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Abstract

We study multiple-environment Markov decision processes (MEMDPs).
MEMDPs form a set of standard Markov decision processes (MDPs)
that share the same states and actions, and only differ in their transi-
tion functions. A MEMDP thus forms a set of potential models, called
environments, of a real-world system. By assumption, exactly one of
these environments is the true environment, meaning it captures the
behavior of the real-world system precisely.

A MEMDP can be seen as a partially observable MDP (POMDP) that
exhibits a special structure. The belief update is now linear in the
number of environments, versus quadratic in the number of states for
arbitrary POMDPs. Furthermore, using the Shannon entropy as a mea-
sure of how much knowledge of the true environment we currently have,
it is known that we cannot lose any information on average.

We show under which conditions our knowledge of the true environ-
ment will strictly increase on average, and under which conditions this
knowledge stays the same. We use this to construct an iterative, greedy
learning algorithm to infer the true environment. Based on the entropy
we choose the action that is expected to lead to the largest increase in
knowledge at every step. We discuss potential drawbacks to this algo-
rithm and present an optimized version that has a lower time complexity
per iteration.
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Chapter 1

Introduction

Markov decision processes (MDPs) are the standard model to capture
decision making in probabilistic environments [Puterman, 1994]. An
MDP consists of a set of states, a set of actions, and a probabilistic
transition function. The decision making is done a so-called agent. At
every state in the model, the agent makes a decision by choosing one of
the actions via a so-called strategy. Then, based on the action choice at
the given state, the successor state is determined probabilistically.

For example, we can model a maze as an MDP [McCallum, 1993]. Every
tile in the maze gets its own state. The actions are the four cardinal
directions. The transition function simply moves to an adjacent tile of
the chosen direction with probability 1 if this is possible. If no such tile
exists, there is a transition of probability 1 to stay at the current tile. A
more sophisticated model would be to make the maze slippery, meaning
there is a small probability for the agent to end up on a different tile
than the one they attempt to move towards to.

The goal is to compute a strategy, a sequence action choices, that takes
the agent from the initial position I to the target position T. We illus-
trate such a maze in Figure 1.

0 3 4 8 9

1 5 10

2 6 11

1 7 T

Figure 1: A fully observable map of a maze.



One of the key assumptions underlying MDPs is that the state-space is
fully observable, meaning the agent always has perfect knowledge about
the current state. In our maze example, this means that the agent always
knows their exact position in the maze, hence assigning a unique number
to each tile.

Partially observable Markov decision processes (POMDPs) remove this
assumption by making the state-space partially observable [Kaelbling,
Littman, and Cassandra, 1998]. As a consequence, the agent can no
longer make decisions based on the current state, but only based on the
observations.

This means that instead of knowing the exact state, the agent now has
a belief of where they are. A belief is a probability distribution over the
states that can be updated upon performing an action and receiving a
new observation via Bayes’ rule. This is called the belief update.

~
=i
~

Figure 2: A partially observable map of a maze.

The maze example can be adapted to a POMDP. Instead of knowing
their exact position, the agent now has to infer their position based
on observations. The observations are the positions of the walls. For
instance, the agent may observe a wall to their left and a wall to their
right. This is illustrated in Figure 2. Note that all tiles with walls on the
left and right have the same number, 1, that represents the observation.

When moving from I to T, this clearly is a problem. At the tiles with
observation 1 directly above I the agent should move up, but at the tiles
above T the agent should move down. But the agent only knows the
current observation, making it impossible to distinguish between these
cases.

If the agent were to be able to distinguish between said cases, which
can be done by incorporating finite memory in the strategy, they can
still reach T'. Alternatively, when finite memory is not an option or the
amount of memory needed is too large, randomization can help. Instead
of moving either up or down at a state with observation 1, the agent can
now probabilistically move up with some probability p and down with
probability 1 — p. Randomization can reduce the amount of memory
needed [Chatterjee, De Alfaro, and Henzinger, 2004].
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As a result there is a significant jump in complexity between MDPs
and POMDPs. Problems that can be solved in polynomial time for
MDPs, such as computing a strategy that satisfies some quantitative
reachability or safety objective, are undecidable [Chatterjee, Chmelik,
and Tracol, 2016], and at best (with additional assumptions) still NP-
hard [Vlassis, Littman, and Barber, 2012] for POMDPs.

Multiple-environment Markov decision processes (MEMDPS) are a rela-
tively new formalism defining a finite set of MDPs that share the same
states and actions [Raskin and Sankur, 2014]. A MEMDP can be seen
as a set of potential scenarios describing some real-world system. Each
MDP in a MEMDP is called an environment. It is assumed that there
is one true environment that describes the real-world system exactly.
Which of the environments is the true environment is not known. But
whichever environment is the true environment, it does not change over
time.

We can adapt our maze example to a MEMDP. Instead of having an
exact map of the maze, like in an MDP, we now have a number of maps,
one of which is the real map and the others are not. This scenario is
illustrated in Figure 3.

0 3 4 8 9 0 4 9 0 4 9
1 5 10 1 3 5 10 1 5 10
2 6 11 2 [§ 8 11 2 6 11
I 7 T I 7 T I 3 7 8 T

Figure 3: Three different possible maps of a maze.

If the agent wants to move from I to 7', there are two approaches they
can take. The first approach is via a robust strategy. A robust strategy is
a strategy that works in all environments. Note that such a strategy may
not exist, and if it does, it may be harder to compute, see for example
quantitative reachability, which is NP-hard for MEMDPs [Raskin and
Sankur, 2014], but solvable in polynomial time for MDPs [Baier and
Katoen, 2008].

The second approach is to infer the true environment via learning. Sup-
pose the map on the left of Figure 3 is the true environment. When the
agent is currently at tile I, and tries to move to the right, it will stay at
I. This can only happen in environments 1 (the true environment) and
2. In environment 3, a move to the right from [ is possible and the agent
would end up in tile 3. Thus, from observing that the agent stays at tile
I we have learned that environment 3 cannot be the true environment.



Moving up to tile 1 and repeating the same procedure leads us to also
exclude environment 2. As only environment 1 now remains, we know
with certainty that this is the true environment.

Such transitions, that allow us to remove one of the environments from
the MEMDP, are formalized as reducing transitions. A transition that
instantly reveals the true environment, as we observe a successor state
that is only possible in one of the environments, is called a revealing
transition.

In the case of the slippery maze, we cannot draw such strong conclusions.
Not observing a certain successor state may in the slippery maze be due
to bad luck with the probabilities, instead of it being impossible to
observe that successor state.

Thus, for the general case where there are not necessarily revealing or
reducing transitions available, we need a more involved method to infer
the true environment based on a sequence of observations. This is pos-
sible since any sequence of observations will have a different probability
of occurring in each environment, allowing us to distinct between the
environments if we have enough observations.

MEMDPs provide a computational advantage over POMDPs. Prob-
lems that are undecidable for POMDPs turn out to be decidable for
MEMDPs. Compared to MDPs, these problems may be harder to solve
though. Take for example the quantitative reachability problem men-
tioned before. This problem is undecidable in POMDPs, solvable in
polynomial time for MDPs, and NP-hard in MEMDPs [Raskin and
Sankur, 2014]. Besides the computational advantage of MEMDPs over
POMDPs, many problems that are traditionally modeled as a POMDP
can also be modeled as a MEMDP [Chatterjee et al., 2020]. Essen-
tially, this means that POMDPs are stronger than necessary for many
applications.

Problem statement

In this thesis, we develop a method for deriving a strategy that will infer
the true environment of a MEMDP by learning.

Our motivation for this attempting to solve this problem is simple: once
the true environment has been found, optimal solutions for many kinds
of objectives can be computed more efficiently, as the true environment
is just a standard MDP.



Contributions

Our contributions can be summarized as follows.

We relate MEMDPs to POMDPs to define the notion of a belief over en-
vironments. A belief is a probability distribution over the environments
that tells us how likely each environment is the true environment. The
belief update from POMDPs can be adapted to update the belief over
environments, which enables us to transform our belief when performing
an action and observing a successor state.

Using the Shannon entropy [Shannon, 2001], a standard function that
measures the amount of information a probability distribution provides,
it is known that on average we will not lose any information [Chatterjee
et al., 2020] on the belief of the true environment in a MEMDP. We
make this more precise by showing in which cases the average entropy
stays the same. We conjecture that in any other case there is a strict
gain in information on the true environment on average.

With the entropy, we can make more informed decisions than when just
picking actions at random. This leads us to a naive greedy algorithm
that learns the true environment by picking the action that, on average,
will give us the greatest increase in knowledge on the true environment.

Using the Bhattacharyya distance [Bhattacharyya, 1943] to measure the
distance between probability distributions on successor states we con-
jecture that the greater this distance is, the greater the gain in infor-
mation will be on average. We use this to optimize our algorithm. The
Bhattacharyya distance remains the same for every iteration of the algo-
rithm, whereas the expected entropy has to be computed again at every
iteration. Hence, replacing the expected entropy by the Bhattacharyya
distance reduces the time complexity per iteration.

Besides our main results on learning the true environment in a MEMDP,
we provide a number of additional results on MEMDPs. We define bisim-
ulations between MEMDPs. We provide concrete algorithms to detect
revealing and reducing transitions. We show how robust strategies for
any objective can be computed by approximating the MEMDP by an un-
certain MDP. We prove that the quantitative expected reward problem
is NP-hard in MEMDPs. Finally, we give a mixed integer linear program
that computes deterministic strategies that satisfy some objective.

Throughout the thesis the most important concepts are illustrated with
examples. All lemmas and theorems are proven. Propositions are the
results of others. Statements that have no formal proof associated with
them are labeled as conjectures.



Structure of the thesis

The thesis is structured as follows.

In Chapter 2 related work is discussed.

In Chapter 3 we briefly cover some preliminaries.

In Chapter 4 we give formal definitions of the relevant models
and objectives, and compare various problems on their complexity
results.

In Chapter 5 we present a number of new results on MEMDPs,
unrelated to the problem of learning the true environment.

In Chapter 6 we present our main results on learning in MEMDPs.
This is structured in the following sections.

In section 6.1 we relate MEMDPs to POMDPs and discuss
how the belief update works in MEMDPs.

In Section 6.2 we introduce entropy as a measure on how much
knowledge on the current environment we currently have, and
how this knowledge changes upon taking an action.

In Section 6.3 we formalize the behavior in a number of the-
orems.

In Section 6.4 we construct a greedy learning algorithm that
chooses the action that is expected to give the greatest in-
crease of knowledge on the true environment.

In Section 6.5 we optimize this algorithm by preprocessing.

e In Chapter 7 we summarize our conclusions and provide a number
of pointers for future work.



Chapter 2

Related work

MEMDPs were introduced in [Raskin and Sankur, 2014]. They pri-
marily focus on computing strategies that solve standard problems for
probabilistic models, such as reachability, safety, and parity objectives.
The notion of i-revealing transitions is introduced. An i-revealing tran-
sition is only possible in one of the environments, thus once we observe
such a transition, we know the true environment.

For limit-sure objectives, [Raskin and Sankur, 2014] introduce double
end-components, named as such because they only consider MEMDPs of
two environments. Double end-components are end-components [Baier
and Katoen, 2008] that occur in each environment. They note that
if there is a transition that is different in each environment in such a
double end-component, one can distinguish between environments. This
is however not used to reveal the true environment. Furthermore, we
show that it is also possible to learn outside end-components.

In [Chatterjee et al., 2020], MEMDPs are studied further. They make
the connection to POMDPs and the idea that the belief in a MEMDP
is a probability distribution over environments. They show that, using
the entropy as a measure for how much information we currently have
on the true environment, on average no information will be lost. They
do not detail this any further, and do not use it for e.g. learning or as a
heuristic in their experiments. In contrast, we show in which cases there
is expected to be no loss or gain on information, and in which cases there
is a strict gain on average, and base our learning algorithm on this.

Before [Raskin and Sankur, 2014], it was [Chades et al., 2012] who in-
troduced hidden model MDPs (hmMDPs). Instead of extending MDPs,
they start with mized observability MDPs (MOMDPs) [Ong et al., 2010]
and introduce restriction, effectively arriving at hmMDPs. A hmMDP
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is effectively a set of fully observable MDPs, hence a MEMDP. They
show that the finite horizon reward maximization problem is PSPACE-
complete (just as in POMDPs) and apply their findings to a case study
on bird preservation.

Besides the three main works on MEMDPs (or hmMDPs) mentioned
above, some other works can easily be related to MEMDPs.

Uncertainty in MDPs

Interval MDPs [Nilim and El Ghaoui, 2005], robust MDPs [Wiesemann,
Kuhn, and Rustem, 2013], or parametric MDPs [Junges et al., 2019] all
consider MDPs with uncertainty in the transition probabilities. These
can be seen as the continuous counterpart to the discrete uncertainty
MEMDPs provide. Uncertain POMDPs [Suilen et al., 2020] extend the
idea of uncertain transition probabilities to POMDPs.

Reinforcement learning in (PO)MDPs

Reinforcement learning [Kaelbling, Littman, and Moore, 1996] is a gen-
eral topic in which one tries to find a strategy that performs well in an
unknown environment, typically by trying to maximize some reward. In
reinforcement learning, when applied to an MDP, the transition proba-
bilities of the MDP are typically unknown. In contrast, in our approach
to learn the true environment of the MEMDP, all transition probabilities
are exactly known, but the true environment is unknown.

Standard reinforcement learning does not take any safety considerations
into account. It is assumed the learning is unrestricted. This assump-
tion is not valid often, giving rise to the need for safe reinforcement
learning [Garcia and Ferndndez, 2015]. In general terms, safe reinforce-
ment learning is not only concerned with maximizing a reward, but also
avoiding ‘bad’ states.

In [Fulton and Platzer, 2019], the idea of safe reinforcement learning is
taken a step further. They introduce a method that learns a number
of possible models, and then selects the most likely model based on
observations, while satisfying some safety constraint during the entire
process. They do, however, not consider probabilistic models such as
MDPs.



Besides reinforcement learning there is also work on distinguishing a set
of MDPs. These MDPs do not necessarily have the same state-space,
thus this is a more general problem than learning the true environment
in a MEMDP. It is shown that deciding whether a fixed strategy that
distinguishes between MDPs exists is PSPACE-complete. If the strategy
may adapted during runtime based on observations, this decision prob-
lem becomes EXPTIME-complete [Alur, Courcoubetis, and Yannakakis,
1995].

Learning hidden Markov models

A hidden Markov model (HMM) is a POMDP without any actions. The
learning problem for HMMs is to find the transition function between
states and the output distributions that generate the observations that
best fit a given sequence of observations [Rabiner, 1989]. A weaker ver-

sion of this problem, probably approximate correct learning, is already
NP-hard [Terwijn, 2002].

Besides learning HMMs, there is also interest in distinguishing (also
called classifying) HMMs. In this setting, a number of HMMs and a
single sequence of observations are given. The problem is to figure out
which of the HMMs generated the observations. This is a discrete ana-
logue of the learning problem for HMMs, and can be solved in polyno-
mial time [Akshay et al., 2019]. It should be noted that being unable
to distinguish two HMMs does not mean they are the same [Kiefer and
Sistla, 2016]. This matches with the result that comparing two HMMs
via some norm is NP-hard [Lyngsg and Pedersen, 2002].

State identification

For non-probabilistic models, such as finite state machines (FSM), the
state identification problem is studied. The state identification problem
asks, given a FSM, to determine the initial state of the FSM by providing
inputs and observing outputs [Lee and Yannakakis, 1994]. This problem
is also considered for labeled transition systems (LTS) [van den Bos and
Vaandrager, 2019].

State identification can be used to solve the non-probabilistic version
of our problem of finding the true environment by taking the disjoint
union of all models (like FSMs or LTSs). To the best of our knowledge,
state identification for probabilistic systems, such as MDPs, has not
been considered yet.



Entropy in (PO)MDPs

Entropy has been used before as a measure in POMDPs. Algorithms
for solving POMDPs use the expected change in entropy as a heuris-
tic [Cassandra, 1998]. In [Savas et al., 2018] strategies for MDPs that
maximize the exploration of an MDP while satisfying a temporal logic
constraint are considered. The amount of exploration is measured via
the entropy.
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Chapter 3

Preliminaries

For a finite set X we denote the number of elements of X by | X|. The set
of all finite sequences over X, including the empty sequence, is denoted
by X*. The set of all infinite sequences over X is denoted by X“.

We assume the natural numbers N to start at 0, and denote the set of
the natural numbers 1 to n as [n] = {1,...,n}. The sets of integers,
rationals, and reals are denoted as Z, Q and R respectively. A permuta-
tion on [n] is a bijective function ¢: [n] — [n]. We use the symbol < for
any of the standard comparisons on numbers, i.e. € {<, <, =,>,>}.

We define the asymptotic upper bound of a function g: N — N, denoted
by O(g(n)), as the set of functions f: N — N that are asymptotically
bounded by g:

O(g(n)) ={f(n) | Jc € Rsg,np € N.¥n > ng. f(n) <c-g(n)}.

3.1 Directed graphs

A directed graph (digraph) is a tuple (V| E)) where V' is the set of vertices,
and £ CV x V is the set of edges.

A path in a digraph is a sequence of vertices vg...v, such that each
pair of subsequent vertices in the sequence have an edge between them:
Vi € [n].(vi—1,v;) € E. A cycle is a path of the form vy ...v, where
vg = vn. A cycle is simple if all vertices between the end points are
distinct: vy # --+ # v,. A graph without any simple cycles is acyclic.
Note that this definition of acyclicity still allows self-loops, e.g. edges of
the form (v,v).
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A strongly connected component is a maximal subset of vertices C C V
where each two vertices vi,v9 € C' are mutually reachable, meaning
there exists a path from v; to vo and from vy to v.

The set of strongly connected components of a digraph can be computed
in linear time using depth-first search. For more on graphs, strongly
connected components and graph-algorithms, see [Cormen et al., 2009).

3.2 Probability theory

A discrete probability distribution over a finite set X is defined as a
function p: X — [0,1] with )y p(x) = 1. The set of all probability
distributions over X is denoted by Distr(X). The support of a prob-
ability distribution is the set of all elements with a probability strictly
greater than 0: Supp(p) = {z € X | u(z) > 0}.

Besides the function notation we introduce three other notations for
probability distributions. For a probability distribution pu € Distr(X)
with | X| =n and p(x;) = p; we also write p as

in which we typically only consider the elements x; that are in the sup-
port of pu.

We may also interpret u as a vector of the probability values p;. Vec-
tors and matrices are written in bold, and their elements indiced: p =

(pl: s apn)

Finally, 1 can be written as a formal convex sum [Jacobs, Westerbaan,
and Westerbaan, 2015]. This notation is particularly useful when dealing
with a probability distribution over probability distributions, as we will
encounter in Chapter 6. The convex sum, or ‘ket-notation’, for u is given
by

n
p=p1-lz)+ o+ pnc ) =ZP¢'|%>~
i=1

A random variable X denotes the outcome of an experiment, where the
outcome is one out of a finite number of options given by the sample space
X. The random variable X" has a probability distribution p € Distr(X).
For more on random variables and probability theory in general, we refer
to [Grinstead and Snell, 2012].

A Dirac distribution over a finite set X is a probability distribution
where for exactly one x € X we have Pr(z) = 1 and for all other

12



' € X,2' # x we have Pr(z') = 0. We denote the Dirac distribution
that has probability 1 at z € X by Dirac(z).

The expected value of a discrete random variable X denoted as E[X]

and defined as
EX] =Y z-p(z).
rxeX

The expected value satisfies the following properties:

E[X + Y] = E[X] + E]Y],
Elc- X] = ¢ E[X],

E[g(X)] = Y g(x) - u(z),

zeX

where X and ) are discrete random variables, ¢ € R is a constant, and
g is any function g: X — R.

Given two event x and y, the probability of x occurring given that y
occurs is denoted by Pr(z | y). Bayes’ rule is given by

Pr(y | =) Pr(z) .

Pr(z |y) = Pry)

3.3 Computability and complexity theory

A decision problem is a set of related questions that each can be an-
swered by yes or no. A decision problem is decidable if there exists an
algorithm that solves every instance of that decision problem. If such
an algorithm does not exist, the problem is undecidable. The algorithm
should be complete (being able to correctly answer every instance of
the problem), mechanistic (consist of a finite number of elementary in-
structions), and deterministic (always give the same result on identical
input). See e.g. [Sudkamp, 1997] for details.

A function t: N — N is called time constructible if there is a Turing
machine which halts in exactly ¢(n) steps for every input of length n.
A function s: N — N is called space constructible if there is a Turing
machine which halts in a configuration with exactly s(n) non-blank tape
cells and that used no other tape cells during computation, for every
input of length n.

Using the functions defined above, we define the following base classes:
TIME(t) is the class of all sets computed by a Turing machine within
running time ¢(n) for all inputs of length n. We define NTIME(¢) analo-
gously, but with a non-deterministic Turing machine. SPACE(s) is the
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class of all sets computed by a Turing machine using at most s(n) tape
cells for any input of length n. Similarly, NSPACE(s) is defined the same
as SPACE(s), but again with a non-deterministic Turing machine. Note
that by Savitch’s theorem, we have that SPACE = NSPACE [Arora and
Barak, 2009].

In this thesis, the following complexity classes are used:

e P = [JTIME(n'), the class of all polynomial time computable sets,
i

e NP = [JNTIME(n'), the class of all non-deterministic polynomial
i
time computable sets,

e PSPACE = |JPSACE(n'), the class of all polynomial space com-

1
putable sets,

e EXPTIME = |J TIME (2”i>, the class of all exponential time com-
putable sets, Z

e ETR, the class of problems with a polynomial many-one reduction
to deciding membership in the existential theory of the reals, as
defined in [Schaefer and Stefankovi¢, 2017].

We have the following standard inclusions between these classes:
P C NP C PSPACE C EXPTIME,

as well as NP C ETR C PSPACE and P ¢ EXPTIME (by the time
hierarchy theorem). It is conjectured that P # NP and P # PSPACE.

Given two problems X and Y, we say that X is polynomial many-to-
one reducible (p-m-reducible), denoted as X <h, Y, if there exists a
polynomial time computable function f such that z € X <= f(x) €
Y.

Given a problem X and a complexity class C, we say that X is hard for
C (or ‘X is C-hard’) if for all C' € C we have C <}, X. If, additionally,
we also have that X € C, we say that X is C-complete. Note that if
we have some problem Y which is known to be C-hard or C-complete, it
suffices to show Y <P, X to conclude that X is C-hard.

For an extensive overview of complexity theory we refer to the following
standard works on the subject: [Papadimitriou, 2003] and [Arora and
Barak, 2009].
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Chapter 4

Formal definitions
& literature review

In this chapter we will formally introduce the models we work with, and
provide an overview of the relevant literature that is available. We start
with Markov decision processes, the standard model for decision making
in a probabilistic environment, and will then introduce a number of
extensions of this model, each introducing some form of uncertainty to
the model. Most notably we will look at multiple-environment Markov
decision processes and partially observable Markov decision processes.

4.1 Markov decision processes

The standard model for decision making in a probabilistic environment,
i.e. one where the outcome of a decision is affected probabilistically, are
Markov decision processes [Puterman, 1994]. The general idea is that
the outside world is observed and translated into a state. This is done
with certainty, i.e., the world is fully observable. At a state the agent
makes a decision, usually referred to as an action, which leads to a
(probabilistic) change in the world, and thus a new observation. This
idea is illustrated in Figure 4, which is taken from [Kaelbling, Littman,
and Cassandra, 1998], and formalized in Definition 1.

Definition 1: Markov decision process

A Markov decision process (MDP) is a tuple (S, A,¢), where S is
a (finite or countably infinite) set of states, A is a (finite) set of
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actions, and ¢ is the (partial) transition function defined as §: S x
A — Distr(S).

States Actions

AGENT

Figure 4: Schematic workings of an MDP.

In an MDP, each state-action pair (s,a) € S x A is assigned a probability
distribution over the successor states. For a state s’ € S, we denote the
probability of reaching this state from (s,a) by d(s,a,s’). If an MDP
(S, A,9) has |A| =1, it is a discrete time Markov chain (DTMC).

For an MDP M (and subsequent models) we introduce the following
shorthand notations. For a state s € S and an action a € A we denote
the set of successor states of this state-action pair by Succ(s,a) = {s’' €
S | 6(s,a,8") > 0}. The set of predecessor states of a state s’ € S is
defined as Pred(s’) = {s € S | Ja € A.0(s,a,s’) > 0} For a state s we
define the set of enabled actions as A(s) ={a € A|3s’ € S.4(s,a,s’) >

0}.

The size of an MDP M, denoted Size(M), is determined by counting the
number of transitions with positive probability, i.e., the total number of
pairs (s,a,s’) € S x A x S with d(s,a,s’) > 0. Clearly, the size is
bounded by |S|% - |A|.

Definition 2: End-components in MDPs

An end-component in an MDP (S, A, d) is a pair (S, A") with S’ C S
and A’ C A such that for every state and action in these subsets all
successor states are again in S”:

se S ae AANA(s),Vs € S4(s,a,8) >0 = s e,

and any state in the end-component can be reached from any other
state in the end-component: Vsg,s,+1 € S’ there exists a finite
path spag ... amsms1 € (8" x A)* x .
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An end-component is maximal if there is not other end-component

(S”, A”) such that S’ C S” and A’ C A”. The set of all maximal
end-components in M is denoted by MEC(M).

The set of all maximal end-components can be computed in polynomial
time [Courcoubetis and Yannakakis, 1995]. Any strategy of an MDP
will end up in an end-component with probability 1 [De Alfaro, 1997,
Theorem 3.2]. Since all end-components are included in one of the max-
imal end-components, we also have that any strategy will end up in a
maximal end-component with probability 1.

It should be noted that it may be possible to leave an end-component
(87, A"). If there is a state s € S’ with an action a € A(s) that is not part
of the end-component, i.e. a ¢ A’. This means that an end-component
acts as a strongly connected component that cannot be left under some
strategy. However, there may exist end-components that act as strongly
connected components that cannot be left under all strategies. These
are, for example, sink states with a self-loop of probability 1.

An MDP is can be visually represented as a state-based system as in
Figure 5. We may omit the actions if a transition is the same for all
actions, see for example the transitions from s; to s3, so to s3 or the
self-loop at s3. In this MDP, ({s3},{a1}) and ({s3},{az2}) form end-
components, and ({s3}, {a1,a2}) forms a maximal end-component.

N[

a a
2 1.41,@31

DO

Figure 5: Graphical representation of an MDP.

4.2 Problems and solutions

For the following definitions, let M = (S, A,0) be an MDP. A run of M
is a sequence of states and actions (s1a182a3 . ..ap—15y ... ) where for all
i > 1 we have §(s;, a;, si+1) > 0.



Definition 3: Strategy

A (randomized) strategy (also called a scheduler or policy) for M
is a function o: (SA)*S — Distr(A) that maps a finite run h =
(s1a1,...,Sp—1an—15y) ending in some state s, to a distribution
over actions.

If a strategy o only considers the current state, i.e. the run A consists
of a single state (s), it is called memoryless. If the distribution over
actions Distr(A) is a Dirac distribution for all finite runs, o is called
deterministic. We write o(h, a) for the probability of performing action
a in strategy o after run h.

Applying a strategy o to an MDP M resolves the non-determinism. It
gives us an induced Markov chain, denoted by M?.

Definition 4: Induced Markov chain

Given an MDP M = (S, A,¢) and a memoryless strategy o, the
induced Markov chain, denoted by M7, is a tuple (S,0’) where S
is the same set of states as in M, and ¢’: S — Distr(S) is the
probabilistic transition function constructed by

Vs,s' € S. (s, s) = Z o(s,a)-6(s,a,s).

a€A

In the case of finite memory strategies, the memory is encoded in the
state-space of the DTMC, see [Baier and Katoen, 2008].

In an induced Markov chain, the non-determinism from the MDP is
resolved by the strategy, and all transitions are purely probabilistic.
This means we can compute the probability of reaching a given state.
In an induced Markov chain M? we can compute the probability of
reaching some state s from some initial state s; by solving a linear
equation system, see e.g. [Baier and Katoen, 2008] for details.

Given an MDP, we can define several objectives for which we want to
compute a strategy that solves them.

Definition 5: Objectives

An objective in an MDP is a set of infinite sequences of states and
actions, i.e. ® C (S x A)~.
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A reachability objective for some target set T', denoted ¢T, is the
set of all infinite runs that contain a state from 7. Formally: ¢T =
{spapsiai--- | Fi > 0.s; € T'}. Intuitively, the objective is to visit
at least one state in 7' at some point.

A safety objective for some target set T', denoted T, is the set of
all infinite runs that only contain states from 7. Formally: 0T =
{soapsiai -+ | Vi > 0.s; € T'}. In other words, the objective is to
always stay within 7', where T is typically a set of states that are
deemed safe.

A parity objective for a priority function p: S — {0,1,...,d} CN,
denoted Parity(p), requires the smallest priority to appear infinitely
often to be even. Formally: Parity(p) = {soagsiai --- | min{p(s;) |
si € inf(spapsiay ... )} is even }, where inf(spapsiay ...) is the set
of states s; that appear infinitely often in the given infinite run.

Formally, an objective ® has to be Borel measurable, which means ® has
to be a set in the Cantor topology on (S x A)“, see [Kechris, 2012]. Be-
sides the objectives defined in Definition 5 there are two other important
classes of objectives: Biichi and coBiichi objectives. Biichi objectives re-
quire that at least one state in the target set T is visited infinitely often.
CoBiichi objectives require that only states in 7" are visited infinitely
often. Reachability and safety objectives are examples of Biichi objec-
tives, and both Biichi and coBiichi objectives are in turn special cases
of parity objectives [Chatterjee, Doyen, and Henzinger, 2010].

Given an objective ® the problem is to compute a strategy o such that
the objective is satisfied against some probability threshold <1 A when
starting in some initial state s; € S:

M7 E Py [®] <= Pr(M?,®,s7) > A,

where Pr(M7,®, sy) is the probability with which ® is satisfied in the
induced Markov chain M? with initial state sj.

In the special case of P_;[®] we say that the objective ® is to be satisfied
almost-surely. In case of P>i_,, for some € > 0, the problem is to be
satisfied limit-surely. Any other case is referred to as the quantitative
version of the problem.

In MDPs, computing a strategy that satisfies (any) parity objective
can be done in polynomial time [Chatterjee, Jurdziiski, and Henzinger,
2004]. As a consequence, satisfying reachability or safety objectives can
also be done in polynomial time.
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Besides the objectives mentioned here, we can also define other objec-
tives using the logic PCTL [Hansson and Jonsson, 1994]. PCTL model
checking for MDPs is in P, and thus for any objective defined in this logic,
we can compute a strategy that satisfies it in polynomial time [Baier and
Katoen, 2008].

4.2.1 Reward problems

We can extend an MDP by defining a reward function. Let R: SxA — R
be the reward function giving the reward obtained, as a value in R, to
every action choice at each state. The intuitive idea behind rewards is
that it gives us a goal (typically to maximize). Alternative definitions of
reward function only consider the current state, i.e. R: S — R, or also

include the successor state of some state-action pair, i.e. R: Sx AxS —
R.

We consider a number of different reward problems.

Definition 6: Expected reward problems

Let v € (0,1] be a discount factor. Intuitively, the discount factor
is going to ensure that earlier steps have a bigger impact on the
reward that later steps. Given an MDP M = (S, A,¢) with some
reward function R: S x A — R, and a discount v € (0, 1], we define
the following expected reward problems:

e The finite horizon reward mazximization problem is to maxi-

mize
N
t
E Tt
t=0

for some given constant N € N.

E

e The infinite horizon reward mazximization problem is to max-
imize
o
t
E Tt
t=0

e The indefinite horizon reward mazximization problem is to max-

imize
N
t
Z’Y - Tt

t=0

E

E
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where N is not given (and as a consequence, finding N is part
of the problem).

e The quantitative reward problem is to ensure that, given some
threshold x € R
[o.¢]
E [Z At rt] DI K
t=0

In all of the above, r; is the reward received on step ¢ from the initial
state. If the discount factor v = 1 we speak of the undiscounted
variants of these problems, where if v < 1, we are dealing with the
discounted variants.

The actual value of r; depends on the strategy we use, and hence, the
expected reward problems are to compute a strategy such that the ex-
pected reward is maximized accordingly. The value function V,;: S — R
gives us the expected sum of the reward under some strategy o after t
steps. This value function can be computed recursively via the Bellman
equation [Bellman, 2003] for every state s € S as

Voi(s) = Z o(s,a)- R(s,a)+o(s,a)-~- Z 8(s,a,8") - Vyya(s'),

a€A s'eS

with base case

In the infinite horizon case the time step counter ¢ is simply removed
from the equation, making the equation recurse infinitely. The goal of
the maximization problems is to find a strategy (randomized) o such
that V5 ; is maximal. In the quantitative case, any strategy o such that
Vot (s1) >k will do.

A reward is typically interpreted as something for which a higher value is
better. If instead we are interested in assigning some form of penalty to
taking certain actions, we could define a cost function and an associated
expected cost problem. Note that this is just about interpretation: the
definitions we use for the reward function and the associated problem
allow for both interpretations, even though we use the word reward in
their definitions.
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4.3 Partial observability

In an MDP we assume the world is fully observable, meaning every
observation leads to a unique state. This assumption is not always
valid. A better model would be to derive the state from the observation
using a state estimator (SE). This idea is illustrated in Figure 6, again
taken from [Kaelbling, Littman, and Cassandra, 1998], and formalized
as a partially observable MDP in Definition 7.

Action
Observation
N~ b
T SE T ‘!’
AGENT

Figure 6: Schematic workings of a POMDP.

In Figure 6 the agent receives an observation that is translated into a
belief state (b) by the state estimator (SE). A belief state is a probability
distribution over the actual states. Hence, it summarizes where the
agent ‘believes’ they are. Using the belief state, a policy 7 is developed
to determine the next action to be taken.

Definition 7: Partially observable MDP

A partially observable Markov decision process (POMDP) is a tuple
(S,A,90,7Z,0), where (S, A,0) form a standard MDP, Z is a set of
observations, and O: S x A — Distr(Z) is a function mapping
state-action pairs to a probability distribution over observations.

If the distribution the observation function maps to is a Dirac distribu-
tion for all state-action pairs, the observation function is deterministic.
Furthermore, the observation function may be independent from the ac-
tion, effectively defining it as O: S — Z. All POMDPs occurring in
this thesis are of this form, i.e., with deterministic and state-based ob-
servations. This forms no restriction: any POMDP with an observation
function of the form O: S x A — Distr(Z) can be transformed into
a polynomially larger POMDP with state-based deterministic observa-
tions [Chatterjee et al., 2016].

22



As a POMDP extends an MDP, the definition of a reward function,
and the short-hand notations Succ(s,a) and A(s) remain the same for
a POMDP.

The idea behind a POMDP is that, contrary to an MDP, we do not
exactly know in which state we are, but instead are only aware of the 0b-
servation the state emits. As such, computing a strategy for a POMDP
and some problem ® is now observation based.

A run h = (sja;...Spay...) can be mapped to a sequence of obser-
vations by applying the observation function on each subsequent state-
action pair in the run: O(h) = (O(s1,a1),...,0(Sp,ap), ... ).

To make a finite memory strategy o observation based, we additionally
require that for all histories of size k, if two histories hi, ho have the
same k observations in their observation sequence, they map to the same
distribution over actions: O(h1) = O(ha) = o(h1) = o(ha).

The problems we defined before remain the same in the context of
POMDPs, though reward problems (see Definition 6) take a central
place in the literature, especially in Al applications.

Just like MDPs, POMDPs can also be drawn as a state based system.
The only difference being the observations, which are typically repre-
sented by giving states with different observations different colors. In
Figure 7 we see the POMDP we get when taking the MDP from Fig-
ure 5 and adding observations O(sg) = white, O(s1) = O(s2) = red,
and O(s3) = blue.

N[

as a1 %
. 1

N[

Figure 7: Graphical representation of a POMDP.



4.3.1 Belief states

Since a POMDP is partially observable, we have incomplete knowledge of
the state we are currently in. Instead, in POMDPs we have the concept
of belief.

Definition 8: Belief state

Given a POMDP P = (S, A, 4, Z,0), a belief state b is a probability
distribution over the set of states S. We denote the probability of
state s assigned by belief b by b(s).

By the standard definitions of probabilities we have 0 < b(s) < 1 and
> scs b(s) = 1. Typically, the belief state is something that evolves over
time, as such we will denote the belief state at some time t by b;. Given
b; and some action a that is to be performed, we may ask what the belief
state looks like after performing this action. Hence, we want to update
b; to a new belief state by 1.

Definition 9: Belief update in POMDPs

Given the current belief state by, an action a € A and an observation
z € Z, we compute the successor belief state by, 1 by performing the
following computation for every possible successor state s':

bt+1(‘9,) = PI‘(S, | a, z, bt)
_ Pr(z| s, a,b) Pr(s’ | a,by)

Pr(z | a,by)
Pr(z | s a) > ,cqgPr(s’ | a,bs,s)-Pr(s | a,b)
N Pr(z | a,b;)
O(s',a,2) - > cg0(s,a,8) - by(s)
- Pr(z | a,by)

Where Pr(z | a,b;) is a normalization constant [Cassandra, Kael-
bling, and Littman, 1994|, ensuring b;y; is a valid probability dis-
tribution, defined by

Pr(z|a,b) = Z O(s',a,z) - Zé(s,a, s') - bi(s).

s'esS sES

Using the belief update to compute a new belief state is quadratic in
the number of states. The nominator has a complexity of O(|S|) due
to the sum over all states, but for the total belief update this has to be
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computed for every potential successor state s’ € S. The denominator
is quadratic in the number of states, but is the same for every successor
state, so only needs to be computed once, yielding a total complexity of

O(ISP).

If we have defined some initial state s; for a POMDP our initial be-
lief by is given by a Dirac distribution at s;. In our definitions of the
various kinds of expected reward maximization problems we assumed
some initial state to count the number of steps from. This can also be
generalized to some initial belief, hence a set of states, to start counting.

Using belief states we can map a POMDP to a fully observable contin-
uous space belief MDP.

Definition 10: Belief MDP

For some POMDP P = (S, 4,4, Z,0), the associated belief MDP
(B, A, 7) is constructed as follows: the set of states B if formed by
all belief states, the set of actions is the same as in the POMDP: A,
and the transition function 7: B x A — Distr(B) for belief states
b,b' € B and action a € A is defined by

7(b,a, V') =Pr(t | a,b) = > Pr(t' | a,b,2) - Pr(z | a,b)

2€Z

where Pr(z | a,b) is the normalization constant from the belief
update (Definition 9), and

1 if SE(b =
Pr(v | a,b,2) = ifSE(b,a,2)

0 otherwise.

with SE(b,a,z) being the state estimator, determining the suc-
cessor belief state of the current belief b, action a, and successor
observation z.

If the POMDP P has some reward function R associated with it,
the belief MDP has reward function p: B x A — R defined by

p(b,a) =3 sesb(s) - R(s, a).

All these definitions are standard and discussed extensively in e.g. [Kael-
bling, Littman, and Cassandra, 1998].
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4.3.2 Belief MDP example

Consider the POMDP in Figure 7. We construct the belief MDP, start-
ing with an initial belief by observing white, hence we have by = {sg —

1}.

At sy we can either use action a; or as. Let b; be the belief state for
taking action a; and observing blue. As the only blue state is s3, we
immediately know that by = {s3 — 1}.

When taking action ay form sg we will only observe red, but we do not
know whether this is s; or so. From the transition probabilities it is
clear the belief state will be by = {s1 %, Sg > %}, but let us use the
formal belief update to check this.

We compute bs, given the current belief by and observing a red state.
First, we note that the probability for any non-red state will be 0 in
this belief state, since O(s, as,z) = 0 for any observation z that is not
red. For any state with a red observation we have O(s',as,red) = 1,
so based on the observation alone we know that the probabilities for sg
and s3 are 0 in bs. The values for s; and so are potentially not 0, as
the observation matches, but we also need to account for the transition
probabilities.

We compute the probability of being in s; for belief state bs via the
belief update, given current belief by, action as, and observation red:

ba(s1) = Pr(sy | ag,red, by)

~ O(s1,az,red) - Y g0(s,a,51) - bo(s0)
N Pr(red | az,bo)
~ 6(s0,a2,51) - bo(s0)

Pr(red | az,bo)
1

_ 2
"~ Pr(red | az, bo)

And do the same for the probability of being in state so in belief state
bo:
ba(s2) = Pr(se | ag,red, by)
O(s2,az,red) - Y g 6(s,a,52) - bo(s0)
Pr(red | az,bp)
~ 6(s0,az2,52) - bo(s0)

~ Pr(red| as, bp)
1

_ 2
Pr(red | as,bp)’
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The normalization constant is equal to 1, as we already have a valid
probability distribution (% + % = 1), and red is the only possible ob-
servation from using action as at by. But again, let us check this by
computing the value of Pr(red | az, bp)

Pr(red | az,bp) = Z O(s', az,red) - Z(S(s, a,s’) - by(s)

s'eS ses
= O(s1,a2,red) - 0(so,az, s1) + O(s2, as, red) - 0(sg, az, s2)
2 2

So we have by = {s; — %,52 — %}

The next belief state will observe blue from the current belief by. Since
there is only one state with observation blue and the probability of reach-
ing this state is 1 for both actions and both red states in bs, we know
that this belief state will be a Dirac distribution for s3. Note that we
already defined this belief state as b, so we can use that belief state
again.

The only transition left is the self-loop out of s3. But again, as we note
that the transition probability is 1 for both actions, and there is only
one successor state, namely sg itself, the successor belief state will again
be a Dirac distribution in s3, hence the belief b; does not change.

So in summary, we have the following belief states:

1 1
50:{80'—>1}, b1={$3'—>1}, b2:{81'—>2,820—>2}.

Next we construct the belief MDP. We already have the belief states:
B = {bg,b1,b2}. The set of actions is the same as in the POMDP:
A = {a1,a2}. The transition function is given by

7(b,a,b') = ZPr(b' | a,b,2)-Pr(z]a,b)
zeZ

where Pr(z | a,b) is the normalization constant we have seen before,
and for which we already know to be 1 for all given actions a and belief
states b in this example. The probability Pr(d’ | a,b, z) is given by the
state estimator as defined in Definition 10.

We have SE(bg, a1,blue) = by as we observe blue when taking action
a1 from sy. When taking action as at by and observing red we get
SE(bo, ag,red) = bg.
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Similarly, we have SE(b1, a1, blue) = SE(b1, ag, blue) = by when observ-
ing blue after any action at by, and SE(by, a1, blue) = SE(bg, ag, blue) =
b1 when observing blue after any action at by. So we get the transition
function 7 defined by

7(bo,a1,b1) =1, 7(bo, a2, b2) =1,
7(b1,a1,b1) =1, 7(b1,a2,b1) =1,
T(bg,al,bl) = 1, T(bQ,CLQ,bl) =1.

We draw the belief MDP (B, A,7) in Figure 8. Note that the belief
MDP has fewer states than the original POMDP, and that all transition
probabilities are 1. This is only for this specific example and certainly
not true in general. In Section 6.1.1 we construct a belief MDP that
has infinitely many reachable belief states. Finally, it should be noted
that a belief MDP is fully observable and has no observations associated
with it. Recall that every belief state is a distribution over states that
share an observation. As such it makes sense to give the belief states the
color of the observation they stem from, even though this has no further
formal meaning.

Figure 8: The belief MDP for the POMDP from Figure 7.

4.3.3 Complexity results for POMDPs

Where all problems we consider for MDPs can be solved in polynomial
time, POMDPs turn out to be much more difficult. Furthermore, where
for MDPs memoryless strategies suffice, the amount of memory that is
available makes a difference for the computational complexity of various
problems for POMDPs. We will give a brief overview of the important
computability and complexity results that are available for POMDPs.

Results for parity objectives in POMDPs can be found in [Chatterjee,
Chmelik, and Tracol, 2016]. Almost-sure parity objectives with infinite
memory are undecidable, and EXPTIME-complete with finite memory.
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Quantitative parity objectives are undecidable both for infinite and finite
memory.

Furthermore, [Chatterjee, Chmelik, and Tracol, 2016] gives results for
Biichi and coBiichi objectives in POMDPs. Reachability and safety
objectives can be seen as special cases of these. Biichi and coBiichi
objectives are in turn special cases of parity objectives.

Computing optimal strategies for the infinite-horizon POMDP prob-
lem is undecidable [Madani, Hanks, and Condon, 2000]. For the finite-
horizon problem it is PSPACE-complete [Papadimitriou and Tsitsiklis,
1987], and still NP-hard when restricting to memoryless strategies [Vlas-
sis, Littman, and Barber, 2012].

4.4 Multiple environments

Multiple-environment Markov decision processes (MEMDPs) are an ex-
tension of MDPs that add discrete uncertainty. Instead of a single tran-
sition function, we now have multiple transition functions. A MEMDP
can thus be seen as a set of MDPs that share the same states and actions.

Definition 11: Multiple-environment MDP

A multiple-environment Markov decision process (MEMDP) is a tu-
ple (S, A,{0i}icn]), where S and A are a set of states and a set of
action respectively, and {d;};c[n are n (different) transition func-
tions 6;: S x A — Distr(S).

When we fix a single transition function ¢;, we get a standard MDP.
We call such an MDP an environment of the MEMDP. Whenever M =
(S, A, {d:}icfn)) is @ MEMDP, we write M; = (S, A, d;) for the i-th en-
vironment in M, and may also write M; € M. A sub-MEMDP of M
is a MEMDP M’ = (S, A,{d;}icr) where I C [n] is a subset of all the
indexes. We may also write M’ C M.

We assume that the set of enabled actions A(s) for every state s € S is
the same in every environment. Hence, environments cannot be revealed
by being unable to perform a certain action.

Applying a strategy o to M is done for each environment independently
and yields n induced Markov chains: M7 = {M{ };c[n). Finally, we do
not care about the order in which the transition functions are given.
M = (S, A, b1,02) defines the same MEMDP as M’ = (S, A, d2,41).
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MEMDPs are by their definition fully observable. Furthermore, we do
not require that the transition functions define the same graph in each
environment. There may be transitions available in some of the envi-
ronments and not in others. This gives rise the following definition.

Definition 12: Revealing transitions

A transition (s, a, s') is i-revealing for MEMDP M = (S, A, {0;}icpn))
if we have for some environment 4 that d;(s,a,s’) > 0 and for all
other environments j # i that 0;(s,a,s") = 0.

If we are in some state s, apply action a and observe that we end up in
state s’ we immediately know that environment M; € M is the true en-
vironment. The idea behind the existence of a single true environment
is that MEMDPs can be used to model systems with discrete uncer-
tainty. That is, we have some system and we do not know exactly how
it operates, but whatever the exact behavior is, it is one out of several
predefined scenarios. Thus, the true environment is the scenario that
exactly models our real-world system.

When dealing with MEMDPs of more than two environments, it may be
the case that a transition does not reveal the true environment because
it exists in more than one of the environments. However, it may exclude
some of the environments.

Definition 13: Reducing transitions

For a MEMDP M = (S, A, {d:}ic[n) and a subset of indices I C
[n], a transition (s,a,s’) reduces M to the sub-MEMDP M’ =
(S, A, {d:}ier) if for all i € I we have §;(s,a,s’) > 0 and for all
J ¢ I we have §;(s,a,s’) =0.

A reducing transition may not reveal the true environment, but it can
shrink the MEMDP to a smaller set of potential true environments.
Obviously, if the set I is a single index ¢, an I-reducing transition is also
i-revealing.

End-components for MEMDPs were introduced in [Raskin and Sankur,
2014]. They only consider MEMDPs of two environments and call them
double end-components. We extend the definition to the n-environment
case, and change the name to reflect this.
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Definition 14: End-components in MEMDPs

Given a MEMDP M = (S, A, {i}ic[n)), an end-component in M
is a pair (S, A’) that is an end-component in each environment
M; € M.

An end-component (S’; A") in M is distinguishing if there exists a
state s € S’ and an action a € A’ such that for two environments
i # j we have d;(s,a) # d;(s,a).

End-components for MEMDPs were introduced in [Raskin and Sankur,
2014] as double end-components, as they only consider MEMDPs of two
environments. Our definition generalizes double end-components to n
environments. We choose to just call them end-components, and make
sure that the context makes clear whether we consider an end-component
in an MDP or in a MEMDP.

Mazximal end-components in MEMDPs can be computed by removing
all actions at a state with different supports for the successor state dis-
tributions from M. That is, all (s,a) for which there exists an s’ such
that (s, a,s’) is I-reducing for some I C [n]. Then, compute the multiple
environment end-components in the remaining MEMDP. This procedure
is a generalized version of the method presented in [Raskin and Sankur,
2014].

When drawing a MEMDP, we draw each environment separately, as in
Figure 9. In this example, transition (sg, az, s1) is revealing for environ-
ment 1, and (so, az, s2) is revealing for environment 2.

(a) Environment 1. (b) Environment 2.

Figure 9: An example MEMDP.

MEMDPs were introduced and extensively studied in [Raskin and Sankur,
2014]. They provide both complexity results and concrete algorithms for
reachability, safety and parity objectives. Reward structures are not dis-
cussed. In summary, [Raskin and Sankur, 2014] provides the following
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key insights into MEMDPs:

e Computing a strategy that satisfies an almost-sure reachability,
safety, or parity objective is decidable in polynomial time.

e Computing a strategy that satisfies a limit-sure reachability, safety,
or parity objective can be solved in polynomial time too.

e Computing a strategy that satisfies a quantitative reachability or
safety objective is NP-hard on MEMDPs for both memoryless
and finite-memory strategies, finite memory strategies can be com-
puted in PSPACE.

e Computing a strategy that satisfies a quantitative parity objec-
tive can be reduced to satisfying a quantitative reachability objec-
tive in polynomial time, and thus is also NP-hard and solvable in
PSPACE.

Besides the complexity results, concrete methods for solving each prob-
lem are provided.

4.5 Mixed observability

Besides MEMDPs and POMDPs there are many other ways of extending
the modeling capabilities of MDPs. An other interesting type of model
are mized observability MDPs. The idea is to split the model into two
parts, a fully observable part and a partially observable part. This is a

special case of the more general idea of having factored state-spaces, as
defined in factored POMDPs [Boutilier and Poole, 1996].

Definition 15: Mixed observation MDP

A mized observation Markov decision process (MOMDP) is a tuple
(Sfo X Spo: A, Zfo X Zpo, (5f0, (5p0, O), where

o S = 57, x Sy is the set of factored states, with Sy, being the
fully observable states and S, being the partially observable
states, such that a pair (z,y) represents a state in the entire
system.

e A is a set of actions.

o 7 = Zy, X Zpo is the set of observations with Zf, = Sy,, such
that the fully observable states all have a unique observation
of their own, and Z,, is a set of observations for the partially
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observable states.

® 0po: Sfo X Spo X A — Distr(Sy,) is the transition function
on the fully observable states, and 6po: Spo X Spo X A —
Distr(Sp,) is the transition function the partially observable
states. Together they map a state (z,y) € S to a distribution
over successor states given by (d70(x,a), 0po(y, a)).

e O: Sty X Spo — Zfo X Zp, is the observation function that
assigns an observation to each state. Note that each of the
fully observable states gets a unique observation, so the in-
teresting part is how it maps observations from Z,, to the
partially observable states, and so we can simplify the obser-
vation function to O: Sy, = Zpo.

Where a POMDP can be seen as an MDP with continuous belief states
[Kaelbling, Littman, and Cassandra, 1998], a MOMDP can be seen as
an MDP with both discrete and continuous states, where the discrete
states are given by the fully observable part of the MOMDP, and the
continuous states by the belief over the partially observable part of the
MOMDP [Ong et al., 2010].

The computational advantage of MOMDPs over POMDPs lies in that
the fully observable part in a MOMDP tells us which partially observable
states we should account for and which ones are certainly not possible in
combination with the current fully observable state. As a consequence,
instead of dealing with a single belief over the entire state space as in a
POMDP, we now have to deal with a belief over the partially observable
states associated with the current fully observable state. This usually
leads to a smaller belief, which is easier to compute. Note that any
POMDP can be modeled by a MOMDP by making the fully observable
part is trivial. Thus complexity of problems for MOMDPs are at least
as hard as for POMDPs.

4.5.1 Hidden model MDPs

By making additional assumptions about the behavior of a MOMDP,
we get a computationally even easier model called a hidden model MDP.

Definition 16: Hidden model MDP

A hidden model MDP (hmMDP) is a MOMDP (S, x Spo, A, Zo X
Zpos 00, 0po, O) with the following additional assumptions:
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1. The set of fully observable states Sy, is a set of states. The
set of partially observable states are n indices that number a
set of predefined models. There is one real model it € Sp,.

2. The actions on the completely observable states have no effect
on the partially observable states, and their transitions are
also assumed to be independent of each other.

3. The real model ir does not change over time. As a conse-
quence, the transition function d,, can be interpreted as an
identity matrix.

4. The partially observable states S, cannot be observed and the
observation function O is only defined on the fully observable
states.

As a consequence, a hidden model MDP is a simplified MOMDP
that defines a finite set of MDPs that only differ in their transition
functions [Chades et al., 2012]. Hence, a hmMDP can be interpreted
as a tuple (S, A, {di }ig[n)) of which the definition coincides with the
definition of a MEMDP.

Note that MEMDPs were introduced in 2014 in [Raskin and Sankur,
2014], whereas hmMDPs originate from [Chades et al., 2012]. Though
both models are in the end exactly the same, their construction is dif-
ferent. MEMDPs are clearly build as an extension of MDPs, while hm-
MDPs are constructed by making additional assumptions on POMDPs.

Where [Raskin and Sankur, 2014] is a very in-depth paper with theo-
retical results and novel algorithms to deal with MEMDPs, [Chades et
al., 2012] only defines hmMDPs to simplify computation of MOMDP
algorithms, in particular the MO-SARSOP [Ong et al., 2010] and MO-
IP [Araya-Lépez et al., 2010] algorithms. Both are in turn special ver-
sions of the POMDP methods SARSOP [Kurniawati, Hsu, and Lee,
2008] and IP [Cassandra, Littman, and Zhang, 1997] that account for
the mixed observability of a MOMDP.

Chades et al. does provide one interesting complexity result. We already
discussed how MOMDPs are from a computational complexity perspec-
tive at least as difficult as POMDPs. For hmMDPs, and thus MEMDPs,
we now also have that computing a strategy that maximizes the finite-
horizon reward problem in a hmMDP is PSPACE-complete [Chades et
al., 2012]. This is the same as for POMDPs.
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4.6 Parametric systems

The last types of models we briefly introduce are uncertain Markov de-
cision processes and parametric Markov chains. An overview of various
kinds of extensions of MDPs simply would not be complete without
these. Furthermore, parametric Markov chains are closely related to
POMDPs, and uncertain MDPs can play a nice role in over-approximating
non-revealing MEMDPs, as we will see in Chapter 5.

We define V' to be a finite set of parameters, and Qy is the set of rational
polynomial functions over V.

Definition 17: Parametric Markov chain

A parametric Markov chain (pMC) is a tuple M = (S,V,P). As
usual, S is a set of states and A is a set of actions. V is a set of
parameters, and P is the parametric transition function defined by

P:S xS —Qy.

Essentially, a pMC is a standard Markov chain except that the tran-
sitions now have rational functions of parameters instead of concrete
probabilities assigned to them. This can be seen as a form of uncer-
tainty. There can be multiple valid probability distributions that can
be formed by substituting the parameters with rational values. Hence,
pMC defines a set of Markov chains. An especially interesting aspect of
the uncertainty induced by the parameters is that it can also define de-
pendencies between transitions. If the transition P(s;, s;) contains some
parameter p, it is perfectly fine for this p to also show up in some other
transition P (s, s;), but when assigning a value to p, the same value has
to be filled in in both transitions.

A waluation is a function v: V. — [0, 1] that assigns a value to each
parameter such that for every state s we have >, ¢P(s,s) = 1. Ap-
plying a valuation to a pMC M, denoted M|v] yields a standard Markov
chain. The parameter synthesis problem is to find a valuation for a pMC
such that the induced Markov chain M [v] satisfies some reachability or
specification. This problem is ETR-complete [Winkler et al., 2019].

Parametric Markov chains are particularly interesting for their connec-
tion to POMDPs. Any POMDP with a randomized (finite memory)
strategy can be rewritten into a pMC, where the parameters represent
the strategy choices. If due to the partial observability two states have
the same strategy choice, this is reflected by assigning the same param-
eter to the outgoing transition from those states. As explained before, a
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solution to the parameter synthesis problem ensures that each parameter

is assigned a valid value, thus enforcing that the strategy is observation
based.

The transformation from POMDP to pMC allows us to use the efficient
techniques for parameter synthesis to solve POMDP problems. Further
more, we can encode finite memory strategies by expanding the state
space using finite state controllers. For full details of these techniques
we refer to [Cubuktepe et al., 2018] and [Junges et al., 2018].

In [Junges et al., 2019] an overview of various methods to solve the
parameter synthesis problem for pMCs and parametric MDPs is given.

4.7 Uncertain MDPs and POMDPs

Besides parameters there are also other methods for incorporating un-
certainty in the transition probabilities, with intervals being the most
straightforward way.

Definition 18: Uncertain MDP

An uncertain Markov decision process is a tuple M = (S, A, A, T),
where S and A are a set of states and a set of actions as usual. I
is a set of probability intervals, and A is the uncertain transition
function defined by A: S x A x S — L.

An uncertain POMDP is defined similarly as a standard POMDP, ex-
cept that we now have an uncertain MDP instead of a standard MDP
underlying the model.

An instantiation of an uncertain MDP M is a transition function é: S x
A — Distr(S) such that for all successor states s’ we have that probabil-
ity of transitioning into s’ lies inside the interval: d(s,a, s’) € A(s,a, ).
We think of the uncertain transition function A as a set of all possible
standard transition functions bounded by the intervals. Every instanti-
ation of an uncertain MDP, denoted Md] is a standard MDP.

A strategy o robustly satisfies some objective ® in an initial state sy,
denoted Mg, |= @, if it satisfies ® in every instantiation:

MZ EQ = Vi A M, .

An uncertain (PO)MDP is called graph preserving if all intervals have
a lower bound strictly greater than 0. This means that no instantiation
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can put the value 0 on a transition, ensuring that all instantiations have
the same underlying graph. Graph preservation is an assumption com-
monly made, see for example [Wiesemann, Kuhn, and Rustem, 2013].

Robust strategies can be computed in a number of ways. Dynamic
programming is used in [Wolff, Topcu, and Murray, 2012] to compute
strategies that maximizes the probability of robustly satisfying some
LTL specification. In [Suilen et al., 2020] robust optimization [Ben-Tal,
El Ghaoui, and Nemirovski, 2009] is used. Finally, the value iteration
algorithm can be modified into a robust value iteration [Bagnell, Ng, and
Schneider, 2001] that computes strategies for uncertain MDPs where the
uncertainty is given by convex sets.

Uncertain MDPs can play a nice role in approximating MEMDPs, as we
will see in Chapter 5.

4.8 Comparison between MDPs, MEMDPs, and
POMDPs

Given MDPs and POMDPs, the two types of models that are the stan-
dard when it comes to modeling systems with decision making in a
stochastic environment, we may wonder where MEMDPs fit in. We al-
ready discussed some key complexity and computability results from the
literature for all three model types, and we will now summarize those
results.

Model Almost-sure reachability Quantitative reachability
MDP in P in P
MEMDP in P NP-hard, in PSPACE
POMDP (k) EXPTIME-complete Undecidable
POMDP (o) EXPTIME-complete Undecidable

Table 1: Complexity of reachability objectives.

Table 1 contains the complexity results for solving almost-sure and quan-
titative reachability objectives as introduced in Definition 5. The results
for MDPs follow from the existence of a linear programming formula-
tion that solves these problems for MDPs [Baier and Katoen, 2008],
which can be solved in polynomial time. The results for MEMDPs are
from [Raskin and Sankur, 2014].

For POMDPs we make the distinct between the different amounts of
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memory that is available for the strategy, denoted by (k) for finite mem-
ory strategies, and (oco) for infinite memory strategies. The reachability
problem is a specific instance of a Biichi objective. Complexity results
for Biichi objectives in POMDPs are found in [Chatterjee, Chmelik, and
Tracol, 2016].

Model Almost-sure safety Quantitative safety
MDP in P in P
MEMDP inP NP-hard, in PSPACE
POMDP () EXPTIME-complete Undecidable
POMDP () EXPTIME-complete Undecidable

Table 2: Complexity of safety objectives.

Table 2 contains the results for the three types of safety objectives we
consider. The results for MDPs follow from the fact that any PCTL-
objective can be solved in polynomial time in MDPs [Baier and Katoen,
2008]. The results for MEMDPs are again found in [Raskin and Sankur,
2014]. For POMDPs, we again note that safety objectives are a special
instance of Biichi objectives.

Model Almost-sure parity Quantitative parity
MDP in P inP
MEMDP in P NP-hard
POMDP () EXPTIME-complete Undecidable
POMDP (o) Undecidable Undecidable

Table 3: Complexity of parity objectives.

The complexity for parity objectives is given in Table 3. For the results
on MDPs, see [Chatterjee, Jurdzinski, and Henzinger, 2004]. The results
for MEMDPs are again found in [Raskin and Sankur, 2014], and the
results for POMDPs are from [Chatterjee, Chmelik, and Tracol, 2016].

The known complexity results for various reward problems as defined in
Definition 6 are given in Table 4. The quantitative reward problem can
be solved by a linear program [Baier and Katoen, 2008]. The results on
the finite and infinite horizon reward problems are found in [Papadim-
itriou and Tsitsiklis, 1987].

The result for MEMDPs in the finite horizon case follows from the
PSPACE-completeness of this problem for hidden model MDPs given
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Finite Infinite

Quantitative horizon horizon
Model reward reward reward
MDP in P in P in P
MEMDP NP-hard PSPACE-complete ?

POMDP  Undecidable PSPACE-complete Undecidable

Table 4: Complexity of reward objectives.

in [Chades et al., 2012], and, as already noted, hmMDPs are in fact
MEMDPs. The complexity of the quantitative and infinite horizon prob-
lems are, to the best of our knowledge, unknown as of yet. In Chapter 5
we prove that the quantitative reward problem is NP-hard in MEMDPs.

The undecidability of the infinite horizon problem for POMDPs is from
[Madani, Hanks, and Condon, 2000], and the PSPACE-completeness for
the finite horizon case is given by [Papadimitriou and Tsitsiklis, 1987].
The undecidability of the quantitative reward problem follows from the
undecidability of the quantitative reachability problem and the fact that
reward structures can model reachability problems [Arming et al., 2018].

MDPs are from a computational perspective clearly preferred. How-
ever they may lack in their capabilities to model real-world scenarios
with a sufficient level of detail [Russell and Norvig, 2010]. On the other
hand, POMDPs provide these modeling capabilities, but are compu-
tationally hard to solve, especially when we are interested in optimal
solutions. MEMDPs provide a nice middle ground between MDPs and
POMDPs. As noted before, their modeling capabilities (a distinct num-
ber of predefined scenarios) are sufficient enough for many real-world
applications, and their computational complexity (maybe NP-hard, but
at least still decidable) leaves enough room for computing strategies to
solve the problems that arise in said applications.

4.9 Tool support

Many of the models, their problems and solution methods have been
implemented. Storm [Dehnert et al., 2017] and PRISM [Kwiatkowska,
Norman, and Parker, 2011, Norman, Parker, and Zou, 2017] are com-
plete model checkers. For parametric models and the parameters syn-
thesis problem dedicated tools, such as PROPhESY [Dehnert et al., 2015]
or PARAM [Hahn et al., 2010}, were developed.
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Chapter 5

Additional results on
MEMDPs

In this chapter we study some basic properties of MEMDPs. We use the
fact that MEMDPs are a set of MDPs on the same states and actions to
define bisimulations between MEMDPs. We give concrete algorithms for
finding I-reducing and i-revealing transitions. We show that a MEMDP
can be approzimated by an uncertain MDP to compute robust strategies.
We prove that the quantitative expected reward problem is NP-hard in
MEMDPs. And we define a mixed integer linear program to compute
deterministic strategies satisfying a quantitative reachability property.

5.1 Bisimulations

A relation R C S x S on a set of states S is an equivalence relation if it
satisfies the following properties:

Vs, s’ s" € 8.
(s,s) € R (Reflexivity)
(s5,8) ER = (§,8) R (Symmetry)
(5,8),(5,") e R = (5,5") eR (Transitivity)

Definition 19: Bisimulation between MDPs

A bisimulation between two MDPs with the same sets of states
and actions M; = (S, A,01) and My = (S, A, d2) with initial states
sy, € S for My and s;, € S for M, is an equivalence relation
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R C S x S such that the following holds:

(811,812) € R,
(s,s) ER = Vae AVE € S/R. Z&l(s,a,t) = Zég(s',ajt),

tek teE

where S/R is the partition of S into R-equivalence classes. Then
E € S/R denotes one such equivalence class.

If it is possible to construct a relation between two MDPs as in Definition
19 we have a bisimulation and say the MDPs are bisimilar, denoted as
My ~ Ms. If the MDPs also have reward structures R; and Ry we
additionally require that

(s,8') € R = Va € A.Ri(s,a) = Ro(5,a).

Bisimulations between states of the same MDP, or between different
MDPs are described in [Castro, Panangaden, and Precup, 2009, Larsen
and Skou, 1991].

Our interest in using bismulations between MDPs in the context of
MEMDPs is twofold. First, we can use bisimulations to reduce the
number of environments in a MEMDP. Second, we can easily construct
a new definition for bismulations between MEMDPs by using the fact
that a MEMDP is nothing more than a set of MDPs.

5.1.1 Reducing the number of environments

For theoretical purposes, it is nice to assume that each environment in
a MEMDP actually adds something to the MEMDP. That is, we do not
want any duplicate MDPs in our set. This is something that is implicitly
assumed in [Raskin and Sankur, 2014]. However, this assumption may
not always be valid from the start.

Consider the case study in [Chades et al., 2012]. Here the hmMDP
— which, as we have seen, is actually a MEMDP - is constructed by
involving a number of domain experts. A number of possible scenarios
are proposed, where each such scenario is modeled by an MDP, and
the set of all scenarios is then the resulting MEMDP. Depending on
who does the actual construction of the MDPs, it is possible that we
get multiple MDPs that may not look similar, but do have the same
behavior (i.e., are bisimilar). Thus the resulting MEMDP may have one
or more superfluous environments, that we wish to remove.

41



Definition 20: Minimal MEMDP

A MEMDP M = (S, A, {0;}ic[n)) is minimal (in the number of en-

vironments) if none of the environments are bisimilar to each other:

Vi€ [n])V) € [n]\ {i}. M; 4 M;.

5.1.2 Bisimilarity of MEMDPs

Since we consider MEMDPs as just sets of MDPs, we can easily adapt
the definition of a bisimulation between MDPs to bisimilarity between
MEMDPs.

Definition 21: Bisimulation between MEMDPs

Let M and M’ be two MEMDPs on the same set of states and
actions that are minimal as in Definition 20. M and M’ are bisimilar
if each environment in one MEMDP is bisimilar to an environment

in the other MEMDP:

VM, € M.EIMJ{ eM. M;~ MJ' by some relation R; ;

By symmetry of bisimulations we have that if M; ~ M, by R;; then
also M; ~ M; by R;;. From the transitivity it follows that if two
environments from M}, M; € M are bisimilar to the same environment
of M J’ € M’', My, and M, are also bisimilar to each other:

MkNM](NMl = M ~ M.

Note that this can only happen if M and M’ are not minimal. As a
consequence, when two (minimal) MEMDPs are bisimilar, they have
the same number of environments.

Definition 21 essentially creates a relation R C (S x S)" composed of n
bisimulations: R = Ry g1) X -+ X Ry, ¢(n) Where ¢ is a permutation of
the indices.
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5.2 Algorithms for detection of i-revealing and
I-reducing transitions

As already mentioned at their introduction, i-revealing and I-reducing
transitions play an important role in analyzing MEMDPs. And they
are also closely related: any I-reducing transition with |I| =1 is in fact
i-revealing, and a MEMDP with no I-reducing transitions at all is graph
preserving. This latter fact can be used to approximate the MEMDP by
an uncertain MDP, which we will discuss in Section 5.3. This calls for
some concrete algorithms to figure out whether such transitions exist,
and if so, what they reveal exactly.

5.2.1 Graph preservation

We begin with a simple algorithm to detect whether a MEMDP is graph
preserving. Simply put, we check whether a transition exists in all en-
vironments, or in none. Exactly when either one of those is true for all
transitions, the MEMDP is graph preserving.

Algorithm 1: Graph preservation check algorithm.

Input: MEMDP M = (S, A, {d; }ic[n)

Output: Is M graph preserving?

for (s,a,s’) € S x Ax S do

for i € [n]\ {1} do

if 91(s,a,s’) > 0 and 0;(s,a,s’) = 0 then
| return False

end

if 01(s,a,s’) =0 and 0;(s,a,s’) > 0 then
| return False

end

end
end
return True

Algorithm 1 loops over all possible transitions. If a transition exists
in the first environment, it should also exist in all other environments.
If this is not the case we can return False and immediately terminate
the algorithm. The same goes for the case if the transition does not
exist in the first environment, then it should also not exist in any of
the other environments. If the algorithm checked all transitions without
terminating earlier, we know the graph preservation property holds for
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this MEMDP and return True. The time complexity of this algorithm
is linear in the size of the MEMDP: O(Size(M)).

5.2.2 [-reducing and i-revealing transitions

We first construct a general purpose algorithm that computes the set
consisting of all I-reducing transitions. That is, transitions and the set
I associated with them.

Algorithm 2: Search algorithm for all /-reducing transitions.
Input: MEMDP M = (S, A, {d;}icn))
Output: Set Z of all I-reducing transitions
Z+0
for (s,a,s') € S x Ax S do
I+0
for i € [n] do

if d;(s,a,s’) > 0 then

| T+ TU{i}
end

end

if 0 < |I| < n then

‘ I%IU{((S,CL,S,),I)}
end

end
return 7

Algorithm 2 has a time complexity that is linear in the size of the input
MEMDP M: O(Size(M)).

In fact, Algorithm 2 can also be used to compute whether M is graph
preserving, by checking if the output Z is empty. In that case there are
no I-reducing transitions, meaning that each transition either occurs in
all or in none of the environments, which is the precise definition for
graph preservation.

Similarly, this algorithm can also be used for finding all i-revealing tran-
sitions. By definition, an I-reducing transition is ¢-revealing precisely
when I = {i}. However, we construct a separate algorithm for finding
i-revealing transitions that is slightly more efficient.

The optimization in Algorithm 3 consists of stopping the inner for-loop
once the transition occurs in more than one environment, as it cannot
be i-revealing anymore. This optimization has no consequences for the
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Algorithm 3: Search algorithm for all i-revealing transitions.
Input: MEMDP M = (S, A, {d;}icn))
Output: Set Z of all i-revealing transitions
<+ 10
for (s,a,s’) € S x Ax S do
I+ 0
for i € [n] do
if 9;(s,a,s’) > 0 then
| T+ TU{i}
end
if |I| > 1 then
| break ¢
end

end

if |I| =1 then

‘ I+ ZU{((s,a,¢)1)}
end

end
return 7

theoretical complexity, though it may prove useful in practice. Worst-
case a transition is revealing for the n-th environment, requiring the full
execution of the inner for-loop to be detected.

5.3 Approximating MEMDPs via
uncertain MDPs

Besides POMDPs, MEMDPs can also be transformed into uncertain
MDPs. This transformation, however, will introduce more uncertainty
than necessary, as MEMDPs are discrete and uMDPs continuous in the
different transition functions they define.

Definition 22: Approximation uMDP

Given a MEMDP M = (S, A, {d;}ic[n]), We construct the following
uncertain MDP such that it can be used to soundly approximate
M: M = (S,A,AI). Clearly, the set of states and actions are
the same as in M. The set of intervals I is constructed by finding
the minimum and the maximum values for each transition over all
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environments:

Lpas = [min{dz-(s, a8 b ({5, (s.0,5)} |
1€n

i€[n]

I= U Ls.as)-

(s,a,s")ESXAXS

Then, the uncertain transition function A: S x A xS — I is defined
by A(s,a,s") = L1544

The construction from Definition 22 is general and may include tran-
sition with an interval of the form [0,p], for some p € (0,1]. This
means there will be non-graph preserving instantiations in the uncer-
tain MDP. In other words, there is an instantiation where the transition
associated with this interval gets a probability value of 0, thus remov-
ing the transition from the uMDP. As already discussed in Section 4.7,
having non-graph preserving instantiation makes computing a strategy
that is robust for all instantiation in the uMDP harder. In fact, many
techniques rely on the assumption that no such transitions exist in the
uMDP.

This can be guaranteed by ensuring the MEMDP we are approximating
has no I-reducing transitions, and is graph preserving. This can be
checked easily using Algorithm 1.

Lemma 1: Graph preservation lemma
If a MEMDP M = (S, A,{d;}ic[n)) is graph preserving, then the
approximating uMDP M = (S, A, A,T) is also graph preserving.

Proof. We know M is graph preserving. Thus, for all tuples (s,a,s’) €
S x A x S either 0;(s,a,s’) > 0 for all environments 4, or for none of
them.

If ;(s,a,s") = 0 for all environments i, then
min{d;(s,a,s’)} = max{d;(s,a,s)} =0,
i€n] icln]

and as a consequence I(, , ) = [0,0].

If 0;(s,a,8") > 0 for all environments i, then min;cp,,{di(s,a,s")} > 0.
Then the interval at this transition is of the form I, , oy = [z, y] where

x = m{in}{éi(s,a, s)}>0, y= m?u)f{éi(s, a,s)} > x.
€N S
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Which means that we have 0 < < y < 1, and thus this transition
cannot be removed by some instantiation, as 0 is not part of this interval.

From this we conclude that if the MEMDP M is graph preserving, then
the approximating uMDP is also graph preserving.

O]

If we compute a strategy for a MEMDP via the approximating uMDP,
we get a sound overapprorimation, meaning the strategy is also correct
for the MEMDP.

Theorem 1: Strategies for the approximation uMDP are
sound for the MEMDP

let M = (S, A, {52}16[71]) be a MEMDP, and M = (S, A, A,I) the
uMDP approximating M as defined in Definition 22. Let o be a
strategy robustly satisfying some objective ® at s; in M: M7 = ®.

Then o also satisfies ® in M for all environments: Mg, = ®.

Proof. Clearly the value of each transition in any environment lies be-
tween the minimum and maximum over all environments:

V(s,a,s') € S x Ax S. Vi€ [n].

min{d;(s,a,s')} < di(s,a,s’) < max{d;(s,a,s’)}.
J€ln] J€ln]

Then it follows from the construction of M that each transition in the
MEMDP M lies in the associated interval in M:

V(s,a,s8") € S x AxS.Vie n]. bi(s,a,5") € Is 09,

and so we have §; € A for all environments 3.

So we can fix any transition function ¢; from the MEMDP as an in-
stantiation, resulting in exactly the i-th environment of M. Formally:

M([6;] = M;.
Thus the set of environments is a subset of all the instantiations of M.

Since the strategy o robustly satisfies ® in M, that is, for all instan-
tiations of M, it naturally also satisfies ® for any subset of all the
instantiations, and in particular the subset of instantiations identified
with the MEMDP M.

O]
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By Theorem 1 we know that a solution for the approximation uMDP
M of a MEMDP M also holds for M itself. It is, however, an overap-
prozimation, meaning that the M accounts for more uncertainty than
necessary. In fact, the strategy computed in M is robust for uncount-
ably many instantiations, whereas it only needs to be robust for the
finite number of environments in M. As a result, it may be the case
that there does not exist a strategy for M, while these does exist one
for M itself.

5.4 Complexity of the quantitative expected re-
ward problem

In Section 4.8 we noted that does not discuss reward structures for
MEMDPs. From [Chades et al., 2012] we know that the finite horizon
reward maximization problem is PSPACE-complete for hmMDPs (and
thus MEMDPs). To the best of our knowledge, this is the only complex-
ity result regarding reward structures in MEMDPs. We show that the
quantitative expected reward problem is NP-hard via a straightforward
reduction from the quantitative reachability problem.

Proposition 1: Reachability as a reward structure in MDPs
[Arming et al., 2018]

Let M = (S, A,d) be an MDP with some initial state s; with some
reachability objective for a state ¢ € S. The MDP with rewards
M, = (S, A, d,) with reward structure R: S x A x S — R has the
same sets of states and actions, and a transition function ¢, defined
as

Dirac(t) ifs=t
d(s,a)

or(s,a) =

and reward function R defined as

Ris.a.s) = 1 ifs#tands =t

0 otherwise.

Essentially, the construction in Proposition 1 copies the MDP, except
that the target state ¢ is made into a sink state. The reward structure
gives a reward of 1 for any transition leading to ¢, and a reward of 0 for
any other transition.
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A strategy o satisfies the reachability of ¢ in M with some threshold A
if and only if that same strategy satisfies the expected reward of that
same threshold A in M,..

Theorem 2: Quantitative expected reward is NP-hard for
MEMDPs

Let M = (S, A, {5i}i€[n]) be a MEMDP. Let R;: S x Ax S — R
be the reward function in environment 7 of M. Let x € R be the
reward threshold, and t € S be a target state.

Computing a strategy o for M such that the quantitative expected
reward problem is solved with threshold i x is NP-hard.

Proof. We prove Theorem 2 by constructing a polynomial many-to-one
reduction from the quantitative reachability problem for MEMDPs. Re-
call that this problem is NP-hard for MEMDPs by [Raskin and Sankur,
2014].

Each environment M; € M is an MDP for which, by Proposition 1, we
can construct an MDP M; , with a reward structure R;: Sx A xS — R
as defined in the proposition.

This construction is linear in the size of the MEMDP. For every MDP
we have to copy and adapt the transition function and construct the
reward function, which can be done in O(|S|-|A|-|S|) operations. This

is repeated for every MDP, hence a total computation time of O(n - |S]-
|A| - |S]), which simplifies to O(Size(M)).

The set M, = {My,,...,My,,} is a set of n MDPs that only differ in
their transition functions and reward functions. Hence, a valid MEMDP.

Now suppose a strategy o solves the expected reward problem for thresh-
old x in every M;, € M,. Then, by construction of each M; ,, this strat-
egy also solves the reachability problem of reaching ¢ with threshold k.

Since the quantitative reachability problem is NP-hard for MEMDPs, it
follows that the quantitative expected reward problem is also NP-hard.

O]
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5.5 MILP for deterministic memoryless strate-
gies in MEMDPs

The quantitative reachability problem for MEMDPs can be solved by
an quadratic equation system that results in a randomized finite mem-
ory strategy. Sometimes, randomization is not an option. Small scale
implementations of an agent may not have access to a random number
generator to randomly pick actions based on some precomputed distri-
bution. We provide a mixed integer linear program (MILP) [Cohen and
Parmentier, 2018] for computing deterministic strategies in MEMDPs.
Note that this encoding is very general and can be extended satisfy
multiple objectives. We present our encoding for maximizing the reach-
ability of a target set.

Definition 23: MILP

A mized integer linear program (MILP) is an optimization problem
of the following form:

minimize fo(z1,...,oy)
subject to fi(z1,...,2,) <1, i€ m]
zj € Z, jeJCn]
where x1,...,x, are n real-valued variables, fo,..., f;, are m + 1

linear functions over the variables, and .J is a set of indices for which
the variables are restricted to integers.

Let {054 | s € S,a € A} be the integer variables that will encode the
strategy . We define real-valued variables pi, r} and ¢! ,. for each
environment j.

The variables pf; encode the probability of reaching a target state in
T from s in environment j. Since we only consider a deterministic
scheduler we need additional preprocessing of the MEMDP. It may be
the case that the target set 1" becomes unreachable under some strategy.
We define the set of states that can only reach the target set under some
strategies in environment j as SIJPR (for problematic states). The set of
problematic actions in environment j is then given by

Apg = {(s,a) €S xA|ae A(s) ASucc(s,a) C S{DR}.

Using these sets of problematic states and actions for each environment,
we define the variables 77 as a ranking over the problematic states. Each
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s € S%R is assigned a ranking r € [0,1]. The variables ti o are addi-
tional real numbered variables used to ensure correctness. The MILP
encoding of the problem is given by the equations 1 — 6.

n

maximize Zpgl (1)
j=1
subject to
Vjien]. .
=1 9
vser. s (2)
Vj € [n]. Z
o =1 3)
Vs e S\T. v
Vj € [n].
Vs e S\ T. p§§(1—057a)+ Z 5j(8,a,s’)'pi/ (4)
Ya € A(s) s'€Succ(s,a)
Vj € [n].
V(s,a) € A{)R. TZ < rg, +1-— ti’s, (5)

Vs' € Succ(s, a).

Vi€ n]. . ,
. pl<l—o05q+ t 6
V(s,a) € Abg. Z =8 (6)

s’€Succ(s,a)

Equation (1) defines the objective function. This can be, for example,
maximizing the reachability of the target set 1" from initial state sy
for all environments. Constraint (2) ensures that for all states in the
target set, and all environments j, the variables p’ are set to 1, as the
probability of reaching the target set from these states is naturally 1.
Constraint (3) ensures that our memoryless strategy that will be encoded
by the o-variables is a valid probability distribution. Constraint (4)
recursively defines the probability of reach the target set from state s
for each environment j. Constraints (5) and (6) are needed to deal with
the special case where the target set becomes unreachable under some
strategies. If no such strategies exists, these constraints can be omitted.

Note that this encoding is very similar to the MILP for computing deter-
ministic strategies in POMDPs [Winterer et al., 2020]. This similarity
is not a coincidence, as we are about to see in Chapter 6.
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Chapter 6

Entropy guided
decision making

In this chapter, we present our main results. By making the connec-
tion between MEMDPs and POMDPs, we bring the notion of belief
to MEMDPs, and show how this can be used to infer the true environ-
ment by making a good choice between the available actions. This ‘good
choice’ is determined via the expected entropy, a measure on how much
information we expect to gain by choosing a certain action. We formalize
this in a number of theorems, and construct a learning algorithm.

6.1 Belief over MEMDP environments

In Chapter 4 we have seen that MEMDPs can be placed between MDPs
and POMDPs. We also noted that every MDP can naturally be rewrit-
ten into a POMDP by assigning each state a unique observation. In
a similar way, we can rewrite every MEMDP into a POMDP, mak-
ing all techniques known for solving problems in POMDPs available to
MEMDPs.

Definition 24: Associated POMDP

Given a MEMDP M = (S, A,{6i}ic[n)) we define the associated
POMDP of M as the POMDP Py, = (S', A,d', Z,0) where:

e S’ is the set of states of the POMDP, defined by the disjoint
union over the states of each environment of the MEMDP. We
do this in the following way: S’ = {(s,4) | s € S,i € [n]} i.e.
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we copy each state n times, once for every environment, and
mark the states with the environment number.

e A is the set of actions, and is the same as in the MEMDP.

e ¢’ defines the partial transition function. In this POMDP, we
have §': S'xA — Distr(S’), and we define it as 0'((s, i), a,s") =
di(s,a,s).

o 7 = {z; | s € S} is the set of observations, in which we
have one unique observation zg for every state s € S in the
MEMDP M.

e The (deterministic) observation function O: S" — Z is de-
fined by O((s,i)) = zs, such that we map each state (s,17)
(regardless of the environment number ¢) to the observation
defined for s: zs.

Our construction in Definition 24 is similar to that of [Chatterjee et al.,
2020], up to some different choices in notation.

The mapping from MEMDPs to POMDPs allows is to use any technique
available for POMDPs on MEMDPs. Most notably, it allows us to talk
about belief states and the belief MDP for a MEMDP, which we will
discuss in detail in Chapter 6.

It is important to keep in mind that POMDPs are very hard to solve
in general (recall the comparisons in Section 4.8), so solving MEMDP
problems via POMDPs is only preferred if this is the only (known) way
to solve that problem.

Let P = (5', A, 8, Z,0) be the POMDP constructed by M (see Definition
24). Assume we have some initial state s; € S in our MEMDP, and that
this state is initial for every environment i in M. If every environment
is equally likely, our initial belief by for P is defined as the uniform
distribution over the environments observing sj:

9

vi € [n] b0(<31,i)):%
Vs # sp.¥i € [n] bo((s,i)) = 0.

Recall that the state space of P is the product of the states from the
MEMDP and the set of environments, hence every state is a pair (s, 1)
with s € S and i € [n]. The observations are deterministic in the state
s. This means that any pairs (s,i) and (s, j) can be distinguished if
s # &', regardless of what ¢ and j are. Hence, a belief state at some
time ¢, associated with some observed state s, which we will denote as
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be((s,-)), is a distribution over environments: b((s,-)) € Distr([n]). The
probability of being in environment ¢ is then given by b:((s,)).

The belief update works by default as defined in Definition 9 for POMDPs,
though the specific structure of MEMDPs allows us to make some sim-
plifications.

Definition 25: Belief update for MEMDPs

Given the current belief b;((s,-)) and observing the successor state
s', we compute the successor belief state b((s,-)) by performing the
following computation for all environments <.

be({s,i)) - 0i(s,a,s’)
Zje[n] be((s, 7)) - 6]'(87 a,s')

bt+1 (<S/’ Z>) =

Essentially, we compute the probability of being able to observe s’ af-
ter choosing action a at state s in environment ¢, and normalize this
probability over all environments. This can be interpreted as taking the
transition probability d;(s, a, s’) weighted by the probability that we are
in environment 1.

Computing the a new belief state in a MEMDP is computationally easier
than computing a new belief state in a POMDP. The nominator is a
single multiplication, that is repeated for every environment . Just
as in POMDPs, the denominator is independent of the input and only
needs to be computed once. This is a single sum over the environments,
thus linear in the number of environments. This means that the total
complexity of the belief update in MEMDPs is O(n), in contrast to the
belief update in POMDPs which is quadratic in the number of states.

The belief update for MEMDPs behaves exactly as we would expect in
the presence of i-revealing transitions. That is, observing an i-revealing
transition leads the belief update to return a Dirac distribution for en-
vironment i, which is formalized in Lemma 2.

For ease of reading, let the successor belief state observing s’ after action

a be by ((s',-)).

Lemma 2: Belief update observing an i-revealing transition

Let b be an arbitrary belief state in the MEMDP M = (S, A, {3;}ic[n))s
observing a state s € S. Suppose we take action a € A(s) and ob-
serve successor state s’ € S, and that we know that (s,a,s’) is
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i-revealing for environment M; € M. Then the successor belief
ba((s',+)) is a Dirac distribution for environment .

Proof. Note that (s,a,s’) is i-revealing, meaning 9;(s,a,s’) > 0 and
Ok(s,a,8") = 0 for all k& # i. We simply apply the belief update as
defined in Definition 25.

For any environment k # i we get

And for the environment ¢ we have
. b({s,)) - Gils,a, &)
el = 5.0 - 0,05, )
b((s, 1)) - di(s, a,s')

b((s,2)) - i(s,a,8") + 3 i iy 0((5,3)) - 95(s, a, s')
_ b((s,)) - di(s, 0,

b((5,20) - 0105, @ ) & > equpgiy D((5: 7)) -0
_ b((s,4)) - 0;(s,a,s’)

b((s,4)) - 0;(s,a,s')+0
=1.

Meaning that the successor belief b,((s’,-)) is a Dirac distribution for
environment 4.

O

Similarly, if the current belief is already a Dirac distribution over the
environment, the belief update does not change this, as formalized in
Lemma 3.

Lemma 3: Belief update in Dirac distributions

Let the current belief b observing some state s be Dirac in some
environment 4, thus b((s,7)) = 1 and b((s, k)) = 0 for all other envi-
ronments k # i. Let b, be the successor belief of b after performing
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an arbitrary action a and observing an arbitrary successor state s’.
Then b, is still Dirac in 1.

Proof. Apply the belief update as defined in Definition 25. First, we
look at the belief update for any other environment k # i.

b({(s,k)) - dk(s,a,s)
Zje[n} b((s,J)) - 5](
_ 5i(s,a,5)

Zje[n} (< ) - ](
=0.

ba((s', k) =

And now for environment :
_ b({(s,i)) - di(s,a,s)
S et P((5,30) 0305, , )
1-6i(s,a,s)
b((5,20) - 01052 @ ) & 5y equpy a1 005 70) - 035, @, 1)
1- 51(3,0,,3)

Thus, the successor belief state b,((s’,-)) is again a Dirac distribution
for environment i.

O]

Lemma 3 tells us that if our belief is a Dirac distribution, which means
we know which environment is the true environment with certainty, we
cannot lose this information. This does, however, not mean that we
cannot lose information on the true environment in other belief states.
However, there is no monotone convergence from an initial belief to a
Dirac belief, as the following example shows.

6.1.1 Belief over MEMDP environments: example
Consider the two-environment MEMDP and its associated POMDP in
Figure 10.

First, we compute a small number of belief states for this MEMDP. Fix
as strategy
g = ajaijagzasaiaiazay . ..
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(c) Corresponding POMDP.

Figure 10: A MEMDP and its corresponding POMDP.

and suppose we observe the following sequence of observations:
50515051505250515052-

As there are no I-reducing or i-revealing transitions in this MEMDP,
the given strategy and observation sequence are possible in both envi-
ronments while not immediately revealing any information about the
true environment.

Now assume that environment 1 is the true environment. As said before,
the observation sequence is possible in this environment, but note that
it is very unlikely to occur. Finally, we assume as out initial belief that
both environments are just as likely: by((sg, 1)) = bo((so,2)) = 0.5, and
bo((ss, 7)) = 0 for all other states s; and environments j in this MEMDP.

Note that at every even step we will observe state sy as the MEMDP
will move with probability 1 for both actions in both environments to sg
when we are in state s or so. As a consequence, the belief at every even
time step will just shift the probabilities back to sy without changing
their values. As such, we will only add the initial distribution by and
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the belief after one round (b2) to the table, from then on all beliefs at
even times are skipped.

We compute a couple of steps of the belief update, with the results in
Table 5. For ease of reading we round the results up to three decimals,
though it should be noted that since all transitions and the initial belief
of this MEMDP can be expressed as rationals, the result of the belief
update at each step is also a rational.

<3071> <$171> <32,1> <8072> <3172> <3272>

bo 0.5 0 0 0.5 0 0
b1 0 0.3 0 0 0.7 0
bo 0.3 0 0 0.7 0 0
b3 0 0.045 0 0 0.955 0
bs 0 0 0.1 0 0 0.9
by 0 0.012 0 0 0.988 0
bg 0 0 0.028 0 0 0972

Table 5: Belief updates for the MEMDP in Figure 10.

We summarize the difference between the two environments in Table 6.

Env.1 Env. 2

b1 —0.2 +0.2
bs —0.255 +40.255
bs +0.055 —0.055
by  —0.088 +0.088
by +0.016 —0.016

Table 6: Shifts between the beliefs from Table 5.

The numbers in Table 5 suggest that environment 2 is the true environ-
ment given the sequence of observations under the strategy we chose.
However, we cannot actually draw that conclusion.

First, observe that while the belief clearly shifts towards environment 2,
this is not monotone. For example, see how in steps 5 or 9 environment
1 becomes more likely again.

Second, we already mentioned that the given observation sequence is
very unlikely for environment 1. And this is just for a finite (and very
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short) sequence. Alternatively, consider the following sequence of obser-
vations that is very likely for environment 1 under the same strategy:

50825052505250525052.-

Again we compute the belief after each step, as presented in Table 7.

(so, 1) (s1,1) (s2,1) (s0,2) (s1,2) (s2,2)
bo 0.5 0 0 0.5 0 0
by 0 0 0.7 0 0 0.3
b3 0 0 0.955 0 0 0.045
b5 0 0 0.980 0 0 0.020
b7 0 0 0.998 0 0 0.002
by 0 0 0.999 0 0 0.001

Table 7: Belief updates

This sequence suggest a monotone convergence to environment 1. Now
we consider a (finite) part of the belief MDP associated with this exam-
ple. We compute the following belief states:

(s 1) 5 = (51,2)

1
= {0 g2 g) b i

>
3
I

<82, 1> — E, <So,2> —

9
(s1,1) — %,<51,2>

1

— ——
S

ot

I

(51,1) 5 - (s1,2)

s
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— — "
3
—
-~
1
N N = =
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V3
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[\
~
1
DO =
——
S
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— — = — = A A
1
|5 Ble 3le BIR &lE 5/~ 5]~
N~ Y~ Y~ Y~ Y~ Y~ Y~ Y~

22
%:<%nH74%mH7} bo = 4 (51, 1) 1> =, (51,2) 1>
34 34 10
bm%@ﬁwa@ﬂwl}bm:%ﬂﬁv@wH
10 10 10
bio = {<81,1>l—>1,<81,2>*—>21} bz = (s2,1) = o, (82,2) =
22 22 34 34
by = {<31,1> — 8%’ <81,2> — :;} bis = {<S2a 1> = %a <S272> = %

We draw the corresponding part of the belief MDP in Figure 11.

White belief states are associated with observing sg in the MEMDP, red
states with observing s;, and blue states with observing s2. Note that
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Figure 11: Initial part of the belief MDP.

some belief states are the same, even though we draw them twice to
prevent arrows crossing the entire drawing, see for example b7y and bis.
Using the belief MDP we can find out which belief states can be reached
under some strategy, and with what probability they are reached.

Due to the cyclic nature of the MEMDP in this example, we can actually
describe what an arbitrary part of the belief MDP looks like. Note that
after any red or blue state we always end up in a white state, which
is a belief state observing sg. Similarly, after every white state there is
a split over the two actions a; and ag, each followed by a red state (a
belief state observing s1), and a blue state (a belief state observing s2).

Suppose we have some (white) belief state b, = {(so, 1) — p, (sg,2)
1 — p}, where p is an arbitrary probability value. This belief state is all
we need to determine its successor states and the transitions between
them. We compute all the successor belief states of the form bzlﬁl where
ag, is the action chosen, and s; is the received observation.

3p 7T—"Tp
st = 1) o (51,2
n+1 {<817 > = 7_ 4p’ <Sl7 > 7 4p}

p 3—3p
b2 = 1 —_— 2

ass p 9_9p
bna_i = {<81,1> — m,<81,2> — 9—8p}

9p 1—p
pr2%2 — 1) — —— 2) —

Each of these belief states is then succeeded by a belief state bZ’ii‘ that
has the same distribution over the environments, but shifted to observe

s0. We draw the composition of these belief states in Figure 12.
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Figure 12: An arbitrary part of the belief MDP.

Each of the white states can now serve as a new “b,,” belief state. Hence
the full belief MDP for the MEMDP in Figure 10 is the infinite com-
position of the structure given in Figure 12. We see this construction
matches the initial part of the belief MDP in Figure 11.

6.2 Entropy as a measure of knowledge on be-
liefs

From the example in Section 6.1 we learn that there is no convergence
of the belief in MEMDPs. The successor belief state depends on the
observation we receive, and if this observation contradicts previous ob-
servations the belief is adjusted to this new information.

However, we also noted that certain observations are more likely than
others in the true environment. So, intuitively, we want to weight the
belief state with how likely it is to occur. Furthermore, we are not neces-
sarily interested in the exact probability distribution over environments
that a belief state provides. Our main interest is to measure how close
(or far away) we are from reaching a Dirac distribution.

The Shannon entropy [Shannon, 2001] is a standard measure from in-
formation theory [Csiszér and Shields, 2004, Gray, 2011] that measures
the amount of information in a random variable.
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Definition 26: Shannon entropy

The Shannon entropy of a discrete probability distribution u over
a finite set X is defined as

Hiw = 3 pto) o ()

where the base of the logarithm b is free to choose. By convention
we have that, if u(x) = 0 then p(z) - logQ(ﬁ) =0-logy(§) = 0.

We will use the entropy on the belief over environments, hence p €
Distr(n), and thus a natural choice for the base b is n. This ensures that
the entropy of a uniform distribution on n environments is maximal and
equal to 1, and for a Dirac distribution on n environments the entropy
is minimal and equal to 0.

As an example, consider an arbitrary MEMDP of 2 environments. Let
us consider some possible belief states for observing an arbitrary state
s. First, let b be the uniform distribution, so

b:{<s,1>+—>;,<5,2>+—>;}.

Then the entropy of b is given by

1) = 3 blts, i) 1o (505 )

1€(2]
1 1
=3 logy(2) + 5 logy(2)
1 1
- =1
2 + 2

Now consider a belief state that is Dirac in the first environment:
b={(s,1) — 1,(s,2) — 0}.
Then the entropy is given by

1) = Y- o050 1o (505 )

1€[2]
= logy(1) +0 = 0.

As a third and final example, consider the following two belief states:
1 3 - 3 1
b—{<8,1>i—>4,<8,2>|—>4}, b_{<571>*_>47<572>'_>4}'
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Again we compute the entropy for both, and note

1 3 4
H(b) = 1 -logy(4) + 1 logz(g)
3 4 1 -
=1 '10g2(§) + 1 logy(4) = H (b).

This symmetry means that we cannot derive which environment is the
most likely from the entropy of a belief state, we just know how close
(or far away) we are from a Dirac distribution for some environment.

6.2.1 The setting and notation

Since our focus is real-time decision making we do not consider the whole
MEMDP. At a given state, all we need are the available actions and the
distributions over successor states for every environment. Before we get
to the decision making, i.e., determining which action to choose at a
given state, we first investigate the behavior at a given state s and a
fixed action a. This setting is illustrated in Figure 13.

a,
Z %% Ly

Environment 1 Environment n

Figure 13: The setting in which we operate.

We introduce the following short-hand notation. We fix an enumeration
1,...,]S| over all possible successor states and use this for all of the
following definitions.

e We have b = (b1,...,b,) as the current belief, observing state s.

e For every environment ¢ we have the distribution over successor
states d; = 0;(s,a) = (di1,. .-, d;s))-

e For every possible successor state s € S we define the successor
belief state observing s;, after action a as By, = (Bg1 ..., Brn)-

e The random vector B = (By,...,Bg|) consists of all successor
belief states.
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The vector B forms a probability distributions over the distributions
Bi,...,B|g by weighting each distribution with the probability of ob-
serving that successor state. This is determined by the probability of
transitioning into that successor state for a given environment, d;,
weighted by the probability of being in that environment. Explicitly,
the probability of having distribution By, is Zie[n] bi - di .

B = Zbi'di,l B+ + Zbi'di,ls\ - |Bys))-

i€[n] i€[n]

Each successor belief observing state si, By, is a distribution over the
environments, determined by the belief update:

b1 -dyig by - dp i
Bk:: e L .|1>_|_..._|_ TR |n>
(Zje[n] bj - dy;k) (Zje[n] bj - dec)

Proposition 2: Expected entropy over the successor belief
states will not increase [Chatterjee et al., 2020]

Given a MEMDP M = (S, A,{di}ic[n]), any action a € A and an
arbitrary belief state b observing state s, the expected entropy of B
is bounded by the entropy of b:

E[H(B)] < H(b).
Where the expected entropy of B, E[H (B)] is computed as follows:

EHB)] = > > bi-dig|-HBy).

k€(|S|] \i€[n]

The statement in Proposition 2 says that on average the entropy will
decrease monotonically, and thus on an infinite run we will not lose
any information about the true environment. However, this proposition
cannot guarantee any convergence towards a Dirac distribution on the
true environment, as it is possible to get stuck in a belief where the
expected entropy of all successor beliefs is the same as the entropy of
the current belief.

Formally speaking, E[H (B)] denotes the expected entropy over B, where
B is the vector of all successor belief states given the current belief state
b. For simplicity, we will refer to E[H (B)] just as the expected entropy
when B is clear from the context.
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It should be noted that Proposition 2 only holds for MEMDPs, and not
arbitrary POMDPs.

Lemma 4

The statement in Proposition 2 only holds in MEMDPs, and not in
arbitrary POMDPs.

Proof by counter example. Consider the POMDP in Figure 14. This is
the same POMDP and its belief MDP we used as an example in Section
4.3.2. The belief states are given by

1 1
bQI{SOHl}, b1:{$3l—>1}, b2={81*—>2,82l—>2}.

These distributions have the following entropies: H(by) =0, H(b1) =
and H b2 =1.

Sl

(a) The POMDP. (b) The associated belief MDP.

Figure 14: A POMDP where the expected entropy is not monotonic.

The initial belief is by. The expected entropy is the sum of all entropies
of the successor beliefs, weighted by the probability of observing that
successor belief. When taking action a; we can only end up in belief
state b; with probability 1. So the expected entropy of all successor
beliefs is in this case just the entropy of b1, which is also 0. So for a; it
indeed holds that

E[H(B)] = E[H (b1)] = H(b1) = 0= H (bo).

However, when choosing action as the following happens. With the same
reasoning, we conclude that the expected entropy is just the entropy of
ba. Thus, we get

E[H(B)] = E[H (by)] = H(b2) = 1 £ 0 = H(bo).
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Thus, the statement in Proposition 2 does not hold for general POMDPs.

O]

We implement the setting described in Figure 13 in Python to get a
sense of the behavior under various cases. In particular, we compute
the expected entropy and compare it to the entropy of the current be-
lief state. The code is available at https://gitlab.science.ru.nl/
msuilen/memdp-entropy-explorer, and only serves to get a sense of
what is going on.

We consider three cases and describe the observed behavior of our deci-
sion making setting in each case.

1. If the current belief is a Dirac distribution, and the distributions
over successor states are randomly generated, the expected entropy
is equal to 0.

2. If the distribution over successor states is the same for every en-
vironment, and the current belief is an arbitrary non-Dirac dis-
tribution, the expected entropy is the same as the current belief
entropy.

3. If the current belief is any non-Dirac distribution, and the distri-
butions over successor states are different for at least two environ-
ments, the expected entropy is strictly less than the current belief
entropy.

These three observed cases can be interpreted as follows.

e In 1. we already have mazimum knowledge of the true environ-
ment, as the current belief is already a Dirac distribution, so our
knowledge cannot increase any further.

e In 2. the distributions over successor states are the same for all
environments, which means we cannot distinguish between envi-
ronments, and thus cannot learn anything.

e In 3. there is still room to learn, as we do not have a Dirac distribu-
tion yet, and there is also opportunity to learn, as the distributions
over successor states are different, and thus we are also expected to
learn.

We formalize cases 1. and 2. as theorems, and case 3. as a conjecture in
Section 6.3.2. Together, they cover all possible cases that can occur in
our setting, and combined arrive at the statement made in Proposition 2.
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6.3 Theorems on the expected entropy

Before formalizing and proving the theorems, we introduce a number
of lemmas that show how the entropy and the expected entropy can be
rewritten in such a way that the sums on the outside of the logarithm
become products inside the logarithm.

6.3.1 Two helpful lemmas

In our proofs we will use the following standard facts for logarithms:

logy(x - y) = logy () + logy(y) (Product rule)
log, (;) = logy(z) — logy(y) (Quotient rule)
logy(z¥) = y - logy(x) (Power rule)
x <y = logy(z) < logy(y) (Strict monotonicity)

as well as the standard rule z¥-2* = zY™* for any xz,y, z € R. Now recall
the definition of the belief update in MEMDPs (Definition 25), modified
to our short-hand notation:

b; - d;
Bk,’i = ’ )
> jem bi dik

the definition of the Shannon entropy (Definition 26), also adapted to
the new notation we introduced:

Hb) =3 bilog, (;) . HBY =Y Bii-log, (Bt) |

i€[n] i€[n]

and the definition of the expected entropy of B that follows:

EH®B) = Y | D bi-dix | HBy).

ke[|S]] \i€[n]

The first lemma is a simple rewriting of the definition of the entropy.
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Lemma 5

Let p € Distr(X) be an arbitrary probability distribution over X
with |X| = n. The entropy of p can be rewritten as

= log, (H M(@““‘“) :
zeX

Proof. Expand the definition of the entropy and rewrite using the power
and product rules for logarithms.

Hipy =Y <>hgn<4;)

reX
= Z log,, ( ) (by power rule)
zeX
= log,, (H wu(z ) (by product rule)
reX

The next lemma is a rewriting of the expected entropy of the successor
beliefs.

Lemma 6

Let B = (By,...,Bjg)) be the vector of successor belief states. Let
Ny, = Zle[n] by - dy .. Then

EHB) =log, | [ T] <b] d]k> bjd; i

ke[|S]] j€[n]

Proof. First, we show that

EH®B) =log, | [ II II B """

ke[|S|] i€[n] j€[n]
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by rewriting using Lemma 5, the power rule, and the product rule:

EHB)] = > > dig-bi|-H®B)

ke[lS)] \i€[n]
= Z Z d; k- b; - log, H B_Bk ‘ (by Lemma 5)
ke[|S|] i€[n] i€[n)
_Bk 0 z k:'bi
= Z Z log,, H By (by power rule)
kel[|S|] i[n] JEln]

=log,, H H H BinJ kb (by product rule)

ke[|S]]i€[n] j€n]

Now, we show that

B -b;
IOgn k] zk i

kel|S|] i€[n] Je["]

—bi-d.
—tog, | T H( N )

ke[|S]] j€ln

We use that index ¢ only occurs in the exponents, that N = Zle[n] by-dy i,
and that
bj - dj b -dj, k

D iepn) b di, ko N

By; =

and start rewriting:

o, | T 1 IT 5"

ke[S i€[n] j€(n]

= log,, H H By Bk] ietn] b (use x¥ - 1% = x¥T7)
kel|S]] j€ln]
J dj ke N
= log,, H H <b djk) K (rewrite By, ;)
ke[| S]] j€ln]
—bjdjk
—tog, | T TT (")

kel|S[]j€[n]
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Note that by the commutativity of the product on real numbers, we may
change the order of the products over j and k into whatever order we
prefer.

O]

6.3.2 The theorems on the expected entropy

We now formalize our findings from Section 6.2.1.

Theorem 3: Expected entropy on Dirac beliefs

Suppose the belief at state s is a Dirac distribution for the first
environment, i.e. b = (1,0,...,0), and let the distributions over
successor states di, . ..,dy be arbitrary. Then the expected entropy
is equal to the entropy of the current belief:

Proof. First, note that since b is Dirac, we have H(b) = 0.

We expand the definition of the expected entropy.

EH®B) = > | D dix-bi | - HBy).
ke[S \i€n]
By definition of b we have that by = 1 and b; = 0 for all ¢ # 1. Thus we
simplify

E[H(B)] = Z Zdz‘,k’bi - H(By,)

ke[|S[] \i€[n]
= > (dig-br-H(By)). (use b; = 0 for j > 2)
ke[| SI]

We know that applying the belief update on a Dirac belief returns that
same Dirac belief (Lemma 3), so we have that By, is a Dirac distribution,
for all k. We know that the entropy of a Dirac distribution is 0. Thus
we get:
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> (duk-bi- H(By))

ke[l S]]

= ) (dig-b1-0)

ke[| S|]

=) 0=0

ke[l S]]

We have E[H(B)] = 0 = H(b) and we conclude that once we have
reached a Dirac distribution over the environments we are also expected
to remain in a Dirac distribution.

The statement in Theorem 3 assumes the belief b is Dirac in the first
environment, but this is an assumption we can make without loss of gen-
erality. From the proof it clearly follows the statement also holds when
b is Dirac in any other environment. Furthermore, because a MEMDP
is just a set in which ordering of the environments does not matter, we
may reorder the environments in such a way that the environment in
which b is Dirac becomes the first environment.

Theorem 4: Constant expected entropy

Let the belief state b = (b1, ...,by,) at state s be arbitrary. Suppose
for all environments the distributions over successor states are the
same. Thus, d; = --- = d,,. Then the expected belief entropy does
not change from the current entropy:

Proof. First note that the distributions over successor states are all
equal, thus Vi,j € [n]. d;r = dj;i, which means we can simplify to
a single distribution over successor states d = (d1 ..., d|s|). The belief
update is then also simplified:
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The entropy of b can be rewritten by Lemma 5 into

H(b)= > b;-log, (;) = log,, (H bibl)

i€[n] i€[n]

The expected entropy of B is given by

E[H((B)] = (Z di,k‘bi) - H(By)

ke[|S|] \i€[n]

= > (de-bi) - H(By)

ke[|S|] \i€ln]

= > di (Z b@») - H(By)

k€[lS)] i€[n]
= ) dy- H(By).
ke[| S|]

Now we apply Lemma 5 on By and use the simplified belief update to
get to H(b).
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> dy - H(By)

ke[lS]]
= Z dy - log,, (H Bk,_iB'“’i (by Lemma 5)
ke[]S]] i€[n]
— —b; o .
= Z dy. - log,, (H b, (by simplified belief update)
ke[| S]] i€[n]
log, | [ bibl) S dy
i€n] ke[|S]]
—b; . .1 c .
log,, H b, ) (as d is a probability distribution)
1€[n]
= H(b)

O]

The third case we observed, that says that if there is opportunity to
learn, we are also expected to learn, is left as a conjecture.

Conjecture 1: Strict decrease of expected entropy

Let b be an arbitrary non-Dirac belief state. For the successor
distributions, let di # dg, and dj arbitrary for £k = 3,...,|5].
Then

E[H(B)] < H(b)

6.4 Decision making

In Section 6.2 the setting in which we investigated the behavior of the
expected entropy of the successor beliefs for an observed state and a
given action. Now, we wish to use our findings to choose between the
available actions at a given state.

This new setting is described in Figure 15. Now we have [ = | A(s)]| avail-
able actions to choose from, and each action gives us a distribution over
successor states for every environment, denoted d?j = (dzjl, e dﬁ S\)'

The problem is now to figure out which action allows us to learn about
the true environment, given we currently observe state s.
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Figure 15: The setting in which decision making takes place.

We start with a (naive) greedy algorithm, given in Algorithm 4, and
discuss a number of problems with this naive approach.

The basic idea is to compute the expected entropy for every available
action and pick the action that gives the biggest decrease. If all ac-
tions have the same expected entropy, an action is chosen at random
uniformly. It may be the case that this action leads us to a successor
state in which we have the same situation. Looking further ahead, how-
ever, is computationally expensive, as it requires unfolding the belief
MDP up to an arbitrary number of steps. There is no way to predict
how many steps are needed, hence the choice for the possibly less op-
timal but computationally preferred option of just picking an action at
random.

One problem in this algorithm is the repeated computation of the ex-
pected entropy. In order to compute E[H(B?)], the following computa-
tions are performed:

1. The vector B?, which requires O(|S|) belief updates. Each belief
update has a complexity of O(n), yielding a total complexity of
O(n - |9]) for the vector B®.

2. The expected entropy E[H (B®)], which has a complexity of O(n -
|S1).
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Algorithm 4: Naive greedy learning

Input: MEMDP M = (S, A, {d;}ic[n), initial belief by observing
initial state sj

S < St

b« bo

CurrentEntropy < H(b)

while CurrentEntropy > 0 do
BestAction <— Random(A(s))

BestExpectedEntropy < Current Entropy

for a € A(s) do
Compute B®
Compute E[H (B?)]
if E[H(B®)] < BestExpectedEntropy then
BestAction <+ a
BestExpectedEntropy < E[H(B%)]
end

end

Perform action BestAction
s < observed successor state
b < belief update
CurrentEntropy <— H(b)
end

The computations above are repeated for every action a, hence, every
iteration of the while loop has a worst-case complexity of O(n-|S|-|A]).

Since the belief update relies on the current belief b, which in the worst
case (when the belief MDP is infinite) is unique every iteration, we have
to perform the entire computation at every iteration for every available
action.

Another problem is that we may get stuck in a maximal end-component
(recall Definition 14) in which the distributions over successor states
are all the same for every environment, rendering us unable to learn
anything by Theorem 4. It should be noted that by definition of an
end-component, it may still possible to leave the end-component.

We can detect that we are stuck in an end-component (S’, A’) that
cannot be left, simply by checking the following conditions:

1. The current state s is in 97,

2. There is no action that can take us out of the end-component: for
all s € S we have A(s') = A’.
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3. We cannot learn inside the end-component. By Theorem 4, the
distributions over successor states are the same for every state
and action of the end-component: for all (s,a) € S' x A" we have
di(s,a) = d;(s,a) for all environments i,j € [n].

When stuck, our only option is to reset and start the learning again
from the initial state. From a theoretical perspective this is fine, and we
can even bring our last known belief b as new initial belief. In practice,
however, it may be impossible to reset the system. See for example the
bird preservation case study from [Chades et al., 2012].

We can preprocess a MEMDP M to get all states for which we are stuck
in an end-component in which we cannot learn. We denote these states
by the boolean vector Stuck with Stuck[s] = True if and only if there is
an end-component (S’, A’) with s € S’ for which the learning algorithm
is stuck.

6.5 Optimizing by preprocessing

Besides the statement in Conjecture 1, we observe something else in our
implementation of the setting of Figure 13. Whenever the distributions
over the successor states look to be further apart, the expected entropy
decreases at a greater rate than when the distributions over the successor
states are closer to each other. We will make this more precise using the
Bhattacharyya distance [Bhattacharyya, 1943].

The Bhattacharyya distance is a distance measure between two probabil-
ity distributions. It is straightforward to compute and easily extends to
the more general case where we wish to compute the difference between
any arbitrary number of probability distributions.

Definition 27: Bhattacharyya coefficient

Given two discrete probability distributions pp, o over the same
finite set X, the Bhattacharyya coefficient [Bhattacharyya, 1943]
BC of py and po is given by

BC(p1,p2) = > /(@) - pa().

zeX

The Bhattacharyya coefficient can be adapted to an n-dimensional
version [Kang and Wildes, 2015]. The n-dimensional Bhattacharyya
coeflicient of discrete probability distributions uq, ..., u, over the
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same finite set X is defined as

BC(lu’lv 7,u’n) =

The Bhattacharyya coefficient measures the amount of overlap between
the probability distributions. The coefficient is minimal and equal to 0
if there is no overlap between the probability distributions, and maxi-
mal and equal to 1 if all probability distributions are the same. These
properties are also met by the n-dimensional variant.

The Bhattacharyya coefficient can be converted into the Bhattacharyya
distance by taking the negative logarithm of the coefficient.

Definition 28: Bhattacharyya distance

The Bhattacharyya distance if defined as

Dp(p1y ... pn) = —In(BC(u1, ..., ln)) -

It follows that the Bhattacharyya distance then lies between 0 and oo,
being 0 in the case all distributions are the same, and oo if there is
no overlap at all, thus, being at maximal distance from each other.
The latter is for example the case when all distributions are Dirac in a
different element of the set X.

We extends our Python implementation to account for the decision mak-
ing setting in Figure 15. Again, this implementation only serves to get
a sense of the behavior of our decision making setting under various
inputs. We use the Bhattacharyya distance to measure the distance be-
tween the distributions over the successor states for every action. We
formalize the observed findings in Conjecture 2

Conjecture 2
Given two different actions a1, as at a state s, if
Dp(df*,...,d2") > Dp(df?,...,dy?)

then

E[H(B")] < E[H(B")]
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Conjecture 2 naturally extends to the more general case where we com-
pare more than two actions.

The advantage of the Bhattacharyya distance, in combination with Con-
jecture 2, is that the distributions over successor states remain fixed for
every iteration of Algorithm 4. Hence, instead of computing the ex-
pected entropy for all actions over and over again, we can compute all
the Bhattacharyya distances once, as a preprocessing step. We store the
distance between environments at a given state-action pair (s, a) in the
|S| x |A| matrix D with D[s,a] = Dp(01(s,a),...,d,(s,a)).

The complexity per iteration of the while loop is now a single belief
update and a single entropy computation, both of O(n), and a single loop
over all actions. Assuming we use an efficient data structure with O(1)
access to store and read the distances, the total complexity per iteration
is O(max{n,|A|}). The optimized algorithm is given in Algorithm 5.

Algorithm 5: Optimized greedy learning
Input: MEMDP M = (S, A, {d;}ic[n]), initial belief by observing
initial state sy, distance matrix D, vector Stuck

S < St
b + bo
CurrentEntropy <— H(b)
while CurrentEntropy > 0 do
BestAction < Random(A(s))
for a € A(s) do

if D[s,a] > DJs, BestAction] then

| BestAction + a
end

end

Perform action BestAction
s < observed successor state
b < belief update
CurrentEntropy <— H(b)

if Stuck[s] then
| Restart with initial belief by = b observing s; = s
end

end

Implementing Algorithm 5 to get experimental results is left for future
work.
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Chapter 7

Conclusions & future work

We presented a method for inferring the true environment in a MEMDP
via learning.

By mapping the MEMDP to a POMDP, we obtained the notion of a
belief over environments. We investigated how this belief behaves over
time, and applied the Shannon entropy to measure how much knowledge
on the true environment the belief at any given moment provides. We
showed how the expected entropy can be used to measure the change
in knowledge on average, and note under which conditions the expected
entropy stays the same, and under which conditions there is a strict
increase in knowledge on average.

We used this to construct an iterative learning algorithm. At the core of
the learning algorithm is the idea that we can determine which action we
expect to give the biggest increase in knowledge on the true environment.
We optimized the algorithm by preprocessing, and discussed under which
conditions the algorithm can get stuck and requires a restart.

Additionally, this thesis provides a literature study into MDPs, POMDPs,
MEMDPs and a number of related models. We defined bisimulations be-

tween MEMDPs, proved that the quantitative expected reward problem

is NP-hard, and defined a sound overapproximation method for comput-

ing robust strategies for MEMDPs via uncertain MDPs. We also defined

a mixed integer linear program that computed deterministic strategies

for one or more objectives in a MEMDP.

There is, however, plenty of work left to be done, both on learning the
true environment and other topics within MEMDPs. We end this thesis
with some pointers for directions future work might take.
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Future work

This thesis provides a theoretical treatment of the problem of learning
the true environment in MEMDPs. As such, the algorithm we intro-
duced in Chapter 6 should be implemented to get experimental results
on the performance in practice.

Furthermore, we have two conjectures that have no formal proof as of
yet. Perhaps a proof assistant, such as e.g. Lean [de Moura et al., 2015],
can help out. From the other theorems and lemmas it seems likely that
the proofs for Conjecture 1 and Conjecture 2 rely entirely on rewriting
using standard rules on real numbers and logarithms, with the main
problem being the high number of variables to account for. Alterna-
tively, one could look at standard inequalities on the entropy, such as
Gibbs’ inequality [Brémaud, 2012], or Jensen’s inequality [Abramovich,
Jameson, and Sinnamon, 2004].

There are several directions future work on learning the true environ-
ment of a MEMDP can take. Our approach implicitly assumes that it
is possible to safely explore the model. That is, there are no bad states
that should be avoided. This may not be the case. As such combin-
ing the learning while also satisfying another objective, such as a safety
objective should be explored.

The learning algorithm we introduce is real-time, it makes a determin-
istic choice between the actions given the current state. An alternative
would be to compute a fixed strategy (possibly randomized and with
finite memory) that satisfies some kind of learning objective. We may
also wonder how much an arbitrary given strategy learns on average.

Finally, in [Araya et al., 2010] POMDPs where the reward function
depends on the current belief state instead of the actual state are intro-
duced. This is especially interesting when combined with the POMDPs
we derive from MEMDPs, as the belief states there are probability dis-
tributions over the environments. Hence, one could define a belief de-
pendent reward function that changes the reward based on how much
knowledge we have about the true environment.
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