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Iterative Self-Training.

by R.M.W. KLUGE

In part I of this thesis, we show an open & transparent deep learning approach to
pneumothorax detection. We combine various publicly available datasets that are
accessible to anyone, giving us a verifiable multi-center approach. Even though we
only train on public datasets, we achieve equal performance (AUC of 0.94) com-
pared to state-of-the-art research that uses additional private datasets (Majkowska
et al., 2020). Because all the datasets used in this research are public, we publish
our model weights & algorithm1 and hope that future research can benefit from our
work.

Further, in part II we propose an unsupervised domain adaptation method – itera-
tive self-training – that improves performance on an unseen dataset without the need
for additional labelling (i.e. different hospital data). These results show an increase
in performance (AUC 0.82 → 0.89) for pneumothorax detection on public datasets
CheXpert → SIIM. This method was submitted to MIDL 2020 as a short paper (Ap-
pendix C).

Finally, in part III we evaluate the complete pipeline including our iterative self-
training method on a local private dataset of 28.207 images (RadboudCXR), and verify
that iterative self-training successfully adapts to an unseen local dataset (AUC 0.87→
0.92). We integrate the final algorithm using the grand-challenge platform and is pub-
licly accessible for testing:
https://grand-challenge.org/algorithms/cxr-pneumothorax-detection/

1This algorithm is part of OpenCXR, and will be released by DIAG accordingly.

https://www.ru.nl
https://www.ru.nl/science/
https://www.ru.nl/english/education/masters/data-science/
https://grand-challenge.org/algorithms/cxr-pneumothorax-detection/
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Chapter 1

Introduction

1.1 Pneumothorax

A pneumothorax, also known as a collapsed lung, is defined as an acute pathology
where there exists air between the lung and the chest wall (chest cavity). Usually,
this region is a vacuum, making the lung as large and inflated as possible. When
the vacuum is lost, the lung loses its inflation and causes the lung to ’collapse’. Due
to the collapse, the lung is unable to expand well during inhalation and, therefore,
unable to extract oxygen from the air. Thus, lung collapse results in the inability to
breathe.

1.1.1 Types

The main two general causes for a pneumothorax are: traumatic pneumothorax and
a spontaneous pneumothorax. A traumatic pneumothorax can occur due to a trau-
matic (physical) injury to the chest. Possible causes can be stab wounds, car crashes,
but a pneumothorax can also occur during surgery. After chest injuries, a traumatic
pneumothorax is the second most frequent chest pathology, occurring in up to 50%
of chest trauma victims (Yarmus and Feller-Kopman, 2012).

The next category is the spontaneous pneumothorax, which occurs spontaneously
without direct attributed cause which is subdivided into two classes:

1. primary spontaneous pneumothorax (PSP)

2. secondary spontaneous pneumothorax (SSP)

3. tension pneumothorax

Primary spontaneous pneumothorax (PSP) A pneumothorax is called a primary
spontaneous pneumothorax (PSP) when there are no other causes (e.g., underlying
lung diseases) leading to a pneumothorax. According to Sahn and Heffner, 2000 and
Noppen and De Keukeleire, 2008, a PSP is seen between 7.4-18 / 100.000 times per
year for males, and 1.2-6 / 100.000 times per year for females. Smoking increases
this risk by 7 times for females and 22 times for males (Cheng et al., 2009).

Signs of a pneumothorax in these patients are sharp chest pains and a higher
resting heart rate (tachycardia). A quick diagnosis of the right disease is critical here,
as it is essential to rule out other more life-threatening diseases that show similar
symptoms, such as a heart attack.

Secondary spontaneous pneumothorax (SSP) A spontaneous pneumothorax is
classified as a secondary spontaneous pneumothorax (SSP) when other underlying lung
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diseases are present. Some underlying lung diseases that can trigger a pneumotho-
rax are: emphysema, COPD, tuberculosis, and cystic fibrosis. SSPs tend to be more
life-threatening than PSPs, as underlying lung diseases already affect the vital func-
tions of the patient, and a pneumothorax degrades the intake of oxygen even further.
Although prevalence rates are not reported for SSPs, they have the same prevalence
rate as a PSP. When a pneumothorax is reported, the exact type of pneumothorax is
often not (Hallifax and Rahman, 2015).

Tension pneumothorax The most critical variant of a pneumothorax is the tension
pneumothorax. This variant requires immediate intervention, as the size of the pneu-
mothorax increases each breath. It can be seen as a one-way pressure valve, where
for each breath, the pressure within the chest is increased. Treatment for this type
is imminent, and waiting a few hours for a radiology report is unthinkable. When
a tension pneumothorax is not timely treated, this can further cause respiratory and
hemodynamic decompensation (MacDuff; Arnold, and Harvey, 2010).

1.1.2 Assessment

When a patient comes in with respiratory issues, often the first imaging method
acquired is a chest radiograph (x-ray). Chest x-rays project an image of the inner
chest (lungs, vessels, bones) by using a small radiation doses, which is relatively
cheap to perform. In order to get the full scope of the lungs of a patient, chest x-
rays are generally acquired using two different viewing angles: a posterior-anterior
(frontal) view and a lateral (side) view. In optimal conditions, the patient is standing
upright and is holding its breath in order to increase lung volume. However, patients
brought directly in the emergency room are often too ill to stand up. This way,
we cannot acquire a posterior-anterior (back-to-front) x-ray, but a anterior-posterior
(front-to-back) x-ray is made. Assessment of a pneumothorax of these two types of
patients differs a lot. We explain the differences for the patient that is able to stand
up (PA view assessment) versus critically ill patients (AP view assessment) below.

PA view assessment When the patient is standing up, the lung tends to ’fall down’
due to the nature of gravity. As a result, the air between the lung and chest wall is
either stuck in the bottom or travels to the top. When a pneumothorax is present,
the lung puts pressure on this loose pocket of air. Due to compression of the air
pocket, the edge of the lung (pleura) is thickened, and thus easier to spot. When the
pleura is observed and is not connected to the chest wall, the patient suffers from a
pneumothorax.

AP view assessment When the patient comes in through the emergency depart-
ment or is unconscious in the intensive care department, the patient is not respond-
ing to commands. They are bedridden, and we cannot ask the patient to hold its
breath or to stand upright. For some patients, we are even unable to incline the bed,
as their low blood pressure has trouble keeping blood running to their brains.

Detection of a pneumothorax for patients lying down (supine position) is gener-
ally harder. The forces of gravity are now a disadvantage, as the lungs get pushed
down to the posterior side of the body. Because the heart is placed more at the frontal
side of the body, anterior-posterior (AP) view images tend to show less of the lungs,
as the heart masks part of the left and right lung.
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In addition to the possible findings that can be detected using PA view, a supine
view pneumothorax might be harder to detect. Although detection is harder, it pro-
vides several other signs related to a pneumothorax (Yarmus and Feller-Kopman,
2012):

1. Air does not collect in the top or bottom part of the lung due to gravity.

2. Air collects in the front (anterior) side, which makes it unable to find a clear
lung edge.

3. Air can track further around the chest, presenting a deep sulcus sign.

Tension pneumothorax A tension pneumothorax adds an additional indica-
tion of a pneumothorax: the mediastinal shift. Here, the tension on one side of the
lung causes the heart (mediastinum) to shift to one side. We show an example of a
tension pneumothorax with a mediastinal shift in Figure 1.1.

FIGURE 1.1: Tension pneumothorax (left lung) with mediastinal shift
to the right. Right image shows the location prediction of our algo-

rithm in red.

Based on only supine AP x-rays, radiologists fail in detecting a pneumothorax
38.8% of the time (Bridges et al., 1993). Raoof et al., 2012 shows that in 15% of the
cases, radiologists also need to assess the lateral view x-rays next to the frontal x-rays
to be certain of the diagnosis. When a pneumothorax is missed, trauma patients may
deteriorate and introduce complications, and require anesthesia or mechanical ven-
tilation, which further decreases the long-term quality of life.

A more precise method to assess the presence of a pneumothorax is by obtaining
a CT scan. A CT scan provides a slice-by-slice 3D view of the inside of the chest with
a high resolution. The trade-off for acquiring a CT scan is the higher radiation dose,
it is more expensive, and the CT itself is large. Because the CT is large, it is not often
not feasible for critically ill patients. There is no portable version of the CT, so that
means the patient needs to be transported to the device. Transportation is a risky
operation, as a critically ill patient is hooked up to additional support devices that
keep the patient alive (e.g. mechanical ventilation).

Often, a CT scan is issued when the radiologist is not sure of the diagnosis. Us-
ing our algorithm, we can help minimize unnecessary requests for CT scans, and
therefore reduce the needed capacity and radiation dose given to patients.
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1.1.3 Triage

Some pathologies are more time-sensitive than others, meaning that some illnesses
need immediate intervention, whereas with other pathologies treatment can wait.
Patient treatment prioritization is also called triaging. Triaging is applied at the emer-
gency department, and becomes useful when many patients need to make use of the
limited resources. The severity of a patient is determined by looking at abnormali-
ties in the vital signs. As an example, it makes sense to prioritize patients suffering
from a heart attack over patients with a broken toe.

Triaging is also applied to the priority list of the radiologist. As a radiologist
needs to read many chest radiographs a day, the workload and queue is gener-
ally large. If we can determine beforehand which patients have a critical pathology,
even before the radiologists assess the image, we can prioritize the chest radiograph
above others. It has been shown that applying AI to radiologist workload prior-
itization reduces the delay for treating critically ill patients from 7.2 hours to 43
minutes (Annarumma et al., 2019). Some pathologies that are marked critical are:
pneumomediastinum, subcutaneous emphysema, intra-abdominal pathology, but
also a pneumothorax. Critically ill patients require immediate attention and could
be unnecessarily exposed to the degradation of vital signs when treatment is de-
layed. As a pneumothorax is considered as a critical disease, our algorithm can help
with workload prioritization.

1.2 Chest radiographs

Chest radiographs (Chest X-rays) are the most common film taken in hospitals and
contribute to 40% of all the diagnostic images taken worldwide (Communicating radi-
ation risks in paediatric imaging 2016). It is often one of the first procedures taken when
it comes to lung pathology because it is a relatively inexpensive imaging method
compared to CT or MRI scans. The radiation dose of chest x-rays is also significantly
less compared to CT scans. One chest x-ray equals three days of exposure to natural
radiation. However, a CT scan of the chest is equivalent to 350 times a chest X-ray.

These radiographs can reveal many internal problems: bone fractures, ruption of
blood vessels, heart diseases, catheters, cancer nodules, etc. After making a radio-
graph, a radiologist needs to check for possible pathologies. Only radiologists can
form these reports, as interpreting them requires substantial imaging experience.
Even after a few months of working on this project, I still am not able to successfully
spot the researched pneumothorax pathology myself.

The sole purpose of the radiologist is to interpret medical images (CT, MRI, X-
rays, nuclear imaging) and report the findings back to the referring clinicians.

1.2.1 Variance

Not every chest x-ray image is the same. Although there are standardized proce-
dures for taking an x-ray, these are mostly hospital and manufacturer specific. Mul-
tiple factors contribute to the variance of chest radiographs, with the most important
being:

1. Machine

• Manufacturer (Philips, Siemens, Toshiba)

• Type (fixed, portable)
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2. Configurable settings

• Pixel spacing

• Peak potential voltage

• Distance patient-machine (Source-to-Image Distance, SID)

• Angle patient-machine

All these parameters combined cause a difference in image quality and charac-
teristics of chest radiographs. One good example is observed during a day at the ra-
diology department of the Radboudumc. In general, Radboudumc uses two types of
machines for their radiographs: fixed x-ray machines and portable x-ray machines.

Fixed x-ray machines tend to have a greater distance towards the patient, with
a higher peak potential voltage (125kV) 1. A greater distance between the machine
and the patient results in a more parallel radiation beam, giving clearer and sharper
imaging.

However, their portable X-ray imagery is set to a lower peak potential voltage
(80kV, depending on obesity levels of the patient), and due to space restrictions, the
distance towards the patient is decreased.

The use of the fixed (better quality) x-ray machine is preferred, but not always
possible for all patients. Some patients recovering from surgery are still in intensive
care. These patients are unconscious and attached to support devices that take over
their breathing. Therefore, the portable x-ray machine needs to be brought to the
patient. As a result, all critically ill & post-operative patients are imaged using the
portable x-ray machine, which introduces a bias. This way, post-operative pneu-
mothoraces are only seen with the portable x-ray machine, giving a higher pneu-
mothorax prevalence to imagery coming from portable x-ray machines.

1.3 Research Question

Radiologists have a busy life, and with multiple imaging modalities to assess each
day this work does not become less busy. Also in third-world countries, where x-ray
devices are relatively cheap, but radiologists are scarce. Off-loading some of this ra-
diology work increases speed of assessment and eventually increase patient health.
Automatic pneumothorax detection can help. A possible use case for automated
pneumothorax detection could be to prioritize chest x-rays that show critical abnor-
malities over other x-rays, so that radiologists takes a look at them first (workload
prioritization / triaging). Pan; Agarwal, and Merck, 2019 sees the opportunity to re-
view each image algorithmically and assign a score to this image, before letting the
radiologist see this image. Then, using the provided information by the algorithm
the efficiency and speed of radiologists finding critical abnormalities will improve.

As developing a solution to pneumothorax detection requires expertise and re-
search costs, most of the existing solutions are commercial. By providing an open
source solution to pneumothorax detection, we hope to lay a solid foundation that is
available to anyone. In chapter 2, we list an overview of both commercial and open-
source efforts to pneumothorax detection. By focusing on pneumothorax detection
specifically, we are able to highlight the limitations of current open-source research,
and deal with them consecutively. Therefore, our research question is as follows:

1According to two laboratory technicians of Radboudumc, 10/02/2020
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Can we, based on publicly accessible data, develop a deep learning solu-
tion to pneumothorax detection that is able to compete with other related
(commercial) pneumothorax detection works?
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Chapter 2

Related Work

In this chapter, we briefly summarize related work and compare the experimental
validity of this work. Litjens et al., 2017 provides an overview of deep learning im-
plementations in medical imaging. Due to the increase in popularity of deep learn-
ing, there is an increase of papers towards computer aided detection of diseases
using deep learning. In general, the overall approaches towards pneumothorax de-
tection are similar. Most research uses pre-trained networks and use the same data
augmentations. However, there are big differences in terms of model evaluation. In
order spot the differences between research, we summarize the papers into a struc-
tured overview (Table 2.1).

2.1 Basic CNN approaches

Gooßen et al., 2019 evaluates a comparison of deep learning approaches for pneu-
mothorax detection. A Convolutional Neural Network (CNN) that outputs a binary
classification, a Fully Convolutional Network (FCN) delivering a per-pixel segmen-
tation, and a Multiple-Instance Learning (MIL) are considered. Their CNN approach
is pre-trained using the NIH ChestX-ray14 dataset (but trained on a private dataset)
and achieves best performance in terms of classification AUC (AUC of 0.96), whereas
their FCN and MIL approach provides better localization. Future work could try to
merge or cascade this architecture in order to get the best of both worlds. The meth-
ods are validated with a private internal dataset, and no external data validation is
done.

Park et al., 2019 evaluates a CNN based on a 26-layer YOLO Darknet19 model. The
AUC was 0.898. The dataset is constructed from two different hospitals, but no ex-
ternal validation was done. Small pneumothoraces are excluded from the training
set.

Baltruschat et al., 2019 shows a ResNet-50 architecture that also takes into account
non-image information such as age, gender and view position. This seemed to work
better than the image-only networks they have tested. However, we can argue that
the non-image features age and gender should not influence the algorithm’s decision
depending on the goal of the system. The algorithm should base its finding on image
features, and not gain knowledge from a bias like age or gender. Achieves an AUC of
0.87 on the ChestX-ray14 dataset.

Rajpurkar et al., 2017 claims radiologist-level performance on pneumonia detection.
For the pneumothorax task, they achieve an AUC of 0.8887, which is better than
other related works (Wang et al., 2017 : 0.806, Yao et al. (2017): 0.841). Their model
(CheXNet) is a 121-layer Dense Convolutional Network (DenseNet-121) (Huang et
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al., 2017) trained on the ChestX-ray14 dataset (98.637 images for training, 6.351 for
tuning, 420 balanced labels for testing). They compare the test set performance of
4 radiologists with the performance of the network and concluded that CheXNet is
significantly better, although the difference in performance is very small. It is argued
whether the claim of better performance compared to radiologists is valid, as radi-
ologists only had access to 1024x1024 downsampled 8-bit PNG images. However, in
real world situations a radiologist is able to use a very high resolution image, and
would refer to the patient history and include additional knowledge such as blood
tests. For the comparison between radiologists and algorithm performances, the use
of additional knowledge is forbidden, which makes radiologist performances debat-
able.

CheXNet shows the pathology locations using Class Activation Maps (CAM). CAMs
are generated by feeding an image to the fully trained network, and then extracting
the feature maps of the final convolution layer output.

A year later, the follow-up of CheXnet was published (Rajpurkar et al., 2018). This
paper makes use of an ensemble of 10x DenseNet-121 networks. Still, this network
is trained on ChestX-ray14, but now the mean of the ensemble predictions result in
the final output. In this version, the ensemble achieves an AUC of 0.944, while ra-
diologists achieves an AUC of 0.940. In contrast to previous work of these authors
(Rajpurkar et al., 2017), this time there is no significant difference between radiol-
ogist and algorithm performance on pneumothorax detection. There is no external
validation done.

Pan; Agarwal, and Merck, 2019 applies an outlier detection approach. Instead of
classifying individual pathologies as separate classes, they detect abnormalities in
chest radiographs as a class, and then test whether the proposed model generalizes
to data from external sources. The data comes from two hospitals: NIH (ChestX-
ray14) and Rhode Island Hospital (private dataset). Two network architectures (DenseNet
and MobileNetV2) are used, where models trained on the ChestX-ray14 were also de-
signed to predict the present of the 14 different pathologies. For individual pathol-
ogy prediction, there is no external data validation done, as the data from Rhode
Island Hospital only provided normal / abnormal labels. Achieves an AUC of 0.898
and 0.883 for DenseNet and MobileNetV2 on pneumothorax detection, respectively.
This shows that a lighter network like MobileNetV2 is still able to generate good per-
formances. For normal / abnormal predictions, they conclude that networks trained
on one dataset also perform quite well on other datasets, but with decreased perfor-
mance. That gives confidence that networks learn the generalizable features, while
the predictions are still biased towards training data.

Majkowska et al., 2020 (Google Health) makes use of 600.000 images coming from
two datasets. The first being data from the Apollo hospital, containing chest X-rays
from multiple locations across the Apollo hospital network. 560.000 of these images
are labeled using NLP. The second dataset is ChestX-ray14, which is also labeled
using NLP tools. Eventually, 37.000 training images across the two datasets were vi-
sually reviewed by radiologists. The complete test set images were reviewed by four
radiologist. Inverse probability weighting was used to see the positive radiograph
enrichment and estimate the performance on the general population level.

They use a Xception network architecture pre-trained on 300 million natural im-
ages (JFT-300M). To compare, ImageNet is known to be trained on 16 million images.
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Unfortunately, JFT-300M belongs to Google and is therefore not accessible to the
public. Also, the weights for this pre-trained network are not downloadable. They
achieve an AUC of 0.95 on the internal test set, and 0.94 on their own test split of
ChestX-ray14. However, they publicly release this test split and release new labels
that are verified by radiologists.

Rubin et al., 2018 trained their DualNet neural network using MIMIC-CXR. The nov-
elty of this paper is that they use both frontals and lateral images as input. However,
their baseline approach of DenseNet-121 with only one frontal or lateral input type
seems to work just as well as their proposed DualNet approach (0.706 AUC). Their
algorithm also not make use of data augmentation, but this issue will be addressed
in future work.

Tang et al., 2019 does end-to-end deep adversarial one-class learning (DAOL) for
semi-supervised normal-abnormal chest radiograph classification, using only nor-
mal X-rays. They reason that their DAOL network is able to reconstruct only normal
X-ray images, and thus is able to differentiate between abnormal x-rays by using the
discriminator of the DCGAN. The ChestX-ray14 is used to and not abnormal X-rays
because it has not been trained on them. Uses the NIH Chest X-Ray dataset. All
the images are resized to 64x64 and 128x128. It is arguable whether pneumothorax
could be detected on such small input sizes.

Guendel et al., 2018 uses a variant of DenseNet-121. It achieves an AUC of 0,846
on the official test split. No external data was used for evaluation.

2.2 Noisy Evaluation

A few (peer-reviewed) articles present their methods, but their evaluation is not re-
liable. Most of the papers do not use patient-level partitioning between training and
test splits, which makes evaluation invalid. This way, the same patient might be
present in both the training set and the evaluation set, as there are multiple studies
done per patient. In this section, we list the research that does not adhere to the
practice of per-patient data splitting.

Cicero et al., 2017 classifies radiographs in multiple categories: normal, cardiomegaly,
consolidation, pleural effusion, pulmonary edema, or pneumthorax. They reason
that chest radiographs are a great initial application for deep learning, as there are
a lot of datasets available and their acquisition technique is standardized. The to-
tal normal patient size is 11.702, and the amount of pneumothorax patients is 1.299.
Small or mild pneumothoraces are excluded. As network architecture they choose
GoogLeNet, which is a 22 layers inception architecture. They consider this network
because of its computational efficiency, being capable to learn complex features, all
while being less prone to over-fitting. Even with a reduced resolution (256x256 pix-
els) compared to other research, an AUC of 0,861 is achieved. We have to note that
the algorithm is tested with a limited amount of samples (n=167, 78% specificity &
78% sensitivity). They agree with the fact that the current sample size is not large
enough to test the quality of predictions for the pneumothorax class. They statisti-
cally prove that, at 1% prevalence and 78% sensitivity, a sample size of over 26.000
is needed. They also argue that the adoption of neural networks in clinical practice
will depend on the "rationalization of their decision". We have to make sure the pre-
dictions are not dependent on external factors, but are only attributed to the x-rays
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themselves. This reasoning conflicts with the research of Baltruschat et al., 2019,
which uses external factors to improve predictions.

Annarumma et al., 2019 trains an Inception-v3 network on a private dataset of 470.388
chest xrays from 2007 - 2017. They show that the average assessment time of their
hospital is reduced from 11.2 days to 2.7 days for critical images, and from 7.6 days
to 4.1 days for urgent images. The network consists of two Inception-v3 networks,
with inputs of 299x299 and 1211x1031 respectively. They provide a soft-max output
for the four classes: "critical", "urgent", "non-urgent" and "normal". The occurrence
of a pneumothorax is classified in the class "critical". The results report an F1 score of
0.63, sensitivity of 65%, specificity of 94% on the critical class. Unfortunately, images
are split on study level.

Guan et al., 2018 uses the ChestX-ray14 dataset to train an attention-guided convolu-
tional neural network (AG-CNN). This network consists of a global backbone (DenseNet-
121 or ResNet50), and using the saliency map to generate a local image that goes into
the classification pipeline of a separate local branch. This method achieves an AUC
of 0.921 on pneumothorax detection. However, the test set is self-formed and the
images are split at study level, not patient level. This means that the same patient
can occur both in the training and test set (data leakage).

Taylor; Mielke, and Mongan, 2018 researches multiple network architectures (VGG16
/ VGG19, Xception, Inception, ResNet pretrained on ImageNet) where two models
are chosen: a ’high sensitivity’ model (VGG16) with an AUC of 0.94, and a ’high
specificity’ model (Inception) with an AUC of 0.96. Evaluation happens on a pri-
vate internal test set (human annotated). Small pneumothoraces are excluded from
their training set. Also, during the generation of train & test splits, images are sepa-
rated on study level instead of patient level. They externally validate their methods
on NIH ChestX-ray14 (Chapter 3.2.1), however the performance drops significantly.
Evaluation on the external dataset results in a low sensitivity (0.28-0.49) and achieves
an AUC of 0.75.

2.3 Commercial solutions

Commercial-grade solutions towards pneumothorax detection also publish their re-
search. Evaluation methods of this type of research is extensive. However, they
mostly train with private datasets and do not publish their models online. Below,
we list two of the research papers.

Putha et al., 2018 shows that an AI system (Qure.ai) can reliably separate normal
chest x-ray images from abnormal ones. For this, they used a 2.3 million well-labeled
X-ray dataset for training (NLP from radiology reports), and 100k for validation (la-
bels from radiology reports) from 45 centers. Also, 6 radiologists looked at a sepa-
rate test set of 2000 images (coming from 3 other hospitals). However, this separate
test set from the different hospitals were filtered out in a way that they do not con-
tain supine position images (patient lying down on a bed facing upwards). Also,
all the bedside or portable X-ray machine images were left out, giving us no im-
ages of tubes, cathethers, ECG leads or pacemakers. Putha mentions that the public
datasets (CheXpert, MIMIC-CXR and PadChest) have a great size, but also contain a
lot of follow-up images which reduces the variability. In our research, we made sure
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to address these problems (Chapter 3.2). Their advantage of having images origi-
nating from multiple (45!) centers is that the chest x-ray is invariant to chest x-ray
hospital procedures. Also, different chest x-ray manufacturerrs and settings are ro-
bustly trained for.

Hwang et al., 2019 shows that their AI system (Lunit) is able to separate normal
chest x-ray images from abnormal ones. Their dataset consists of 100k images from
a private dataset of one hospital, where each image is reviewed by at least 1 of their
15 radiologists (with a minimum of 7 years of experience). These radiologists also
provide highly localized per-pixel segmentation for each pathology. External valida-
tion is done on 1000 images from 5 institutions. In their validation set, they exclude
pneumothorax cases of:

• Images with thorax drain cathethers

• Images containing subcutaneous emphysema

• Images with other clinically relevant abnormalities

• Images taken immediately after thoracic surgery

They also show that their algorithm has a significantly better performance (AUC
of 0.983) compared to radiologists (AUC of 0.932) in terms of abnormal / normal
image classification.
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2.4 Comparison

When comparing the related work as seen in Table 2.1, we see a lot of different
reported performances throughout the years for pneumothorax detection. There are
three important findings that we can conclude from the table:

1. Most research does not test their algorithm with external validation data

2. Some research creates validation splits on study level, not patient level

3. Some research uses private datasets to train and/or verify their models

4. Various performance metrics are reported

External validation One important finding is that most papers do not validate
their algorithms on an external dataset; data coming from a different hospital than
that there has been trained on. Kim et al., 2019 found that of 516 published peer-
reviewed medical imaging studies, only 31 (6%) include external data validation.
External validation is important, as algorithms need to show robustness by gener-
alizing well towards data from other hospitals. Ideally, this external validation is
a public dataset where everybody can test their algorithm. In related work we see
popularity towards the ChestX-ray14 (Wang et al., 2017) dataset.

Data splits Guendel et al., 2018 found out that in ChestX-ray14, around 3.6 studies
per patient are present. When creating data splits on study level, a patient may be
present in the training, validation, and test split! Following Table 2.1, we see that 3
research papers do not split on patient level, and are thus prone to this error.

Private datasets In literature where only private datasets are used, it is often not
mentioned what data exactly has been selected or left out for the experiment. We
should be cautious of trusting this research, as these papers might be fallible to
’cherry-picking’; conveniently leaving out test samples that decrease model perfor-
mance. We can only confirm the research by evaluating on a public dataset.

Performance metrics Most papers report various metrics, where the most popular
metric is the area under the ROC curve (AUC). However, some papers only mention
the positive predicted value (PPV), sensitivity, specificity, and F1 score. There is
no consensus about which metrics to report. This makes it harder to compare the
results of different approaches. In Chapter 3.4, we further evaluate which metrics
are important and why.
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Chapter 3

Methods

In this chapter, we address the methodological approaches to pneumothorax de-
tection. We cover the feasibility of (public) datasets, consider deep learning archi-
tectures, and decide on performance metrics. Finally, we try to do external data
validation by keeping a keen eye on patient-level data splitting.

3.1 Domain Knowledge

Before covering the dataset in itself, we need to know how this data is acquired and
what its limitations are. By closely inspecting the type of images in the datasets,
we are aware of possible biases. This increases our understanding of the problem,
increases model performance, and sets us apart from other related work.

We find a couple of problems in terms of discovered bias. As mentioned in Chap-
ter 1.1.2, bed-side pictures are always taken with a portable x-ray machine of patients
in supine position (AP, lying down). Patients that just have had surgery and are in
the intensive care department often get a chest x-ray taken. This is done to exclude
possible complications that were missed during surgery. For example a pneumotho-
rax caused by the surgery, which occurs quite often (Choi et al., 1998). The algorithm
could be biased towards images coming from the portable x-ray machine, giving it
a (incorrect) higher probability of containing a pneumothorax. Mahajan et al., 2020
shows that by having a good collaboration between data scientists and radiologists,
one is able to interpret these algorithmic failures. Once these failures (e.g. chest
tubes in images) are detected, dealing with these problems during data preprocess-
ing tend to pay off in an increase in model performance.

3.2 Datasets

In this section, we explore the datasets that we use for pneumothorax detection. Af-
ter giving an overview, we state the methods of deriving our preprocessed datasets.
In Table 3.1 we show a summary of the final number of images used with the corre-
sponding pneumothorax prevalence.

In general, we are only interested in datasets providing images labeled for a pneu-
mothorax. Ideally, we would want to train on healthy lungs versus lungs with a
pneumothorax in order to learn the absolute difference. However, as mentioned in
Chapter 1.1, a pneumothorax can occur as a side effect of underlying diseases. This
means that for many images containing a pneumothorax, there will be other co-
morbidities present. Generally speaking, images containing a pneumothorax have a
high probability of containing other disease categories such as infiltration, effusion,
emphysema, or nodules. Next to comorbidities, it is important to know what the
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conditions are when a chest x-ray is taken, as the timing can introduce a possible
bias (see Chapter 1.2.1).

3.2.1 NIH: ChestX-ray14

Note: not in use for model development.

ChestX-ray14 consists of data from the National Institutes of Health Clinical Cen-
ter (NIH) (Wang et al., 2017), containing 60% of all the frontal chest x-ray images
of the hospital. The dataset consists of 112.120 frontal chest x-ray images of 30.805
patients, where 7.134 images contain a pneumothorax. NIH annotates the ChestX-
ray14 dataset by applying machine learning-based natural language processing (in-
stead of expert systems), which comes with a lot of badly labeled images. In general,
we observe a 30-90% error rate depending on the class. The documentation of this
dataset leaves out important information regarding the label construction, and in
which cases we can or cannot apply this dataset. Also, the resolution has been down-
sampled from 3000x2000 to 1024x1024 (Oakden-Rayner, 2019). A point of critique
regarding pneumothorax labels is that this dataset does not differentiate between
untreated & treated pneumothoraces. It means that there are many thorax drains
present, which is a sign of a treated pneumothorax (i.e., already detected, treated,
and currently in the healing phase). Baltruschat et al., 2019 shows that a pneumoth-
orax detection algorithm trained on NIH ChestX-ray14 would treat images contain-
ing a chest tube as a pneumothorax. Therefore, the algorithm learned the chest tube
instead of the pneumothorax. Because the pneumothorax labels contain structured
noise, we do not use this dataset to train our models.

Improved labels Majkowska et al., 2020 (research by Google) provides 1962 multi-
radiologist annotations and performance results for the NIH ChestX-ray14 test set.
Although the problem concerning images with treated pneumothoraces remains,
these annotations drastically improve label quality. We use these labels to evaluate
our model performances as well.

3.2.2 SIIM-ACR (Kaggle)

The SIIM-ACR dataset is generated by the Society of Imaging Informatics in Medicine
(SIIM) as part of the pneumothorax detection challenge on Kaggle. This dataset
seems to be an annotated subset of the NIH ChestXray14 dataset. SIIM is not trans-
parent in the assembly of this dataset, nor do they provide patient or series infor-
mation for the collected images (only image filenames). By not being transparent,
other researchers are unable to define their patient-based data splits and verify the
correctness & usability of the dataset. SIIM provides a training and test split but
does not provide any details on how it is formed. As it turns out, some participants
of the Kaggle challenge found that there appears to be a data leakage between the
training and test set. Apparently, images of the same patient are present in both the
training and test set. Therefore, we can conclude that there might be multiple series
per patient present, but we are unsure of how many series are used per patient. For
other datasets where patient and series information is included, we only obtain the
first series to make sure each included image consists of unique lungs.
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The images that are present, however, contain detailed segmentation masks. This
is the only dataset that contains annotations on pixel-level and is therefore very use-
ful to compare segmentations against visualizations of a trained neural network. Of
all the x-ray images, 8.296 are non-pneumothorax, and 2.379 contain a pneumotho-
rax with a corresponding segmentation mask. Thirty-seven of these images seem to
have no label at all, and therefore we discard them.

3.2.3 CheXpert

With the aim of having a robust penumothorax detection system, we have used sev-
eral public datasets coming from different hospitals. One of our training dataset is
the CheXpert dataset, a commonly used dataset that comes from the Stanford ML
group Irvin et al., 2019. The Stanford ML group was also in need of a high-quality
dataset other than ChestX-ray14, therefore releasing a dataset containing a lot of ex-
pert annotations. The complete dataset contains 224.316 entries of chest X-rays of
a total of 65.240 patients. From these X-rays, they extract the observations of 14
different diseases using NLP. Compared to other datasets, where the test set is de-
veloped with NLP (e.g., NIH ChestX-ray14), the Chexpert validation & test set is
labeled manually by expert radiologists. The dataset distribution of CheXpert in
terms of pneumothoraces are as follows:

• 19.448 pneumothorax images

• 56.341 non-pneumothorax images

• 3.145 images where there is uncertainty about the presence of a pneumothorax

Just like ChestX-ray14, CheXpert does not differentiate between untreated and
treated pneumothoraces. What then happens is that nearly half of the pneumotho-
rax images contain a chest tube, which is an indication that the pneumothorax has
already been treated. The presence of a chest tube means that the images of these
patients are taken after treatment occurred, and do not indicate a first occurrence
of a pneumothorax as is used for diagnosis. In Figure 3.1, we show the difference
between a treated and untreated patient.

By visually inspecting some patient images, we see that there are multiple series
per patient, sometimes even up to 60 series. We know that in follow-up chest x-ray
series, the patient is often already treated and have a thorax drain in place. There-
fore, we choose to select only the first chest x-ray series, as these are most likely to
have untreated pneumothoraces (and thus no thorax drains). Also, this methodol-
ogy provides us with images containing unique lungs, without duplicates. Because
the CheXpert dataset contains both frontal and lateral images, we further reduce the
image selection by selecting only the frontals. After applying the steps, we end up
with the following number of images:

• 3.698 patients with an observed pneumothorax

• 21.590 patients without an observed pneumothorax

• 794 patients where it is unclear whether there is a pneumothorax observed

After looking at the training split of Chexpert, we apply the same logic to the
pre-defined validation split. Then, we can add 7 more patients with a confirmed
pneumothorax, and 195 without a confirmed pneumothorax.
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The downside of CheXpert is the format of the data in which it is provided. The
standard format for X-ray imaging is DICOM (.mha/.mhd). The format of CheXpert
images is in 8-bit JPEG. There are two problems with their conversion from DICOM
to JPEG:

1. DICOM contains pixel spacing information, so exact measurements can be
made to determine, e.g., the size of the heart.

2. DICOM has a higher 16-bit representation (65.536 possible values per pixel)
compared to 8-bit JPEG (255 values per pixel), which means that JPEG down-
samples significantly, losing much information.

(A) Untreated patient #482 (B) Treated patient #78

FIGURE 3.1: Untreated patient (A) vs treated patient (B). The treated
patient shows the presence of a chest tube in the left lung. The un-

treated patient does not have this tube.

Dataset # Total Samples # Pneumothorax % Pneumothorax
CheXpert 10.836 3.603 33.25%
SIIM-ACR (Kaggle) 10.648 2.379 22.34%
MIMIC-CXR 5.124 1.281 25%
RadboudCXR∗ 28.207 6.500 23.04%

TABLE 3.1: Overview of the used preprocessed datasets, including
the number of positive pneumothorax / true positive (TP) cases.

∗ We use this internal dataset only for domain adaptation, and is fur-
ther explained in Chapter 12.1.

3.2.4 MIMIC-CXR-JPG

Johnson et al., 2019 consists of 370k images. Of the complete dataset, 65% were
PA & lateral (fixed machine), whereas 33% were made using a portable device (AP
images). 46.5k of the images are confirmed to not be a pneumothorax with frontal
images, belonging to 7.933 unique patients. In the dataset, the pneumothorax preva-
lence is 3.2%, which means that we have 11.6k images of 1.281 patients containing
a pneumothorax. In follow-up studies of the patients, these images often contained
thorax drains, which we want to exclude. We only include the first study of a pa-
tient, which gives us a total of 1.281 usable (unique) pneumothorax images and 7.933
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images of patients not having a pneumothorax. To avoid having a too unbalanced
dataset, we acquire 3x the rate of pneumothorax images, which means that we use
3.843 non-pneumothorax patients randomly.

All of the images contain additional text reports and are parsed with the same
tools as used for the CheXpert dataset. Access to this dataset is heavily controlled.
Getting access requires users to sign a user agreement stating that algorithms re-
sulting from using this dataset should be public. Also, one needs to complete the
"Data or Specimens Only Research" course from MIT before obtaining credentials to
download.

3.3 Network Architectures

Deep neural network architectures (fully connected networks, convolutional neural
networks, etc.) have been widely researched as a fundamental part of deep learning.
The downside of applying deep learning on medical imaging is the limited size of
(labeled) datasets. Therefore, training from scratch is often not ideal, because it will
take the network longer to converge. To overcome this issue, we make use of exist-
ing network architecture research and use pre-existing networks with a significant
track record. We re-train the pre-existing networks towards our own problem using
transfer learning. Transfer learning allows us to make use of learned features such
as the detection of lines and edges that we can adapt to fit our problem space. For
all selected models, we pre-load their trained ImageNet weights and retrain the com-
plete architecture. No layers are frozen. The input & output layers are excluded, as
we need to define our own input sizes and class labels. We depict our architecture
in Figure 3.2. A detailed pipeline and the steps to (hyper)parameter training can be
found in Appendix A.

FIGURE 3.2: General network architecture. We customize the top-
layer in order to use our own specified input dimensions, and append

a 2-class dense layer for final predictions.

We select three network architectures according to the state-of-the-art on the Ima-
geNet classification task and usage in relevant related work. It is shown that models
performing higher on ImageNet also tend to perform high on other tasks through
transfer learning, and that ResNet (Chapter 3.3.1) & DenseNet (Chapter 3.3.2) archi-
tectures achieves a higher accuracy compared to other models (Kornblith; Shlens,
and Le, 2019). The most recent state-of-the-art architecture that is released after the
paper of Kornblith; Shlens, and Le, 2019 is EfficientNet (published mid 2019, Tan
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and Le, 2019). For our backbone, we implement the following network architecture
concepts:

• Residual Networks (ResNet) (He et al., 2016).

• Densely connected networks (DenseNet) (Huang et al., 2017). Particularly DenseNet-
121.

• EfficientNet (Tan and Le, 2019).

3.3.1 Residual Networks

The residual network (ResNet) by He et al., 2016 is a relatively old network configura-
tion, but still able to compete with the state-of-the-art ImageNet and recent medical
imaging X-ray tasks (Gooßen et al., 2019) (Wang et al., 2017) (Taylor; Mielke, and
Mongan, 2018). For robustness we add batch normalization layers, and no dropout
is used. Using both batch normalization and dropout simultaneously tend to increase
training time and decreases regularization performance (Ioffe and Szegedy, 2015).

3.3.2 Densely Connected Networks

Densely connected convolutional networks (DenseNet) (Huang et al., 2017). The dif-
ference between residual networks and densely connected networks is that each
layer of a densely connected network is connected with each of the individual lay-
ers where it is propagating through. It has been shown that this approach reduces
the vanishing gradient problem (where the gradient becomes so small that it has no
significant effect on weight updates), support re-use of features but simultaneously
decreasing the number of parameters, and decreasing training time.

In related chest x-ray classification tasks, DenseNets achieve good results (Ra-
jpurkar et al., 2018) (Hwang et al., 2019). This architecture, specifically DenseNet-
121, is known to be the backbone of the popular ChexNet architecture, which claims
radiologist-level performance on pneumonia detection (Rajpurkar et al., 2017). The
authors prefer this network, because it "improves flow of information and gradients
through the network, making the optimization of very deep networks tractable".

3.3.3 EfficientNet

Currently, no papers argue the reasoning of a chosen depth or width of a neural net-
work. Tan and Le, 2019 rethinks the current approaches towards new architectures
by proposing a scaling method for the depth, width & resolution parameter. On top
of this, they present a new baseline network architecture called EfficientNet and use
their scaling method increase capacity. The results on ImageNet are state-of-the-art
while having relatively lower parameters compared to its competitors. This means
that EfficientNet is able to converge fast while not sacrificing performance.

From this model family, we include models ranging from EfficientNet-B3 (small)
to EfficientNet-B6 (large). We choose EfficientNet-B3 as low-end, as this network ca-
pacity corresponds with competing network architectures. Due to computing ca-
pacities we are unable to consider even larger networks such as EfficientNet-B7,
EfficientNet-L1, and EfficientNet-L2.
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3.4 Metrics

Most papers report various metrics, where the most popular metric is the area under
the ROC curve index (AUC). However, the AUC score does not capture complete
model performances. To complement the AUC score, a metric considering precision
& recall such as the F1 score or AUCPRC is additionally mentioned.

AUC / AUCROC The AUC score is calculated by using the true positive rate (TPR)
(= recall) (true positives / (true positives + false negatives)) and the false positive rate
(FPR) (false positives / (false positives + true negatives)). AUC measures the vol-
ume that the ROC curve is generating by computing the sensitivity and 1-specificity
by evaluating all possible threshold values. The greater this area, the better the al-
gorithm tends to be. The axis of a ROC plot consists of the false positive rate (1-
specificity, FPR) against the true positive rate (sensitivity, TPR). These numbers are
generated by varying the algorithmic threshold. Then, for each threshold, there ex-
ists a combination of false positives & true positives, transforming the point cloud
into a curve. To choose the optimal model, we can derive the threshold by looking
up the desired FPR / TPR.

AUCPRC Next to the AUCROC score, there exists the Area Under the Precision
/ Recall Curve (AUCPRC). The apparent difference between AUCROC and AUR-
CPRC is in the calculation of the curve. On one side we have AUCPRC, which is
calculated by using the precision (true positives / (true positives + false positives))
and recall (true positives / (true positives + false negatives)). The combination of
precision and recall is also known as the F1 score.
As we see in Table 2.1, most research only reports one metric, in particular the AU-
CROC score. We can argue that when there is a class imbalance (in our case, more
non-pneumothorax than pneumothorax samples), one should use a different met-
ric that can deal with class imbalance. For class imbalance datasets, the AUCROC
curve can be misleading, and reporting the AUCPRC tends to provide better visual
cues (Saito and Rehmsmeier, 2015). The AUCPRC does not include true negatives
in its calculation, which for disease classification tend to come for ’free’. Some stud-
ies mention the precision (i.e. PPV) together with AUC scores in order to deal with
class imbalance. Ranjan et al., 2018 reports only the AUCPRC score for their research
and suggests that the AUCPRC is a better metric for ChestX-ray14 due to sparseness
of some diseases. Reporting AUC metrics are indeed useful, but it can fail to mir-
ror expected real-world performance because of issues in prevalence and possible
under-representation of critical findings (Majkowska et al., 2020)

As an illustrated example, if we have one million healthy x-rays, and 10 x-rays
contain a pneumothorax, then we are not interested in how many times the algo-
rithm has found a true negative (healthy x-ray), but we want to maximize the fact
that every pneumothorax image will be found (precision and recall)! It is debatable
whether we do/do not care about true negatives, as we will use this algorithm in
clinical routine. If the true negatives are too low, this will give the impression that
the algorithm is not reliable.

To conclude this chapter, for our experiments we report the AUC score together
with the class-weighted F1 score. When related work reports different metrics, we
also compute the same metrics in order to compare results.
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Chapter 4

Results

In this chapter, we show the results of our algorithms (DenseNet, EfficientNet, ResNet)
trained on three different publicly available datasets. The chosen hyperparameters
and training pipeline is further explained in Appendix A. We first evaluate on the
internal test set, which consists of predefined test splits of all three datasets. Then,
we visualize a few examples of our network output using Grad-CAM, which might
potentially be presented to the radiologists in order to provide an insight into what
the algorithm has learned. Finally, we evaluate our algorithm externally on the orig-
inal test split of ChestX-ray14 with the labels of Majkowska et al., 2020. This way, we
try to compare our performance against the performance of related work.

4.1 Internal validation

For each dataset, we exclude 20% of the total training files for validation and testing
(10% and 10%, respectively). During preprocessing, we already make sure to include
only one image per patient (first study of the patient, Chapter 3.2), so patient-level
splitting has already been dealt with. We depict a complete overview of data splits
for each dataset in Table 4.1.

Dataset # Train (80%) # Validation (10%) # Test (10%)
CheXpert 8.669 1.084 1.083
SIIM 8.518 1.065 1.064
MIMIC-CXR 4.099 512 512

TABLE 4.1: Data splits per dataset that is used to train & internally
test our algorithm.

Internal validation means validating on data that has the same origin as the train-
ing data. The data samples in the datasets might be different, but the distributions
and biases that exist in the dataset are still present. By evaluating on an internal
validation set, we might not be able to compare results with other research unless
there is a pre-defined test split available. However, not for all datasets there is an
official test split available. For our internal evaluation, we depict the results on the
test splits in Table 4.2.

In Table 4.2, we see that in general, results for higher image dimensions are bet-
ter. One outlier that does not fit this logic is ResNet-152. During this experiment,
we saw that the loss kept increasing already after the first epoch. Thus, we can
argue that the capacity of ResNet-152 is too limiting for higher image dimensions.
We achieve best results with EfficientNet-B3 in terms of AUC, and best results with
DenseNet-121 in terms of (class-weighted) F1 score. For these two results, we show
their corresponding ROC curve and confusion matrix in Figures 4.2 and 4.1.
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Model Dimensions F1 Score AUC Score
ResNet-152 512x512 0.83 0.8720
EfficientNet-B3 512x512 0.76 0.8622
DenseNet-121 512x512 0.83 0.8856
ResNet-152 1024x1024 0.79 0.8339
EfficientNet-B3 1024x1024 0.83 0.9148
DenseNet-121 1024x1024 0.85 0.8954

TABLE 4.2: Results on the test splits of the used datasets. Best perfor-
mance is achieved at higher image dimensions.

(A) EfficientNet-B3 (1024x1024) (B) DenseNet-121 (1024x1024)

FIGURE 4.1: Normalized confusion matrices of the best performing
networks. EfficientNet-B3 shows less false-negatives and thus is more
sensitive, while DenseNet-121 shows less false-positives, and thus is

more specific.

(A) EfficientNet-B3 (1024x1024) (B) DenseNet-121 (1024x1024)

FIGURE 4.2: ROC curves of the best performing networks.
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4.2 Visualization

In order to try to understand what a neural network has learned, we can visualize
the learned gradients based on network input. A popular method that is proven to
present the propagating class gradient reliably is Grad-CAM (Selvaraju et al., 2017)
(Pasa et al., 2019). We calculate the Grad-CAM by computing the derivative of the
predicted class against the activation of a feature map (convolution layer in the net-
work). If the computed derivative is small, then the feature map does not contribute
much towards the final output. However, when the derivative is large, the activa-
tion is important for the final output. By computing the derivative for each spatial
convolution filter in the layer, we can reconstruct a complete image. As we are inter-
ested in parts of an image that contribute to a positive prediction of a pneumothorax,
we compute Grad-CAM visualizations for only the positive class and not vice versa.

By presenting the Grad-CAM visualization next to the predicted pneumothorax prob-
ability, we can show radiologists which part of the image is the most important. One
remark that we have to make is that the most important part of the image might not
always be the location of a pneumothorax. There are several symptoms that can in-
dicate the presence of a pneumothorax, including the deep sulcus sign and mediastinal
shift (Chapter 1.1.2). Before we present the computed Grad-CAM to the radiologist,
we threshold the image to make sure only the most important regions are shown.
For our experiments, we set the threshold to 0.7.

Next to Grad-CAMs, we provide occlusion sensitivity maps, where we measure the
difference in scores by occluding parts of the image using small patches (Zeiler and
Fergus, 2014). The greater this difference in score, the more ’sensitive’ this part of the
image is to the pneumothorax class. However, it has been shown that Grad-CAMs
are more interpretable and more ’faithful’ compared to occlusion sensitivity maps
(Selvaraju et al., 2017).

4.2.1 Examples

We show a correctly classified example (true positive) of each dataset (SIIM, Chex-
pert, MIMIC-CXR). For the SIIM dataset, we add the segmentation mask as a ref-
erence image, as these examples have pixel-level annotations from radiologists. In
this way, we can investigate at what image features the algorithm looks at. There are
multiple possibilities:

1. The activation is concentrated around the pneumothorax area.

2. The activation is concentrated around areas showing symptoms of a pneu-
mothorax (e.g. deep sulcus sign). These are scenarios where

3. The activation is concentrated around areas not related to a pneumothorax, but
on bias (e.g. chest tubes, AP / Portable image types, pacemakers, etc.). This
type of activation map is something we want to avoid. If this type is observed,
it shows that the algorithm selects its classes based on tertiary effects other
than the pneumothorax.

We show visualizations for the EfficientNet-B3 network architecture, as these ac-
tivations tend to be the better compared to other networks.

Figure 4.3 shows an untreated patient from PA view while standing upright. This
is a normal procedure for patients coming in that are not (yet) critically ill. These
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FIGURE 4.3: PA chest-xray Grad-CAM of patient p15794797 from
MIMIC-CXR. Pneumothorax present in the right lung laterally.

EfficientNet-B3 predicted a pneumothorax probability of 90.12%.

patients are able to walk to the radiology department and stand in front of a fixed
x-ray device. This generally assures better image quality as well. In this case, we see
a pneumothorax on the right lung at the outer lateral side.

FIGURE 4.4: AP chest x-ray from the SIIM dataset. The Grad-CAM
activation seems to be completely covering the segmented area of
the pneumothorax (top of the right lung). EfficientNet-B3 predicted

a pneumothorax probability of 99.92%.

For the SIIM dataset, We show the activations of EfficientNet-B3 together with
the corresponding radiologist pixel-level annotations. As a sidenote, we do not train
our algorithms with pixel-level annotations, but provide an image-level label for
each image. As we see in Figure 4.4, the thresholded Grad-CAM exactly marks the
location of the pneumothorax.

In Figure 4.5, we see an example of an AP view image, where the patient is in
lying down on the bed (supine position). The patient is critically ill, as it is connected
to all sorts of wires. A thorax drain is also present, which shows that the patient has
been treated and is now in the recovery phase. Chest x-rays are made during the
recovery phase to ensure the lung is re-inflating and the patient gets better. The
Grad-CAM shows activations on the lower left part of the lung. A situation like
this is typical for patients with a pneumothorax lying down. As found in Yarmus
and Feller-Kopman, 2012, the air bubble of a pneumothorax cannot travel to the top
part of the lung because the patient is in a supine position. Thus, air collects in the
anterior (frontal side of the body) side without clear marks for the lung edge. Air will
travel around the chest, which results in the deep sulcus sign, as we see highlighted
by our algorithm.
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FIGURE 4.5: Grad-CAM of a pneumothorax patient in supine posi-
tion (AP view) showing a deep sulcus sign in the left lung. Thorax
drains are present in the same lung. EfficientNet-B3 predicted a pneu-

mothorax probability of 99.21%.

4.2.1.1 False positives

Some images are incorrectly classified as the pneumothorax class. This means that
the images do not contain a pneumothorax, but the algorithm predicts that there is.
Sometimes this is a genuine mistake of the classifier, other times this is debatable.
One example is Figure 4.6, where the algorithm incorrectly classifies this image as
having a pneumothorax. This false positive can be explained by the fact that there is
a chest tube in place, which is a sign that the patient is currently recovering from a
pneumothorax.

FIGURE 4.6: False-positive classification of EfficientNet-B3 on an im-
age from the SIIM dataset. However, the patient was treated for a
pneumothorax in the same lung, as there are still chest tubes present.

4.2.1.2 False Negatives

In the cases where there is a pneumothorax present but not been picked up by the
algorithm is called a false negative. In these cases, the algorithm was not sensitive
enough to pickup the pneumothorax. Often, we can explain this by the fact that
there are other comorbidities present which can confuse the algorithm, or that the
pneumothorax is small. In Figure 4.7 we show an example of a false negative found
in the SIIM test set. The segmentation maps show that the pneumothorax is rela-
tively small compared to others. The thresholded Grad-CAM shows activations at a
part of the pneumothorax area, but seemed it was not significant enough to give a
positive prediction (48.53% probability was predicted).
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FIGURE 4.7: False-negative classification of EfficientNet-B3 on an im-
age of the SIIM dataset. In this case, the pneumothorax is missed
because it is really small. The predicted pneumothorax probability is

48.53%, therefore classifying it as non-pneumothorax.

4.3 Performance vs related work (ChestX-ray14)

In related research using the ChestX-ray14 dataset, Rajpurkar et al., 2018 found that
radiologists achieved an AUC of 0.940 based on 45 pneumothorax images of a total
of 420 images. The CheXneXt algorithm reached an AUC of 0.944 on this small test
set for pneumothorax detection. Statistically speaking, the authors found no signif-
icant difference in performance. The assessment of radiologists took 240 minutes to
complete, which means around 34 seconds to assess an image. Our algorithm needs
just 34ms for an image to propagate through the neural network.

Majkowska et al., 2020 publishes new and improved labels for the ChestX-ray14 val-
idation and test set. The final evaluation set consists of 1.962 images where 195
images contain a pneumothorax. Instead of reporting F1 measures or an AUC score,
Majkowska et al., 2020 reports specificity, sensitivity, and PPV. Radiologists achieve
an average specificity of 92.8, sensitivity of 79.2, and a PPV of 54.8. In order to com-
pare the results against our networks, we choose our positive prediction threshold
such that the algorithm’s sensitivity matches the sensitivity as achieved by the radi-
ologist. The eventual threshold for EfficientNet-B3 (1024x1024) is 0.8539, EfficientNet-
B4 (512x512) is 0.4363, and the threshold for DenseNet-121 (1024x1024) is 0.6721. In
Table 4.4 we compare our results with the algorithm of Majkowska et al., 2020 and
their radiologist performance. As we can see, we generally achieve better specificity
and sensitivity, but not in terms of PPV.

Research # Pneumothorax # Total Model AUC
ChestXray14 (Wang et al., 2017) 5.302 112.120 0.7993
ChestXray14 (Taylor; Mielke, and Mongan, 2018) 5.302 112.120 0.75
ChestXray14 (Guendel et al., 2018) 5.302 112.120 0.846
ChestXray14 (Rajpurkar et al., 2018) 45 420 0.944
ChestXray14 (Majkowska et al., 2020) 195 1.962 0.94
EfficientNet-B3 (1024x1024) 195 1.962 0.939
EfficientNet-B3 – UDA (Chapter 13) (1024x1024) 195 1.962 0.944
DenseNet-121 (1024x1024) 195 1.962 0.942

TABLE 4.3: Test set sizes of ChestXray14 models with their corre-
sponding pneumothorax model scores (AUC)

In terms of algorithmic comparison, where we compare all thresholds instead
of evaluating a fixed number, Majkowska et al., 2020 reaches an AUC of 0.94 on
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Model Specificity (%) Sensitivity (%) PPV (%)
Majkowska et al., 2020 90.8 72.8 48.7
EfficientNet-B4∗ (512x512) 86.8 79.4 32.7
EfficientNet-B3∗ (1024x1024) 91.5 80.1 44.8
DenseNet-121∗ (1024x1024) 91.69 79.43 45.12
Radiologists 92.8 79.2 54.8

TABLE 4.4: Performance of the models and radiologists on the
ChexRay14 test set of Majkowska et al., 2020.

∗ Algorithm thresholds are determined by average radiologist sensi-
tivity.

the ChestX-ray14 dataset. Our EfficientNet-B3 (1024x1024) algorithm achieves equal
performance (0.9391 AUC), even though we only train on public data.

As we mentioned in Chapter 3.2.1 we use the SIIM dataset to train our networks.
We have observed that this is a subset of ChestX-ray14. We are aware that this can
cause data leakage and we explain how we deal with this in Appendix B.

FIGURE 4.8: AUC curve of EfficientNet-B3 (1024x1024) evaluated on
the test set of Google NIH labels. The orange marker represents the

average radiologist performance.

4.3.1 Visualization

Unfortunately, Majkowska et al., 2020 only depicts two images of a SmoothGrad visu-
alization on the pneumothorax class. It is unknown to which patients these results
belong to, otherwise we selected the same patients for visualization.

In Figure 4.10 we depict the Grad-CAMs of DenseNet-121, which has been trained
at a resolution of 1024x1024. We choose the last convolution concatenation layer
(conv5 block16 concate) to calculate our Grad-CAM derivations.

Subfigure 4.10a shows an example of a true-positive prediction. Here, a chest
tube is present just below the localized Grad-CAM. Baltruschat et al., 2019 argues
that the algorithm will learn the presence of a chest tube instead of looking at the
pneumothorax. Luckily, the algorithm chooses the exact location of the pneumotho-
rax over the tertiary signs of a pneumothorax such as the chest tube.
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FIGURE 4.9: Confusion matrix of EfficientNet-B3 (1024x1024) on the
test set of Google NIH.

We depict a false negative prediction in subfigure 4.10c. DenseNet-121 (falsely)
predicts the absence of a pneumothorax, with a pneumothorax probability of 7.61%.
Though, the Grad-CAM shows activation around the area of the pneumothorax.

(A) True positive (99.7%
pneumothorax predicted)

(B) False positive (63.44%
pneumothorax predicted).

(C) False negative (7.61%
pneumothorax predicted).

FIGURE 4.10: DenseNet-121 (1024x1024) thresholded Grad-CAM ex-
amples of some evaluation images of the test set of Majkowska et al.,

2020.

4.4 External data validation – A simulation

Because we want to achieve the best possible performance for the pneumothorax
detection system, we train on all pneumothorax datasets that are publicly released.
This way, we cannot do external data validation, which is an important part in ver-
ifying algorithm robustness. Therefore, we simulate external data validation by
changing the datasets we train on. To do this, we first train on the CheXpert dataset,
and evaluate results on the SIIM test split as a means of external data validation.
We show the results in Table 4.5, and conclude that performance decreases when
validating on data coming from other hospitals. We are able to restore performance
by training on the distribution of the SIIM dataset. This generalization issue is also
seen in related research of Taylor; Mielke, and Mongan, 2018 and Pan; Agarwal, and
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Merck, 2019. As we want to implement a pneumothorax detection algorithm to our
own hospital data, it is important that we explore this issue in depth.

Model Training data F1 AUC
DenseNet-121 CheXpert 0,57 0,8602
EfficientNet-B3 CheXpert 0,60 0,8169
ResNet-152 CheXpert 0,78 0,7875
DenseNet-121 CheXpert & SIIM 0,78 0,8894
EfficientNet-B3 CheXpert & SIIM 0,81 0,8987
ResNet-152 CheXpert & SIIM 0,81 0,9011

TABLE 4.5: External data validation experiment. Scores represent
performance on the SIIM test split. Performance of all architectures
increase when the training split of SIIM is used during training. This
shows that the problem of domain adaptation is present in pneu-

mothorax detection.
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Chapter 5

Discussion

We present an approach to automated pneumothorax detection on chest radiographs
using three publicly available datasets. Considering the problem setting, the datasets
for pneumothorax detection contain biases such as chest tubes. However, those are
the patients who had already been treated for pneumothorax, and therefore, detec-
tion of such cases are clinically not interesting. In order to reduce this bias in the
datasets, we only make use of the first study of a patient assuming those patients are
likely not to have chest tubes since it is their first study. In this way, we can ensure
that images are split on patient level consistently, so no data leakage between the
training and validation split takes place. In related work (Chapter 2), we see that not
all research adheres to patient-level data splitting, or evaluating on public datasets.
Using these practices, we achieve equal performance on the ChestX-ray14 test set
(0.936 AUC) compared to related work that additionally use private datasets (Ma-
jkowska et al., 2020). This proves that deciphering algorithm failures and dealing
with biases improve performance by a great degree (Mahajan et al., 2020).

Next to presenting probability scores, we show thresholded Grad-CAMs in order
to provide explainable results, which might assist radiologists with their decision
making. Further, we demonstrate the importance of external data validation, and
show that also our algorithm suffers from a decreased performance on external data
due to the domain shift problem.

In terms of limitations, there are a couple of points of discussion which we need
to address for this research. In particular:

1. NLP labels. Labels as acquired by NLP tools are not 100% correct.

2. Comparing against related work. Related research might not be transparent in
their ways of comparing against related work.

3. Comparing against radiologists. The conditions in where an algorithm is com-
pared against the performance of a radiologist might not represent real-world
scenarios.

4. Presence of bias. Different types of bias is present in our datasets.

5. Additional pre-processing. Investigate the possibility of lung masking as an
additional pre-processing step.

6. Robustness of results. Due to time limitations, we were not able to perform
K-Fold Cross-Validation.
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5.1 NLP labels

Datasets that use natural language processing (NLP) to analyze radiology reports
are not 100% accurate. For ChestX-ray14, the labels are derived automatically from
radiology reports using NLP. Their NLP tool achieves an accuracy of >90% on report
parsing, so it can occur that the wrong labels are assigned. This phenomenon is a
shortcoming of the public datasets, as making use of NLP labels gives a trade-off
between quality and quantity of labels.

5.2 Comparing performance with related work

Most related work that evaluates its algorithms on the ChestX-ray14 dataset use dif-
ferent partitions of the test split. The difference in test splits makes the comparison
of different algorithms both difficult and unfair.

As an example, Majkowska et al., 2020 evaluates on 1.962 test samples (extra
radiologist annotations, 195 pneumothorax samples, 0.94 AUC), while Baltruschat
et al., 2019 evaluates on ∼22.400 test samples (∼1060 pneumothorax samples, 0.84
AUC). Finally, Rajpurkar et al., 2018 evaluates on a self-defined test split of ChestX-
ray14 consisting of 420 test images (45 containing a pneumothorax, 0.944 AUC). The
main point here is that these three research papers all test on ChestX-ray14, but the
number of images are all different, even though there exists an official test split.

For Rajpurkar et al., 2018, the self-defined test split is understandable. As this
research compares results against the results of a radiologist, it does not make sense
to let radiologists evaluate 1.962 images. It would cost a radiologist too much time
to evaluate the official test split images, although this would strengthen the contri-
bution towards ChestX-ray14 even further.

5.3 Comparing against radiologists

Some research papers claim radiologist-level performance with their algorithm on
some diseases. However, the methodology to compare with radiologists is different
from real-world scenarios. In these cases, a radiologist is given only a frontal chest
x-ray, without access to tertiary information such as patient history, visual assess-
ment, or multiple imaging modalities. In real-world scenarios, a radiologist would
consider all tertiary information in its assessment.

Rajpurkar et al., 2018 tries to compare performance against radiologists anyway, and
found that radiologists achieve an AUC of 0.940 based on 45 pneumothorax images
of a total of 420 images. The assessment takes radiologists an average of 240 min-
utes to complete, which is around 34 seconds to assess one image. A trained neural
networks need just 34ms for an image to propagate through the neural network and
achieves equal performance.

5.4 Bias

5.4.1 Prevalence

We do not make use of the original pneumothorax prevalence ratios during the eval-
uation of our algorithm. Therefore, the number of false-positives might be lower
than in real-world scenarios. Park et al., 2019 argues that because the data has been
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collected from multiple sources, there is a spectrum bias present. Here, specificity
and sensitivity might differ because of different population/prevalence outcomes.

Images containing chest tubes, fractures, respiratory devices can be tertiary signs
of the presence of a pneumothorax. The prevalence of pneumothorax in these pa-
tients is higher, as the patients have more complications in general.

5.4.2 Chest tubes

Baltruschat et al., 2019 shows that when training on ChestX-ray14, the active regions
of Grad-CAM visualizations are located around the chest tube. This means that the
network mainly used the chest tube to distinguish between pneumothorax / non-
pneumothorax. In our case we do not experience this issue. Already during the
preprocessing of the datasets, we make sure to minimize the number of chest tubes
present by selecting only the first study of a patient. This might drastically reduce
the number of images, but we get a cleaner dataset for it in return.

5.4.3 AP / PA ratio

This bias can also be seen in terms of the number of AP versus PA images. For the
CheXpert dataset, 89% of the frontal pneumothorax images are AP. For other datasets
(SIIM, MIMIC-CXR v1.0) the ratio AP / PA remains unknown.

5.5 Additional pre-processing

As an additional preprocessing step, we tried to include lung masking (Appendix
A.1.2). This step supposedly increases signal-to-noise ratios. However, we observed
that lung masking did not seem to improve performance for the pneumothorax de-
tection task. This can be due to the fact that the lung segmentation algorithm some-
times removes the deep sulcus sign, which is still part of the lung. The heart is also
removed from the segmentation, making another symptom (mediastinal shift) invis-
ible to the algorithm.

5.6 Future work

5.6.1 Robustness of results

To strengthen our internal results, we can compute an average of trained networks
on all the datasets using K-Fold cross-validation. However, training a network on
all available training data takes a week to train. Due to time limitations, we were
not able to wait an additional five weeks for 5-fold cross-validation to finish. It is
interesting to see whether there will be a performance difference across network ar-
chitectures, which due to variance is something we did not yet find viable to explore.

5.6.2 Leveraging segmentation labels

The Grad-CAM localizations are not useful for pneumothorax segmentation, as we
see that these can be located around other signs related to a pneumothorax (e.g. deep
sulcus sign). Making use of the segmentation labels of the SIIM dataset might im-
prove the localization output of the network. We can incorporate the segmentation
labels by adding a dedicated segmentation (U-Net) pipeline after the classification
phase.
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Part II

Domain Adaptation
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Chapter 6

Introduction

In research, we often assume that our test data exactly matches the data distribution
and biases of our training data. We validate the models on internal data splits, which
are a direct derivation of the training sets. As a result, the test set contains the same
biases and prevalence rates as present in the training sets. Most research assess the
performance of their algorithm on datasets which it is trained on. However, in prac-
tice we see that models sometimes fail to perform within the performance bound-
aries as seen during model development. This can be attributed to the fact that data
from a different hospital has different internal biases and methods of acquisition.
This phenomenon is called domain shift, or covariate shift (Shimodaira, 2000). The in-
troduced external dataset might contain a different representation of the same type
of data, which makes internal features not compliant with the dataset of interest.

In clinical algorithms, we see this phenomenon occurring with data coming from
different hospitals. It is often the case that algorithms are developed with data from
hospital 1, but is also put into practice in hospital 2. Suddenly, the algorithm does not
give confident predictions anymore and generally performs worse. We also observe
domain adaptation issues in our preliminary results for simulated external data val-
idation, as seen in Chapter 4.4.

The change in domains might not always be attributed to the difference in data,
but also due to the difference in label determination. Cohen et al., 2020 shows evi-
dence that the generalization of x-ray images is possibly not caused by the domain
shift of the images itself, but by the introduced uncertainties in the abnormality la-
bels. This label shift can be caused by errors in the NLP tools or uncertainty among
radiologists. The research confirms this is also the case for pneumothorax labels
in multiple datasets: Chexpert, ChestXray-14 (Wang et al., 2017), ChestXray-14 (Ma-
jkowska et al., 2020), and Open-I. There is a small inter-rater agreement of the algo-
rithms between datasets, indicating that there is a probable label shift.

6.1 Research Question

In order to overcome the domain shift phenomenon, we develop a method that can
learn the characteristics of a new dataset without the need of having image labels
beforehand. Thus, an unsupervised method to achieve domain adaptation. The dif-
ferent approaches towards domain adaptation are described in Chapter 7. Formally
speaking, we propose a method that belongs to the family of inference-based meth-
ods (Chapter 7.4). To test our new method, we simulate a domain adaptation on
public datasets, so that our results are reproducible. To achieve domain adaptation,
we will adapt domains from the CheXpert dataset towards the SIIM dataset using
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the pneumothorax detection task.

We extend the research in inference-methods by combining methods of mean-teacher
and self-training. Xie et al., 2020 proposes a similar method, and shows that an it-
erative mean-teacher approach can be used to improve source domain performance
in a semi-supervised setting. In our case, we are interested in improving the target
domain performance in unsupervised setting. This leads to the following research
question:

Can we adapt the iterative self-training concept to achieve unsupervised
domain adaptation?

Although our current experiment setup consists of a labeled target dataset (SIIM),
we simulate this dataset to be unlabeled, and use the existing labels as a check to
examine how certain decisions (e.g., thresholds) lead to a particular set of soft-labels.
Furthermore, we explore potential improvements to iterative self-training such as soft-
label multiplication and model ensembling. These methods are needed, as the size of our
target dataset is limited compared to original research (10.000 images vs 300.000.000
images).

Soft-label multiplication Our target dataset is much smaller compared to the dataset
of Xie et al., 2020 (10.000 images vs 300.000.000 images). Xie et al., 2020 has a lot more
soft-labels to consider during his self-training approach. In order to still leverage our
limited dataset size, we propose a multiplication factor to the samples acquired by
self-training. This factor determines the oversampling rate for soft-labels.

Model ensembling Dupre et al., 2019 shows that model ensembling techniques
can help to provide more confident predictions during iterative self-training to add to
the training set. Therefore, we propose an ensemble consisting of ResNets, Efficient-
Nets, and DenseNets.

To show that this method works by walking through the following steps:

1. State the max achievable performance of pneumothorax detection by training
on both CheXpert and SIIM dataset (complete supervised learning).

2. State the baseline performance of a trained model on CheXpert and test external
data validation by evaluating on the unseen SIIM dataset.

3. We perform our domain adaptation method: iterative self-training, and show
intermediate results.
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Chapter 7

Related work

During model development, there are several ways to overcome domain adaptation
issues. We can look at the way the input is presented, how the model is handling
the inputs from another domain, or try to improve the robustness of the model itself.
In general, there are variety of techniques that deal with domain shift (i.e. domain
transformation). Wang and Deng, 2018 and Kouw and Loog, 2019 provides a survey
of deep domain adaptation methods, which we use as a template to overview the
most important methods:

1. Sample-based methods

2. Input image transformations

3. Feature space transformations

4. Inference-based methods

7.1 Sample-based methods

Sample-based domain adaptation methods tackle the problem of data bias. While
sampling from a dataset distribution, it is important that each data split resulting
from the dataset consists of the same biases. A good example is by having data
from multiple hospitals during training (Kouw and Loog, 2019). If the data splits
are biased, the internal distribution of bias is also skewed, leading to covariate shift
or concept (label) shift (Cohen et al., 2020). Two generally used methods:

1. Data importance-weighting – Weight samples by the attributes of the data (e.g.
age or gender distribution).

2. Class importance-weighting – Weight samples by looking at label distribution.

7.2 Input image transformations

We can pre-process/modify our input images in such a way, that it represents the tar-
get domain. Popular examples are Autoencoders and Generative adversarial networks.

Generative Adversarial Networks (GANs) GANs can generate images by trans-
posing images from one domain to another. It is also applied to the field of med-
ical imaging, as differences in data distributions could be caused by differences in
imaging standards (Liu and Tuzel, 2016) (Ganin et al., 2016) (Kamnitsas et al., 2017)
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(Hoffman et al., 2018) (Bousmalis et al., 2017). One example of a GAN is the Domain-
Adversarial Neural Network (DANN) (Ganin et al., 2016). DANN produces a repre-
sentation such that a generated image for that domain cannot be distinguished from
the rest of corresponding data distributions.

7.3 Feature space transformation

Feature space transformations are methods that reshape the feature space so that a
classifier trained on transformed source data will generalize to target data (Bous-
malis et al., 2016). Some methods, as described in Kouw and Loog, 2019:

1. Subspace mappings. Provide derivations of how data is mapped to other do-
mains.

2. Optimal transportation techniques.

3. Learning domain-invariant representations. This method helps to get rid of
domains in general, by learning only the core representations.

d-SNE d-SNE is a latent-space transformation algorithm requiring few labels for
training towards a new domain. For each class, they calculate a distance measure
between domains. The task of the loss function is then to minimize pair-wise dis-
tance within classes while maximizing the pair-wise distance between classes (Xu
et al., 2019). This work is extended to semi-supervised learning by applying a mean-
teacher approach (Tarvainen and Valpola, 2017) as well.

CyCADA Hoffman et al., 2018 is a method which uses both input image transfor-
mations and feature space transformations. Feature space transformations are diffi-
cult to interpret and seem to misjudge pixel-level translations. On the other hand,
input image transformations "fail to incorporate high-level semantic knowledge rel-
evant for the end task".

7.4 Inference-based methods

Inference-based methods overcome the domain adaptation problem by implement-
ing adaptation methods during the inference procedure. This can be achieved by
reformulating the optimization procedure or apply constraints based on the target
dataset (Kouw and Loog, 2019). There are different inference-based methods that
use unsupervised or weakly supervised labels to capture additional knowledge of
the target domain. Two methods are co-training (Blum and Mitchell, 1998) (Nigam
and Ghani, 2000) and self-training (Rosenberg; Hebert, and Schneiderman, 2005).

7.4.1 Co-training

During co-training, we train multiple algorithms on different features. When com-
bining the algorithms, we get more robust results as we have trained our algorithm
on multiple features for one dataset. The co-training method of Chen; Weinberger,
and Blitzer, 2011 does not train multiple algorithms on different features but formu-
lates a single optimization problem for all algorithms instead. Self-training, on the
other hand, does not use a split of features. Compared to co-training, self-training
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uses just one model. This method adds the most confident samples to its training set
by assuming those are the correct labels.

7.4.2 Self-training

Self-training is a relatively old method (Yarowsky, 1995) that is still relevant and
applied in modern techniques like neural networks. Specifically, self-training is a
method where an existing algorithm trained on all labelled data makes predictions
on unseen (unlabeled) data of a different distribution. If the algorithm is confident
enough of its predictions (e.g., soft-max prediction exceeds a defined threshold),
we assume this is the correct label for that particular sample and add this sample
to our training set. Pérez and Sánchez-Montañés, 2007 extends the Expectation-
Maximization algorithm to cope with concept drift, meaning that statistical distribu-
tions for each domain are different. They prove that it works for data coming from
different hospitals.

7.4.3 Mean-Teacher

Tarvainen and Valpola, 2017 shows a method that penalizes predictions that are in-
consistent with the target. Mean-Teacher is a method that averages model weights
instead of changing label soft-max predictions as during self-training.

Mean-Teacher is a teacher-student model that provides a training method on a
derivation of the data. The teacher learns on hard labels (e.g. binary labels) as in-
put, and gives class probabilities as output. The consecutive student network then
trains its network based on the output of the teacher model. Because these labels
are probabilities instead of hard labels, these predictions provide a continuous label
regarding the information of the image.

7.4.4 Self-training mean-teacher

Xie et al., 2020 uses a student-teacher model to create a method that achieves state-
of-the-art on the ImageNet classification task. In this paper, a teacher model is trained
on labelled images and then used to generate pseudo labels on unlabeled data. Then,
a new student model is trained on the combination of labelled and pseudo-labelled
images. This loop is iterated over by making the trained student the teacher and
repeating the steps until convergence. This method makes use of unlabeled external
data to strengthen performance on the labelled (internal) dataset. Therefore, this is a
semi-supervised method (makes use of both labelled and unlabelled images). What
is novel about this method is that they add several techniques to improve knowledge
extraction from the external unlabeled dataset:

1. Input to the student network is noised using dropout, data augmentation, and
stochastic depth.

2. Student model should be larger than the teacher model.

3. Use soft labels instead of binary (hard) labels, as these tend to converge faster
and lead to better stability.

As most student-teacher models are used for model compression, this approach
is precisely the opposite. They scale up network architectures beyond EfficientNet-
B7, generating their own EfficientNet-L0, L1, L2. The training time of EfficientNet-
L2 is five times the training time of EfficientNet-B7. Complete training of this model
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takes 3.5 days on a Cloud TPU of 2048 cores. We can argue that this limits verifia-
bility, as only a few have access to these type of resources. The fact that they made
their model larger only contributed to a 0.5% increase in performance, while the
Noisy Student approach reported a gain of 1.9%.

Sun et al., 2019 proposes methods that try to learn on self-generated labels on a
target dataset, assuming that this dataset will generalize better. Related work on
this is that they try to transform the source dataset into the target dataset by using
generative models (Taigman et al., 2016), or another method, where pseudo-labels
are generated based on the trained model of the source dataset. When the predic-
tion of the pseudo-labels reaches a certain threshold, we add the pseud-label to the
training set (bootstrapping with unlabeled target data). This method is also called
self-ensembling French; Mackiewicz, and Fisher, 2017 or co-training.

7.4.5 Consistency training

Laine and Aila, 2016 introduces consistency training, which provides methods such
that models robust and insensitive towards input noise (i.e. adversarial attacks).
These methods show that using unlabeled data to address input noise issues im-
proves adversarial robustness. However, we do not use consistency training methods
during self-training, as using these methods to achieve regularization prevents hav-
ing good results on the target dataset (Xie et al., 2020).



49

Chapter 8

Methods – Iterative self-training

The iterative self-training pipeline by Xie et al., 2020 is originally formed to improve
performance on the source dataset. However, we want to perform well on the target
domain, and therefore define a slightly different task structure. We state the defini-
tion our our pipeline below.

Require:
Labeled images – {(x1, y1), (x2, y2), ..., (xn, yn)}
Unlabeled images – {x̃1, x̃2, ..., x̃n}
Cross entropy loss function – L
Confidence threshold – τ

1. Train the teacher model ensemble θt on the source dataset n by minimizing the
cross-entropy loss.

1

n

n∑
i=1

l(yi, f
noised(xi, θ

t))

2. Using the trained teacher model ensemble θt, generate soft-labels on the target
dataset m.

∀θi ∈ θt,∀i ∈ m, ỹθi = f(x̃i, θ
i)

3. Calculate the mean prediction scores and add the most confident predictions
using threshold τ to the training dataset. Optionally: oversample the soft-
labels with a multiplication factor.

[
1

θt

θt∑
i=θi

ỹθi ] > τ

4. Create a new model ensemble with increased architectural capacity (so the
model ensemble has increased capacity to capture nuances), which we call the
student model ensemble.

5. Train the student model ensemble on the source dataset + (oversampled) target
soft-labels and apply heavy data augmentation (noise). Since we do not have
any labels from the target domain in unsupervised domain adaptation setting,
our validation set only consists of the source dataset and no soft-labels.
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1

n

n∑
i=1

L(yi, fnoised(xi, θt)) +
1

m

m∑
i=1

L(ỹi, fnoised(x̃i, θt))

6. The trained student model ensemble θs becomes the teacher model ensemble θt.

7. Go to step 2. Iterate until convergence.

In the following sections, we will explain how to achieve domain adaptation for
our CheXpert→ SIIM experiment.

8.1 Teacher: Generating soft-labels

To compute soft-labels, we use an ensemble of three neural network teachers: ResNet-
152 (Chapter 3.3.1), DenseNet-121 (Chapter 3.3.2) and EfficientNet-B3 (Chapter 3.3.3).
Pérez and Sánchez-Montañés, 2007 shows that an ensemble can lead to better con-
fidence scores. We re-train these networks on the CheXpert dataset after we have
initialized them with ImageNet weights (pre-training). Then, we let the networks
generate predictions for the training set labels of SIIM. For each image in the SIIM
training set, we compute a mean score of all three networks in order to aggregate
the scores into a single prediction estimate. We call this score our soft-label. Each
image of the SIIM training set now has a soft-label prediction. Generally speaking,
when the soft-label prediction is above 0.5, the network classifies that particular im-
age as containing a pneumothorax (positive class). However, a prediction score of
around 0.5 is not a confident prediction value. The higher this score, the more con-
fident the networks are in their prediction of the positive class (pneumothorax). We
need to determine a threshold value in such a way that we get as many confident
true-positive pneumothorax predictions as possible while minimizing the number of
false-positive pneumothorax predictions. In related semi-supervised work (Dupre
et al., 2019), a threshold value is chosen such that 99% of the included data is correctly
labeled. Unfortunately, due to our method being unsupervised, we cannot choose a
threshold this way. We do not have the labels of our target dataset to determine how
many soft-labels are correctly labeled. However, the assumption that the threshold
value is a trade-off between correctness of the labels (quality) and amount of labels
(quantity) still holds.

For our experiment, we consider the labels of SIIM as a verification. When we use
a threshold of 99% true-positive predictions, we have very few samples for each cor-
responding class: less than 50! Compared to the entire CheXpert training set (10.836),
the number of added soft-labels given this threshold will probably not affect the net-
work during training. We can thus say that the threshold value is a trade-off between
the quality & quantity of soft-labels.

For the non-pneumothorax soft-labels, the criteria for choosing a threshold is
different. We need to choose a threshold in such a way that we achieve the same
number of non-pneumothorax cases as pneumothorax cases, in order to maintain an
equal class-balance. Because the SIIM training set has a relatively low prevalence
for the pneumothorax class, the non-pneumothorax class gives us a lot more images
when using the same threshold as the pneumothorax class.

Label presence (simulated) Generally speaking, during unsupervised learning,
we would not know the amount of incorrectly classified soft-labels, because we do
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not have labels of this dataset. However, in this research setting, we do have the
actual labels of the dataset, but only use these labels to assess the quality of results.
Because these labels are present, we can inspect what percentage of predicted soft-
labels are correct. To illustrate the original class-imbalance, we plot the ensemble
(mean) thresholds against the number of obtained predictions in Figure 8.1. In this
figure, we see that a higher threshold value results in a more confident prediction
due to the number of false-positive predictions decreasing, and fewer soft-labels are
returned. By increasing the threshold, we basically "filter out" images that do not
represent a pneumothorax. At a base of the x-axis (threshold = 0.0) we clearly see
the class imbalance: 6.000 non-pneumothorax, 1.725 pneumothorax1.

FIGURE 8.1: Positive class soft-labels as generated by taking the mean
value of the ensemble predictions on the SIIM dataset. True positives
in blue, false positives in orange. We need to choose a (lower-bound)

threshold value for our soft-label inclusion.

8.1.1 Soft-labels: pneumothorax

When we look at Figure 8.2, which is a magnified version of Figure 8.1, we see the
number of non-pneumothorax (i.e. ’healthy’) images dropping below the number of
pneumothorax (i.e. ’ill’) images starting at a threshold of 0.5. Ideally, we want to
maximize the gap between non-pneumothorax and pneumothorax depending on the
threshold, but by still taking into account the false-positive rate.

For the first iteration we choose a threshold value of 0.85, which gives us 715
pneumothorax soft-labels (155 false-positives, FPR of 21.67%) 2. This way, we have a
significant quantity of soft-labels while keeping the false-positives to a minimum.

8.1.2 Soft-labels: non-pneumothorax

For the non-pneumothorax class, we also select a threshold value. This class returns
less false predictions compared to the pneumothorax class, as the prevalence rate for

1The numbers are different from Table 3.1, as these numbers represent the (stratified) SIIM training
split

2In true unsupervised setting we would not know the amount of false-positives, and therefore
choose a higher threshold value such as 0.90.
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FIGURE 8.2: Zoomed in version of Figure 8.1. We choose a threshold
such that we have a maximum of True: ill, but a minimum of True:

healthy.

non-pneumothorax images is high. Therefore, we choose a really confident threshold
of 0.9 (translated to 0.1 in terms of upper-bound threshold). This results in 713 non-
pneumothorax soft-labels (4 false-negatives, FNR of 0.5%).

8.2 Training the Student model

Now that we have soft-labels as generated by the teacher model ensemble, we can
start training with our additional soft-labels from our target domain. Following the
steps, we need to create a student model ensemble and start training on the soft-
labels. Xie et al., 2020 argues that a larger model is needed for the student model in
order to learn a more powerful model. Because we run a model ensemble, we run
these steps for each of our network architectures:

EfficientNets For EfficientNet, we start with EfficientNet-B3 with a starting dropout
rate of 0.3 and stochastic depth with a survival rate of 0.8. For each iteration, we
increase the network size (EfficientNet-B4, EfficientNet-B5, EfficientNet-B6) and the
dropout rate.

DenseNets We start our iteration with DenseNet-121, and scale up to DenseNet-169.
Due to GPU limitations, we are not able to scale up to DenseNet-201. This gives us
effectively two DenseNet architectures to iterate with.

ResNets During experimentation, we had issues with the ResNet networks, as GPU
errors kept arising. Increasing network capacity was an issue, and batch sizes were
minimal. Although we could not scale our ResNets, we still provide preliminary re-
sults and use this network in our ensemble.

We re-initialize each network of the ensemble with ImageNet weights and retrain the
models. We use the same approach as mentioned in Appendix A. The only difference
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is that during the creation of the training & validation split (80% train, 10% valida-
tion, 10% test), we only add the generated soft-labels to our training set. By leaving
the validation set intact, we guarantee equal performance on our source dataset. We
apply heavy data augmentation during training to make sure each epoch contain
different images.

Soft-label multiplication / oversampling Because we use such heavy data aug-
mentation, we can duplicate our soft-labels to increase the presence of the target
dataset even further (oversampling). Even when multiplying the soft-labels, data
augmentation makes sure each epoch contains a unique derivation of an image. De-
pending on the network architecture, we found multiplication rates between x6 - x15
to work best.
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Chapter 9

Results

In this chapter, we present the results of our iterative self-training approach on do-
main adaptation by adapting domains from the CheXpert dataset towards the SIIM
dataset. We generate soft-labels by making use of the model ensemble but still track
performances of each network architecture individually.

For each network architecture, we present the max achievable performance and
the results of iterative self-training. The max achievable performance is the perfor-
mance when the labels of the target dataset are known (regular supervised learn-
ing). To attain the max achievable performance, we train on both CheXpert and SIIM
dataset (complete supervised learning). After training on both the source and tar-
get dataset, we can assume that the performance of iterative self-training will never
transcend the max achievable performance. The results of iterative self-training are
displayed per iteration so we can gauge when the network has fully converged.

9.1 ResNet

The max achievable performance (by training on both CheXpert and SIIM) is 0,81
weighted F1 score, and an AUC score of 0,9011. In table 9.1 we show the perfor-
mance of iterative self-training on a ResNet backbone 1. The network seems to be
robust, as the baseline scores come close to the max achievable performance. The
best model in terms of AUC score is seen during iteration 1, where the teacher model
equals the student model, but additional soft-labels are added during training of the
network. This model seems to overfit after iteration 2, as the F1 and AUC score on
the test set drops significantly. We can conclude that iterative self-training might not
work for this architecture.

# Model Soft-labels F1 AUC
0 ResNet-152 None (baseline) 0,78 0,7875
1 ResNet-152 x6 (500/class) 0,76 0,9038
2 ResNet-152 x10 (800/class) 0,78 0,8867
3 ResNet-152 x10 (960/class) 0,67∗ 0,632

TABLE 9.1: ResNet-152 performance on SIIM iterative self-training.
∗ best model on epoch 1..

1For this network we cannot increase network capacity to bigger networks due to GPU memory
limitations
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9.2 EfficientNet

The best model performance of EfficientNet-B3 by training on both CheXpert and
SIIM results in a weighted F1 score of 0,81 and an AUC score of 0,8987. We show
the results for the iterative self-training of the EfficientNet backbone in Table 9.2. At
iteration 3 we achieve best AUC score, where as iteration 2 shows the best F1 score.

# Model Soft-labels F1 AUC
0 EfficientNet-B3 None (baseline) 0,60 0,8168
1 EfficientNet-B4 10x (500/class) 0,72 0,8570
2 EfficientNet-B5 15x (800/class) 0,79 0,8873
3 EfficientNet-B6 15x (960/class) 0,67 0,9008

TABLE 9.2: EfficientNet performance on SIIM iterative self-training

After iterative self-training, the true positives changed from 214 to 226, having a
difference of 19 more compared to the baseline. For the number of false positives,
this resulted in a decreased from 436 to 367. 161 cases are now correctly classified as
negative.

9.2.1 Visualization

9.2.1.1 True positives

We show an image (Figure 9.1 & 9.2 where the network predicts a false-negative
(40.82% pneumothorax probability), which eventually turns into a true positive (89.53%
pneumothorax probability). The localization of the pneumothorax is also improved.

FIGURE 9.1: EfficientNet-B3 baseline. A pneumothorax is present, but
the network predicts otherwise (predicted pneumothorax of 40.82%).

FIGURE 9.2: EfficientNet-B6 final iteration. After iterative self-training
the pneumothorax probability increased to 89.53%.
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9.2.1.2 False positives

Figure 9.3 depicts a false positive classification where the location of the Grad-CAM
show activation in the left lung. The pneumothorax probability is 51.05% before
iterative self-training. Afterwards, the pneumothorax probability decreases to 7.13%,
and the Grad-CAM activation in the left lung completely disappears (Figure 9.4).

FIGURE 9.3: EfficientNet-B3 baseline. The network incorrectly pre-
dicts this image as containing a pneumothorax. The pneumothorax
probability is 51.08%., which indicates low confidence of this predic-

tion.

FIGURE 9.4: EfficientNet-B6 final iteration. For this patient without a
pneumothorax, the pneumothorax probability successfully decreased

to 7.13%.

9.3 DenseNet

By training on both CheXpert and SIIM, DenseNet-121 achieves a maximum weighted
F1 score of 0,78 and an AUC of 0,8894. After iterative self-training, we manage to
decrease the number of false positives from 485 to 291. The true positives increased
from 219 to 226. The results of iterative self-training For DenseNets can be seen in Table
9.3.

# Model Soft-labels F1 AUC
0 DenseNet-121 None (baseline) 0,57 0,8602
1 DenseNet-121 6x (500/class) 0,72 0,8885
2 DenseNet-169 10x (800/class) 0,73 0,8928
3 DenseNet-169 10x (960/class) 0,75 0,8982

TABLE 9.3: DenseNet performance on SIIM iterative self-training
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9.3.1 Visualization

9.3.1.1 True positives

Figures 9.5 & 9.6 show the before and after of iterative self-training for DenseNet-
121 towards DenseNet-169. The pneumothorax probability increases from 38.17%
to 93.01%. After the iterations, the Grad-CAM covers a larger area of the masked
pneumothorax compared to the baseline.

FIGURE 9.5: DenseNet-121 baseline. Predicted pneumothorax of
38.17%.

FIGURE 9.6: DenseNet-169 final iteration. Predicted pneumothorax of
93.01%.

9.3.1.2 False positives

The number of false positives decreased by 40% (485 to 291). In Figure 9.7 we see an
image falsely classified of containing a pneumothorax (77.80% pneumothorax prob-
ability) in the top-right lung. After iterative self-training, the pneumothorax proba-
bility decreases to 24.08%. The final Grad-CAM as depicted in Figure 9.8 no longer
shows activation in the top right lung only.

FIGURE 9.7: DenseNet-121 baseline false-positive. Predicted pneu-
mothorax of 77.8%.
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FIGURE 9.8: DenseNet-169 final iteration false-positive. Pneumotho-
rax prediction decreased to 24.08%.
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Chapter 10

Discussion

Our adapted iterative self-training method shows promising results. For the Efficient-
Net architecture, were all the prerequisite experiment criteria are met, we are able to
improve the performance on the target dataset (0,60→ 0,79 weighted F1; 0,8602→
0,8982 AUC).

• EfficientNets seem to overfit at iteration 3. Improvement until iteration 2: 0,60
→ 0,79 weighted F1; 0,8168→ 0,8873 AUC.

• DenseNets keep improving even at iteration 3. Improvement until last iteration:
0,57→ 0,74 weighted F1; 0,8602→ 0,8982 AUC.

• ResNet-152 does not have the capacity to learn the target domain soft-labels
during iterations. The best performance is achieved after the first iteration,
when the initial soft-labels are added to the training set: 0,78→ 0,76 weighted
F1; 0,7875→ 0,9038 AUC. Consequent iterations seem to decrease this perfor-
mance.

As we see, EfficientNets converge faster using iterative self-training compared to
DenseNets. This can be attributed to the fact that the research setup is not precisely
the same. We are not able to directly compare iterations as the different architectures
do not scale up their size equally. We also see that we achieve the largest improve-
ments in terms of performance during the first iteration of iterative self-training. From
this, we can conclude that adding soft-labels of the target domain to the training of
our source domain without any iterations already helps. Yet, we run into some lim-
itations during our experiments:

1. Determine soft-label thresholds. For now, we explore a single threshold value
per iteration.

2. Minibatch label distribution. We do not ensure a correct distribution of train-
ing labels & soft-labels in each minibatch during training.

3. Network scaling. Not every architecture scales as much as we want to. We
should consider re-running the experiments by keeping in mind network ar-
chitectures with their GPU limitations.

Model ensemble During experimentation, we see that the calculated mean of three
network predictions provide better soft-labels in terms of the number of false-positives
& false-negatives compared to individual network soft-labels. Although we do not
verify these results by comparing performances on the complete pipeline, this would
be a good ablation study for future work.
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Soft-label thresholds We currently determine soft-label thresholds by looking at
the false-positive rate. In true unsupervised setting, this number is not available
(therefore we only use it for verification!). The general thought is that when a
higher threshold is chosen, the more confident the predictions are. For future work,
we might experiment with this threshold value in order to determine the quality –
quantity trade-off between soft-labels. A lower soft-label threshold might result in a
larger quantity of soft-labels, but comes with a higher false-positive rate.

Minibatch label distribution For this approach to work effectively, we have to
make sure that each batch consists of an equal contribution of both the source data
& target soft-labels. However, due to our small batch sizes, we cannot guarantee this
assumption.

Network architectures We are not able to scale up the ResNet-152 architecture due
to GPU limitations. One could argue that ResNet-152 as a baseline is too high to
start with. However, ResNets started to give good results on the original training set,
starting with a network capacity of ResNet-152. Other research might achieve great
results using this architecture, but they use lower input resolutions.

Robustness of results Just as in part I (Chapter 1.1), we might apply cross-validation
to verify results and possibly highlight differences in network architectures.
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Part III

Clinical validation
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Chapter 11

Introduction

In this part of the thesis we verify our findings against a local private dataset (Rad-
boudCXR, Chapter 12.1). We combine the knowledge and methods as seen in previ-
ous chapters and evaluate their use case in a true clinical setting. We hope that by
using our pneumothorax detection knowledge & iterative self-training method, we
can successfully push the performance of our pneumothorax detection algorithm
even further. This leads to the following research question:

Are we able to verify our iterative self-training domain adaptation method
on a local (private) dataset with different biases?

To test this question, we start our iterative self-training method using our trained
models of Part I (Chapter 4). These models are trained on the public datasets SIIM,
CheXpert, and MIMIC-CXR v1.0. The target dataset for unsupervised domain adap-
tation is RadboudCXR. We carefully sample & verify a held-out test set in order to
compare our results.
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Chapter 12

Methods

We first dive into the clinical dataset and investigate the limitations of this dataset.
Because this dataset is very noisy, We manually define a held-out test set that is of
high-quality standards, and that does not include chest tubes or invalid images.

After we explore the clinical dataset, we run the iterative self-training pipeline and
investigate the effects of choosing a certain multiplication factor.

12.1 RadboudCXR

The dataset RadboudCXR is an internal private dataset from the Radboudumc hos-
pital. The chest x-rays come with attached (unstructured) radiology reports and are
written in Dutch. At the time of writing there are 281.061 chest x-ray reports avail-
able. Unfortunately, the NLP tools used by other datasets such as CheXpert labeller
cannot be used, as these tools do not support the Dutch language. Therefore we
develop our own rule-based NLP tool to extract pneumothorax and non-pneumothorax
images from the dataset. Because the radiology reports do not have a standardized
format, our NLP tool is prone to errors.

Using our NLP tool, we are able to extract 20.212 reports mentioning a positive
pneumothorax. When we exclude thorax drains (filter for "drain", "tube"), we are
left with 6.500 frontal pneumothorax images. 95% of these images have an indicated
AP view position, meaning that most of the images are obtained via inpatient clinic.

For non-pneumothorax images, we randomly sample until we reach the same
prevalence rate (∼25%) as our other preprocessed datasets. We completely filter out
thorax drains and the word "pneumothorax". Eventually, 21.707 non-pneumothorax
images are present.

RadboudCXR contains a lot of mislabeled chest x-rays. A good example is the
selection of frontal (PA/AP) images. When we filter for frontal chest x-rays, upon
inspection, some images show lateral (side view) images. The trained networks have
never seen these types of images before and have a hard time classifying these sam-
ples. RadboudCXR also contain many x-rays of babies/children. Because these chil-
dren are small, their "chest" x-ray shows their complete body. We want to improve
the quality of the internal dataset and do this by setting up criteria that excludes
these types of cases. We cannot verify all these images by hand. Therefore we ran-
domly select 500 chest x-rays for our verified test set.

12.1.1 Verified Test set

To be sure we have a good standard to measure our results, we randomly sam-
ple a test set of around 500 images from RadboudCXR. Then, we inspect each file
and belonging text report to see whether they meet quality standards (see Chap-
ter 12.1.2). Because not all sampled images are suitable to include in our test set,
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we keep drawing samples until a total of 504 images is achieved (259 pneumotho-
rax, 245 non-pneumothorax). Also, we make sure to have a balanced distribution of
view positions; 47% of all test images are AP view.

During our experiments, we treat these images as a held-out test set, so we do
not use these images for training or validation.

12.1.2 Sampling criteria

The test set should be of high quality, and therefore should meet quality standards.
To determine the difference between a good sample and a bad sample, we look at
both the image and the text report.

12.1.2.1 Text report criteria

For the pneumothorax class, the text report should clearly mention that there is a
pneumothorax found, and there should be no mention of a thorax drain. The pneu-
mothorax class therefore also contains patients with other comorbidities other than
a pneumothorax. Sample of a report that meets the guidelines:

X-thorax op IC AP: vergelijk onderzoek van eerder XXX.

Bekende pneumothorax rechts, schildikte maximaal ongeveer 24mm. Bek-
ende versterkte intrapulmonale tekening. Longvaattekening lijkt binnen
de norm. Bronchopathie. Corgrootte gering vergroot.

...

Conclusie. Pneumothorax rechts. Versterkte tekening intrapulmonaal;
lijkt niet geheel te verklaren door overvulling;

...

Overweeg XXX.

For the non-pneumothorax class, the only criteria we have that there is no men-
tion of a pneumothorax and no mention of a thorax drain. This means that the
non-pneumothorax class does not only consists of healthy patients, but also other
non-normal findings such as consolidations, emphysema, nodules, etc. Example re-
port of the non-pneumothorax class:

X-thorax 2 richtingen. Wordt vergeleken met opnamen van XXX. In XXX.
met de vorige opname is een in essentie ongewijzigd beeld van de XXX.
Ongewijzigd aspect van de restafwijkingen rechts boven en in mindere
mate linker bovenveld en links basaal. Open sinus pleurae beiderzijds.
Enigszins afgeplatte diafragmakoepels passend bij COPD. Verder slank
mediastinum en corfiguur. Conclusie: in essentie ongewijzigd beeld.

12.1.2.2 Image criteria

We randomly sample images from the main (noisy) RadboudCXR dataset and verify
by hand whether the class corresponds with the class found in the text reports. Fur-
thermore, we inspect the individual images belonging to the labels and adhere them
to the following criteria:

1. Exclude images where a thorax drain is present. These are patients that have
been treated for a pneumothorax, and therefore the pneumothorax has already
been detected (Figure 12.1c).
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2. Exclude images of babies. These patients have underdeveloped ribs, and most
of these images show the complete body (Figure 12.1a).

3. Exclude lateral images. We include only frontal images, but these can be mis-
labeled (Figure 12.1d).

4. Exclude incomplete lung imagery. Make sure that both lobes are visible (Figure
12.1b).

5. Exclude small-scaled crops. In some cases a mere 50% of the complete image
is usable (Figure 12.1a & 12.1d).

6. Exclude different organs. Sometimes there are other organs present, which
incorrectly represent the lung.

(A) Small-scaled crop &
imagery of a baby

(B) Incomplete
left lung

(C) Thorax drain present
in left lung

(D) Small-scaled crop &
lateral image

FIGURE 12.1: Examples of excluded test images based on the exclu-
sion criteria. All the images originally belong to the pneumothorax

class.

For the remaining images, we can assume that they are suitable for our test set
and that they represent the corresponding class correctly. However, it could still be
the case that in the non-pneumothorax case, there is still a pneumothorax present
even though there is no mention of it in the text report.

12.2 Soft-label multiplication (RadboudCXR)

Xie et al., 2020 states that it is beneficent to add a lot of soft-label samples from the
target domain into the training set. However, there is a trade-off between exploring
the target dataset and exploiting the target dataset. On the former, the network can
capture additional nuances that are not present in the source dataset. The latter
causes overfitting on the target dataset, causing a decrease in generalizable model
performance.

To investigate this trade-off, we experiment with the multiplication rate of our
iterative self-training approach. We depict the performance of various multiplication
rates on the test set and show the ratio soft-labels - original training data in Table
12.1. In this table, we see a significant performance difference between 0x multipli-
cation (baseline) and 1x multiplication.

We take a look at the network architecture EfficientNet-B4 while being in the first
iteration of iterative self-training. As seen in Table 12.1, we see a significant differ-
ence between the baseline and 1x addition of soft-labels. When we experiment with
the multiplication rate, we see that 10x gives the best F1 score, while 1x gives the
best AUC score.
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Multiplication Rate % Soft-labels # Total training data F1 AUC
0x (baseline) 0% 32.719 0.67 0.8168
1x 6.37% 34.945 0.74 0.8607
2x 11.98% 37.171 0.77 0.8515
10x 40.48% 54.979 0.78 0.8587
20x 57.64% 77.239 0.76 0.8521
30x 67.12% 99.499 0.74 0.8577

TABLE 12.1: Multiplication factor influences the exploration – ex-
ploitation trade-off. Shown are the results of EfficientNet-B4 on the

RadboudCXR held-out test set.

Visualization further proves that such a trade-off exists. Figure 12.2 shows a dif-
fused localization pattern for a high multiplication factor. Supported by the decrease
in F and AUC score, we conclude that the usage of large multiplication factors dur-
ing iterative self-training is discouraged.
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FIGURE 12.2: Grad-CAMs of EfficientNet-B4 on a RadboudCXR test
case. A pneumothorax is observed in the right lung. Prediction scores
are 96.27%, 89.54%, 97.2%, and 90.4% for multiplication rates of 1x,
2x, 10x and 30x, respectively. The Grad-CAM localization is best for
a multiplication factor of 1x, the worst for factor x30. Therefore, a
higher multiplication factor might not result in better performance,

but is prone to overfit.
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Chapter 13

Results

We evaluate our best-performing networks that are trained on all public datasets di-
rectly to the held-out test set of RadboudCXR. The baseline scores for class-weighted
F1 and AUC are 0,69 and 0,8259, respectively. We question whether iterative self-
training can improve this score. If the scores are significantly higher than the base-
line, we consider iterative self-training successful.

13.1 Iterative Self-training

During the experimentation, we apply iterative self-training to the complete dataset
of RadboudCXR, and evaluate each iteration against the held-out test set. The results
for the 512x512 input dimensions can be seen in Table 13.1, whereas the results for
greater input dimensions (1024x1024) are shown in Table 13.2.

For 512x512, we see that all networks at iteration 2 show a decrease in AUC score,
but increased F1 score compared to iteration 1. The trade-off between precision –
recall is improved, but sensitivity – specificity is decreased. Further explanations
regarding the metrics are explained in Chapter 3.4.

# Model Soft-labels F1 AUC
0 EfficientNet-B3 None (baseline) 0,67 0,8168
0 DenseNet-121 None (baseline) 0,70 0,8638
0 ResNet-152 None (baseline) 0,68 0,7970
1 EfficientNet-B4 1x (1104/class) 0,74 0,8607
1 DenseNet-121 1x (1104/class) 0,74 0,8769
1 ResNet-152 1x (1104/class) 0,74 0,8626
2 EfficientNet-B5 2x (1054/class) 0,76 0,8394
2 DenseNet-169 2x (1054/class) 0,77 0,8561
2 ResNet-152 2x (1054/class) 0,76 0,8313

TABLE 13.1: Iterative self-training results for input size 512x512.

GPU problems The asterisk (∗) as displayed in Table 13.2 states that there are GPU
problems while training the networks using greater input image resolution. There
are various causes for this. For iteration 0 of the ResNet-152 network, iteration 2 of
the EfficientNet-B4 network, and iteration 2 of DenseNet-169, the maximum batch size
is set to 1. If we increase the batch size further, the GPU runs out of memory. The
downside of such a limited batch size is that the functioning of batch normalization
is not achieved. On top of that, the network takes longer to train as well. As an
example, ResNet-152, in particular, took over a week to train, which is not doable
for the time that was left. EfficientNet-B3 took around 5 days to train with an input
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# Model Soft-labels F1 AUC
0 EfficientNet-B3 None (baseline) 0,77 0,8750
0 DenseNet-121 None (baseline) 0,73 0,8814
0 ResNet-152∗ None (baseline) 0,57 0,7595
1 EfficientNet-B3 1x (1139/class) 0,82 0,9242
1 DenseNet-121 1x (1139/class) 0,78 0,9055
1 ResNet-152∗ – – –
2 EfficientNet-B4∗ 2x (1415/class) 0,77 0,8629
2 DenseNet-169∗ 2x (1415/class) 0,12 0,2283
2 ResNet-152∗ – – –

TABLE 13.2: Combined table 1024x1024.
∗ GPU problems during training of the networks.

resolution of 1024x1024. In this table, insufficient results are seen for DenseNet-169.
Apparently, the network is not able to converge due to a batch size of 1.

We can conclude that the results for the 1024x1024 input resolution experiments
are not reliable, although these look promising. For the remaining of the chapter, we
only take results of iterative self-training for a resolution of 512x512 into account.

13.1.1 EfficientNet

The confusion matrices for the EfficientNet (512x512) domain adaptation experiments
are depicted in Figure 13.1. Before domain adaptation, EfficientNet has a high speci-
ficity. Of all the non-pneumothorax images, EfficientNet is right 92% of the time.
However, when a pneumothorax is present, EfficientNet successfully classifies this
image as a pneumothorax just 45% of the time (low sensitivity).

After iterative self-training, the sensitivity increases to 64%. The trade-off here is
that specificity slightly decreases to 89%.

(A) Baseline (B) Iteration 2 (domain adapted)

FIGURE 13.1: Confusion matrices of EfficientNet experiments. After
iterative self-training, the sensitivity increased with a slight decrease in

specificity.

13.1.2 DenseNet

The normalized confusion matrices for DenseNet (512x512) (Figure 13.2 show better
results for both the baseline and iterative self-training. The baseline results also have
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the tendency to have a very high specificity (97%) and show a slight decrease in
specificity during iterative self-training. The sensitivity significantly increases from
48% to 67%.

(A) Baseline (B) Iteration 2 (domain adapted)

FIGURE 13.2: Normalized confusion matrices of DenseNet experi-
ments. After iterative self-training, the sensitivity increased with a

slight decrease in specificity.

13.2 Visualizations

Although the performance of pneumothorax detection on larger resolutions (1024x1024)
look promising, we have not managed to run a complete pipeline of iterative self-
training for this resolution. Therefore, we choose to validate our findings on the
512x512 resolution that went through all the iterations successfully. We visualize the
activations of EfficientNet, as this is the only network where we are able to scale up
efficiently. In particular, we show the differences in activation between EfficientNet-
B3 and the final iteration trained on EfficientNet-B5.

We show that our iterative self-training method can infer knowledge based on
various circumstances. In all cases, we show examples where the discovery of a
pneumothorax is new and therefore showing untreated pneumothoraces.

Figure 13.3 shows a chest radiograph and radiology report of a patient directly
after surgery. The patient is recovering in the intensive care unit, and by routine,
a chest radiograph is taken after an invasive procedure to rule out possible abnor-
malities that the surgery has caused. In this case, the patient has had a sternotomy,
meaning that the middle of the chest has been surgically opened (often done for
open-heart surgery). In this case, the chest radiograph shows that the sternotomy
caused the right lung to collapse (traumatic pneumothorax). The algorithm seems
to improve its localization towards the right apical lung correctly.

Figure 13.4 shows a PA-view chest radiograph of a patient not on the intensive
care, but obtained during the outpatient clinic. This patient shows a large pneumoth-
orax on the lateral side of the right lung. After iterative self-training, the Grad-CAM
correctly shows a new blob downward laterally.

Figure 13.5 shows a chest radiograph from the portable device, on a patient in
a supine position lying in bed. Due to this patient being in supine position, the
pneumothorax does not have to be located around the edges of the chest. Iteration
2 shows a pneumothorax on the upper left lung, but not around the chest wall. This
finding of the algorithm corresponds to the finding of the radiologist.
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FIGURE 13.3: Patient with a traumatic pneumothorax in the right
lung, which happened after heart surgery (sternotomy). Iterative self-
training improved the pneumothorax probability from 28.58% (FN) to

79.91% (TP)

FIGURE 13.4: Patient with a large lateral pneumothorax in the right
lung. After iterative self-training, the network is able to locate a more
substantial part of the pneumothorax. Pneumothorax probability in-

creased from 40.92% to 79.91%.

Figure 13.6 shows a false-positive prediction of a pneumothorax. At least that is
what the label says. The corresponding radiology report states: "the lung is probably
not yet fully attached on the base". We do not know which lung this entails, but
there seems uncertainty amongst the presence of a pneumothorax. The baseline of
iterative self-training shows activation at the right lung apically and basally. Iteration
2 of iterative self-training shows activation only at the right lung basally. Iteration
2, therefore, nails the localization but decreases the pneumothorax probability from
62.71% to 17.92%. In this case, the algorithm could support the radiologist in his
decision making, as by comparing the localization areas with the suggested area of
the radiologist.
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FIGURE 13.5: Patient in a supine position with a pneumothorax. A
supine position causes the pneumothorax to appear in the middle of
the chest due to gravity. Iterative self-training drastically improved
pneumothorax probability (22.07% to 90.69%) and localization up to
a point where the Grad-CAM accurately marks the location of the

pneumothorax.

FIGURE 13.6: Image of a patient that probably does not have a pneu-
mothorax, although the radiologist is uncertain as well: "the lung is
probably not yet fully attached on the base". Initially, the pneumotho-
rax probability is 62.71% (false-positive prediction), but after iterative

self-training, this decreases to 17.92%.

13.3 Prevalence

As we have seen in Chapter 3.4, reporting merely the sensitivity and specificity for
this task is not enough. The pneumothorax prevalence rates tend to differ between
datasets, as all these datasets originally suffer from some sort of selection bias (e.g.,
opt-in method of acquiring data, unknown data source). Depending on the preva-
lence rate, a positive prediction might yield many false-positive predictions. In Rad-
boudCXR, the pneumothorax prevalence rate is 8%.

To illustrate how the prevalence rate affects the number of false-positives, we
depict an example calculation. Assume that the best possible pneumothorax model
achieves a sensitivity and specificity of 0.95 and 0.85, respectively 1. With a preva-
lence rate of 8%, this gives a positive predicted value (PPV) of 0.355. From this PPV
we can conclude that for every 100 positively-predicted x-ray images, there will be
65 false positives! With an increased prevalence rate, the number of false positives

1Commercial product Qure – qXR v2.0 (Putha et al., 2018). This is the highest self-reported model
performance for a commercial product currently on the market, although these scores can be criticized.
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will be lower. This shows that even for the most accurate models, the trust in the
algorithm cannot be easily established. It makes sense that these algorithms are
therefore deployed in triage situations, where recall is more important.
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Chapter 14

Discussion

We apply the iterative self-training scheme to our local clinical dataset. As baseline
performance on the local clinical dataset, we take our best performing models as
seen in Part I (Chapter 4). After the experiments, generally all networks seem to
benefit from the iterative self-training method. The mean F1 scores increase from 0,68
to 0,77, and the mean AUC scores improve from 0,8259 to 0,8422 for low input res-
olution (512x512). Higher resolution images (1024x1024) tend to push performance
even further: an F1 score of 0,82 and an AUC score of 0,9242 for the EfficientNet ar-
chitecture is achieved. Unfortunately, training these high-resolution images cost a
significant amount of computing power and pushes the boundaries of the GPU we
have available. Ideally, we would want to compute more iterations (3 or 4), to see at
which iteration the networks converge and show the best results.

To answer our research question: the proposed iterative self-training method increases
performance on the target dataset, meaning domain adaptation is successful. The
performance on the source dataset by following this approach seem to be unaf-
fected, except for performance on the external test set ChestX-ray14 (Chapter 4.4).
These results show that the performance might not increase on the source dataset
and achieve domain generalization. However, results show that iterative self-training is
robust enough to improve performance on the target dataset while maintaining at
least equal performance on the source dataset.

14.1 Multiplication rates

There is a difference in multiplication rates between our clinical experiments and the
original SIIM experiment (Chapter 8.2). For clinical validation, we use multiplication
rates of x1, x2, while for domain adaptation towards SIIM we use multiplication
rates of x10, x30. We found that for clinical validation, a lower multiplication rate
is needed to achieve comparable results. We are unsure what causes this, but we
assume this has to do with the fact that we already have a quite robust model trained
on all the public datasets, and we need only a small ’nudge’ in the right direction,
and no new concepts need to be learned.

14.2 Robustness

In order to make the results more robust, we would need to apply cross-validation
in our experiments. This way, we have a better overview of which models would
be significantly better, if at all. Due to time limitations, verifying these results using
cross-validations was not an option, and thus leave cross-validation for future work.
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14.3 RadboudCXR

The local clinical dataset RadboudCXR is noisy. We spent limited time investigating
this dataset, meaning that better labeling tools and filtering methods might signifi-
cantly improve performance on this dataset.

Prevalence As we mention in Chapter 13.3, the pneumothorax prevalence rate of
RadboudCXR is low (8%). It makes sense to integrate this algorithm for triaging only,
as this algorithm will present relatively many false-positives.
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Part IV

Concluding remarks
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Conclusion

In this thesis, we investigate three parts that all focus on improving automated pneu-
mothorax detection. First, we develop an open-source approach towards automated
pneumothorax detection using deep learning. Our advantage over related work is
that:

1. We avoid chest tube bias using study selection.

2. We verify our method on public data.

3. We verify our method using external data validation.

4. We split our data into training/test split at patient-level, which makes sure a
patient is not present in both the train and test split.

5. We report multiple performance metrics and calculate different metrics when
needed for comparison (e.g., on ChestX-ray14).

Few related work studies (6 / 15 papers) use a public dataset (such as ChestX-ray14)
to verify its results. Even when the a certain public dataset is chosen for evaluation,
we observe a difference in the assembly of test splits (Table 4.3). Using the most
recent results on the official test split of Majkowska et al., 2020, we achieve equal
performance as state-of-the-art: 0.9391 AUC. As all the datasets are public, we pub-
lish our algorithm and model weights online so other people can benefit from our
work 1.

After achieving a solid open-source foundation to pneumothorax detection, we knew
that we had a noisy local dataset at hand (RadboudCXR), but without any labelling
available. As most hospitals rely on unstructured radiology reporting, we need a
solution that is not that much dependent on report labels. We adapt the iterative self-
training method of Xie et al., 2020 in order to achieve unsupervised domain adapta-
tion using an inference-based method. This allows us to leverage the local dataset
without any additional labeling. Apart from changing the goal of the method, we
further propose the following adaptations:

1. Soft-label multiplication (i.e. oversampling rate).

2. Model ensembling.

We test this method by simulating domain adaptation on the public datasets CheX-
pert → SIIM. Both EfficientNets and DenseNets seem to benefit from iterative self-
training: 0.60→ 0.79 weighted F1; 0.8602→ 0.8982 AUC.

Finally, we evaluate the iterative self-training domain adaptation method using a
local dataset RadboudCXR. The results show that the performance on the source
datasets (CheXpert, SIIM, MIMIC-CXR) remain equal, but significantly achieves do-
main adaptation performance on the target dataset RadboudCXR: 0.68→ 0.77 mean
F1; 0.8259 → 0.8422 mean AUC. This proves that our method is able to perform in
a real-world noisy dataset. The final algorithm is deployed and testable at the Grand-
Challenge platform: https://grand-challenge.org/algorithms/cxr-pneumothorax-detection/.

1DIAG will publish this algorithm as a package in OpenCXR.

https://grand-challenge.org/algorithms/cxr-pneumothorax-detection/
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Future work

Cross-validation For every part of the thesis, adding cross-validation will strengthen
the results, and possibly highlight different performances for various network archi-
tectures. As each network takes around five days to train, it is not feasible to achieve
cross-validation results during the limited timespan.

Leveraging SIIM segmentation labels For the SIIM dataset, we have pixel-level
pneumothorax annotations. We currently only use image-level annotations for all
our data, and therefore not make use of these detailed annotations. For future work,
we could leverage these segmentation labels to strengthen the localization results,
such as combining Grad-CAM localization with a segmentation pipeline.

Iterative self-training experiments We have scratched the surface of iterative self-
training. Although these results look promising, it might be good to experiment
with the following parameters:

• Multiplication rates.

• Soft-label thresholds. Determine the optimal soft-label quality – quantity trade-
off.

• Number of iterations. Continue running experiments until the maximum per-
formance is achieved. In the current experiments, the network capacities did
not allow for such large iterations.

• Larger batch size. Due to GPU constraints, we could not adhere to the prereq-
uisite of an equal minibatch distribution of source data and target soft-labels.

• Ablation study: Solo versus ensemble models.

RadboudCXR The local dataset RadboudCXR is in need for reliable labels. We spent
limited time in creating a simple NLP tool to extract pneumothorax labels, but im-
proving the quality of the labels might help to get a better insight into this dataset.

Integration in the clinic We have implemented a state-of-the-art pneumothorax
detection algorithm using only publicly available datasets. We have made our code
and model publicly available and provide an online demo with the aim of accelerat-
ing future research. Further, we have investigated an unsupervised domain adapta-
tion approach to adapt to new domains without additional labeling, which could be
useful for integration of the model into new hospitals. Since the proposed algorithm
is available online, we could directly integrate the algorithm into the clinical work-
flow of a radiologist using the Grand-Challenge API. The results of this algorithm
could trigger specific priority flags for triaging or append a line in the radiology re-
port stating the suspected presence of a pneumothorax. This could potentially be
useful to prevent delays in reporting the critical time-sensitive abnormality: pneu-
mothorax.



85

Appendix A

Training Pipeline

The pneumothorax classification pipeline is written in Python 3.7 using Tensorflow
2.0.

For our experiments, we set a randomness seed to the integer 1337, so that for each
experiments we have controlled (pseudo-random) conditions. By using a pseudo
random number, we ensure the same stratified data splits & data augmentations.

We optimize our networks using the Adam optimizer (Kingma and Ba, 2014) and
only save our model when validation loss compared to previous epochs decreased.

A.1 Hyperparameter optimization

We try to optimize the following parameters in order to get the most robust results:

• Normalizations

– ImageNet

– ClaHe

• Lung masking

• Data augmentation

• Learning rate

– 1e-3

– 1e-4

– 1e-5

– 1e-6

• Learning rate scheduling

– Factor

– Patience

• Loss function

– Binary focal loss

– Binary cross-entropy

• Image Resolution

– 512x512
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– 1024x1024

• Bottom convolution pooling

– Max pooling

– Average pooling

There are many parameters to be selected, but the pre-trained networks are too
big to brute-force all of the parameters. Training time for one configuration takes
around 10 hours! Therefore, we optimized the parameters normalization, learning rate
and lung masking using the python package HParams (Petrochuk, 2019), and explored
the other parameters by trial and error.

Learning rate & scheduling Many papers argue that the learning rate is affected
by the used batch size of the network. Because for different network architectures
and image resolutions we would need a different batch size it is even more costly
to determine the optimal learning rate. In our case, we found that a learning rate of
1e-5 works well. When the performance on the validation set does not improve after
5 epochs (plateau), we decrease the learning rate by a factor 0.3.

Loss function We experimented with two loss functions: binary focal loss and bi-
nary cross-entropy. Focal loss (Lin et al., 2017) is used as a loss function for highly
imbalanced datasets, where there exists a sparse class. It is basically a weighted
cross-entropy loss, where the classes that are underrepresented get a higher weight
that contributes to the computation of the loss.

Binary cross-entropy is a measure that computes the distance between the pre-
dicted outcome and the expected value. This method does not account for class
imbalance and therefore other measures should be taken to address class imbalance.

We found focal loss not effective enough to replace binary cross-entropy loss.
In order to still tackle the class imbalance problem, we use oversampling as a class
balancer, where we oversample the underrepresented class pneumothorax.

Image Resolution For EfficientNet-B3, using higher resolution images (in our case
we tested 512x512 and 1024x1024) seems to improve improve F1 & AUC scores from
0.76 & 0.8622 to 0.83 & 0.9148, respectively. There are two problems with using
higher image resolution. The first problem is that in order to train on the GPU, we
need to decrease the batch size, which reduces the effect of batch normalization.
The second problem is that when applying the iterative self-training scheme, the
memory usage becomes too big with increased network sizes. We cannot increase
network capacity when upscaling from EfficientNet-B5 to EfficientNet-B6.

Bottom convolution pooling When connecting the backbone with the last clas-
sification layer, we have to deal with the outgoing pooling layer coming from the
backbone. Two types of pooling that we select are max pooling and average pooling.
Max pooling will get the maximum value of a convolution area as defined by the fil-
ter size, while average pooling averages the convolution area to end up with a value.
Max pooling performs worse on localization and ignores a large part of the data. It
has been found that in our case, average pooling seems to give best results.
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A.1.1 Normalizations

ImageNet normalization Many deep learning papers describe that input normal-
izations help to keep proper gradient propagation throughout the network. Because
our networks are initialized with pre-trained ImageNet weights, it is a common
practice to standardize network input by subtracting the ImageNet mean and di-
viding by the standard deviation. For each input image, we subtract the ImageNet
means (0.485, 0.456, and 0.406 for each channel, respectively). Then, we divide by
the standard deviation (0.229, 0.224, 0.225 for each channel, respectively). It is im-
portant to note that ImageNet normalizations may cause the network to converge
faster, but not necessarily lead to better results.

However, every network consists of batch normalization layers, which means that
after each convolution layer, the activations get normalized. Batch normalizations
also help us to retain gradient propagation, making ImageNet normalization to have
less of an impact compared to networks without batch normalizations. During our
experiments, we confirmed that there exists no significant difference between using
ImageNet normalization and not applying these normalizations.

Contrast Limited Adaptive Histogram Equalization (CLAHE) Images straight out
the X-ray machine are flat and generally lack contrast. Contrast is needed to observe
edges and possible pathologies in chest radiographs. CLAHE normalization is often
used for pre-processing and helps to increase local details and contrast. It improves
the local details by dividing the images into blocks and then applying histogram
equalization (Koonsanit et al., 2017). In Figure A.1, we see a normal and a CLAHE
normalized image.

FIGURE A.1: Normal image (left) vs CLAHE normalized image
(right)

A.1.2 Lung masking

We introduce lung masking as a preprocessing step, as this decreases the amount of
noise the network will get as input. We first run a separate algorithm that segments
lung tissue, followed by a dilation kernel. Dilation is applied in order to make up
for lung segmentation errors and to provide an overview of the bone structure. In
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Figure A.2, we display the difference between input images before and after lung
masking.

(A) Normal (B) Lung mask (C) Dilated lung mask

FIGURE A.2: Example of a lung segmented chest x-ray

We ran different experiments to determine whether lung masking helps to im-
prove results. Unfortunately, we see that lung masking does not contribute to a
better performance as the scores of using lung masking (dilated lung masks or regu-
lar lung masks) equals the score of not using lung masking at all. Therefore, the best
setting is to use a regular input image without lung masking.

A.1.3 Data Augmentation

Because we have limited samples of a pneumothorax, and we want to make the net-
work invariant to scaling, shifting, and rotations, we introduce data augmentations.
For this we use the albumentation python framework (Buslaev et al., 2020). We found
that in related work, the best performing data augmentations are as follows:

• Horizontal flipping (probability: 0.5)

• One of: random contrast, random gamma or random brightness

• One of: Elastic transformation (Simard; Steinkraus; Platt, et al., 2003), grid
distortion or optical distortion

• Random scaling and rotation (max 45 degrees)

In Figure A.3 we see some augmentations that are performed. By making sure
the network never sees the same example of an image, we know it learns something
new every epoch.

Figure A.3b shows a zoomed in (scaled) and rotated variation. By using this
we make the network invariant to rotations & scaling. In Figure A.3c the image is
horizontally flipped, shifted, and grid distorted.
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(A) Normal (B) Random augment (C) Random augment (D) Random augment

FIGURE A.3: Example data augmentations
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Appendix B

Data Leakage

In this chapter, we explore the possible data leakage between the Google NIH labels
(Chapter 3.2.1) and the SIIM-ACR dataset (Chapter 3.2.2), which we use for train-
ing. The SIIM-ACR dataset does not provide any description of where the dataset is
coming from.

A naive approach would be to assume that the SIIM-ACR training set does not
incorporate the test set from ChestX-ray14, but just the training set. As the Society for
Imaging Informatics in Medicine (SIIM) has radiologists at their disposal, it would
be a good research practice for them to select a subset of the pneumothorax training
set of ChestX-ray14 and let the radiologists annotate a segmentation map for those
images. In turn, this improves the quality of the ChestX-ray14 as the training split
only consists of NLP extracted labels, and the researchers that use the SIIM dataset
for training can test on the ChestX-ray14 split without worrying about data leakage.

In research, we should not be naive. Therefore, we actively test whether the cur-
rent training set of SIIM consists of images that exist in NIH test set (as labeled by
Google in 2019). To do this, we calculate the average hash and the perceptual hash (Za-
uner, 2010) for each image. Hashing each image gives us a unique fingerprint of
the content of the images, which is robust against scaling and watermarking (e.g.,
AP/PA labels or lung side markings on chest x-rays). To our surprise, we do find
213/1964 images (11%) colliding with the same hash. Of these images, 64 are pneu-
mothorax and 149 are non-pneumothorax. After inspecting the images with a hash
collision, we verify that indeed the images are the same. Thus, we can conclude that
the SIIM dataset contains images coming from the test set of ChestX-ray14!

We would have wanted to remove these files from our training set, but due to
time constraints, there was no option to re-train our network on a new training set.
Therefore, although not ideal, we removed these images from the test set. The dif-
ference in performance between the test sets with and without data leakage remains
minimal (0.940 AUC vs. 0.9391 AUC).
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Appendix C

Paper

Note: The paper contains preliminary results for the pneumothorax detection task.
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Abstract

Many supervised systems suffer a drop in performance in domains distinct from their train-
ing data. In this work, we propose an unsupervised domain adaptation approach through
iterative self-training in order to improve performance on an unseen dataset without addi-
tional labelling. We investigate the impact of this approach in two different chest radiogra-
phy applications: heart segmentation and pneumothorax classification, using four publicly
available datasets. Our results show that this can improve IoU for heart segmentation from
0.70 to 0.81 and AUC for pneumothorax classification from 0.86 to 0.90.

Keywords: unsupervised domain adaptation, self training, pseudo labeling

1. Introduction

It is well known that supervised deep-learning algorithms often do not perform optimally on
data outside their training domain. This is a major obstacle to successful implementation of
medical image analysis algorithms, because in clinical practice there exists a wide variation
in scanner hardware, acquisition protocols and reconstruction methods. Such variations
occur even within single hospitals. Collection of new annotations from many datasets is
time-consuming and costly. Unlabelled medical images are usually available in abundance,
however, which provides motivation for unsupervised domain adaptation (UDA). These
techniques focus on scenarios where labeled training data is available in a source domain but
the goal is to achieve a good performance on a different (target) domain without additional
labelling.

There is a large body of literature for unsupervised domain adaptation (Sun et al.,
2019). One line of research focuses on image transformation using generative models (Hoff-
man et al., 2018; Bousmalis et al., 2017). Another option is to induce alignment between
the source and target domains in some feature space (Bousmalis et al., 2016; Long et al.,
2017). Self-training is an alternative approach where the network is trained on source data,
used to generate pseudo-labels on the target dataset, and then re-trained using informa-
tion from these generated pseudo-labels. Recently (Xie et al., 2019) demonstrated that an
iterative self-training approach achieved a state-of-the-art performance on natural image
classification in a semi-supervised setting.

In this work, we adapt the iterative self-training concept for unsupervised domain adap-
tation and investigate its performance for two different medical image analysis tasks: heart
segmentation and pneumothorax classification on chest radiographs. In addition, we demon-
strate the effect of the iterative process and of increasing numbers of unlabeled images.

c© 2020 A.n. withheld.
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2. Data

The public source and target datasets used for each task are detailed in Table 1. The
unlabelled target data for heart-segmentation is randomly selected. The heart is manually
segmented in 600 radiographs for use as a held-out test set. For pneumothorax classification
the siim provided validation split is used as the held-out test set. All images underwent per
sample mean-standard deviation normalization.

Source Data Target Data
Name #images #annotations Name #images #annotations

Segmentation jsrt 247 247 cxr14 10.600 600
Classification cheXpert 10.836 10.836 siim 10.648 1.602

Table 1: Overview of the used datasets, jsrt (Shiraishi et al., 2000; van Ginneken et al., 2006),
cheXpert (Irvin et al., 2019), cxr14 (Wang et al., 2017), siim (SIIM, 2019).

3. Methods

3.1. Baseline Method

A standard U-Net architecture (Ronneberger et al., 2015) was used for segmentation exper-
iments, and a DenseNet-121 architecture (Huang et al., 2017) pretrained on ImageNet was
used for pneumothorax classification. Data augmentations (rotation, brightness, contrast,
horizontal flipping) were applied during training. As a baseline, the models were trained
on the source domain and tested on the target domain.

3.2. Iterative Self-Training

We adapt the iterative self-training approach (Xie et al., 2019) for UDA as follows:

1. Train the network on the source domain and use it to generate pseudo-labels (SoftMax
output) for the target domain.

2. Pseudo-labels with SoftMax value >0.9 are selected and included in the training set
for the next iteration.

3. We train the network on the increased training set, and generate new pseudo-labels
as before. Iterate from step 2.

In the first iteration, we expand the capacity of U-Net by adding 2 convolutional layers
followed by a max pooling operation in both the expanding and contracting path. For
the classification architecture, we switch from Densenet-121 to Densenet-169 on the first
iteration. The additional capacity is beneficial for the networks to be able to adapt to the
new domain. We decrease the batch size to compensate for the larger architectures.

We experiment with different numbers of unlabeled images for segmentation experiments
to see its impact on performance. Performance is measured by area under the receiver oper-
ating curve (AUC) for classification and by intersection over union (IoU) for segmentation.

2
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4. Results

As can be seen in Table 2, the classification baseline method achieved an AUC of 0.860,
which increased to 0.904 by self-training on the unlabeled set. For the segmentation task,
the baseline method achieved an IoU of 0.702 in the target domain, which increased to a
maximum of 0.818 by self-training on 5000 unlabeled images. Experiments with 100 and
10000 unlabelled images showed similar but slightly lower improvements. There appears to
be a sweet spot for the number of unlabeled images to use in the self-training process. We
will further investigate this in future work. Figure 1 shows sample results for each task.

Figure 1: Two examples with a large difference between baseline and self-training. Left: cxr14
segmentation results with reference in red and network prediction in blue. Right: Clas-
sification results showing occlusion sensitivity (Selvaraju et al., 2017) overlay before and
after self-training on the SIIM validation set. The pneumothorax location from the ref-
erence is shown in red. SoftMax was 0.40 in baseline classifying this as a false negative,
and 0.90 after self-training, making this a true positive.

Task
Dataset

Source/Target
Number of

unlabeled images
Performance

1st | 2nd | 3rd iter

Classification cheXpert/siim
0 0.860

10000 0.888 | 0.892 | 0.904

Segmentation jsrt/cxr14

0 0.702
100 0.768 | 0.795 | 0.801
5000 0.802 | 0.815 | 0.818
10000 0.786 | 0.803 | 0.812

Table 2: Performance with no self-training, and after 1,2 and 3 iterations of self-training. Classifi-
cation performance is measured by AUC and segmentation performance by IOU.

5. Conclusion

In this work we show that self-training based UDA can improve performance in both segmen-
tation and classification tasks on chest radiographs. The iterative process of pseudo-labeling
consistently improved performance for both tasks. In the segmentation task we observed
that using only 100 unlabeled images was sufficient to improve performance substantially.
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