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Abstract— Adhesive disease, which commonly occurs as a
postoperative complication, is a major cause of morbidity
and places a substantial burden on healthcare worldwide.
Currently, laparoscopy is the only accurate diagnostic technique
for abdominal adhesions, which intrinsically involves health
risks including the formation of new adhesions. Non-invasive
diagnostic methods with similar reliability are lacking. In recent
years using cine-MRI scans of the abdomen captured during
respiration has demonstrated promising performance in the
diagnosis of adhesions. However, correct interpretation of cine-
MRI scans requires considerable radiological expertise and this
technique has not been widely adopted in clinical practice
yet. In this masters thesis, the first fully-automated multi-
stage computer-aided diagnosis (CAD) method for adhesion
detection is proposed. The method exploits the phenomenon of
visceral slide, a pattern of abdominal motion observed during
respiration in healthy subjects. Local reduction of visceral slide
is a diagnostic criterion of adhesions. Visceral slide that occurs
on a cine-MRI slice is quantified using a segmentation mask
generated by a deep learning model and a deformation field
between cine-MRI frames obtained with an image registration
algorithm. Bounding boxes of adhesions are predicted with
a region growing method based on the visceral slide values.
Additionally, false positives reduction driven by domain knowl-
edge is performed. The impact of using all cine-MRI time
points and different normalisation options are investigated and
the hyper-parameters of the method are determined with 5-
fold cross-validation. When evaluated with cross-validation, the
best method configuration yields detection sensitivity of 0.61
and 0.73 at 1 and 2 false positives per slice along with 0.53
AUC in slice-level diagnosis. On the held-out test set, a slightly
different configuration is top-performing and achieves detection
sensitivity of 0.7 and 0.91 at 1 and 1.89 false positive per slice
along with 0.78 slice-level AUC, which indicates the promising
potential of the core idea of the method.

I. INTRODUCTION

Adhesions are tough bands of fibrous tissue that form
between two or more organs in the abdominopelvic region
and/or the inner abdominal wall. The primary cause of the
adhesive disease is abdominopelvic surgery, however, they
may also form secondary to inflammatory conditions of
the abdomen or as a sequela of abdominopelvic radiation
[1]. Adhesions make internal organs to be stuck together
when they are not supposed to be. Due to the hindrance
of normal abdominal motion, various complications may
occur. The recently performed meta-analysis [2] has shown
that complications of adhesions are frequent and have a
large negative effect on patients’ health. The most common
complications are chronic pain, small bowel obstruction,
prolonged operative time, bowel injury during adhesiolysis
(a surgical procedure to remove adhesions), and a signifi-
cantly lower pregnancy rate. The incidence of postoperative
adhesions is high. For instance, in a post-mortem study

examining 752 cadavers, adhesions were found in 67% that
had undergone a single laparotomy and in 93% of cadavers
that had undergone multiple laparotomies [3]. Consequently,
adhesion illness increases workload in clinical practice and
puts a considerable burden on the economy. For instance,
in 1994, the costs for in-patient treatment of adhesion-
related morbidity in the United States were estimated to be
$1.3 billion per head [4]. Therefore, improvements in the
treatment strategy of the adhesion-related complaints are of
interest.

Currently, diagnosis of adhesions requires invasive tools
such as diagnostic laparoscopy owing to a lack of effective
noninvasive tests. These methods are controversial because
they can lead to the formation of new adhesions. This is
especially undesirable for the patients whose complaints
are not due to adhesions. According to [5] negative-finding
rates in studies that have used diagnostic laparoscopy for
identifying adhesions is established to be 15%, which is quite
high considering the involved risks.

Non-invasively adhesions can be diagnosed with either
ultrasound or cine-MRI. Cine-MRI is more powerful than
ultrasound because it can detect adhesions in the entire
abdomen, whilst ultrasound can detect only adhesions at-
tached to the front abdominal wall due to its limited depth
penetration [4]. Cine-MRI is a type of MRI in which a set
of consecutive images of the area of interest is acquired at
a fixed time interval. The captured images can be merged
into a video in which the movements of a certain tissue
over time are visible. This imaging modality can be used
to visualise the abdominal motion during respiration and by
interpreting the recorded motion patterns, radiologists can
diagnose adhesions. This method has shown potential for
adhesion detection with two studies indicating sensitivities
of at least 87.5% when compared with gold standard surgical
confirmation [4] [6]. Moreover, usage of cine-MRI for the
choice of the treatment strategy for patients with chronic
pain caused by adhesions has recently been found beneficial
[5]. The approach proposed in the study enabled achieving
long-term pain relief in two-thirds of patients as well as a
decrease in overall healthcare utilization. Nevertheless, cine-
MRI is not widely used in hospitals for making treatment
decisions yet since radiological reading is time-consuming
and expertise-dependent.

If an accurate computer-aided diagnosis (CAD) system for
adhesion detection on cine-MRI was available, that could
facilitate and speed up the adoption of cine-MRI usage in
clinical practice. First, such a system could assist in the
training of radiologists and decrease the learning curve.
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Besides, it can improve the accuracy of cine-MRI scans
interpretation by decreasing the number of false positives and
negatives. False positives can result in unnecessary surgery,
whereas false negatives can block surgery for patients who
may actually be helped by it.

II. RELATED WORK

Little work has been done to develop a CAD system for
adhesion detection on cine-MRI. To our best knowledge, the
only semi-automatic method designed so far was proposed
in David Randall’s PhD thesis [7].

The method is suitable for the detection of adhesions
attached to the anterior abdominal wall. It exploits the
discontinuity of the abdominal motion during respiration. In
healthy subjects, abdominal contents slide smoothly against
the surroundings of the abdominal cavity (abdominal wall,
back muscles, etc.). Simultaneously, the abdominal wall
exhibits a different, anteroposterior mode of motion. This
process is called visceral slide. Reduction in visceral slide
is a clinical criterion of underlying adhesions. The key idea
of the method is that it is possible to quantify the degree of
visceral slide captured on a sagittal slice of a cine-MRI scan
by computing shear along a boundary separating abdominal
contents from its surroundings. The output of the method
is a so-called "sheargram" which is obtained by summing
shear across all frames of a sagittal slice to include full
information about the abdominal motion into the algorithm’s
outcome. A low degree of shear should indicate the presence
of adhesions. The resulting sheargram is meant to be used
as a complementary diagnostic aid for medical specialists
and requires human judgment whether a reduction of shear
is observed.

A pilot study performed to validate the method demon-
strated a 84% agreement on the observed reduction in
shear with clinical judgment from the specialists [8]. It is
noteworthy that interpretation of sheargrams was performed
by the same specialists who examined cine-MRI slices to
determine the presence of adhesions.

The stages of the method are illustrated in figure 1. To
compute a sheargram, the method needs a segmentation
map separating the abdominal cavity from its surroundings
based on which a masked image registration is performed.
Image registration is the process of geometrically aligning
two images from various imaging sources. One of the images
is referred to as the fixed image and another is referred to
as the moving image. Image registration involves spatially
transforming the moving image) to align with the fixed
image. Registration algorithm outputs a deformation field,
which describes this transformation by specifying how each
point of the moving image should be shifted to make it
as close to the fixed image as possible. In the context of
shear computation, the goal is to quantify the motion of
abdominal contents and their surroundings across a sagittal
cine-MRI slice. The deformation field can be thought of
as quantification of this motion and hence shear between
frames can be computed from the obtained deformation
field. In Randall’s method, masked registrations of abdominal

contents and their surroundings are done separately and the
complete deformation field is obtained from the addition
of two masked deformation fields. Typically registration
algorithms do not perform well on the motion that occurs
in opposite directions, hence such an approach enables
more reliable capturing of the overall motion. For masked
registration, an accurate segmentation map of the abdominal
cavity is needed.

One of the limitations of the method was the lack of
segmentation automation, which is mentioned among the
desirable future work directions in the original PhD. Segmen-
tation was performed semi-automatically. For the first cine-
MRI frame a segmentation map was drawn by a medical spe-
cialist and transferred to the subsequent frames with image
registration. Still, manual correction of registration results
was required for each frame. Although this method is faster
than fully manual annotation, it remains time-consuming and
suffers from the annotator’s subjectivity. Also, the method
assumes the manual interpretation of the sheargram by a
radiologist and does not explore ways to predict adhesions
based on low shear value automatically.

A. Contributions

This master’s thesis proposes the first fully-automated
multi-stage CAD method for adhesion detection on cine-
MRI designed based on Randall’s semi-automated method.
The automation comprises deep learning-based segmentation
of the abdominal cavity and the region growing algorithm
designed to predict adhesions using the value of quantified
visceral slide as an input. Apart from automation, a few other
contributions summarised in the following list were made:
• The method was extended to be applicable to the

detection of pelvic adhesions as well. This means that it
is able to detect adhesions located at any position along
the abdominal cavity boundary.

• An approach to visceral slide quantification was revised
and changed to an alternative one that outputs visceral
slide in deformation field units, that can be converted
to millimetres, making it more interpretable.

• Two different approaches to visceral slide quantifica-
tion were explored. The first one uses the two most
dissimilar frames of a cine-MRI slice to highlight the
differences in the position of the abdominal cavity
boundary and abdominal organs at the opposite phases
of the respiratory cycle. Another method uses all frames
of a cine-MRI slice to exploit temporal information and
build a complete picture of abdominal motion.

• Multiple normalization options that account for motion
difference between patients and in different areas of
abdominal cavity contour were carefully designed and
integrated. This enables the same interpretation of a par-
ticular visceral slide value regardless of the amplitude of
motion that occurs on a cine-MRI slice and the position
at which it is observed.

• A false-positives reduction technique was designed
based on the domain knowledge about possible adhe-
sion location. For that, an accurate algorithm to detect
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Fig. 1: Flowchart describing Randall’s methodology. Step 1: semi-automated abdominal cavity segmentation (blue line); step
2: depiction of the mathematically quantified movement as a displacement field (green arrows); step 3: depiction of the shear
taking place along the boundary in a “sheargram”. The picture is taken from [8].

different parts of the abdominal cavity (top, bottom,
anterior wall, posterior wall) was developed, so that it
was possible to leave out any subset of abdominal cavity
contour during prediction. The resulting algorithm can
be reused in other methods for adhesion detection or
related tasks.

• As the first automated method for adhesion detection,
the method can serve as a baseline for CAD systems
that are developed for this task in future.

All possible method configurations with respect to the
ways to calculate and normalise visceral slide were evaluated
with double cross-validation from the perspective of adhesion
detection task as well as the ability to classify cine-MRI slice
with respect to adhesions presence. The evaluation yielded
a few insights into the applicability of the method to the
detection of adhesions attached to the anterior abdominal
wall and located in the pelvis area.

III. MATERIALS AND METHODS

A. The entire dataset

The entire dataset available for the project contains 563
studies for 526 patients of which 397 are female and 130
are male. The age of the patients varies from 13 to 84 years.
The maximum number of studies per patient is 3 but usually,
patients have only one study. Each study was provided with
a report containing a radiologist’s diagnosis based on the
assessment of a cine-MRI scan. From the conclusions in
the report, binary study-level annotations were extracted.
Since only patients with relevant complaints are prescribed
cine-MRI examination, the dataset is biased towards positive
patients and according to reports 408 studies are positive
and 155 are negative. Generally, studies contain from 6 to 9
sagittal slices and each slice consist of 30 frames taken with
a frame rate of approximately 2.69 frames per second.

All cine-MRI images were taken with 1.5T scanner from
Siemens (Siemens, Magneton Avanto, Erlangen, Germany) at
Radboud University Medical Center (RUMC) over the period
February 2012 - February 2020.

The method requires two types of data: annotations of
adhesions with bounding boxes for detection algorithm and
binary masks of the abdominal cavity for segmentation
model.

B. Adhesion detection dataset

To be suitable for the visceral slide quantification al-
gorithm, sagittal slices have to meet certain criteria. First,
the amplitude of motion performed by a patient should be
sufficiently high. Also, midline and left/right paramedian
slices are the most informative for diagnosis and are viewed
by radiologists in the first place, whereas left/right lateral
slices rarely contain enough details. The elaborate discussion
of suitability criteria and the used data sampling protocol is
given in section VI-A in the appendix.

1) Adhesion annotations: To acquire bounding box an-
notations of adhesions, 197 slices from 85 patients were
selected for two reader studies, which were completed by an
experienced radiologist. In total 153 adhesions were found
on 103 slices in 73 patients, hereby on some cine-MRI
slices multiple adhesions are present. It is noteworthy that
available annotations are not surgically confirmed and hence
not ground truth, but reference standard.

There are three sub-types of adhesions based on typical
locations where they occur:

1) Attached to the anterior abdominal wall, when adhe-
sion is formed between the anterior abdominal wall
and intestinal loops.

2) Pelvic adhesions, when adhesion is developed between
the bladder and/or uterus and intestinal loops.

3) Adhesions inside the abdominal cavity, when an adhe-
sion forms between intestinal loops.

Examples of annotations visualised on an arbitrary frame
of a corresponding slice are depicted in figure 2. Adhesions
at all possible locations are present in these examples. By
design, the proposed method can only detect adhesions that
are formed along the boundary of the abdominal cavity.
Hence, annotations of adhesions located inside the abdominal
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Fig. 2: Examples of frames of sagittal cine-MRI slices with visualised adhesion annotations. On the left slice one adhesion
is attached to the anterior front wall and another is formed between the bladder and intestinal loops. On the second slice
one large adhesion developed between intestinal loops is present. On the last slice there are three pelvic adhesions between
the uterus and intestinal loops.

cavity were disregarded during the method development and
evaluation.

2) Training, test and healthy control datasets: The dataset
drawn for the development of the method consists of a
training set, a held-out test set and a healthy control group to
calculate visceral slide statistics. Slices on which adhesions
were found in reader studies comprised a subset of positive
slices. Negative slices were filtered according to the afore-
mentioned suitability criteria, which gave a negative subset
of 110 slices from 99 patients.

Training set: Composed to be balanced by adhesion
occurrence at patient level. For the training set annotations
from the first reader study were available, that is 95 adhesions
on 63 slices in 51 patients. Since the method can detect
only adhesions along the abdominal cavity boundary, only
annotations at the corresponding locations (attached to the
anterior wall and pelvic adhesions) could be included in the
subset of positive patients. One slice with suitable annotation
was excluded due to artefacts. The resulting positive subset
comprised 59 slices for 50 patients and the same number of
negative patients and slices was randomly drawn from the
negative subset.

Table I presents statistics of annotations from the first
reader study filtered by adhesion location. For each location,
the number of annotations at this location and the number
of slices/patients that contain at least one annotation at this
location are given. The table highlights that the majority of
adhesion annotations in the training set correspond to pelvic
adhesions.

Test set: For the held-out test set 30 patients (15 negative
and 15 positive) were selected according to the available
binary study-level labels. For each patient, only one study
was included, from which three suitable slices were selected:

TABLE I: Statistics of adhesion annotations by location in
the first reader study. The data subset corresponding to the
row marked with asterisk was used in the training set.

Type Number of
adhesions

Number of
slices

Number of
patients

All 95 63 51
Anterior wall 18 (18.9%) 18 (28.6%) 12 (23.5%)
Pelvis 65 (68.4%) 50 (79.4%) 48 (94.1%)
Anterior wall
& pelvis*

83 (87.4%) 60 (95.2%) 50 (98.0%)

Inside 12 (12.6%) 11 (17.5%) 11 (21.6%)

midline and left/right paramedian.
Bounding box annotations were obtained from the second

reader study, in which 58 adhesions were found on 40 slices
belonging to 22 different patients (studies) and only 8 pa-
tients (studies) were not assigned any annotations. Thereby,
binary study-level annotations from radiologists reports are
inconsistent with the outcome of the reader study. In two sets
of annotations, the binary status of studies with respect to
adhesions presence matches for 18 studies, from which 12
are positive and 5 are negative. This yields Cohen kappa of
0.2, which can be interpreted as a slight agreement.

The detailed statistics of adhesion annotations by location
in the second reader study is given in table II. Two slices that
only have adhesion annotations inside the abdominal cavity
were removed from the final test set as well as three slices
with artefacts. Hence, eventually, the test set consisted of 38
positive slices and 47 negative slices. It is noteworthy, that
positive patients had some slices which were found adhesions
free in reader study.

In the test set, the percentages of adhesion annotations
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along the anterior wall and in the pelvis area are similar.

TABLE II: Statistics of adhesion annotations with bounding
boxes by location in the second reader study. The data subset
from the row marked with asterisk was used for the final
evaluation of the method.

Type Number of
adhesions

Number of
slices

Number of
patients

All 58 40 22
Anterior wall 25 (43.1%) 22 (55.0%) 13 (59.1%)
Pelvis 31 (53.4%) 29 (72.5%) 19 (86.4%)
Anterior wall
& pelvis*

56 (96.6%) 38 (95.0%) 20 (90.9%)

Inside 2 (3.4%) 2 (5.0%) 2 (9.1%)

Healthy control group: The remaining 34 negative pa-
tients, having 36 slices, were used as a healthy control group
to calculate visceral slide statistics.

3) Abdominal cavity segmentation dataset: For the ab-
dominal cavity segmentation task, we selected a subset
of frames from cine-MRI slices and segmented it under
the supervision of an experienced radiologist. In total it
included 201 segmented frames, of which 140 are midline
and 61 are paramedian. Midline slices were segmented for
all 68 patients but segmentation of paramedian slices is only
available for 28 of 68 patients.

C. Validation data split

During development, the method was evaluated with 5-
fold cross-validation. To avoid information leak from the
training to validation sets in folds, the data were partitioned
by patient. Since two types of annotations for separate sub-
tasks are used in the method, both should be taken into
account for validation data split. In other words, we do
not want the patients used to train the segmentation model
to be present in the validation set of the detection algo-
rithm to avoid overestimation of the algorithm performance.
In addition, folds should be stratified by the presence of
adhesions in patients and, for segmentation task, patients
with available paramedian segmentation should be equally
distributed across folds.

Therefore validation data split was made with stratification
by the presence of adhesions, availability of segmentation
and paramedian segmentation in particular. This way, folds
are balanced by all the necessary criteria.

D. Automation of Randall’s method

As shown in figure 3, the fully automated method consists
of three steps: obtaining segmentation map for an input slice,
visceral slide calculation and prediction of adhesions with
region growing algorithm. Additionally, two types of visceral
slide normalisation are integrated: by average horizontal
motion and by healthily control statistics.

1) Automated abdominal cavity segmentation: To auto-
mate segmentation of abdominal cavity nnU-Net [9] model
was trained. nnU-Net is a self-configuring deep learning-
based method for medical image segmentation that achieves

the state of the art performance on a broad range of medical
segmentation tasks. It is based on the popular U-Net archi-
tecture [10], which outperformed previously leading models
with a large margin when it was introduced. To improve
performance and generalisability as well as reduce manual
efforts required for U-Net training for a new task, the nnU-
Net creators focused on making robust design decisions
based on the distilled expert knowledge and input data fin-
gerprint. They separate design choices into three categories:
fixed parameters, rule-based parameters and empirical pa-
rameters. Fixed parameters are established based on domain
knowledge and are data-independent (e.g. learning rate and
data augmentation). Rule-based parameters are chosen using
the data fingerprint and known interdependencies between
model parameters (e.g. patch size and batch size). Lastly,
the optimal ensemble of trained models and post-processing
are determined empirically with k-fold cross-validation.

For the abdominal cavity segmentation task, the open-
source implementation of nnU-Net1 was used. A 2D version
of nnU-Net was trained with standard parameters and 5-
fold cross-validation data split described in the section III-
C for 1000 epochs. In addition, as custom post-processing,
binary holes in the predicted segmentation were filled if
present, since we know that the abdominal cavity is a single
continuous object.

2) Visceral slide quantification: Now, the trained nnU-
Net model allows inferring segmentation of the abdominal
cavity for any frame of any sagittal cine-MRI slice. The
next step of the method is the algorithm for visceral slide
quantification. Our algorithm follows the steps of David
Randall’s approach to a large extent, however, the method
to calculate the visceral slide is different. The scheme of the
method is present in figure 4.

At first, we give a formal definition of a problem and
necessary notations, which are then used to describe the algo-
rithm. Let S be a cine-MRI slice with dimensions (W,H, T ),
width, height and time respectively and M is a segmentation
mask predicted for this slice with the same dimensions. Then,
Fi is the ith frame of a slice and Mi is its segmentation mask,
i = 1, . . . , T . Ci = {cil = (xil, yil), l = 1, . . . , Li} is the
abdominal cavity contour on the frame Fi, where Li is the
number of points in the contour.

Following David Randall’s approach, we compute full
deformation field Dij between the moving frame Fi and
the fixed frame Fj as a sum of two deformation fields
that describe the motion of abdominal cavity contents and
abdominal cavity surroundings separately. For that, segmen-
tations Mi and Mj of these frames are used to mask frames
and compute masked deformation fields. That yields the
following formula for the full deformation field:

Dij =D(Fi �Mi, Fj �Mj)+

D(Fi � (1−Mi), Fj � (1−Mj))
(1)

where the first term describes deformation inside the
abdominal cavity and the second is for deformation of the

1https://github.com/MIC-DKFZ/nnUNet
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Fig. 3: The proposed fully-automated method for adhesion detection on cine-MRI. For an input slice segmentation mask
is predicted by nnU-Net and used to compute a complete deformation field composed of deformation of abdominal cavity
contents and deformation of its surroundings. Then, the visceral slide and average horizontal motion that occurs on the slice
are computed from the segmentation mask and deformation field. Normalisation by average horizontal motion is always
applied to the visceral slide to suppress differences in motion amplitude between patients. Optionally, the visceral slide can
be normalised by visceral slide statistics in the healthy control group. After normalisation visceral slide is filtered by the
position of the abdominal cavity contour at which it is located and only coordinates where adhesions can form are kept. This
way false positives reduction is performed. A filtered subset of the visceral slide is passed to a region growing algorithm
that predicts adhesions bounding boxes and assigns confidence. Some parameters of the algorithm that control bounding box
growth are estimated from the data.

abdominal cavity surroundings. D(·, ·) refers to the defor-
mation outputted by the image registration algorithm.

For image registration, the implementation from ANTS
toolkit [11] was used. More details about the ANTS imple-
mentation and the selected registration parameters are given
the appendix VI-B.

Since the deformation field describes the transformation
that should be applied to the moving frame, the visceral
slide is computed along the abdominal cavity boundary
on the moving frame. Therefore the visceral slide between

frames Fi and Fj is a function of the deformation field
Dij and the contour Ci of the moving frame Fi: Vij =
g(Dij , Ci). To compute visceral slide at each contour point
cil = (xil, yil), we take a clockwise tangent vector ~til to
the contour at this point, the corresponding points inside
and outside of the abdominal cavity, ciil = (xi

il, y
i
il) and

coil = (xo
il, y

o
il) respectively, and calculate visceral slide as

an absolute difference of dot products between ~til and the
deformation field at ciil and between ~til and the deformation
field at coil. Hereby, the formula for visceral slide at the
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Fig. 4: Flowchart summarising visceral slide calculation between two frames Fi and Fj .

contour point cil is:

vil = abs(Dij(c
i
il) · ~til −Dij(c

o
il) · ~til) (2)

The absolute value is taken because we are interested in
the magnitude of visceral slide and not in its direction. Then,
the visceral slide between the frames Fi and Fj can be
expressed as Vij = {(xil, yil, vil), l = 1, . . . , Li}, where
(xil, yil) are the coordinates of the abdominal cavity contour
on the frame Fi and vil is the visceral slide value at (xil, yil).

An advantage of this method in comparison to quantifying
the visceral slide with shear along the abdominal cavity
contour, as it is done in David Randall’s approach, is that the
computed visceral slide is in deformation field units and can
be converted into millimetres. This makes its values more
interpretable.

In David Randall’s work, the visceral slide corresponding
to a cine-MRI slice is computed as cumulative shear across
all frames. For that, he developed a shear summation proce-
dure that accounts for changes in abdominal cavity boundary
position between frames. This summation procedure is ap-
plied to shears between each pair of the subsequent frames
of a slice.

In this master thesis, we explore two possible ways to
quantify the visceral slide that occurs on a cine-MRI slice.
The first method is equivalent to David Randall’s approach to
compute cumulative visceral slide across all frames with an
appropriate summation procedure. In another method, only

the two most dissimilar frames are used and the visceral
slide computed between these frames is viewed as a sufficient
approximation of the total visceral slide on a cine-MRI slice.
The pair of the most dissimilar frames correspond to frames
at the opposite phases of the respiratory cycle, therefore we
call them inspiration and expiration frames.

3) Cumulative visceral slide: In this method information
at all cine-MRI slice time points is exploited to compute the
visceral slide. Visualisation of the algorithm is given in figure
5. Visceral slide Vi,i+1 is computed for each subsequent pair
of frames Fi and Fi+1. To avoid cluttered notation we refer
to this visceral slide as Vi onward. This way, T − 1 visceral
slides are obtained for a slice with T frames.

The cumulative visceral slide is an average of visceral
slides computed for all subsequent frame pairs. The main
challenge in the summation of visceral slides is the mismatch
of abdominal cavity positions between different frames. To
address it, at each summation step we warp the contour
corresponding to the current cumulative visceral slide to
match the contour of the next visceral slide. Note that this
way the contour of the cumulative visceral slide always
matches the contour of the visceral slide that was added last.
For warping of contours, the deformation field Dc

i between
contours Ci and Ci+1 is used. This deformation field is
acquired by registering 2D images into which the contours
are transformed. An image Ii representing the contour Ci is
generated in the following way:
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Fig. 5: A scheme that visualises summation of visceral slides across cine-MRI slice to compute the cumulative visceral
slide.

Ii(x, y) =

{
c if (x, y) ∈ Ci

0 otherwise

where c is an integer constant. This way only information
about the location of contours is passed to the registration
algorithm and the output is not affected by intensities differ-
ences. Then, the warped visceral slide is obtained as:

V ′i = {(x′il, y′il, vil), l = 1, . . . , Li}, where
x′il, y

′
il = round(xil + uil), round(yil + uil),

uil, vil = F c
i (xil, yil) deformation components at xil, yil

(3)

After warping, the cumulative visceral slide may contain
points with duplicated coordinates and its contour length
does not change. To resolve duplicated coordinates, the
visceral slide at a particular coordinate is taken as an average
of all visceral slide values that happen to have this coordinate
after warping. Then, the contours of the warped cumulative
visceral slide and the visceral slide between the next pair of
frames still do not match. To add visceral slides, we iterate
over each point of a current visceral slide, find the point
of the warped cumulative visceral slide closest by euclidean
distance and add visceral slide values at these points.

The detailed algorithm of visceral slide summation across
frames is described below. Vcum denotes the cumulative
visceral slide.

1) For i = 1, . . . T − 1 compute visceral slides Vi =
{(xil, yil, vil), l = 1, . . . , Li} between frames Fi

and Fi+1 and deformation field Dc
i between contours

Ci and Ci+1 to warp the cumulative visceral slide
during summation.

2) At the first step, take Vcum = V1.
3) For i = 2, . . . T − 1 add the cumulative visceral slide

obtained at the previous step and the current visceral
slide Vi. First, warp Vcum with the deformation field
F c
i according to the formula (3) to V ′cum. Then, add

V ′cum and Vi with the following procedure. For l =
1, . . . Li:

a) Find the point (x′cum,l∗ , y
′
cum,l∗ , vcum,l∗)

at V ′cum closest to (xil, yil, vil) at Vi

by euclidean distance so that l∗ =

argminl′(
√
(xil − x′cum,l′)

2 + (yil − y′cum,l′)
2).

b) Take vcum,l = vil + vcum,l∗ as a new cumulative
visceral slide value at the coordinate xil, yil.

Finally, the cumulative visceral slide is divided by the
number of added visceral slides, that is T − 1, to keep it
in deformation field units.

Potential advantages of this method are that complete
temporal information is exploited and segmentation inac-
curacies that may occur at different frames are smoothed
during summation. The latter property makes this method
more robust to errors a segmentation model makes.

4) Visceral slide with inspiration and expiration frames:
The main idea behind this method is that if only frames at
the opposite phases of the respiratory cycle are used, the
deformation that occurs in the abdomen during respiration
is highlighted. Hence, regions of higher and lower visceral
slide should be more prominent.

The first step of the methods is to find the inspiration and
expiration frames Finsp and Fexp. This is done based on the
position of the front abdominal wall since its anteroposterior
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movement during respiration can be correlated to the phases
of the respiratory cycle well. Therefore, the distance between
the anterior wall positions will be the highest for inspiration
and expiration frame pair. During inspiration, the diaphragm
moves down creating a vacuum that pulls air into the lungs.
As the diaphragm moves down, it pushes the abdominal
contents down, which forces the abdominal wall to move out.
Whereas, during expiration, the diaphragm relaxes and the
abdominal muscles contract, causing the abdomen to flatten
out. Hence, on sagittal slices, the position of the abdominal
wall will be the most anterior for the inspiration frame and
the most posterior for the expiration frame.

The position of the anterior abdominal wall on each frame
is determined based on the motion perpendicular to the
contour of the anterior wall with respect to a fixed frame.
The last frame of a slice, FT is set to be fixed. For each
frame Fi of a cine-MRI slice the contour of the anterior
abdominal wall Ci = {cil = (xil, yil), l = 1, . . . , Li},
vectors Oi = {~oil = (uil, vil), l = 1, . . . , Li} orthogonal
to the contour and deformation field DiT between the current
frame (moving) and the last frame (fixed) are determined.
The horizontal motion along the anterior wall is calculated
as a dot product of deformation at contour point and the
corresponding orthogonal vector Hi = {hil = DiT (cil) ·
~oil, l = 1, . . . , Li}. Then, the motion component with the
highest absolute value is found as h∗i = argmaxl(abs(hil)).
Inspiration and expiration frames indices are determined
as argmini(abs(h

∗
i )) and argmaxi(abs(h

∗
i )) respectively,

since inspiration frame will have the highest displacement to
the left in comparison to the fixed frame and the expiration
frame will have the displacement to the right. Note, that
the choice of the fixed frame to perform registration is not
important since we look at the relative displacement.

Then, visceral slide is computed between Finsp and Fexp

as described in the section III-D.2. The inspiration frame is
taken as a moving image and the expiration frame a fixed
image. Hence, the position of the computed visceral slide
matches the abdominal cavity contour on the inspiration
frame.

Examples of cumulative and inspiration/expiration visceral
slides computed for the same slice are present in figure
7. These examples demonstrate that our expectations about
differences in the two approaches to visceral slide compu-
tation were valid. Generally, the cumulative visceral slide is
smoother and represent the total abdominal motion captured
on a cine-MRI slice better: the estimated visceral slide tends
to be higher along the anterior and posterior abdominal
walls, where it is expected to be maximum, and lower in
the pelvis area, where less motion occurs. On the contrary,
there are more local changes in inspiration/expiration visceral
slide and the magnitude of values correlate with the loca-
tion at abdominal cavity contour less. Nevertheless, some
similarities can often be spotted between cumulative and
inspiration/expiration visceral slides computed for the same
slice. Also, it is noticeable from the figure that the range of
both cumulative and inspiration/expiration visceral slides can

substantially vary for different slices and the possible differ-
ence is more drastic for the inspiration/expiration method.
Among the given examples, the lowest cumulative visceral
slide with the maximum value just under 0.35 is estimated
for the first cine-MRI slice and the highest visceral slide
with the maximum just over 5.0 for the last one. As for the
inspiration/expiration visceral slide, it is the lowest for the
first slice too (maximum over 1.75) and highest for the third
example (maximum over 14.0). Overall, the difference in
visceral slide values distributions between the two methods
is striking.

Histograms summarising cumulative and inspira-
tion/expiration visceral slides distributions are given in
figure 6.

5) Visceral slide normalization by average motion: Ex-
amples of both cumulative and inspiration/expiration visceral
slides given in the previous section reveal that the magnitude
of the visceral slide can substantially vary across patients.
This is because despite receiving the same instructions during
a cine-MRI scan acquisition, different patients move with
different amplitude. Some patients exhibit high amplitude
motion, whereas others show little motion. This affects the
magnitude of the visceral slide, which is possible to measure
from a cine-MRI slice. Due to the character of abdominal
motion during respiration, the higher motion amplitude im-
plies a higher degree of the visceral slide that can occur.
These differences hinder the design of automated adhesion
detection method because the interpretation of a particular
visceral value is patient dependent.

We mitigate these motion differences between patients
by normalising the computed visceral slide by the average
horizontal motion along the anterior abdominal wall. As
discussed in the section III-D.4, this motion represents the
overall abdominal motion during the respiration the best.
After the abdominal cavity contour Ci of a moving frame
Fi and deformation field Dij between a pair of frames
are obtained, they are used to calculate the motion we are
interested in, as described above: Hi = {hil = Dij(cil) ·
~oil, l = 1, . . . , Li}. Then, the visceral slide Vij between
frames is normalized by division at hi = avgl(hil).

Examples of visceral slides normalized by the average
horizontal motion are shown in figure 9. The same cine-MRI
slices as in figure 7 are selected. Histograms of normalized
visceral slide distribution given in figure 8 reveal that for
both cumulative and inspiration/expiration visceral slides the
distribution of normalised values is more condensed than
the distribution of raw values. Besides, the normalisation
made ranges of cumulative and inspiration/expiration visceral
slides more similar, however, distributions are still noticeably
different. The majority of inspiration/expiration visceral slide
values are close to 0, whereas in cumulative visceral slide
share of very small values is much smaller.

Overall, for both methods the range of the normalised
visceral slide is more similar for different scans, however,
if the average horizontal motion is low, high values might
appear due to normalization. This explains the presence of
larger upper outliers in the distribution of the normalized

9



Cumulative Inspiration/expiration

Fig. 6: Distribution of unnormalised cumulative and inspiration/expiration visceral slide (mm) in the training set.
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Fig. 7: Examples of raw cumulative and inspiration/expiration visceral slides computed for the same cine-MRI slice. Visceral
slide values are converted to millimetres. The cumulative visceral slides are placed in the top row and inspiration/expiration
visceral slides are in the bottom. Different frames are used to display cumulative and inspiration/expiration visceral slides
since the position of cumulative visceral slide corresponds to the one before the last one frame, whereas the position of
inspiration/expiration visceral slide corresponds to the inspiration frame.

cumulative visceral slide. Also in figure 9 this effect is visible
for the inspiration/expiration visceral slide computed for the
first cine-MRI slice.

Note that in further sections it is implied that visceral slide
is always normalised by the average horizontal motion along
the anterior wall even if it is not mentioned explicitly.

6) Visceral slide normalization by healthy control statis-
tics: As mentioned before, the quantified visceral slide is
generally higher along the abdominal cavity walls and lower
in the pelvis area. If we want to predict adhesions, we have
to account for the difference in typical visceral slide value
in different regions of abdominal cavity contour. Otherwise,

it is likely that the presence of adhesions in the pelvis area
will be overestimated and we will miss adhesions along the
anterior abdominal wall.

A possible way to adjust for these differences is to
normalise the visceral slide by the statistics of the healthy
control group. Sampling of the healthy control group is
described in the section III-B.2. For each cine-MRI slice,
visceral slide normalized by the average horizontal motion
is computed and then, its mean and standard deviation are
calculated for different regions of abdominal cavity contour.
These means and standard deviations are used to normalize
visceral slides computed for cine-MRI slices in training and

10



Cumulative Inspiration/expiration

Fig. 8: Distribution of cumulative and inspiration/expiration visceral slide normalised by the average horizontal motion along
the anterior abdominal wall in the training set.
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Fig. 9: Examples of cumulative and inspiration/expiration visceral slides normalised by the average horizontal motion along
the anterior wall computed for the same cine-MRI slice. The cumulative visceral slides are placed in the top row and
inspiration/expiration visceral slides are in the bottom.

test sets.

Since the shape and position of the abdominal cavity
highly vary per patient, calculation of the visceral slide
statistics by coordinate is infeasible. Instead, contours Ci

are spitted into coarse chunks Pik, matched by their relative
location. The bottom-left point of the abdominal cavity
contour is used as a starting point and the chunks are
obtained by moving clockwise along the contour by a next
chunk length until the starting point is reached. The lengths
of chunks are determined based on the contour length and
the number of chunks a contour is split into, which in turn
is obtained from the average contour length in the healthy
control group (595) and the desired average number of points

per chunk, which we set to 5. That yields 119 unique chunks
per contour. When all visceral slides in the healthy control
group are split into chunks, visceral slide expectation and
standard deviation are computed per chunk for the set of the
values which fall into this chunk in all visceral slides. The
formal description of the algorithm is the following:

1) Compute visceral slides Vi for all cine-MRI slices in
the control group, i = 1, . . . , N .

2) Split each Vi into chunks with the following proce-
dure. Compute length of chunks qik from the contour
length Li and the target number of chunks so that∑119

k=1 qik = Li. Find the bottom left point (xil∗ , yil∗)
on the contour Ci. Starting from (xil∗ , yil∗) split Vi
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into 119 chunks of the corresponding lengths qik:
Pik = {vil, l = 1, . . . , qik}

3) For each chunk index k, iterate over visceral slides
and collect values that fall into it: Pk = {vl, l =
1, . . . ,

∑N
i=1 qik}

4) For each Pk compute mean and standard deviation.

To normalize a visceral slide with the statistics computed
this way, it is split into 119 chunks in the same way and the
values in each chunk are normalized with statistics of this
chunk. We consider two normalization options:

1) Division by mean: visceral slide values are divided
by mean. The resulting value highlights how visceral
slide in a particular region is related to its expected
value. Small values indicate less visceral slide than
expected and therefore higher likelihood of adhesion
in this region.

2) Standardisation: we subtract mean from visceral slide
values and divide by standard deviation. If the dis-
tribution of the visceral slide is sufficiently close to
normal, we can interpret the resulting values based on
the properties of standard normal distributing. Then,
conceptually negative outliers indicate adhesions. Or,
perhaps we can be less strict about the deviation from
the mean required to classify a point as belonging
to adhesion and consider all negative values as an
indication of a possible adhesion.

Normalization with standardisation requires normality of
the visceral slide distribution, however, it is clear from figure
8 that it does not hold. For both cumulative and inspi-
ration/expiration visceral slide normalised by the average
horizontal motion, the distribution is heavily skewed to the
right and many upper outliers are present. Therefore, to com-
pute sensible statistics, outliers were removed and suitable
transformation of visceral slide values was picked. For both
cumulative and inspiration/expiration methods squared root
transformation worked best. Figure 10 shows the comparison
of distributions of raw values of cumulative visceral slide in
the control group versus visceral slide with removed outliers
and squared root transformation applied. The distribution of
transformed values resembles normal distribution rather well.
Distribution of cumulative visceral slide in the training set
normalised with standardisation is depicted in figure 11 with
and without squared root transformation. It is clear from the
figure, that distribution of squared root transformed values
is much closer to standard normal. For inspiration/expiration
visceral slide the trend is similar and is depicted in figures
18 and 19 in the appendix.

Hence, eventually, the visceral slide statistics from a
healthy control group is calculated with removed outliers and
squared root transformation is applied for both normalisation
options. The visceral slide expectation by chunks is depicted
in figure 12.

Examples of visceral slides normalised with division by
expectation and standardisation (after squared root transfor-
mation) are given in figures 21 and 22 in the appendix
respectively. Normalisation by the average horizontal motion

is applied prior to normalisation with statistics and the same
slices are used as before.

E. Detection of adhesions

To predict adhesions based on the computed visceral slide
a region growing algorithm with false positives reduction was
developed. The algorithm relies on a few keys assumptions:

1) Low visceral slide correlates with the likelihood of
adhesion presence.

2) The computed visceral slide normalised by the average
horizontal motion is comparable among the slices. That
is, a particular visceral slide value should have the
same interpretation if it belongs to any cine-MRI slice.

3) Visceral slide normalised with control group statistics
is location-agnostic. In other words, the interpretation
of a particular visceral slide value should be indepen-
dent of its location at the abdominal cavity contour.

1) Region growing from local minimum: The algorithm
has a few hyper-parameters, which were tuned with 5-fold
CV for different experiments if the opposite is not stated in
the description:

• Connectivity threshold - a maximum distance between
two contour points to be treated as belonging to a
continuous region at the abdominal cavity contour. Set
to 5 for all experiments.

• Region growing index, RGI - a constant that is used to
determine maximum visceral slide value to be included
into the current adhesion prediction based on the vis-
ceral slide value from which region growing started.
The optimal value depends on the distribution of the
visceral slide.

• Minimum region length, MRL - minimum number of
points added to the region to be treated as a predic-
tion. This parameter aims to prevent the method from
generating predictions from visceral slide artefacts (e.g.
a single very low visceral slide value surrounded by
much higher values). Conceptually we assume that the
visceral slide should be lowered in a sufficiently long
region to indicate an adhesion.

Two other parameters were derived from data:

• Limits of the predicted bounding box: inferred from the
statistics of annotations with bounding boxes. Minimum
and maximum sizes are taken as the mean bounding box
size minus/plus 1.96 standard deviations.

• Visceral slide range for prediction: visceral slide tends
to have upper outliers. Although some of them might be
method artefacts, conceptually it means that adhesions
cannot be present in such regions. In both cases, it is
sensible to filter out visceral slide regions containing up-
per outliers. The threshold for upper outliers is defined
as Vmax = Q3+1.5IQR, where IQR = Q3−Q1 is an
interquartile range and Q1 and Q3 are the first and the
third quartiles. These values are computed for the set of
visceral slide values gathered from the whole training
set.
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Raw Squared root transformed & outliers removed

Fig. 10: Distribution of raw and squared root transformed values of cumulative visceral slide normalised by the average
horizontal motion computed for the healthy control group. In addition to squared root transformation outliers were removed.

Raw Squared root transformed

Fig. 11: Distribution of raw and squared root transformed cumulative visceral slide standardised with the control group
statistics.

Cumulative Inspiration/expiration

Fig. 12: Expectation of visceral slide normalised by average horizontal motion visualised on the arbitrary frame of a randomly
drawn cine-MRI slice.
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The method’s input is a set of visceral slides Vi =
{(xil, yil, vil), l = 1, . . . , Li} computed for cine-MRI
slices Si in the training set. The following algorithm is
applied to each visceral slide to predict adhesions:

1) Filter out visceral slide outliers: visceral slide points
with vil > Vmax and join the remaining values
into connected regions Rij = {(xjl, yjl, vjl), l =
1, . . . , Lj} based on the connectivity threshold. Re-
gions which size is smaller than the lower limit of
bounding box size are discarded.

2) Find global visceral slide minimum across all regions
vmin = argminjl(vjl) and the index j∗ of a region
that contains it. The corresponding point is used as
a starting point for region growing, which is done
point by point in both directions. Region growing
stops when at least one of the following conditions is
reached: a) the value of visceral slide vjl to be added
exceeds the maximum determined for the region as
vmax = vmin ∗RGI , b) the size of the bounding box
that encloses the region exceeds the upper bounding
box size for the prediction, c) an edge of the regions
is reached and there are no points left to add. The
output of this process is a connected region Qk =
{(xkl, ykl, vkl), l = 1, . . . , Lk}, which is a subset
of Rj∗ . Based on the coordinates of points in Qk, an
adhesion prediction with bounding box is generated.
If the size of a generated boundning box is smaller
than the lower size limit, the bounding box and Qk

are enlarged to this size.
3) Qk is cutout from Rj∗ , which produces two new

visceral slide regions R1
j∗ and R2

j∗ before and after
Qk respectively. R1

j∗ and R2
j∗ are added to the set of

connected regions for prediction if their size is larger
or equals to the required minimum bounding box size.

4) Steps 2) and 3) are repeated until no suitable regions
Rij are left.

Note, that this algorithm assumes that all visceral slide
values are positive, which is not the case when normalisation
by control group statistics with standardisation is applied. For
this normalisation option, a few adjustments to the method
are made. First, instead of filtering out upper outliers, only
negative visceral slide values are left to form regions. Also,
the maximum visceral slide value for the current prediction
is defined as vmax = vmin/RGI .

2) False positives reduction: By design, the method out-
puts predictions along the whole abdominal cavity contour.
This results in a large number of false positives. It is
straightforward to substantially reduce the number of false
positives by exploiting the knowledge about possible loca-
tions of adhesions, which are the bottom half of the anterior
abdominal wall and pelvis area. Therefore, the top half of the
anterior wall, the top of the abdominal cavity contour and the
entire posterior wall can be removed from the input visceral
slides. To achieve this, the algorithm which detects four parts
of the abdominal cavity contour (anterior wall, posterior
wall, contour top and contour bottom) was developed. As

soon as the location of these parts is determined, irrelevant
areas of the abdominal cavity contour can be easily filtered
out. Examples of the detection of abdominal cavity parts for
different slices are given in figure 23 in the appendix.

3) Ways to output confidence for a prediction: Taking into
account the properties of the computed visceral slide and
the designed region growing algorithm, three ways to output
confidence were considered:

1) Based on the minimum visceral slide value (vmin)
inside the predicted bounding box, that is the value
from which region growing was started.

2) Based on the mean of visceral slide values (vmean)
inside the predicted bounding box.

3) Prediction of logistic regression trained on the training
subset in each cross-validation fold. Bounding box an-
notations were used as positive examples and negative
examples were sampled from negative slices.

To make different confidence values more interpretable
and comparable, confidence defined with minimum or mean
value is calculated with the formula ck = Vmax−vmin

Vmax−Vmin

(similarly for vmean), where Vmax is the upper outliers
threshold and Vmin is the global visceral slide minimum in
the training set. This way higher confidence is assigned to
regions with lower visceral slide and and its range is (0, 1).

Sampling of negative examples is performed only in the
visceral slide region considered for prediction. A center
of a bounding box is randomly chosen at the region and
bounding box size is drawn from a normal distribution with
mean and standard deviation equal to those in bounding
box annotations. To obtain enough negative examples, four
different bounding boxes were sampled from each negative
visceral slide. The following features were tried: bounding
box weight and height, visceral slide minimum, mean and
maximum in the region, length of the region. Among these
features only bounding box height and region length were
consistently significant across all folds in the model for
different ways to calculate and normalise visceral slide.
As explained in the section IV-C they were essential to
making the model learn to differentiate between true and
false positives. Also, the addition of bounding box width or
mean visceral slide value increased the performance of the
method.

F. Validation

The method was evaluated from the object detection
perspective, that is prediction of adhesions, and as a binary
classifier of slices into positive and negative.

For adhesion detection, FROC analysis [12] was a primary
evaluation method and average precision (AP) [13] was
calculated as an auxiliary metric that summarises method
performance. The intersection over union (IoU) threshold to
register a hit is set to 0.01. Such a low value is chosen
because many bounding box annotations we have are rel-
atively small and clinically, the area affected by adhesion is
larger than an adhesion itself. Besides, since it is unknown
which frame exactly an annotation corresponds to, there is
additional variation due to motion.
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A simple way to classify a cine-MRI slice with respect
to adhesion presence is to use the highest confidence value
among all predicted adhesion bounding boxes as confidence
for binary classification of a slice. Then, slice-level ROC
and AUC can be computed. One more way to access whether
there is a difference in confidences assigned to true and false
positives is checking whether average confidences of predic-
tions that fall into these groups are statistically different. The
0.05 significance level was used.

For the training set, all evaluation metrics were computed
with 5-fold cross-validation described in the section III-C.

G. Documentation and source code

The method is implemented in Python 3.8 and docu-
mented with Numpy docstring format. The source code is
located in the private repository of DIAG organisation2.

IV. RESULTS

A. Abdominal cavity segmentation with nnU-Net

The standard nnU-Net parameters and simple post-
processing yielded reasonably high performance and good
segmentation. Cross-validated dice score and Jaccard index
were 0.94 and 0.90 respectively. A few examples of good
segmentation are given in figure 13. On these frames, ab-
dominal cavity content is accurately segmented out of its sur-
roundings at different positions of sagittal slices. However,
rather often the predicted segmentation is less accurate. Most
commonly, the model struggles with the pelvis area, where
parts of the uterus and/or the rectum are often mistakenly
included in the abdominal cavity. Sometimes parts of the
bladder can be included as well. Also, difficulties with de-
lineation of the posterior wall and differentiating the organs
belonging to the thoracic cavity are common. Nevertheless,
precise segmentation in these areas is not important for the
algorithm, since it is known that adhesions cannot form in
these areas. Generally, segmentation of the front abdominal
wall, which is crucial for the task, is very accurate, however,
there are a couple of examples on which the model fails,
likely due to unusual intensities in the surrounding areas or
artefacts. Examples of the listed errors are depicted in figure
24 in the appendix.

The performance of nnU-Net is not evaluated separately
on the held-out test set because the goal of this work is the
detection of adhesions, not the perfect segmentation of the
abdominal cavity.

B. Adhesion detection

In the performed experiments we compare two ways to
compute visceral slide (cumulative or inspiration/expiration)
and investigate an impact of different normalization by con-
trol group statistics (none, division by expectation, standard-
isation) and a way to output confidence (based on visceral
slide min, mean and with logistic regression). This yields 18
different experiments. Initially, the algorithm was run and
evaluated for the whole training set.

2https://github.com/DIAGNijmegen/abdomenmrus-cinemri-cavity-
segmentation

A complete overview of experiments with final hyper-
parameters and evaluation metrics is given in table VI in the
appendix. For each configuration of the method with respect
to the ways to compute and normalise visceral slide, training
logistic regression to predict confidence worked best3. For 4
of 6 methods it boosts AP and in 5 of 6 methods slice-level
AUC is slightly improved. Also, in 5 of 6 cases mean TPs
confidence is significantly higher than mean FPs confidence
at 0.05 significance level, whereas when minimum or mean
visceral slide value is used to output confidence usually there
is no statistically significant difference between TPs and FPs
confidence.

FROCs and slice-level ROCs for experiments with logistic
regression are depicted in figure 14 and quantitative evalua-
tion metrics are given in table III. From both visual compar-
ison of methods and quantitative metrics, it is apparent that
for the adhesion detection task cumulative visceral slide gives
consistently better performance than inspiration/expiration
visceral slide. At FROCs of methods that use cumulative
visceral slide, sensitivity increases faster and AP is higher
as well.

TABLE III: Evaluation metrics for experiments with cumu-
lative and inspiration/expiration visceral slide and different
normalisation by control group statistics. In all experiments
logistic regression is used to output confidence of a predicted
adhesion.

Method Evaluation metrics
Visceral
slide type

Normalised
by statistics

AP Slice
AUC

TPs
and FPs
different

Inspiration/
expiration

No 0.1283 0.4818 No
Division by
expectation

0.213 0.5375 Yes

Standardisation 0.1701 0.5735 Yes

Cumulative
No 0.284 0.5027 Yes
Division by
expectation

0.3198 0.5336 Yes

Standardisation 0.2073 0.5008 Yes

Also, for both methods of visceral slide calculation, nor-
malisation with division by visceral slide expectation yields
the best FROCs. Among the compared methods, cumulative
visceral slide normalised with division by expectation has the
best performance based on its FROC and average precision
(0.32). Sensitivity around 0.6 is reached at 1 FP per image
and it rises to 0.73 at 2 FPs per image. The maximum
sensitivity of 0.92 is achieved at 3.13 FPs per image.
Nevertheless, the overall performance of the best method is
rather poor and is far from being suitable for usage in clinical
practice.

Slice-level ROCs reveals that neither of explored methods
is able to differentiate between slices with adhesions and neg-
ative slices. Only ROC of standardised inspiration/expiration
visceral slide looks as if the method was better than randomly

3It is noteworthy that features used to fit logistic regression were deter-
mined with cross-validation and vary between methods. For each method,
the list of used features is given in the caption of figure VI
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Fig. 13: Examples of very good abdominal cavity segmentation predicted by nnU-Net model for different sagittal slices
positions.

Fig. 14: FROCs (on the left) and slice-level ROCs (on the right) for experiments with cumulative and inspiration/expiration
visceral slide and different normalisation options. Contractions used in legend labels: cum = cumulative, inspexp =
inspiration/expiration, unnorm = no normalisation by control group statistics applied, div_mean = normalisation with
division by expectation, stand = normalisation with standardisation. Curves for cumulative visceral slide are displayed in
blue and for inspiration/expiration in orange.

guessing whether adhesions are present. By and large, ROCs
of different methods are not much different from the x = y
line.

FROCs and slice-level ROCs obtained for different meth-
ods highlight that there is a difference in performance gain
from the usage of logistic regression to predict confidence for
cumulative and inspiration/ expiration visceral slides. In fig-
ure 15 FROCs and slice-level ROCs of method configurations
that use unnormalised cumulative and inspiration/ expiration
visceral slides and vary by the way to output confidence are
depicted. For cumulative visceral slide, logistic regression
gives noticeably higher sensitivity at almost all levels of
FPs per image and there is a slight improvement in slice-
level AUC. On the contrary, there is hardly any difference
in methods’ performance when confidence is derived from
minimum or mean visceral slide value in the bounding
box. For inspiration/expiration visceral slide, the difference

between methods’ performance for different ways to output
confidence is negligible.

The trend is similar for other normalisation options, for
which FROCs and slice-level ROCs are visualised in figures
25 and 26 in the appendix. The only exception is the
inspiration/expiration visceral slide normalised with division
by expectation. For this configuration logistic regression
noticeably improves both FROCs and slice-level ROCs as
well.

Since even the performance of the best method was
poor, we decided to look into possible reasons for that.
To check whether differences in abdominal motion between
these regions can explain low performance, the method was
applied separately to the anterior wall and pelvis areas.
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Fig. 15: FROCs (on the left) and slice-level ROCs (on the right) for experiments with unnormalised cumulative (top row)
and inspiration/expiration (bottom row) visceral slide plotted separately for different ways to output confidence. Contractions
used in legend labels: conf_min = confidence based on minimum visceral slide value, conf_mean = confidence based
on mean visceral slide value, conf_lr = confidence predicted by logistic regression.

C. Anterior wall and pelvis separately

Only method configurations that use cumulative visceral
slide were evaluated for the anterior wall and pelvis areas
separately, since it had previously shown better performance.
In these experiments only positive slices with annotations of
a considered type (attached to the anterior wall or at the
pelvis boundary) were included in the training set and the
size of the negative slices subset was adjusted accordingly to
make the dataset balanced. As a result, the datasets for the
anterior wall and pelvis areas comprised 36 and 96 slices
respectively. During prediction only the region of interest,
that is the bottom half of the anterior wall or pelvis, was
used to generate prediction.

Figure 16 shows comparison of FROCs and slice-level
ROCs for separate experiments. For different method con-
figurations the way to output confidence that gives the best
performance is chosen as explained in the caption of figure
16. Quantitative metrics of all experiments are given in tables

VII and VIII in the appendix.
A separate evaluation gives a few interesting insights.

First of all, for both the anterior wall and pelvis, logistic
regression does not yield a performance boost in FROC and
AP anymore. Most likely, it happens because there are more
annotations in the pelvis area than along the anterior wall
in the dataset, 65 versus 18. Then, when the method is
used for these two areas simultaneously, logistic regression
just learns to differentiate predictions in these areas by the
shape of the bounding box and assigns higher confidence
for predictions in the pelvis area. This is possible because
in all models bounding box height was used as a feature
in logistic regression. Moreover, this feature was significant
across cross-validation folds, which indicates its importance
for the prediction.

The evaluation metrics reveal a striking difference in prop-
erties of the visceral slide estimated along the anterior wall
and in the pelvis area. For the pelvis area, slice-level AUC
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Fig. 16: FROCs (on the left) and slice-level ROCs (on the right) for the best experiments when anterior wall (top row) and
pelvis areas (bottom row) are evaluated separately. Ways to output confidence used in the compared experiments: 1) anterior
wall, unnorm = based on the mean visceral slide value, div_mean = logistic regression with mean visceral slide values
as the last feature, stand = logistic regression with mean visceral slide values as the last feature, 2) pelvis, unnorm =
based on the mean visceral slide value, div_mean = logistic regression with mean visceral slide values as the last feature,
stand = based on the min visceral slide value

is higher than 0.55 for 7 of 12 experiments, whereas for the
anterior wall it is lower than 0.41 for 10 of 12 experiments.
What is more, when logistic regression is applied, it tends
to decrease the performance for binary classification task for
the pelvis area and rise AUC to a random guess level for the
anterior wall when the mean visceral slide value is used as
a feature. The latter is probably merely because the model
learns that along the anterior wall a higher mean visceral
slide value is associated with an adhesion presence. To check
this hypothesis mean visceral slide value feature was replaced
with bounding box width in logistic regression. Figure 27 in
the appendix compares the impact of this change by showing
FROCs and ROCs for cumulative visceral slide normalised
with division by expectation and different ways to assign
confidence. When bounding box width is used as a feature
in logistic regression slice-level ROC is not improved. The

same comparison is made for the pelvis area in figure 28.
The only noticeable impact of using bounding box width as
a feature is a worse slice-level ROC.

A random guess level performance of the slice-level binary
classification task for the whole dataset can be explained by
the fact that in the anterior wall area visceral slide tends to
be higher in regions that correspond to adhesion annotations
than for adhesions-free regions, while in the pelvis area the
trend is the opposite.

As for the adhesion detection task, according to FROCs
and AP, for the anterior wall, the best performance is
achieved with unnromalised visceral slide and both normal-
isation options lead to a performance drop. On the contrary,
for the pelvis area visceral slide normalised with division
by expectation gives the best performance. This means that
the interpretation of the visceral slide calculated with the
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proposed method should be different for the anterior wall and
pelvis. Although performance is still poor, the visceral slide
estimated in the pelvis area is in line with the concept of the
methods to some extent. Whilst, the correspondence between
annotations and visceral slide estimated along the anterior
wall contradicts the idea of the method. Apparently, the
proposed normalisation options failed to sufficiently account
for the differences in motion pattern in these two areas. But
crucially, the trend observed in the visceral slide along the
anterior wall makes the key idea of the method questionable.

D. Evaluation on the held-out test set

The final evaluation of the method configurations that
use cumulative visceral slide with the parameters selected
with cross-validation was performed on the held-out test set
to check the method’s generalisability. For configurations
that use logistic regression to output confidence, the whole
training set was used to fit the model. The share of pelvic
adhesions in the training set is higher than in the test set.
Therefore, it was natural to expect a noticeable performance
drop based on the differences in the relation of visceral slide
value and adhesion annotations in the pelvis and along the
anterior wall revealed in the section IV-C. Surprisingly, the
performance on the test set was better in all cases, especially
for slice-level diagnosis. The list of all evaluated method
configurations and quantitative performance metrics is given
in table IV. Consistently with the previous experiments,
normalisation with division by expectation was superior to
other normalisation options. FROCs and slice-level ROCs for
method configurations that use normalisation with division
by expectation and vary by the way to output confidence are
depicted in figure 17. On the contrary to the cross-validated
evaluation on the training set, using minimum visceral slide
value gives better performance for both adhesion detection
task and slice-level classification task, whereas logistic re-
gression leads to a performance drop.

On the test set, the top-performing method configuration
was the one using cumulative visceral slide normalised with
division by expectation and minimum visceral slide value
to output confidence. Detection sensitivities of 0.7 and 0.91
were achieved at 1 and 1.89 false positives per cine-MRI
slice respectively, and AP was 0.36. Slice-level AUC reached
0.78, which indicates decent potential for binary classifica-
tion. As for the method configuration found the best with
cross-validation, that is cumulative visceral slide normalised
with division by expectation and using logistic regression
to output confidence, its performance was noticeably lower.
Detection sensitivities of 0.5 and 0.7 were reached at 1 and
2 false positives per cine-MRI slice respectively, and the
highest sensitivity of 0.91 was achieved at 2.9 false positives.
AP and slice-level AUC were 0.28 and 0.59 respectively.

The fact that using visceral slide minimum to assign
confidence to predicted bounding boxes indicate that for the
test set the assumption that drop in the estimated visceral
slide is associated with adhesion presence is more valid than
in the training set.

TABLE IV: Evaluation of the method on the held-out test
set. Only method configurations with cumulative visceral
slide were considered. To train logistic regression the set of
features selected for each method configuration with cross-
validation was used.

Method Evaluation metrics
Normalised
by statistics

Confidence AP Slice
AUC

TPs
and FPs
different

No
min 0.2411 0.7531 No
mean 0.2511 0.7576 Yes
LR 0.2757 0.5991 Yes

Division by
expectation

min 0.3556 0.7811 Yes
mean 0.3056 0.6976 Yes
LR 0.2818 0.5921 Yes

Standardisation
min 0.2093 0.7296 Yes
mean 0.2152 0.7234 Yes
LR 0.1742 0.411 No

V. DISCUSSION

A. Limitations

The main limitation of the method is that the used
adhesion annotations were not confirmed surgically. This
makes the evaluation and reported results doubtful. However,
obtaining a similarly large dataset with ground truth anno-
tations is expensive and time-consuming, thus collection of
such a dataset would significantly delay the possible start
of the project. Also, since the source code of the method is
available, it can be tested on the dataset with ground truth
annotations as soon as it is obtained.

By design the proposed method is multi-step. In total
it has 6 subsequent steps: 1) segmentation of abdominal
cavity, 2) visceral slide calculation, 3) normalisation by
the average motion along the abdominal cavity contour, 4)
(optional) calculation of the healthy control group statistics,
5) (optional) normalisation of visceral slide with control
group statistics and 6) prediction based on the visceral slide
value. This makes a possible error space big and as a result,
the whole method is error-prone and fragile. The first class of
possible errors is implementation errors. The interpretation
of the performed experiments and analysis given in the
results section assumes that all compounds of the method are
implemented correctly, however, we cannot guarantee that it
is indeed the case.

Another possible cause of poor performance is insufficient
optimisation of the method components. For instance, the
typical segmentation errors shown in figure 24 in the ap-
pendix are rather common. Most of these errors occur in
the pelvis area where most of our annotations are located.
Perhaps more accurate segmentation is required to unlock the
full potential of the method. Also, the parameters used in the
registration algorithm could be sub-optimal and it may have a
significant impact on the performance. Finally, the core idea
of the method might be unsuitable for tackling the adhesion
detection task. When diagnosing adhesions, radiologists look
not only at the reduction of visceral slide but also the
position of intestines inside the abdominal cavity. Therefore,
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Fig. 17: FROCs (on the left) and slice-level ROCs (on the right) for evaluation of the method on the test set. Compared
method configurations use cumulative visceral slide normalised with division by expectation and are different by the way
to output confidence.

the proposed method might work only for a fraction of
adhesions, which give a noticeable local drop in visceral
slide, and miss the others. A more advanced method that
takes the position of viscera into account might be required
to build an automated CAD system for this task.

Such a wide range of possible reasons of poor method
performance makes it hard and time-consuming to determine
which improvements should be made in the first place and
whether the method has the potential to achieve performance
suitable for application in clinics.

Lastly, the method is only able to detect adhesions that
intersect the contour of the abdominal cavity. Hence, even if
high performance is achieved, adhesions located inside the
abdominal cavity between intestinal loops will be missed.

B. Future work

The results of method evaluation with cross-validation
and on the test set were controversial due to the difference
between test and training sets in the percentage of adhe-
sions at different locations and association of low visceral
slide value with adhesion annotations. Hence, for reliable
evaluation of the method and perhaps selection of more
optimal hyper-parameters, it is necessary to collect a larger
and more representative dataset, which is more balanced by
the presence of adhesions attached to the anterior wall and
pelvic adhesions.

However, even the best performance achieved on the test
set is rather poor, therefore an exploration of performance
bottlenecks would be a sensible sensible future work direc-
tion.

Since there is evidence that in the anterior wall area low
visceral slide does not correlate with adhesion annotations,
it is worth checking the validity of the key idea of the
method. As soon as higher a quality dataset is obtained
and there is high confidence in the accuracy of visceral
slide calculation and that applied normalisation sufficiently

suppressed differences occurring due to abdominal motion
amplitude and position at the abdominal cavity boundary, it
should be checked whether lower visceral slide correlates
with adhesion annotations. If it does not, it is serious
evidence that the method proposed by David Randall is
not suitable to form the basics of the automated CAD for
adhesion detection. As stated in the pilot study of the method
[8], only cine-MRI slices that were accessed as having a
sufficiently high amount of respiratory motion were used in
the study, which resulted in the exclusion of about half of
the available slices. Also, the presence of computed shear
drop indicative for adhesions was established by the same
specialists who examined the corresponding cine-MR images
to confirm adhesions presence. These are two reasons why
the reported agreement with clinical judgment might be
overestimated. Although in this master thesis cine-MR slices
are filtered according to suitability for the method as well,
the criteria we use are less strict. Also, human judgment is
excluded from the method evaluation, which makes it more
objective.

Based on the insights obtained from the evaluation of the
method, the following approaches can be tried to improve
method performance, listed from the most worthwhile to the
least:

1) Separate evaluation of the method for anterior wall and
pelvis region on the training set indicates that there
might be crucial differences in motion patterns in these
regions and applied normalisation by control group
statistics is insufficient to suppress it. A more detailed
examination of these differences on a larger dataset can
help to design normalization methods that can align
them better and enable using the same algorithm in
both areas. Alternatively, it might be sensible to use
separate methods to predict adhesions in these areas.

2) The segmentation model still frequently fails in the
pelvis area and sometimes along the anterior abdom-
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inal wall. This may lead to an inaccurate estimate
of visceral slide in the areas essential for prediction.
Although usage of the cumulative visceral slide should
mitigate this problem, visualisation of segmentation on
the whole cine-MRI slices shows that segmentation in
the pelvis area might be rather unstable even for "easy"
slices and hence the computed visceral slide might be
noisy. Since abdominal cavity shape and viscera posi-
tion can drastically vary across patients, we expect that
using a larger dataset to train the nnU-Net can give a
decent performance improvement. Also, customisation
of image pre-processing, data augmentation and nnU-
Net parameters can be tried.

3) More robust ways to calculate visceral slide statistics
by location should be explored. The current way of
splitting the abdominal cavity contour into a predefined
number of chunks and matching them by relative
location is straightforward to implement, however it
was not thoroughly tested and it might lack necessary
accuracy due to differences in shapes of abdominal
cavity among patients and different positions of cine-
MRI slices. Also, a larger and more diverse control
group is desirable to obtain more accurate expectation
and standard deviation estimates.

4) Due to time constraints, exploration of registration pa-
rameters was not done. However, sub-optimal registra-
tion might critically distort the estimated visceral slide,
since it is based on the difference in deformation on the
opposite sides of the abdominal cavity contour. Now,
when the implementation of the automated method
is available, it is more feasible, however still time-
consuming because image registration with gradient-
descent optimization used in ANTs is slow.

5) To facilitate future experiments and possibly improve
the accuracy of image registration, ANTs toolkit can be
replaced with a deep learning registration model [14].
It will substantially speed up visceral slide calculation
and as a result, investigation of method improvements.

6) Since for each point visceral slide is calculated based
on the values of the full deformation field at the oppo-
site sides of the abdominal cavity contour, even minor
segmentation inaccuracies might lead to an incorrect
visceral slide estimate. Checking the effect of a slightly
changing segmentation mask on the calculated visceral
slide will help to determine which accuracy of a seg-
mentation model is required for an adequate algorithm
implementation and how feasible the development of
such models is.

7) There might be substantial differences in the visceral
slide distribution at different positions of a cine-MRI
slice. Paramedian and midline slices are quite dif-
ferent in shape, visible organs and motion patterns.
That might lead to sub-optimal performance when
the method does not account for possible differences
between cine-MRI slices at different positions. In the
proposed method, calculation of healthy control group
statistics might be especially affected by this, since it

relies on the idea that shapes of abdominal cavities are
sufficiently similar. Therefore, it is worth investigating
whether the visceral slide pattern varies by position
at which a cine-MRI slice is taken and whether the
calculation of healthy control group statistics by slice
position improves the results.

C. Conclusion

This master thesis proposes the first fully-automated multi-
step CAD method for adhesion detection on cine-MRI de-
signed based on the semi-automated method introduced by
David Randall in his PhD thesis. In the method, the visceral
slide that occurs on a sagittal cine-MRI slice is quantified
using deep learning and image registration techniques and
passed to the region growing algorithm that predicts adhe-
sions. Two ways to compute visceral slide were explored.
In the first one, only the two most dissimilar frames of a
cine-MRI slice are used to sharpen the differences between
regions of lower and higher motion and the second method
exploits all time points in a cine-MRI slice to obtain a
full picture of motion. To make visceral slide comparable
between different cine-MRI slices, normalisation by the
average horizontal motion was applied. Also, the differences
in typical visceral slice values by location at abdominal
cavity boundary were adjusted with normalisation by healthy
control group statistics. Finally, three ways to assign confi-
dence to a predicted adhesion bounding box were tried: based
on the minimum visceral slide value in the bounding box,
based on the mean visceral slide value and by training the
logistic regression to output confidence.

The results of the cross-validated evaluation and evaluation
on the held-out test set were controversial. Performance on
the test set was higher than cross-validated for all method
configurations and a slightly different method was top-
performing. In both cases, cumulative visceral slide nor-
malised by the average horizontal motion and with division
by expectation was found superior for the adhesion detec-
tion task and gave one of the highest slice-level AUCs.
However, different ways to output confidence yielded fur-
ther performance improvement. According to cross-validated
evaluation, confidence predicted by logistic regression gives
a noticeable performance boost. Then, sensitivities of 0.61
and 0.73 at 1 and 2 false positives per slice along with
0.53 AUC in slice-level diagnosis were achieved. On the
held-out test set, confidence based on the minimum visceral
slide value unlocked the highest performance and resulted
in detection sensitivity of 0.7 and 0.91 at 1 and 1.89 false
positive per slice along with 0.78 slice-level AUC. These
discrepancies can be explained by differences in properties
of test and training set. First, in the training set, annotations
of pelvic adhesions are over-represented and the test set is
more balanced concerning annotations location. Also, there is
evidence that in the test set low visceral slide value correlates
with adhesion annotations better than in the training set.

The differences in evaluation results on the test and train-
ing sets highlight that acquisition of a higher quality dataset
is essential for reliable method evaluation and an adequate
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choice of the best method and its hyper-parameters. Such
a dataset should be balanced by the presence of adhesions
attached to the anterior wall and pelvic adhesion and more
representative in motion patterns.

Although performance on the held-out test set was better
and slice-level AUC of the best method looks promising, it is
still insufficient to consider the usage of the method in clin-
ical practice. Nevertheless, the proposed method is the first
step on the path towards the creation of the CAD for adhesion
detection suitable for clinical usage. The detailed information
gathered during the method evaluation and proposed future
work directions can guide the further development of the
method.
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VI. APPENDIX

A. Suitability of slices for the method

The entire data set contains all potentially clinically rel-
evant slices taken according to cine-MRI scan acquisition
protocol, however, only slices with particular properties are
suitable for the method.

The key idea of the method is to quantify the visceral slide
and detect adhesions along the abdominal cavity contour
based on the local drop in visceral slide. This implies a few
requirements for slices that can be processed by the method.

First, the amplitude of motion exhibited by a patient
should be sufficiently high to make the visceral slide visible
for both the method and human expert. Generally, there are
two motion protocols that patients are asked to follow during
a cine-MRI scan acquisition: 1) deep respiration with active
movement of the anterior abdominal wall and 2) squeezing
pelvis without moving the anterior wall. The second protocol
is not suitable for the method because the motion amplitude
is lower and the motion pattern is not indicative for visceral
slide assessment. Also, not all sagittal slices positions are
equally informative. According to a radiologist we consulted,
medical specialists check midline slices in the first place and
most frequently adhesions are found on such slices. This is in
line with the adhesion annotations statistics by slice position
in our dataset given in table V, where the majority of slices
with adhesion annotations are midline. Left/right paramedian
slices are suitable for diagnosis too, however much less is
visible on the left/right lateral slices and such slices should
be left out while sampling the dataset.

Information about these properties of slices is contained in
the metadata of images, which enables automated sampling
of suitable slices. However, the precise position of a slice
cannot be inferred from metadata since only three position
constants are used: middle, right and left. That does not allow
differentiating between paramedian and lateral slices. Due
to this and better suitability for adhesions diagnosis, it was
decided to sample only midline slices to save time on manual
check of paramedian slices. The only exception is a sampling
of the test set, which consists of 30 studies. We found it
sufficiently small to manually filter out lateral slices. Besides,
it was unknown on which slices adhesions were present in
positive studies.

Lastly, to reduce possible noise which may arise from
inaccurate diagnosis, 10 patients who have both positive and
negative studies were excluded from sampling.

B. Image registration details

A Python wrapper for ANTS, ANTsPy 4, was used in
the project. The following registration parameters were em-
ployed:
• Type of transform (type_of_transform) - SyN-

Only, symmetric normalization without initial transfor-
mation and with mutual information as optimization
metric,

• The metric for the syn part (syn_metric) - mattes,

4https://github.com/ANTsX/ANTsPy

• Initial transform to prepend (initial_transform)
- identity,

• Radius for the syn metric (syn_sampling) - 8,
• Smoothing for total field (total_sigma) - 1,
• Registration iterations (reg_iterations) -

(1000, 1000, 100). Define smoothing and multi-
resolution parameters for the syn part.

For other parameters the default values were kept.
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TABLE V: Adhesion annotations statistics by slices position.

Type Left Right Paramedian (L + R) Middle Total
All 5 (7.94%) 10 (15.87%) 15 (23.81%) 48 (76.19%) 63
Anterior wall 3 (16.67%) 5 (27.78%) 8 (44.44%) 13 (55.56%) 18
Pelvis 2 (4.00%) 4 (8.00%) 6 (12.00%) 44 (88.00%) 50
Anterior wall & pelvis 5 (8.33%) 9 (15.00%) 14 (23.33%) 46 (76.67%) 60

Raw Squared root transformed & outliers removed

Fig. 18: Distribution of raw and squared root transformed values of inspiration/expiration visceral slide. In addition to squared
root transformation outliers were removed.

Raw Squared root transformed

Fig. 19: Distribution of raw and squared root transformed inspiration/expiration visceral slide standardised with the control
group statistics.

Unnormalised Divided by mean & SQRT transformed Standardised & SQRT transformed

Fig. 20: Distribution of inspiration/expiration visceral slide with different normalisation by the control group statistics.
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Fig. 21: Examples of cumulative and inspiration/expiration visceral slides normalised by the average horizontal motion and
division by expectation after squared root transformation of visceral slide values. The cumulative visceral slides are placed
in the top row and inspiration/expiration visceral slides are in the bottom.
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Fig. 22: Examples of cumulative and inspiration/expiration visceral slides normalised by the average horizontal motion and
standardisation after squared root transformation of visceral slide values. The cumulative visceral slides are placed in the
top row and inspiration/expiration visceral slides are in the bottom.
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Fig. 23: Examples of detection of four parts (top, bottom, anterior and posterior walls) of abdominal cavity contour visualised
with different colors on an arbitrary frame of cine-MRI slices.

Fig. 24: Examples of typical errors nnU-Net model made in predicted segmentation of abdominal cavity. From top left to
bottom right: 1 - top parts of uterus and rectum are included, 2 - rectum is included, 3 - artefacts around the bottom part of
the anterior abdominal wall, 4 - a part of the bladder is included and inconsistencies in the posterior wall delineation, 5 -
a bowel loop above the bladder is not included and too much is included at the bottom right, 6 - failure with anterior wall
detection, 7 - incorrect segmentation of the bottom part, 8 - too much is included at the top right and a small bowel loop
at the bottom is not included.
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TABLE VI: Performed experiments varied by the used visceral slide computation and normalisation methods and a way to
output confidence. *Distribution of inspiration/expiration visceral slide not normalised by the control group statistics has the
narrowest IQR and has the highest share of values close to 0. Due to this, a non-linear transformation of the local minimum
selected for region growing to obtain the maximum visceral slide allowed in the region gives better performance than using a
region growing index. If vmin < 1, vmax =

√
vmin and for vmin > 1, vmax = v2min. Features used to fit logistic regression:

1, 5. bounding box height, bounding box width, region length 2, 3, 6. bounding box height, minimum visceral slide value
in a region, region length 4. bounding box height, mean visceral slide value in a region, region length. The best AP and
slice-level AUC are given in bold.

Method Parameters Confidence Evaluation metrics
Visceral slide type Normalised

by statistics
SQRT
transformed

MRI RGI AP Slice AUC TPs and FPs
different

Inspiration/expiration

min 0.1168 0.5786 Yes
No No 3 SQRT* mean 0.1059 0.5012 No

LR1 0.1283 0.4818 No
min 0.144 0.503 Yes

Division by
expectation

Yes 3 7 mean 0.1432 0.4854 No

LR2 0.213 0.5375 Yes
min 0.1414 0.4494 Yes

Standardisation Yes 3 7 mean 0.1366 0.4982 Yes
LR3 0.1701 0.5735 Yes

Cumulative

min 0.1527 0.4708 No
No No 5 2.5 mean 0.1577 0.4661 No

LR4 0.284 0.5027 Yes
min 0.1713 0.4336 No

Division by
expectation

Yes 5 2.5 mean 0.1648 0.4247 No

LR5 0.3198 0.5336 Yes
min 0.1076 0.4682 No

Standardisation Yes 5 5 mean 0.1121 0.4619 No
LR6 0.2073 0.5008 Yes

TABLE VII: The anterior wall experiments. In all experiments with logistic regression bounding box height and region
length are used as features and the last feature is specified in brackets. mean VS = mean visceral slide, min VS = minimum
visceral slide, BB width = width of the predicted bounding box. The best AP and slice-level AUC are given in bold.

Method Parameters Confidence Evaluation metrics
Visceral slide type Normalised

by statistics
SQRT
transformed

MRI RGI AP Slice AUC TPs and FPs
different

Cumulative

min 0.3643 0.4074 No
No No 5 2.5 mean 0.382 0.3796 No

LR (mean VS) 0.3715 0.3426 No
LR (BB width) 0.3774 0.3549 No
min 0.2749 0.321 Yes

Division by
expectation

Yes 5 1.5 mean 0.2648 0.3117 Yes

LR (mean VS) 0.2806 0.5154 No
LR (BB width) 0.274 0.3425 No
min 0.2341 0.3858 No

Standardisation Yes 5 2.5 mean 0.2382 0.3395 No
LR (min VS) 0.2655 0.5307 No
LR (BB width) 0.2272 0.4012 No
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Division by expectation Standardisation

Fig. 25: FROCs (top row) and slice-level ROCs (bottom row) for experiments with cumulative visceral slide plotted separately
for different normalisation options with control group statistics.

TABLE VIII: The pelvis experiments. In all experiments with logistic regression bounding box height and region length are
used as features and the last feature is specified in brackets. mean VS = mean visceral slide, min VS = minimum visceral
slide, BB width = width of the predicted bounding box. The best AP and slice-level AUC are given in bold.

Method Parameters Confidence Evaluation metrics
Visceral slide type Normalised

by statistics
SQRT
transformed

MRI RGI AP Slice AUC TPs and FPs
different

Cumulative

min 0.2244 0.5922 No
No No 5 2.5 mean 0.2255 0.587 No

LR (mean VS) 0.2197 0.5194 Yes
LR (BB width) 0.2216 0.4622 Yes
min 0.3102 0.5784 Yes

Division by
expectation

Yes 5 2.5 mean 0.2981 0.6115 Yes

LR (mean VS) 0.3078 0.5912 No
LR (BB width) 0.3252 0.4998 No
min 0.2257 0.5581 No

Standardisation Yes 5 5 mean 0.2097 0.578 No
LR (min VS) 0.2213 0.4887 No
LR (BB width) 0.207 0.3932 No
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Division by expectation Standardisation

Fig. 26: FROCs (top row) and slice-level ROCs (bottom row) for experiments with inspiration/expiration visceral slide
plotted separately for different normalisation options with control group statistics.
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Fig. 27: FROCs (left) and slice-level ROCs (right) for experiments with separate evaluation of the method for the anterior
abdominal wall. Cumulative visceral slide normalised with division by expectation is used. In the top and bottom rows only
one feature used in logistic regression is different. Top: mean value of visceral slide, bottom: width of the bounding box.
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Fig. 28: FROCs (left) and slice-level ROCs (right) for experiments with separate evaluation of the method for pelvis area.
Cumulative visceral slide normalised with division by expectation is used. In the top and bottom rows only one feature used
in logistic regression is different. Top: mean value of visceral slide, bottom: width of the bounding box.
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