHN

(f) Camelyon

Figure 5.5: Samples generated by a BVAE trained on (a) FashinMNIST, (b) CIFAR10
(c) MNIST, (d) Pcam32, (e) SVHN and (f) Camelyon datasets. These samples are
visually similar those from the in-distribution data 5.1 but less sharp to those obtained
by the VAE 5.2.

0.9914 respectively. The expected likelihood yields similar results to those obtained
using the log-likelihoods of the VAEs. In Figure 5.6 we shows the histograms obtained
from the ELL, σ, and ESS scores. We observed that the variability across the ensembles
predictions reflects the uncertainty of the model to OOD data. Unfortunately, this does
not scaled to other experiments, e.g., CIFAR10 vs. SVHN results are lower than random
chance (0.5), except for the entropy that yields an AUCROC of 0.72.
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(a) Expected log p(x|θ) (b) BVAE Uncertainties (c) BVAE ESS

Figure 5.6: FashionMNIST vs MNIST. BVAE measures of the expected likelihood, the
uncertainties as result of measuring the variability across the ensembles and the ESS
score.

Experiment LL ELL ESS σ H

FashionMnist † vs Mnist 0.5992 0.4367 0.9466 0.9914 0.1007
FashionMnist vs Mnist 0.9921 0.9848 0.8641 0.9723 0.1221
Mnist vs FashionMnist † 0.9999 0.9998 0.9470 0.9967 0.0089
CIFAR10 vs SVHN 0.1193 0.1073 0.3434 0.2856 0.7213
SVHN vs CIFAR10 0.9467 0.9454 0.7837 0.8456 0.4360
PCam32 Healthy vs Tumor 0.4522 0.4524 0.4224 0.3596 0.3910
Camelyon Healthy vs Tumor 0.1470 0.1518 0.4575 0.3991 0.1687

Table 5.4: AUCROC OOD scores using the likelihoods (LL) obtained from a VAE, the
expected likelihoods (ELL), the Effective Sample Size (ESS), the variance shown as the
standard deviation over the likelihood estimates from a BVAE (σ), and the entropy H
of the categorical distribution obtained from the BVAE.

For our digital pathology experiments we see no relevant improvement, all the scores are
below than 0.5. Contrary to [Daxberger and Hernández-Lobato, 2019] and similarly to
[Nalisnick et al., 2018], we found that the log-likelihoods of a VAE can easily distinguish
SVHN vs. CIFAR10.

5.3.2 Ensemble of VAEs

Experiment LL ELL ESS σ H

FashionMnist † vs Mnist 0.5992 0.5210 0.9647 0.9985 0.0001
FashionMnist vs Mnist 0.9921 0.9912 0.9408 0.9942 0.0002
Mnist vs FashionMnist † 0.9999 0.9995 0.9105 0.9910 0.0000
CIFAR10 vs SVHN 0.1193 0.1185 0.2963 0.2480 0.3751
SVHN vs CIFAR10 0.9467 0.9667 0.7963 0.8849 0.0621
PCam32 Healthy vs Tumor 0.4522 0.4518 0.4313 0.4313 0.1518
Camelyon Healthy vs Tumor 0.1470 0.2930 0.1463 0.1398 0.1244
PCam32 Healthy vs CIFAR10 0.5760 0.55199 0.8446 0.8517 0.0242

Table 5.5: Similar to Table 5.4 but using an Ensemble of 10 VAEs

Continuing with our study of epistemic uncertainty, in Table 5.5 we show results
obtained when training an ensemble of 10 VAEs. For comparison, we used the same
metrics used in a BVAE. We emphasize that using the ESS in an ensemble of VAEs has
not theoretical foundations. Interestingly, VAE’s ensembles yield slightly similar results
to those obtained from a BVAE. However, this method is approximately 10 times more
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computationally complex than training a BVAE. The main difference is that the entropy
score for the CIFAR10 vs. SVHN in a BVAEs outperformed all the other methods with
an AUC score of 0.72 while the same metric in an ensemble of VAEs yields 0.37. It
is noteworthy to notice that the expected likelihood for both BVAEs and ensembles of
VAEs yields similar results to those obtained using the log-likelihoods of a VAEs. In
this settings, both BVAEs and ensembles of VAEs do not provide a robust approach to
detect OOD data in digital pathology.

5.4 Typicality

In this section, we now empirically evaluate DoSE [Morningstar et al., 2020] using a one
class SVM to estimate the support of our summary statistics. We used the same trained
VAEs from section 5.2 and compute statistics on the training set. In particular, we
compute 5 statistics: 1) The KL divergence between the posterior and the prior, 2) the
cross-entropy between the posterior and the prior, T ent

n (X) = H[q(Z|X), p(z)], 3) the
posterior entropy T ent

n (X) = H[q(Z|X)], 4) the distortion (the expected log-likelihood
from the decoder) T distortion

n (X) = Eq(X,Z)[log p(X|Z)] and 5) the log-evidence, com-
puted using a 16-sample IWAE estimate. Figure 5.8 shows examples of these statistics
obtained for a model trained on Camelyon (first row) or Pcam32(second row). After
computing these statistics on the training set, we then fit the SVM on the set of statistics
for each data point.
The problem of typicality states that for high dimensional distribution, samples x sam-
pled from the input space X concentrate in an annulus ration of

√
dim(x). We hy-

pothesize that this phenomenon is mapped into the latent space through the encoder
in VAEs and therefore the samples that the VAE generates ares samples from the typ-
ical set. To illustrate this, we sample from the normal prior p(z) = N(0, σ ∗ I) over
several regions to find where the samples concentrate as a result of the generative pro-
cess. Figure 5.7 shows samples generated by VAEs trained on MNIST or CIFAR10 for
σ = {0, 0.5, 1.0, 1.5}. We find that the best results are found when we sample from
σ = 1, which turns out to be where the z variables concentrate (

√
dim(z)), appealing

to the annulus theorem. For example, for a VAE trained on MNIST with a latent space
dimension of 16, the z variables that generated samples like the train data concentrate
around 4. For MNIST when we observe that we get some semantic information when
we sample from the point with highest density in the latent space contrary to CIFAR10.
We report same experiment for PCam32 and Camelyon in Figure 7.2 of the appendix.
Table 5.6 reports the results for all baselines. We did not integrate results obtained
from the VAE’s ensemble since they performed very similar to BVAEs. In general, we
find DoSE to outperform almost all baselines or achieve similar results. Notably, DoSE
yield an AUCROC score of 0.84 in Camelyon Healthy vs. Tumor. However,
for PCam32 DoSE does not provide a clear separation between healthy and tumor
samples. A possible reason is the amount of information present in the OOD samples
overlaps with the information in in-distribution samples. This is because an image
sample from the PCam32 dataset is considered to be tumor if at least 1 pixel out of the
32x32 pixels is tumor, while the rest of the pixels are healthy tissue. Consequently, the
statistics obtained from from in-distribution test set (red) and OOD test set (red) are
very similar as shown in Figure 5.8 (second row). Since DoSE builds a classifier on top
of the statistics of the model, we also explore DoSE using only the log-likelihoods as a
feature. We report this results on last column as DoSeT1

. We observe that DoSeT1
using

only the log-likelihoods as the unique feature provides similar results to those using
5 statistics. We note that for FashionMNIST vs MNIST using as Bernoulli decoder
DoSeT1 performe poorly. A possible reason is that FashionMNIST samples are better
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(a) Mean |z| = 0.0

(b) Mean |z| = 0.0

σ = 0

(c) Mean |z| = 1.97

(d) Mean |z| = 3.95

σ = 0.5

(e) Mean |z| = 3.91

(f) Mean |z| = 7.96

σ = 1

(g) Mean |z| = 5.03

(h) Mean |z| = 11.81

σ = 1.5

Figure 5.7: (First row) VAE trained on MNIST with a latent space dimension = 16,
annulus ratio = 3.87. (Second row) VAE trained on CIFAR10 with a latent space
dimension = 64 and an annulus ratio = 7.94. The best results are found when we
sample from σ = 1, which turns out to be where the z variables concentrate (

√
dim(z)),

appealing to the annulus theorem.

model with a Gaussian than with a Bernoulli distribution and so, the statistics provided
by this model are already defected by the choice of the way we model the data.

Experiment LL ELL ESS σ DoSE DoSET1

FashionMnist † vs Mnist 0.59 0.4367 0.9466 0.9914 0.9472 0.5269
FashionMnist vs Mnist 0.99 0.9848 0.8641 0.9723 0.9925 0.9920
Mnist vs FashionMnist † 0.99 0.9998 0.9470 0.9967 0.9999 0.9999
CIFAR10 vs SVHN 0.11 0.1073 0.3434 0.2856 0.7513 0.7278
SVHN vs CIFAR10 0.94 0.9454 0.7837 0.8456 0.9430 0.9400
PCam32 Healthy vs Tumor 0.45 0.4524 0.4224 0.3596 0.3939 0.3764
Camelyon Healthy vs Tumor 0.14 0.1518 0.4575 0.3991 0.8427 0.8061

Table 5.6: AUCROC OOD scores using the likelihoods (LL) obtained from a VAE, the
expected likelihoods (ELL), the Effective Sample Size (ESS), the variance shwon as the
standard deviation over the likelihood estimates from a BVAE (σ), the DoSE scores and
DoSeT1 using only the log-likelihoods as the unique statistic.

Figure 5.9 shows the histograms of VAE and DoSE. This illustrates how using several
model’s statistics helps to detect OOD samples in digital pathology when sufficient
information about the OOD signals is provided.
We qualitatively evaluated DoSE by computing a confusing matrix for a given exper-
iment. This allows us to visually analyze the performance of the algorithm. We take
the top 16 images with the highest and lowest OOD scores for a given trained model.
We show the results for DoSE, and the ESS, STD and ELL obtained from a trained
BVAE. Figure 5.10 shows in the top row the SVHN vs. CIFAR10 which results to be
an easy task, since using only the log-likelihoods yields an AUC score of 0.94. In the
bottom row, shows the difficult task for CIFAR10 vs SVHN. Even when it is difficult
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Figure 5.8: Statistics used as proposed in the DoSE paper for this cleaner dataset
(Camelyon16): leftmost column shows the KL divergence between the posterior and the
prior. The second column shows the cross-entropy between the posterior and the prior.
The third column shows the entropy of the encoder. The fourth shows the distortion
(the expected log-likelihood from the decoder). The last column shows the log-evidence,
computed using a 16-sample IWAE estimate.(First row) Statistics from Camelyon data
set. (Second row) Statistics from PCam32.

(a) VAE log-likelihoods AUROC=0.14 (b) DoSE AUROC=0.84

Figure 5.9: Histograms for Camelyon Healthy vs Tumor, using a) VAE log-likelihoods
and b) DoSE scores to detect OOD samples.

to provided a solid argument on these results, we speculate that DoSE identifies as
potential in-in-distribution candidates samples with high color contrast. Figure 5.11
shows the confusion matrix for (first row) Camelyon Healthy vs Tumor and (second
row) PCam32 Healthy vs Tumor. Interestingly, DoSe helped us identify that in the
Camelyon dataset there was noise in the data in the form of white background. Because
this dataset was carefully selected to guarantee that all the 32x32 pixels in an image
from the tumor class were indeed tumor. This noise is also presented in the healthy
class, therefore the model predicts this data as OOD. In the second row we see the
confusion matrices for the PCam Healthy vs Tumor experiment, we see again that the
limited amount of information of OOD signal in samples from the tumor class affects
the prediction of the model.
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(a) DoSE (b) ESS (c) STD (d) ELL

Figure 5.10: Histogram of VAE log-likelihoods for FashionMNIST vs MNIST, CIFAR10
vs SVHN, Pcam32 Healthy vs Tumor, and Camelyon Healthy vs Tumor.

(a) DoSE (b) ESS (c) STD (d) ELL

Figure 5.11: Confusion matrices for the methods used to evaluate OOD detection for
(first row) Camelyon Healthy vs Tumor, and (second row) PCam32 Healthy vs Tu-
mor, and. The images in each quadrant are order by the confidence of each model.

40



Chapter 6

Discussion and Future Work

This last chapter discusses the results obtained in this thesis and promising avenues for
future work.

6.1 Discussion

In this work, we explore unsupervised methods to detect out-of-distribution samples in
digital pathology. We aim to train a model solely on healthy tissue to detect tumor tissue
as OOD data. Nonetheless, recent efforts have been developed to tackle this problem
using supervised learning methods. These methods require annotated data, which is
very expensive to collect in digital pathology. Our experiments show promising avenues
to detect OOD samples in digital pathology without having access to annotations.
We started exploring random prior networks [Ciosek et al., 2020] and found that the
authors did not correctly validated their experiments. As a consequence of this, their
work may be invalidated. We then explore VAEs, as a natural approach to model the
data density distribution and use the likelihoods, we expect to see a well-calibrated
VAE assigns higher likelihoods to in-distribution data than to out-of-distribution data.
However, we find that VAEs sometimes assign higher likelihoods to OOD samples. Ex-
perimentally, we observe that VAE likelihoods do not reflect the semantic properties of
the data, and they assign higher likelihoods to samples that are visually distinct to a
human, such as images of healthy tissue to images of frogs, horses, and dogs. Because
the VAE log-likelihoods are not sufficient to discriminate OOD samples, we then aim to
estimate the epistemic uncertainty in VAEs using a Bayesian VAE and an ensemble of
VAEs. We use this information to discriminate between in-distribution and OOD sam-
ples using several metrics. However, we find this to not be useful to digital pathology
since all the AUCROC score for our digital pathology tasks were below 0.5.
A possible reason that VAEs fail to detect OOD data is caused by a mismatch between
the areas of high probability density and the model’s typical set due to the sensitivity
to high dimensional distributions. We hypothesize that this phenomenon may translate
through the encoder to the latent space. We illustrate this by showing that samples gen-
erated using latent variables from the annulus ration the latent space look like the data
distribution, while samples outside of this annulus don’t. We further explore DoSE and
model the frequency of different statistics using a one class SVM. We find DoSE to out-
perform best, discriminating healthy (in-distribution) from tumor (out-of-distribution)
samples with an AUCROC score of 0.84.
Finally, we observed that the amount of information of the OOD signal present in an
image is fundamental to detect OOD samples effectively. The experiment with PCam32
dataset show this to be the case since an image sample from this dataset is considered
to be tumor if at least 1 pixel out of the 32x32 pixels is tumor, while the rest of the
pixels are healthy tissue. Consequently, the statistics obtained from the in-distribution
test set and OOD test set are very similar, so DoSE performs poorly with an AUCROC
score of 0.39.
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6.2 Future work

The results obtained in this thesis suggest promising avenues for future research in
unsupervised out-of-distribution methods in digital pathology. Although DoSe yields
an AUCROC score of 0.85 in our digital pathology task, we observed that in PCam32,
DoSE performs poorly with an AUCROC score of 0.39. This indicates that the amount
of information of the OOD signal present in an image is fundamental to detect OOD
samples effectively. We did not explore the influence of the amount of information of the
OOD signal in the OOD sample. We remark that an OOD sample can be composed of
two signals: the background signal and the information signal. A similar approach was
recently explored by [Ren et al., 2019], who removes background information and focuses
on the semantics. However, we would like to consider that the image is composed of
three signals: the background signal, the tissue signal, and the tumor signal. We would
then like to explore whether removing the background and the tissue signal combining
this approach with DoSE will help to detect OOD samples.
The choice of the DoSe statistics is rather empirical than a principle approach. There-
fore, there are multiple avenues of research in this direction. We could try to model
different statistics using expertise from pathologist about what relevant features char-
acterized the healthy tissue. We could try to learn this features using DNNs.
Despite we provide an ablation study over the latent space of the VAEs, we did not
explore different configuration in the VAE itself, e.g., choosing a different prior than the
standard normal prior, and increasing the complexity of the network. Another promising
research line is to explore how SurVAE Flows, a method that combines normalizing flows
and VAEs, can be used to OOD detection [Nielsen et al., 2020].
Finally, for our experiments using BVAE we did not optimize the hyper-parameters such
as the optimal number of posterior samples, the prior of the parameters. A promising line
of research line is to identify the optimal configuration on SGHMC that leads to sampling
from the typical set. [Betancourt, 2018] suggested the use of the Effective Samples Size
to find such configuration. [Zhang et al., 2019] proposed Cyclical Stochastic Gradient
MCMC to automatically explore high dimensional and multimodal distributions present
in deep learning. This method could be potentially useful to ameliorate the problem of
typicality in DGMs.
Despite the encouraging results in our digital pathology task, many questions remain
open. It is unclear how this can be applied in real settings; since we only tested our
models in patches of 32x32 pixels, we did not explore how this could be scale to WSIs.
In digital pathology, there is huge variability in the data, and so robust unsupervised
OOD methods should handle such randomness. Therefore we need to provide ways to
incorporate prior knowledge and constraints into these models so they can be safely
deployed in real clinical settings.
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Chapter 7

Appendix

7.1 Deep Ensembles

(a) 50 samples (b) 30 samples (c) 20 samples (d) 5 samples

Figure 7.1: Deep ensembles (Upper row) vs SGHMC (Botton row) using 50,30,20,5
ensembles/posterior samples.

7.2 VAE ELBO derivation

KL(q(z)||p(z|X) = Ez∼q [log q(z)− log p(z|X)] (7.1)

By applying Baye’s rule p(z|X) = p(X|z)p(z)/p(X) :

KL(q(z)||p(z|X) = Ez∼q
[
log q(z)− log

p(X|z)p(z)
p(X)

]
(7.2)

= Ez∼q [log q(z)− (log(p(X|z)p(z)− log p(X))] (7.3)

= Ez∼q [log q(z)− log(p(X|z)− log p(z) + log p(X)] (7.4)

= Ez∼q [log q(z)− log(p(X|z)− log p(z)] + log p(X) (7.5)

Last step comes by the fact of log(X) does not depend on z. Later we can rearrange
the terms by negating both sides.

log p(X)−KL(q(z)||p(z|X) = Ez∼q [− log q(z) + log(p(X|z) + log p(z)] (7.6)

= Ez∼q [log p(X|z)]] + Ez∼q [log p(z)− log q(z)] (7.7)

= Ez∼q [log p(X|z)]] +KL(q(z)||p(z)) (7.8)
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7.3 Numerical implementation of the log-likelihood

For a numerically stable implementation of the log-likelihood we always work with log
probabilities. The log-likelihood p(x) is approximate using Monte Carlo. The intractable
expectation under the approximate posterior is replace by the following equation using
k samples zk of the approximate posterior distribution qφ(z|x)

log p(x|θ) ' log
( 1

K

K∑
k=1

p(x|zk, θ)p(zk)

q(zk|x, φ)

)
; zi ∼ q(zk|x, φ) (7.9)

= log
( 1

K

K∑
k=1

exp
(

log
p(x|zk, θ)p(zk)

q(zk|x, φ)

))
(7.10)

= logmeanexpzk

(
log

p(x|zk, θ)p(zk)

q(zk|x, φ)

))
(7.11)

= logmeanexpzk

(
log

exp (log p(x|zk, θ)p(zk))

exp (log q(zk|x, φ))

))
(7.12)

= logmeanexpzk

(
log

exp (log p(x|zk, θ) + log p(zk))

exp (log q(zk|x, φ))

))
(7.13)

= logmeanexpzk

(
log p(x|zk, θ) + log p(zk)− log q(zk|x, φ)

)
(7.14)

7.4 Typicality

(a) Mean |z| = 0.0

(b) Mean z norm = 0.0

σ = 0

(c) Mean |z| = 5.66

(d) 7.99

σ = 0.5

(e) Mean |z| = 11.36

(f) z norm mean: 16.04

σ = 1

(g) Mean |z| = 16.88

(h) 23.95

σ = 1.5
Figure 7.2: (First row) VAE trained on PCam32 with a latent space dimension = 128,
annulus ratio = 11.27. (Second row) VAE trained on Camelyon with a latent space
dimension = 256 and an annulus ratio = 15.97
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