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Abstract

In this thesis, image clustering at multiple scales using the Markov clustering frame-
work is experimentally analysed. In particular, the usability of variational autoencoder’s
(VAE) latent space representations and graph construction methods are investigated, as
well as the ability of the Markov clustering framework to detect hierarchically meaningful
clusters across different levels of coarseness in the considered image domain. Results of
extensive experiments on the MNIST data set show that the latent space representation
of the VAE is indeed suitable for multi-scale clustering. Results on the Fashion-MNIST
data set tell a different story but were still useful in investigating the relationships of
the clusterings across the detected hierarchy.



Contents

1 Introduction 3

2 Background 6
2.1 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Variational autoencoders . . . . . . . . . . . . . . . . . . . . . . 7

2.2 (Dis)similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Graph construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Markov clustering framework . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Methods 14
3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Clustering metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Normalized mutual information . . . . . . . . . . . . . . . . . . . 15
3.2.2 Adjusted rand index score . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Variation of information . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Training the VAE’s . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 kNN, CkNN and MST . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Best model and graph construction method selection . . . . . . . 17
3.3.4 Experiments on the larger test data set . . . . . . . . . . . . . . 18
3.3.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Markov stability framework . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 Influence of the parameters . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 Multi-scale detection of clusterings . . . . . . . . . . . . . . . . . 19

4 Results 21
4.1 Selection of VAE model and graph construction method . . . . . . . . . 21

4.1.1 Similarity directly applied on the image data . . . . . . . . . . . 21
4.1.2 VAE latent space representation . . . . . . . . . . . . . . . . . . 22

4.2 Markov clustering on larger test data sets . . . . . . . . . . . . . . . . . 23
4.2.1 Best performance at true number of detected clusters . . . . . . 23
4.2.2 Best performance at variable number of detected clusters . . . . 24
4.2.3 Variation of information of the clusterings . . . . . . . . . . . . . 24
4.2.4 Cluster assignments of the data points at different levels in the

hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1



5 Discussion 27
5.1 Revisiting the research questions . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Latent space representation vs. directly from pixel values . . . . 27
5.1.2 Graph construction . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.3 Relation between clusterings across the hierarchy . . . . . . . . . 28

5.2 Effect of k in CkNN and kNN on the number of detected clusters . . . . 30
5.3 Computational complexity of the Markov clustering framework . . . . . 31
5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Conclusion 33

7 Appendix 38
7.1 Model and graph testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2



Chapter 1

Introduction

In the last decades, with the rise of the internet, the possibility to share and access data
has grown tremendously. For image, picture, and photo data, social media and fora have
especially been great contributors in the increasing number of data available online. The
easy access to such a large number of images is not only beneficial for personal use, it
has also enabled the creation of large image data sets for research. However, many of
these images lack good and consistent labeling in order to be directly used for research.
Image annotation [1, 2], image segmentation and classification [3], content-based image
retrieval [4, 5], are all problems in the data science research area that need a way to
identify which data points belong to the same label or category. This unsupervised
grouping of data points is known as clustering..

There are many ways to cluster data. The K-means algorithm [6–9] is a very popular
method which uses a K number of cluster centroids and assigns the data points to their
closest centroid. Other methods like DBSCAN [10] and CLIQUE [11] use the density of
the data points to identify clusters. A common problem with these methods is that they
need a fixed number of clusters prior to clustering. If the number is unknown, many
repetitions of the experiments need to be done with different hyper-parameters in order
to determine the best number of clusters.

For graph-like data, where a set of vertices is connected to each other through edges,
specific graph-based clustering methods have been introduced. The Normalized Cut
(N-Cut) algorithm [12] and the Laplacian Eigenmap [13] are examples of graph-based
clustering methods. These methods have the ability to reveal the modular structure in
the data and allow detection of clusters at different levels of coarseness.

Graph-based clustering is usually applied to graphs, or networks, already existing
in the real-world such as Facebook’s friend networks. Nevertheless, it is possible to
represent non-graph-like data as a graph. The graph representation of the data opens
up the use of a Markov chain for clustering. Markov clustering works by continuously
taking random walks from one vertex to another. The longer this process goes on for,
the more (sub-)clusters the algorithm finds, and finding clusterings at varying levels of
detail.

To make graph representations of image data, we need a distance or similarity mea-
sure to base the adjacency matrix on. Common similarity measures include the Eu-
clidean distance and cosine similarity. For image data specifically, it might be inter-
esting to take spacial correlations into account and use the image Euclidean distance
(IMED) [14]. Still, image data is very high-dimensional with every pixel representing
one dimension. Applying similarity measures on all image data pairs in such a high-
dimensional space is time and memory expensive. The similarity measure itself also
becomes difficult to interpret since small deviations in pixel values can cause large dif-
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ferences. These problems with high-dimensional computations are also known as the
curse of dimensionality. Consequently, dimensionality reduction is a common tool in
image processing, with principal component analysis (PCA) [15] as one of the most
well known. Another solution is the use of visual descriptors for feature extraction, like
SIFT [16], HOG [17], SURF [18] and CENTRIST [19]. In more recent years, latent
space representations from autoencoders have shown promising results [20–24].

There are many challenges when it comes to image clustering, especially when using
a graph representation of the image data set. Several attempts have been promising
[19, 25, 26]. However, hardly any research using clustering methods has been done into
multi-scale detection of image clusterings. The fact that most image data sets only
contain one label per image does not help as it does not offer any information about
lower or higher level category membership. For example, take the Fashion-MNIST [27]
data set. Some of the clothing item classes are part of the same higher level category.
For instance, ‘sandals’, ‘sneakers’ and ‘ankle boot’ are all types of ‘shoes’ and it would
still be a relatively good clustering if those items were clustered together.

A recent paper by Liu & Barahona (2020) [28] applied Markov Stability for graph-
based clustering on multiple attribute data sets from the UCI repository. They specif-
ically used Markov Stability to avoid the need to set a parameter for the number of
clusters. The Markov Stability framework also alleviated the parameter sensitivity of
the applied graph construction method, in their case the parameters of the continu-
ous k-nearest neighbours (CkNN) graph algorithm [29]. The experiments showed that
the diffusion process of the Markov Stability framework acts as a resolution parame-
ter, without needing to set the number of clusters manually. For a geometric example,
the clusterings also showed a hierarchical relationship across the levels in the detected
hierarchy.

In this paper, I will investigate the usability of variational autoencoder’s latent space
representations and graph construction methods for graph clustering on image data
using the Markov clustering framework. Additionally, I will look into the ability to
detect hierarchically meaningful clusters across time scales. To this end, I will use both
the MNIST and Fashion-MNIST data sets to test the performance.

The following research questions will be answered in this thesis:

• RQ1: Does the latent space representation provide better clustering results for
image clustering than standard similarity measures, like the Euclidean distance,
the image Euclidean distance (IMED) and cosine distance, directly applied to the
image pixels?

– In the case of the similarity measures directly applied to the image pixels,
which measure performs best?

• RQ2: Which graph construction method, namely regular k-nearest neighbours
(kNN) or continuous k nearest neighbours (CkNN), is more beneficial with the
Markov clustering framework?

• RQ3: Are the hierarchies detected with Markov clustering semantically meaning-
ful?

– Which classes are clustered together in clusterings with a lower number of
detected clusters than the true number of classes?

– Which classes have the strongest within class similarity?

RQ3 is most relevant to the Fashion-MNIST data set since some categories are more
semantically related (‘sneaker’ and ‘ankle boot’, or ‘shirt’ and ‘pullover’) than other
categories (‘trouser’ and ‘sneaker’, or ‘shirt’ and ‘bag’). For the MNIST data set I am

4



merely looking at which digits are more similar. For example, the expectation is that
the digits ‘1’ and ‘7’ are more similar to each other than they are to any other digit.
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Chapter 2

Background

Research into image clustering usually consist of two stages: feature learning and clus-
tering. These stages can be optimised separately, where first the features are learned
and then those features are used in the clustering framework [5, 30–32]. To further
improve the total clustering performance, research has shifted to a joint effort in learn-
ing representations while simultaneously updating and optimising the clustering algo-
rithm [20,33–38].

2.1 Dimensionality reduction

Image feature extraction and image representation learning are common methods to
reduce dimensionality but also a way to make the clustering performance better. By
only comparing relevant and distinguishable features of the images, two similar images
might have an even stronger connection to each other than to other images. This greatly
increases the likelihood these two images are clustered together.

There are many kinds of features one can extract from image data, each with dif-
fering complexity and suitability for clustering. One of the best known dimensionality
reduction methods is principal component analysis (PCA) [15], where orthogonal linear
transforms are learned to capture the direction of variance in the data set. The top k
components that capture the most variance are used as a new basis on which to represent
the data.

2.1.1 Neural networks

Deep learning has already proven to be very successful in image classification tasks [39].
Neural networks are more and more often used in solutions to clustering problems as well,
usually as a means to learn lower-dimensional representations. The complex architecture
of neural networks allows for learning non-linear representations of the images. The
training of a standard deep neural network is a supervised process where labels are
known during training to compute the loss function. When there is a lack of good
and consistent labeling of the images, regular neural networks are not an ideal solution.
However, autoencoder neural network structures do use loss functions that do not depend
on the data labels.

2.1.2 Autoencoders

Autoencoders have been widely used in image clustering to reduce dimensionality. An
autoencoder consists of two neural network structures: the encoder and the decoder.
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The encoder reduces the input to a lower-dimensional representation, better known as
the latent space representation. The decoder is fed the output of the encoder and tries
to reconstruct the input image. The idea is that if the reconstruction is similar to the
input image, the latent space representation must be informative enough for the decoder
to decipher its unique original image back. However, when two images are similar in
their original state, it does not automatically mean that the latent space representation
of those two images is also similar [20,22,40,41].

The disconnection between the similarity in the input data and their latent space
representation is the main reason for a unified method where both the latent space rep-
resentations and cluster parameters are learned simultaneously. Song et al. [20] trained
an autoencoder for latent space image representation which iteratively updated the
K-means centroids. By adjusting the autoencoder loss to also minimize the distance
between the latent space points to the cluster centroids, the authors were able to learn
a representation more suitable for clustering. Xie et al. [31] proposed deep embedded
clustering (DEC), which simultaneously learns a set of K-means cluster centers in the
latent space of a deep neural network (DNN) and the parameters of the DNN. The
DNN is initialised with the encoder of a trained stacked autoencoder and jointly opti-
mised with the cluster centers using Kullback-Leibler (KL) divergence minimization to
an auxiliary target distribution. A more principled way to learn a latent space represen-
tation that keeps the similarity between the input images intact is the use of variational
autoencoders (VAEs) as they inherently have this capability.

2.1.3 Variational autoencoders

The idea behind VAEs stems from Bayesian inference problems where the posterior
probability of an event is calculated based on a prior distribution and a likelihood
function. By assuming the input data comes from a particular data distribution and
using this prior distribution in back-propagation, VAEs are able to learn a latent space
representation adhering to the distribution of the input data. This form of regularisation
enforces that two images that are similar in the input data are also similar in their latent
space representations, if not more similar. Dilokthanakul et al. [22] used a mixture of
Gaussians as the prior of the VAE and use the latent space representation to assign
cluster labels.

The loss function for training a VAE consists of two parts. The first part of the
loss function describes the difference between the approximate Gaussian posterior given
the input distribution q(z|x) and the standard Gaussian prior p(z). The difference
between these two distributions is calculated using Kullback-Leibler (KL) divergence,
which calculates the difference between the cross-entropy of p and q and the entropy of
q:

DKL

(
q
(
z
∣∣x) , p (z)

)
= −

∫
q
(
z
∣∣x) log p (z) dz −

(
−
∫
q
(
z
∣∣x) log q

(
z
∣∣x) dz) (2.1)

The reparametrization trick is applied and the prior is sampled from a fixed standard
Gaussian p (z) ∼ N (0, 1). We assume the posterior approximates a Gaussian function
q
(
z
∣∣x) ∼ N (µ, σ2

)
and we want this posterior to be as close as possible to the prior

N (0, 1). Therefore, we can sample the latent space z from the fixed Gaussian N (0, 1)
and construct z = µ (x) + σ (x) · ε. By random (ε) sampling z, back-propagation is
possible with simple gradient descent.

In Eq. 2.2 and Eq. 2.3 the formulas for q
(
z
∣∣x) ∼ N (µ, σ2

)
and its log equivalent

are stated respectively.
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q
(
z
∣∣x) ∼ N (µ, σ2

)
=

1√
2πσ2

exp

(
− (x− µ)

2

2σ2

)
.

(2.2)

log q
(
z
∣∣x) = log

(
1√

2πσ2

)
+ log

(
exp

(
− (x− µ)

2

2σ2

))

= log
((

2πσ2
)− 1

2

)
+

(
− (x− µ)

2

2σ2

)

= −1

2
log
(
2πσ2

)
− (x− µ)

2

2σ2
.

(2.3)

In Eq. 2.4 and Eq. 2.5 below, the formulas for p (z) ∼ N (0, 1) and its log equivalent
are stated respectively.

p (z) ∼ N (0, 1)

=
1√
2π1

exp

(
− (x− 0)

2

2 · 12

)

=
1√
2π

exp

(
−1

2
x2
)
.

(2.4)

log p (z) = log

(
1√
2π

)
+ log

(
exp

(
−1

2
x2
))

= log
(

(2π)
− 1

2

)
+

(
−1

2
x2
)

= −1

2
log (2π)− 1

2
x2

= −1

2

(
log (2π) + z2

)
.

(2.5)

Circling back to the KL divergence (Eq. 2.1), using Eq. 2.5, the cross-entropy of p
and q, can now be written as:

−
∫
q
(
z
∣∣x) log p (z) dz = −

∫
q
(
z
∣∣x)(−1

2

(
log (2π) + z2

))
dz

=
1

2
log (2π)

∫
q
(
z
∣∣x) dz +

1

2

∫
z2q

(
z
∣∣x) dz

=
1

2
log (2π) +

1

2

(
µ2 + σ2

)
=

1

2

(
log (2π) +

(
µ2 + σ2

))
,

(2.6)

where the integral over a distribution is always one:
∫
q
(
z
∣∣x) dz = 1, and the expectation

over the square of a random variable is equivalent to the sum of square of mean and
variance:

∫
z2q

(
z
∣∣x) dz. Now using Eq. 2.3. the entropy part of the KL divergence can

be written as follows:
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−
∫
q
(
z
∣∣x) log q

(
z
∣∣x) dz = −

∫
q
(
z
∣∣x)(−1

2
log
(
2πσ2

)
− (z − µ)

2

2σ2

)
dz

=
1

2
log
(
2πσ2

) ∫
q
(
z
∣∣x) dz +

1

2σ2

∫
(z − µ)

2
q
(
z
∣∣x) dz

=
1

2
log
(
2πσ2

)
+

1

2σ2
σ2

=
1

2
log (2π) +

1

2
log
(
σ2
)

+
1

2

=
1

2

(
log (2π) + log

(
σ2
)

+ 1
)
.

(2.7)

Combining Eq. 2.6 and Eq. 2.7 gives us the KL divergence formula:

DKL

(
q
(
z
∣∣x) , p (z)

)
=

1

2

(
log (2π) +

(
µ2 + σ2

))
− 1

2

(
log (2π) + log

(
σ2
)

+ 1
)

= −1

2

(
1− µ2 − σ2 + log

(
σ2
))
.

(2.8)

In practice, however, it is preferable to use the exponent instead of the logarithm
as it is more numerically stable while computing. Therefore, the final KL divergence
formula used in this thesis for part of the loss function is:

LKL = DKL

(
q
(
z
∣∣x) , p (z)

)
= −1

2

(
1− µ2 − σ2 + exp

(
σ2
))
.

(2.9)

The reconstruction loss is also used as part of the training process and is calculated
with the negative loglikelihood (NLL):

LNLL = = −Ez∼q
[
log p

(
x
∣∣z)]

=

MN∑
i=1

xi log yi + (1− xi) log (1− yi) ,
(2.10)

where x are the encoder’s input image pixels and y are the decoder’s output image
pixels. Note that the input of the decoder is the sampled latent space representation.

2.2 (Dis)similarity

As mentioned previously in the Introduction, there are many measures to compute the
similarity. The chosen similarity also depends on the kind of data that is being used.
When comparing two vectors of features, some standard measures like the Euclidean
distance and cosine distance come to mind. These are actually more a measure of
dissimilarity since a higher value represents a larger distance between two nodes, thus
implying a lower level of similarity.

D2
eucl (x, y) =

N∑
i=1

(xi − yi)2 (2.11)
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Dcos (x, y) = 1−

N∑
i=1

xiyi√√√√ N∑
i=1

x2i

√√√√ N∑
i=1

y2i

(2.12)

In a high-dimensional feature space, the use of the Euclidean distance is not as ideal
since small deviations can result in large differences, making the measure difficult to
interpret. The cosine distance is a bit more suited in this case as it stays within the
range [−1, 1].

The Euclidean distance and cosine distance can also be applied to images. The image
is flattened and each pixel represents a feature in the vector. For image data specifically,
it might be interesting to take spacial relationships of the pixels into account and use
the image Euclidean distance (IMED) [14]. IMED adjusts the metric coefficient matrix
(G), which is used to describe the distance and angle from one point on a surface to
another. Let Pi, Pj , for i, j = 1, 2, . . . ,MN be pixels on a MxN image’s grid. The
distance between two pixel locations is denoted as

∣∣Pi − Pj

∣∣. If we denote the location
of pixel Pi as (k, l) and the location of pixel Pj as (k′, l′), the pixel distance may be
calculated as follows: ∣∣Pi − Pj

∣∣ =

√
(k − k′)2 + (l − l′)2. (2.13)

With f describing the dependency between two pixel locations, the metric coefficients
of the regular Euclidean distance are defined as:

gij = f
(∣∣Pi − Pj

∣∣) =

{
1 if i = j

0 otherwise
. (2.14)

Looking at the metric coefficients of the Euclidean distance, only the pixels in the
same position (where i = j) are compared and thus no information about the surround-
ing pixels is taken into account. Where IMED differs from the regular Euclidean distance
is that the metric coefficients are constructed using a Gaussian function:

gij = f
(∣∣Pi − Pj

∣∣) =
1

2πσ2
exp

{
−
∣∣Pi − Pj

∣∣2
2σ2

}
. (2.15)

Therefore, the image Euclidean distance of two images x = (x1, x2, . . . , xMN ) and
y = (y1, x2, . . . , yMN ) of size MxN can be computed as follows:

D2
IME (x, y) =

1

2πσ2

MN∑
i,j=1

exp

{
−
∣∣Pi − Pj

∣∣2
2σ2

}
(xi − yi) (xj − yj)

=

MN∑
i,j=1

gij (xi − yi) (xj − yj) .

(2.16)

2.3 Graph construction

Data that is not graph-like can be transformed into a graph representation by inter-
preting the similarity matrix of the data as an adjacency matrix. In such a constructed
graph, the vertices represent the data points and the weight on the edges between nodes
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represent the similarity between two data points. It is also possible to have an un-
weighted graph where the simple existence of an edge between two nodes represents
they are more similar to each other than to nodes they are not connected to.

The constructed graph is usually highly dependent on the chosen (dis)similarity mea-
sure and the used construction method. Multiple distance measures for image similarity
were mentioned in the previous paragraph, namely the Euclidean distance, cosine dis-
tance and the image Euclidean distance. One of these similarity measures is used in
combination with a graph construction method to create a graph’s adjacency matrix.
For simplicity, all constructed graphs have unweighted and undirected edges.

A popular graph construction method is the k-nearest neighbour (kNN) graph. In
kNN, each data point is connected to its k most similar neighbours based on the chosen
distance measure. In mathematical terms, two data points x and y are connected if:

d (x, y) ≤ d (x, xk)

or

d (x, y) ≤ d (y, yk) ,

(2.17)

where xk and yk represent the k-th nearest neighbours of x and y respectively.
The kNN graph construction algorithm has some issues in terms of efficiency and

scalability [42]. Usually, approximate methods for kNN graph construction are used
when dealing with larger data sets because of the large computational cost [42].

An alternative version of kNN is the Continuous k-nearest neighbours (CkNN) algo-
rithm [29]. By adding a free floating parameter to the equation, the maximum distance
to connect two vertices can be continuously altered instead of discretely:

d (x, y) ≤ δ
√
d (x, xk) d (y, yk). (2.18)

As you can see, the distance is still dependent on the number of nearest neighbours
chosen prior, but because of the δ parameter the distance can easily be increased or
decreased. The δ parameter allows more flexibility in the creation of the graphs. For
simplicity, this value is fixed to 1. The distance at which two nodes are connected is
therefore smaller than the largest distance, either from x to xk or from y to yk. This
means that the resulting CkNN graph has less connections than the kNN graph with
the same number of k-neighbours.

A minimal spanning tree (MST) is computed and used to ensure all emerging sub-
graphs are connected. The connectivity is necessary for the applicability of the Markov
clustering framework since taking a random walk to a disconnected group of vertices is
not possible.

2.4 Markov clustering framework

The graph representation of the data opens up the use of a Markov chain for clustering.
A Markov chain is a stochastic model that describes a process where each next state
only depends on a transition from the current state to a neighbouring state. In a
weighted graph structure, the vertices represent the states and the edge weights can
be used to define the transition probabilities. The more similar two data points are,
the higher the transition probability is of moving from that one vertex to the other.
In unweighted graphs, the transition to the next vertex is chosen randomly among
neighbouring vertices. Consequently, the vertices within the same cluster as the initial
vertex are more likely to be visited early in the diffusion process. Also, when reaching a
vertex in another cluster, it is more likely to visit other vertices in that cluster first before
leaving again. This process of continuously taking random walks is what constitutes a
Markov process.
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Let A be the adjacency matrix of an undirected and unweighted graph G. The
Markov matrix T , or transition matrix, of G equals the column normalized adjacency
matrix A. Let d be a diagonal matrix where each element on the diagonal is the sum of
the elements in the corresponding column in A:

dij =

{∑N
i=0Aij if i = j

0 otherwise
. (2.19)

Then the Markov matrix T can be computed by multiplying A with the inverse of d:

T = Ad−1. (2.20)

The probability of ending up in a particular vertex after a single random walk from
one random node to a neighbouring one is calculated by squaring the transition prob-
ability matrix T : T xT = T 2. For a second random walk, we simply multiply the
previously calculated probabilities with the transition probabilities again: T 2xT , etc.
By multiplying the matrix with itself over and over again until hardly any change in the
resulting transition matrix T (t) after t steps has occurred, we can identify clusters in
the graph.

A common word in graph theory is flow, which in terms of the Markov clustering
framework describes the location and direction of the random walks in the graph. Van
Dongen [43] defines Markov graph clustering based on two phenomena: the disappear-
ance of flow on edges between sparsely connected dense regions and the creation of flow
within dense regions. The creation of flow is simulated with expansion of the transition
matrix: T xT . However, to make the algorithm converge faster, small transition proba-
bilities are made even smaller by using an extra inflation step. Inflating the transition
matrix means that first the column probabilities are multiplied with a factor r and then
again column-normalized. Let Γr be the inflation with power r, then the inflation step
can be formalized as:

(ΓrT )pq =
(Tpq)

r

N∑
i=1

(Tiq)
r

, (2.21)

To decrease the computation time, van Dongen [43] also introduces pruning after
a certain number of steps. If some of the transition probabilities after an expan-
sion+inflation step are below a particular threshold, these values are set to zero. It
is also possible to prune even more strictly by only allowing every node to have a maxi-
mum number of neighbours after each step, of course only keeping those with the highest
transition probability. To allow more precise results, only the first pruning measure is
adopted in the rest of this thesis.

As mentioned earlier, the expansion step allows flow through the network and con-
nects regions with each other, making the number of detected clusters at convergence
smaller. Inflation, on the other hand, has the opposite effect where flow is contracted. A
higher inflation power r increases the contraction of information flow and consequently
increases the number of detected clusters at convergence. A higher inflation power r
also helps to converge the algorithm sooner since small values become smaller faster.
To maintain a balance between allowing flow and contracting flow such that the right
number of clusters is detected, multiple expansion steps can be performed first before
applying a single inflation step.

In this thesis, I will experiment with graph construction methods kNN and CkNN
both directly applied to the pixel values and to the variational autoencoder latent space
representations. The Markov clustering algorithm described by [43] is used to find
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clusterings at different levels of coarseness to see how the elements correlate to each
other across the hierarchy. The MNIST and Fashion-MNIST data sets are used as our
image data sets for the experiments.
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Chapter 3

Methods

3.1 Data

For the experiments, the MNIST [44] and the Fashion-MNIST [27] data sets are used.
The MNIST is a classic handwritten digit data set. The Fashion-MNIST data set is a
clothing item data set. Both are comprised of a training set of 60.000 images and a test
set of 10.000 images, they also each have 10 classes. All images have a size of 28x28
pixels and are represented in grayscale. For Fashion-MNIST specifically, the 10 classes
can reasonably be divided in 5 classes based on our semantic interpretation of which
clothing items are similar [41]:

1. Short-sleeved: {T-shirt/top, Dress}

2. Long-sleeved: {Pullover, Coat, Shirt}

3. Bottoms: {Trouser}

4. Shoes: {Sandal, Sneaker, Ankle boot}

5. Accessories: {Bag}

So, for the Fashion-MNIST data we assume a clustering hierarchy with one level
consisting of the 10 original classes and the other level of the 5 groups mentioned above.
This new division helps to calculate the cluster performance and to investigate the
cluster assignments when a lower number of clusters is detected than the true number
of classes. For MNIST, I am more interested in which digits are clustered together by
the Markov clustering framework in clusterings with a lower numbers of clusters than
10, and which digits are therefore more similar to each other. Observe that the Markov
clustering framework is applied in an adjusted way, where the performances are mainly
based on a fixed number of 10 or 5 clusters in the clusterings. More on how exactly the
resulting clusterings are compared can be found in Methods section 3.3.3 and section
3.3.4.

3.2 Clustering metrics

The goodness of the resulting clusterings is computed using the normalized mutual
information (NMI) [45] and the adjusted rand index score (ARI) [46]. Both compute
how well the predicted clustering approximates the true clustering. Also, NMI and ARI
do not need similar labels for similar clusters since the measures are based on which
elements are grouped together rather than which exact label each element has. The
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Clustering Y
Class y1 y2 . . . yS Sums

C
lu

st
er

in
g

C c1 n11 n12 . . . n1S a1
c2 n21 n22 . . . n2S a2
· · · · ·
· · · · ·
cR nR1 nR2 . . . nRS aR

sums b1 b2 . . . bS

Table 3.1: Contingency matrix of clusterings Y and C. Each element nij represents the number of
elements present in both cluster Ci and cluster Yj .

variation of information (VI) [47] is computed for the multi-scale clusterings to allow
self-detection of a good number of clusters.

3.2.1 Normalized mutual information

The mutual information (MI) is a measure to determine how much information the
observation of one random variable can give about another random variable. By nor-
malizing the MI, we can compare the values for different clusterings more intuitively
since a higher value will always represent a better clustering performance than a lower
value. There are many ways to normalize the MI: by joint entropy [48], minimum en-
tropy [49] or average (geometric) entropy [45]. In this thesis, the NMI is based on the
average entropy and is calculated as follows:

NMI (Y,C) =
I (Y ;C)

mean (H (Y ) , H (C))
, (3.1)

where Y = {Y1, Y2, . . . , YR} denotes the predicted clustering, C = {C1, C2, . . . , CS}
denotes the true clustering, I represents the mutual information and H is the entropy
function. The mutual information I is computed as follows:

I (Y ;C) =

R∑
i

S∑
j

rij log

(
rij
piqi

)
, (3.2)

where rij =
|Yi∩Cj |

n , pi = |Yi|
n , and qj =

|Cj |
n .

3.2.2 Adjusted rand index score

The adjusted Rand index (ARI) score is a measure that computes the clustering perfor-
mance based on agreements and/or disagreements about the cluster assignment of each
pair of data points. The ARI measure is also adjusted for chance whereas the NMI is
not. The ARI is calculated by:

ARI (Y,C) =
RI (Y,C)− E

[
RI (Y,C)

]
max (RI (Y,C))− E

[
RI (Y,C)

] , (3.3)

where RI is the Rand Index score. Using the contingency matrix in Table 3.1 where nij
is the number of elements in both cluster Ci and Yj , the ARI measure can be written
as follows:

ARI (Y,C) =

∑R
i=1

∑S
j=1

(
nij

2

)
−
[∑R

i=1

(
ai

2

)∑S
j=1

(
bj
2

)]/(
n
2

)
1
2

[∑R
i=1

(
ai

2

)
+
∑S

j=1

(
bj
2

)]
−
[∑R

i=1

(
ai

2

)∑S
j=1

(
bj
2

)]/(
n
2

) . (3.4)
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3.2.3 Variation of information

To give an idea how the clusterings differ over the inflation range, the variation of
information (VI) is calculated between the multi-scale clusterings [47]. For this paper’s
purposes, I am using the VI measure based on the local neighborhood which gives the
distances at which the nearest neighbours of a clustering X lie (see [47], property 5).
This VI measure is dependent on the clustering X, and is computed for all pairs of
clusterings in the hierarchy. Calculating the VI across the hierarchy can give insight
into which clusterings are stable and therefore allow the possibility to self-detect a good
number of clusters for the data sets.

The formula for the VI measure looks a lot like the formula for the mutual information
(Eq. 3.2) and therefore a similar notation is used. Mind that the clustering C is also a
predicted clustering and not the true one:

V I (Y,C) = −
K∑
i

L∑
j

rij

[
log

(
rij
pi

)
+ log

(
rij
qj

)]
, (3.5)

again where rij =
|Yi∩Cj |

n , pi = |Yi|
n , and qj =

|Cj |
n .

3.3 Experimental setup

In the experiments, the clustering performances of a few different techniques are com-
pared. The main interest is in whether the latent space representation outperforms the
similarity measures directly applied to the pixel values of the images. Since it is un-
known how the latent space representations from the VAE’s are going to vary across the
different models, I decided to only measure the similarity of the elements in the latent
space representations with the cosine distance. The cosine distance is the only similarity
measure of the three that has a fixed scale, namely (-1, 1). Also, since there are quite a
lot of different VAE models to test, it is preferable to only test one similarity measure.
Thus, the following four techniques are compared:

• VAE latent space representation with cosine distance

• Pixel values with Euclidean distance

• Pixel values with image Euclidean distance (IMED)

• Pixel values with cosine distance

All of these techniques are applied to generate a similarity matrix before graph
construction with either kNN or CkNN. The comparison of the clusterings are based
on the NMI and ARI scores between the predicted clusterings and the true classes.
For the MMNIST data set, only one level at 10 true classes is used whereas for the
Fashion-MNIST data set another level at 5 categories is used as well.

3.3.1 Training the VAE’s

The VAE’s are trained using the training data sets of MNIST and Fashion-MNIST,
which are both comprised of 60.000 samples. After training the VAE’s, the test data
set, with 10.000 samples, is put through the trained encoder part of the VAE’s and the
latent space representations are computed and saved to use later for clustering. Even
though the labels of the training data sets are not directly used for the training of
the VAE’s, the input images are still used to compute how well the reconstruction of
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the decoder is. Therefore, the training data set is not used for clustering and only for
training of the VAE’s.

The encoder and decoder consist of fully connected dense layers, each with the same
number of hidden nodes per layer. The number of nodes in the encoder’s last layer,
the latent space representation layer, can vary from the number of nodes per hidden
layer. All hidden layers have relu activation, whereas the output layer of the decoder
has sigmoid activation. For these experiments, no batch normalization or dropout were
used. The stochasticity of the batch normalization on top of the stochasticity of the
distribution sampling in the latent space layer can be problematic during the training of
the VAE. Meanwhile, dropout layers are mainly used for regularization which is already
accomplished by using KL divergence.

To find the best combination of the number of layers, the number of hidden nodes
in each layer and the number of nodes in the latent space representation, multiple VAE
models were trained with varying hyper-parameter combinations. The following values
were used for the hyper-parameters:

• number of nodes in latent space = [16, 32, 64, 128]

• number of layers in encoder and decoder = [2, 4, 8]

• number of hidden nodes per layer = [32, 64, 128]

In total, 4 ∗ 3 ∗ 3 = 36 different VAE models were trained for both the MNIST
data set as the Fashion-MNIST data set individually. The VAE’s are trained for the
MNIST data set and the Fashion-MNIST data set separately, meaning they both have
their own VAE’s. The loss function is calculated by summing the KL divergence (Eq.
2.9) and negative log likelihood (Eq. 2.10). The weights are initialized using the Xavier
initialization and optimised with Adam, learning rate: 0.001 and weight decay: 0.001,
for 50 epochs.

3.3.2 kNN, CkNN and MST

As explained earlier, both kNN as CkNN are overlayed on a MST to ensure there are
no separate sub-graphs. This allows the random walk mechanism of Markov clustering
to also reach the vertices which were previously separated. The MST algorithm is also
taken into account individually during the experiments to see the difference with the
other methods.

The kNN and CkNN algorithms are tested with a varying number of k neighbours:
k = {3, 5, 7, 9}. For CkNN, we do not adjust the δ value (Eq. 2.18) and have fixed
its value to the default value of 1 since Liu and Barahona [36] showed that the use
of Markov clustering alleviates the dependency on the δ value for detecting clusters at
different levels of coarseness.

3.3.3 Best model and graph construction method selection

Since it is quite computationally expensive and time costly to perform Markov clustering
on a large graph with 10.000 nodes, I first determined which latent space representation
model and graph construction method performed best on a smaller number of images
of the test data set. The images are taken from the test data set specifically since, as
mentioned earlier, the training data sets are used only for the training of the VAEs. The
small subset for these initial experiments consists of the first 50 samples from each class.
The selection of the graph construction methods for the similarity measures directly
applied to the pixel values is also based on the same small subset of the test data set to
keep consistency across the experiments.
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The selections are based on the highest NMI value where the number of detected
clusters is either 9, 10, or 11, where 10 clusters is the true number of clusters in both
data sets. I have chosen to also include the values surrounding 10 because the clustering
framework does not always find exactly 10 clusters in any of the clusterings with the
given step size for the inflation range (more on this later). Nonetheless, I have done more
experiments with values in between to try and find a value for exactly 10 clusters, but
this was not always successful. Luckily, the NMI measure can also be used to compare
two clusterings with a differing number of clusters, and therefore a reasonable estimate
of the best model and graph construction method can be made.

3.3.4 Experiments on the larger test data set

Now that we have selected a VAE model for the latent space representation and a graph
construction method for each of the techniques for both data sets, the techniques are
compared to each other on the remainder of the test data sets. The remainder of the
test data sets is comprised of 9500 samples.

The goal is to find clusterings at different hierarchical levels, i.e. where the number
of detected clusters varies across clusterings. To this end, multiple parameters in the
Markov clustering framework are adjusted such that the number of clusters in the clus-
terings across the hierarchy cover a particular range. For both data sets, this range is
set with a minimum of 5 clusters and a maximum of 10 clusters. In the next section,
I will mention exactly how this range is set and how the Markov clustering parameters
affect the number of clusters detected within a single clustering.

The NMI and ARI measures are used to determine which technique, namely the
Euclidean distance, IMED, the cosine distance or the VAE latent space representation,
performs best in combination with the Markov clustering framework on the MNIST and
Fashion-MNIST data set. For the best performing technique, the multi-scale clusterings
are evaluated in terms of the variation of information (VI) measure. Additionally, the
cluster assignments of the data points are compared at the different levels of the hierarchy
to see whether the clusterings are semantically consistent.

3.3.5 Overview

All in all, there are quite a few steps to get to the final experiments. A short overview
is shown below.

1. Train different VAE’s for latent space representation on training data sets.

2. Select a VAE model and graph construction method combination on the small
subset of 500 samples from the test data sets.

3. Select a graph construction method for the similarity measures directly applied to
the pixel values on the small subset of 500 samples from the test data sets.

4. Apply all selected models/graph construction methods with Markov clustering
on the remainder of the test data set, which is 9500 samples, to find multi-scale
clusterings.

5. Evaluate the clusterings of the best performing technique.
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3.4 Markov stability framework

A Python implementation of Van Dongen [43] is used1.

3.4.1 Influence of the parameters

The Markov clustering framework [43] has a couple of parameters, each with their own
influence on the resulting clustering.

• Expansion: As mentioned previously, the expansion parameter allows flow through
the network. A higher expansion value, i.e. more matrix multiplications in one
step, represents multiple random walks and thus allows the flow to go further
than one node. Therefore, the flow reaches more nodes in the graph and allows
the ability to merge smaller clusters, which results in a lower number of detected
clusters in the final clustering.

• Inflation: The inflation parameter does the exact opposite of the expansion paramter
by directing flow to nodes with the higher transition probabilities. It contracts the
flow of information which results in the flow reaching a fewer number of nodes. The
higher the inflation value, the fewer nodes are reached and therefore the number
of detected clusters at convergence is larger. Also, a higher inflation value helps
reach convergence in less iterations, where a single iteration consists of a number
of expansion steps in combination with a single inflation step.

• Pruning threshold: The pruning threshold helps to convergence even faster by
setting the transition probabilities to zero when the value is lower than the thresh-
old. Increasing the threshold value results in even more transition probabilities
that are removed, and thus even faster convergence. However, by removing tran-
sition probabilities, less nodes are able to receive the flow from the expansion step
which results in a higher number of clusters detected in the resulting clustering.

3.4.2 Multi-scale detection of clusterings

Since a higher inflation value allows to find clusterings with a higher number of clusters,
a range of inflation values is used in each experiment to detect clusterings at different
levels of coarseness. The expansion and inflation parameters are adjusted such that in
each experiment the same range of detected clusters is found.

For the initial experiments on the smaller subset of the data, to get the best per-
forming VAE model and graph construction method, the default expansion value of 2
in combination with a range of inflation values was enough to find clusterings where the
number of clusters equals 9, 10, or 11 for all models and graph construction methods.
The inflation range from 1.15 to 1.45 with a step size of 0.01 was used in these experi-
ments. The selection of the VAE models and graph construction methods is based on
the highest NMI value over all results where the predicted clustering has exactly 9, 10,
or 11 clusters.

Unfortunately, the standard expansion value of 2 is not high enough for the Markov
clustering framework to find a minimum of 5 clusters on the larger data sets. Since the
graph has more nodes, we need to increase the flow of information to reach those nodes.
The expansion value is highly increased to 10, 15 or 20 to achieve detection of a minimum
of 5 clusters in the clustering with a low inflation value, which is also determined for
each experiment individually. The inflation value is increased with step sizes of 0.01

1Implementation available at https://github.com/guyallard/markov clustering and details about the
algorithm available at https://micans.org/mcl/
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Data set Method Best graph Expansion
Inflation range

(step = 0.01)

MNIST

VAE (2, 64, 16) CkNN9 15 1.30 - 2.50

COSINE CkNN7 15 1.30 - 1.80

EUCL CkNN9 15 1.30 - 1.95

IMED CkNN9 20 1.20 - 1.85

Fashion-MNIST

VAE (2, 32, 16) kNN5 10 1.30 - 1.80

COSINE CkNN9 20 1.20 - 1.70

EUCL CkNN5 15 1.30 - 1.70

IMED CkNN5 15 1.10 - 1.70

Table 3.2: Expansion value and inflation range for the Markov clustering framework on the larger graphs
(N=9500). The VAE model’s notation represents the number of layers, the number of hidden nodes per
layer and the number of nodes in latent space respectively.

until the resulting clustering reaches 10 clusters or more. In Table 3.2, the expansion
value and inflation ranges are shown for each method applied to the larger data set. The
selected VAE models and graph construction methods are also mentioned in the table
for completeness. These results will also be more elaborated on in the remainder of this
thesis.
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Chapter 4

Results

4.1 Selection of VAE model and graph construction
method

In this section, the results on the smaller subset to select a VAE model and a graph
construction method for each technique are outlined. The selected VAE model and
graph construction methods are then used to perform multi-scale Markov clustering on
the larger test data set.

MNIST

Graph CkNN kNN MST mean

k 3 5 7 9 3 5 7 9

COSINE 0.6152 0.6316 0.6907 0.6760 0.5880 0.6411 0.6213 0.6652 0.6023 0.6368

EUCL 0.5261 0.5347 0.6260 0.6407 0.5566 0.6109 0.5982 0.5871 0.5315 0.5791

IMED 0.4693 0.6147 0.6518 0.6916 0.6239 0.6377 0.6451 0.6452 0.5935 0.6192

Table 4.1: MNIST: maximum NMI values at the detection of 9,10 or 11 clusters of the experiments on
500 samples to select best graph construction method for similarity measures applied directly to the
pixel values.

Fashion-MNIST

Graph CkNN kNN MST mean

k 3 5 7 9 3 5 7 9

COSINE 0.6357 0.6702 0.6567 0.6725 0.6650 0.6671 0.6709 0.6653 0.5628 0.6518

EUCL 0.5935 0.6572 0.6203 0.6533 0.5957 0.6135 0.6153 0.5980 0.5695 0.6129

IMED 0.5946 0.6341 0.6227 0.6276 0.5540 0.6112 0.6237 0.6219 0.5365 0.6029

Table 4.2: Fashion-MNIST: maximum NMI values at the detection of 9,10 or 11 clusters of the experi-
ments on 500 samples to select best graph construction method for similarity measures applied directly
to the pixel values.

4.1.1 Similarity directly applied on the image data

In Table 4.1 and Table 4.2 above, you can find the NMI values for the experiments
where the similarity measure is directly applied to the MNIST data set and the Fashion-
MNIST data set respectively. For the MNIST data set, the cosine distance performed
best in combination with the CkNN graph construction method and 7 neighbours
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(NMI=0.6907). The Euclidean distance and IMED both performed best with CkNN
where the number of neighbours is 9 (NMI=0.6407 and NMI=0.6916 respectively).

On the Fashion-MNIST data set, the Euclidean distance and IMED both perform
best with CkNN and 5 neighbours (NMI=0.6572 and NMI=0.6341 respectively). Note
that the difference for the Euclidean distance between CkNN5 and CkNN9 is very small
(diff=0.0039). The cosine distance performs best with CkNN and 9 neighbours on the
Fashion-MNIST data set (NMI=0.6725), again with a very small difference between
CkNN5 and CkNN9 (diff=0.0023).

4.1.2 VAE latent space representation

In Table 4.3 and Table 4.4, the top 5 results are shown for the experiments to select
a VAE model and a graph construction method for the latent space representation.
The entire result tables can be found in Appendix section 7.1. According to these
experiments, the VAE model with 2 hidden layers, 32 nodes per hidden layer, and 16
nodes in the latent space layer performs best on the 500 samples from the MNIST data
set. The accompanying best graph construction method is CkNN with 9 neighbours.

For the Fashion-MNIST data set, the VAE model with 2 hidden layers, 32 nodes per
hidden layer and 16 nodes in the latent space layer performs best in combination with
kNN and 5 neighbours.

As mentioned previously, it is quite difficult to find the exact right inflation value
for the detection of exactly 10 clusters. This was especially the case for the VAE model
and graph construction selection process. Therefore, some entries have missing values
even though the clusterings with 9 and 11 clusters are included.

MNIST

G CkNN kNN MST mean

k 3 5 7 9 3 5 7 9

(2, 32, 128) 0.6004 0.6366 0.6475 0.6980 0.6311 0.6680 0.6917 0.6436 0.6521

(2, 64, 16) 0.5730 0.6497 0.7002 0.7373 0.6579 0.6567 0.7350 0.7165 0.5312 0.6619

(2, 64, 32) 0.6343 0.6985 0.6860 0.6305 0.6154 0.6606 0.7037 0.5314 0.6451

(2, 64, 128) 0.5524 0.6741 0.7255 0.7341 0.6550 0.6756 0.7296 0.7261 0.5940 0.6741

(2, 128, 16) 0.6031 0.6145 0.6256 0.6732 0.6133 0.6477 0.6532 0.6294 0.5785 0.6265

mean 0.5822 0.6418 0.6795 0.7057 0.6376 0.6527 0.6940 0.6839 0.5588 0.6519

Table 4.3: MNIST: maximum NMI values at the detection of 9,10 or 11 clusters for the experiments on
500 samples to select a VAE model and a graph construction method for latent space representation.
Notation of the model in the left column: (number of hidden layers, number of nodes per hidden layer,
number of nodes in latent space layer).

Fashion-MNIST

G CkNN kNN MST mean

k 3 5 7 9 3 5 7 9

(2, 32, 16) 0.5534 0.5780 0.5919 0.6315 0.5844 0.6482 0.6459 0.6292 0.5774 0.6044

(2, 32, 64) 0.5684 0.5984 0.6019 0.6358 0.6149 0.6353 0.6289 0.6325 0.4892 0.6006

(2, 32, 128) 0.5302 0.5194 0.6043 0.6408 0.5673 0.5789 0.6133 0.6266 0.5460 0.5808

(2, 128, 32) 0.4632 0.5677 0.6252 0.6046 0.5241 0.6010 0.5959 0.6103 0.5187 0.5679

(8, 128, 16) 0.5413 0.5898 0.6284 0.6148 0.5608 0.5665 0.4945 0.5811 0.5218 0.5665

mean 0.5313 0.5707 0.6103 0.6255 0.5703 0.6060 0.5957 0.6159 0.5306 0.5840

Table 4.4: Fashion-MNIST: maximum NMI values at the detection of 9,10 or 11 clusters for the ex-
periments on 500 samples to select a VAE model and a graph construction method for latent space
representation. Notation of the model in the left column: (number of hidden layers, number of nodes
per hidden layer, number of nodes in latent space layer).
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4.2 Markov clustering on larger test data sets

The VAE models and graph construction methods with the highest NMI in the previous
section are used to perform the Markov clustering on the larger test data sets with 9500
samples. To reiterate, the following VAE models and graph construction methods were
used for each technique on each data set:

• MNIST:

– VAE + CkNN9,
where the VAE model has 2 hidden layers, 64 hidden nodes per layer and 16
nodes in the latent space layer.

– COSINE + CkNN7

– EUCL + CkNN9

– IMED + CkNN9

• Fashion-MNIST:

– VAE + kNN5,
where the VAE model has 2 hidden layers, 32 hidden nodes per layer and 16
nodes in the latent space layer.

– COSINE + CkNN9

– EUCL + CkNN5

– IMED + CkNN5

4.2.1 Best performance at true number of detected clusters

The NMI and ARI scores for the final clustering experiments on the large test data sets
of 9500 samples are displayed in Table 4.5. Multiple inflation values can result in the
same number of clusters in the resulting clustering. Therefore, the values in Table 4.5
represent the highest values found over the multiple inflation values. The NMI and ARI
values are based on the 10 true classes in both data sets. For the Fashion-MNIST data
set, the maximum NMI and ARI scores at 5 clusters in a clustering are also computed
with the 5 higher level categories as mentioned in section 3.1.

MNIST@10 Fashion-MNIST@10 Fashion-MNIST@5

NMI ARI NMI ARI NMI ARI

VAE 0.7970 0.7403 0.5318 0.3426 0.5678 0.4276

COSINE 0.6558 0.3933 0.6301 0.4738 0.6876 0.5104

EUCL 0.6327 0.3250 0.5468 0.3150 0.5759 0.3953

IMED 0.6573 0.3364 0.5681 0.3426 0.5967 0.3628

Table 4.5: NMI and ARI scores of resulting clusterings on the test data set with 9500 samples. The
scores displayed are computed for the true clustering at 10 clusters for both data sets and also at 5
clusters for the Fashion-MNIST data set.

For the MNIST data set, the VAE latent space representation gives the highest NMI
(=0.7931) and ARI (=0.7345) score at 10 clusters. These values are both remarkably
higher than the values for the other techniques on the MNIST data set. The cosine
similarity directly applied to the pixel values on the Fashion-MNIST data set performs
best in terms of both the NMI (=0.6301) and ARI (=0.4738) scores in comparison to
the other techniques. The same holds for the performance on Fashion-MNIST with the
5 higher level categories, where both the NMI (=0.6876) and ARI (=0.5104) are highest
for the cosine distance directly applied to the pixel values.
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MNIST Fashion-MNIST

NMI ARI NMI ARI

VAE 0.8025 @9 0.7826 @12 0.5901 @6 0.4268 @6

COSINE 0.7022 @11 0.4697 @11 0.6512 @8 0.5193 @8

EUCL 0.7433 @12 0.6052 @13 0.5699 @9 0.3644 @9

IMED 0.7271 @6 0.4916 @6 0.6232 @7 0.4500 @7

Table 4.6: Highest NMI and ARI scores for each technique over all resulting clusterings on the large
test data set of 9500 samples, where @c stands for the number of detected clusters in the clustering.

4.2.2 Best performance at variable number of detected clusters

The highest NMI and ARI values regardless of the number of clusters in the resulting
clustering are shown in Table 4.6. These values are a little bit higher than their cor-
responding values at the detection of the true number of classes. However, the same
techniques, namely the VAE latent space representation for the MNIST data set and
the cosine distance for the Fashion-MNIST data set, report the highest overall NMI and
ARI values in both instances.

4.2.3 Variation of information of the clusterings

The variation of information (VI) is computed for the best performing techniques on
the larger test data set as determined in the previous section. For the MNIST data set,
the clusterings from the VAE latent space representation in combination with CkNN9
are used and for the Fashion-MNIST data set, the clusterings from the cosine distance
with CkNN9 are used. For both data sets, the VI is calculated for all pairs of clusterings
across the inflation value range. In Figure 4.1, the VI heatmaps for the MNIST data set
and Fashion-MNIST data set are displayed. To provide extra information, the x-axis of
the figures are renamed to the number of clusters in the clusterings. The accompanying
inflation value ranges are shown on the y-axis.

(a) MNIST (b) Fashion-MNIST

Figure 4.1: Variation of information across different levels of hierarchy calculated for a) the clusterings
resulting from the MNIST data set with VAE latent space representation and CkNN9 and b) the
clusterings resulting from the Fashion-MNIST data set with the cosine distance and CkNN9.
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Figure 4.2: MNIST: cluster assignment of the data points in the best clusterings at different levels of
the hierarchy. The values in the heatmap represents the percentage of data points from the true classes
that are assigned to the predicted cluster.

The VI heatmap for the MNIST data set shows large plateaus of low VI values at 5,
6, and 10 detected clusters. For the Fashion-MNIST data set, the larger plateaus of low
VI values can be found at 7 and 9 detected clusters. In the discussion, section 5.1.3, the
meaning of these plateaus is discussed further.

4.2.4 Cluster assignments of the data points at different levels
in the hierarchy

The quality of the multi-scale clusterings can be checked by evaluating the cluster as-
signments of the data points. In Figure 4.2, the cluster assignments for the MNIST data
set are displayed. In Figure 4.3, the cluster assignments for the Fashion-MNIST data
set can be found. In the figures, the cluster assignments with the best NMI per number
of clusters is shown. The heatmaps show the percentage of elements from the true class
that is clustered within a certain cluster.

At 5 detected clusters, the MNIST data set is able to differentiate class ‘1’, ‘6’ and
‘7’ from the rest with at least 90% of the corresponding class elements. Class ‘7’ is
also clustered with 11.9% of elements from class ‘9’. The classes with digits ‘4’ and ‘9’
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Figure 4.3: Fashion-MNIST: cluster assignment of the data points in the best clusterings at different
levels of the hierarchy. The values in the heatmap represents the percentage of data points from the
true classes that are assigned to the predicted cluster. The horizontal lines help distinguish the 5 higher
level category membership of the 10 true classes. The order from top to bottom is 1) short-sleeved, 2)
long-sleeved, 3) bottoms, 4) shoes, and 5) accessories.

are clustered together, as well as the remaining classes ‘0’, ‘2’, ‘3’, ‘5’, and ‘8’. At 10
detected clusters, each class roughly has its own cluster, except the classes ‘4’ and ‘9’
which are clustered together. Additionally, the class of digit ‘two’ is divided over two
clusters.

For the Fashion-MNIST data set, only the class ‘trouser’ is clustered separately with
95.6% of the elements at 5 detected clusters. Cluster 2 and cluster 4 both do have mainly
‘shoes’ items which is consistent with the 5 higher level classes for the Fashion-MNIST
data set. At 10 clusters, again only the class ‘trouser’ is distinguished from the rest,
with 95.5% of the elements clustered together. The elements from the category ‘shoes’
are divided over cluster 7 and cluster 9, but contain hardly any elements of the other
classes. Note that almost all elements (96.8%) of the class ‘bag’ is clustered together, but
the cluster also contains some elements from the other classes. All the other detected
clusters consist of elements from different true classes.
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Chapter 5

Discussion

In the first part of the discussion, I would like to come back to the research questions from
the Introduction. Next, some additional effects of the hyper-parameters of the graph
construction methods are discussed in relation to the resulting clusterings. Finally, the
limitations of this research and possible future directions are mentioned.

5.1 Revisiting the research questions

5.1.1 Latent space representation vs. directly from pixel values

Based on the performance of each technique on the larger MNIST test data set, the
latent space representation of the VAE gives the highest NMI and ARI scores at exactly
10 detected clusters. Also the NMI and ARI scores are highest for this technique when
the clusterings are compared with a variable number of detected clusters. The difference
in NMI and especially ARI scores are large enough to conclude that in the case of the
MNIST data set, the latent space representation is best suited. The selected VAE model
had only 2 hidden layers with each 64 hidden nodes and the latent space representation
only had 16 nodes. The input images are greatly reduced from 784 pixels to 16 features
and still provide good clustering results. This illustrates the usability of VAEs to reduce
dimensionality while preserving, and maybe even improving, the similarity between the
input images in the latent space representation.

The results on the Fashion-MNIST data set tell a different story. Here, the cosine
distance has the highest NMI and ARI, again both at exactly 10 detected clusters and
at a variable number of detected clusters. The cosine distance also has the highest
NMI and ARI scores for the higher level categories at 5 clusters. The VAE latent space
representation performs about the same as the Euclidean distance and IMED.

Unfortunately, the use of a similarity measure specifically designed for image data,
namely IMED, does not significantly improve the clustering performance. For both
data sets, IMED performs approximately the same as the regular Euclidean distance,
with maybe slight improvements every now and then. These improvements are negligible
when taking the computing time of the IMED measure into account. The IMED measure
is computed for all pairs of samples in the data set, with the coefficient matrix being of
size MNxMN for images of size MxN . Especially for large data sets, the computation
time increases significantly. There is a way to reduce the computation time by first
applying the Standardizing transform (ST) on the images themselves and then calculate
the Euclidean distance for all image pairs [14]. In this thesis, the ST was not applied
on the images due to a lack of availability of the code implementation.
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5.1.2 Graph construction

Although the graph construction methods have not been thoroughly tested on the larger
test data sets, there still can be said something about the results of the experiments on
the small subsets. For the MNIST data set, all selected graph construction methods were
of the CkNN kind. In addition, a higher number of 7 and 9 neighbours was preferred.
For the Fashion-MNIST data set, the results varied a bit more and kNN was also amidst
the selected graph construction methods. The majority of the selected methods had 5
neighbours and only one had a preference for 9 neighbours.

The results on the experiments for the VAE model selections can also tell use more
about which graph construction method is most robust across the VAE models with
differing hyper-parameters. In the Appendix section 7.1, Table 7.1 and Table 7.2, the
NMI scores are reported for each combination of VAE parameters and graph construction
method. The mean values are also shown across each VAE model and across each graph
construction method. Out of all the graph construction methods, the CkNN graph with
9 neighbours shows the highest average NMI value across the different VAE models for
both data sets.

As previously mentioned in section 3.3.2, the parameters of the graph construction
methods are somewhat alleviated by the use of Markov clustering. Therefore, the best
graph construction method suited for Markov clustering is quite ambiguous.

5.1.3 Relation between clusterings across the hierarchy

The multi-scale detection of clusters allows us to investigate the category membership
of the data at different levels of abstractness. The clusterings in the hierarchy can help
find similarity relationships between the true classes as well. Another reason for multi-
scale detection of clusters is the ability to self-detect the best number of clusters for the
data set. To this end, the variation of information (VI) is computed for all clusterings
across the hierarchy. As seen in Figure 4.1, the plateauing of the VI measure for a
particular range of inflation values indicates a robust clustering since the inflation value
needs to be raised more in order to make a difference in the resulting clustering. If the
number of true classes in the data is unknown, the plateauing of the VI measure at a
certain number of detected clusters provides an estimate of the true number of classes.
Especially for data with hierarchical classes, the VI measure has the ability to detect
the different levels of category membership. The cluster assignments in Figure 4.2 and
Figure 4.3 are used to evaluate these particular clusterings.

MNIST

The VI results for the MNIST data set show relatively large plateaus at 5, 6, and 10
detected clusters. Thus, the results imply a detected hierarchy of 3 different levels of
abstractness. Since there is no real hierarchy within the MNIST data set, these results
are difficult to interpret. Instead, we will look more into the relationships between the
elements of the true classes that are clustered together at these levels.

Firstly, at 5 detected clusters, the classes ‘1’ and ‘6’ each have a large percentage
of their elements in their own cluster (98,4% and 97,4% respectively) with only a small
percentage (<2.0%) of elements from the other classes. Consequently, digit ‘1’ and digit
‘6’ are most distinguishable from the other digits. The majority of the elements of class
‘7’ (90.7%) is clustered together, but also with a fair percentage of the elements from
class ‘9’. The elements from class ‘4’ and class ‘9’ are mostly clustered together. The
digits ‘4’ and ‘9’ have a similar construction as both mainly consist of a circle with
a vertical line on the right side, where the circle is more angular for the ‘4’ and the
vertical line rounds of to the left for the ‘9’. Therefore, it is expected that the elements
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are clustered together at a higher level in the hierarchy. For the remaining classes, ‘0’,
‘2’, ‘3’, ‘5’, and ‘8’, a large majority of the elements (>95%) from each class is clustered
together in the same cluster but not in their own cluster. Therefore, we can conclude
that it is more difficult to separate these classes from each other than the classes that
do have their own predicted cluster.

Secondly, at 6 detected clusters, the cluster assignments are fairly similar to the
cluster assignments at 5 detected clusters. One main difference is that now the majority
of class ‘2’ (95.8%) has its own cluster with some elements from class ‘3’ and class ‘7’.
Additionally, more elements from class ‘9’ (now 91.0%) are clustered together in the
cluster also containing more elements from class ‘4’ (now 93.0%). So, with more clusters
detected, the digit ‘2’ is separated from the large mixed cluster, implying the elements
from class ‘2’ are more distinguishable than the elements from class ‘0’, ‘3’, ‘5’ and ‘8’.

Lastly, at 10 detected clusters, most digits have their own cluster. The clusters
containing the majority of elements for class ‘0’, ‘1’, ‘3’, ‘6’ and ‘7’ only contain a small
percentage (<2.0%) of elements from other classes. Again, the majority of the elements
from digits ‘4’ and ‘9’ are clustered together (94.5% and 92.5% respectively), again with
each a higher percentage than at the previous hierarchy level. The elements of class ‘2’
are divided over two clusters, one also containing a few elements from class ‘7’. The
cluster with the majority of class ‘5’ (89.9%) also has some elements of class ‘3’ and class
‘8’. In the cluster with the majority of class ‘8’ (86.7%), a few elements from class ‘3’
and class ‘5’ are found. In these two latter clusters, mostly elements from the same three
classes (‘3’, ‘5’ and ‘8’) are found, indicating a similarity relationship between them.

In summary, the elements in the classes ‘0’, ‘1’, ‘3’, ‘6’ and ‘7’ are each most distin-
guishable from the elements of the other classes. The elements from the classes ‘4’ and
‘9’ have the highest similarity relationship since most elements from these classes are
always clustered together at each level in the hierarchy. There is a similarity correlation
between elements from class ‘3’, ‘5’ and ‘8’, as shown by the cluster assignments at 10
detected clusters. The elements of class ‘2’ have the highest inter-class dissimilarity as
they are divided over two clusters at the lower level in the hierarchy.

Fashion-MNIST

On the Fashion-MNIST data set, the VI results show two interesting plateaus. The first
plateau at 7 detected clusters is a relatively smaller than the second plateau at 9 detected
clusters. Unfortunately, the VI results showed no real plateau at 5 detected clusters for
the evaluation of the higher level categories as mentioned in section 3.1. Nonetheless,
I will still compare the cluster assignments of the best clustering at 5 detected clusters
to validate the higher level categories. These higher level categories are also used as
a guideline for the clusterings at the two detected hierarchies of 7 and 9 clusters. In
Figure 4.3, as a visual aid, the division of classes by the horizontal lines represent the
higher level category memberships.

At 5 detected clusters, only the class ‘trouser’ has its own cluster with 95.6% of its
elements clustered together and hardly any elements from the other classes. Almost all
elements from the classes ‘sandal’, ‘sneaker’ and ‘ankle boot’, all part of the higher level
category ‘shoes’, are clustered together over two clusters. Interestingly, the elements
from the classes ‘sneaker’ and ‘ankle boot’ are more distinguished from each other than
from the elements of the class ‘sandal’. Since sneakers and ankle boots are both closed
shoe types, the expectation was that these two would be more similar to each other
than to the open sandals. Alternatively, the division of the elements from the ‘sandal’
class over the two clusters might have something to do with the height of the sandals,
as sneakers are generally lower than the ankle, whereas ankle boots are a little higher.
The majority of the elements from the class ‘dress’ (96.2%) are clustered together, but
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also with a large percentage of elements from the classes ‘shirt/top’, ‘coat’, ‘shirt’, and
a bit smaller percentage of elements from the class ‘pullover’. The joined clustering of
the majority of elements from the classes ‘dress’ and ‘t-shirt/top’ is in accordance to
the higher level category membership. For the class ‘bag’, 98.4% of the elements are
clustered together, but not on its own. The cluster also contains the majority of the
classes ‘pullover’ (90.9%), ‘coat’ (64.9%) and ‘shirt’ (58.0%).

Next in the hierarchy, at 7 detected clusters, the division of the elements over the
clusters seems to adhere more to the higher level categories. The results for the ‘shoes’
category are almost identical to the clustering at 5 detected clusters. The same goes for
the class ‘trouser’. On the other hand, more elements of the class ‘t-shirt/top’ (90.9%)
are clustered together with elements of the class ‘dress’ (92.6%), with less elements from
the classes ‘coat’ and ‘shirt’. The elements for the ‘long-sleeved’ category are mostly
clustered together, but similar to the ‘shoes’ category, are divided over two clusters.
The most noteworthy change for this clustering is that the elements from the class
‘bag’ are better separated from the elements of the ‘long-sleeved’ category with smaller
percentages of the elements from the classes ‘pullover’, ‘shirt’ and ‘t-shirt/top’.

Lastly, at 9 detected clusters, there is quite a lot of variability in terms of the elements
from the true classes that are assigned to one clustering. Still, the elements from the
class ‘trouser’ are very well distinguished from the elements of the other classes. The
majority of the elements from the classes ‘t-shirt/top’ (77.6%) and ‘dress’ (83.9%) are
no longer part of the same cluster, and especially the class ‘dress’ shares a cluster with a
fair portion of the elements from the class ‘t-shirt/top’. Both also share a cluster with a
decent percentage of elements from the class ‘shirt’. The elements for the class ‘bag’ are
slightly better separated from the other classes in the previous clustering at 7 detected
clusters. The two clusters covering the ‘long-sleeved’ category are still approximately
the same and quite ambiguous. Some elements of the class ‘dress’ are also included. For
the ‘shoes’ clusters, almost all elements from the class ‘ankle boot’ are assigned to the
same cluster. Note that one cluster, number 2, has a very small number of elements
and contains no majority of elements from any of the classes. The cause for this almost
empty cluster is unknown as it was not a part of the experiments to investigate which
exact elements are in the clusters. One reason might be that the elements are highly
specific cases, called outliers, where even the most similar image is dissimilar. This can
result in odd connections between the image nodes in the graph and give the Markov
framework a difficult task of assigning them to clusters.

In summary, the cluster assignments of the data points are quite well related to the
higher level category memberships. Especially the class ‘trousers’ is well distinguished
from the other classes at all levels in the hierarchy. The used technique in combination
with Markov clustering does not perform well enough to separate the classes involving
upper-body items, although some division can be found in terms of the ‘short-sleeved’
and ‘long-sleeved’ classes. The cluster involving the majority of elements from the class
‘bag’ also has some elements from the other clusters, but these percentages were smaller
at 7 and 9 detected clusters than at 5 detected clusters.

5.2 Effect of k in CkNN and kNN on the number of
detected clusters

The inflation value to detect a specific number of clusters in the clustering is highly
dependent on the number of neighbours chosen for the graph construction methods. A
node in a graph constructed with a lower number of neighbours has a lower number
of possible transitions. In the overall graph, there are less connections, for which the
transition probabilities are reduced faster with the inflation parameter and pruning
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threshold. Consequently, a low inflation value on a graph with a smaller number of
neighbours per node results in a higher number of detected clusters than on a graph
with a higher number of neighbours per node. In other words, there is a negative
correlation between the number of neighbours in a graph and the number of detected
clusters in the resulting clustering.

5.3 Computational complexity of the Markov clus-
tering framework

The Markov clustering is the most complex part of the experiments. Assuming N is
the number of nodes in the graph, the inflation step, regardless of the value, can be
done in O

(
N2
)
. One inflation step combined with one expansion step (NxN) is of

O
(
N3
)
. However, with more matrix multiplications per expansion step, i.e. with a

higher expansion value, the complexity increases with every additional matrix multipli-
cation. Assuming exp is the expansion value (which is 2 by default), the complexity of
the Markov clustering framework becomes of O

(
N1+exp

)
. Van Dongen [43] does pro-

vide the option of using sparse transition matrices for clustering, meaning the default
algorithm is of O

(
Nk2

)
, where k is the average number of neighbours per node in the

graph.

5.4 Limitations

The current research has a couple of limitations. Firstly, the VAE model and graph
construction method selections were done on a small subset of 500 samples of the test
data sets. These 500 samples consisted of the first 50 samples from each class in the
test data sets. In hindsight it would have been better to randomly sample these 50
samples from each class and base the final selection on the best average performance
over multiple repetitions. However, due to time restrictions this was no longer possible.
The consequence is that the selected VAE models and graph construction methods are
based entirely on one fixed sampling and could cause a bias in the final results. For
MNIST specifically, the authors [44] have stated that the first 5000 samples in the test
data set are less difficult than the latter 5000 samples. The bias relating the used graph
construction methods should be limited as the sensitivity for the graph construction
parameters are alleviated by the use of Markov clustering [36].

Another limitation is that only one application, namely the use of VAE models,
were tested to reduce the dimensionality of the input images. Additionally, other
(dis)similarity measures or image descriptors were not investigated in this thesis. There
is no comparison to current state-of-the-art methods for image clustering or to standard
clustering methods like K-means. The main focus in this thesis is on the use of the VAE
latent space representation and their ability to still find good and meaningful multi-scale
clusterings.

The range of number of clusters at which the multi-scale clusterings were detected
is restricted from 5 to 10 clusters. The clusterings with a number of detected clusters
outside of this range are not taken into account even though these clusters could also
have helped to investigate the relationships of the clusterings across the hierarchy.

5.5 Future directions

For the future directions, one goal would be to negate the first limitation mentioned in
the previous section. The sampling problem can easily be tackled by taking multiple
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random samplings of 500 nodes and averaging the resulting NMI scores. Also, with
more computing power and time, all techniques and graph construction methods could
be applied to the entire test data sets of MNIST and Fashion-MNIST, both comprising of
10.000 samples. In this case, there is no need to first select a method that performs best
on the small subset of 500 samples. The constructed graphs can be further optimised
for image clustering as well by adjusting the δ parameter of the CkNN algorithm.

Secondly, the performance of other trending dimensionality reduction methods like
Generative Adversarial Networks (GANs) [41] could be investigated for multi-scale image
clustering.

Lastly, the investigated techniques could be applied on other more complex image
data sets, like the object data set COIL100 [50] and maybe even the hierarchical real-
world data set ImageNET [51]. The results on these data sets could give a better idea
of how helpful the techniques are at multi-scale clustering of real-world examples.
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Chapter 6

Conclusion

In this thesis, the usability of VAE latent space representations for multi-scale image
clustering was investigated on the MNIST data set and the Fashion-MNIST data set.
To this end, the performances of the VAE latent space representations were compared
to the performances of the Euclidean distance, image Euclidean distance (IMED) and
the cosine distance directly applied to the image pixels. For each of these techniques, a
graph construction method was selected beforehand on a small subset of the test data
sets. For the VAE latent space representations, a VAE model was selected beforehand
as well from multiple VAE models with different hyper-parameters. Multi-scale Markov
clustering was performed with the selected VAE models and graph construction methods
on the remainder of the test data sets.

For the selection of the graph construction methods, there was a slight preference
for the continuous k-nearest neighbour (CkNN) algorithm compared to the regular k-
nearest neighbour (kNN) algorithm. The exact number of neighbours varied for each
technique. The results show that the VAE latent space representation performs best
on the MNIST data set but not on the Fashion-MNIST data set. The Fashion-MNIST
data set had the highest NMI scores with the cosine distance as the similarity measure.

The Markov clustering framework was able to cluster most of the elements of each
true class in the same cluster for the MNIST data set. Obviously, at higher levels in
the hierarchy, not all true classes were clustered separately from the rest. Although no
real hierarchy exists for the MNIST data set, the clusterings across the hierarchy showed
that the elements in the digit classes ‘4’ and ‘9’ are most similar to each other. They also
showed a similarity relationship between the digit classes ‘3’, ‘5’ ‘8’. For the Fashion-
MNIST data set, the true classes were also assigned a higher level category membership
(‘short-sleeved’, ‘long-sleeved’, ‘bottoms’, ‘shoes’, ‘accessories’). The results of the multi-
scale clusterings on the Fashion-MNIST data set showed relatively good results for these
higher level categories in comparison to the cluster assignments of the true classes. Only
the elements of the class ‘trouser’ (also known as ‘bottoms’) were assigned their own
cluster at all levels in the hierarchy.
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Chapter 7

Appendix

7.1 Model and graph testing

To determine the best variational autoencoder model and graph construction method,
multiple tests were done on 500 balanced samples from the MNIST and Fashion-MNIST
dataset. The NMI for each combination of model and graph construction method is
reported below for all individual feature possibilities. For the model notation: {number
of layers, number of hidden nodes in each layer, number of nodes in latent space}.
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Table 7.1: MNIST: The NMI values are reported for all experiments to select a VAE model and graph
construction method.
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Table 7.2: Fashion-MNIST: The NMI values are reported for all experiments to select a VAE model
and graph construction method.
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