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Abstract

In the shared responsibility model of the cloud, all parties should be equipped
with enough tools to protect data actively. While users might be partially re-
sponsible, they often do not have full control over their data. Data breaches
in the cloud are amongst the highest ranked threats and arguably can do
the most damage. Encryption techniques can ensure data confidentiality,
but only for data at rest and data in transit. If we want to protect the data
during processing, as a user, we need more advanced techniques. In this
thesis, we will look into how secure computation can help protect data in
the cloud and more specifically what homomorphic encryption can achieve
and how it impacts performance and security.
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Chapter 1

Introduction

In the last decade the transition into the cloud has been fast forwarded
after the tech giants Amazon, Google and Microsoft emerged as cloud giants.
Millions of users, companies and individuals alike, make use of the computing
power and storage provided through the internet. Massive data centres
around the globe provide services ranging from web-based email to entire
IT infrastructures. In order to offer such a variety of services at a competitive
price, a massive scale of operation is required.

Not only the massive scale but also the optimal usage of the cloud infras-
tructure helps in reducing cost. It follows the philosophy that a large group
of users would more efficiently use the computing power than a single user
can, thus increasing throughput and reducing idle-time. This also means
that users can scale their resources effectively, and pay only for what they
use.

Companies such as Netflix can benefit from this so called unlimited scal-
ing through a modular and flexible architecture. They can upscale to several
thousands of servers on a rainy day and downscale when it is nice and sunny
outside. While Netflix might have a lot of users during the evenings, Mi-
crosoft Teams sees a surge in the amount of meeting minutes during the
day. At the end of March, an increase from 900 million minutes to almost 3
billion meeting minutes was measured. Since the processing and hosting of
a meeting happens in the cloud, they were able to scale and handle a record
of 4.1 billion meeting minutes in a single day [1J.

The core business in the case of Netflix is to provide the customers with
series and movies. This requires storage of movies and video encoding before
sending it to customers. For Microsoft Teams, the core business is to create
a virtual meeting space. This requires storage and hosting of potentially
confidential chat messages or voice calls. Although these are just two ex-
amples of micro-service applications operating in the cloud, we can already
see their alternating usage, the value of scalability and more importantly a
difference in the level of trust.



In the near future, cloud-dependent applications and platforms will,
maybe unwillingly, become more and more important in our personal and
professional lives. The cloud giants, also called hyperscalers, will thus have
to gain more and more trust in their security infrastructure. Even though
a lot of money and expertise is invested into the security of the cloud, inci-
dents and mistakes still happen on both cloud and user side. These incidents
are not allowed to happen once highly regulated industries such as telecom,
electric power or healthcare join the cloud landscape. Data breaches will be
more severe since these industries are often associated with highly sensitive
data, e.g., financial and health records. This will also make them a more
valuable target for attackers.

Therefore, it is important to reflect on the amount of trust we put in
the cloud providers. Not only for highly regulated industries, but also in
general. We should also look into technical advancements, such as secure
computation, which might enable and support developers and users of cloud
applications to process data securely without losing the advantages of the
cloud.

Secure computation is a subfield of cryptography that focuses on privacy-
preserving computation. This implies that the input data, output data and
function used in the computation remain private. This would in theory
allow cloud providers to compute on data without knowing its content. To
make this concept less abstract, we can again take Netflix as an example. In
addition to providing movies, they also want to provide you with the best
selection of movies. In order to achieve this they can use a recommendation
system, e.g., through a technique called collaborative filtering or content-
based filtering [2]. It uses movie ratings from users as an input and provides
recommendations as output. Implementing this with secure computation
will aim to protect user preferences and everything that can be derived from
it, e.g., an interest in movies from a certain franchise can indicate that this
person is also interested in buying its merchandise. This information can be
valuable to marketeers and advertisers.

The SAP Cloud Platform supports developers in the creation and deploy-
ment of secure full-stack applications through integrated security features
and services, e.g., authentication for web applications. In the future, this
could perhaps be extended with a secure computation service. The service
could allow developers to integrate secure computation easily into their ap-
plications and actively secure user data from the design phase.

In this thesis, we will look into secure computation with a focus on its
feasibility in cloud applications and infrastructures. To correctly assess the
current cloud landscape, we discuss the concept of the cloud, the benefits and
the obstacles in terms of architecture and security and the main threats to



the cloud. We explain the main three techniques used in secure computation
of which homomorphic encryption is highlighted for further research. We
describe the recent advancements in the field of homomorphic encryption
and their performance and security guarantees. In the last chapters we
describe a general framework and scenario, derived from several promising
usecases. To demonstrate what an implementation of such a general usecase
could look like, we created a proof of concept on the SAP Cloud Platform
using the SAP full-stack Web IDE and the Microsoft SEAL library.



Chapter 2

Preliminaries

This

chapter will describe some prior knowledge necessary to clarify this

thesis.

2.1

Terminology

Encode, an operation that transforms human readable data into data
that is ready for encryption.

Decode, an operation that transforms encoded data back into human
readable data.

Encrypt, an operation that transforms encoded data into encrypted
data.

Decrypt, an operation that transforms encrypted data back into en-
coded data.

Message, contains human readable data.
Plaintext, contains encoded data.
Ciphertext, contains encrypted data.

Packing/Batching, an operation that packs multiple messages into
a single plaintext.

Encryption scheme, refers to the specific plaintext, ciphertext and
key space, and the encryption and decryption algorithms. Homomor-
phic schemes also include an evaluation algorithm.

Encoded data does not provide any confidentiality and can be decoded by
everybody, encrypted data can not be decrypted by everybody.



2.2 Mathematical structures
Definition 2.2.1. (Group) A group is a set with the following properties:
e It includes an operation on its elements, e.g., + or X;

e The group is closed under this operation;

Each element has an inverse;

The group should include an identity element;
e The associative property should hold.
An abelian or commutative group also includes the commutative property.

Definition 2.2.2. (Rings) A ring is a set with two operations + and x.
It should be closed under both operations. The elements should form an
abelian group under addition. For multiplication the ring only has the as-
sociativity property.

Definition 2.2.3. (Homomorphism) A homomorphism is a structure-preserving
map between two algebraic structures, e.g., between two groups or two rings.
For this mapping (f), the following should hold:

f@) - fly) = flzxy)
Where - is the operation from the first structure and * of the second.

For this thesis we are focused on the ring structure of the plaintext and
preserving its structure in the ciphertext, e.g., the addition of ciphertexts
should result in the addition of plaintexts.

2.3 Encryption

When encrypting data, you need a key. The two ways of using this key is ei-
ther asymmetric or symmetric. In symmetric cryptography we use the same
key for encryption and decryption. In asymmetric cryptography we use two
different keys. A secret (private) key and a public key. The main reason for
asymmetric cryptography is to solve the issues regarding key management
and establishing shared keys. For every pair of people communicating we
need a shared symmetric key. However, in asymmetric crypto we only need
a public and secret key per user. To establish a shared symmetric key, a
hybrid approach is often used. This uses asymmetric cryptography to es-
tablish a symmetric shared key. This symmetric key can then be used to
encrypt large amounts of data efficiently. One of the most famous symmet-
ric encryption schemes is Rijndael, which became the Advanced Encryption



Standard. This standard is now used in almost all cloud setups to protect
data at rest.

In asymmetric cryptography the public key should be authenticated and
publicly available, this allows you to encrypt a plaintext for a specific user.
The secret key belongs only to the user and can be used to decrypt the
ciphertext. All encryption schemes are based on hard computational prob-
lems and trapdoor functions that are only possible to revert with the secret
key.

A computational hardness assumption refers to the hypothesis that there
is no known algorithm that can solve a particular problem efficiently. This
comes from the computational complexity theory but is particularly useful
in cryptography to indicate whether or not a scheme is secure.

The most famous public encryption scheme is RSA, introduced by Rivest,
Shamir and Adleman. The assumption used in RSA is based on the factoring
problem. It describes the challenge to factor a large number into its prime
components.

Definition 2.3.1. (Textbook RSA) [3]

e KeyGen(1?), choose e such that ged(e, ¢(N)) = 1 and find d such that
e-d=1mod ¢(N). Where N =p-qgand ¢(N) = (p—1)-(¢—1).
Output pk = (N, e), sk =d.

o Encryptpr(m), Output ¢ = m® mod N.
e Decrypt(c), Output m = ¢ mod N.

The security of ElGamal is based on the decisional Diffie-Hellman as-
sumption with respect to the underlying group. It describes the challenge
of finding the discrete logarithm of a certain element in a cyclic group, e.g.,
Z, with p a large prime. In a cyclic group all elements are generated from
a single element called the generator.

Definition 2.3.2. (ElGamal) [4]

e KeyGen(1?), Generate a cyclic group G with order ¢ and generator g.
Pick a random value x, between 1 and ¢ — 1.
Compute h = g”.
Output pk = (G, q, g, h), sk = x.

e Encryptyr(m), Choose a random value r. Compute ™ and g". Output
c=(g",m-h").

e Decryptg(c), compute s = (¢g")* and its inverse s~ 1.

(m-h")-s7L

Output m =



2.4 Lattice-based cryptography

With the introduction of Shor’s algorithm [5], the previous hard problems
are not hard anymore for quantum computers. Since then several new pub-
lic key encryption schemes were proposed that are quantum resistant. This
sparked a new area of cryptography called Post-Quantum cryptography. In
the search for a quantum secure encryption scheme, lattice-based cryptog-
raphy has been one of the contenders from the start. As the name suggests
it is based on lattices.

A lattice , as seen in Figures[2.1]and [2.2] is an abstract structure of points
in a space. In this case we have a two dimensional lattice. It can be viewed
as a regular tiling using squares, rectangles or even parallelograms. A lattice
is defined by its basis. A basis is an ordered set of vectors that generate a
lattice by scaling these vectors. A short basis such as b1by consists of short
vectors. A long basis b3bs consists of relatively long vectors. It is easier
to see that biby generates the lattice than b3by. Some problems are only
hard given that we provide a long basis, e.g., the shortest vector problem
(SVP). These problems become even harder if we increase the dimension
from two to three. Three dimensions can be viewed as a cube with lattice
points inside it. The basis now consists of three vectors. If we scale this
to n-dimensions we can really comprehend the complexity of certain hard
problems on lattices even though we can not properly visualise it.

2.4.1 Hard lattice problems

Lattices are well studied and can provide us with several hard problems.
In general, there are two variants of these problems, a search and decision
problem. The search problems asks to search and give a specific solution.
The decision problem asks to decide between different solutions or decide
whether something is true or not.

Shortest vector problem

The shortest vector problem challenges us with finding the shortest non-zero
vector in a lattice, with respect to the origin point [6].

e Search SVP, given a lattice basis B, find v € L(B) such that ||[v|| =
A1 (L(B)) (minimum distance).

e Decisional SVP, given a lattice basis B and a rational r € Q, determine
whether ||v|| = A\ (L(B)) < r or not.

For a two dimensional lattice, we can visualize this as seen in Figure 2.3.



Closest vector problem

The CVP problem [7] is closely related to the SVP problem. Given a lattice
and a target point. Find the lattice-point closest to the target. This differs
from the SVP problem, which has the origin as target point. For a two
dimensional lattice, we can visualize this as seen in Figure 2.4.

Bounded distance decoding

Bounded Distance Decoding [7] is a variant of the CVP problem in which
the target is guaranteed to be close to the lattice, relative to the minimum
distance A1 (L) of the lattice.

Learning with errors

The main hard problem we are interested in for this paper is the Learning
with Errors problem. It describes the hard problem of determining a secret
given a sequence of random linear equations [8]. An LWE instance looks as
follows:

e Choose a size parameter n, a modulus ¢ and an error probability dis-
tribution X' on Zg;

e Let A, x be the probability distribution with samples (a, < a,s > +e),
where a is a vector € Zy, e € Z, from X and fixed s € Zy;

e An algorithm solves LWE if for an arbitrary amount of samples from
As x it can output s with high probability.

In this thesis we will give a high level interpretation of the basic BFV
scheme, it is based on the ring-LWE hard problem. This means the previous
samples will thus be from a ring, e.g., Z[z]/(X™ + 1).

2.5 Miscellaneous

Next we will describe some additional concepts [9].

Negligible functions

Since an attacker can always randomly guess correctly (or gain another small
advantage) there is a small chance that a scheme will be broken. This can
be modeled by allowing a small probability of adversarial success, also called
a negligible probability. In other words, the advantage that an adversary
has is negligible.
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Indistinguishability

In the area of computational complexity and cryptography, two distribu-
tions are computationally indistinguishable if no efficient algorithm can tell
the difference between them except with negligible probability. When two
encryptions are indistinguishable we speak of semantic security.

Chinese remainder theorem

The chinese remainder theorem is used to solve a linear system of congru-
ences. This can be used to speedup calculations by performing the calcula-
tion in steps and then combine them later through this theorem to find a
unique solution.

Application programming interfaces

Facilitates the interaction between, e.g., the frontend and backend of a sys-
tem. It is used to provide a unified way to make requests and calls between
several software components.

Privilege escalation

A type of threat that allows an adversary that has access to a user account,
to increase his privileges. This means that the adversary can elevate the
amount control it has over certain systems or files.

. L]
L J
L J
L ] ° L J
° ° L) . ° Py pe
L ]
o o
-
o
' [
° ° L . ° -
L 4 L d
[ J
. L2 L] L °
e
»
- L]
L] - L) - L) *

Figure 2.2: Good basis vs Bad ba-
sis

Figure 2.1: A Lattice

11



Figure 2.3: Shortest Vector Prob- Figure 2.4: Closest Vector Prob-
lem lem

12



Chapter 3

Introduction to the cloud

In this chapter we will look in to the concept of the cloud and explain all
different types of models in which the technology can be used. Towards the
end we will explain one way in which SAP uses the cloud.

3.1 Origin

The cloud is, as boring as it might sound, nothing more than a blanket term.
The cloud is easy to say and remember but gives little detail about what it is
and how it can be used. In essence, the cloud describes the shift from static
infrastructures to scalable and flexible infrastructures. In order to achieve
flexibility of the infrastructure, most of it will be accessible from everywhere,
location and device independent. To increase accessibility some parts of the
infrastructure will be available and controllable over the internet, in other
words it appears to be “in the clouds”. In fact, the internet is just a means
of transporting data. The actual data is located in ordinary servers just as
in an on-premise system. The technique and type of infrastructure is thus
not described by this term. This is where the more specific terms, cloud
computing and cloud storage come into play.

Cloud storage refers to data accessible through the internet which is
stored on a server. Cloud computing describes the processing of this data.
Processing can be seen as a computation on certain numbers, changing data
or removing data entirely. These changes require processing power, which
can be provided by servers. The results can again be retrieved over the
internet. In essence the server can do everything for the user, however it
can also have partial functionality. That is why there are several terms to
describe the infrastructure specific details. These are called the delivery and
deployment models.

It appears that every paper has a different explanation, for a standard-
ization on the terms we can take a look at the NIST definition [10]. We
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will explain the exact definition of the standardized terms during the fol-
lowing sections. First we will describe the several roles that exist in the
cloud landscape:

e The cloud provider, is the owner of the cloud computing and storage
resources;

e The service provider, is the owner of the application that uses these
resources;

e The user, consumes the cloud service;

e The customer, can refer to both the customer of the cloud resources
and the cloud service.

Several companies can have multiple roles, e.g., Microsoft Azure owns the
cloud resources that their own service, Microsoft Teams, operates on. This
makes them both the cloud and service provider.

3.1.1 Cloud deployment models

Since the cloud offers a wide variety of services, we require a distinction
between each service. The following models and services are designed in
order to best describe the limit of each service. The deployment models
describe how the services are provided, where they are physically located
and who you share the infrastructure with.

Public cloud

Most people interact with the public cloud on a daily basis, sometimes with-
out even noticing it. Some websites providing online video content, such as
Youtube, Netflix or Twitch are hosted in the public cloud. In this deploy-
ment model the infrastructure is located at an external server owned by
the cloud providers, e.g., AWS or Microsoft Azure, and the resources are
provided over the internet. The model is characterized by its on-demand
nature, resource pooling and rapid elasticity which makes it approachable
and affordable.

For Netflix this would mean that they are the customer of the cloud re-
sources, provided by AWS. The customer of Netflix would thus be the user
of the cloud service.

Private cloud

The second deployment model is called the private cloud. The specific cloud
storage and computing resources are allocated to a specific service provider.
Since this is a more tailored approach to providing resources, the amount of
control for the customer is greater than in the public cloud. Both in terms of
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infrastructure and security architecture. The resources can be managed by
the service or the cloud provider. The resources can be located on premise
or off premise.

For Netflix this could mean that, e.g., their billing processes can be located
in a private cloud.

Community cloud

The community cloud is an extension of the private cloud that allows access
by multiple organizations or subdivisions of an organization often with a
similar goal. This combines the benefit of sharing an infrastructure, without
the massive scale in which this happens on the public cloud. This can
both be on premise or off premise. This could be useful when multiple
companies have to access the same application or service and want to share
the application server, e.g., when having a time difference in the peak-usage.

Hybrid cloud

Any combination of a private, public or community cloud, sometimes also
combined with existing on-premise infrastructure. An example of an appli-
cation of a hybrid cloud is to separate business critical services from publicly
accessible services.

3.1.2 Cloud delivery models

The delivery models specify to what extent the tasks are outsourced. These
models range from just providing the software that has to run to full con-
figuration of the underlying servers and networking.

Software as a service

This is the most extensive service. It will include everything that is required
to run the application and also the application itself, e.g., Office 365. It is
one of the easiest to use services and abstracts all the backend information
away from the user. The user will not notice anything of what happens
behind the scenes and can access the application and data from all devices.

Platform as a service

This service provides the platform to host and manage applications. The
platform might also support several building blocks to create applications
or a web based interactive development environment. The cloud often en-
courages micro-service architectures that can be structured and scaled using
containers. These can be viewed as light-weight and often more efficient vir-
tual machines.
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Infrastructure as a service

In the previous service the low-level details about the OS, storage configu-
ration and network components is taken care of by the cloud provider. In
this model it is possible to specify exactly how you want the infrastructure
to behave. Options can include server and storage configuration, network
components and sometimes also the physical data center location. While
the service providers are able to control these details, the cloud provider
will still provide the resources. In this deployment model the customer has
the most amount of control but also requires them to do a lot of the setup
themselves.

3.2 Benefits and obstacles

As described in the introduction, for certain companies the cloud infras-
tructure has improved their ability to scale. This is not entirely due to the
usage of the cloud, but also to their micro-service architecture. We think a
large part of the added benefit can be attributed to the more efficient way
in which resources are used in micro-service architectures. Companies with
infrastructures like Netflix can benefit both from the scalability and cheap
resources.

The service Netflix provides is especially a good fit with the micro-service
architecture and the scaling. However, not all companies can instantly use
this to cut costs and thus not every company can benefit equally from a
transition into the cloud. Especially when the services include more sensi-
tive data, a well tailored private cloud, in combination with an on-premise
infrastructure are more likely to succeed and do not provide as much (cost)
benefit as a public cloud.

From a high-level security perspective the cloud can introduce a lot of
uncertainty due to its shared nature. However, the online nature of the cloud
also forces the cloud providers to spend a lot of expertise and resources on
the security of their services from the start. For some companies this might
even mean a better security architecture after transitioning into the cloud.

That is why we think the cloud, as with all new technologies, should
be used only in certain scenarios in which it truly has added benefit and
security can be guaranteed.

3.3 SAP Cloud Platform

The SAP Cloud Platform is a cloud development and deployment platform
[11]. The goal is to help customers in creating, hosting and linking appli-
cations in the cloud, also called the enterprise PaaS. It offers services and
capabilities that can help build business applications for the cloud and link
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them to both a cloud or on-premise infrastructure. It supports the developer
through application development services and capabilities with features such
as big data infrastructures or machine learning.

The applications that are being created can be deployed on either the
Neo or Cloud Foundry environment. The Neo environment is fully operated
by SAP on several servers across the world. These are specifically created for
customers and run exclusively on a SAP infrastructure, it can be categorized
as a private cloud.

3.3.1 Cloud Foundry

Cloud foundry is the open-source platform as a service that runs atop of
the existing infrastructure [I2]. The environment can be hosted on the
infrastructure of different cloud providers such as Azure, AWS or GCP.

Cockpit

The cockpit is the launchpad that controls the PaaS, including Global Ac-
counts and high level services [13]. Each global account can have several
subaccounts, linked to a specific provider, region and environment. Within
each subaccount you can create development spaces in which you deploy your
application and launch service instances. These can be custom applications
or pre-configured SaaS. The deployment often happens in a container in-
frastructure. Each container has access to a portion of the storage, memory
and processing power. This micro-service architecture or containerized way
of working allows for easy deployment of additional services when necessary.

SAP service marketplace

The SAP marketplace offers solutions supported and maintained by SAP.
Services can range from SAP Hana Cloud to an entire Web IDE. The SAP
Hana Cloud can be used as a building block in your application to store and
process data whereas the Web IDE comes closer to a SaaS which can be
used in the development. The Web IDE has features to develop, test, build
and deploy directly on the PaaS. Due to the guidelines and templates you
can quickly create or extend frontend applications and link them to a cloud
HANA database. It also supports plenty of building packs for languages
such as Java, Ruby and Python.

We will use The SAP Cloud Platform for the proof of concept described
in Section 9. It provides us with a Web IDE, used to develop the application
and the service marketplace, used to quickly add building blocks such as a
database.
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Chapter 4

Secure computation

In this chapter we will look into the concept of secure computation and which
methods exist to achieve this. Towards the end we make a choice on which
technique we will further research.

Secure computation is a research area focused on creating techniques and
protocols that allow parties to jointly compute functions over private input,
sometimes also referred to as secure function evaluation. The main goal is
to provide the parties with the correct evaluation of the function without
learning any information they are not supposed to. In a computation we
have the function, the input and the output. All three aspects can be private
and therefore we introduce three properties.

e privacy of input, refers to the input of a function, e.g., user preferences;

e privacy of output, refers to the output of the function, e.g., the result
of a recommendation system;

e privacy of function, refers to the function itself, e.g., a machine learning
algorithm.

There are several reasons why you can not share the input, output and
function, e.g., competitive advantage, regulations or privacy concerns. How-
ever, sometimes we still want to get meaningful results from an outsourced
or joint computation.

An example is the right to a secret ballot in, e.g., electronic voting [14].
In this case we want to guarantee privacy of the input since releasing who
voted for or against in a referendum directly violates the right to a secret
ballot. The function is not private and can be the summation of all the votes
or a direct output of the winner. Since everybody can know the output, i.e.,
the winner, we also do not require the output to be private. If we can come
up with a protocol or techniques with which we only reveal the winner of
the referendum and not the individual votes, we can guarantee the privacy
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of the input. This can be seen as one example that secure computation can
solve.

In a cloud environment we want to outsource a computation and use
the strength of the clouds computing resources. However, it is not always
guaranteed that the cloud provider can keep the input, output or function
private. This is why we look into secure computation techniques and reflect
on whether they can be a useful extension to the cloud. There are several
subfields that focus on the different properties previously described and also
use different methods and techniques to achieve them:

e secure multi-party computation [15], focuses on multi-party protocols.
In these protocols multiple participants compute a part of the output
and share their results in such a way that no one participant has access
to all the data;

e secure hardware, defines a secure environment through hardware-level
isolation. This means the data does not leave the secure hardware
in an unencrypted form even if, e.g., the operating system has been
compromised;

e homomorphic encryption [16], is a cryptographic solution that makes
it possible to perform calculations directly on ciphertexts.

To describe how successful these techniques are in terms of security, we
often compare it to an ideal world scenario [I7]. In an ideal world this
problem is trivial, we can use a trusted third party that gathers all the
input from the participants. The function can now be computed on all the
input data. The result will be sent back to each participant and as a final
step the input data will be deleted.

In the real world this problem is far from trivial, however we want to
create a protocol, hardware or cryptography that can imitate the ideal world
scenario without using an actual trusted third party. In the next sections
we will describe the three main techniques in more depth and discuss which
technique will suit the concept and goals of cloud computing.

4.1 Secure multi-party computation

Imagine a distributed environment in which multiple parties wish to per-
form a joint computation of some function. The goal of secure multi-party
computation is to enable such a computation in a secure way. The compu-
tation should only reveal the result of the function and the parties can learn
nothing more than what is absolutely necessary. Hence, secure multi-party
computation considers how multiple parties can securely compute a function
on private data.
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In his paper called “Protocols for secure computations” [I8], Andrew
Yao introduced the concept of secure computation, later known as secure
multiparty computation. His introduction proposes the problem in the form
of a conversation between two millionaires who want to find out who is the
richest. An obvious solution would be to tell how wealthy they both are and
compare it, however, they do not want to reveal exactly how wealthy they
are. This is called the Yao’s Millionaires” Problem.

The protocol described, has to satisfy specific security and privacy con-
straints, such as input privacy, security against an eavesdropper or a dishon-
est participant. The protocol describes an algorithm that the participants
have to follow, which if followed correctly can guarantee security and privacy.

The solution he proposed in his paper involves an active protocol in which
both participants partially compute the result and combine their results
using a technique called oblivious transfer [19]. Oblivious Transfer is a
specific primitive often used in these protocols. It allows a participant to
choose between two values without the other participants knowing what
value has been chosen. Hence we choose between values while the other
participant remains oblivious to which value has been chosen. He later
generalized this problem from a secure comparison to the secure evaluation
of an arbitrary function using Garbled Circuits [20].

The millionaire’s problem has 2 participants, thus we speak of a secure
two-party computation. Later this solution has been extended by Goldreich,
Micali and Wigderson [2I] to n-parties and thus becoming a secure multi-
party computation.

The most famous example of an actual application that uses multi-party
computation is a fully automated secure auction[22]. It was the first appli-
cation of MPC which was seen as efficient. It allowed the auction to happen
automatically without a single trusted party that has full responsibility.
To conclude this section we give a short recap of the general characteristics
of secure multi-party computation:

e interactive protocol;

e requires communication between parties;

supports input from multiple sources;

often requires an honest majority;

the result is revealed to all participants.
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4.2 Secure hardware

The second technique is focused on a lower level and allows users to define
secure enclaves in hardware. These secure regions remain confidential when
the platform is under attack by malicious software. The applications are
put into the enclaves with a special instruction set, an example is the Intel
Software Guard Extensions [23]. Since the computation inside these secure
regions still take place on plaintext, the performance of the computation
itself should be just as fast. However, loading into secure memory and
context switching still introduces performance overhead [24].

Although all hardware should be secure, not all hardware is called secure
hardware. The addition of the word secure often means that it will protect
against software level attacks. An obvious requirement for secure hardware is
also that the hardware itself should be secure. The Intel SGX has an unclear
trust model with regards to side-channel [25] and fault-injection attacks
[26], as seen in several attacks [27]. Side-channel attacks try to attack the
hardware by abusing the implementations instead of the algorithms. The
implementations can leak, e.g., timing, power consumption or other side-
channels that can be abused. Fault-injection attacks try to purposefully
induce faults to force execution or output errors that can be abused to
break the hardware.

An example of secure hardware that is both protecting against software
level attacks and has good hardware security are secure cryptoprocessor, also
called hardware security modules [28]. It often manages keys and performs
encryption and decryption functions. Although it is not able to perform
arbitrary computation, it can be useful in combination with either secure
multiparty computation or homomorphic encryption. To conclude this sec-
tion we give a short recap of the general characteristics of secure hardware:

e used to define secure areas in hardware;
e protects against software-level attacks;
e unclear trust model with regards to hardware security;

e computation on plaintext can have performance benefits.
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4.3 Homomorphic encryption

Homomorphic encryption is a type of encryption that contains homomor-
phic properties and can be used to achieve secure computation. The term
HE is an umbrella term to describe all encryption schemes that contain a
homomorphism. This homomorphism allows the evaluation of an operation
on the ciphertext, and through the properties of the scheme, directly change
the plaintext. One can imagine that if we can calculate directly on, e.g., en-
crypted numbers, we do not have to reveal them during calculation. Since
the result is once again a valid ciphertext, we also do not reveal the output.

This means that we satisfy both the privacy of input and output property
at once while also correctly evaluating a computation. The challenging part
is that we have to build this computation from the basic operations, e.g.,
addition and multiplication. To visualize this, we can use the following
example.

Example 4.3.1. The function that we want to evaluate has three input
values and can be described as follows.

f(w,y,z):(x—i—y)-z.

To ensure input privacy we encrypt (E) all values separately and use the
homomorphic property to calculate the result.

[(E(x), E(y), E(2)) = (E(x) + E(y)) - E(2) = E((z +y) - 2)

After decryption (D) we get the same result as if we used the function on
the “normal” inputs.

D(E((x +y)-2)) = (x+y)- 2

Some calculations, e.g., a summation of votes, are easy to perform with
the addition operation, while other more advanced calculations are harder
to express efficiently. However, in essence this gives us a “simple” technique
to perform secure computation. To conclude this section we give a short
recap of the general characteristics of homomorphic encryption:

e inherent performance overhead;
e allows for outsourcing of the computation;

e advanced functions are harder to represent.
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4.4 Combination with the cloud

When we try to implement secure computation in real-life, there are many
choices that can be made to optimize performance for different architec-
tures and different application scenarios. Sometimes a combination of these
techniques should be used. The architecture we analyse in this thesis is the
cloud architecture and more specifically the addition of secure computation
techniques to the SAP Cloud Platform. Therefore, we will look at the key
characteristics of the techniques once again and see if they align with the
goals of the cloud.

Secure multi-party computation (SMPC) is highly focused on the pro-
tocol and on sharing the computation. While the cloud focuses more on
replacing computational power at the edge and shifting it towards more
efficient servers. To benefit from the cloud we want our solution to be com-
putationally heavy on the cloud side instead of sharing the computational
load. However, HE can also be used inside the protocols described in SMPC.
This creates a hybrid approach as mentioned earlier. Therefore, SMPC can
also benefit from the cloud and SMPC can perhaps also increase the security
of the cloud. However, for this thesis we will focus on HE.

Although secure hardware might also be valuable in certain scenario’s,
the lack of transparency of the manufacturer and the lack of proper side-
channel protection lead to an unclear trust model. HSMs are a part of many
secure environments and work well with regards to key storage, encryption
and decryption. This can also be useful in combination with HE.

Since HE is a cryptographic primitive it can be provided as a software li-
brary. The evaluation algorithms can be implemented on the cloud providers
side, where all the processing takes place. The encryption and decryption
algorithms can be implemented at the user side, where all the data is gen-
erated. This should in theory be easy to add to an existing cloud platform
as an additional service. The main concern is the amount of performance
overhead this will bring to the applications.

In general, we can see that HE can provide the extra privacy for users in
a cloud environment in which the cloud only has to evaluate a function on
encrypted data. It also allows the cloud to use its cloud computing resources
efficiently. Therefore, the rest of the thesis will be structured around HE
as the secure computation technique that will be further researched and
discussed.
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Chapter 5

Cloud security

In this chapter we look into the main threats to the cloud. This helps us
identify in which parts of the cloud landscape, secure computation can have
added benefit.

In order to assess whether or not HE might be useful, we will look into
the cloud security issues. Although we cannot exactly determine the security
issues, we can look at recent threats and trends. The Cloud Security Alliance
(CSA) reports on their identification of the top threats to the cloud [29],
called the egregious eleven. The goal of their report is to raise awareness of
threats, risks and vulnerabilities. We will discuss every threat, reflect on its
impact on confidentiality and whether or not secure computation can protect
against it. Every threat in the report also includes a STRIDE analysis. This
model has been developed by Microsoft and is used to classify the threats
[30]. It is an acronym for:

e Spoofing identity;

e Tampering with data;

Repudiation;

Information disclosure;

Denial of service;
e Elevation of privilege.

While the CSA prefers to use the STRIDE framework, we will use the terms
confidentiality, integrity and availability. We will mainly reflect on infor-
mation disclosure, which relates to confidentiality. Integrity is related to
tampering with data and availability is related to denial of service. We will
shortly describe the egregious eleven threats:
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. Data Breaches are the main threat to confidentiality of data in the
cloud. Data disclosure can be the consequence of many of the threats
we will mention later and is often the most valuable for an adversary.
Personal health information, financial information, personally identi-
fiable information, trade secrets and intellectual property are all very
valuable, e.g., on black markets, to governments or competitors. It
also impacts the victims brand value and that of the cloud provider.

. Misconfiguration and Inadequate Change Control can also lead
to data disclosure. Most commonly caused by a wrong setup of a (pub-
lic) system. While the system itself may be perfectly secure, default
credentials or disabled security controls can still lead to unwanted ac-
cess to data. Either due to negligence or lack of knowledge.

. Lack of Cloud Security Architecture and Strategy is often re-
lated to the differences in the way public clouds and on-premise infras-
tructures need to be protected. This can lead to incidents that were
improbable in an on-premise infrastructure.

. Insufficient Identity, Credential, Access and Key Manage-
ment can result in direct access to plaintext data. In a normal setup
we often have key management located at the cloud provider. Insuffi-
cient control can thus lead to decryption at the cloud provider. In this
scenario encryption (at rest) will lose its value. An obvious solution
is to shift the key management towards on-premise HSMs or other
key management techniques. In essence, this gives control back to the
user, in a way that on-premise infrastructures can. This also means
that the users now have to protect their keys themselves, which could
be a good or bad thing. A downside to this solution is that the cloud
cannot perform any calculations on the data.

. Account Hijacking can be the consequence of the previous threat.
It can also be caused by phishing, exploits or stolen credentials. The
account with the highest value is often the account with the highest
privileges. These privileges can lead to sensitive data or control over
the applications. While the first one affects confidentiality and/or
integrity, the last one can impact availability if the attacker wants to
disrupt the applications.

. Insider Threat, is always a hard threat to solve since the insider
has legitimate access. When there is an insider threat at the cloud
provider side, depending on the amount of privilege, this attacker can
access confidential data located in customer applications or storage.
This data can be encrypted at rest, however, insider threats often
have legitimate access to the decrypted data. If there is a separation
between on-premise and the cloud, through own key management, this
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can be partially avoided. When there is an insider threat at the on-
premise location, this is nearly impossible to avoid.

7. Insecure Interfaces and APIs are the most public part of an appli-
cation, this means that it will be attacked a lot and should be secure.
Insecure APIs can give access to data that is used in applications. This
often is plaintext data since it has to be used in applications.

8. Weak Control Plane refers to the fact that the service providers
and users do not have enough control over the security architecture.
For example, they want to include their own key management and use
their own encryption solution but the cloud provider does not support
this. This limits the control of the service provider and prevents them
from actively securing their applications. This also makes them more
dependent on the cloud provider for security.

9. Metastructure and Applistructure Failures describe threats that
are caused by the protocols and communication between the different
layers of the cloud. This is quite an obscure threat and we can not
conclude whether or not HE can help in these situations.

10. Limited Cloud Usage Visibility occurs when a service provider
does not have enough tools to visualize the usage of cloud services.
Detecting malicious or abnormal behaviour of applications will thus
be hard. Abnormal behaviour can occur when cloud services are being
exploited, e.g., by botnet malware or cryptocurrency mining malware.

11. Abuse and Nefarious Use of Cloud Services refers to the fact
that the adversary can also use the cloud. This does not impact con-
fidentiality of data directly, however, it can be beneficial for an ad-
versary to be located in the same physical infrastructure. Information
extraction or privilege escalation attacks can be the consequence of
bad virtualization at the cloud provider [31].

5.1 HE in the cloud

All threats described can result in data disclosure, HE can only help in a
limited amount of cases. Data breaches (1) are the main threat to confiden-
tiality and shows us that we should prevent and minimize access to the data
in the cloud.

In the case of misconfiguration (2), we should look into how we can
reduce the amount of data that can be disclosed. For example, through en-
cryption at rest. The data that will be disclosed is now encrypted instead of
plaintext. However, this all falls or stands by key management. Insufficient
Identiy, Credential, Access and Key Management (4) is not acceptable and
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will discard all the value encryption at rest will provide us. Shifting the key
management from the cloud provider to the user can thus be seen as a good
development. This would separate the keys and the data. A downside to
this solution is that we cannot compute on encrypted data directly in the
cloud. HE can solve a part of this problem by allowing direct computation
on encrypted data.

Another downside of storing the keys in the cloud is that cloud accounts
have legitimate access to the data. This removes encryption at rest for
those accounts that have the correct privileges and allows them to access
the plaintext data and applications. Therefore, encryption at rest, without
separating keys and data, does not protect against Account Hijacking (5)
and Insider Threat(6).

Threats can also occur inside cloud services themselves. Insecure Inter-
faces and APIs (7) allow an adversary to extract plaintext data that resides
inside the services. Inside these services the encryption at rest is removed
in order to use the data. With HE we can create secure cloud services that
operate on ciphertext data. This means that insecure APIs only disclose
encrypted data instead of plaintext data.

Most of the threats reflect on outsider threats, however, insider threats
also occur when an adversary resides in the same cloud as the target. Abuse
and nefarious use of cloud services (11) can thus also be a threat to the
data of cloud users. While it is good to highlight the good points of HE, we
should not forget the fact that, just like all cryptography, it can also be used
by the adversary. The fact that the cloud provider does not know what data
is stored on their servers, or the fact that they do not know exactly which
computation they are running, might cause a problem for certain scenarios.

Although most of these threats are not directly caused by insecure ap-
plications or the application layer, we can see that implementing HE at this
layer can indirectly protect the other layers. We also see that ten out of
eleven threats can result in data tampering, this is another crucial part of
applications in the cloud and something HE can not provide any guarantees
about. The report also reflects on the recent trend that sees the threats
shift from the cloud providers responsibility to threats related to the user
responsibility. This somewhat indicates that the security of the cloud in-
frastructure is improving at the cloud providers side.

To conclude this section we want to discuss a new threat in the list. For
this thesis one of the more interesting threats is the Weak Control Plane
(8). Perhaps the name is not that descriptive but it reflects perfectly on
the need for additional means to protect data as a user. For example, in
the form of secure computation in the cloud. Secure computation is a tech-
nique that a user might want to implement in their applications. This means
cloud/service providers should support the option to use secure computation

27



since it empowers users with techniques to actively secure their data from
the design. It gives users the extra security they might want for sensitive
applications and helps them to securely transition into the cloud.

Although the report does not give us an exhaustive list with all the
security threats and issues, it does give a good perception of the key issues.
This gives us some more tangible points with which we show why HE can
have added benefit for the cloud and thus we hope it can improve the cloud
security.
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Chapter 6

Homomorphic encryption

In this chapter we dive deeper in to the topic of homomorphic encryption
and specify several classifications of the schemes. We will look into the tech-
niques used to increase performance and shortly reflect on the performance.
At the end we will show the mathematical background of the BF'V scheme.

In their 1978 paper, On data banks and privacy homomorphisms, Rivest,
Adleman and Dertouzas first spoke of a so called privacy homomorphism
[16]. The observations described in this paper perfectly reflect the contra-
diction that currently exists in the cloud. Although encryption can preserve
the confidentiality and privacy of the data, the only useful operations that
can be performed are storage and retrieval. If we want to compute on this
data, we need to decrypt it. In their paper they describe this in the following
way:

“One might prefer a solution which did not require decryption of
the user’s data (except of course at the user’s terminal). That
18, the hardware configuration will be that of Figure 1, but the
encryption function used will permit the computer system to op-
erate on the data without decrypting it.”

When looking at Figure 1 (See appendix A) we can exactly see the analogy
with the cloud. The paper also states the concept of time-sharing, which
we would nowadays call cloud computing. Even the need for sharing the
resources stayed the same. In 1970 it was too expensive to inefficiently use
a computer, while in 2020 it is still expensive to inefficiently use computers.
In both time frames the concept of privacy during computation is something
we want to ensure, whether we call it a data bank or the cloud, it should
not matter.

When talking about homomorphic encryption, we often refer to the en-
tire set of algorithms and properties. This means that every homomorphic
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scheme should be a secure encryption scheme, but not every secure encryp-
tion scheme is homomorphic. A traditional encryption scheme specifies the
key generation, encryption and decryption algorithm. Homomorphic en-
cryption refers to a normal encryption scheme, which has been extended by
the evaluate algorithm. This evaluate algorithm allows for manipulation on
ciphertext while directly impacting the plaintext.

Since 1978 several schemes have been published which are used in ev-
eryday applications, e.g., RSA and ElGamal. However, these schemes are
not particularly famous because of their homomorphic properties. This was
often seen as a weakness rather than a strength since this introduces mal-
leability. In Timeline 1 we can see a summary of the evolution of this
research field. There are several ways these schemes are classified in the
literature based on their “level” of homomorphic properties. In general we
can divide them in three categories:

e Partial Homomorphic, supports the evaluation of an addition or mul-
tiplication an unlimited amount of times;

e Fully Homomorphic, supports the evaluation of an addition and a
multiplication an unlimited amount of times.

e Somewhat Homomorphic, supports the evaluation of an addition and
a multiplication a limited amount of times.. Improving this building
block is the focus of many subsequent research.

In the next sections we will explain each classification in depth.
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TIMELINE 1: History of the Privacy Homomorphism

1978
1978
1984
1985
1999
2005
2009
2011
2012
2012
2013
2016
2027

RSA [32]

Rivest et al. introduce the privacy homomorphism [16]
Goldwasser & Micali [33]

ElGamal [4]

Paillier [34]

Boneh, Goh & Nissim [35]

Gentry [30]

Brakerski & Vaikuntanathan [37]
Brakerski, Gentry & Vaikuntanathan [3§]
Brakerski, Fan & Vercauteren [39][40]
Gentry, Sahai & Waters [41]
Cheon, Kim, Kim & Song [42]

Practical homomorphic encryption [?]
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6.1 Partial homomorphic encryption

Just before their paper on data banks, Rivest and Adleman together with
Shamir released their RSA encryption scheme [32]. It is no coincidence that
the scheme they describe has a partial privacy homomorphism. We can
describe this with the following example.

Example 6.1.1. (Multiplicatively Homomorphic RSA)

See Definition 2.1.1 for the textbook RSA encryption scheme. If we take
two message, m1 and meo, we get the following two ciphertexts: ¢; = m;1©
mod N , cg = ms® mod N.

If we multiply the two ciphertexts, we get: ¢ = m1° - ms® mod N

Which results in: ¢3 = (mq - mg)¢ mod N.

Decryption will give us the new message: m3 = c3¢ = (my - mo)® = mq - ma
mod N.

In this example we can see that by multiplying the ciphertext c¢; with
¢z, we implicitly multiply the two messages m; and mo.

Definition 6.1.1. (Multiplicative property) An encryption scheme has the
multiplicative property if we can combine two ciphertexts with the group
operator and on decryption we will receive the multiplication of the mes-
sages.

The ElGamal cryptosystem was introduced in 1985[4]. This crypto sys-
tem also has the multiplicative property.

Example 6.1.2. (Multiplicatively Homomorphic ElGamal)
See Definition 2.2.2 for the ElGamal encryption scheme.
1= (g™, mq-h")

ca = (g™, mg - h'?)

cg=cy-ca=(g" g™, my-h" -mg-h"?)

c3 = (gT14r7’27 (ml . mQ)hT1+T2)

m3 = mj-ma

We can use the product rule of exponentiation to transform the multi-
plicative property into an additive property.

Example 6.1.3. (Additively Homomorphic ElGamal)
See Definition 2.2.2 for the ElGamal encryption scheme.
cr=(g", g™ - h")

c2 = (9", g™ - h'2)

c3=cC1 Cy = (ng ,gT27gm1 . R .gmz ,hT2)

c3 = (gr1+r2’ (gm1+M2) . hr1+rz)
t1=g
Solve discrete log to get ms = mq + mo.

Note that this only works for a short message ms, otherwise it will be hard
to compute the discrete log, as it should be.

m1+m2
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Definition 6.1.2. (Additive property) An encryption scheme has the ad-
ditive property if we can combine two ciphertexts with the group operator
and on decryption we will receive the addition of the messages.

In 2005 Boneh et al. [35] released the first scheme that could do both.
The main contribution in this paper is the first homomorphic encryption
scheme which allows both addition and multiplication. However, the amount
of multiplications is limited to one. Before and after this multiplication, we
can perform any number of additions.

This scheme is close to a privacy homomorphism but the true definition
of fully homomorphic encryption refers to an unlimited amount of computa-
tions of both addition and multiplication on encrypted data. RSA, ElGamal
and many others that only contain a partial property are thus classified as
partial homomorphic encryption.

6.2 Fully homomorphic encryption

As mentioned shortly in the previous section, fully homomorphic encryption
refers to both the operations supported but also to the unlimited nature. In
the literature this is also called an evaluation of a function. When we talk
about functions we often refer to the process of transforming some input,
in this case two ciphertext. Functions can be expressed in many ways, but
for homomorphic evaluation we often prefer to represent it as a circuit. A
circuit describes a calculation or function with low-level components. In this
case the components are addition and multiplication. We can express these
operators on different levels, a boolean and arithmetic circuit [43].

Boolean circuits can express a function in binary gates. With the addi-
tion and the multiplication we can create a NAND gate. The NAND gate
is functional complete, which means we can create every circuit by using
NAND gates. Therefore we can create every function or computation pos-
sible, making it fully homomorphic.

An example of a function that might be useful for secure computation
is a secure comparison. With two input values, we want the result to tell us
whether they are equal or not. We can write the wanted output of a circuit
in the form of a truth table, see Table

Once we have a circuit representing the function that we want to com-
pute on plaintext, we can translate this to an evaluation on the ciphertexts
using the homomorphic operators. One could imagine that the amount of
gates and thus the depth and complexity of the circuit grows once we have
multiple input bits. More complex functions, circuits or computations in
general will result in more gates used. Hence more gates equals more mul-
tiplication and additions.

Opposed to the low-level circuits of a boolean circuit, an arithmetic circuit
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X | 'Y | Output
0110 |1
11010
0110
1 (111

Table 6.1: Truth table

can operate on a higher level. The gates translate to the arithmetic oper-
ations of elements in a field. Since we work on a higher level this is easier
to comprehend and implement in applications directly. To shortly recap,
boolean and arithmetic circuits are used to represent a computation. This
is a good way to represent functions on encrypted data because we can only
use specific operators or gates. However, the main question remains. How
can we achieve addition and multiplication on encrypted data?

Breakthrough

In 2009, Gentry published a paper in which he explained how we can achieve
addition and multiplication on encrypted data through lattices [36], this pro-
vides the building blocks for the previously mentioned circuits. However,
due to the way the plaintexts are encrypted, a noise term is introduced in
the ciphertext. When performing calculations on the ciphertexts this noise
increases. During decryption this noise is removed and the plaintext can be
recovered. If this noise grows too large, the decryption will fail. This means
that the encryption scheme introduced by Gentry does support both addi-
tion and multiplication but not an unlimited amount of times. The intuition
behind his solution to this problem is to define a circuit that represents the
decryption algorithm. The homomorphic version of the decryption algo-
rithm requires an encrypted version of the private key and encrypted input,
the output is also encrypted. This allows us to refresh the encrypted input
and thus remove the noise, without having to decrypt it to plaintext first.
Another way of looking at this is refreshing the ciphertext to reduce noise.
This solution is called bootstrapping.

If a scheme is strong enough to support bootstrapping and one additional
NAND gate, it is a fully homomorphic encryption scheme. Even though we
can theoretically and technically achieve fully homomorphic encryption now,
it is far from practical due to its performance overhead. With performance
in mind, there are two ways to proceed. Improve the speed of bootstrapping
or increase the power of the somewhat homomorphic scheme such that it
can evaluate more complex functions before decryption fails.
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6.3 Somewhat homomorphic encryption

Since the bootstrapping procedure brings a lot of performance overhead we
often do not want to use it or we need to increase its efficiency. Another
downside is the requirement of the encryption of a private key, which could
have unwanted implications, also refered to as circular security [44].

Not using bootstrapping limits the expressivity of the computations,
i.e., the depth of the circuits but provides us with faster evaluation. To
increase the expressivity again we want to reduce the noise growth. The
more computations we can perform before the noise becomes too large the
better.

Somewhat homomorphic encryption and more specific leveled homomor-
phic encryption are schemes that can handle functions of a limited amount
of depth, thus not fully homomorphic. The recent improvements in the field
of SHE focus on reducing the amount of noise growth, reducing the size of
the parameters and increasing the speed of the evaluation. Other improve-
ments can be made with regards to simplicity of the security reductions,
i.e., base them on well studied hardness assumptions and remove additional
assumptions.

In 2011 an improved variant of Gentry’s SHE scheme was proposed by
Brakerski [45]. This scheme is based on the Learning with Error hard prob-
lem introduced by Regev [8], which can be reduced to a variant of the
shortest vector problem. It also makes any additional assumptions obsolete.
They introduce two new techniques:

e Relinearization, allows us to perform a multiplication and reduce the
resulting ciphertext size back to its initial size;

e Dimension-modulus reduction, is used to reduce the size of the param-
eters of the ciphertext.

Both techniques will result in more practical systems because of the reduced
sizes of parameters and ciphertext.

Subsequent improvements are made by extending the LWE problem to a ring
variant[40]. The Brakerski, Gentry and Vaikuntanathan scheme (BGV) and
the Brakerski, Fan and Vercauteren scheme (BFV) are considered the most
promising schemes for practical performance. The security of both schemes
is based on the hardness of the RLWE problem. This ring variant allows for
a lot of different optimizations:

e Ciphertext packing, combine several data points into a single cipher-
text;

e Single Instruction Multiple Data (SIMD) [46], perform the same in-
struction on all these data points;
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e Residue number system variants [47], used to split big integers in
smaller parts for calculation and combine them later through, e.g.,
the Chinese Remainder Theorem.

6.4 Performance

As seen in the previous section, the performance is impacted by a lot of
different factors. From a high level perspective we can see two things, firstly
that the encryption and decryption of the data are pure performance over-
head. Since a plaintext computation does not need this additional step.
Secondly, the homomorphic evaluation should be compared to the plaintext
equivalent.

For example, instead of multiplying two integers directly, we now multi-
ply polynomials in which the integers are encoded and encrypted. However,
this ciphertext polynomial can include several integers using the batching
technique. Therefore, it would not be efficient to perform just one integer
multiplication. Thus comparing an integer calculation directly to its homo-
morphic equivalent is hard to do. This is even more complicated for more
advanced functions and especially if they contain a lot of multiplications.
More multiplications directly impact the parameters and thus also the speed
of the evaluation.

In order to achieve maximum performance we also need to represent

the function as an efficient circuit, optimize the parameters for this specific
circuit, optimize the security parameters and also know all the optimiza-
tions of the underlying scheme. We conclude it is not possible to compare
a plaintext computation to a HE computation without knowing all these
aspects. Optimizing in all these areas is also something that has to be fur-
ther researched and perhaps automated to a certain extend by encryption
libraries. Although we cannot directly compare the functions, and several
schemes and papers define their speed differently, we can roughly describe
the improvements by looking at their measurements. Since the evaluation
speed is dominated by the multiplication speed and bootstrapping speed,
we will now show several measurements on those operations and show the
improvement.
In the first implementations of Gentry’s scheme the time of a bootstrapping
operation ranged from 30 seconds to 30 minutes depending on the param-
eters. The parameters are used to ensure the hardness of the underlying
problem and thus the security level and to allow several different sizes of
data to be encrypted. A small setting can be seen as a dimension of 2048,
this makes public-key sizes around 70 megabytes and the time to run one
bootstrapping operation around 30 seconds. For larger dimensions such as
32768 this could increase to public-key sizes of several gigabytes and a boot-
strapping operation in around 30 minutes [48].
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In a paper from 2016, bootstrapping speeds were achieved sub 0.1 sec-
onds. This is not directly comparable to the Gentry setting since it uses a
different scheme and parameters. However, this does indicate that a lot of
progress has been made on reducing the bootstrapping time [49].

In recent papers focused on optimizing multiplication and relineariza-
tion, speeds were achieved between 3ms and 174ms for multiplication and
between 0.41ms and 78 ms for relinearization, depending on the depth of the
circuit [47]. This is also a significant improvement compared to the several
seconds per multiplication in previous schemes.

This short section shows that although it is hard to compare the dif-
ferent calculations directly, we still see some great improvements in terms
of speed of the homomorphic components. However, this comparison will
always be in the favor of plaintext computation since performance overhead
is unavoidable, yet the gap is closing.

While the improvements to the algorithms are very promising, we can
also improve on hardware implementations, e.g., GPU, ASICS and FPGA
implementations and multi-threading. In addition to this the the amount
of computational power will increase with time, making this difference less
noticeable.

When looking at the applications from this performance perspective we
have to consider whether or not the performance overhead is noticeable in
a particular calculation and whether we want to increase the privacy /confi-
dentiality of the data or that we need fast computations.

6.5 BFYV scheme

The BFV scheme is one of the most recent advancements in homomorphic
encryption. It is based on the RLWE hardness assumption which allows for
previously described optimizations. This scheme has also been implemented
in recent homomorphic software libraries such as Microsoft SEAL and PAL-
ISADE. To get a greater understanding of what this scheme looks like we will
go over the basic version of BFV. We especially explain how the evaluation
functions operate and how the previously mentioned noise is introduced [47].

In Ring-LWE we work on a polynomial ring. This means that messages
are encoded into a plaintext polynomial and a ciphertext consists of two
polynomials, ¢y and ¢;.

1. Sample a secret key S, which is a random element.

2. Generate the public key consisting of [pko, pki|, using S, a random
element from the ring A and a sampled error rate e. Output [—(A -
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S + e), A]. This public key is an instance of the RLWE problem and
thus both parts of the public key should be indistinguishable and this
means it is not possible to recover S.

3. To encrypt a message M, first we need to encode it into a plaintext
polynomial. We sample a new element U from the ring and two new
error samples e; and ey. After which we generate RLWE instances, cg
and c;.
co consists of [pkg - U + e1] and the encoded message M.
¢y consists of [pky - U + e . Since this is another RLWE instance, the
hardness assumption prevents the recovery of M from c0.

4. To perform an addition between two ciphertexts, we add both ¢y parts
and both ¢; parts together, hence the new ¢y will now include the
addition of M7 and Ms.

5. Decryption is performed by computing [co + ¢1 - S], this will use the
private key to cancel out the S in the RLWE samples, the last step is
to round the result to remove the error and get the message M.

Although this is an over-simplified version of the BF'V scheme, we can
clearly see that the error terms in the messages originate from the sampled
error terms required in an RLWE instance. When combining two ciphertexts
through addition, the error terms are also added. This indicates that the
error term increases as we perform more and more additions and multiplica-
tions. For multiplications this error term is multiplied and thus will increase
more than on an addition. The decryption involves a rounding operation in
which the error term will be cancelled out. If the error term will grow too
large, this rounding will fail and the decryption will fail.

From a high-level we can see that the public key masks the message and
that the RLWE assumption prevents us from recovering both M and S from
the created RLWE instances. This makes a trapdoor function because we
can only remove this masking with the private key and retrieve the message.
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Chapter 7

Security of HE

The use of homomorphic encryption can only be justified in certain envi-
ronments. In this chapter we will look into additional security requirements
while reflecting on the weakness inherent to HE.

7.1 Secure architecture

Homomorphic encryption is a cryptographic primitive. Cryptographic prim-
itives are used to create secure protocols and architectures. Encryption
schemes are building blocks that can provide confidentiality. Homomorphic
encryption is a more advanced building block that allows evaluation of a
function on encrypted data. However, this also makes the encryption scheme
malleable. This property often conflicts with traditional measures to guar-
antee integrity and thus introduces weaker notions of security. Therefore this
has to be taken into account when developing protocols and architectures
with homomorphic encryption.

As an example we take the most basic version of an outsourced compu-
tation. In this setup we encrypt data, send it over to the third party for
computation and receive the result. This simple architecture already has
several problems from a security perspective which we will further describe
in the rest of this section.

7.1.1 CIA model

A simple and general way to describe the additional requirements is through
the CIA model, confidentiality, integrity and availability. While encryption
achieves confidentiality when used properly, integrity and availability aren’t
provided. Confidentiality makes sure that the third party can not see and
decrypt our data, integrity refers to the fact that we want to make sure that
the third party does not change our data. One could imagine that it is quite
hard to change encrypted data exactly the way we want it to. Attempts to

39



change encrypted data reliably, often result in malformed data and decryp-
tion failure. However, one can not assume that its not possible to change
the data reliably. Especially when using homomorphic encryption, since it
gives us this exact feature by design. This is why we need to have additional
security measures to guarantee integrity in protocols and applications that
rely on HE or encryption in general.

The last goal in this model is to guarantee availability. This allows us to
access the result and the service reliably. This is something the cloud can
provide us through high up time and reliable access to our data. The fact
that decryption might fail due to too many computations, can also be seen
as a way to disrupt availability, i.e., go over the noise budget on purpose to
prevent decryption. This can lead to bad data quality, i.e., we expect our
data to be located in a certain ciphertext but it has been changed or even
discarded completely. Therefore, we can see that threats to integrity can also
lead to a threat to availability. If we want to securely create architectures
with HE, we need additional controls to guarantee availability as well.

7.1.2 Verifiability

An extra property that we would like to achieve, which is related to in-
tegrity, is called verifiablity. The goal of this property is to give guarantees
as to which function has been calculated. We can achieve this through
Zero-Knowledge Verifiable Computation [50]. This means that the party
that computes the function has to provide the user with some sort of proof
of computation. This proof has to be verified by the user, and thus provides
the guarantee that the result corresponds to the evaluation of the function.

7.2 Secure schemes

From an architecture perspective, we can see that we need extra controls
in terms of integrity, availability and verifiability. When purely looking at
homomorphic encryption as a primitive, there are several ways in which ho-
momorphic encryption might be less secure than more classical asymmetric
encryption. It is important that the primitives used as building blocks it-
self are secure, in this section we will look into several requirements and
assumptions made to describe the security.

We can use several different notions from literature to describe basic
types of attacks against encryption schemes [9].

Definition 7.2.1 (Ciphertext-only Attack). The adversary can observe a
ciphertext and tries to determine the plaintext.
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Definition 7.2.2 (Known-plaintext Attack). The adversary can observe
pairs of corresponding plaintexts and ciphertexts.

Definition 7.2.3 (Chosen-plaintext Attack). The adversary can observe
pairs of corresponding plaintexts and ciphertexts and, as the name suggests,
choose two plaintexts. The challenger encrypts one of the two plaintexts
and challenges the adversary to determine which one has been encrypted.
A scheme is CPA secure if there is no adversary that can achieve this with
more than negligable advantage over random guessing.

Definition 7.2.4 (Chosen-ciphertext Attack). The adversary can observe
pairs of corresponding plaintexts and ciphertexts and, as the name suggests,
choose ciphertexts. After the challenge has been send the adversary is not
allowed to ask for the decryption of ciphertexts anymore and especially not
the decryption of the challenge. A scheme is CCA secure if there is no
adversary that can achieve this with more than negligable advantage over
random guessing.

Each attack model shows a different power level of the adversary. De-
pending on the real-life application in which encryption is used, we can de-
termine which model fits best. For the cloud we can make some assumptions
to the strength of the adversary.

Ciphertext-only attacks are very likely since the data is located at the
cloud provider. This means it has access to encrypted data, which it can
observe. It might also be possible that an adversary has a pair of ciphertext
and plaintext, e.g., when results are published. These are the two passive
models a secure HE scheme has to protect against.

The other two are active models, this means the adversary can choose
which plaintext or ciphertext will be revealed. These attacks are far more
invasive, but not impossible in real-life. Since it is likely that we will be
encrypting the same plaintext multiple times, we require the encryption to
be different each time. This property is called semantic security, i.e., two
encryptions of the same message should be indistinguishable. Therefore,
CPA security should be guaranteed by any secure HE scheme. In almost all
HE schemes this is guaranteed through randomized encryption.

CCA attacks are harder to prevent since HE is designed to be malleable
[51]. If we want to create CCA secure encryption, the homomorphic prop-
erties will often be lost and this defeats the purpose of HE. Although this
cannot be resolved strictly by the scheme itself, certain schemes require
evaluation keys. This prevents performing calculations by random attack-
ers, and thus providing some form of non-malleability. However, this does
not solve the problem fundamentally.
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7.2.1 Security reductions

As seen in the previous chapter, the BFV scheme is based on the RLWE
hardness assumption. We can tell something about the hardness of certain
problems by trying to make a reduction to other well-studied hardness as-
sumptions. A security reduction proves that the new assumption is at least
as hard to break as the problem we reduce it to. This means that if we
can break RLWE, we can use it to break more classical lattice assumptions,
e.g., BDD, SVP or CVP [52]. Since these older lattice assumptions are well-
studied and the most efficient attacks against these problems are not fast
enough, we can assume that attacks against the new assumption are also
not fast enough.

To ensure that these problems are actually hard, the parameters have to
be correctly set. Selecting the correct parameters for the encryption schemes
should be supported such that we can reliably base our security on the
underlying hardness assumption. With wrong parameters this underlying
problem is not hard anymore and decryption would be trivial.
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Chapter 8

Use cases

In this chapter we will look into a usecase in which the combination of HE
and cloud are described. We will generalize this usecase and look into other
potential usecases.

In the introduction we shortly mentioned Netflix and how they benefit
from the cloud. They can quickly upscale their streaming service to several
thousand servers providing cloud services to the user. When Netflix gains
a lot of users in quick succession this is very valuable. What is even more
valuable is to retain users and keep them on the platform for as long as
possible. Their goal is to maximize the total amount of hours streamed.
This is often achieved through a recommendation system. In order for them
to make accurate predictions, a detailed customer profile has to be created.
This will improve prediction accuracy but requires the collection of as much
data as possible. This collected data can lead to privacy risks for its users
[53]. This creates a conflict between the accuracy of the predictions and
the amount of privacy for the users. This calls for a technical solution that
should preserve the privacy of the user. Threats to this privacy can not only
come from Netflix or the cloud provider but also from vulnerabilities in the
cloud, as mentioned in Chapter 5. This solution should also not conflict
with the benefits that Netflix receives from the cloud.

8.1 Recommendation systems

Netflix’ recommendations are displayed on the main webpage that is dy-
namically generated. Each row contains a specific theme, e.g., “trending
now” or “recently added”. Within a theme the movies are ranked from
least to most accurate. The movies located on the left side are the best
recommendation for a specific user. The way in which they determine the
ranking is called, personalised video ranking. Two common ways to realise
this are collaborative filtering and content-based filtering. Collaborative fil-

43



tering uses input from multiple users to predict the preferences of a single
user. Content-based filtering uses a description of items, in this case movies
and series, and a list of user preferences. While collaborative filtering can
predict what you would like to watch based on your history and the his-
tory of others, content-based filtering directly compares your preferences to
a list with similar items. Since collaborative filtering uses input from mul-
tiple sources the use of HE in this specific scenario will be hard, therefore
we consider content-based filtering. This requires the creation of features
describing the movies and features describing the user. The next step is to
find similarities between both features. These similarities can be used to
create future recommendations, for Netflix there is also an incentive to keep
this secret. Other companies that want to create a recommendation system
for their streaming platform can replicate it, which is also a reason why the
user is not allowed to compute this locally. The calculations used in this
filtering, e.g., weighted sum, can be computed using HE. The weighted sum
is used to calculate the weighted mean. This directly translates to a ranking
with which the user can see which movies are similar to the ones that have
been scored. The calculation uses the following input:

e S is a similarity matrix, e.g., position (1,2) shows the similarity be-
tween movie 1 and movie 2, ranging from 1 to 10;

e p'is the preference vector containing scores on movies, ranging from 0
to 5. Note that in the second calculation, this ranges from 1 to 5 and
only includes the rated movies;

° ];; is the vector containing a 1 if the movie has been rated and 0
otherwise.

It outputs the recommendation vector, . There are two ways to compute
the recommendation.

1. On encrypted p and encrypted ];7 :

(a) T=5-7
(b) i =S-p/
(c) 7= g , this will be calculated entrywise.

2. On encrypted p and ;5;:

(a) Multiply all preferences in § with corresponding similarity scores
of the movies in each row in S. Either by searching the scores
directly or filtering the matrix in advance using p’;

(b) Calculate the pairwise addition of the resulting rows;

(c) Calculate the sum of the similarity scores which are part of this
addition;
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(d) Divide previous two results pairwise.

While the first solution requires the vector to contain zero values, the
second one only requires an encryption of the ranked items. This would be
more efficient considering that the total amount of movies greatly surpasses
the amount of movies rated, thus increasing the size of p unnecessarily.
Therefore, we give an example of the second calculation. Note that in the
second case p7 is not confidential. The service provider learns which movies
have been rated but not the actual rating. This would in theory provide less
privacy, however, in practice the service provider can potentially also learn
the watched movies from side-channels or meta data.

Example 8.1.1. (Recommendation calculation 2) [54]
For this example we will use the following input:

10 7 9 6
10 1
s—| T WS s 9
9 10 10 4
6 5 4 10

The calculation requires the following steps:
1. The user will encrypt p.

2. The service provider computes the weighted sum on encrypted p:
(2-10,2-7,2-9,2-6)+(3-7,3-10,3-10,3-5) = (20+ 21,14+ 30,18 +
30,12 + 15) = (41,44, 48,27).

3. The service provider will send this encrypted result back to the user,
along with the sum of the similarity scores, (10+7,7+10,9+410,6+5) =
(17,17,19,11).

4. The user can now compute the weighted mean after decryption:
7= (41/17,44/17,48/19,27/11) =~ (2.41, 2.59, 2.53, 2.45).

After removing the already watched movies from the list, the conclusion is
that the user should watch movie 3 since it has a higher score than movie 4.

Note that we want to perform the division at the user side since we are
working over the integers in this example. For modular arithmetic, division
could be implemented using the modular multiplicative inverse. However,
in this example we want the real number as a result.

When looking at this calculation from a performance perspective, we can
see that the multiplicative depth is low. It involves one multiplication with
the weight and a summation of the results. Using the batching and SIMD
techniques, we would estimate that it is possible to perform this calculation
in a matter of seconds. The calculation can also be precomputed by the
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service provider, making this performance overhead less noticeable for the
user.

8.2 General scenario

In general, the previously described example involves three parties, the ser-
vice provider, the cloud provider and the user. The cloud provider facilitates
the infrastructure and/or the platform. The service provider facilitates the
service to the user, making use of the cloud providers resources. The user
wants to benefit from the service provided. This involves a calculation on
data that the user cannot do locally. This can have several reasons, e.g., the
service includes intellectual property, the user does not have enough com-
putational resources or just to reduce cost and increase convenience. When
the service includes intellectual property, we can include an extra property
to provide privacy of the function. Which should protect against replication
of the service by either the user or the cloud provider. In figure we see
an overview of this general scenario.

The client-side of this service should facilitate encryption before sending
the data to the cloud and decryption upon receiving the result back from
the cloud. With traditional encryption this would make it impossible to
process this data by the service provider and the cloud would function as
just a backup service. HE allows processing of encrypted data and thus
allows the cloud service to operate as intended. However, we still rely on
traditional encryption for the communication between the cloud and the
secure environment. This can be symmetric encryption or hybrid encryption
with the necessary authentication and integrity checks to create a secure
channel between the secure environment and the cloud service.

Secure Environment The Cloud
Service Provider Inside Threat
Plaintext Ciphertext
»  Encryption >
User Plaintext & Ciphertext Cloud [* t
- Decryption |« Service
A A A

Cloud Provider

Key Storage t

Quiside Threat

Figure 8.1: The general scenario and threats
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8.3 General framework

The described use case, together with the examples from the introduction
show some key characteristics. In general we can see the following properties
in a use case:

e remote computation;

e partially or fully untrusted infrastructure;

e privacy of input, output and (optionally) function.
The computation involves:

e descriptive statistics, e.g., calculating a summation, an average or a
maximum value;

e predictive statistics, e.g., data mining, machine learning or predictive
modeling.

While the first type of computation is relatively easy to represent in an
homomorphic calculation, the second type is less trivial.

As seen in the general scenario and figure[8.1] we can create more privacy
for users by using HE in specific calculations that involve sensitive data.
This would still allow service providers to operate and benefit from the
cloud without compromising the privacy of users and possibly compromising
sensitive data to the service provider, cloud provider or attackers of the
cloud. Although all processing of this data that happens in the cloud is
legally allowed through service level agreements, this would still help with
minimizing the amount of data that the service and cloud providers have to
acquire and can potentially compromise.

8.4 Potential usecases

In the literature we have seen a lot of potential use cases that also con-
tain most of the key characteristics described in the general framework [55].
These cases not always reflect on the exact combination of HE and the cloud
but we can clearly see some benefit for a form of secure computation that
could also work in a cloud environment. We describe two more potential
usecases:

e The prediction of the likelihood of certain health issues can be seen as
a valuable resource to healthcare. If a research institute managed to
create such an algorithm to diagnose patients, they want to provide
this to as many hospitals as possible. However, they do not want to
reveal this algorithm to the hospital in order to earn money to fund
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new research. The research institute can choose to provide this algo-
rithm in the form of a cloud service. Directly using plaintext patient
data in their algorithm in the cloud can lead to privacy risks. When
implementing this cloud service using HE, we can run the algorithm
on encrypted patient data and return an encrypted result back to the
hospital. This also makes it possible to protect the confidentiality of
the function. The usage of this algorithm also depends on the amount
of patients that have to be diagnosed, which can be seen as a varying
demand influx.

e Descriptive statistics on manufacturing processes, e.g., statistical pro-
cess control, are very valuable to companies. It allows them to control
and improve their processes. It often involves control limits that spec-
ify within which boundaries a specific test should be. These control
limits can be valuable to a competitor that runs a similar manufactur-
ing process. This comparison requires the encryption of the upper and
lower control limit. We then require two secure integer comparisons.
One comparing the test value to the upper limit and one to the lower
limit. This result can be combined with an AND gate. The result
will be 1 if it is between both limits and 0 if it is not. In this case we
protect the confidentiality of the upper and lower control limit while
comparing them to test data that resides in the cloud.

This chapter shows that HE can work as a privacy-enhancing technol-
ogy by providing confidentiality throughout the entire data journey, from
within the secure environment of the user, through the service and cloud
provider, throughout the actual computation and eventually back into the
secure environment.
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Chapter 9

Proof of concept

This chapter will explain the reasoning behind the design, architecture and
technical choices. It will include several technical details that are needed to
understand the proof of concept. Several suggestions are mentioned that can
be used to further improve upon the concept.

9.1 Design

When developing a proof of concept it is important to keep in mind that we
want to show that a concept is feasible. For HE it is not possible to show
the input and output plaintext of a computation on the cloud platform,
since the entire concept is based on local storage of the private keys and
user-control over these keys. The cloud is not allowed to see the plaintext.
Therefore we decided to show the ciphertexts and their manipulations and
explain this as best as possible. In the design we have three main segments.
The data, the calculation and the result. The data tab allows the user to
upload a ciphertext and see the description and context of this ciphertext.
The calculation tab allows the user to create a calculation, in which you
select the ciphertexts and the operator. The calculations that are created
can be selected and executed. The results tab allows the user to see the
description and context of the calculation they have performed and supports
downloading the result.

The decryption of the ciphertext can not be shown in the cloud due to
the nature of the application. However, this is part of the total demo and
also is necessary to show the correctness of the computation performed in the
cloud. The only way in which the homomorphic evaluation can be shown in
the cloud demo is to disable the encryption and only show the homomorphic
addition and multiplication functionality on plaintext. However, this does
not represent the concept as well as local encryption and decryption.
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9.1.1 Minimum viable product

In essence every application that is based on HE follows the same structure.
To start we have to encode and encrypt our data in such a way that the
evaluating party can process the data accordingly. Therefore, the first step
is always: encrypt the data. The second step is to retrieve the data for
evaluation. After evaluation we get a new ciphertext which is an encryption
of the result. This ciphertext has to be stored. The final step involves the
decryption of the data and hence retrieving the correct result. For the PoC
these three steps are structured in the following way.

1. Locally encode and encrypt the data and upload the ciphertexts.

2. Evaluate an addition or multiplication on two ciphertexts and store
the result in a database.

3. Download encrypted result and locally decrypt and decode the result.

This is the minimum functionality that the PoC has to support. However,
in more advanced applications based on HE, the decode, decrypt and up-
load functionality should be mainly automated to enable processing of larger
datasets through cloud connectors. The evaluation functionality should be
extended to combine multiple ciphertexts and allow for more advanced com-
putation. The third step can also be combined with other techniques such
that only the people that are entitled to it get the correct result without
manual downloads and decryption.

9.1.2 Open-source libraries

In order to create a PoC on the cloud platform, we need a library that
supports HE. There are plenty of options, with each their strengths and
weaknesses depending on the applications. We will highlight the main three
libraries that were considered for this applications.

e Microsoft SEAL, which provides a set of encryption schemes fit for
homomorphic evaluation of data. The supported algorithms include
several variants of BFV and CKSS. These schemes already include
many optimizations [56].

e PALISADE, which has been under development by engineers and sci-
entists from defense contractors, start-ups and universities, supported
by DARPA, TARPA, Sloan Foundation and others. It provides a set
of lattice-based encryption schemes, not limited to homomorphic en-
cryption. They also support traditional encryption and hashing based
on lattices. An advantage of using this library is that it supports
multiple cryptographic building blocks that can be used to secure the
application [57].
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e HElib, which has been under development with help from IBM since
2009. The library supports the BGV and the CKKS scheme. In both
schemes a number of optimizations have been implemented. HEIib also
supports “assembly language for HE” which means that it is possible
to manipulate data on the lowest level [58].

These libraries are available as C++ codebases. The SAP Cloud Platform
does support C++, however for Node.js there exists a convenient buildpack.
This makes it easy to deploy a Node.js backend on the cloud platform.
Therefore we chose the Node.js implementation of the Microsoft SEAL li-
brary. This library has good documentation and is fit for the purpose of
the proof of concept. Node-seal npm package brings SEAL to Javascript
through Web Assembly called by wrappers that invoke the C++ code. It
can also be easily installed with the Node package manager (npm). Accord-
ing to benchmarks from the node-seal library, the web implementation will
be 6 times slower for addition and 4 times slower for multiplication[59]. Al-
though this implementation will be slower than the C+-+ version, the PoC
is not purely focused on showing the speed. A modular architecture will
allow us to switch out the backend for the C++ equivalent at any time.

Standardization

In addition the development of several open-source libraries, there is also
a standardization effort by several developers from the academic world in
combination with major companies such as Google, Microsoft and IBM[60].
In these standards the security, API and applications of homomorphic en-
cryption are defined and discussed. The goal is to create a knowledge base
for researchers and companies alike. This can be compared to the Crypto-
graphic Standards and Guidelines provided by NIST. We think this is an
important part in the secure and efficient usage of homomorphic encryption
in applications.

Microsoft SEAL

The choice for SEAL has been made based on several key aspects. The first
aspect is the clear documentation and the ease of use. This is something
that they are actively working on to improve and this keeps making it easier
for programmers without much of a cryptographic background. In short, the
library supports two types of schemes, the Brakerski Fan Vercauteren(BFV)
and the Cheon Kim Kim Song (CKKS) scheme. The BFV scheme is mainly
used when the data can be represented by integers, the CKKS scheme sup-
ports real numbers (floating points). In addition to the schemes itself there
are also several batching and encoding techniques that will be relevant for
this proof of concept. The final consideration is the speed of the algorithm.
SEAL has implemented most of the optimizations that were introduced in
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the last couple of years which will result in higher performance and speed
in the cloud.

9.1.3 SAP Cloud Platform

As discussed in Chapter 3 the SAP Cloud Platform supports application de-
velopment through a set of services, tools and standard applications. Since
the goal is to create an application for the cloud, it might be convenient
to also develop it in the cloud. In the design we concluded that we need
a frontend to show the ciphertexts and a backend that can support the
chosen library and store the results. Therefore we chose to use all the func-
tionality of the full-stack Web Integrated Development Environment. The
IDE includes the option to use templates for Multi-target applications. In
this MTA we can add a lot of different services such as a SAP Hana Cloud
database, a Node.js backend server and a frontend server/Web UL

SAP Fiori

There are several ways to create and structure the frontend. SAP Fiori
Cloud gives developers the tools and guidelines to create a consistent user
experience. This methodology allows the creation of uniform applications
across the cloud. The client UI technology with which this is made possible
is called SAPUI5, an HTML-5 based development toolkit. To help clarify
the PoC we want a consistent and clear design, we think this is best achieved
with SAPUIS5.

MTA model

As discussed earlier we want a modular architecture such that we can swap
several modules e.g. Node.js backend for a C++ backend. The cloud plat-
form provides us with a multi-target application model. In this model we
can link several modules together, sharing services such as the Hana Cloud
database or the UAA (user, account and authentication service). This means
the frontend and backend can make use of the same authentication provider
and we can easily swap modules.
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9.2 Implementation

In Appendix B.1, we show the file structure and in Appendix B.2 we show
the user interface. The application code can be split into two parts, the
frontend and the backend. We used the pre-generated model, view controller
structure in the frontend [61]. For the backend we used a Node.js webserver,
combined with a SAP HANA Cloud database [62].

9.2.1 Frontend

The model contains all the models for the data and handles the application
data. This is separated from the view, which only shows the data through
the UI. The UI has been specified by a home view and three fragments. In
the fragments we specify all the elements such as the predefined table module
or the wizard screen. The buttons in each fragment contain an event. The
controller modifies the view and model when called through these events.
The controller also contains functions that are used to communicate with
the webserver. We used Ajax to send data and call the services of the back-
end [63].

There are also some general settings that are used for the routing within
the webapp, these can be found in the approuter. This is the single point of
entry which uses the xsuaa authentication service. This means you need to
have a user account on the cloud platform to reach the application. From
this point we can also redirect to the service backend.

9.2.2 Backend

The backend contains a database and several different services, both linked
to the frontend using the multi-target application structure and configura-
tion files. All the services require an authenticated user and a csri-token.
To upload the files, xsjs is used. The xsOdata service provides the tables in
the frontend with the correct values to display. The final services the back-
end provides is the HE computation. They are provided through several
functions supported by the Node.js server and have been split in two parts:

e createCalculation, creates the calculation as specified in the wizard;

e executeCalculation, retrieves the specifications of the calculation using
the CalculationID. Gathers the input to the function by looking at
both the CipherTextID’s. It then executes the computation using the
correct operation and input data. The result will be stored in a new
entry in the database.
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To communicate with the database, we use calls to the stored proce-
dures. Stored procedures are pre-defined queries that can be called by the
backend. This means it prevents wrong insert statements and custom SQL
queries, which in the worst case, can lead to SQL injection. There are three
procedures:

e dataUploader, used to insert ciphertext data after uploading;
e calculationUploader, used to insert a calculation specified by the user;

e resultUploader, used to insert the result of the computation.

Database
The database used is the SAP HANA Cloud database, it is mainly used as

a database service. It provides real-time data access and analysis. However,
we only use it to store and retrieve our ciphertexts, calculations and results.
To specify the database tables there is a clear distinction between design-
time and run-time. In the design-time we specified all the tables, procedures
and synonyms. After deployment we can use the real-time container to store
and retrieve our data. To generate the three unique ID’s we use sequences,
these will automatically increment the ID for each new table entry. In the
database we have three tables:

e Project-H.database.data::Data;
e Project-H.database.data::Calculations;
e Project-H.database.data::Results.
To link design and run-time we used the following synonyms:
e Project-H.database.data::localData;
e Project-H.database.data::localCalculations;

e Project-H.database.data::localResults.

Client-side code

On the client-side we also use a Node.js server with the Microsoft SEAL
library. It is used to encrypt and decrypt the data on the client-side. It
can also provide us with some additional tests before we move the code into
the cloud. The private key used to encrypt remains offline at the client
and should be stored securely. The context of the encryption, together with
the ciphertext, can be written to a file. This file can be uploaded in the
application. The result can be downloaded and contains the same context
and the new ciphertext with the result. This can be used to decrypt and
retrieve the result.
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Chapter 10

Related work

This chapter will take a look at other existing implementations and recent
events in the area of secure (cloud) computation.

With the recent developments in algorithms and implementations, the
performance overhead becomes less of a problem for several interesting ap-
plications. In the last couple of years, both in the literature as well as in the
industry, applications that use HE are starting to arise. In this chapter we
will highlight some of the applications that were not mentioned previously.

e CryptoNets [64], in this publication the researchers present a method
to convert learned neural networks that operate on plaintext data, into
neural networks that operate on ciphertext. They call it a CryptoNet.
This can be used on, e.g., financial or medical data sets, to make
privacy preserving predictions.

e Privacy-preserving electronic toll pricing [65], this paper shows how to
create a protocol for electronic toll pricing in which a minimal amount
of location data will be revealed. HE is used in a part of the protocol
to compute the total tax that has to be payed. Since each individual
component directly relates to the amount of distance traveled, and
thus also the location, we want them to remain confidential.

e Privacy-preserving yet accountable ride-hailing service [66], this pa-
per proposes ORide (Oblivious Ride). This system solves the location
privacy concerns that arise in services such as Uber or Lyft. It can
match customers and drivers without knowing their identities or loca-
tion. It uses a version of the BFV scheme to compute which driver is
the closest.

Next we will describe two platforms that provide a secure computation
service.
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e ShareMind, a database and application server that can process en-
crypted data. Omne of the techniques they use to accomplish this is
HE. It can provide end-to-end data protection and accountability. A
more concrete example is an implementation made using the Share-
Mind framework to prevent satellite collisions [67]. They use encrypted
trajectory data to securely compare and calculate whether or not a
collision will happen. This will improve orbital safety without sharing
confidential satellite information, e.g., in military satellites.

e Duality Technologies, purely focuses on HE as their main technique to
facilitate secure data science for regulated industries. Their platform
is called SecurePlus which protects data and the models used for the
analyses. An example of an application of their platform is the sharing
and analysis of data by financial institutions [68]. This allows them to
leverage their collective data set to detect financial crime.
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Chapter 11

Conclusions

In this thesis, we researched the use of secure computation techniques in a
cloud environment. At the start of this work we described the most impor-
tant features, benefits and obstacles of the cloud and of secure computation.

While the public cloud is indeed an online and public space, the cloud
also offers more private solutions in the form of a community or private
cloud. This provides more separation between services which can prove to
be useful in decreasing the chance of certain attacks. However, a private
cloud is not the only protection we need against attacks.

Since the user has no direct control over the security measures at the
cloud and service provider, this often revolves around trust. Although the
user or service provider might not be legally responsible for the data any-
more, one can imagine they want to secure the data as best they can. Secure
computation can provide this functionality without removing the benefits
that the cloud provides.

The main techniques used in secure computation are secure multi-party

computation, secure hardware and homomorphic encryption. While each
have their strengths and weaknesses, homomorphic encryption has been
highlighted as the most interesting in a cloud environment due to the way it
can outsource a computation to an untrusted environment, while preserving
confidentiality.
When looking at the top 11 threats, we can see that they all threaten the
confidentiality of data and that HE can achieve better confidentiality guaran-
tees in certain situations. By shifting the encryption and decryption process
from the cloud to the secure environment, we can see that a lot of threats
can now only compromise ciphertext rather than plaintext, especially when
data is used within cloud services. Besides the threats to the cloud itself,
the service and cloud providers themselves also have access to user data and
can compromise confidentiality. This is where we see a usecase for secure
computation and we hope it can improve the cloud security.
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The usecase we described not only illustrates why Netflix wants to use
the cloud, but also that they perform computations on sensitive data inside
the cloud. As an example we showed that their recommendation system can
be made privacy-preserving by replacing the specific calculations on sensitive
data with calculations on encrypted data, i.e., the calculation of the weighted
sum. This would protect the user preference against the service provider,
cloud provider and some of the described threats to the cloud itself. This
example also allowed us to derive some key characteristics. We concluded
that it would make most sense to use HE when outsourcing a computa-
tion on highly sensitive data to a partially or fully untrusted environment,
replacing plaintext computation rather than the traditional cryptography.
This computation often involves mathematical and statistical functions but
can also be more complex as seen in, e.g., machine learning.

This means that the use cases are very specific and also depend on the
performance of the different HE schemes. The performance of HE varies
between each different type. We will give a short summary of the different
HE classifications:

e Partial homomorphic encryption supports addition or multiplication
an unlimited amount of times.

e Fully homomorphic encryption supports addition and multiplication
an unlimited amount of times, through bootstrapping a somewhat
homomorphic encryption scheme.

e Somewhat homomorphic encryption supports addition and multipli-
cation a limited amount of times.

e Leveled homomorphic encryption supports additions and multiplica-
tion but limits the multiplicative depth.

While somewhat homomorphic encryption is limited by the amount of noise,
leveled homomorphic encryption is limited on purpose. This means the
parameters have been chosen to support only a specific circuit depth to
optimize performance.

Additional ways to increase performance come from the improvements
made to the two aspects that make a scheme fully homomorphic, the boot-
strapping procedure and the SHE scheme. Improvements to the SHE scheme
include reducing ciphertext and parameter size (with the same level of se-
curity), ciphertext packing and speedups from classical computing. One of
the best performing schemes is the BFV scheme, which has been used in the
proof of concept.

The proof of concept shows an implementation of a simple application in
the cloud that can receive ciphertext data and a specific calculation. When
executing this calculation the specific operator (addition or multiplication)
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is applied to a pair of ciphertexts. All the numbers packed inside the ci-
phertexts are combined into one new value, by evaluating them pairwise.
The new resulting ciphertext includes the encrypted results of this pairwise
evaluation, without revealing either the input or the output.

Although the proof of concept can perform calculations, it also shows
some of the weaknesses in HE. We conclude that the confidentiality of the
data can indeed be guaranteed by secure HE schemes. However, other
wanted properties, such as integrity, availability and verifiability have to
be guaranteed through additional measures. Verifiability is especially inter-
esting for HE since it can give us guarantees about the function that has
been evaluated. When looking at HE as a primitive we can also see that
CCA security conflicts with its malleability. This changes our assumption
on implementing “just” an encryption into the conclusion that HE can only
work in good security architectures including additional controls, key man-
agement and when taking malleability into account that is inherent to HE.
The security requirements and limitations in combination with the perfor-
mance overhead show us why many people see homomorphic encryption as a
step backwards. However, recent developments show us that if secure com-
putation can be implemented correctly and efficiently, we can unlock value
from data that was previously inaccessible, i.e., in cases in which we need to
achieve confidentiality of input, output or function. This makes us conclude
that it is a good privacy-enhancing technology and that it certainly has a
future in many applications and protocols that want to include privacy by
design and truly ensure privacy end-to-end in a cloud environment.

11.1 Future work

In the last couple of years a lot of progress has been made both on creating
faster algorithms and also in developing secure computation platforms. We
will present some future work for the thesis, and some improvements that
can be made on the proof of concept.

e In this work we often considered the case in which one party has the
encryption/decryption key. In a decentralized and real-life setting this
may not always be the case. Multi-Key Homomorphic Encryption
schemes allow multiple participants to decrypt. Other options are
Treshold FHE schemes or proxy re-encryption techniques.

e The privacy of function is not something we can always guarantee,
however, this property can be wanted in, e.g., the protection of ma-
chine learning algorithms. It would be interesting to research how one
could steal or copy models and how you can protect against this and
if HE can protect against it.
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e To optimize the performance of implementations with HE, we need to
carefully choose the parameters and also have great knowledge about
the underlying scheme. It also means we have to translate our higher
level functions into HE circuits (binary or arithmetic). How can we
best achieve this?

e Serverless computing or functions as a service, as seen in AWS Lambda,
is a relatively new execution model for the cloud. Is it possible to use
HE in this setting?

e In the proof of concept, one could have a closer look at the application
security, look for ways to include integrity and verifiability and increase
stability and performance (by swapping to a C++ backend).
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Appendix B

B.1 File structure

Workspace
|- Project-H

|- database

| |- src

| | |- data

| |- package.json

|- frontend

| | - webapp

| | |- controller
| | |- model
| | |- view

| I |- index.html
| |- neo-app.json
| | - package.json

| |- uib.yaml

| |- xs-app.json

|- service

| | - HE_computation
| |- lib

| |- node_modules

| |- test

| |- server.js

| |- testrun.js

|- mta.yaml

|- xs-security.json
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Contains design-time objects

Controls model and view
Retrieves and contains data
Defining and rendering the UI

Environment specifications
Build specifications
Frontend specifications
Defines the routing

Homomorphic calculation logic
Xsjs/xsodata services

Imports and packages

Tests

Start-up script

Test start-up script

Multi-target application configuration
Security configuration



B.2 Proof of concept

Project H
Data Calculations Results
CiphertextlD Description
200000052 New format
200000053 New format
200000054 New format
‘ [ Browse...
Project H
Data Calculations Results
CalculationlD Description
200000004 Full test
200000005 Mult
200000006 Mult
200000007 123
200000008 1234
200000009 Mult
200000010 123
Project H
Data Calculations Results
ResultsID Description
200000015 Mult
200000016 Mult
200000017 Mult
200000018 Mult
200000019 Mult
200000020 Mult
200000021 Mult
200000022 Mult

Inputl

200000049
200000052
200000053
200000053
200000052
200000052

200000052
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SchemeType

BFV

BFYV

BFY

Input2

200000050

200000052

200000052

200000052

200000053

200000053

200000053

Modulus

4096

4096

4096

Security Level

128

128

128

=+
Operator
Addition
Multiplication
Addition
Multiplication
Multiplication
Multiplication
Multiplication
& Download
Context
BFV
BFV
BFV
BFY
BFV
BFV
BFV
BFV
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