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Abstract

In this research we set out to detect the location of users of chat applications
based on the metadata of their messages. Related work shows that location
detection is possible based on the activity profile of the users and then
especially using the night inactivity. It also shows that the location of a
user can be detected based on the strength of their relationship with respect
to their social network.

We contribute to earlier research by focusing on the daily routine of a
user’s activity profile, other network features besides the strength of the
relation between the users and we investigate how the combination of daily
routines and network features can help the model to better detect the user’s
location.

We found that nightly inactivity is a very strong predictor of the location
and it is possible to predict the user’s country location with 10.86% accuracy,
almost doubling on a random guess with the 18 countries in our data set.
Our network features include tie strength, density, average start sleep time
and number of contacts. These features help the model to detect better
than with a random guess with a total accuracy of 7.55%. Combining the
two independent set of features improves statistically significant upon both
individual models to an accuracy of 11.85%.
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Chapter 1

Introduction

Social media and instant messaging services take a more and more promi-
nent place in every day life. Applications like Facebook and WhatsApp
provide means for people to stay in touch with each other regardless of the
distance between them. Besides allowing people to communicate with those
who are in close physical proximity, social media also give the possibility to
connect to people on the other side of the world.

According to Kemp et al. (2020) the number of people using the internet
worldwide has grown with 7% last year, to a total of 4.54 billion internet
users. Kemp et. al. also found that there were 5.19 billion mobile phone
users and 3.80 billion social media users in January 2020.

Of all mobile phone users 89% of them use a chat application or a so-
cial networking application each month. On average the global population
spends 2 hours and 24 minutes on social media each day.

As social media is widely used by the public, coorperations and gov-
ernments are investigating ways to use it to their benefit. Several studies,
Barwise and Strong (2002) and Barnes and Scornavacca (2004), demon-
strate that the use of social media and mobile phone applications such as
Facebook are increasingly interesting to publish marketing campaigns. A
growing number of companies use messaging services, for instance What-
sApp, to offer customer support. Besides using social media for marketing
purposes more recent research has proven the use of social media for social
importance. For example, Paul and Dredze (2011) have monitored public
health using social media and Mandel et al. (2012) have tracked hurricanes
by performing sentiment analysis of Tweets.

Some social media applications allow users to provide their locations.
These options include setting a ”home” location in the user profile. Ap-
plications like Twitter also offer users the option to provide their current
location for each Tweet they send.
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Both ways of a user providing its own location are used to model public
phenomena such as hurricanes or disease outbreaks. The number of Twitter
messages regionally peaks when a certain type of disaster is about to hit
that area as the study of Mandel et al. (2012) showed.

The research of Paul and Dredze (2011), on the other hand, is focussed
on monitoring health related Tweets. One of the tasks they accomplish is
to localize illnesses to geographic regions. Evacuation warnings and Amber
alerts can also profit from having a location for the target group. For ex-
ample, it is undesirable to ask people to evacuate if they do not live in the
area at risk.

Public businesses also have great interest in location data. With the lo-
cation data companies can improve the targeting for marketing campaigns.
Service providers offer new services to their customer or added value based
on the customer’s location as Barnes (2003) found.

A major challenge is the fact that location annotated data is rare. Back-
strom et al. (2010) found that about 6% of the Facebook users in the United
States have entered a home addresses in their profile. According to Sloan and
Morgan (2015) 41.6% of the Twitter users have location services enabled.
However, only 3.1% of these users have one or more geotagged Tweets.
Cheng et al. (2010) have randomly sampled over 1 million Twitter users and
found that only 26% published their home location on a city-level in their
profiles. Only 0.42% of the Tweets in the dataset was tagged with a geo-
location. Not all of the geo-locations within the data are actual real world
locations. Since people are free to provide their own (potentially imaginary)
locations, countries like Narnia or Middle Earth occur in the data. The per-
centage of users that disclose their personal information online is decreasing
as Stutzman et al. (2013) found in a research amongst Facebook users. In
a study of online discussed topics Choi et al. (2017) found that people in
general are becoming more aware about their online privacy. Therefore, it is
likely that the percentage of (valid) home location that is publicly available
will drop even further in the future.

With instant messaging services geotagging is often not possible. Some
currently popular applications allow users to share their current location
with others for temporary movement tracking. However, those applications
are not publicly linking the user’s location to messages they have sent there.
This way it is impossible for external researchers to use this data for their
own research.

The purpose of this research is to determine the user’s location using the
meta data of an instant messenger application. In previous research either
the user’s online activity or his or her social network have been used for this
purpose.

The contribution of this research is to combine these two components.
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Until now, similar research (e.g., La Morgia et al. (2018) and Webb (2017))
relies on the periods people sleep, thus are inactive for a longer period of
time, to determine where that person lives. Those researchers do this by
matching the sleep inactivity to the different time zones. They make nightly
activity profiles for the different time zones and then look which time zone
profile is closest to that of the user. Our research does not only focus on the
sleep inactivity but also on when users can post throughout their waking
hours.

To find differences between the daily routines of users we artificially let
their days start at the same moment. This way we set out to differentiate
between countries based on the daily routine of their inhabitants. After we
have a data set in which each user starts their day at the same moment,
we can also easily remove the night inactivity from the activity profiles.
Removing the night inactivity enforces the model to only focus on the daily
routines of the users.

The daily routine is interesting to investigate because it is a different fo-
cus compared to earlier focus. It is also interesting to see if the day activities
of users hold any new information on its own and as Webb found out prior
information such as prayer times can improve the location detection of users.

The main research question is:

What is the impact of combining network based features with
activity based features compared to the individual features on the
detection of a user’s location?

To further specify we investigate what the impact of daily routines (i.e., user
activity profiles) is on the location prediction. For this we answer the sub
question:

What is the impact of the daily routines of instant messenger
users on the prediction of their physical location?

We do not only investigate the impact of different daytime activity patterns
on location prediction, but we also consider the social network of a user. The
goal is to acquire extra features solely based the user’s contacts to improve
the prediction scores. This introduces the final sub question:

What does the social network of a user contribute to the predic-
tion of his or her location?

My research about the location detection helps the police approximate
the physical location of a criminal user and narrow down potential suspects
because the police observed the same transfer of human interactions from
the physical world to the online world. Therefore, they need to elaborate
their online investigation capabilities so they can still locate and identify
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criminals. The online world also provides criminals with the tools to com-
municate privately without the police being able to listen in. This means
that the police wants to get the most out of the information they can request
at companies (i.e., the metadata of interactions).

The police only can requests this information when they have proven to a
judge that there is enough suspicion of criminal activity at companies. This
proof has to comply with lots of legal and ethical rules before a judge gives
the permission to request metadata at companies. Government agencies are
constantly monitored for compliance with all legal and ethical rules.

An important note is that this research is done in collaboration with the
Dutch police and this research can only potentially be used when they have
the permission of judges and legally obtained the necessary metadata. To
privately use this research is considered invasion of privacy and is illegal,
thus should not be done.
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Chapter 2

Related Work

Location detection for forums and chat applications has been the focus of
a lot of research. Through the years, several methods of location detection
have been utilized from entity recognition methods (i.e., looking in the con-
tent of messages for the names of locations) to only using the times of online
interactions (i.e., using activity profiles).

Different studies have used different granularities to detect the locations
of the users. One research focuses on correctly predicting the time-zone or
continent of the users, whereas others want to pin-point the city or even
house address.

2.1 Content based

In the last decade, several methods have been published to infer the location
of Twitter users based on the content of their Tweets. Within the content
based approach two distinct categories of methods can be recognized.

The first category analyses the text for terms related to geographical
locations and compares those terms to a gazetteer (an external knowledge
base). Examples of this include the works of Fink et al. (2009) and Amitay
et al. (2004), where they extracted postal code and addresses from the con-
tents of web pages and retrieved the corresponding geographical locations
from gazetteers.

The second category of content based models uses probabilistic language
models. For example a Bayesian inference model to predict locations based
on the labels of photos taken by Flickr users as Serdyukov et al. (2009)
proposed. Based on the tags (i.e., user chosen text labels) of the photo
they are able to distinguish between St. Petersburg, Florida, USA and St.
Petersburg, Russia. To further improve their model they also combine it
with the aforementioned gazetteer method.
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2.2 Activity profile based

Besides analysing the contents of a user’s posts, it is sometimes possible to
make a good estimate of a user’s geolocation solely based on a user’s activity
profile. Such an activity profile encapsulates when the user is posting online
messages or chats with another user. With this method only the timestamps
of the messages the user sends or receives are needed.

An activity profile based way to retrieve the geolocation of users on the
dark web was found by La Morgia et al. (2018). They create user profiles by
binning the observed period in multiple hourly bins (i.e., bins representing
an hour 1.00 p.m. - 1.59 p.m.). For each bin the number of sent messages
are counted and put in the bin. Thereafter all bins representing the same
hour are accumulated. So, all bins representing the 1.00 p.m. - 1.59 p.m.
of different observed days are put together. To normalize the data, the
number of messages in each of the accumulated bins is divided by the total
number of days in the observed period. This results in the average messages
per hourly bin per observed user. To create a generic profile the average
messages per hour of all users in the same locations are summed up and
divided by the number of users in that location, resulting in the average
number of messages per hour for that location. These locations can be of
various granularities ranging from zip codes to continents.

La Morgia et al. (2018) have created generic profiles for different time-
zones based on Twitter users with at least 30 posts and a public location
in their profile. They found that modelling the moments users go to sleep
resembled a Gaussian. The distance between the user’s individual sleep
Gaussian and the Gaussians of the generic profiles for the different countries
can be calculated. The lowest distance will then be the guess for the country
label of the user.

Another model that predicts the location of Twitter users is introduced
by Webb (2017). This model is similar to the work of La Morgia et al. (2018)
because Webb also works with the inactivity of the observed users. However,
Webb created a User Travel Detector which determined when a user was
away from its home location. The locations that were designated as travel
locations were excluded in his data sets. This detector works by noticing a
shift in the user’s sleep pattern. Combining the sleep pattern, prayer times
and the Travel Detector, Webb was able to predict the location of Muslim
Twitter users with an average error of approximately 100 miles. This means
that the model is able to predict the location of an identified Twitter user’s
location within 100 miles of that user’s actual location. When adding prior
knowledge about specific cultures Webb showed that it is also possible to
identify if a user belongs to that culture.
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2.3 Network based

Besides content based approaches it is also possible to infer information
about specific persons through the network they partake in. For example,
it is possible to predict undisclosed information of social media users using
released social network data, as is shown by Lindamood et al. (2009). The
researchers found out of which sport clubs users are subscribed to, or what
their political preference is. When those users want keep their unpublished
information to themselves, they should reduce both the information they
post about themselves and their connections to other users. The second
best option would be to publish as little information about yourself as pos-
sible.

How closely related two persons are, is also known as tie-strength. This
concept was first introduced in ”The strength of weak ties” Granovetter
(1983). In his paper he proposed two types of ties namely strong and weak.
Strong ties are typically family and close friends, whereas weak ties often
are distant relatives.

Using tie strength Mcgee et al. (2013) propose an algorithm to infer the
geographical location of a Twitter users based on their connections in the
network (i.e., their followers and the people they follow). Their method was
able to successfully predict the location of targets, with an average error of
21 miles. To predict the exact locations rather than just relative locations
the links in the network need to have a known location. In general they
found that the more followers someone has, the farther away the followers
tend to be. If the tie strength increases then the geographical distance be-
tween the entities decreases. An example of the idea behind the tie strength
distance relation can be found in Figure 2.1. Mcgee et al. mention further
research could be done by enriching their model with other factors (i.e. word
usage between users).
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Figure 2.1: Example a network where the tie strength between nodes is
displayed. It shows that the higher the tie strength between nodes, the
more likely they are to be at the same location.

The data becomes more precise about the geography and social relations
the more time people spend online as Backstrom et al. (2010) show. They
found the relation between location and friendship using Facebook data.
Using those features they propose a method to predict the location of a
user using a sparse set of located users (i.e., users that have provided their
location). This method outperforms IP-based geolocation algorithms and
can scale efficiently to process an almost limitless network.
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Chapter 3

Methods

The related works show that multiple types of methods exist that are ca-
pable of detecting the users’ location based on metadata. These proven
methods leave space to improve and expand upon. This research sets out to
accomplish the following things.

First we want to explore the potential of the daytime activities of a user
to detect its location. This is a new focus compared to earlier research,
where they match the sleep pattern to the average sleep pattern of a region
(e.g., a country or time-zone), as we will look at the users’ activity rather
than their inactivity.

In this thesis we investigate how much the daytime pattern of a user con-
tributes to the detection of its location. For this we conduct experiments in
which we have removed the part where users sleep from the data.

Secondly, the network based related works focus on using the tie strength
between users to detect their location. We would like to investigate what the
impact of other network properties is on location detection. These properties
are the density of the sender’s direct contacts (i.e., how well the senders
direct contacts are interconnected), the total number of contacts, the average
time (hour and minute) the contacts go to sleep and the average tie strength
between the sender and its contacts.

With the average time the users’ network goes to sleep we hope to give
the model some knowledge about the location of the users’ network. Studies
showed that the tie strength can determine the relative location of a users
compared to their network. With providing the average sleep time we set
out to predict more absolute locations for the users. In order to determine
the relative position to the network the model needs to have access to the
average tie strength.

By providing the total number of contacts we give the model knowledge
about the size of a user’s network and can find out if the network size is
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a predictor for the user’s location. As we provide information about the
density of a user’s network we provide information about the what part of
the user’s network also knows each other. As Mcgee et al. (2013) shows that
the number of followers correlates to the location a user lives we set out to
find if the aforementioned features are strong predictors for the user location.

Lastly, both the activity based method using the night inactivity and
the network based models using the tie strengths have proven to detect the
users’ location. However, those methods used either the tie strength or the
activity patterns to detect the users location. Since both methods contain
information that has not been used in the other method, we investigate how
combining those two distinct methods improves the location detection.

3.1 Data

For this research a collection of chat messages is used. There are two data
sources. One is a collection of messages between actors with a time stamp,
the other is a set of actors that have been assigned geographical locations.
The actors that have assigned locations can be matched to the collection of
messages between actors. For all users the most frequently observed location
is used as their location label in these experiments.

The location labels are a combination of the province and the country
of a user. For most of the experiments we use the country part from the
provinces and use those as the location label rather than the provinces.

The collection of messages contains anonymized identifiers for the sender
and receiver of a message and the half hour bin for the date the message
was sent. The half hour bins are binary. This means that when there are
multiple message from the sender to the same receiver there will be no new
entries for that bin. Thus the binary variable only indicates if there was
any activity at all. By aggregating the binary variable we can indicate how
many user’s the sender has contacted in that time slot.

3.1.1 Preprocessing

In pre-processing the following transformations are applied to the data.
First, the time stamp field has been used to create date, day of week, hour
and minute fields.

Then the entries for specific half hour bins are aggregated by sender and
counted. Based on the total amount of bin entries (i.e., how many distinct
active half hours a user has in total) a cut is made. We decide to drop the
users that have less than 30 entries because La Morgia et al. (2018) found
that a more comparable activity model can be build from users that have
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sent at least 30 messages.

We acknowledge that a user can send multiple messages to the same
receiver in the same half hour and it still has one entry for that specific bin.
Therefore, users can be more active than it appears from the binned values.
However, the idea of the model from La Morgia et al. (2018) is that at least
30 data points are needed for a proper model.

In contrast to Webb’s work this research is not using a likelihood for-
mula but only uses the user’s actual activity. This method achieved similar
results as Webb’s method as shown by La Morgia et al. (2018). Rather than
estimating the activity for each user we can simply use the observations in
the data set. The benefits are a lower complexity of the model (only some
configuration is needed) and a higher runtime efficiency.

3.1.2 Sampling technique

During the data exploration phase we noted that there was a large class
imbalance. When we trained an early model on this data we verified that
the model applied majority voting. If there are different labels that have
small difference between the observations, then the model would predict that
all those observations belong to the label to the largest label (i.e., the label
having most observations in the training set). Therefore, the model would
not utilise the small differences between the labels to differentiate between
them

To combat the imbalance problem we create a balanced training data set.
We want to have each label in our data set to have 200 entries because with
200 entries we are not putting all data points of the smaller labels in, instead
of duplicating the data points. The larger labels can also be down-sampled
to 200 data points without issues.

We first split the data in training and test set. Then we determine in the
training set how many data entries each label has. If a label has less than
the 200 entries, we use random oversampling to create 200 entries for that
label. With oversampling elements from the original (smaller) data set are
picked to create a data set of the desired size Ling and Li (1998). Therefore,
some elements can occur multiple times in the re-sampled data set.

If a label has more than 200 entries in the training set, we use random
undersampling without replacement to ensure that there would not be a
majority in the training samples. Politis (2003) shows that undersampling
can be used to improve the models performance when the data is unbalanced.
Random undersampling without replacement creates a data set of unique
elements selected from the original data set.

After the method has created 200 samples for each label in the training
set the re-sampling is done and majority voting is counteracted.
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When the data is split after the re-sampling technique is applied, the
result can be that there are data points in the test set that also occur in the
training set. Thus, the oversampling performed before the split can create
trivial problems for the model causing the model learn less from the data.
To prevent this problem we choose to re-sample the data after the splitting
into training and test sets. This method ensures that none of the samples
in the test set occur in the training set.

3.2 Underlying model

The type of model we are training in this research is a random forest as
described by Pavlov (2019). We choose this model because it is capable of
handling large data sets, can deal with multi-class classification problems
and its decisions can be explained to others where needed. Lastly, it also
is resistant to overfitting (i.e., focussing on the specific training data set
instead of generalizing to better predict unseen data points).

In our case we try to determine what location label belongs to a user. In
this research we deal with a multi-class classifcation problem, since we have
more than two potential labels for each user. Decision tree based models
can handle multi-class classification problems, thus such a model a suits our
needs perfectly.

We do this research in collaboration with the police and they prefer
a model for which it can be explained why it made certain choices. This
means that more black box solutions as machine learning techniques are less
desirable as the underlying concepts and decsions are harder to explain.

Random forests are also quite robust against overfitting which makes it
a good choice for a multi-class problem. With this model we do not have
to provide prior knowledge about class distributions, it also works well with
the categorical labels and we do not have to normalise the data.

3.2.1 Random forest classifier

A random forest is a classification model that is created by combining many
decision tree models.

A decision tree creates a structure where at each step in the process one
binary question is asked to figure out the label of a data observation. The
process this model performs is comparable to the children’s game ”What’s
their name?” in which you get to ask consecutive question to eliminate as
many options as possible. The goal is to ask as little questions as possible
to get the answer the fastest.
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Figure 3.1: Example of a decision tree

Consider the example of a decision tree in Figure 3.1. Here the goal of
the classifier is to determine if a person is fit. Each data observation travels
through the tree and arrives at an endpoint (i.e., result at the bottom of the
tree).

Let us consider the author as a data observation. I am 27 years old, do
not exercise every morning and do not eat a lot of pizza. At the first step
I follow the left branch since I am aged below 30. Then at the question if
I eat a lot of pizza I go to the right, but since that is not the case. The
conclusion of this decision tree is that I am a fit person.

Real life situations have a lot more variables to be taken into account.
A decision tree can easily adapt to that by simply adding more questions.

A problem with a decision tree is that it can optimize itself to find the
most occurring label in the data. The tree loses the focus on the minority
class and will not try to label that correctly. It is possible to counteract this
when an imbalance in the data set is known by providing the decision tree
with this prior knowledge.

Although, one can imagine that the decision tree in Figure 3.1 can be
build in different forms while achieving the same results. A random forest
is a combination of a large number of decision trees which are all build up
differently so that other classes can be labelled earlier than others. Also
shifting some variable decisions can lead to whole other results in combina-
tion with other parameters. By combining different decision trees the result
at the end is more reliable as it is not one tree deciding everything. This also
helps against overfitting to the training data, without providing the model
with prior knowledge.
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3.3 Metrics

In our research we use several metrics to evaluate our results of the experi-
ments.

Accuracy and F1. First of all we use the accuracy to determine how
often our model detects the correct location.

When making predictions there are four outcomes that can occur. The
given answer can be predicted positive and actually be positive, this is also
called true positive. Then the model can predict an answer to be negative
and it is actually negative, this is also called true negative. Furthermore
the model can predict an answer to be negative while it actually is positive,
we call this a false negative. The last option is an answer that is actually
positive but the model predicted to be negative, this is also called a false
positive.

Then we calculate the accuracy by dividing the true positives by all the
positive predictions, either false or true positive.

acc =
True Positive

True Positive+ False Positive
(3.1)

Combined with the accuracy we also calculate the F1-score for the model.
Where the accuracy is all about how many of the detected elements are cor-
rect (i.e., true positives), the F1-score also considers the elements that are
detected with a false label but should have the true label (i.e., false nega-
tives). Both the true positives and false negatives can be grouped together
as all the relevant elements. The F1-score equals the mean of the accuracy
and the total amount of relevant elements.

F1 = 2 ∗ acc ∗ recall
acc+ recall

(3.2)

The recall is the percentage of all the correctly predicted answers of all
the correct predictions that could have been made.

recall =
True Positive

True Positve+ False Negative
(3.3)

To accommodate the F1-score for a multi-class classification problem we
use a weighted averaging. Therefore, the F1-scores are calculated for each
class. These scores are then averaged with weights to account for potential
label imbalance.

P-value. To determine if the new model outperforms the baseline we cal-
culate the p-value using the chi-squared test, following Zibran (2008), by
comparing the classification results between the baseline and the altered
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model. The null hypothesis is that the altered model performs the same as
the baseline model.

We choose for the common significance threshold of 95%, meaning that
the p-value should be below 5% to indicate statistical significance. This
assumes that in 95% of the cases the change in result is not correlated to
the change made in the experiment.

Effect size. Finally, we calculate the effect size of the new model compared
to the baseline model. We calculate the effect size with Cramérs V (see
Formula 3.4) which works well with the chi-squared test results.

V =

√
χ2

n ∗min(r − 1, c− 1)
(3.4)

In this formula χ2 is the squared result of the chi-squared test, n is the
total amount of observations in the chi-squared table. The min(r − 1, c −
1) references to the freedom there is in the observations, where r and c
are respectively the rows and columns in the table. Since our table is a
contingency table of two rows by two columns we have a domain of freedom
of 1.

Where the p-value can indicate a positive or negative correlation, the
Cramérs V indicates how strong the effect of the alterations are. To interpret
the Cramérs V we use Cohen’s references Cohen (2013). These references
can be found in Table 3.1.

Effect size V

small 0.1

medium 0.3

large 0.5

Table 3.1: Cramérs V references as proposed by Cohen (2013) for a domain
of freedom of 1.

3.4 Activity based

To answer our first sub question we train a model that predicts the locations
of users based on their activity profiles. Therefore, we start by creating an
activity profile for each user.
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3.4.1 Activity Profile

An activity profile is created based on the posting rate of a user. The posting
rate depends on the activities that the user participates in. In general an
activity profile resembles the user’s average activity during a 24 hour period.
An activity profile shows how likely a user will be active for given times
throughout the day. An example of an activity profile can be seen in Figure
3.2. La Morgia et al. (2018) and Webb (2017) both use an activity pattern
or user posting rate to predict the user’s location.

In this research the activity profile is created by dividing a 24 hour
day into 48 thirty minute segments. All messages within a time period are
grouped together. The total messages per thirty minutes are divided by the
amount of days between the first activity of the user and its last. Lastly,
the amount of messages per time period is divided by the total amount of
messages sent by that user. Resulting in the percentage of the total messages
sent. This normalization step ensures that the model is not biased towards
the most frequent users.

Figure 3.2: Example of activities binned per hour

Webb (2017) uses the activity patterns to look for inactivity on messag-
ing applications during class specific real world activities. These inactivities
are used to label the user to that specific class. Webb creates a model to
predict the city the users live in, contrary to La Morgia et al. (2018) who
use a time-zone granularity for prediction. Where Webb also exploits prior
knowledge of class specific activities La Morgia et al. only use the sleep of
the users to detect their location.
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3.4.2 Night Inactivity

Sleep is a strong indicator for the time zone and even the location of a
person, as Webb (2017) and La Morgia et al. (2018) have found. Both
authors found that their models learned to match the times people were
inactive to the middle of the night hours of their location labels.

In our baseline model we create an activity model with the binned mes-
sages as we find them in the data. For each user we calculate the percentage
of total messages are sent in each bin (the sum over the averages of all bins
equals one).

Figure 3.3: The average activity bins of all users gives a plateau-like graph
when the start moment of the days is not aligned.

Imagine when the data would be sampled from all time zones equally,
then the activity averaged over all users would look similar to Figure 3.3.
This data still contains the night inactivity, but shows no clear peaks or
valleys, even though each user is accounted for in creating this Figure has a
clear inactivity period.

Our baseline model picks up the different night inactivities and uses
them to detect the users location. For this model all users in the data still
have their night inactivities scattered over the day; for example, Dutch users
might start their night inactivity around 23.00 UTC and the east coast of
the United States might start their inactivity around 05.00 UTC.

We want to research the effect of the times the users are active. To ensure
that the model does not implicitly use night inactivities for the users, we
will remove the inactivities from the data.

We did not go through all data entries manually to find the start of
the night inactivity. Instead we have developed an algorithm that finds
the start times of the night inactivity for us. We assume that the users
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are sleeping during the large (7 hour) inactivity periods, and refer to the
developed algorithm as our sleep detector.

Sleep detector

The goal of the sleep detector is to detect the night inactivity of the users.
We define the night inactivity as a period of 7 consecutive hours with the
least amount of activity for that user.

By identifying the night inactivity we can exclude the night period and
let the model focus on the daily routine of the users. Since the related work
section already shows that the night inactivity is a strong predictor for the
locations of users, we want to investigate what the daily routine adds to the
night inactivity. We test the importance of the daily routine by excluding the
night inactivity from the activity profile. Earlier research only considered
the activity pattern as a whole and does not make a difference between the
night inactivity and the day activity.

The shift in start moment of the night inactivity is an intuitive predictor
as the night is not happening globally at the same moment. Therefore, we
are curious what information is conveyed in the activities during the day.
In this research we mainly want to see if inhabitants of different countries
have different daily routines (i.e., in Spain they have a siësta and are as-
sumed to sleep during the day) and we can use these routines to predict
the users locations. Webb (2017) shows that adding prior knowledge (such
as prayer times) can improve the performance of location prediction models.

We hope to find that the daily routine of users on its own contributes to
determining their location. We expect that it is possible to detect the users
locations based on their daytime activity pattern. This can also create op-
tions for further research to distinguish between different user groups (e.g.,
students and office workers).

First we build an activity profile as described in Section 3.4.1. There-
after, we take the sum of 14 consecutive half hours (i.e., 7 hours) and assign
the value to the first half hour of the used period. As we made the assump-
tion that everyone is inactive for seven consecutive hours knowing the start
moment of the inactivity period is sufficient. The start of the sleeping period
is calculated using the averaged and normalized binned data of the users.
Hence, the start of the sleeping period for a given user is the time they go
to sleep on average.

At last the sleep detector returns the time with the lowest activity in the
next seven hours. Thus, when the algorithm is applied to all users in the
data set each user has the time assigned to the start sleep variable it starts
their inactivity period.

19



Algorithm 1: Sleep detector algorithm

Result: The moment the user starts his or her night inactivity
list of start moments;
for start moment in (all half our segments) do

n activities = aggregate activities of the next 7 hours
list of start moments[start moment] = n activities

end
return start moment with lowest n activities

Figure 3.4: An example where the red outline shows the night inactivity as
our sleep detector would find it.

The example above shows the binned data aggregated hourly. When we
try to find the start sleep moment we will use 7 time periods instead of 14
(i.e., considering the different period length). The red outline in Figure 3.4
gives the period where the sleep detector finds the lowest activity. For this
user 01.00 UTC would be returned as the start sleep time.

Data set time alterations

With the estimated moments for each user when they start their night in-
activity, we can create data sets to identify the impact of daily routines on
the location detection.

We create two additional data sets. One where all the start sleep times
are aligned (the offset dataset) and another (the daytime dataset) where we,
besides aligning, also removed the night inactivity for all users.

For the first additional data set we artificially let all users start their
night inactivity at the same time. We shifted the activity model of each
user so that they started their night inactivity at midnight (00.00 UTC).
With our assumption that everyone sleeps for seven hours they all start
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their day at (an imaginary) 07.00 UTC. After aligning the starting points
of all sleeping periods the plot of all bins of all users looks more like Figure
3.2. We call this data set the offset data set.

To focus on the daily routines as described before we remove the night
inactivity for all users to create a second data set. The challenge is that
our model cannot know which inactive hours we have removed for the users.
The removed hours can also tell the model what hours can be indicative for
the location detection. Therefore, we take the offset data set and remove
all the bins containing the hours 00.00 UTC to 07.00 UTC. As a result we
obtain a data set where we have the consecutive bins where the first bin
contains 07.00 UTC and the last bin contains 23.30 UTC. This data set is
called the daytime data set.

3.5 Network based

As Backstrom et al. (2010) and Wiese et al. (2015) have concluded, it is
also possible to determine user locations from the location of their friends.
They rely on the tie strength between users. However, tie strength is an
attribute that is hard to directly define through just online interactions.
Several studies, including Granovetter (1983) and Karahalios et al. (2016),
conclude that the interaction frequency is a good proxy for tie strength.

When considering only contact frequency, Wiese et al. (2015) found that
frequency alone can give the wrong picture about the data as strong ties.
People that have very close ties might have a lower interaction frequency as
they also communicate by other ways. To encapsulate the lower frequency
close ties can have, they rather use the time between the the first interaction
between users until the last observed one.

Tie strength not only consists of a frequency, or duration as Granovetter
discovered. Therefore, we combine the frequency aspect and the duration
aspect of tie strength. Since we cannot interview our users to verify the esti-
mated tie strengths, these two aspects are an assumed proxy for tie strength.

For the network based experiments we use the following features: the
user’s total number of contacts, the tie strength between the user and its
network, the user’s network average start sleep time and the user’s network
density.

We consider only users in the 200+ data set. This is kept the same as
the activity based experiments to make sure we can make a fair comparison
between all the experiments.
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Tie strength

Tie strength is not a factual variable of two users but rather an objective
interpretation of the relationship between them.

During early experiments we noticed that keeping the tie strengths be-
tween all users conveys too much information about the test set. As we do
this research to examine approaches for real life problems, keeping all tie
strengths was too dissimilar from the real life situation we need to operate
in. Therefore, we approximate an average tie strength between users and
their networks. We first calculate the tie strengths between a sender (i.e.,
the user) and all its recipients.

The tie strength between a sender and a recipients is calculated by count-
ing all the times the sender sent a message to the recipient. The total number
of messages is divided by the number of days between the first and last mo-
ment of observed contact. The result is referred to as tie strength in this
research.

To get the average tie strength between a user and their network the
tie strengths of all recipients of the user are summed and divided by the
amount of recipients.

Density

Besides tie strength we also decided to use the density of the network as a
feature. In context of this research a network is considered the user (i.e.,
sender) and all of its recipients. Possible relations between the recipients
are also a part of the considered network. However, relations between one
of the recipients and a user that is not directly contacted by the original
sender is not part of the considered network.
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Figure 3.5: An example of the sub-network of which the density will be
calculated. We calculate the density for node A. Then we consider nodes
B and E since they are direct contacts of A. However, C and D and their
connections are not considered since they are no direct contact of node A.
The relations between node B and node E are considered in the density
calculation as it is between the direct contacts of node A.

To calculate the network density for each user we first construct a net-
work of the user and its recipients. Then the density of this sub-network is
calculated. The result is attributed to the user as the density variable.

The density is defined as the actual connections in a network divided by
the potential connections.

density =
Actual connections

Potential connections
(3.5)

Where the potential connections are calculated as follows:

Potential connections =
n ∗ (n− 1)

2
(3.6)

The n in this equation is the total number of nodes in the network.

In the network of Figure 3.5 there are 5 nodes. This leads to 3∗(3−1)
2 = 3

potential connections. Hence, the density of the network is 3
3 = 1.
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For the considered network (i.e. only taking nodes A, B, E and their

edges into consideration) there are 3 nodes giving 3∗(3−1)
2 = 3 potential

connections. With the potential connections known we come to a density of
3
3 = 1.
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Chapter 4

Experiments

This research consists of experiments exploring both the aforementioned
time series problem, the network problem and a combination of the two.

4.1 Activity based experiments

To determine the impact of daytime activity on location detection the fol-
lowing experiments are performed. Overall we expect that it is possible to
detect the user’s location based on its daytime activity.

First we create two baseline models. Both are trained on the same data
set that had no time alterations. The difference between them is the location
labels. The first baseline model has the users’ provinces as the label where
the second model uses the users’ countries as labels. We decide to use the
countries as labels to reduce the total number of possible labels.

The expectation is that the country baseline model performs better than
the province model because there are less labels. Another expectation is that
the location labels within time zones are harder to distinguish.

We drop all users that have less than 30 recorded activity time slots
in preprocessing. On top of that we keep only the labels that have a cer-
tain number of users assigned to them, so our model can make a better
approximation for each label.

We assume that the model for a country will be comparable to that of a
user only on a large scale. Therefore, a cut off of at least 30 users would suf-
fice. We chose 200 users as a cut-off because we found a jump from slightly
over 30 users to labels with 200+ users during the data exploration. This
leaves us with a total of 18 labels. The data set that contains all users la-
belled with a country that contains at least 200 users will be referred to as
the 200+ data set.
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The next experiment is a model trained on the offset data set subset of
the 200+ data set. This data set is now called the offset 200+ data set.

With this experiment we expect to see that the accuracy for location
detection slightly drops as the information about the night inactivity is no
longer available. However, the model still receives some knowledge about
what happens during the night inactivity for the users.

In the next experiment we work with the daytime data set subset of the
200+ data set, now called the daytime 200+ data set. Again, we expect a
small drop in accuracy because we give the model less information to work
with. However, we still expect the performance to be well over a random
guess.

This experiments show us how well we can detect the user’s location
using only their daytime activity.

Experiment Dataset Measures

Baseline 200+ Accuracy, F1-score

Artificially synchronised
start day

Offset 200+
Accuracy, F1-score

Chi-squared (vs. baseline)
Cramérs V (vs. baseline)

Activity daytime Daytime 200+
Accuracy, F1-score

Chi-squared (vs. baseline)
Cramérs V (vs. baseline)

Table 4.1: An overview of the activity based experiments.

4.2 Network based experiments

With respect to the network features we do several experiments to find the
impact of the individual features and the effect of all combined features on
the location detection. For all the experiments we use the same underlying
model and the 200+ data set.

For the first experiment we take all the features and train a classifier.
This experiment will establish a baseline to which we can compare the im-
pact of the tie strength, density and average sleep time features. We use this
experiment to establish a baseline for the next network based experiments.

For the second experiment we remove the tie strength from the features
used in the previous experiment. All other settings remain the same. Since
we expect the tie strength to hold enough information to detect the user’s
location we expect the performance to drop significantly compared to the
baseline model. The significant drop would indicate that the tie strength is
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an important network feature to detect the user’s location.

The third experiment uses all the features except the density of the
user’s network. We expect the performance to drop compared to the base-
line model but to be lower than that of the model without tie strengths.

The last experiment is similar to the last one but with the network’s
average start sleep time removed instead of the density. All the other settings
are kept the same compared to the baseline experiment. Again we expect
the model to perform worse compared to the baseline model.

Experiment Dataset Measures

Baseline 200+ Accuracy, F1-score

No tie strength 200+
Accuracy, F1-score

Chi-squared (vs. baseline)
Cramérs V (vs. baseline)

No density 200+
Accuracy, F1-score

Chi-squared (vs. baseline)
Cramérs V (vs. baseline)

No average sleep time 200+
Accuracy, F1-score

Chi-squared (vs. baseline)
Cramérs V (vs. baseline)

No total amount
of contacts

200+
Accuracy, F1-score

Chi-squared (vs. baseline)
Cramérs V (vs. baseline)

Table 4.2: An overview of the network based experiments.

4.3 Combining network and activity based models

In Section 4.1 we researched how well a user’s location can be detected by
solely using his activity model. In Section 4.2 we looked at the impact of
the user’s network features on itself to the detection of its location. In this
section we will explore what both detection methods can contribute to each
other.

We will combine both feature sets into one larger set. This set holds for
each user its day time data set activity model (i.e., without the night inac-
tivity), the start sleep time of the user and all the aforementioned network
feature set. For this experiment we will consider the 200+ data set.

We expect that this model will score better than the other two model
types. Because the network data and the activity models both contain
information the other model doesn’t have access to. Therefore, combining
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all information should give the model the opportunity to outperform the
other models.

Experiment Dataset Measures

Combination model Daytime 200+
Accuracy, F1-score

Chi-squared (vs. activity daytime)
Cramérs V (vs. activity daytime)

Table 4.3: An overview of the combining network and activity based exper-
iment.
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Chapter 5

Results

This chapter contains the results of all conducted experiments. Each of the
experiment sections has their counterpart in this chapter.

The p-values and Cramérs V values for each model are calculated com-
pared to the baseline model. The baseline model does not have the p-value
and Cramérs V values, as it does not make sense to compare a model to
itself.

5.1 Activity Profile

Table 5.1 below shows all the results of the experiments regarding the ac-
tivity profile experiments.

Experiment Accuracy (%) F1-score P-value Cramérs V

200+ data set 15.86 15.28

Offset 200+ data set 13.67 13.76 4.11e−5 0.03

Daytime 200+ data set 10.86 12.11 1.27e−22 0.07

Table 5.1: Results of the activity profile experiments.

Our baseline model trained on 200+ data set contains all user’s that
belonged to labels that contained 200 or more users, this leaves us with
18 labels. The activity for these users is aggregated and averaged per hour.
This model can detect a user’s location with 15.86% accuracy which is almost
triple the accuracy for a random guess on 18 labels which is 5.5%.

When we align the moments users go to sleep we can see that the ac-
curacy drops with 2.19% compared with the baseline. As the p-value is
smaller than 0.05 this drop is statistical significant. However, the effect of
this change is considered small according to the Cramérs V value. This is
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expected since we removed the implicit time-zone information which was in
the data.

If we remove the assumed sleep of the users, we see the accuracy drop
again with 5% compared to the baseline model. This loss is statistical sig-
nificant as the p-value is extremely small. Although the p-value indicating
a strong significance, the effect size is still relatively small. The model has
even less information about the activity of the users as they all had some
activity during their assumed sleep.

5.2 Network Analysis

In Table 5.2 the results with respect to the network based experiments are
displayed.

Experiment Accuracy (%) F1-score P-value Cramérs V

Baseline model 7.55 9.01

Removed tie strength 7.26 8.62 0.58

Removed density 7.66 9.08 0.86

Removed average sleep time 7.37 8.79 0.74

Removed total amount
of contacts

7.35 8.66 0.71

Table 5.2: Results of the network analysis experiments. The removal of
several features is done one at a time. All experiments are done with the
200+ data set.

The experiments we set up not only tell us how well the user’s network
can help detect its location but also what the impact is of different features.

When we train the baseline model using all the features we obtain an
accuracy of 7.55% with an F1-score of 9.01 for a multi-label problem with 18
labels. This means that it is only slightly better (i.e., 1.99% improvement)
than a random guess.

If we remove the tie strength from the features the accuracy drops to
7.26%. This change is not significant as the p-value is 0.58, thus p > 0.05.

When we remove the user’s network density the accuracy improves to
7.66%. Though we observe an accuracy improvement the p-value worsens.

Whereas we remove the average start sleep time of the user’s network
the accuracy becomes 7.37%. The p-value still indicates that this change is
statistically insignificant.

With the removal of the total amount of contacts the accuracy of the
model is 7.35% an the p-value is 0.71, thus the change is not statistically
significant.
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5.3 Combined analysis

Table 5.3 shows the results of the experiments that combine both the activity
and the network feature sets.

Experiment Accuracy F1-score P-value Cramérs V

Activity features +
network features

11.85 11.89 0.03 0.02

Table 5.3: Results of the experiments in which the network and activity
features are combined. The model is trained with the Daytime 200+ data
set.

The results show that the model based on both the network as the day-
time activity features achieves an accuracy of 11.85% for the 200+ data set.
In other words, we observe an accuracy increase of 0.99% compared to the
activity based model for daytime 200+ data set. This change is statistically
significant with a p < 0.05. The effect size is considered very small with a
Cramérs V of 0.02.
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Chapter 6

Conclusions

In Chapter 4 we conducted several experiments to explore the impact of
the user’s daily routine on the location detection. This chapter covers the
conclusions from the experiments and links them to the proposed research
questions.

We started by creating experiments for detecting the user’s location
based on its activity to answer our first sub question:

What is the impact of the daily routines of instant messenger
users on the prediction of their physical location?

We noticed that although the daytime 200+ data set gives a worse perfor-
mance than the offset 200+ data set it still accomplishes a 10.86% accuracy
which is doubling the score of random guessing. When we add the start
sleep indication to the daytime 200+ data set the model performs better
than the baseline model and even the offset 200+ data set based model.

After these experiments we conclude that training a model on the day-
time 200+ data set outperforms the random guess, but does not outperform
the models leverage the night inactivity. So, it is possible to detect a user’s
location based on his or her daily routine.

We have also explored the options of detecting a user’s location by only
using its network features. These experiments help us answer the last sub
question:

What does the social network of an user contribute to its loca-
tion?

We find that training a network based model using our features only
slightly improves upon a random guess. Although none of the individual
features has a significant effect on the model, the average tie strength fea-
ture has the largest effect size. We also see that the baseline trained on the
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200+ data set with network features performs worse than its activity profile
based counterpart. So, we conclude that the model trained on our network
features is more accurate than a random guess.

Next we examine the result of the experiment combining the network
and activity based models. With this experiment we can answer the main
research question:

What is the impact of combining network based features with
activity based feature compared to the individual features on the
detection of a user’s location?

We see that the model trained on the combination of network features
and daytime 200+ data set activity profile features performs significantly
better than the activity profile only model. Which means it also performs
significantly better than the network features only model.

Therefore, we conclude that the impact of combining network based
features with activity based features significantly increases upon their in-
dividual performances. Combining both independent feature sets helps to
perform the detection model.
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Chapter 7

Discussion and Future Work

In this chapter we discuss several decisions and assumptions that we made
during the research. We also point to aspects that were untouched in this
research but are interesting to explore in future works.

The first matter we want to discuss is the use of IP addresses to determine
geo-locations. Nowadays it is possible to find plenty of website that offer IP
to geo-location applications.

However, those online services are not 100% accurate as they rely on
other IP services such as the American Registry for Internet Numbers WhoIs
service to retrieve information about IP addresses. The online service com-
bine the information of multiple WhoIs service to finalize there conclusion.
The problem is that each of intermediate services has a certain error margin.

In recent research Livadariu et al. (2020) showed empirically that not all
services contain all IP addresses and different services have different levels of
geo-locations labelled to the IP. These different levels are either, continent,
country, province or even city. Besides, they found that for 62.85% of the
IPv4 and 78.90% of the IPv6 addresses could be provided with both the city
level location and the owner of the address. For other addresses higher level
locations (e.g., countries or time-zones) are found.

Because the higher level locations need to be matched to other services
that can find a more detailed location it provides a lot of room for errors.
Adding disagreement between different sources also enables more mistakes
to be made.

Combining all factors make this automatic geo-location assignment far
from ideal to use it for province or city level ground truths.

When we checked a known IP address it was assigned to be in a city
about 20 kilometres from the actual location. In this case both the province
and country were correct.

Working with country labels makes the ground truth suffer the least
from possible error and can be accepted as ground truth in our research. In
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future works it could be worthwhile to only accept IP’s in the data can be
linked to the same geo-location among all services.

However, this will then make the research prone to overfitting on an ideal
world as the real world contains the excluded IP addresses. When location
detection methods are developed also new IP’s or IP’s with disagreement
about their linked location should be taken into account.

When we first started this research we thought it was interesting to
identify user groups within the labels. The goal would be to see if it is
possible to user group label specific activity patterns. However, due to
the limited time and elaborate experiments for the other sub questions we
decided to drop this idea.

Besides, recognizing label specific activity patterns this research can un-
cover universal activity patterns. An example for this is used by Webb
(2017) as he used given prayer times to identify inactivities for religious
Twitter users.

For future work it would be nice to see what different user groups can be
identified. This can be done with prior knowledge of prayer times, holidays
and such. It would also be interesting to see if user groups surface about
which we have we have little to no prior knowledge.

Another issue that warrants further research is the skewed data distribu-
tion. As described in the experiments, the 5 largest labels contain more than
half of the data in the selected set. Therefore, if we want to correctly detect
the users belonging to smaller labels we have to use re-sampling methods to
balance the labels.

For the smaller labels we used in our research we had to use up-sampling.
This means that we have duplicates in the training data for the smaller labels
and unique data points in the larger labels. In our case re-sampling to 200
samples per label helped improve the accuracy on the smaller labels, but it
lost accuracy for the larger labels.

It would be good to use larger samples for all the labels. For training 200
samples is not that much especially since we did not apply any data augmen-
tations to artificially increase the amount of samples per label. Therefore,
future research could benefit from more data for the smaller labels. Options
to achieve more data are artificially augmenting data, more sampling for the
smaller labels or limiting the models to labels that contain more data points.

Overall, an option to increase the accuracy for detecting the users is by
combining detection models for different granularities. Our research directly
tried to detect the label of a user.

Future research could try to train a cascade model, where they first train
a model that detects the time zone of users. This can be done reliably, as
described in the related work section. Thereafter, granularity models can
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be trained for each time-zone. By training the time zone specific models
such a model is forced to focus on smaller details between users to detect
the correct country within an time zone. In our research, by focussing
on the day daily routine we removed the information about the night and
when the night started. This includes the indirect information about the
time zone. This can lead to misclassifications because users behave similar
activity patterns during the day, but actually live in whole other time zones.
The aforementioned sequential activity models can counter this. Because a
time zone can be indicated first and the data point can than be passed to
the correct time zone specific model. This also can mean that the data does
not have to be pre-processed to get rid of the night pattern.
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