
Radboud University Nijmegen

Faculty of Science

Entity Linking in Funding Domain

Thesis MSc Computing Science

Author:
Gizem Aydin

Supervisor:
Dr. Faegheh Hasibi

External Supervisor:
Dr. S. Amin Tabatabaei

Second reader:
Prof. Dr. Arjen P. de Vries

June 2021

Abstract

Automatic extraction of funding information from academic articles adds significant
value to industry and research communities, such as tracking research outcome by fund-
ing organizations and aiding open access rules. An important part of funding information
extraction is detecting mentions of grant numbers and funding organizations, and map-
ping them to their corresponding entities in a knowledge base. For this purpose, various
approaches have been proposed. In this thesis, we investigate general-purpose neural
architectures for Named Entity Recognition and Disambiguation, and adapt them to
the problem of Entity Linking in funding domain. A neural language model (BERT) is
pretrained with sentences that contain funding information and is used in the proposed
neural solutions. The developed approaches are compared with strong feature-based
models, showing improvement on mention detection and end-to-end Entity Linking. At
the end, precision, recall and F1 scores of 72.9, 79.0 and 75.8 are reached for Entity
Linking for funding organizations, and scores of 94, 96.6 and 95.2 for grant mention
detection using the developed neural approaches.

Contents

1 Introduction 3
1.1 Background and Motivation . 3
1.2 Objective . 4
1.3 Approach and Contributions . 4
1.4 Outline . 6

2 Related Work 7
2.1 Funding Information Extraction . 7
2.2 Named Entity Recognition . 8
2.3 Entity Disambiguation . 9
2.4 Entity Linking . 10
2.5 Domain-Specific Systems . 13
2.6 Entity Representation . 15
2.7 Using Pretrained Language Models in Domain-Specific Applications . . 16

3 Approach 18
3.1 Formal Task Definition . 19
3.2 Background . 19

3.2.1 BERT . 19
3.2.2 Domain Adaptation of BERT . 20

3.3 Named Entity Recognition . 20
3.4 Entity Disambiguation . 22

4 Evaluation 28
4.1 Experimental Setup . 28

4.1.1 Data . 28
4.1.2 Evaluation Metrics . 32
4.1.3 Training, Hyperparameters and Implementation 35

4.2 Results . 43
4.3 Analysis . 48

5 Conclusion 56
5.1 Future Work . 58

A Hyperparameters for GBMF5 69

B NER Data Preprocessing 70

1

C Training Details 72
C.1 BERTSC . 72
C.2 FlairNER . 73
C.3 BERTNER . 74
C.4 BIAD . 74

2

Chapter 1

Introduction

1.1 Background and Motivation

Researchers spend a significant amount of time to find the financial resources they
need, and many organizations spend large amounts of capital to sponsor research. This
puts funding information in an important position for research output, researchers and
organizations. As a consequence, displaying funding information of academic articles
brings certain benefits. For example, it enables organizations to track the outcome of
the research they funded [47]. Successful research output on one topic may persuade
an organization to invest more in that topic, expanding the resources available to the
researchers interested in that area. Additionally, if a researcher is looking for funding
for a certain research question, they can search for organizations that funded a similar
topic in the past. Lastly, some funding organizations, such as NWO1 and National
Institutes of Health2, may require the researchers to make the resulting publications
publicly available. Displaying funding information may aid the compliance of such open
access rules [16].

Automatic extraction of funding information from academic articles has been an
interesting subject for researchers, and various approaches have been proposed for this
purpose [47, 88, 16]. Annotating articles with their corresponding funding information
adds significant value to the research community. It is not possible to do this annotation
manually due to the immense amount of literature, making automatization a must.

Funding information extraction contains subtasks in itself. These can roughly be
summarized as:

(i) selecting a piece of text that contains the funding information from the articles,

(ii) extracting the strings that refer to funding organizations and grant numbers from
the selected text,

(iii) for the strings of funding organizations, determining which real-world organization
is being referred to,

(iv) for the strings of grant numbers, determining which funding organization they
belong to.

In this thesis, the aim is to develop a neural Entity Linker for funding domain, hence
tackling subtasks (ii) and (iii).

Entity Linking (EL) is the task of annotating text with corresponding entity iden-
tifiers from a knowledge base (KB) [4]. A KB is a collection of entities representing
uniquely identifiable artefacts in real world. An entity could be many things, such as a
person, a place or even an artwork. EL often consists of two subtasks: Named Entity

1https://www.nwo.nl/en/open-access-publishing
2https://en.wikipedia.org/wiki/NIH_Public_Access_Policy

3

https://www.nwo.nl/en/open-access-publishing
https://en.wikipedia.org/wiki/NIH_Public_Access_Policy

Recognition (NER) and Entity Disambiguation (ED). NER corresponds to detecting
mentions and their respective types from the text, and ED corresponds to finding which
entity in the KB a mention is referring to [4]. In this definition, mentions are strings in
text indicating entities.

The state-of-the-art research in NER, ED and EL employ neural approaches [81, 94,
62]. These methods show significant improvement over rule-based systems or systems
utilizing classical Machine Learning algorithms, such as DBPedia Spotlight [59] and
TagMe [23]. A large number of studies on NER, ED and EL focus on performing these
tasks in general-domain, often times considering Wikipedia pages as a KB [21]. There
is no guarantee that these approaches will perform well in funding domain as there
are a number of differences. Firstly, in order to disambiguate funding organizations, a
different KB is needed as most of the small funders are not present in general-purpose
KBs. Secondly, mentions of organizations that are not funders should not be extracted.
Thirdly, grant numbers are mostly a combination of digits and letters, different from
mentions of popular entities such as persons or places. Finally, there is limited amount of
labelled data available for training and evaluation. In general-domain setting, Wikipedia
could be exploited to extract millions of samples [11]. Supervised neural architectures
for NER require a large amount of training data to obtain high performance [92].

1.2 Objective

The objective of this research is to adapt the current advancements on EL and its
subtasks to funding information extraction. Considering the challenges funding domain
adds to EL, this thesis aims to answer the following research question:

RQ: How can we use neural approaches for Entity Linking in funding domain,
where labelled data is limited and a domain-specific knowledge base is used?

To be able to answer the main research question, these sub-questions have to be answered
first:

RQ1: How to detect mentions of funding organizations and grants?

RQ2: How to generate distributed representations of entities for a domain-
specific knowledge base?

RQ3: How to perform Entity Disambiguation for funding organizations?

The KB that is used in this thesis entails different information compared to general-
purpose KBs. Each entity is represented by their name variants and country of origin.
This KB does not contain a graph structure, only sparse relations exist among some
entities denoting organizational hierarchies. Hence, popular methods for obtaining entity
representations such as TransE [7] and Wikipedia2Vec [93] are not applicable.

1.3 Approach and Contributions

Initially, the literature on general-domain NER, ED and EL is reviewed. Among the
reviewed solutions, some of them are selected for experimentation based on specific
criteria. We checked whether the selected solutions perform well compared to others,
and whether they can be adapted to the task at hand without losing their core properties.
For example, a solution that is based on graph structures [89] is not found convenient,
as that information is not available. It is also preferred that the models offer enough

4

flexibility so that some components can be modified to capture the important aspects
of funding information extraction. In addition, it is taken into consideration that the
selected solutions should not require too much computational power or too much labelled
data as both resources are limited. The literature on domain-specific approaches are
also reviewed to obtain some insights on the challenges other domains had faced and the
respective solutions. Lastly, various techniques on domain adaptation of neural language
models and different entity embeddings are investigated as they are crucial elements of
possible solutions.

After careful consideration, we decided to develop two separate components for NER
and ED to perform EL instead of a single end-to-end component. This decision was
made to create a more flexible system and to have a system that is less computationally
demanding to train. For the NER component, two systems are selected: the NER model
that is proposed by Akbik et al. [1] and the BERT-based NER model. Bidirectional
Encoder Representations from Transformers (BERT) [18] is a neural language model
that can be pretrained with unlabelled data while utilizing both left and right context
simultaneously. For ED, BLINK’s architecture [90] is selected because of its flexibility
and success in zero-shot setting. As BERT takes part in the majority of experiments, a
BERT model is pretrained on the funding information sentences and used in both NER
and ED systems.

Recently an end-to-end neural system to perform EL on questions, ELQ [55], is
proposed. The architecture of ELQ encompasses the neural candidate selector of BLINK.
Hence, it will be possible to extend an ED system built inspired by BLINK to perform
mention detection following ELQ.

This work is done at Elsevier B.V.3. Elsevier uses Natural Language Processing
(NLP) solutions to extract funding information from academic articles. Later on, this
information is displayed in some of its products such as Scopus4, one of the world’s largest
citation and abstract databases. Elsevier has a high-quality labelled dataset for this task
and a domain-specific KB for funding organizations. The chosen models are trained and
evaluated using the labeled dataset provided by Elsevier, and also disambiguation is
performed to the provided KB. The developed models are compared with each other
and feature-based models to determine the best method and to show the effectiveness
of neural approaches.

The contributions of this thesis can be summarized as:

1. Adapting the BERT model to the funding information extraction domain (BERTSC)
and showing its effectiveness for NER.

2. Developing a neural EL solution to extract mentions of funding organizations and
grant numbers simultaneously, and to link funding organizations to a KB or NIL.

3. Showing the effectiveness of a minimal linear reranker that can work with the
proposed candidate selector.

We believe that this research will be inspirational for other domains to make use
of the state-of-the-art neural architectures for EL and will provide important insights
on possible strengths and weaknesses of utilizing such systems. Also, the developed
neural components could be used as a part of a single end-to-end funding information
extraction model in the future. The code for the developed models can be found on
GitHub5.

3https://www.elsevier.com/
4https://www.scopus.com/
5https://github.com/gizemayydin/Entity-Linking-in-Funding-Domain

5

https://www.elsevier.com/
https://www.scopus.com/
https://github.com/gizemayydin/Entity-Linking-in-Funding-Domain

1.4 Outline

The aim of Chapter 2 is to review the recent literature on NER, ED and EL, as well
as various domain-specific solutions to these problems. Literature on entity embeddings
and domain adaptation of neural language models are also touched upon due to their
relevance in proposed solutions. Lastly, notable previous work on funding information
extraction is presented. In Chapter 3, the task of EL in funding domain is formally
defined, the approach to tackle this task is presented, and the models proposed are
explained in detail. The dataset, experimentation, results and discussion are included
in Chapter 4. Chapter 5 concludes this thesis by summarizing the findings and providing
directions for future research.

6

Chapter 2

Related Work

There is a large amount of literature on Entity Linking (EL) and its subtasks, Named
Entity Recognition (NER) and Entity Disambiguation (ED). The bigger part of this
literature focuses on performing these tasks in the general-domain setting, often times
considering Wikipedia pages as entities [21]. While this line of research introduces the
state-of-the-art approaches, there is no guarantee that these approaches will perform well
in a domain-specific setting with a custom knowledge base (KB). Hence, domain-specific
literature is also investigated to get insights on adapting general-purpose methods to
specific domains.

Section 2.1 reviews the literature on automatic funding information extraction from
academic articles. In Sections 2.2, 2.3 and 2.4 state-of-the-art general-purpose NER, ED
and EL solutions are presented. Domain-specific neural NER, ED and EL approaches
are demonstrated in Section 2.5. Section 2.6 concentrates on entity representations in
neural ED, mainly entity embeddings, and lastly, Section 2.7 reviews the literature on
domain-adaptation of neural language models.

2.1 Funding Information Extraction

One of the most notable work on automatically extracting funding information from
text is FundingFinder [47]. FundingFinder is a two-step pipeline that utilizes NLP
techniques. In the first step, the paragraphs that contain funding information are de-
termined, and in the second step, NER is performed using an ensemble of different Se-
quential Learning approaches. The authors also created a publicly available benchmark
dataset for this task. The approach used in this thesis builds upon this work, keeping
the first step intact while improving the second step, and adding the ED capability.

Before FundingFinder, not much literature existed on extracting funding informa-
tion from text automatically, and the existing work mostly utilized regular expressions
[47]. Recently, there have been more approaches presented to tackle this problem. In
2020, Wu et al. proposed AckExtract [88], which extracts funder organization mentions
from the COVID-19 Open Research Dataset [83]. For NER, they use a pretrained neu-
ral model from the package Stanza [70], which uses Contextual String Embeddings [2].
However, their method does not include any ED, whereas in this thesis, one of the tasks
is to link the funder mentions to their corresponding entities in the domain-specific KB.
Another approach is proposed in 2021, GrantExtractor [16], which extracts funding in-
formation from articles in biomedical literature, in the form of grant numbers and their
corresponding organizations. For extracting grant numbers, they train a BiLSTM-CRF
[41] architecture. Using a multi-class classifier, they determine which organization the
extracted grant number belongs to. They do not use any neural approaches for ex-

7

tracting organization mentions. Also, the focus of GrantExtractor is on linking grant
numbers to their respective organizations, while the focus of this thesis includes extract-
ing all funding organizations that financially supported the corresponding research, even
though no grant information is acknowledged.

Alexander & de Vries [3] introduced AckNER in 2021. AckNER extracts various
named entities indicating financial support from sentences containing funding informa-
tion. AckNER utilizes both dependency parsing and regular expressions. The former is
used for the mentions of organizations, programs, projects and funds, while the latter
is used for grant numbers and contracts. The authors show that AckNER outperforms
general-purpose NER methods found in popular NLP libraries such as Flair [1] and
Stanza [70] by a great margin, showing the need for a domain-specific approach. The
authors report an F1 score of 80%, which is 27% higher than the closest competitor,
DeepPavlov [12], which utilizes a BiLSTM-CRF architecture.

2.2 Named Entity Recognition

In the past couple of years, Deep Learning has been a popular choice to tackle the NER
problem, and the corresponding research has improved the state-of-the-art results [92].
In 2018, Akbik et al. proposed Contextual String Embeddings [2], which represents
words using a character-level neural language model, and is able to produce different
word embeddings depending on the context. By utilizing a BiLSTM-CRF architecture
that takes the concatenation of Contextual String Embeddings and pretrained GloVe
embeddings [67] as input, they report state-of-the-art results in both German and En-
glish NER, in the CoNLL-2003 [79] setup. In 2019, Devlin et al. introduced BERT [18]
which obtained new state-of-the-art results on several tasks. In English CoNLL-2003,
they obtained an F1 score of 92.8% using the cased version of BERTBASE [18], per-
forming very close to Akbik et al. [2], which obtained 93.1%. It is believed that both
of these models could be suitable for extracting mentions of funding organizations and
grant numbers, as they do not necessarily require extensive amount of labeled data and
there is no dependency to any resource that is not available.

Some approaches for NER utilize external resources, such as a list of entity names,
which may be called a dictionary or a gazetteer. This may boost the performance of
the system, but may also hurt the generalization ability [92]. However, there have been
various models presented [57, 87] that incorporate this information while performing
comparable to Akbik et al. [2]. With this approach, both Liu et al. [57] and Wu et al.
[87] aim to improve the performance on entities that do not appear in the training set
or that are rare. These features may also be useful for this work, as the domain-specific
KB contains various synonyms for each funding organization, and most of the entities
available do not appear in the dataset (see Section 4.1.1).

Recently, Yamada et al. (2020) proposed LUKE [94], a contextualized representation
for both words and entities, to be used in entity-related tasks. LUKE is based on
the bidirectional transformer [82], however, it treats words and entities as independent
tokens. For this purpose, the authors propose a modified attention mechanism as well
as a new training methodology based on BERT’s masked training. They pretrain LUKE
using a large entity-annotated Wikipedia corpus. By using the proposed embeddings,
they report the new state-of-the-art results for NER, improving upon Akbik et al. [2].
The entities that are included in this work differ significantly from the ones that are
in Wikipedia or in any other famous general-purpose KB. Hence, we do not expect to
obtain any gain from using LUKE instead of an NER component based on BERTBASE

or the one introduced by Akbik et al. [2].

8

2.3 Entity Disambiguation

One of the most influential work in ED is MentNorm [52], proposed by Le and Titov in
2018. MentNorm is a multi-relational neural model, and is based on the assumption that
the relations between co-occurring entities provide important clues for disambiguation.
Different from preceding work, they model these relations as latent variables, which
enable to learn these in a way that is most useful for the ED task. They report a micro
averaged F1 score of 93.07% on AIDA-B CoNLL YAGO dataset [39], outperforming
previous research. Despite being successful, collective ED methods may suffer from high
complexity [97]. In 2019, Yang et al. [97] proposed Dynamic Context Augmentation
(DCA) that can perform collective ED with just a single pass over the whole document.
DCA takes global entity coherence into account, but instead of processing the whole
document at once, it processes each mention sequentially. The authors reason that
this methodology is more intuitive as humans have the ability to make inference while
reading, without having read the whole document. The information of previous linked
entities are accumulated and used for disambiguating the proceeding mentions. Their
best configuration 94.64% accuracy on AIDA-B CoNLL YAGO dataset, which is higher
than that of Le and Titov [52]. In funding domain, the number of Organization mentions
per document is much less than that of public benchmark datasets. For example, Yang
et al. [97] report an average of 19.4 mentions per document for AIDA-B dataset. In the
dataset for funding information extraction, this number is around 3. Also, entity co-
occurrences do not provide important clues for disambiguation. That is why collective
ED systems are not used for this work.

In 2018, Raiman and Raiman proposed DeepType [71] for ED, a neural network
that is constrained by the predicted type information for a given entity. By using the
type information, they also reduce the complexity of disambiguation from polynomial to
linear. DeepType produced state-of-the-art results in three ED datasets, by obtaining
scores of 92.36%, 94.88% and 90.85% on WikiDisamb30 [24], CoNLL (YAGO) [39] and
TAC-KBP-20101 respectively. The authors also note that DeepType can reach 99.0%
and 98.6% accuracy on CoNLL (YAGO) and TAC-KBP-2010, when the type information
is provided by an Oracle. Based on that, they claim the ED problem can almost be solved
if the type classifier is improved. However, in the case of funding domain, most of the
ambiguities in mentions cannot be solved by using the type information. For example,
the mention “Ministry of Health”, can be resolved to different entities corresponding to
ministries in different countries, however, the types of these entities would be the same.

The paper proposed by Mulang’ et al. (2020) [62] slightly advances the state-of-the-
art ED results for CoNLL (YAGO) dataset by obtaining a score of 94.94%. The authors
introduce the idea of incorporating context derived from Knowledge Graphs (KG) to
pretrained transformers with the aim of improving their performance for ED. They
extract triplets from the KG, verbalize them into natural language form, and append
them to the input sentence and mention before passing it through the transformer.
When they replace the Wikipedia description used in the DCA-SL model [97] with the
structured KG context they extracted, they obtain the above-mentioned score. In this
work, there is not a KG that could be utilized in such manner. Otherwise, incorporation
of the work by Mulang’ et al. [62] could have added value to the current system.

Another interesting approach for ED is DEER [31], proposed by Gillick et al. in 2019.
The model is essentially a dual-encoder, one to encode the mention and its context, and
another to encode the entity using its description and categories. Then, the model is
trained to maximize the cosine similarity between the encoded representations of the
correct mention - entity pairs. The authors use hard negatives during training, and they
show the positive effect of this to the performance. As the second encoder utilizes only

1https://tac.nist.gov/

9

https://tac.nist.gov/

entity information, entity embeddings can be precomputed beforehand, and hence only
one encoder is run during inference. We believe that this work can be very influential for
this thesis. They show good performance on public benchmark datasets, the inference
time is fast even though it is a neural approach, and can scale up to unseen entities.
The only downside is that each encoder has sub-architectures within itself. For example,
the entity encoder has three different encoders for the title, the category and the first
paragraph of the description. Hence, it may be hard to adapt these for the information
available.

Wu et al. (2020) [90] proposed BLINK, which outperforms DeepType in TAC-
KBP-2010 by obtaining a 94.5% accuracy . Their method also achieves state-of-the-art
results in the zero-shot Entity Linking dataset derived from WikilinksNED [64]. To
perform ED, they only use textual information, and architectures that utilize pretrained
BERT transformers. They represent the mention using itself and its context, and the
entity using its description. Using a biencoder [42], they encode the mention and entity
representations in the same space, which they later use to extract candidates for a
given mention using approximate nearest neighbor search. To train the biencoder, they
make use of a hard negative mining strategy inspired by DEER. They make the final
decision by passing representations of the candidate entities and mentions through a
cross-encoder [42]. BLINK can perform well for unseen entities and has an architecture
that is easy to adapt to the problem at hand. Hence, BLINK is found highly suitable
for this work, and is investigated further (See Section 3.4).

Even though there had been many influential work on tackling ED, not many of
them encompass NIL mentions, mostly excluding them from evaluation. In this work,
NIL mentions mostly refer to emerging entities, and hold high importance. New or-
ganizations are being added frequently, and NIL mentions give important insights on
these organizations. They are also used to refine the KB from time to time. One of
the hardest cases of NIL mentions occurs when the emerging entities have ambiguous
names [38]. These cases also exist in the funding domain. For example, “Ministry of
Education” could refer to different organizations based on the country, and it could
be that the ministry of a country is not in the KB. Then, the ED system should in-
fer that this mention does not refer to any other ministries that are included in the
KB. In addition, there are organizations that share the same acronym as a coincidence.
It could be that a funder that does not exist in the KB is acknowledged by using its
acronym, which matches a completely different organization that happens to be in the
KB. Hoffart et al. (2014) [38] proposes a novel method to detect such emerging entities.
They add an additional instance representing an emerging entity to the candidate set
of each mention. They initially model this instance using the string of the mention,
but then enhance the representation based on keyphrases utilizing latest news streams.
This is not applicable for this research as ED is performed on academic articles. They
also define confidence scores based on perturbing mentions and entity decisions around
the input mention. However, in this work, the models investigated do not make use of
collective disambiguation.

2.4 Entity Linking

Kolitsas et al. (2018) [50] proposed the first end-to-end neural EL system in 2018,
and recorded state-of-the-art results in AIDA CoNLL dataset. By tackling NER and
ED jointly, the authors aim to utilize the dependency between these two tasks. They
suggest that this has several benefits, such as improved mention boundary recogni-
tion. Their method first extracts all possible mention spans from the input. Then, the
model computes a score for each mention - candidate entity pair, using pretrained entity
embeddings [30], context-aware mention representations, commonness and long range

10

attention scores. The final output for the input text is based on these scores and global
entity coherence. This approach has some properties that make it not suitable for this
thesis. First, the entity embeddings they use are for Wikipedia entities, thus new em-
beddings for this KB must be obtained beforehand somehow. Based on the properties
of these new embeddings, the global coherence layer should be reconsidered. Also, the
runtime could be a problem as the methodology involves extracting all possible mention
spans. As the grant mentions do not go through ED, the loss needs to be adapted
accordingly. Lastly, the advantage of this approach is that the mention boundary de-
tection is improved by combining NER and ED, which is shown by the fact that there
is only a small difference between the weak and strict matching evaluations. However,
the authors report that most of their mentions consist of at most two words, which is
not true for funding organizations that tend to have longer names. Hence, there is no
guarantee that this advantage will persist in funding domain.

Another neural approach that can perform both NER and ED in an end-to-end
fashion is proposed by Martins et al. in 2019 [58]. The approach makes use of Stack-
LSTMs [20] to detect mentions on the fly rather than detecting them for the whole
sequence at a time. For each token in the sequence, an action is predicted. This action
can be: Shift, Out or Reduce. Out means that the token at hand is not part of a
mention, while Shift means that it is. After all the tokens of the mention is marked with
consecutive Shift operations, Reduce is performed, meaning that the detected mention
is disambiguated. There are multiple Reduce actions, one for each mention type. Hence,
the type of the Reduce action also predicts the type of the mention. The model outputs
a probability distribution over the possible action space for each step, and the action
with the highest probability is selected. In the disambiguation step, first, the mention
is classified to determine if it is a NIL-mention or not. If it is not, a candidate entity
set is selected with respect to entity embeddings obtained by Yamada et al. [95] and
prior probabilities. Then, a score is assigned to each candidate entity by utilizing an
affine transformation function, and the mention is linked to the entity with the highest
score. The model is trained with a multi-task learning setting of three tasks: NER,
NIL-mention detection and ED. For NER, the loss is calculated as the cross-entropy
between the gold actions and the selected actions. For NIL detection, binary cross-
entropy is utilized. Lastly, for ED, cross-entropy over the candidate entities is calculated.
The authors show that performing NER and ED jointly benefits both of the tasks,
by comparing the performance of a joint architecture with two different architectures.
However, for the NER task, both Akbik et al. [2] and Devlin et al. [18] outperform the
work of Martins et al. [58], and in terms of EL, the work fails to outperform Kolitsas
et al. [50]. This work is still very inspiring, especially as they include NIL-mentions in
their research.

In 2020, van Hulst et al. proposed REL [81], an EL toolkit that utilizes state-of-the-
art NLP research, outperforming Kolitsas et al. [50] in terms of micro F1 score in AIDA
CoNLL dataset. REL tackles the EL problem in three steps: NER, candidate selection
and ED. For NER, they utilize Flair, namely, the sequence labelling architecture and
Contextual String Embeddings proposed by Akbik et al. [2]. For each mention, up to
4 candidates are selected using commonness, and up to 3 candidates are selected based
on the similarity between the context of the mention and entity embeddings. Entity
embeddings are provided by Ganea and Hofmann [30], the same ones used in Kolitsas
et al. [50]. For ED, MentNorm is used. Apart from obtaining state-of-the-art results,
REL also offers a modular architecture, allowing easy replacement of components and
it does not require a GPU during inference time [81]. The success of REL in terms
of performance and efficiency is one of the factors why Contextual String Embeddings
are in the agenda of experiments for this work. However, MentNorm is not suitable for
funding domain because of its dependency on entity coherence. This work also inspired

11

this research in the sense that a comparable or higher performance than that of Kolitsas
et al. [50] can be obtained even when NER and ED are performed separately, which is
advantageous in terms of runtime and explainability.

Broscheit (2020) [10] proposed an architecture that jointly does NER and ED using
BERT. In this approach, the task of EL is framed as a per-token multi-class classification
problem. The model utilizes a pretrained BERT model and an output classification layer
on top of it. Even though this approach is a big simplification on the EL task, it performs
only a few percents off compared to Kolitsas et al. [50]. However, as each entity is cast as
a class, the model cannot disambiguate unseen entities. In real-word, KBs keep growing,
and hence it is important for the system to be extendable for entities that do not exist in
the training set [33]. In addition, some training datasets may not cover the whole entity
vocabulary, such as the one used in this work. However, this research is very inspiring
in terms of showing BERT’s capability to learn the task of EL. It also contributed in the
decision process of experimenting with BERT as a neural language model to be used in
this work.

In 2021, De Cao et al. proposed GENRE [13], a novel approach for end-to-end
EL. The authors criticize previous work on various aspects, such as the need of hard
negatives during training and the use of dot product to model the relevancy between
an entity and a mention. GENRE addresses these shortcomings by using a sequence-to-
sequence generative architecture for EL. For this purpose, the authors fine-tune a BART
[54] model on the task. Mention detection and disambiguation is achieved by decoding
the input sequence which is done dynamically. For each step in sequence generation,
the model has various options: generate a mention span, generate a link for the mention
or continue copying the input sequence. To start generating a mention, the model
has to generate a mention-start-tag. Inside the mention, the model can either copy
the input sequence or stop mention generation by generating a mention-end-tag. The
latter puts the model in the link generation (i.e. disambiguation) state. In GENRE’s
architecture, each entity is associated with a unique textual identifier, such as a name.
The model assigns a score to each entity based on the generative probability of the
corresponding entity’s name given the context. As the entity space is large, a Beam
Search [77] variant (Constrained Beam Search) is used. This whole schema allows the
model to generate an output sequence with detected mentions and their corresponding
entities, while narrowing the possible search space. The authors report that there is
no need for hard negative mining, as the loss for training is based on maximizing the
likelihood of the output sequence, and can be calculated exactly [13]. Lastly, the model
has a much smaller memory footprint compared to previous approaches as it does not
need to store precomputed entity embeddings, and either outperforms or performs on par
with the state-of-the-art for various public benchmark datasets. Even though GENRE
has an outstanding performance, there are various concerns on using it for funding
domain. The authors report that large generative models benefit from more data, and
hence they pretrain their model with a large amount of labeled data. This is not possible
for this work as there is no such dataset available. Also, the entity representation is
based on having a unique string such as a name for each entity. In funding domain,
organizations may have more than one official name such as acronyms or names in other
languages, or there may be different organizations with the same name. To create a
unique name per organization, some of these alternative names should be concatenated,
and it is not clear whether this kind of representation would work with GENRE, or
whether it would be tractable given that the inference is dependent of the size of entity
representation. The authors report that their entity representations had 6 tokens on
average for the experiments, which is not realistic for funding organizations.

12

Entity Linking in Queries

There is a specific line of work that focuses on EL in queries [6, 15, 35, 36] and questions
[55]. Questions differ from well-formed sentences, and tend to be shorter and noisier,
hence bring additional challenges [55]. In addition, the context is much more limited
[46]. The input for funding information extraction is not as long as a document, and is
also not as short as a query. Hence, this makes both lines of work interesting for this
thesis.

Zi et al. (2020) [55] proposed ELQ, an end-to-end EL system for questions. ELQ
extends BLINK’s biencoder by adding the mention detection capability to the model.
The resulting model outperforms the state-of-the-art in two benchmark Question An-
swering datasets in terms of EL capabilities. The end-to-end architecture of ELQ differs
significantly from that of Kolitsas et al. [50], improving the efficiency and bringing
some flexibility. Even though all possible mention spans are extracted from the text for
mention detection, different from Kolitsas et al. [50], the spans are thresholded based
on some probability and length. This eliminates the need to run a candidate selector
to limit the mention space. In their experiments, the authors set the maximum span
length to 10, which is still not optimal for organizations but is not unrealistic. Also,
they jointly optimize the NER and ED losses, which may allow to extend the system
for Grant mentions. Another advantage is that they do not need to train the entity
encoder as they obtain it from BLINK. Even though the entity encoder of BLINK is
for Wikipedia entities, it is possible to get embeddings for other KBs by adjusting the
entity representation and retraining the model. Despite this system being for questions
and thus being evaluated on data with a significantly different distribution, it is worth
to inspect its performance for the task at hand, as the authors show optimism towards
ELQ’s performance on longer and structured documents.

2.5 Domain-Specific Systems

In this section, the research that aims to tackle EL, NER and ED in a domain-specific
setting with neural architectures is reviewed.

For NER, there is a great amount of research in general domain, however, more
research on domain-specific solutions is expected for supporting real-world applications
[99]. Existing NER approaches rely on a large amount of annotated data, which may
not be available for the domain-specific setting [75]. Hence, Shang et al. (2018) [75] pro-
posed AutoNER, a neural architecture that is designed to learn from data that is created
by distant supervision, without any human effort. AutoNER uses domain-specific dic-
tionaries to automatically generate labelled data with distant supervision. The authors
also introduce the “Tie or Break” tagging schema, that is based on predicting whether
two adjacent tokens belong to the same mention or not. They reason that this tagging
scheme is suitable to use noisy labels generated by distant supervision. They show the
effectiveness of their work in multiple datasets, two of them being the BC5CDR [56] and
NCBI-Disease [19] datasets from the biomedical domain, in which AutoNER achieves
84.8% and 75.52% F1 score respectively. For this work, as there is already labeled data
available, it is believed that such labeled data generation should be used only if the high
quality data at hand proves to be insufficient significantly.

Another domain-specific NER approach that utilizes a dictionary is proposed by
Wang et al. (2019) [84], which tackles the Clinical NER problem in Chinese text. They
show the effect of incorporating dictionary knowledge in the BiLSTM-CRF architecture
on rare and unseen entities experimentally. Also, they suggest five different methods
of using dictionaries in this context and compare the results. This work can be very
influential for funding domain, as a large dictionary is available, and the proposed fea-

13

tures can be incorporated to any neural architecture easily, enabling to utilize both this
resource and the labeled data.

There also exist research on tackling the domain-specific ED problem with neural
architectures. In 2019, Mondal et al. [61] proposed a system that is based on string
similarity to perform ED on disease names. The authors utilize a two-step solution.
First, for each mention, they extract a set of candidate entities based on Jaccard overlap
and the cosine similarity between the entity label and the mention. They use word
embeddings to calculate the cosine similarity. For multi-word strings, they sum the
embeddings for each word. Then, they rank the candidate entities with a Triplet Network
[40], that learns to reduce the distance of the mention with the positive candidate, while
increasing the distance with the negative candidate. As an input to this network, word
embeddings is used again to represent the mention and the candidate entity’s label. With
this approach, they obtain 90% accuracy on the NCBI-Disease dataset, outperforming
previous approaches. The drawback of this approach is that it does not utilize any
context information, which is important for funding domain, because clues such as the
country of the organization can be found in the context. Also, multi-word mentions are
very common for organizations, and summing the embeddings may not be the best way
to incorporate each word to the representation.

The input representation of entities vary between different approaches. In another
research tackling clinical ED by Schumacher et al. (2020) [74], different from Mondal et
al. [61], multi-word strings are represented by two different methodologies, Max Pooling
over the word embeddings and running self-attention. The authors report that running
self-attention produces better results compared to Max Pooling. The proposed method-
ology also addresses some issues that come with funding domain, such as the importance
of the lexical similarity between the mention and an entity. Also, the architecture resem-
bles the Biencoder of BLINK in terms of having two components to encode the mention
and entity. However, in this work, ELMO [68] is used and the encoders have shared
parameters. Also, the loss and negative mining strategy is different. The success of this
work is inspiring in terms of showing that it is possible to use such a dual architecture
for domain-specific problems.

Using BERT instead of ELMO could have some benefits for entity representation,
for example, the [CLS] token can be used to represent the whole sequence naturally.
For example, Sung et al. (2020) [76] represents each mention and each synonym of an
entity using BERT’s [CLS] token for the biomedical domain. On top of that, another
representation based on TF-IDF scores is also introduced. For disambiguation, the au-
thors define two different similarity function for each of these representations. The final
similarity of a mention and an entity synonym is defined based on the weighted average
of these two similarity scores. It is believed that utilizing such a sparse representation
could possibly add value in the funding domain as well. However, this will not be ex-
perimented with as it is decided that the additive value of it shown by the results of
the paper is not significant enough compared to the time that should be spent for the
incorporation of such representation.

Architectures utilizing the type information are also present. Zhu et al. (2020) intro-
duced LATTE [101], an architecture for ED in medical domain. The authors emphasize
the importance of fine-grained types in their setting, and as this information is not
available, they model the fine-grained types as latent variables. For ED, in addition to
the latent fine-grained types, they use the similarity between the entity’s label, and the
mention and its context. To train their model, they use multi-task learning for both
type classification and ED. Even though LATTE is a very inspiring research, it would
not have the same affect on funding domain as the reliability to the type information
for disambiguation is highly limited.

Some proposed methodologies tackle the EL problem as a whole in a domain-specific

14

setting using neural architectures. For biomedical domain, Zhao et al. (2019) [100]
proposed a joint neural architecture for NER and ED tasks for performing EL. Their
architecture utilizes explicit feedback between the two tasks in a multi-task learning
setting. With this architecture, they obtain F1 scores of 87.43% and 88.23% in NER
and ED tasks of the NCBI-Disease dataset respectively, and 87.62% and 89.17% in
BC5CDR dataset. With these numbers, they outperform AutoNER in NER setting for
both datasets, and perform comparable to Mondal et al. [61] in NCBI-Disease dataset
for ED. As the task of ED is framed as classification over the controlled entity set, it is
not clear whether the model would work in zero shot setting.

Biomedical domain is not the only one in which neural approaches are used for NER,
ED and EL. In 2019, Espejo-Garcia et al. [22] proposed a solution to extract named en-
tities that refer to the important parts of phytosanitary regulations, which is related to
the agricultural domain. The authors experimented with eight different state-of-the-art
neural architectures. For their setting, the best performing architecture was a bidirec-
tional LSTM [32] that utilized a Softmax layer for inference and got the concatenation
of pretrained Word2Vec [60] embeddings with character based word representations as
input. With this architecture, they obtained an F1 Score of 88.3%. Apart from agricul-
tural domain, Yang et al. (2020) [96] proposed Headword Oriented Entity Linking, an
EL setting where the mention scopes do not need to be identified, to extract cosmetic
products from blogs and to disambiguate them to a domain-specific KB. First, using
word segmentation techniques, they identify the headwords of the mentions. Then, they
apply classification on the mentions to decide whether the mention can be linked to a
product that is in the KB. Lastly, they use a modified version of the architecture pro-
posed by Gupta et al. [33] for ED. Another interesting study is by Kurz et al. (2020)
[51], where they experiment with different BERT-based architectures to disambiguate
mentions of machine parts and errors belonging to German technical service tickets.

2.6 Entity Representation

In neural ED, entity representation plays an important role. Some research frames the
problem as multi-class classification and represent entities as different classes [10, 85,
100], while other research tends to use architectures that takes properties of entities as
input and learns a representation internally during training for ED [90], implicitly or
explicitly. Another line of research utilizes entity embeddings [81, 50, 97, 61]. In this
section, the literature on entity embeddings will be reviewed.

There is a large body of literature on embedding entities and relations found in KBs.
One of the most notable work is TransE [7], introduced in 2013. TransE generates
embeddings for each entity and relation in the input KB. The idea behind TransE is to
model relations as translations in the embedding space. For a given triplet (h, l, t) in
the KB where h, l and t denote head entity, relation and tail entity respectively; TransE
aims to make the embedding of t as close as possible to the sum of the embeddings of
h and l, using an energy-based model. Later on, there has been models that improved
upon TransE such as TransH, TransR, CTransR and TransD, each improving upon
the previously proposed one respectively [44]. Another interesting work that generates
entity embeddings utilizing the triplets in KBs is RDF2Vec [72]. RDF2Vec extracts
graph sub-structures, and treats them as sentences to train a Word2Vec model.

Wikipedia2Vec [93] is also a famous and successful method for obtaining entity
embeddings. Wikipedia2Vec pretrained embeddings are also available for direct use.
Wikipedia2Vec encodes words and entities in the same space and utilizes Word2Vec.
To train Wikipedia2Vec, they use three models. Word-based skip gram model puts the
embeddings of words that occur in similar context close, anchor context model puts the
embeddings of entities close to embeddings of words that occur near the anchor texts

15

of the entity, and lastly, link graph model puts the entity embeddings close based on
Wikipedia’s hyperlink graph.

Although proven to be very successful, it is not very likely that embeddings such as
Wikipedia2Vec or TransE would perform well for funding organizations. These kind of
systems rely heavily on KGs and diverse relations between entities. Besides, it would
not be possible to use the already-trained ones, due to the fact that the entities at hand
not being present in general-purpose KBs. In the domain-specific KB used for this work,
although there exist some relations between entities, they are sparse and not informative
in terms of disambiguation. Hence, it is believed that other ways of representation is
needed to make sure the available information is utilized fully. Some ED architectures
such as BLINK and DEER train a dual architecture that encodes entities and mentions
separately. This allows learning entity embeddings that are directly relevant with the
data and task at hand. Also, it is again possible to precompute these embeddings
and store them for efficient inference or for using in other tasks. In this work, such
architectures are favored because of their success and flexibility on obtaining entity
embeddings by being able to utilizing different representations.

The dual architectures are not the only type of ED systems that allow learning entity
embeddings with the task. In 2017, Gupta et al. [33] proposed a neural architecture
that can generate entity embeddings by jointly encoding the information on the entity’s
description, the context of its mentions and its type. The architecture consists of three
models that encode different information. The parameters of the models and the em-
beddings are jointly learned based on the sum of four different losses that ensure the
entity embeddings and the encoded information is similar. The summation guarantees
that entity embeddings can be generated even though some information is missing, such
as the description [33]. They also proposed an ED model based on these embeddings.
As mentioned in Section 2.5, a modification of this architecture is used to create entity
embeddings in Yang et al. [96], showing that the model can be utilized for different types
of information as well. The downside of this methodology, for example when compared
to BLINK, is that new models and losses should be defined and incorporated into the
architecture for using different information. In BLINK, it is possible to just modify the
input representation of the entity for the same purpose.

2.7 Using Pretrained Language Models in Domain-
Specific Applications

BERT, and other pretrained language models have been used extensively in various
NLP applications and have obtained state-of-the-art results in benchmark tasks [63].
However, for some domains, they may be too generic and may not be able to cover
specific needs [8]. Hence, it may be worthwhile to adapt the pretrained language model
that will be used to the specific domain. Gururangan et al. (2020) [34] shows that a
second-round of pretraining of a pretrained language model improves the performance in
both low and high resource settings, using different domains and tasks. Also, Fraser et
al. (2019) [26], reports that language models which are pretrained with domain-specific
text perform better on the task of NER in biomedical domain. However, it should be
noted that training a neural language model from scratch for a specific domain can take
weeks [98].

There is emerging research on domain adaptation of pretrained language models
that is not as costly as training them from scratch. Gururangan et al. (2020) [34] pro-
posed Task-Adaptive Pretraining (TAPT), which corresponds to pretraining the neural
language models with the unlabeled data of the task at hand. They report that this
approach performs comparable to pretraining with larger amount of text from the same

16

domain. TAPT is intuitive, has a well-documented open-source implementation and
does not require additional resources which makes it easy to use.

Tai et al. (2020) proposed exBERT [78], a low-cost method to perform domain
adaptation and to add new domain-related words to the vocabulary of BERT while not
changing its weights. The authors accomplish this by adding an extension module to
the embedding layer and to each transformer layer. The authors show the effectiveness
of their approach on biomedical domain. In funding domain, even though the input
distribution is different, vocabulary changes as substantial as in biomedical domain is
not expected. Hence, expanding the vocabulary of the original BERT is not needed.

Another methodology is introduced by Poerner et al. in 2020, and is called Green-
BioBERT [69]. GreenBioBERT stands out by not requiring a GPU and hence being
environment-friendly. In this approach, a Word2Vec model is trained on the domain-
specific data, and the embedding vectors of the pretrained language model is aligned
based on that. The authors evaluate their model on Biomedical NER and compare it
to BioBERT [53]. Even though BioBERT outperforms GreenBioBERT, it shows that it
is still possible to perform domain adaptation in a low-resource setting.

17

Chapter 3

Approach

To tackle the Entity Linking (EL) problem in funding domain, a two-step solution is
developed. The first step is Named Entity Recognition (NER) and the second step
is Entity Disambiguation (ED). For both of these steps, after an extensive literature
review, the state-of-the-art systems that can be adapted to the problem at hand are
determined.

For the NER component, several models were implemented and tested. The first
model that is tried is the sequence labelling architecture proposed by Akbik et al. [2].
The choice of experimenting with this model was due to its success in English NER.
Also, this model is used by REL [81], a system that achieved state-of-the-art results on
EL, and AckExtract [88], a system for extracting funder organization mentions. This
model will be denoted as FlairNER.

FlairNER is based on Contextual String Embeddings (CSE) [2], which are obtained
using the concatenation of vectors from a Left-to-Right and a Right-to-Left language
model. However, Devlin et al. [18] reports that BERT is inherently more powerful than
such language models as it is using MLM objective, that enables it to train a single
representation for which both right and left contexts are used. Because of this claim
and the recent popularity of BERT models, it is decided to experiment with BERT as
well, which will be denoted as BERTNER.

It is shown that domain-adaptation of BERT improves the performance on down-
stream tasks in different domains [34, 78, 26], we therefore pretrain BERT on funding
acknowledgement sentences using Task-Adaptive Pretraining (TAPT) [34]. This model
is denoted as BERTSC . Later on, an NER model is trained using BERTSC , BERTNER

SC .
For the ED component, the biencoder of BLINK architecture proposed by Wu et

al. (2020) [90] is implemented. BLINK consists of two models, a biencoder inspired by
Humeau et al. [43] for candidate entity selection and a cross-encoder [43] for candidate
entity reranking. As input, it utilizes mentions with their surrounding context and
entity titles with their descriptions. The reason why this architecture was chosen is
five-fold. First, BLINK can work with unseen entities. Second, the inference time is
not long, and third, the authors demonstrate that this approach obtains state-of-the-art
performance. Fourth, BLINK’s architecture can be adapted to the setting of this work
without losing any important properties, and fifth, it can be extended to perform end-
to-end EL following the ELQ architecture [55]. In this work, for efficient inference, a
feature-based model is used as a reranker instead of the cross-encoder.

Section 3.1 defines the problem this thesis is tackling. Section 3.2 focuses on the
BERT architecture and the domain adaptation procedure. Section 3.3 introduces FlairNER,
BERTNER and BERTNER

SC , and Section 3.4 explains the methodology used for ED.

18

3.1 Formal Task Definition

Given a piece of text d = {x1, ..., xN} of N tokens, the task of NER is to identify a set of
spans M = {mi | mi = {xs, .., xe}, s ≥ 1∧ s ≤ e∧N ≥ e}, where each span corresponds
to a mention. Usually, detecting the types of the extracted mentions is also part of the
NER task. The available mention types differ among systems based on their objectives.
In this thesis, each mention mi corresponds to either a Funding Organization (ORG) or
a Grant Number (GRT). Hence, type(mi) ∈ {ORG,GRT}. Throughout this research,
it is assumed that the mentions are not nested and are not overlapping.

Given the set of mentions M , the aim of ED is to link each mention M to its
corresponding entity ei ∈ E in a KB or to NIL. A knowledge base is a collection of
entities, and may contain information on the entities and relations between them. The
contents and specifications of the KB used is task-dependent. The task of ED is not
trivial as many different mentions may be used to refer to the same entity, or the same
mention may be used to refer to different entities. When the correct link of a mention
mi is entity ei, this will be denoted as link(mi) = ei. Another thing to note is that
some mentions may not correspond to any entity in the target knowledge base. These
mentions are usually referred to as NIL Mentions. To denote these cases, a NIL entity
∅ ∈ E will be used. In this thesis, a KB of funding organizations is used, hence, only the
mentions with type ORG will be considered for ED.

Sometimes, the set of entities E may be extremely large. In that case, a Candidate
Selector (CS) may be used to limit the search space. The aim of the CS is to extract a
set of candidate entities Ci = {e1, ...eK} ⊂ E for a given mention mi. Usually the size
of Ci is much smaller than that of E . This enables using more complex algorithms for
ED as it reduces the number of entities to consider.

Lastly the task of EL, which is the aim of this thesis, is to extract a set of mention-
entity pairs from an input text d. In this thesis, we detect mentions of ORG and GRT
types, and only link ORG mentions to entities in KB. Formally, we extract the set
T = EORG ∪MGRT for each input d, where,

EORG = {(mi, ei) | mi ∈M ∧ ei ∈ E ∧ link(mi) = ei ∧ type(mi) = ORG} (3.1)

and
MGRT = {mi | mi ∈M ∧ type(mi) = GRT}. (3.2)

3.2 Background

3.2.1 BERT

BERT (Bidirectional Encoder Representations from Transformers) is a language model
introduced by Devlin et al. in 2019, that obtained new state-of-the-art results on many
different NLP tasks with large gains in performance [18]. BERT essentially consists of
bidirectional Transformer [82] blocks stacked together. It can use a single sentence or
multiple sentences together as input. To represent the input sequence, first, tokenization
is performed using WordPieces [91]. Each token is then represented with the sum of
three different embeddings: WordPiece embeddings, position embeddings and segment
embeddings, the last one indicating which sentence a token belongs to. After that,
special tokens are added to the sequence such that each input sequence starts with a
[CLS] token, and ends with a [SEP] token. The latter is also used to separate sentences
when the input consists of two sentences.

The authors of BERT criticize previous neural language models on the fact that
they are learning unidirectional representations. They argue that this can deteriorate
the performance for token-level tasks where information from both directions are very

19

important. By using Masked Language Modeling (MLM) task, they manage to train
a representation utilizing both left-to-right and right-to-left directions simultaneously.
This task refers to masking words randomly and predicting the masked words only using
the context. BERT also utilizes the Next Sentence Prediction (NSP) task, in order to
learn the relationship between two input sentences. For this task, the final hidden vector
corresponding to the [CLS] token is used to distinguish whether the two input sentences
are actually adjacent or not.

BERT is pretrained with BookCorpus [102] and English Wikipedia. The authors
introduce two different architectures, BERTBASE and BERTLARGE , which have 110M
and 340M parameters respectively. In this study, BERTBASE is used due to computa-
tional limitations. For each architecture, there are also two different versions based on
case-sensitivity. The authors obtain state-of-the-art results in various NLP problems by
adding minimal task-specific layers and fine-tuning all the parameters end-to-end.

3.2.2 Domain Adaptation of BERT

Previous work suggests that pretraining a BERT model with in-domain data improves
the overall performance of the model for the task at hand [34, 78, 26]. For funding data
extraction, the input sentences are the ones where authors acknowledge the financial
support they had received. Hence, it is trivial that these sentences differ significantly
from the data that BERT was pretrained on, i.e. books and Wikipedia. For this purpose,
a domain-relevant BERT, denoted by BERTSC , is trained. The choice of terminology
is attributed to the fact that the training data consists of a subset of articles that
can be found in Scopus1, one of the largest database for peer-reviewed literature. For
each article, Scopus displays the corresponding funding text, using artificial intelligence
solutions developed by Elsevier. These texts are used as training data for BERTSC .

To pretrain BERTSC , Task-Adaptive Pretraining (TAPT) schema proposed by Gu-
rurangan et al. [34] is used. The idea behind TAPT is to pretrain a BERT model, which
was pretrained on a generic dataset, using unlabelled data from the specified task with
MLM objective. The authors compare this approach with Domain-Adaptive Pretraining
(DAPT), which they define as pretraining a BERT model from scratch using documents
from a specific domain. DAPT is much more expensive in terms of both data and com-
putational power compared to TAPT, and yet the authors show that TAPT performs
comparable to DAPT. Although there are other works on adapting BERT to a spe-
cific domain in an inexpensive way [78, 69], TAPT was chosen due to its easy-to-use,
open-source implementation2.

3.3 Named Entity Recognition

To train FlairNER, BERTNER and BERTNER
SC , the NER problem is cast as a token

classification task using the IOB tagging schema. In this schema, the initial tokens
of the mentions are labelled with a “B” (“Beginning”) and the remaining tokens are
labelled with an “I” (“Inside”). The tokens that are not a part of any mention are
labelled with “O” (“Outside”). In NER, there may be different types of mentions.
In that case, the type information is appended after the “B” and “I” labels. Since
there are two types in this work, Organization and Grant, a total of 5 tags are used:
{B-ORG, I-ORG,B-GRT, I-GRT,O}.

1https://www.scopus.com/
2https://github.com/allenai/dont-stop-pretraining

20

https://www.scopus.com/
https://github.com/allenai/dont-stop-pretraining

FlairNER

The sequence labelling architecture proposed by Akbik et al., denoted by FlairNER in
this work, utilizes a BiLSTM-CRF [41] which can be trained with the labelled task
dataset. The novelty of their approach comes from the way that the input is repre-
sented. In this paper, the authors propose Contextualized String Embeddings (CSE).
CSE represent a word based on its characters and are contextualized, meaning that the
representation of a word changes depending on its context. And as the words are repre-
sented using characters, the vocabulary size is smaller compared to word-level language
models. CSE are formed by concatenating a forward and a backward language model.
Both language models are trained to predict the next character given the previous char-
acters using an LSTM [37]. For an input I = {c1, ..., ck} of k characters, the contextual
string embedding CSEw of a word w = {cs, ..., ce} can be defined as:

CSEw = [LSTMforward
F lair (ce|c0, ..., ce−1);LSTM backward

F lair (cs|ck, ..., cs−1)] (3.3)

where LSTMforward
F lair and LSTM backward

F lair denote the forward and backward language
models respectively. Apart from CSE, the sequence labeling architecture uses pretrained
GloVe [67] word embeddings as well. For each word w, these embeddings are concate-
nated with CSEw resulting in the representation vw:

vw = [CSEw;GloV ew] (3.4)

where GloV ew denotes the corresponding GloVe embeddings. The authors show that
this representation achieves a higher performance compared to only using CSE, and
hypothesize that GloVe embeddings may be capturing some semantic information that
can complement CSE. However, the authors do not report significant performance gains
when using additional task-specific character features, concluding that this information
is captured by CSE. The resulting input representation is used by the BiLSTM-CRF
model. Given an input string d = {x1, ..., xN} of N words, let ri be the BiLSTM output
for word i, such that:

ri = BiLSTMFlair(vx1 , ..., vxN
)[i]. (3.5)

Since there are 5 labels in this task, ri ∈ R5, modelling the probability distribution
of each label. However, in NER, the labels of each word/token are not independent.
For example, following the IOB schema, there cannot be an I label following an O label.
Hence, instead of assigning a label to each token based on ri, the probability of the
labels of the whole sequence is calculated. For this purpose, a CRF layer is utilized.
Then, the probability of each possible label sequence YFlair is calculated as:

P (YFlair) =

N∏
i=1

exp(W(yi−1→yi)ri + b(yi−1→yi)) (3.6)

where the matrices W and b store the weights and biases of each label transition. The la-
bel sequence with maximum probability is chosen as the final prediction. LSTMforward

F lair

and LSTM backward
F lair are trained separately, and their parameters are frozen during the

training of the other components added for NER. For the remaining parameters, the
loss is set to the score difference of the gold label sequence and predicted label sequence.

BERTNER and BERTNER
SC

BERTNER is the same NER architecture proposed by Devlin et al. [18]. Let dt be the
WordPiece-tokenized version of the input string d = {x1, ..., xN} of N words, such that:

21

dt = {x11, ..., x1l1 , ..., xN1, ..., xNlN } (3.7)

where li corresponds to number of WordPiece tokens for word i. After appending the
special tokens [CLS] and [SEP], dt is passed through a case-sensitive BERT model
(BERTBASE in this study) to get the hidden state vectors of the last Transformer
block for each WordPiece token. The words are represented by their first WordPiece
token’s vector. A linear layer with weights WBERT ∈ R768×5 and bias bBERT ∈ R1×5

is applied to to get the scores for each label and for each word YBERT ∈ RN×5, such
that:

YBERT = WBERT BERTBASE(dt)[x11, ..., xi1, ..., xN1] + bBERT . (3.8)

Lastly, the label with the highest score is selected for each word, resulting in the
predicted label sequence ŶBERT ∈ RN , such that:

ŶBERT [i] = argmax
1≤j≤5

YBERT [i] , 1 ≤ i ≤ N. (3.9)

Following Devlin et al. [18], the whole architecture is fine-tuned end-to-end. Cross-
entropy loss over the NER labels is used for training. BERTNER

SC has the same archi-
tecture and training strategy with BERTNER, the only difference is that BERTBASE is
changed with BERTSC in Equation 3.8.

3.4 Entity Disambiguation

BLINK [90] utilizes a candidate selector (CS) and a reranker to tackle the ED problem.
The aim of candidate selection is to reduce the number of possible entities to consider for
a given mention in a computationally cheap manner. This enables the usage of a more
expensive but better algorithm on the reduced entity space to select the best entity, or
to select no entity at all. The CS extracts a candidate set Ci from the entity set E − ∅
for each mention mi , such that:

Ci = {e1, ...eK} (3.10)

where K is the number of candidates. When K = 1, the system can work as a single ED
component. In this work, only the biencoder of BLINK is implemented as fast inference
is a must. A linear reranker model is trained instead of the cross-encoder. This section
details the architectures used in BLINK and present the modifications made to adapt
them to the task at hand.

Biencoder in BLINK: BIBL

The biencoder architecture used in BLINK is shown in Figure 3.1 (left). The architec-
ture consists of two BERT models, MMention and MEntity, first for encoding the mention
representation RMention and the second for encoding the candidate entity representa-
tion REntity. MMention takes the tokenized version of RMention as input, and outputs
BERT’s final hidden vectors for each token. MEntity does the same for REntity. The
mention representation used in this work is identical with that of BLINK:

RMention = [CLS] left context [Ms] mention [Me] right context [SEP] (3.11)

where [Ms] and [Me] are two WordPiece tokens selected among the unused tokens of
BERT. The aim of these tokens is to distinguish the mention from its context. The can-
didate representation is different from BLINK which uses the title and entity description.

22

In this work, the entity descriptions are not available. Each entity is associated with
various labels and the country of origin. Both the labels and the country are crucial
for disambiguation of funding organizations, and the latter helps tremendously with
ambiguous organization labels. Hence, the candidate entities are represented as:

REntity = [CLS] label1 [El] ... [El] labelNlabel
[Ec] nameCountry [SEP] (3.12)

where Nlabel denotes the number of available labels per funding organization, and
nameCountry is the name of the country as stated in the GeoNames3 database. [El]
and [Ec] are special tokens similar to [Ms] and [Me], and their aim is to separate dif-
ferent labels and the country information. The representations are passed through the
BERT models, and the hidden state vectors of the last Transformer layer corresponding
to the [CLS] token are extracted to obtain the representations rEntity and rMention, such
that:

rEntity = MEntity(REntity) [CLS] (3.13)

and

rMention = MMention(RMention) [CLS]. (3.14)

Then, the score of the mention and the candidate is defined to be the dot product of
rEntity and rMention:

Score(Mention, Entity) = rMention · rEntity. (3.15)

The candidate entity set Ci of a mention mi is set to the top K entities for which
the score is highest, such that:

Ci = {e1, ..., eK | @ê Score(mi, ê) > min
e∈Ci

(Score(mi, e)); ê /∈ Ci; ê ∈ E − ∅; Ci ⊂ E − ∅}.
(3.16)

In this work, different from BLINK, both MMention and MEntity are initialized with
BERTSC . To find the top K entities for a mention, BLINK utilizes FAISS [45], which
performs approximate nearest neighbor search. Since the entity space is much smaller
in this work compared to BLINK, with 26k entities to 5.9M entities, an exact nearest
neighbor search is done instead of using an approximation.

To train the biencoder, same strategy proposed in BLINK is used. For each mention,
the loss is computed as:

L(mi, ei) = −Score(mi, ei) + log
∑
ê∈IE

exp(Score(mi, ê)) (3.17)

where ei is the correct entity for mention mi, link(mi) = ei. IE stands for incorrect
entities, hence, the second term in the loss function corresponds to the score between
the mention and incorrect entities. The set IE is selected as in-batch negatives, i.e.
the correct entities of other mentions in the same batch. In addition to these in-batch
negatives, for each mention, top NegH highest scoring entities are extracted and added
to IE. These entities are referred to as hard negative examples. NegH is the number of
hard negatives and is a hyperparameter. In this work, when the loss is calculated for
NIL mentions, the first term of the loss equation is set to 0:

L(mi, ei) = log
∑
ê∈IE

exp(Score(mi, ê)), if ei = ∅. (3.18)

3https://www.geonames.org/

23

https://www.geonames.org/

This whole architecture will be referred to as BIBL, where BI and BL stand for
biencoder and BLINK respectively. BIBL has some downsides for this problem setting.
Even though they are not included in BLINK’s research [90], NIL mentions are very
important for this work. These mentions cover between 15-20% of the dataset at hand
(see Section 4.1.1) and give important insights on funding organizations that are not yet
included in the KB. Having to handle NIL mentions introduces additional challenges on
using BLINK’s architecture for this problem. For example, the loss used cannot handle
NIL mentions naturally. Hence, a threshold is applied on the score of the returned entity
to detect the NIL mentions. As dot product is unbound, every score is scaled between
0 and 1 using Min-Max Scaling with the minimum and maximum score values observed
in the training set. The optimum threshold is selected on the training set using Grid
Search over the interval [0, 1] with a step size of 0.001.

Due to the issues described above, a modified version of BIBL is proposed, which is
named BIAD, where AD stands for adapted.

Figure 3.1: BLINK Biencoder architecture BIBL (left) and the adapted Biencoder ar-
chitecture BIAD (right)

BIAD

Different from BIBL, BIAD uses a binary classification setting. For this purpose, a
training set is constructed. Every mention and the corresponding correct entity are
added with a positive label, and the incorrect entities for a mention are added with a
negative label. Hence, the dataset S has the form:

S = {(mk, ek, lk) | lk ∈ {0, 1} ∧ lk = 1 ⇐⇒ link(mk) = ek}. (3.19)

where mk is a mention, ek ∈ E − ∅ is an entity and lk is the binary classification label
of that sample. To get the class probabilities for each mention and entity pair, an
additional linear layer is used. Then, the score of a pair is defined to be the probability
of the positive class:

ScoreAD(Mention, Entity) = WAD (rMention � rEntity)[positive] (3.20)

where � refers to element-wise multiplication of the vectors, and WAD ∈ R768x2 is a
matrix denoting the weights of the additional linear layer4. The binary cross-entropy
loss LAD is used to train this model:

4the size of the final hidden vectors of BERTSC is 768 as it is trained from BERTBASE

24

LAD(mi, ei, li) = −li log(ScoreAD(mi, ei))− (1− li) log(1− ScoreAD(mi, ei)). (3.21)

To get incorrect (negative) entities for each mention, a different strategy is used.
For the initial round of training, NegR entities are sampled from the entity set for each
mention randomly. Here, NegR is a hyperparameter. As NegR increases, the size of
the dataset increases and hence the training becomes longer. Even though in-batch
negatives are much faster to use, the advantage of this strategy is the possibility to
show the model some entities that do not have any correct mention in the KB. Since the
entity distribution of the dataset used is highly skewed (see Figure 4.2), it is inevitable
that the same entities are used as the random negatives for most of the mentions when
in-batch negatives are used.

As in BLINK, hard negatives are defined as the top NegH entities predicted for a
given mention. Different from BLINK, following DEER [31], an entity is considered to be
a hard negative only if it is ranked above the correct entity. Hence, some mentions may
have less hard negative samples compared to others. NIL mentions always have NegH
number of hard negative samples. One may argue that the entities that have a score
lower than 0.5 should not be considered as a hard negative since they are predicted as
the negative class, empirical results suggested that adding such entities helped. Another
advantage of this setting is, since hard negatives are not added to the random negatives
for loss calculation, it is possible to increase NegH without the need for additional
memory.

The training is done in rounds, similar to BLINK (and BIBL) and DEER. In each
round, a new set of hard negatives and random negatives are sampled, hence the training
set is updated. However, hard negatives are added starting from the second round, as
initially some of the model weights are initialized randomly, such as WAD. In this work,
one round may correspond to one or more epochs (see Section 4.1.3)

The number of random negatives in each round, NegR is also a hyperparameter. In
the first round of training, NegR is set to 3 as the training time increases proportionally
with NegR. In the following rounds, NegR is selected based on the number of hard
negative samples. After extracting all the hard negatives for the training set, the total
number of such samples are calculated, which can be denoted as NegSum

H . Then for each
mention, NegR = bNegSum

H /(Number of Mentions)e entities are sampled randomly and
added to the dataset. This way, it is aimed to have a similar proportion between
random and hard negatives in the training set. The aim with this was to somehow
mimic the strategy of DEER, which uses a multi-task learning setup with equal weights
to incorporate both hard and random negatives.

One interesting property of the setup of BIAD is that for the mentions with more
hard negatives, i.e. mentions that are ranked lower by the model, the training set has
more hard negatives compared to random negatives. We hypothesize that the need
for hard negatives are higher for these kind of mentions, as it seems that the random
negatives were not enough to teach the model to make the correct decision in the first
round.

In the setup for BIAD, it is intuitive to add NIL mentions to training. The only
difference between a NIL mention and a non-NIL mention is that the former does not
have any instance in the training set with a positive label. Also, when BIAD is used
as an ED system by itself, it is straightforward to detect NIL mentions. Since this is
a binary classification task, if the highest scoring entity of a mention has a score lower
than 0.5, it should be a NIL mention, as there are no mention-entity pairs including
that mention such that the label is positive.

The architecture of BIAD is shown in Figure 3.1 (right).

25

Candidate Reranking

Instead of using the computationally expensive cross-encoder, feature-based models (lo-
gistic regression and a Gradient Boosting Machine (GBM) [27]) are used as a reranker.
After selecting the best biencoder, the number of candidates K is determined by inves-
tigating the change of recall with respect to the rank. After K is selected, a training
dataset is created by extracting the top K entities for each mention. For the instances
where the entity is the correct link for the mention, the class label is set to positive, and
for the other instances, it is set to negative.

For the reranker, we make use of 5 features, chosen from the top important features
of an existing ED model at Elsevier: score assigned by the candidate selector, maximum
sorted Levenshtein similarity between the mention and the labels of the candidate entity,
popularity of the candidate entity, link probability of the mention, and commonness. To
calculate Levenshtein similarity, the normalized Levenshtein distance is subtracted from
1. For calculating the maximum sorted Levenshtein similarity for a given mention and
entity, first the mention and the labels of the entity are tokenized. Then, the tokens
of the mention and each label are sorted in alphabetic order. Levenshtein similarity is
calculated between the mention for each entity label. The value of the feature is set to
the maximum of these similarities. The sorted Levenshtein similarity is calculated using
the Fuzzywuzzy library5.

The popularity of an entity is defined as the number of times it appears as a link
divided by the number of all links. Similarly, the link probability [4] of a mention is
defined as the number of times the mention is linked to any entity in the KB divided
by the number of times it appears in the dataset used for estimation. Commonness
measures the maximum likelihood probability of an entity being the link to the given
mention [4]. For a mention-entity pair, it is calculated as number of times that the
mention was linked to the given entity, divided by the number of times that the mention
appears as a link [4]. For popularity, link probability and commonness, the statistics
used by the feature-based ED model is utilized. It is made sure that no document that
is contained in the evaluation dataset (Dev, Validation and Test splits, see Section 4.1.1)
is included in the estimation of these statistics.

First, a logistic regression model is trained as a reranker. This model will be denoted
by LM which stands for Linear Model. A logistic regression model can be defined as:

yLM (φLM) = σ(wT
LMφLM) (3.22)

where σ, yLM , wLM and φLM denote the sigmoid function, the probability of positive
class, weights and the feature vector respectively [5]. One of the feature values in φLM

is set to 1 to include bias. Hence, the length of φLM is 6, considering 5 features are
used. Weights of the model are learned during training, which are optimized by SAGA
[17]. Binary cross-entropy is used as the loss function, with both L1 and L2 penalty.
The loss function for LM, LossLM , can be defined as:

LossLM (a) = −ta log(yLM (φLM (a)))− (1− ya) log(yLM (φLM (a))) + RLM (3.23)

for a single training sample a. Here, φLM (a) and ta denote the feature vector and the
label for a sample a consecutively. RLM is the regularization term and corresponds to
Elastic Net regularization [103] as both L1 and L2 penalties are utilized.

In the training data, the negative class is prominent as there is only a maximum of
one positive entity per mention. To address this, class weights are used during the binary
cross-entropy loss calculation for LM. Each class is assigned a weight that is inversely
proportional to the number of samples of that class in the training data normalized by

5https://github.com/seatgeek/fuzzywuzzy

26

https://github.com/seatgeek/fuzzywuzzy

the total number of samples. Two hyperparameters of LM is tuned by grid search: the
regularization strength and the ratio between L1 and L2 penalties. For the former, the
search interval is set to [0,1] with a step size of 0.1, and for the latter, it is set to [1,10]
with a step size of 1. Feature selection is also performed on all possible feature sets,
excluding the ones that do not contain the score of the candidate selector as feature.
Then, the best hyperparameter configuration and feature set is selected.

A GBM model is also trained with the same features that LM is using. This model
will be referred to as GBMF5 as it uses 5 features.

Boosting refers to combining multiple weak (base) classifiers in an ensemble setting to
produce a classifier that performs significantly better compared to these weak classifiers
[5]. The base classifiers are trained sequentially, giving a higher weight to the training
samples that the previously trained classifiers performed poorly on [5]. During inference,
a weighted voting schema is used, where the weights are related to the performance of
the corresponding base classifiers [5]. Decision trees [9] are used as the base classifiers
[27], and are learned by utilizing the negative gradients [48]. For the mathematical
details, we refer the reader to Friedman [27].

During inference, the probability of the positive class is extracted for each mention-
candidate entity pair. The mention is linked to the candidate entity with the highest
score, if the score is greater than or equal to 0.5. Otherwise, the mention is linked to NIL.
For experimental purposes, another NIL-mention detection threshold is selected within
the interval [0.5,1] with using grid search with a step size of 0.001. For GBMF5, this
interval had to be extended to [0,1] as the model performed poorly with high thresholds.

27

Chapter 4

Evaluation

In this work, different experiments were conducted to investigate the optimal Entity
Linking (EL) approach for funding information extraction. First, BERTSC , a BERT
model that is adapted to funding text, is pretrained using the Task-Adaptive Pretraining
(TAPT) strategy proposed by Gururangan et al. [34]. Then, different state-of-the-
art Named Entity Recognition (NER) components are compared and a neural Entity
Disambiguation (ED) model is developed. Lastly, the end-to-end EL performance of
these approaches are investigated.

In Section 4.1, the experimental setup is presented. The dataset used and the eval-
uation metrics are detailed in Section 4.1.1 and 4.1.2 respectively. The training, hyper-
parameters and model selection is shown in Section 4.1.3. Lastly, the result and the
analysis are presented in Sections 4.2 and 4.3.

4.1 Experimental Setup

4.1.1 Data

The dataset for funding data extraction and the knowledge base (KB) for ED used in
this research are provided by Elsevier B.V.. The dataset consists of a set of labelled
articles annotated by humans. To create this dataset, each article is annotated by
three people. First, two annotators extracted the funding information from the articles
independently. Then, a third annotator harmonized the decisions of the previous two
annotators, resolving the conflicts if necessary.

For developing models and evaluating various approaches, the dataset is divided into
four subsets: Training, Dev, Validation and Test. The Training split is used to train
the models. Dev split is used to monitor the progress of training, while Validation split
is used to select the best approach for each task. The intermediate error analyses are
done on the Dev split. Test is used to evaluate only the feature-based models and the
selected approach for each task. The splits are arranged such that there is no overlap
in terms of articles. Table 4.1 shows the number of annotated articles contained in each
split.

For the ED and EL task, the KB provided by Elsevier is used. This KB contains
26,892 entities of funding organizations with information such as the country of origin,
type of organization and different names that the organization can be referred to with.
There are also sparse amount of relations between organizations to show affiliations and
hierarchies. One interesting property of the KB is that most of the entities do not
exist in general-purpose knowledge repositories. Hence, it is not trivial to obtain more
information from other sources.

28

Dataset Split Number of Articles
Training 37,484

Dev 1,000
Validation 4,000

Test 19,920

Table 4.1: Number of articles annotated with funding information in each dataset split

Sometimes, organizations may change their names, or may be merged with other or-
ganizations. Hence, it is possible that one funding organization is referenced by multiple
entities in the KB, which is not desirable. To prevent this, entities are grouped together
based on the relations indicating such cases. This operation resulted in 25,859 entity
groups. It is assumed that the entities in each group refer to the same organization, and
hence can be used interchangeably. Another option could be to only keep the newest
versions of the entities. However, this may cause problems with disambiguating older
publications, where the authors may have used an older name variant to refer to the
same organization.

The data to train and evaluate the approaches for different tasks are derived from
this main dataset. However, as each task has a different nature, some preprocessing and
filtering is applied when necessary.

Task-Adaptive Pretraining (TAPT)

For EL in funding domain, the input text is the sentences where the authors acknowledge
the funding support they had received for their research. As TAPT can be done with
unlabelled data, 13 million such sentences are extracted from Scopus, where they are
displayed for each article. Using the identifiers of the articles, the sentences belonging
to the articles in Dev, Validation and Test splits are removed.

Named Entity Recognition (NER)

As mentioned in Section 3.3, IOB tagging is used to train and evaluate the NER models.
In the dataset used for this work, the annotations are not done in terms of tokens, but
in terms of character spans of the input text. That is, each gold mention is provided
using their character offsets with respect to the article text. Hence, first the input text
is tokenized and the labels are assigned to tokens based on some predefined rules to
tackle some edge cases that mostly correspond to annotation errors. These rules are
extracted based on empirical results to maximize the correctness of the annotations.
The experiments were done on a portion of the training set, and all the edge cases found
were present for less than 0.5% of the investigated dataset. In Appendix B the details
of the labeling step can be found.

Dataset #ORG #GRT
Split #Articles #Sentences Mentions Mentions

Training 22,720 26,132 67,671 45,263
Dev 1,000 1,284 4,333 2,770

Validation 4,000 5,012 16,355 10,112
Test 13,851 15,590 37,495 25,349

Table 4.2: Dataset splits and statistics for NER. For each split; number of articles with
at least one funding sentence, number of sentences and number of mentions are shown.

29

Figure 4.1: Distribution of length of grant mentions (top-left), organization mentions
(top-right), sentences (bottom-left) in terms of number of characters and distribution
of number of tokens per sentence (bottom-right). Plots are cut over the x-axis, and the
maximum x values are 75, 223, 9175 and 2760 respectively.

The NER component should extract the mentions of organizations only if they funded
the corresponded research. For this purpose, the classifier developed by Elsevier is used
as a preprocessing step. This classifier identifies whether a sentence contains funding
information or not. As the NER component will directly work with this classifier, as a
preprocessing step, the dataset splits are reduced to the sentences that are identified as
positive by this classifier. The second column of Table 4.2 shows the number of articles
with at least one sentence with funding information for each dataset split, and the third
column shows the total number of such sentences. The number of organization and
grant mentions on each split can be found in the fourth and fifth columns respectively.
In Figure 4.1, the distribution of number of characters for the sentences and mentions
contained in the Training and Dev splits are presented.

Entity Disambiguation (ED)

Table 4.3 displays the statistics for each dataset split. The second column of this table
shows number of articles with at least one organization mention. It also can be seen that
not all organization mentions have a corresponding entity in the KB. These mentions will
be referred to as NIL mentions. A mention being NIL means that a funding organization
is extracted by the annotators, however, as this organization was not yet included in the
KB, it was not linked. Because of this, all NIL mentions for this task can be classified
as emerging entities (EE). These are very important for this work, as the current KB is
being updated regularly consulting to the detected EEs.

Another interesting property of this dataset is that only the entities belonging to a
small part of the KB appear as a link, as can be seen from Table 4.4. For example,
only 26.9% of the entities in the KB appear as a link in the Training split. In addition,
the Dev, Validation and Test splits contain links to entities that do not appear in the

30

Dataset Split #Articles #ORG Mentions #Links NIL Mentions
Training 29,118 95,761 77,972 18.58%

Dev 991 5,618 4,749 15.47%
Validation 3,943 19,765 16,689 15.56%

Test 17,333 52,378 42,514 18.83%

Table 4.3: Dataset splits and statistics for ED. For each split, number of articles with at
least one organization mention, number of organization mentions, number of mentions
that are linked to an entity and the percentage of NIL mentions are shown.

Dataset Split # Unique Entities Overlap with Training KB Coverage
Training 7,234 - 26.9%

Dev 1,222 88.63% 4.54%
Validation 2,658 81.6% 9.88%

Test 5,590 71.91% 20.79%

Table 4.4: Dataset splits and number of unique entities in each split. Third column
indicates the percentage of unique entities that are also present in the Training split for
Dev, Validation and Test splits. The last column shows the percentage of KB covered
by each split.

Training split. However, when Table 4.5 is investigated, it is possible to see that such
instances are long-tail entities. For example, even though 28.1% of the unique entities
in the Test split do not appear in the Training split; when the overall number of links
are checked, only 5.14% of the links are to these entities. Nevertheless, it is important
that the ED system can link mentions of unseen entities correctly as well.

Figure 4.2 shows the number of occurrences of the top 25 most frequent entities on
Training and Dev splits. It can be seen that the distribution is highly skewed, even with
the most common entities.

Entity Linking (EL)

In this work, the task of EL is tackled in two-steps, NER and ED. Hence, the data
described is used to evaluate the end-to-end performance of NER and ED steps together.

As the NER is also evaluated here implicitly, the Sentence classifier is used again to
limit the dataset to the sentences detected by this classifier, as done for the NER task
dataset. Also, all the NIL mentions are classified as emerging entities, due to the same
reason reported for the ED task dataset. In fact, the dataset for EL is a subset of that
of ED, limited by the sentence classifier. Tables 4.6, 4.7 and 4.8 show statistics of the
dataset splits such as number of mentions, links and percentage of NIL mentions.

Dataset Split # Links Links not in Training
Dev 4,749 3.39%

Validation 16,689 3.52%
Test 42,514 5.14%

Table 4.5: Dataset splits and number of links. The third column shows the percentage
of links for which the target entity do not exist as a link in the Training split.

31

Figure 4.2: Number of occurrences of top 25 most frequent entities. Statistics obtained
using Training and Dev splits.

Dataset Split #Articles #ORG Mentions #Links NIL Mentions
Validation 4,000 16,276 13,958 14.24%

Test 13,851 37,340 31,153 16.57%

Table 4.6: Dataset splits and statistics for EL. For each split, number of articles with at
least one organization mention, number of organization mentions, number of mentions
that are linked to an entity and the percentage of NIL mentions are shown.

Dataset Split # Unique Entities Overlap with Training KB Coverage
Validation 2,302 83.36% 8.57%

Test 4,350 76% 16.18%

Table 4.7: Dataset splits and number of unique entities in each split. Third column
indicates the percentage of unique entities that are also present in the Training split.
The entities in the Training split is determined using the dataset for the ED task. The
last column shows the percentage of KB covered by each split.

Dataset Split # Links Links not in Training
Validation 13,958 3.19%

Test 31,153 4.28%

Table 4.8: Dataset splits and number of links. The third column shows the percentage
of links for which the target entity do not exist as a link in the Training split. The
entities in the Training split is determined using the dataset for the ED task.

4.1.2 Evaluation Metrics

Each different problem tackled in this work is evaluated with a suitable metric selected
from the literature.

Task-Adaptive Pretraining (TAPT)

To evaluate BERTSC and monitor its progress, Perplexity is used. This metric corre-
sponds to the inverse probability of the dataset based on the model [29], and it it is the

32

most popular metric to evaluate language models [29].

Named Entity Recognition (NER)

To evaluate the NER task, precision recall and F1 scores are used for each entity type,
Organization and Grant. These metrics are defined in terms of True Positives (TP),
False Positives (FP) and False Negatives (FN). Precision is defined as the fraction of
TPs among all mentions extracted by the system, and recall is defined as the fraction
TPs among all ground truth mentions. F1 score is the harmonic mean of precision and
recall metrics. The formulas of these metrics are shown in Equations 4.1,4.2 and 4.3.
A mention is considered to be a TP if and only if both the extracted span and type
information is correct. A FP corresponds to a mention that is extracted by the system
wrongly, and a FN corresponds to a mention that is not extracted by the system while
being present in the ground truth. This scheme is chosen as it is inline with evaluation
of the CoNLL-2003 NER task [79].

Precision =
#TP

#TP + #FP
(4.1)

Recall =
#TP

#TP + #FN
(4.2)

F1 Score =
2 · Precision · Recall

Precision + Recall
(4.3)

Entity Linking (EL)

To evaluate the EL task, a strategy inspired by GERBIL [80] is used. GERBIL is
a framework for evaluating various entity-related tasks, such as NER, ED and EL.
The framework supports many popular databases, hence, systems evaluating on such
datasets can use it when they provide an API support. However, since this work is using
a domain-specific and private dataset, it is not possible to make use of it directly. Hence,
the metrics are reimplemented consulting the paper [80] and the GitHub repository1.

GERBIL offers various settings to evaluate systems. In this work, “Normal”, “EE”
(Emerging Entities) and “InKB” (In Knowledge Base) settings are used for evaluation
and the results for each are reported separately.

To calculate the scores in “Normal” setting, for each document, the TP, FP and
FN instances are counted. First, for each gold annotation, a matching annotation is
looked for in predictions. Two annotations are considered to be matching based on
strict criteria. If a match is found, this counts as a TP. Gold annotations for which no
match is found are counted as FN. Similarly, the predictions that were not marked as a
match for any gold annotation are counted as FP. If a prediction is marked as a match
for a gold annotation, it could not be matched again. And, a gold annotation could not
be matched with more than one prediction. After obtaining the TP, FP and FN counts;
precision, recall and F1 score for that document are calculated. The precision, recall
and F1 score for all the documents are averaged to produce macro averaged results. To
obtain micro averaged results; the TP, FP and FN counts of all documents are summed
together before calculating precision, recall and F1 score.

GERBIL distinguishes NIL mentions to two, emerging entities and ones where the
system cannot produce a link. In this work, for the ED task, it is known that all NIL
mentions are emerging entities, and the systems developed are not able to make such
distinction between NIL mentions. Hence, for the EL task, the mentions extracted by
the NER components are also assumed to be emerging entities, even though this may

1https://github.com/dice-group/gerbil

33

https://github.com/dice-group/gerbil

not always be the case. Based on this assumption, to get the scores for the “EE” setting,
the TP counts are discarded when the annotations both contained an entity that is in
the KB. The gold annotations that were not matched with any prediction did not count
as FN if the entity was in the KB. Similarly, the predictions that were not matched did
not count as FP if the entity was in the KB. For the “InKB” setting, the TP counts are
discarded when the entities were both NIL. The gold annotations that were not matched
with any prediction did not count as FN if the entity was NIL. And, the predictions
that were not matched did not count as FP if the entity was NIL.

Algorithm 1 shows the pseudocode for calculating TP, FP and FN for a document
in “Normal”, “InKB” and “EE” settings.

Algorithm 1: Calculate TP, FP, FN per document for EL evaluation.

// Initialize the counts.

TP = 0, FP = 0, FN = 0;
// N gold annotations, M predicted annotations. Each annotation

consists of mention start index, mention length, and predicted

entity (or NIL).

g = [g0,..., gN];
p = [p0,..., pM];
// Evaluation mode ‘‘Normal’’, ‘‘InKB’’ or ‘‘EE’’

mode = “Normal”;
for gold in g do

found = False ;
for pred in p do

if gold == pred then
if mode==“Normal” then

TP += 1;
else if mode==“InKB” and Entity not NIL. then

TP += 1;
else if mode==“EE” and Entity is NIL then

TP += 1;
p = p - pred;
found = True;
break;

if not found then
if mode==“Normal” then

FN += 1;
else if mode==“InKB” and Entity of gold is not NIL then

FN += 1;
else if mode==“EE” and Entity of gold is NIL then

FN += 1;

if mode==“InKB” then
remove predictions from p where entity is NIL;

else if mode==“EE” then
remove predictions from p where entity is not NIL;

FP = length(p)

Entity Disambiguation (ED)

The definitions provided by Hoffart et al. [38] are used to calculate Precision, Recall and
F1 scores for “InKB” and “EE” settings. However, micro averaged scores are reported

34

instead of macro. Following Hoffart et al. [38], micro and macro averaged accuracy is
also reported. These two scores will be referred to as the “Normal” setting, as they take
all predictions and ground truth annotations into account. Equations (4.4-10) define
the evaluation metrics.

Accuracy =
Prediction = Ground Truth

All Instances
(4.4)

“InKB” Precision =
(Prediction = Ground Truth) ∧ (Entity in KB)

Predictions where link is to an entity in KB
(4.5)

“InKB” Recall =
(Prediction = Ground Truth) ∧ (Entity in KB)

Ground truth ann. where link is to an entity in KB
(4.6)

“InKB” F1 Score =
2 · (“InKB” Precision) · (“InKB” Recall)

(“InKB” Precision) + (“InKB” Recall)
(4.7)

“EE” Precision =
(Prediction = Ground Truth) ∧ (Link is NIL)

Predictions where link is to NIL
(4.8)

“EE” Recall =
(Prediction = Ground Truth) ∧ (Link is NIL)

Ground truth ann. where link is to NIL
(4.9)

“EE” F1 =
2 · (“EE” Precision) · (“EE” Recall)

(“EE” Precision) + (“EE” Recall)
(4.10)

Accuracy measures the fraction of instances (mentions) for which the predicted link
(an entity from the KB or NIL) is the same with that of ground truth annotation.
“InKB” precision measures the fraction of correct links, among the predicted links that
point to an entity in the KB. Contrary, “EE” precision measures the fraction of correct
links, among the predicted links that point to NIL. “InKB” recall measures the fraction
of ground truth annotations captured by the model where the mentions are linked to
an entity in the KB. “EE” recall measures the fraction of ground truth annotations
captured by the model where the mentions are linked to NIL.

4.1.3 Training, Hyperparameters and Implementation

To conduct the experiments, the models introduced in Chapter 3 are trained and imple-
mented. For training, the Training split prepared for that specific task is used for each
model. The details for all the models are explained below.

BERTSC

The weights of BERTSC are first initialized with the case-preserving version of BERTBASE .
Following TAPT, the model is trained end-to-end with the sentences extracted from Sco-
pus, using Masked Language Modeling (MLM). The choice of a case-preserving model
is due to the fact that case information can provide important information to the NER
task, for example, it is common in English to capitalize organization names. The imple-
mentation is based on the GitHub repository of the paper where TAPT was introduced2

[34]. Throughout training, the progress is monitored on Dev split. The hyperparameters
recommended by Gururangan et al. [34] is used as much as possible. Number of epochs
are reduced from the recommended number (100) to 2 as the training set is rather large.
It is thought that 1 epoch would be sufficient, and a second epoch would be beneficial
to see whether Dev scores would improve with more epochs or not. The batch size is set

2https://github.com/allenai/dont-stop-pretraining

35

https://github.com/allenai/dont-stop-pretraining

Figure 4.3: Perplexity on Dev during training

to 4 due to memory requirements, but using gradient accumulation, an effective batch
size of 2048 is maintained as recommended.

However, the initial setup to train BERTSC could not be performed. According to
the initial setup, TAPT was going to be performed for around 13,500 steps in 2 epochs.
However, after 2 days of training it was observed that only 1000 steps were finished,
and hence, only around 2 million training examples were utilized. Due to the time
constraints, it was determined to stop the training at that point.

After 1000 steps, a perplexity of 2.86 is achieved on the Dev set. Figure 4.3 shows
the change of perplexity on Dev, recorded every 20 training steps. Based on this plot, we
believe that it is possible to obtain a model with higher performance when the training
with the full dataset is completed. However, this is left to future work.

The training of BERTSC is done on an NVIDIA Tesla K80 GPU with 12 GB of
memory. More details on the hyperparameter configuration can be found in Appendix
C.1.

FlairNER

The implementation of FlairNER is done using the Flair library [1]. In this library, both

LSTMforward
F lair and LSTM backward

F lair trained on the 1 billion word corpus [14] are available.
Using these and pretrained GloVe embeddings, the BiLSTM-CRF model is trained on
the Training split and the progress is monitored on Dev split using the training interface
of Flair. Mainly, the hyperparameters and training strategy reported by Akbik et al.
[2] is followed, while changing minor things to address the computational limitations.

A batch size of 8 is used, and the model started training with a learning rate of
0.1. When for 2 epochs, no improvement on the Dev split was observed, the learning
rate was halved. The training is stopped when no improvement was made in a certain
learning rate, amounting to 37 epochs in total. The performance on Dev was measured
as micro averaged F1 score of the output tags. The models were saved at the end of
each epoch, and the model that performed best on Dev is selected. It was observed that
the model at the end of 33 epochs was the best one. The losses, scores and learning
rates per epoch are presented in Appendix C.2. One epoch of training FlairNER took
approximately 50 minutes on an NVIDIA Quadro T1000 GPU with 4GB memory.

36

BERTNER

All parameters of BERTNER are fine-tuned end-to-end with different hyperparameter
settings. The progress of training is monitored on Dev across epochs, with respect to
the same evaluation metric of the NER task.

Devlin et al. [18] suggested different hyperparameter settings for fine-tuning BERT:
a batch size of 16 or 32, learning rate of 5 × 10−5, 3 × 10−5 or 2 × 10−5; and training
for 2, 3 or 4 epochs. Due to memory requirements, the batch size is set to 8. Then, the
model is trained for 10 epochs with a learning rate of 2×10−5, while saving the model at
the end of each epoch. On top of that, 3 more models are trained using a linear learning
rate scheduler for 2, 3 and 4 epochs respectively. The number of warm-up steps is set
to 50. For implementation, the library Transformers [86] by Hugging Face3 is used.

After the experimentation with different hyperparameter settings, it was decided
that training for 3 epochs with a linear learning rate scheduler produced the best results.
Appendix C.3 shows detailed results on this experimentation.

BERTNER can process a maximum of 512 tokens per input, similar to BERTBASE .
Hence, the sentences having more tokens are split into smaller chunks, such that there
is no overlap between chunks and no word is scattered across chunks. Later on, the
predictions are merged as a postprocessing step. The training is done using an NVIDIA
Tesla K80 GPU with 12 GB of memory. On this device, one epoch took approximately
1 hour.

BERTNER
SC

BERTNER
SC is trained with the exact same hyperparameter settings that produced the

best results for BERTNER, i.e. for 3 epochs with a linear learning rate scheduler.
One aim of this study is showing the effect of domain adaptation, which is achieved

by comparing BERTNER and BERTNER
SC . To be able to show that the improvement

gained by pretraining is not random, a second BERTNER
SC is trained with the second-best

hyperparameter setting, for 2 epochs with a linear learning rate scheduler. However, the
aim of this second BERTNER

SC is just for observing the effect of domain adaptation, not
for measuring the success of any other task. Hence, when BERTNER

SC is referred to in
any other setting, it is the one trained for 3 epochs.

BERTNER
SC can also process a maximum of 512 tokens, and is also trained on the

same GPU with BERTNER. One epoch of training took approximately 1 hour.

BIBL

The implementation of BIBL is inspired by BLINK’s GitHub repository4. Mainly, the
code for data preprocessing is obtained from this repository. The models and training
are implemented using PyTorch [65] and Transformers library by Hugging Face.

As there was no computational power to be able to do an extensive hyperparameter
search, the values reported by Wu et al. [90] is followed as much as possible. In BLINK,
the maximum number of tokens for the mention representation (RMention) are either 32
or 128, depending on the dataset. This number is set to 64 in this work. Originally it
was planned to set it to 32 to address the memory limitations, however, it was observed
that there were mentions longer than 32 tokens themselves.

For candidate representation (REntity), BLINK uses 128 tokens. However, in this
setting, there are candidates that have longer representations. To be more specific,
there are 96 entities with representation longer than 128 tokens, 36 entities longer than
256 tokens, and 23 entities longer than 256. Hence, for the 96 entities that had longer

3https://huggingface.co/
4https://github.com/facebookresearch/BLINK/tree/master/blink

37

https://huggingface.co/
https://github.com/facebookresearch/BLINK/tree/master/blink

representations, a label is removed iteratively until the representation was equal to or
shorter than 128 tokens. The label that had the highest sorted Levenshtein distance
with any other label is removed in each iteration, as it was thought that this label would
be the least informative.

BLINK uses a batch size of 128, and adds 10 hard negatives (NegH=10) among
the in-batch negatives. Hence, for a mention, they make use of a maximum of 127
random negatives, and a maximum of 137 negatives in total (max(|IE|) = 127 + 10 =
137). As the training is done on a GPU with 12 GB memory, this batch size could not
be maintained in terms of random negatives. Hence, the hyperparameters are scaled
down proportionally. It was observed that a maximum batch size of 16 was possible.
Proportionally, NegH is set to 1, making max(|IE|) = 15 + 1 = 16.

Even though a batch size of 128 cannot be maintained in terms of in-batch random
negatives, it is possible to maintain this number in terms of gradient updating using gra-
dient accumulation. Initially, the batch size was set to be inline with BLINK. Similarly,
the learning rate was set to 10−5. However, no learning was observed with this setting.
We hypothesize that it is because of the size of the dataset. At the end, the batch size
is set to 64 using gradient accumulation and the learning rate is set to 2× 10−5, which
is also the minimum learning rate recommended by Devlin et al. [18].

The models in BLINK are trained for either 4 or 5 epochs. It is not clear whether
the hard negative sampling is done for each epoch or not. However, as they report that
they are following the strategy of DEER, it will be assumed that one epoch corresponds
to one round for this case. Based on this, initially, it was thought to have 4 rounds of
training, each consisting of 1 epoch. No hard negatives are added in the first round, as
some weights of the model are initialized randomly anyway. To observe the course of
training and the change in performance after each round, Dev is used.

Table 4.9 shows the performance of BIBL on Training and Dev sets after the first two
rounds. It can be seen that after the second round, the performance drops further for the
“InKB” setting but improves for the “EE” setting, resulting in an overall performance
decline as shown with accuracy. We hypothesize that the second round of training
resulted in better separation of the scores of NIL and not-NIL mentions, however, did
not improve the model in terms of finding the correct entity.

To see the separation between NIL mentions and non-NIL mentions, it is possible to
model the distribution of scores. For this purpose, two normal distributions are fit on the
normalized scores (see Section 3.4 for details of the normalization) of the highest ranked
entity for each mention, one for NIL mentions and one for others. The parameters of the
distribution are calculated using Maximum Likelihood and Dev dataset, and are shown
in Table 4.10. Figure 4.4 shows the histogram of scores for each distribution. When
the Bhattacharyya distance [28] is checked, it is possible to see that the distribution of
NIL mention scores are more different than the other mentions in Round 2, compared to
Round 1. The choice of this metric is due to the fact that it is reported as a convenient
metric to measure the class separability of normal distributions [28].

Based on the results, the training of BIBL is stopped after two rounds, and was not
used any further. The training of the first round took 1.3 and the second round took
1.7 hours in the NVIDIA Tesla K80 GPU with 12 GB of memory.

BIAD

To train BIAD, the same batch size and learning rate with that of BIBL is used. The
progress of the training is also monitored using the Dev split.

The model is trained for 4 rounds, each consisting of one epoch. The initial round of
training is done just with random negatives, and NegR is set to 3. This hyperparameter
is not tuned as there is not much performance improvement expected from the initial

38

Micro Averaged Macro Averaged
Round Dataset Accuracy Accuracy

1 Training 61.88 62.9
2 Training 59.2 59.21
1 Dev 60.16 64.04
2 Dev 55.06 59.13

EE Setting
Round Dataset Precision Recall F1 Score

1 Training 60.32 60.64 60.48
2 Training 64.42 85.03 73.3
1 Dev 50.4 57.31 53.63
2 Dev 54.1 72.96 62.13

InKB Setting
Round Dataset Precision Recall F1 Score

1 Training 62.24 62.16 62.2
2 Training 57.51 53.31 55.33
1 Dev 62.25 60.69 61.46
2 Dev 55.31 51.78 53.49

Table 4.9: Scores of BIBL for the first two rounds. A threshold of 0.324 is used for the
first and 0.321 for the second round.

NIL Mentions Other Mentions Bhattacharyya
Round Mean Std. Dev. Mean Std. Dev. Distance

1 0.311 0.109 0.465 0.11 0.247
2 0.263 0.099 0.534 0.17 0.541

Table 4.10: Parameters of the distributions for scores and the Bhattacharyya distance
between the two distributions for each round.

Figure 4.4: Distribution of scores for BIBL, first two rounds, on Dev.

39

Dataset Round None 1 2 3 4 5 6 7 8 9 10+
Training 1 51,482 12,711 4,470 1,873 1,244 1,034 691 517 450 356 3,144
Training 2 70,566 3,024 916 516 327 194 147 135 133 104 1,910
Training 3 71,547 3,329 899 402 272 187 153 102 88 85 908
Training 4 73,273 2,273 821 313 200 117 85 57 62 53 718

Dev 1 3,063 771 283 122 63 63 49 36 17 30 252
Dev 2 4,204 173 58 36 24 6 12 12 12 5 207
Dev 3 4,222 212 74 33 19 10 14 12 9 5 139
Dev 4 4,291 148 64 24 13 12 13 5 9 10 160

Dataset Round None 1 2 3 4 5 6 7 8 9 10+
Training 1 59,711 9,356 2,787 1,559 907 794 436 326 263 205 1,628
Training 2 73,259 2,562 579 374 180 115 100 66 48 42 647
Training 3 74,484 2,141 484 252 152 79 68 45 33 17 217
Training 4 75,403 1,875 295 107 60 38 31 17 9 14 123

Dev 1 3,574 556 161 99 49 57 20 25 15 14 179
Dev 2 4,288 183 43 31 12 12 11 10 5 3 151
Dev 3 4,355 159 51 32 14 20 12 8 4 6 88
Dev 4 4,354 178 37 13 7 11 11 8 6 3 121

Table 4.11: Number of not-NIL mentions with {None, 1,2,...,9 ,10 or more} hard nega-
tives in each round for BIAD. Upper table is with the first set of hyperparameters, and
lower table is with the second set of hyperparameters.

round. It could be that a higher NegR leads to a better result, however, the training
time would also increase accordingly. In the following rounds, NegH is set to 10, as
BLINK also uses 10 hard negatives. Based on the formula introduced in Section 3.4,
NegR is set to 3, 2 and 2 for the second, third and fourth rounds respectively. Also,
in the initial round, class weights are used for loss calculation to prevent the model to
predict everything as the negative class. According to the random negative sampling
strategy, a weight of 0.25 is given to the negative class and 0.75 is given to the positive
class. However, class weights are not used in the following rounds, even though the
class imbalance continues. During training, it was seen that not using class weights was
slightly better for the performance. This could be because in these rounds the negative
samples are selected with hard negative mining, and hence are very informative.

Table 4.11 (upper) shows the number of hard negatives for Training and Dev splits
after each round. As can be seen, the mentions with no hard negatives increase signifi-
cantly after the second round, and this increase becomes much smaller in the following
rounds. In this setting, the training took around 5, 8.5, 6.5 and 6.5 hours for the first,
second, third and fourth rounds respectively; using the NVIDIA Tesla K80 GPU with
12 GB of memory.

As a second set of hyperparameters, it was tried to train each round for 2 epochs
instead of one. Also, the maximum tokens for REntity is set to 256. It was thought that
a longer representation would be better in the event that new entities would have many
labels. The number was not increased to 512, in case the Cross-Encoder of BLINK [90]
would be implemented later on. A separate experiment to see the effect of this increase
to the performance was not conducted as the impacted entities cover 2.42 % of Training,
2.3 % of Dev, 2.41 % of Validation and 2.66 % of Test split for the ED task. There
were 1037 samples in Validation split for which BIAD made a mistake when trained with
the first hyperparameter configuration, but got the correct answer when trained with
the second hyperparameter configuration. Among these samples, in only 10 of them,

40

Micro Averaged Macro Averaged
Setting Threshold Accuracy Accuracy

1 0.5 83.85 87.3
2 0.5 86.95 89.9
1 0.732 86.61 89.17
2 0.728 88.44 90.75

EE Setting
Setting Threshold Precision Recall F1 Score

1 0.5 81.06 47.85 60.18
2 0.5 84.22 58.97 69.37
1 0.732 70.38 76.24 73.19
2 0.728 75.75 76.27 76.01

InKB Setting
Setting Threshold Precision Recall F1 Score

1 0.5 84.13 90.48 87.19
2 0.5 87.29 92.11 89.64
1 0.732 89.9 88.53 89.21
2 0.728 90.8 90.68 90.74

Table 4.12: Comparing the two hyperparameter settings on Validation split.

the correct entity was affected by this change. Lastly, as the entity embeddings are
precomputed before inference, this increase does not have any impact on the efficiency.

Apart from number of epochs per round and the maximum tokens for REntity, the
other hyperparameters were not changed. During training, following the formula, NegR
is set to 2 for second, third and fourth rounds. In this setting, the training took around
11, 15, 13.5 and 14 hours for the first, second, third and fourth rounds respectively;
using the NVIDIA Tesla K80 GPU with 12 GB of memory.

Table 4.11 (lower) shows the number of hard negatives for the second configuration
and Table 4.12 shows the results on Validation for both hyperparameter settings. Even
though a score of 0.5 is a natural threshold for NIL mention detection as the problem is
cast as binary classification, a threshold that maximizes the micro averaged accuracy is
selected on the Training split using grid search in the interval [0.5,1] with a step size of
0.001. The thresholds 0.732 and 0.728 are selected for first and second hyperparameter
settings respectively. Table 4.12 compares the results for both the natural and selected
thresholds.

It is possible to see that there are more mentions with no hard negatives in general
for the second set of hyperparameters. Also, all the scores are higher on Validation when
the second hyperparameters are used. That is why, it was decided to use the model that
is trained for 2 epochs per round and that has a maximum REntity of 256.

An interesting observation is, a threshold selection is beneficial for NIL mention
detection, which is shown by the “EE” evaluation setting. This could indicate that the
models do not have a full capability of detecting NIL mentions themselves.

Appendix C.4 presents more results on Training and Dev splits for each round of
training.

41

K Coverage Increase
1 91.68% -
2 95.43% +3.75 %
3 96.21% +0.78 %
4 96.48% +0.27 %
5 96.63% +0.15 %
6 96.86% +0.23 %
7 97.09% +0.23 %
8 97.26% +0.17 %
9 97.39% +0.13 %
10 97.45% +0.06 %
11 97.52% +0.06 %
12 97.66% +0.15 %
13 97.73% +0.06 %
14 97.81% +0.08 %
15 97.83% +0.02 %
16 97.85% +0.02 %
17 97.85% +0.0 %
18 97.87% +0.02 %
19 97.89% +0.02 %
20 97.98% +0.08 %

Table 4.13: Left: Coverage estimation for each rank on Dev split. Top Right: Coverage
plot. Bottom Right: The magnitude of coefficients for LM. Score of CS refers to the
score obtained from BIAD.

Reranker

Before training the rerankers, the number of candidates are selected using Dev based on
the best BIAD. First, top 20 predicted entities are extracted for each non-NIL mention
in the dataset. Then, the coverage of each rank is calculated as the number of mentions
for which the correct entity is extracted within that rank divided by the number of non-
NIL mentions. Table 4.13 shows the coverage of each rank and how much the coverage
increase between ranks. The figure next to the table plots the coverage over ranks. The
red dot indicates the selected K value, K = 12. This value is selected as the coverage
does not increase for more than 0.1% in the following ranks.

For LM, the best hyperparameter configuration is chosen based on micro averaged
accuracy when the NIL mention detection threshold is 0.5. The best feature set included
all features, the L1 penalty ratio is set to 0.5 and the regularization strength is set to
10. Figure in Table 4.13 shows the magnitude of coefficients for LM. A NIL mention
detection threshold is selected on the interval [0.5,1] using grid search with a step size of
0.001 that maximizes the micro averaged accuracy on Training split. The best threshold
remained to be 0.5. It is hypothesized that a lower threshold could perform even better,
but is not tried as a score lower than 0.5 would indicate an entity to be classified as
negative by the classifier.

LM is implemented with Scikit-Learn Python library [66]. The hyperparameters of
GBMF5 can be found in Appendix A.

42

Organization Grant
System Precision Recall F1 Precision Recall F1

Stanford NER 73.7 75.1 74.39 94.11 94.77 94.44

BERTNER 79.18 86.03 82.46 94.71 97.39 96.03

BERTNER
SC 80.28 86.54 83.29 94.9 97.63 96.24

FlairNER 85.83 78.02 81.74 97.56 95.24 96.39

Table 4.14: NER Results on Validation split

Organization Grant
System Precision Recall F1 Precision Recall F1

BERTNER (2 epochs) 78.44 85.8 81.96 94.59 97.43 95.99

BERTNER
SC (2 epochs) 79.54 86.56 82.9 94.73 97.55 96.12

Table 4.15: Comparison of BERTNER and BERTNER
SC with the second-best hyperpa-

rameter setting, i.e. 2 epochs with a learning rate scheduler.

4.2 Results

The results for NER, ED and EL are presented in this section. Different approaches are
compared on the Validation splits, and the best performing approach is compared with
feature-based models of that task on the Test split.

Named Entity Recognition (NER) and Task-Adaptive Pretraining (TAPT)

To compare the developed NER models Stanford NER [25] is used as a feature-based
model. Table 4.14 compares the precision, recall and F1 scores for Organization and
Grant mentions on Validation dataset. It can be seen that all models perform well on
extracting grant mentions, while FlairNER obtains the highest F1 score with a small
difference. In contrast, using neural language models improve the performance on Or-
ganization mentions with a large margin, resulting in a minimum absolute increase of
7.4% in terms of F1.

BERTNER slightly outperforms FlairNER in terms of Organization F1 score by an in-
crease of 0.7%. However, the main difference is the precision and recall values. FlairNER

achieves a precision that is 6.6% higher than that of BERTNER, while BERTNER

achieves a recall that is 8% higher. In funding data extraction, for NER component,
a higher recall is preferred in this study as if a mention is missed completely, there is
nothing that can be done about it.

BERTNER
SC improves upon BERTNER further, showing the importance of domain

adaptation. When trained with the exact same setup, it is possible to see an improve-
ment of 1% in precision and 0.5% in recall. To show that this was not a coincidence,
Table 4.15 shows the performance of BERTNER and BERTNER

SC on the Validation split,
when trained for 2 epochs with a learning rate scheduler. It can be seen that domain
adaptation improves the performance on this hyperparameter setting as well.

At the end, it is decided to use BERTNER
SC as the NER component to extract mentions

of funding bodies, answering the first subquestion. Table 4.16 compares the results of
BERTNER

SC and Stanford NER on the Test split. It is possible to see that the performance
gain persists on the Test split as well. Hence, it is concluded that this work improved
upon Stanford NER model by 2.9% gain in precision, 12.4% gain in recall and 7.6% gain
in F1 score.

43

Organization Grant
System Precision Recall F1 Precision Recall F1

Stanford NER 76.17 72.87 74.48 93.37 93.24 93.31

BERTNER
SC 79.08 85.31 82.08 93.95 96.54 95.23

Table 4.16: NER Results on Test split

Entity Disambiguation (ED)

A feature-based ED model is used for evaluation to compare with the neural approaches.
This model uses BM25 [73] scores for selecting a candidate set and a GBM with 26
features for reranking. The candidate selectors extracts a maximum of 20 entities and
has a coverage of 94%. This model is referred to as GBMF26.

Table 4.17 shows the performance of the ED systems on Validation. BIAD is the
one that is trained with the best hyperparameter setting. The performance of BIAD

with a threshold of 0.728 is reported. For comparison, apart from GBMF26, the per-
formance of a system that is solely based on commonness is reported. For this system,
the commonness values are obtained using the Training split, and the mention is linked
to the entity with which it has the highest commonness value. If a mention did not
appear as a link in the Training split (and hence no commonness value is recorded), it
is linked to NIL. The results show that the feature-based model, GBMF26, outperforms
BIAD significantly. Also, even though it is highly simple, the Commonness baseline has
surprisingly good results. It can be seen that an additional linear reranker (BIAD +
LM) improves the performance of BIAD by 2%, and performs only 0.5% worse than
the feature-based model in terms of micro averaged accuracy. Lastly, a GBM reranker
(BIAD + GBMF5) improves the performance further and outperforms GBMF26. Hence,
it was decided that the best ED model that is developed is GBMF5 that utilizes BIAD

as a candidate selector.
Table 4.18 compares the performance of the best performing model and GBMF26 on

Test split. It can be seen that BIAD + GBMF5 outperforms GBMF26 on this dataset
as well. However, the performance difference is larger in this setting, BIAD + GBMF5

performing 0.4% higher in terms of micro averaged accuracy.
We believe that these results are answering the sub-questions RQ2 and RQ3. For

RQ2, we show that it is possible to represent the domain-specific entities concatenating
their labels and country information. When these representations are passed through
a BERT fine-tuned for the task, and the last hidden state vectors corresponding to the
[CLS] token are obtained as the entity embeddings, it is possible to perform successful
disambiguation. As for RQ3, we show that disambiguation can be performed by using
BIAD as the candidate selector and GBMF5 as the reranker.

Entity Linking (EL)

Table 4.20 shows the end-to-end EL performance of different NER and ED systems
combined. It can be seen that, in all settings, the performance is lower when Stanford
NER is used. It was on shown on Table 4.14 that BERTNER

SC improves upon Stanford
NER by 6.6% ,11.44% and 8.9% in terms of precision, recall and F1 score of Organization
mentions, on Validation split. Table 4.20 shows that the EL performance of ED models
have a similar performance increase in the “Normal” setting when BERTNER

SC is used
instead of feature-based NER.

It can also be seen that the “InKB” performance is significantly higher than the per-
formance on EEs. Hence, it can be hypothesized that improving NIL mention detection
is something that should be worked on. In addition, in the “InKB” setting, the recall

44

Micro Averaged Macro Averaged
System Accuracy Accuracy
BIAD 88.44 90.75
BIAD+LM 90.48 92.22
BIAD+GBMF5 91.15 92.76
GBMF26 91.02 92.84
Commonness 83.8 85.81

EE Setting
System Precision Recall F1 Score
BIAD 75.75 76.27 76.01
BIAD+LM 75.68 80.85 78.18
BIAD+GBMF5 77.44 81.14 79.25
Commonness 53.55 88.2 66.64
GBMF26 79.11 78.67 78.89

InKB Setting
System Precision Recall F1 Score
BIAD 90.8 90.68 90.74
BIAD+LM 93.43 92.26 92.84
BIAD+GBMF5 93.82 92.99 93.4
Commonness 94.22 82.99 88.25
GBMF26 93.2 93.29 93.25

Table 4.17: Performance comparison of different ED models on the Validation split.
Micro averaged results are reported for “InKB” and “EE”.

Micro Averaged Macro Averaged
System Accuracy Accuracy
BIAD+GBMF5 90.66 91.11
GBMF26 90.26 90.84

EE Setting
System Precision Recall F1 Score
BIAD+GBMF5 79.26 85.45 82.24
GBMF26 80.03 81.49 80.75

InKB Setting
System Precision Recall F1 Score
BIAD+GBMF5 93.56 91.86 92.7
GBMF26 92.69 92.3 92.5

Table 4.18: Performance comparison of the best ED model developed and the feature-
based model on Test split. Micro averaged results are reported for “InKB” and “EE”..

45

(“Normal” Setting) Micro Averaged Macro Averaged
NER ED Precision Recall F1 Precision Recall F1
Stanford NER GBMF26 69.83 67.09 68.43 71.62 69.24 69.34
BERTNER

SC BIAD + GBMF5 72.89 78.97 75.81 76.12 78.73 76.59

(“EE” Setting) Micro Averaged Macro Averaged
NER ED Precision Recall F1 Precision Recall F1
Stanford NER GBMF26 45.93 41.02 43.34 71.77 71.07 71.01
BERTNER

SC BIAD + GBMF5 50.71 55.1 52.82 73.85 74.29 73.68

(“InKB” Setting) Micro Averaged Macro Averaged
NER ED Precision Recall F1 Precision Recall F1
Stanford NER GBMF26 83.15 72.26 77.33 78.05 73.69 74.73
BERTNER

SC BIAD + GBMF5 86.62 83.72 85.14 83.07 82.25 81.86

Table 4.19: Comparison of EL performance of the best NER and ED models and the
feature-based models on the Test split.

values are lower than precision, but this does not hold for the “Normal” setting. This
may be caused by the sub-optimal NIL mention detection threshold as well, failing to
generate the link to the correct entity when the assigned score is lower than the linear
threshold.

Table 4.19 shows that the best model pairing improves upon the setting utilizing
only feature-based models largely. The developed approach improves micro averaged
precision, recall and F1 score by 3.1%, 11.9% and 7.4% respectively. These results
answer the main research question, showing that it is possible to perform EL using
neural approaches in funding domain.

46

(“Normal” Setting) Micro Averaged Macro Averaged
NER ED Precision Recall F1 Precision Recall F1
Stanford NER Commonness 63.41 64.96 64.18 72.45 70.14 70.31
Stanford NER GBMF26 67.92 69.57 68.74 76.74 74.28 74.44
Stanford NER BIAD 66.58 68.2 67.38 75.73 73.3 73.46
Stanford NER BIAD + LM 67.72 69.37 68.54 76.63 74.17 74.34
BERTNER

SC Commonness 69.48 75.26 72.25 75.82 78.3 76.38
BERTNER

SC GBMF26 74.19 80.36 77.15 80.17 82.88 80.79
BERTNER

SC BIAD 72.49 78.52 75.38 78.91 81.5 79.5
BERTNER

SC BIAD + LM 73.94 80.09 76.89 79.99 82.64 80.6

(“EE” Setting) Micro Averaged Macro Averaged
NER ED Precision Recall F1 Precision Recall F1
Stanford NER Commonness 38.45 45.82 41.81 57.82 58.88 57.78
Stanford NER GBMF26 51.52 41.54 46 71.29 70.34 70.32
Stanford NER BIAD 50.36 39.47 44.26 70.87 70.19 70.09
Stanford NER BIAD + LM 48.82 41.89 45.09 69.83 69.35 69.15
BERTNER

SC Commonness 45.67 58.5 51.3 62.43 64.48 62.84
BERTNER

SC GBMF26 56.07 53.8 54.91 73.38 73.53 72.97
BERTNER

SC BIAD 56.6 49.78 52.97 74.39 74.26 73.85
BERTNER

SC BIAD + LM 55.22 53.41 54.3 73.48 73.84 73.16

(“InKB” Setting) Micro Averaged Macro Averaged
NER ED Precision Recall F1 Precision Recall F1
Stanford NER Commonness 89.87 68.14 77.51 85.1 72.47 76.41
Stanford NER GBMF26 87.16 74.23 80.17 83.38 77.86 79.3
Stanford NER BIAD 86.36 72.98 79.11 82.5 76.88 78.37
Stanford NER BIAD + LM 87.59 73.94 80.19 83.75 77.56 79.3
BERTNER

SC Commonness 90.62 78.04 83.86 87.69 80.26 82.5
BERTNER

SC GBMF26 89.31 84.77 86.98 86.99 86.06 85.72
BERTNER

SC BIAD 88.24 83.29 85.7 85.52 84.79 84.37
BERTNER

SC BIAD + LM 89.48 84.53 86.93 86.9 85.67 85.51

Table 4.20: EL performance of different NER-ED model pairs on the Validation split.

Efficiency

The runtime of the best developed NER and ED component, BERTNER
SC and BIAD +

GBMF5, is measured on a random sample of 100 sentences from the Dev split. First,
BERTNER

SC is executed on the input to detect the mentions. Then, BIAD is executed on
the detected Organization mentions (306 in total) to retrieve 12 candidates for each. On
these 12 candidates, GBMF5 is ran to select the highest scoring entity, and NIL mention
detection is performed. Table 4.21 shows some statistics of this subsample.

The experiment is repeated 10 times on a laptop that has an Intel Xeon E-2276M
(2.80GHz, 32GB RAM) CPU and an NVIDIA Quadro T1000 GPU with 4GB memory.
The average and standard deviation runtime calculated from this experiment are shown
in Table 4.22. It is possible to see that, BERTNER

SC can process 39 sentences and BIAD

+ GBMF5 can link 33 mentions per second with this hardware. When BIAD is ran
without GBMF5, 35 mentions can be linked per second. Hence, the usage of GBMF5

does not have a large impact on the efficiency.
For comparison, the efficiency results of GBMF26 is also reported on the same setting.

It can be seen that the performance is much lower, and only 3 mentions can be linked

47

per second. This inefficiency is mostly attributed to the calculation of the hand-crafted
features, as the inference time of GBM is quite low.

It should also be noted that the implementations of these models may not be optimal.

Mean Std. Min. Max.
Sentence Length (in characters) 229 126 65 919
Sentence Length (in WordPiece tokens) 63 37 19 257
Number of ORG mentions per sentence 3 2 0 10

Table 4.21: Statistics of the subsample for the runtime experiment.

System With GPU Without GPU
BERTNER

SC 2.55± 0.14 16.61± 1.58
BIAD 8.83± 0.4 22.78± 1.56
BIAD + GBMF5 9.26± 0.47 23.07± 0.78
GBMF26 - 99.2±0.45

Table 4.22: Mean and standard deviation runtime (in seconds) for 100 sentences and
306 ORG mentions, measured with and without GPU.

4.3 Analysis

The results obtained after the experiments give important insights on using the systems
that work well in general domain for funding domain.

Task-Adaptive Pretraining

It is possible to see that the TAPT schema was successful in terms of domain adaptation
for this work. At the end of TAPT, a perplexity of 2.86 is achieved on Dev, which is
lower than that of BERTBASE reported on its held-out set [18]. Also, based on the
perplexity plot on Dev shown in Figure 4.3, we hypothesize that it is possible to see
even further improvement when the training proceeds.

To show the effectiveness of domain adaptation, two sets of BERTNER
SC models were

trained, one with the best and one with the second-best hyperparameter combination
observed on BERTNER. For the best hyperparameter setting, Table 4.14 shows that
BERTNER

SC improves upon BERTNER with respect to all evaluation metrics. The biggest
increase comes from the precision of ORG mentions, with an improvement of 1.1%. Even
though there is normally a tradeoff between precision and recall, it can be seen that the
recall of Organization mentions also increase by 0.5%, showing a nice improvement.
The results with the second-best hyperparameter setting also show improvement when
BERTNER

SC is used. In this setting, the precision of Organization mentions is improved
by 1.1% and the recall by 0.8%, showing a similar trend with the best hyperparameter
setting. Also, we believe that this improvement is not just because of a longer training.
In Appendix C.3, it is shown that no significant performance increase is observed when
BERTNER is trained for more epochs. In the light of these observations, we conclude
that domain adaptation was beneficial for this work.

Lastly, some sentences were randomly sampled from Validation, where BERTNER
SC

performed better than BERTNER and were investigated manually to see whether there
is a trend. In some cases, it was observed that BERTNER

SC was better at determining
mention boundaries when there were adjacent organizations or organizations with a

48

name that is fairly long. However, no error pattern was extracted confidently.

“... Royal Marsden NIHR Biomedical Research Centre for Cancer ...”

BERTNER: “Royal Marsden” and “NIHR Biomedical Research
Centre for Cancer”

“... National Institute of Diabetes and Digestive and Kidney Disease1
Diabetes Research Center (DRC)2 ...”

BERTNER: “National Institute of Diabetes and Digestive and
Kidney Disease Diabetes Research Center”

Figure 4.5: Some instances where BERTNER makes an error while BERTNER
SC does not.

Underlined strings are the gold annotations, and adjacent gold mentions are enumerated.

NER for Extracting Grant and Funder Mentions

For extracting the mentions of funding organizations and their respective grant numbers,
FlairNER, BERTNER and BERTNER

SC are trained and compared. First thing that can be
noticed from Table 4.14 is that the feature-based NER already has a high performance
for Grant mentions. Hence, for those it may be unnecessary to switch from a linear
model to a neural model. However, grant mentions are an important part of funding
information extraction, and it is better to have a single model that can handle both
types of mentions. Also, some performance improvement still takes place. When a
neural model is used, a minimum gain of 1.6% is observed in terms of F1 score for Grant
mentions.

The performance on Grant mentions for BERTNER shows the ability of BERT to
understand patterns even though they are not necessarily included in its WordPiece
vocabulary as a single word or a series of single characters. Grant numbers are usually
combinations of letters, numbers and symbols such as “-”, and hence are separated in
a fine-grained way by the WordPiece tokenizer. Still, BERT is able to infer that other
combinations of letters and numbers are also probably grant mentions, even though that
specific combination was not encountered by the model before.

Another interesting trend that can be seen from Table 4.14 is that while BERTNER

and FlairNER do not have an immense difference in terms of F1 Score for Organization
mentions, BERTNER has a much stronger recall and FlairNER has a much stronger
precision. In this work, recall is favored over precision, as there is no possibility to
recover the undetected mentions in later stages, while it is possible to apply some rule-
based postprocessing to discard highly improbable mentions. That being said, precision
still plays an important role. It could be argued that the incorrect mentions may be
removed when the ED system cannot find a link for them. However, as emerging entities
are highly valued in this work due to the fact that new organizations are formed every
day, the mentions without a link are still displayed and are perhaps even considered as
a candidate entity to be added to the KB. It should also be noted that the training time
for FlairNER was much longer than that of BERTNER

SC and BERTNER, as it needed
more epochs to achieve a comparable performance. The model that performs best in
terms of Organization mention recall and F1 score is BERTNER

SC . Even though it has a
lower precision than FlairNER, it still improves the precision of the baseline model by
6.6%.

The results on Table 4.16 present that the developed neural NER, BERTNER
SC , im-

proves upon the feature-based NER significantly on the Test set as well. In terms of
Organization mentions, gains of 2.9%, 12.4% and 7.6% for precision, recall and F1 score

49

respectively are reported. For Grant mentions, gains of 0.6%, 3.3% and 1.9% for preci-
sion, recall and F1 score are observed. Even though the performance on grant numbers
was very high already, it is very interesting to see that the recall was improved im-
mensely. These results show the success of BERTNER

SC on the task of NER of funding
bodies. On the other hand, the downside of using a neural model is that the inference
time is significantly higher when a GPU is not used, as shown in Table 4.22. However,
on the positive side, even a small GPU having 4GB memory can speedup the execution
massively.

An error analysis is done on a small portion of sentences that contain annota-
tions where BERTNER

SC made a mistake. This analysis gave important insights on the
strengths and weaknesses of the model. Sometimes, mention boundaries may be am-
biguous, and the gold annotations are not necessarily consistent. For some mentions,
the country name in the immediate context is also included in the gold annotation.
And, there is no clear scheme on when it should be included. It seems that this random
behavior is also present in the annotations made by BERTNER

SC . These instances lower
the performance estimates without a solid ground.

“... Ministry of Health and Welfare, Korea ...”

BERTNER
SC : “Ministry of Health and Welfare”

“... Spanish Ministerio de Ciencia y Tecnoloǵıa ...”

BERTNER
SC : “Spanish Ministerio de Ciencia y Tecnoloǵıa”

Figure 4.6: Some instances where the gold annotations are not consistent and BERTNER
SC

makes a mistake.

In addition, foreign text is not always handled properly. Trying a multilingual model
may be a good experiment for the future. Also, it is possible to see that there are still
errors when detecting the mention boundaries for adjacent Organization mentions.

“... Secretaria de Ciencia y Tecnoloǵıa de la Universidad Nacional de
Córdoba ...”
BERTNER

SC : “Secretaria” and “Universidad Nacional de Córdoba”

Figure 4.7: BERTNER
SC makes a mistake on a mention with foreign name.

“... NIHR Imperial Biomedical Research Centre ...”

BERTNER
SC : “NIHR” and “Imperial Biomedical Research Centre”

Figure 4.8: BERTNER
SC makes a mistake on mention boundaries

Currently, BERTNER
SC utilizes only a linear layer for token classification. However,

it is believed that using a CRF layer may reduce the precision errors. Some extracted
mentions were observed to be given an “I” label after an “O” label, which is illegal in
IOB-Tagging scheme. Most of these mentions are words that are commonly found in
funding organization mentions but do not refer to a unique entity by themselves. Some
examples are “Infections”, “Resistance”, “England”, “System”, “Hospital” and “Fund”.
A CRF layer may help setting an “O” label for such mentions.

ED for Funder Organizations

First, BIBL is trained and evaluated. It can be seen from Table 4.9 that the performance
does not improve with the given hard negative training. One of the reasons could be

50

that in-batch random negatives are not be utilized properly. In Figure 4.2, it can be seen
that the entity distribution is highly skewed. This would mean that the same entities
would appear as random negatives frequently for many mentions. In addition, as the
available GPU memory is small, after scaling down the hyperparameters there was only
one hard negative added per mention. This may be too little to utilize hard negatives.
When it was switched from BIBL to BIAD, large performance gains were observed when
hard negatives were included in the training. The only advantage of BIBL over BIAD is
that the former has a much lower training time.

Table 4.17 compares the performance of BIAD with a baseline system that only uses
Commonness and a feature-based model, GBMF26. Surprisingly, the system that is
based solely on commonness performs well. When micro averaged accuracy is checked,
BIAD and GBMF26 improve upon commonness by 4.5% and 7% respectively. Consid-
ering that both BIAD and GBMF26 are highly complex models, it would be expected
to gain more improvement. The reason for this may be that most of the mentions are
actually easy to disambiguate, and that the more ambiguous cases are the minority.
This should come as no surprise when the entity distribution shown in Figure 4.2 is
checked. With a quick math, it can be seen that the accuracy would be around 7% if
all the mentions were assigned the most frequent entity. If NIL mentions were excluded,
this would increase up to 8.8%. It can also be seen that GBMF26 performs around 2.5%
higher than the best BIAD in terms of micro averaged accuracy. A similar performance
difference is observed in other settings as well, suggesting that this system performs
better overall, both NIL mention detection and InKB entity disambiguation.

It is also shown that selecting a threshold for NIL mention detection improves the
performance of BIAD (see Table 4.12). With a threshold of 0.728, the overall micro av-
eraged accuracy increases by 1.5%, and the scores for the “EE” setting improves rapidly,
showing that the new threshold is better at detecting emerging entities. However, the
recall of “InKB” evaluation dropped by 1.4%. This is because with the new threshold,
even if BIAD manages to find the correct entity, the mention will not be linked when
the score is between 0.5 and 0.728. This decrease shows that a linear threshold may
not be the optimal solution, and maybe a classifier or a non-linear threshold may help
increasing the quality of NIL mention detection. Another interesting observation is that
there is a big difference between the performance on Training and Dev datasets, shown
in Appendix C.4. After 4 rounds of training is completed, the micro averaged accuracy
on Training set is around 5.5% higher than that of Dev with both the default and opti-
mized threshold. This difference is around 6.5% when the F1 score of “InKB” evaluation
is checked, and is around 20% for F1 score in “EE” setting. Hence, we believe that nei-
ther the NIL mention detection learned by the model nor by the optimized threshold
generalizes well outside the Training set itself. Improving this could be one of the keys
to improve the performance overall.

The usage of LM improves the performance significantly as shown in Table 4.17,
despite it being a linear model utilizing trivial ED features. Hence, at least for this
problem, it could be that an expensive cross-encoder is not needed. Apart from efficiency,
one advantage of LM over cross-encoder is that it utilizes information that was not used
in the BIAD, such as lexical similarity and dataset statistics. On the other hand, the
cross-encoder utilizes BERT’s capability of determining the strength of the relation
of two sentences, different from both BIAD and LM. It could be the fact that the
information provided by LM is more informative for this task. Lastly, it can be seen
from Table 4.13 that BIAD has a very high coverage on the first rank. Thus, the
improvement that can be obtained from any reranker is limited, and is questionable
whether it is worth to use an expensive model for such improvement.

Another interesting question to answer is what value using LM adds to BIAD. It is
observed that there are 371 instances on Validation split where BIAD ranks the correct

51

entity on top, but does not perform the linking as the score is lower than 0.728. LM
solves 85 of these cases, which amounts to 22.9% of them. On the other hand, for 826
cases, BIAD ranks the correct entity between the second place and the twelfth place.
LM solves 376 of these cases, which amounts to 45.5%. Thus, it can be said that
LM helps with both these cases. When the features of LM are investigated, it can
be seen from the figure in Table 4.13 that both commonness and the score of BIAD

have very high coefficients, followed by the lexical similarity which is has less than half
the magnitude. As LM is linear, this trend can be directly seen when the samples are
manually investigated. The instances for which LM manages to fix the errors are the ones
where BIAD assigns high scores to the correct entities, and possibly a high commonness
value and lexical similarity is also observed. The samples where the score assigned by
BIAD to the correct entity is lower than 0.5, the mistakes are a lot harder to fix and
require very high commonness values. Hence, LM helps for the more obvious errors, and
when the score assigned by BIAD is not too low. Among the 371 and 826 error cases
mentioned, GBMF5 manages to solve 163 and 397 of them respectively, which amounts
to 43.9% and 48%. Hence, it can be seen that most of the improvement over LM comes
from a better NIL mention threshold.

When GBMF5 is used instead of LM, the accuracy is improved by 0.6%. The biggest
improvement came from the “EE” setting where F1 score increased by 1.1%. This shows
that a linear model was not able to fully utilize the features in an effective way and a more
complex model was necessary. An interesting experiment could be to change GBMF5

by a neural network to see if the observed improvement can be sustained.
De Cao et al. [13] report that BLINK almost always makes an accurate prediction

when the mention is matching exactly to the entity name. However, this is not always
the case for BIAD. It is believed that there may be two possible reasons. First is that
the entity representation contains the concatenation of all possible labels, so it could be
the case that the significance of having an exact match with a label is not understood
by the model. However, BLINK’s representation also does not solely consist of the title
of the entity as the description is also used. Hence, if this was the case, we believe that
a similar problem could occur with BLINK as well. Second reason could be that the
boundaries of the mention cannot be separated well from the context due to the fact
that the representation of the separator tokens ([Ms] and [Me]) are not learned well with
the current amount of training instances. Still, no concrete proof is obtained to explain
this trend.

Some samples from Validation were manually investigated such that BIAD + LM
was correct and GBMF26 was wrong, or vice versa, to better understand the strengths
and weaknesses of the developed approach. It was interesting to see that some very easy
cases are missed completely by BIAD + LM, and some hard cases were disambiguated
correctly. Some examples of these instances are shown below. The gold mention is
underlined.

“.... National Institutes of Natural Sciences ...”
Correct Entity’s Labels: “National Institutes of Natural Sciences” a

‘... BBDC ...”
Correct Entity’s Labels: “Banting and Best Diabetes Centre,
University of Toronto”, “BBDC”b

ahttps://www.nins.jp/en/
bhttps://bbdc.org/

Figure 4.9: Easy cases where BIAD and LM failed whereas GBMF26 found the correct
entity

52

https://www.nins.jp/en/
https://bbdc.org/

“... MSMT CR ...”
Correct Entity’s Labels: “Ministerstvo Školstv́ı, Mládeže a
Tělovýchovy”, “MŠMT” a

“... US DOE BES MSE ...” Correct Entity’s Labels: “Divi-
sion of Materials Sciences and Engineering”b

ahttps://www.msmt.cz/
bhttps://www.energy.gov/

Figure 4.10: Hard cases where BIAD and LM found the correct entity whereas GBMF26

failed

Lastly, a similar error analysis is done to compare BIAD + GBMF5 and GBMF26.
First, 10 instances out of 1074 were randomly sampled from Validation where both
models made an error. In 6 of these samples, the errors were due to incorrect labels
in the gold annotation or duplicate entities in the KB. In 3 instances, there was not
enough information to decide whether the gold annotation or the models’ decision was
correct. Only for one instance, the models made an error as they could not assign a
score to the correct entity high enough to link the mention to it. Then, 20 instances out
of 698 were sampled such that GBMF26 was wrong and BIAD + GBMF5 was correct.
Interestingly, some systematic error patterns were observed. For example, if there is a
typo in the name regarding whitespaces, GBMF26 cannot find the correct entity as it is
not included in the candidate set due to BM25 working on word level, such as not being
able to decide “BradleyUniversity” is Bradley University5. Four such instances were
observed out of 20 samples. In 4 instances, the wrong entity was selected as GBMF26

does not use context information. For example, the mention “Ministry of Education”
was linked to the one in South Korea, even though it was clear from the context that
it was the Taiwanese ministry. Also, there were 2 instances where the mention was an
acronym, and GBMF26 chose another organization with the same acronym whereas the
correct one could be found when the context is utilized. However, when 20 instances
out of 676 were sampled where BIAD + GBMF5 was wrong and GBMF26 was correct,
no pattern is observed, and only 5 instances were errors that are not related to NIL
mentions or incorrect annotations. This could be attributed to the neural model not
being as explainable. Both these 20-sample sets contained instances where one model
was better than the other in terms of NIL mention detection. However, no pattern was
observed for this trend either. It could be because none of the models excel at this task.

There were some concerns on whether a neural approach would work in funding
domain with the dataset and KB at hand. Most of the neural approaches either perform
neural ED by using a classifier over the whole entity space [10], or they utilize entity
embeddings [90, 97, 31]. The former was not possible due to the Training split not
covering the whole entity space. For the latter, there are many successful methodologies,
such as TransE or Wikipedia2Vec. However, these are not suitable for this task as most
of the entities in this KB do not exist in general-purpose KBs and there is no informative
graph structure. The biencoder used in the BLINK architecture enabled obtaining entity
embeddings with the information available. Even though the neural ED model did not
outperform the feature-based model, this work showed that it was indeed possible to
adapt entity embeddings and neural approaches for the problem of funding organization
disambiguation. Table 4.18 shows that there is only a slight performance difference
between the feature-based model and the neural model, despite the fact that the former
requires significant effort and domain knowledge for feature generation. We believe that
it is also a success of BLINK’s system that it can perform on par with this model,

5https://www.bradley.edu/

53

https://www.msmt.cz/
https://www.energy.gov/
https://www.bradley.edu/

given the low amount of training data and the fact that a completely different KB is
being used. However, this work also revealed that there are some information that the
biencoder could not capture, such as lexical similarity and dataset statistics that needed
to be incorporated externally by using LM, or even better, GBMF5.

Overall EL Performance

The overall EL performance of different NER and ED models combined are presented in
Table 4.20. These results show the performance of the respective components in terms
of extracting funding organization information.

First thing to note is that, as expected, the performance increases for all cases
when BERTNER

SC is used instead of Stanford NER. As mentioned, in Validation split,
BERTNER

SC improves the recall for 10.9%. It is possible to see a similar recall improve-
ment for all ED systems when BERTNER

SC is used as the NER component. This suggests
that improving BERTNER

SC could possibly push the performance further.
As for precision, the 6.5% improvement gained by BERTNER

SC can be seen in the
“Normal” and “EE” EL evaluation settings. However, in “InKB” setting, the increase
in precision is lower than expected. There may be a few reasons on why this is the
case. The increase in precision could be attributed to less false positive and/or more
true positive mentions extracted by the NER. It is possible that the new true positive
or the removed false positive mentions are referring to emerging entities.

On “Normal” setting, Validation results show only a minor difference of micro aver-
aged F1 score when LM or the feature-based model is used for disambiguation. For the
“InKB” setting, the difference is almost non-existent. The reason for it could be that
the instances where the feature-based model perform better were not extracted correctly
by the NER components, and most of the performance difference comes from the power
of detecting emerging entities.

In all settings, the performance on emerging entities are quite low. Even the best
model combination has a micro averaged F1 score of 52.82 on Test, which is immensely
lower than that of the “InKB” setting, 85.14. This further supports the fact that another
methodology should be used for NIL mention detection.

When Test results on Table 4.19 are checked, it can be seen that the neural approach
improves the setting where feature-based models are used by a great margin on all
evaluation settings, thanks to the success of BERTNER

SC .
Some of the samples where the developed method makes mistakes were investigated

manually. One of the interesting findings was that as BIAD uses context, it sometimes
helps with some errors regarding the mention spans. An example is shown below.

“... South African National Research Foundation ...”
Correct Mention: “South African National Research Foundation”
Extracted Mentions: “South” and “National Research Foundation”
Linked to: First to NIL, second to correct entitya

ahttps://www.nrf.ac.za/

Figure 4.11: BIAD finds correct entity even though mention span is not extracted cor-
rectly.

It is not clear from the gold annotations whether the funding programs should also
be extracted, similar to funding organizations. The KB also contains some entities
for specific funding programs, but there is no distinction made regarding whether an
entity is a funding organization or a funding program. This distinction would be highly
valuable. Many ED research, including DeepType [71], reports that type information is

54

 https://www.nrf.ac.za/

the key to link ambiguous mentions, and also mention type classification is deemed highly
important for NER systems. Also, the trend of annotating some and not annotating
other funding programs deteriorates the quality of the training data as it introduces
systematic errors, confusing the modes. Below, an example of such case is shown.

“... Support Program for the Top Young Talents of Hebei Province
...”
Example Program: “Support Program for the Top Young Talents
of Hebei Province”
=> This program is not annotated as a mention in the training set.

“... Air Force Office of Scientific Research Young Investigator
Program Award ...”
Gold Mention: “Air Force Office of Scientific Research Young
Investigator Program Award”
Extracted Mention: “Air Force Office of Scientific Research”
Linked to: The organization offering the grant programa

ahttps://www.afrl.af.mil/AFOSR/

Figure 4.12: Example of an inconsistent annotation

55

 https://www.afrl.af.mil/AFOSR/

Chapter 5

Conclusion

In this thesis, state-of-the-art neural Named Entity Recognition (NER) and Entity Dis-
ambiguation (ED) approaches are investigated and are adapted to funding domain to
tackle the Entity Linking (EL) problem in funding information extraction. The aim was
to investigate whether these general-purpose neural approaches would be suitable for a
domain-specific application where a knowledge base (KB) other than Wikipedia is used
and labelled data is limited.

For the NER task, the NER architectures proposed by Akbik et al. [2] and Devlin et
al. [18], FlairNER and BERTNER, are trained and compared. Both models performed
extremely well for Grant mentions, and had a similar F1 Score for Organization men-
tions. However, it is noticed that the recall of BERTNER was significantly higher than
that of FlairNER, and FlairNER had a much higher precision. Also, the training for
FlairNER took much longer as it needed a lot more epochs to achieve this performance.
At the end, it is decided to continue with BERTNER instead of FlairNER as recall is
preferred over precision. We believe that this trend may persist on other datasets as
well, and we would suggest using FlairNER for tasks that require high precision, and
BERTNER for the ones requiring high recall.

A new BERT model, BERTSC , is developed by pretraining BERTBASE with sen-
tences where funding information is acknowledged. For this purpose, the Task-Adaptive
Pretraining (TAPT) strategy proposed by Gururangan et al. [34] is followed. Later on,
the effectiveness of domain adaptation is shown on the NER task, where BERTNER

SC

outperformed BERTNER in two different hyperparameter settings. Based on these re-
sults, it is decided to use BERTNER

SC as the neural NER component for this thesis.
BERTNER

SC is then compared with Stanford NER, and large gains of performance is
observed. BERTNER

SC outperformed Stanford NER component by 2.9, 12.4 and 7.6% in
precision, recall and F1 Score for Organization mentions, and 0.6%, 3.3% and 1.9% for
Grant mentions. It is believed that using a complex model such as BERTNER

SC is not
necessary to detect grant mentions, but as they are crucial parts of funding informa-
tion, it is better to have a single model that can extract both types of mentions. In
the beginning of the thesis, there was skepticism towards using BERT-based models for
extracting Grant mentions. BERT makes use of WordPiece embeddings, and hence the
grant numbers which are essentially a combination of letters and digits are broken down
to characters or mostly groups of characters. However, it was observed that BERT is
able to recognize this patterns as Grant mention successfully. BERTNER

SC obtained F1
scores of 82.08 and 95.23 for Organization and Grant mentions respectively on the Test
split.

To tackle ED of funding organization, BLINK’s architecture is selected for experi-
mentation. BLINK offers scalable inference time, zero-shot linking capabilities and a

56

flexible architecture that can be modified easily. Also, the model is shown to be success-
ful in different public benchmark datasets. BLINK uses an entity’s title and description
for representation. As this information is not available in this work, possible names of
the organizations and country of origin are used as representation. Also, the BERT
models of BLINK are replaced with BERTSC due to its success in the NER task. Ini-
tially the candidate selector of BLINK is trained and the hyperparameters are scaled
down to fit the computational power at hand. However, the training was not successful.
Hence, a modified version of BLINK’s candidate selector, BIAD is proposed. BIAD uti-
lizes a binary classification setting, and hence can be trained without the need of large
amounts of memory. Another advantage of BIAD is that it can handle NIL mentions
naturally, which is not included in the research of BLINK.

The performance of BIAD as an ED system is compared with GBMF26. It is observed
that BIAD performed 2.6% lower than GBMF26 in terms of micro averaged accuracy.
An error analysis showed that even though BIAD can handle hard samples, it did not
match the performance of GBMF26 when the samples were very easy, such as the cases
where the mention was matching exactly with the entity’s label. As the inference time
is important for this thesis, instead of the cross-encoder reranker of BLINK, a linear
reranker, LM is implemented. LM is a logistic regression model that works on top
of 12 candidate entities extracted by BIAD, and utilizes classical ED features such as
commonness, lexical similarity and link probability. LM improved the performance of
the developed system as it aided fixing the most obvious errors.

As the error analysis revealed that LM was not capable of fixing some mistakes of
BIAD due to being linear, a nonlinear reranker with the same features, GBMF5 is trained.
This model outperformed both LM and GBMF26 on Validation split for ED. This showed
that a nonlinear model was needed to utilize the additional features properly, and that
the neural model did lack competency when it comes to lexical similarity and statistical
features as the performance increased rapidly when these were incorporated into the
architecture with a reranker. On Test split, BIAD + GBMF5 outperformed GBMF26 by
0.4% in terms of micro averaged accuracy.

Lastly, the EL capabilities of the developed approaches are compared. It was seen
that using BERTNER

SC instead of Stanford NER improved the performance for this task
regardless of the ED model used. The EL system utilizing BERTNER

SC and BIAD +
GBMF5 outperformed the feature-based alternatives, obtaining Precision, Recall and
F1 scores of 72.9, 79.0 and 75.8 respectively.

One interesting observation is that none of the ED models that were experimented
with are able to perform NIL mention detection successfully. It can be seen from ED
evaluation that there is 10.5% and 11.8% difference between the F1 scores of “EE” setting
and “InKB” setting for BIAD + GBMF5 and GBMF26 respectively. This difference
increases to 32.3% and 34% for EL evaluation. This could suggest that both BERTNER

SC

and Stanford NER model also performs worse for emerging entities compared to other
instances.

In conclusion, it can be seen that it is possible to utilize the latest neural approaches
for performing Entity Linking in funding domain. The developed approach that uses
BERTNER

SC for NER, BIAD for candidate selection and GBMF5 for reranking obtained
F1 scores of 75.8, 52.8 and 85.1 in “Normal”, “EE” and “InKB” settings respectively,
outperforming the feature-based EL system by 7.4%, 9.5% and 7.8% in terms of F1
score for the corresponding settings. In terms of Grant mention extraction, BERTNER

SC

outperformed Stanford NER by 1.9% in terms of F1 score.

57

5.1 Future Work

Both the results of evaluation and the last manual investigation done on the predictions
of the developed models revealed important points for improvement. First of all, it was
noticed that detecting emerging entities was the weakness of the models. NIL mention
detection is an important part of EL, and it is especially important for the task at
hand, as they are observed frequently and are later used to enhance the KB. We believe
that a separate system or component to detect NIL mentions would increase the overall
performance.

Another weakness of the approach was observed with the NER component. Some-
times, stop words and other tokens that occur frequently in Organization mentions were
extracted as singleton mentions due to having a high probability for an “I-ORG” tag.
It was also seen that the model could perform poorly when mentions of two different
organizations occur side by side. It is believed that utilizing a CRF layer on BERTNER

SC

could help with these issues tremendously, especially the former. Adding dictionary fea-
tures extracted from the KB could also help with detecting better mention boundaries
as it could push the model to assign higher probability to the patterns observed in KB.
For this purpose, the features defined by Wang et al. [84] could be used. However, it
should be noted that these kind of features could deteriorate the performance of de-
tecting mentions of emerging entities. Performing end-to-end EL could also improve
the performance in terms of mention boundary errors. For this purpose, BIAD could
be extended for mention detection following the ELQ model. However, the efficiency
could decrease as ELQ requires assigning probabilities to each possible mention span.
However, we believe that performing end-to-end EL could increase the performance in
general, as it did for ELQ.

If BIAD is improved in the future, GBMF5 could be removed. To improve BIAD,
an experiment could be to train it with more labeled data. Automatic labeled data
generation techniques for EL could be investigated for this purpose. Trying different
representations for candidate entities could also be a good experiment.

There were also some inconsistencies observed in the dataset used. The performance
can be improved for all models if these inconsistencies are resolved. For example, it
should be decided if the country of an organization should be extracted with the rest
of the mention or not. Or, whether funding programs are going to be extracted or
not. Separating funding programs and organizations in the KB would add value to the
performance and to the dataset at hand.

Lastly, completing the training of BERTSC is also left for future work. We hope
that the version that is trained for longer could improve the performance of the tasks
further, and also could be used for other funding related tasks in the future.

58

Bibliography

[1] Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif Rasul, Stefan Schweter,
and Roland Vollgraf. Flair: An easy-to-use framework for state-of-the-art nlp.
In NAACL 2019, 2019 Annual Conference of the North American Chapter of the
Association for Computational Linguistics (Demonstrations), pages 54-59, 2019.

[2] Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string embeddings
for sequence labeling. In Proceedings of the 27th international conference on com-
putational linguistics, pages 1638-1649, 2018.

[3] Daria Alexander and Arjen P. de Vries. “this research is funded by..”: Named
entity recognition of financial information in research papers. In Proceedings of
the 11th International Workshop on Bibliometric-enhanced Information Retrieval
co-located with 43rd European Conference on Information Retrieval (ECIR 2021),
volume 2847 of CEUR Workshop Proceedings, pages 102 - 110. CEUR-WS.org,
2021.

[4] Krisztian Balog. Entity-oriented search. Springer Nature, 2018.

[5] Christopher M. Bishop. Pattern Recognition and Machine Learning. Information
Science and Statistics. Springer, 2006.

[6] Roi Blanco, Giuseppe Ottaviano, and Edgar Meij. Fast and space-efficient entity
linking for queries. In Proceedings of the Eighth ACM International Conference on
Web Search and Data Mining, WSDM ’15, pages 179-188, New York, NY, USA,
2015. Association for Computing Machinery.

[7] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Ok-
sana Yakhnenko. Translating embeddings for modeling multi-relational data. In
Proceedings of the 26th International Conference on Neural Information Process-
ing Systems - Volume 2, NIPS’13, pages 2787-2795, Red Hook, NY, USA, 2013.
Curran Associates Inc.

[8] Peter Bourgonje, Anna Breit, Maria Khvalchik, Victor Mireles, Julian Moreno-
Schneider, Artem Revenko, and Georg Rehm. Automatic induction of named en-
tity classes from legal text corpora. In International Workshop on Artificial Intelli-
gence for Legal Documents (AI4LEGAL2020), volume 2722, pages 1-11, November
2020.

[9] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Statistics/Probability Series. Wadsworth Publishing Company,
Belmont, California, U.S.A., 1984.

59

[10] Samuel Broscheit. Investigating entity knowledge in BERT with simple neural
end-to-end entity linking. In Proceedings of the 23rd Conference on Computa-
tional Natural Language Learning (CoNLL), pages 677-685, Hong Kong, China,
November 2019. Association for Computational Linguistics.

[11] Razvan Bunescu and Marius Paşca. Using encyclopedic knowledge for named
entity disambiguation. In 11th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, Trento, Italy, April 2006. Association for
Computational Linguistics.

[12] Mikhail Burtsev, Alexander Seliverstov, Rafael Airapetyan, Mikhail Arkhipov,
Dilyara Baymurzina, Nickolay Bushkov, Olga Gureenkova, Taras Khakhulin, Yuri
Kuratov, Denis Kuznetsov, Alexey Litinsky, Varvara Logacheva, Alexey Lymar,
Valentin Malykh, Maxim Petrov, Vadim Polulyakh, Leonid Pugachev, Alexey
Sorokin, Maria Vikhreva, and Marat Zaynutdinov. DeepPavlov: Open-source li-
brary for dialogue systems. In Proceedings of ACL 2018, System Demonstrations,
pages 122-127, Melbourne, Australia, July 2018. Association for Computational
Linguistics.

[13] Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autoregres-
sive entity retrieval. In International Conference on Learning Representations,
2021.

[14] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp
Koehn, and Tony Robinson. One billion word benchmark for measuring progress
in statistical language modeling. arXiv preprint arXiv:1312.3005, 2013.

[15] Marco Cornolti, Paolo Ferragina, Massimiliano Ciaramita, Stefan Rüd, and Hin-
rich Schütze. Smaph: A piggyback approach for entity-linking in web queries.
ACM Trans. Inf. Syst., 37(1), December 2018.

[16] S. Dai, Y. Ding, Z. Zhang, W. Zuo, X. Huang, and S. Zhu. Grantextractor: Ac-
curate grant support information extraction from biomedical fulltext based on
bi-lstm-crf. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, 18(1):205–215, 2021.

[17] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental
gradient method with support for non-strongly convex composite objectives. In
Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 1, NIPS’14, pages 1646-1654, Cambridge, MA, USA, 2014. MIT
Press.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics.

[19] Rezarta Islamaj Doğan, Robert Leaman, and Zhiyong Lu. Ncbi disease corpus:
a resource for disease name recognition and concept normalization. Journal of
biomedical informatics, 47:1-10, 2014.

[20] Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith.
Transition-based dependency parsing with stack long short-term memory. In Pro-
ceedings of the 53rd Annual Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Natural Language Processing

60

(Volume 1: Long Papers), pages 334-343, Beijing, China, July 2015. Association
for Computational Linguistics.

[21] Jacob Eisenstein. Natural Language Processing. GitHub, 2018.

[22] Borja Espejo-Garcia, Francisco J. Lopez-Pellicer, Javier Lacasta, Ramón
Piedrafita Moreno, and F. Javier Zarazaga-Soria. End-to-end sequence labeling
via deep learning for automatic extraction of agricultural regulations. Computers
and Electronics in Agriculture, 162:106–111, 2019.

[23] Paolo Ferragina and Ugo Scaiella. Tagme: On-the-fly annotation of short text
fragments (by wikipedia entities). CIKM ’10, pages 1625-1628, New York, NY,
USA, 2010. Association for Computing Machinery.

[24] Paolo Ferragina and Ugo Scaiella. Fast and accurate annotation of short texts
with wikipedia pages. IEEE Softw., 29(1):70-75, January 2012.

[25] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating
non-local information into information extraction systems by Gibbs sampling. In
Proceedings of the 43rd Annual Meeting of the Association for Computational Lin-
guistics (ACL’05), pages 363-370, Ann Arbor, Michigan, June 2005. Association
for Computational Linguistics.

[26] Kathleen C. Fraser, Isar Nejadgholi, Berry de Bruijn, Muqun Li, Astha LaPlante,
and Khaldoun Zine El Abidine. Extracting UMLS concepts from medical text
using general and domain-specific deep learning models. CoRR, abs/1910.01274,
2019.

[27] Jerome H Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189-1232, 2001.

[28] Keinosuke Fukunaga. Introduction to statistical pattern recognition. Elsevier, 2013.

[29] Pablo Gamallo, Jose Ramom Pichel, and Iñaki Alegria. A perplexity-based method
for similar languages discrimination. In Proceedings of the Fourth Workshop on
NLP for Similar Languages, Varieties and Dialects (VarDial), pages 109-114, Va-
lencia, Spain, April 2017. Association for Computational Linguistics.

[30] Octavian-Eugen Ganea and Thomas Hofmann. Deep joint entity disambiguation
with local neural attention. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 2619-2629, Copenhagen, Denmark,
September 2017. Association for Computational Linguistics.

[31] Daniel Gillick, Sayali Kulkarni, Larry Lansing, Alessandro Presta, Jason
Baldridge, Eugene Ie, and Diego Garcia-Olano. Learning dense representations
for entity retrieval. In Proceedings of the 23rd Conference on Computational Nat-
ural Language Learning (CoNLL), pages 528-537, Hong Kong, China, November
2019. Association for Computational Linguistics.

[32] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. In 2013 IEEE international conference on
acoustics, speech and signal processing, pages 6645-6649. Ieee, 2013.

[33] Nitish Gupta, Sameer Singh, and Dan Roth. Entity linking via joint encoding
of types, descriptions, and context. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pages 2681-2690, Copenhagen,
Denmark, September 2017. Association for Computational Linguistics.

61

[34] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy,
Doug Downey, and Noah A. Smith. Don’t stop pretraining: Adapt language
models to domains and tasks. In Proceedings of ACL, 2020.

[35] Faegheh Hasibi, Krisztian Balog, and Svein Erik Bratsberg. Entity linking in
queries: Tasks and evaluation. In Proceedings of the 2015 International Conference
on The Theory of Information Retrieval, ICTIR ’15, pages 171-180, New York, NY,
USA, 2015. Association for Computing Machinery.

[36] Faegheh Hasibi, Krisztian Balog, and Svein Erik Bratsberg. Entity linking in
queries: Efficiency vs. effectiveness. In Joemon M Jose, Claudia Hauff, Ismail Sen-
gor Altıngovde, Dawei Song, Dyaa Albakour, Stuart Watt, and John Tait, editors,
Advances in Information Retrieval, pages 40-53, Cham, 2017. Springer Interna-
tional Publishing.

[37] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735-1780, November 1997.

[38] Johannes Hoffart, Yasemin Altun, and Gerhard Weikum. Discovering emerging
entities with ambiguous names. In Proceedings of the 23rd International Confer-
ence on World Wide Web, WWW ’14, pages 385-396, New York, NY, USA, 2014.
Association for Computing Machinery.

[39] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Man-
fred Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
Robust disambiguation of named entities in text. In Proceedings of the 2011
Conference on Empirical Methods in Natural Language Processing, pages 782-792,
Edinburgh, Scotland, UK., July 2011. Association for Computational Linguistics.

[40] Elad Hoffer and Nir Ailon. Deep metric learning using triplet network. In Aasa Fer-
agen, Marcello Pelillo, and Marco Loog, editors, Similarity-Based Pattern Recog-
nition, pages 84-92, Cham, 2015. Springer International Publishing.

[41] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence
tagging. arXiv preprint arXiv:1508.01991, 2015.

[42] Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, and Jason Weston. Poly-
encoders: Transformer architectures and pre-training strategies for fast and accu-
rate multi-sentence scoring. arXiv preprint arXiv:1905.01969, 2019.

[43] Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, and Jason Weston. Poly-
encoders: Architectures and pre-training strategies for fast and accurate multi-
sentence scoring. In International Conference on Learning Representations, 2020.

[44] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. Knowledge graph
embedding via dynamic mapping matrix. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
687-696, Beijing, China, July 2015. Association for Computational Linguistics.

[45] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search
with gpus. IEEE Transactions on Big Data, pages 1–1, 2019.

[46] Hideaki Joko, Faegheh Hasibi, Krisztian Balog, and Arjen P. de Vries. Conversa-
tional entity linking: Problem definition and datasets. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval (SIGIR ’21). ACM, July 2021.

62

[47] Subhradeep Kayal, Zubair Afzal, George Tsatsaronis, Marius Doornenbal, Sophia
Katrenko, and Michelle Gregory. A framework to automatically extract funding
information from text. In Giuseppe Nicosia, Panos Pardalos, Giovanni Giuffrida,
Renato Umeton, and Vincenzo Sciacca, editors, Machine Learning, Optimization,
and Data Science, pages 317-328, Cham, 2019. Springer International Publishing.

[48] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision
tree. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, pages 3149-3157, Red Hook, NY, USA, 2017. Curran
Associates Inc.

[49] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
International Conference on Learning Representations, 12 2014.

[50] Nikolaos Kolitsas, Octavian-Eugen Ganea, and Thomas Hofmann. End-to-end
neural entity linking. In Proceedings of the 22nd Conference on Computational
Natural Language Learning, pages 519-529, Brussels, Belgium, October 2018. As-
sociation for Computational Linguistics.

[51] N. Kurz, F. Hamann, and A. Ulges. Neural entity linking on technical service
tickets. In 2020 7th Swiss Conference on Data Science (SDS), pages 35–40, 2020.

[52] Phong Le and Ivan Titov. Improving entity linking by modeling latent relations
between mentions. In Proceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pages 1595-1604,
Melbourne, Australia, July 2018. Association for Computational Linguistics.

[53] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim,
Chan Ho So, and Jaewoo Kang. BioBERT: a pre-trained biomedical language rep-
resentation model for biomedical text mining. Bioinformatics, 36(4):1234–1240,
09 2019.

[54] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denois-
ing sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 7871-7880, Online, July 2020. Association
for Computational Linguistics.

[55] Belinda Z. Li, Sewon Min, Srinivasan Iyer, Yashar Mehdad, and Wen-tau Yih.
Efficient one-pass end-to-end entity linking for questions. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 6433-6441, Online, November 2020. Association for Computational Linguis-
tics.

[56] Jiao Li, Yueping Sun, Robin J Johnson, Daniela Sciaky, Chih-Hsuan Wei, Robert
Leaman, Allan Peter Davis, Carolyn J Mattingly, Thomas C Wiegers, and Zhiy-
ong Lu. Biocreative v cdr task corpus: a resource for chemical disease relation
extraction. Database, 2016, 2016.

[57] Tianyu Liu, Jin-Ge Yao, and Chin-Yew Lin. Towards improving neural named
entity recognition with gazetteers. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages 5301-5307, Florence, Italy,
July 2019. Association for Computational Linguistics.

63

[58] Pedro Henrique Martins, Zita Marinho, and André F. T. Martins. Joint learning
of named entity recognition and entity linking. In Proceedings of the 57th An-
nual Meeting of the Association for Computational Linguistics: Student Research
Workshop, pages 190-196, Florence, Italy, July 2019. Association for Computa-
tional Linguistics.

[59] Pablo N. Mendes, Max Jakob, Andrés Garćıa-Silva, and Christian Bizer. Dbpedia
spotlight: Shedding light on the web of documents. In Proceedings of the 7th
International Conference on Semantic Systems, I-Semantics ’11, pages 1-8, New
York, NY, USA, 2011. Association for Computing Machinery.

[60] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[61] Ishani Mondal, Sukannya Purkayastha, Sudeshna Sarkar, Pawan Goyal, Jitesh Pil-
lai, Amitava Bhattacharyya, and Mahanandeeshwar Gattu. Medical entity link-
ing using triplet network. In Proceedings of the 2nd Clinical Natural Language
Processing Workshop, pages 95-100, Minneapolis, Minnesota, USA, June 2019.
Association for Computational Linguistics.

[62] Isaiah Onando Mulang’, Kuldeep Singh, Chaitali Prabhu, Abhishek Nadgeri, Jo-
hannes Hoffart, and Jens Lehmann. Evaluating the impact of knowledge graph
context on entity disambiguation models. In Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge Management, CIKM ’20, pages
2157-2160, New York, NY, USA, 2020. Association for Computing Machinery.

[63] Keval Nagda, Anirudh Mukherjee, Milind Shah, Pratik Mulchandani, and Lak-
shmi Kurup. Ascent of pre-trained state-of-the-art language models. In Hari
Vasudevan, Antonis Michalas, Narendra Shekokar, and Meera Narvekar, editors,
Advanced Computing Technologies and Applications, pages 269-280, Singapore,
2020. Springer Singapore.

[64] Yasumasa Onoe and Greg Durrett. Fine-grained entity typing for domain inde-
pendent entity linking. In AAAI, 2020.

[65] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024-8035. Curran Associates, Inc., 2019.

[66] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

[67] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global
vectors for word representation. In Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pages 1532-1543, Doha,
Qatar, October 2014. Association for Computational Linguistics.

64

[68] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word represen-
tations. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 2227-2237, New Orleans, Louisiana, June 2018.
Association for Computational Linguistics.

[69] Nina Poerner, Ulli Waltinger, and Hinrich Schütze. Inexpensive domain adaptation
of pretrained language models: Case studies on biomedical NER and covid-19 QA.
In Findings of the Association for Computational Linguistics: EMNLP 2020, pages
1482-1490, Online, November 2020. Association for Computational Linguistics.

[70] Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Manning.
Stanza: A Python natural language processing toolkit for many human languages.
In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, 2020.

[71] Jonathan Raiman and Olivier Raiman. Deeptype: multilingual entity linking by
neural type system evolution. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[72] Petar Ristoski and Heiko Paulheim. Rdf2vec: Rdf graph embeddings for data
mining. In Paul Groth, Elena Simperl, Alasdair Gray, Marta Sabou, Markus
Krötzsch, Freddy Lecue, Fabian Flöck, and Yolanda Gil, editors, The Semantic
Web ISWC 2016, pages 498-514, Cham, 2016. Springer International Publishing.

[73] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu,
Mike Gatford, et al. Okapi at trec-3. Nist Special Publication Sp, 109:109, 1995.

[74] Elliot Schumacher, Andriy Mulyar, and Mark Dredze. Clinical concept linking
with contextualized neural representations. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 8585-8592, On-
line, July 2020. Association for Computational Linguistics.

[75] Jingbo Shang, Liyuan Liu, Xiaotao Gu, Xiang Ren, Teng Ren, and Jiawei Han.
Learning named entity tagger using domain-specific dictionary. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, pages
2054-2064, Brussels, Belgium, October-November 2018. Association for Computa-
tional Linguistics.

[76] Mujeen Sung, Hwisang Jeon, Jinhyuk Lee, and Jaewoo Kang. Biomedical entity
representations with synonym marginalization. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguistics, pages 3641-3650,
Online, July 2020. Association for Computational Linguistics.

[77] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning
with neural networks. In Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2, NIPS’14, pages 3104-3112,
Cambridge, MA, USA, 2014. MIT Press.

[78] Wen Tai, H. T. Kung, Xin Dong, Marcus Comiter, and Chang-Fu Kuo. exBERT:
Extending pre-trained models with domain-specific vocabulary under constrained
training resources. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pages 1433-1439, Online, November 2020. Association for Compu-
tational Linguistics.

65

[79] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-
2003 shared task: Language-independent named entity recognition. In Proceedings
of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003,
pages 142-147, 2003.

[80] Ricardo Usbeck, Michael Röder, Michael Hoffmann, Felix Conrads, Jonathan
Huthmann, Axel-Cyrille Ngonga Ngomo, Christian Demmler, and Christina
Unger. Benchmarking question answering systems. Semantic Web, 10(2):293-304,
2019.

[81] Johannes M. van Hulst, Faegheh Hasibi, Koen Dercksen, Krisztian Balog, and
Arjen P. de Vries. Rel: An entity linker standing on the shoulders of giants. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’20. ACM, 2020.

[82] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017.

[83] Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas, Jiangjiang Yang,
Darrin Eide, Kathryn Funk, Rodney Kinney, Ziyang Liu, William Merrill, et al.
Cord-19: The covid-19 open research dataset. ArXiv, 2020.

[84] Qi Wang, Yangming Zhou, Tong Ruan, Daqi Gao, Yuhang Xia, and Ping He.
Incorporating dictionaries into deep neural networks for the chinese clinical named
entity recognition. Journal of Biomedical Informatics, 92:103133, 2019.

[85] Maciej Wiatrak and Juha Iso-Sipila. Simple hierarchical multi-task neural end-
to-end entity linking for biomedical text. In Proceedings of the 11th International
Workshop on Health Text Mining and Information Analysis, pages 12-17, Online,
November 2020. Association for Computational Linguistics.

[86] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite,
Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations, pages 38-45, Online, October
2020. Association for Computational Linguistics.

[87] Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng Huang. Named entity recogni-
tion with context-aware dictionary knowledge. In Proceedings of the 19th Chinese
National Conference on Computational Linguistics, pages 915-926, Haikou, China,
October 2020. Chinese Information Processing Society of China.

[88] Jian Wu, Pei Wang, Xin Wei, Sarah Rajtmajer, C. Lee Giles, and Christopher
Griffin. Acknowledgement entity recognition in CORD-19 papers. In Proceedings
of the First Workshop on Scholarly Document Processing, pages 10-19, Online,
November 2020. Association for Computational Linguistics.

[89] Junshuang Wu, Richong Zhang, Yongyi Mao, Hongyu Guo, Masoumeh Soflaei,
and Jinpeng Huai. Dynamic graph convolutional networks for entity linking. In
Proceedings of The Web Conference 2020, WWW ’20, pages 1149-1159, New York,
NY, USA, 2020. Association for Computing Machinery.

66

[90] Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettle-
moyer. Scalable zero-shot entity linking with dense entity retrieval. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 6397-6407, Online, November 2020. Association for Computa-
tional Linguistics.

[91] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging the gap between human
and machine translation. arXiv preprint arXiv:1609.08144, 2016.

[92] Vikas Yadav and Steven Bethard. A survey on recent advances in named entity
recognition from deep learning models. In Proceedings of the 27th International
Conference on Computational Linguistics, pages 2145-2158, Santa Fe, New Mex-
ico, USA, August 2018. Association for Computational Linguistics.

[93] Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki Shindo, Hideaki Takeda,
Yoshiyasu Takefuji, and Yuji Matsumoto. Wikipedia2Vec: An efficient toolkit
for learning and visualizing the embeddings of words and entities from Wikipedia.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 23-30, Online, October 2020. Associa-
tion for Computational Linguistics.

[94] Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, and Yuji Mat-
sumoto. LUKE: Deep contextualized entity representations with entity-aware self-
attention. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6442-6454, Online, November 2020. Asso-
ciation for Computational Linguistics.

[95] Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and Yoshiyasu Takefuji. Learn-
ing distributed representations of texts and entities from knowledge base. Trans-
actions of the Association for Computational Linguistics, 5:397-411, 2017.

[96] Mu Yang, Chi-Yen Chen, Yi-Hui Lee, Qian-hui Zeng, Wei-Yun Ma, Chen-Yang
Shih, and Wei-Jhih Chen. Headword-oriented entity linking: A special entity
linking task with dataset and baseline. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 1910-1917, Marseille, France, May 2020.
European Language Resources Association.

[97] Xiyuan Yang, Xiaotao Gu, Sheng Lin, Siliang Tang, Yueting Zhuang, Fei Wu,
Zhigang Chen, Guoping Hu, and Xiang Ren. Learning dynamic context augmen-
tation for global entity linking. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pages 271-281, Hong
Kong, China, November 2019. Association for Computational Linguistics.

[98] Qingkai Zeng, Wenhao Yu, Mengxia Yu, Tianwen Jiang, Tim Weninger, and
Meng Jiang. Tri-train: Automatic pre-fine tuning between pre-training and fine-
tuning for SciNER. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pages 4778-4787, Online, November 2020. Association for Compu-
tational Linguistics.

[99] Hongzhi Zhang, Weili Zhang, Tinglei Huang, Xiao Liang, and Kun Fu. A two-
stage joint model for domain-specific entity detection and linking leveraging an
unlabeled corpus. Information, 8(2), 2017.

67

[100] Sendong Zhao, Ting Liu, Sicheng Zhao, and Fei Wang. A neural multi-task learn-
ing framework to jointly model medical named entity recognition and normaliza-
tion. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 817-824, 2019.

[101] Ming Zhu, Busra Celikkaya, Parminder Bhatia, and Chandan K. Reddy. Latte:
Latent type modeling for biomedical entity linking. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(05):9757–9764, Apr. 2020.

[102] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-
like visual explanations by watching movies and reading books. In 2015 IEEE
International Conference on Computer Vision (ICCV), pages 19–27, 2015.

[103] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic
net. Journal of the royal statistical society: series B (statistical methodology),
67(2):301-320, 2005.

68

Appendix A

Hyperparameters for GBMF5

GBMF5 is trained using the LightGBM [48] Python library. Table A.1 shows the hy-
perparameters for this model.

Maximum Number of Bins 63
Learning Rate 0.1
Minimum Number of Samples per Leaf 100
Bagging Frequency 1
Bagging Fraction 0.9
L1 Regularization Strength 1
L2 Regularization Strength 1
Minimum Gain to Split 0.1
Objective Binary Classification
Metric Binary Cross-Entropy
NIL Detection Threshold 0.042

Table A.1: Hyperparameters for GBMF5

69

Appendix B

NER Data Preprocessing

Below, you may find the steps to assign labels to tokens using the gold annotations in
sequential order.

1. Label tokens of ORG mentions. Sometimes, annotators tend to extract mentions
not as a continuous span, but rather a list of individual words. If there more than
two characters in-between, take the first continuous set of words. The decision of
not taking the mention from the first annotated word until the last is based on
the cases where there are too many characters or grant mentions in-between these
words. It was observed that the first span mostly contained the important words
to be able to identify the organization. Example annotations where underlined
text corresponds to a single mention based on the gold annotation:

(a) National Instituteo f Child Healtha ndH umanD evelopmen t
(b) the Technological Innovation and Demonstration of Social Undertakings
Project fund (HS2014003) of Nantong, Jiangsu, China;

2. Remove duplicate ORG mentions based on their position on text. If there are two
mentions with same text in different parts of the input, both are kept.

3. Remove ORG mentions that are too long. Very rarely, the annotators extracted
too large of a span as a mention, sometimes even the whole article. ORG mentions
longer than 200 characters are discarded.

4. If there are overlapping ORG mentions, keep only the one with the largest span.
Example overlapping gold annotations:

(a) “National grant no. Science NSC Council”
(b) “NSC”

5. Label tokens of GRT mentions. Follow the same rule as the first step for mentions
that are not continuous spans.

6. Remove duplicate GRT mentions similar to the second step.

7. Discard the grant mentions that are longer than 100 characters.

8. Resolve overlapping GRT mentions similar to the fourth step.

9. Resolve overlapping ORG and GRT mentions. Keep the label of the ORG mention,
if there are tokens left on the right-hand-size, label them as GRT.

70

Text: “supported by the European Community, FP6 036097-2”
(a) ORG Mention: “European Community, FP6”
(b) GRT Mention: “FP6 036097-2”
(c) Span that is labelled as ORG: “European Community, FP6”
(d) Span that is labelled as GRT: “036097-2”

As the candidate models for NER were BERT-based [18] and Flair-based [2] models,
the tokenizers these models use were tried for the tokenization of the input text before
assigning the NER labels. After empirical analysis, it was decided the use the tokenizer
of the case-sensitive BERTBASE model [18], as it was splitting the text to smaller pieces,
which was crucial to minimize labelling errors. One drawback of this tokenizer is that it
being a word-piece tokenizer. Hence, it also splits some words into smaller pieces based
on the vocabulary of the model. As a post-processing step, these WordPieces are merged
back together. The choice of using the same tokenizer through all NER models is to
eliminate any effect that can be caused by using different tokenizers during comparison.

71

Appendix C

Training Details

C.1 BERTSC

The table below shows the hyperparameters for Task-Adaptive Pretraining [34].

Number of Epochs: 2
Batch Size: 4
Effective Batch Size: 2048
Maximum Learning Rate: 0.0005
MLM Probability 0.15
Max. Gradient Norm 1
Optimizer Adam [49]
Learning Rate Scheduler Linear
Warmup Steps 0
Weight Decay 0
Adam Epsilon 10−8

Table C.1: Hyperparameters for Task-Adaptive Pretraining

72

C.2 FlairNER

Figure C.1 shows the Training and Dev losses, learning rate and Dev scores over epochs.

Figure C.1: Losses (up-left), learning rate (up-right) and Dev scores (bottom) per epoch

73

C.3 BERTNER

The tables below show the results of the models for each hyperparameter configuration
on Validation dataset. Table C.2 displays the results where the model was trained for
10 epochs and saved at the end of each. The Validation results are obtained on specific
epochs: 2, 3, 4, 6 and 10. 2, 3 and 4 are included as they were among the recommended
hyperparameters. Epoch 6 and 10 are included as the former resulted in the highest
Dev ORG-F1 score while the latter was the last epoch. Table C.3 shows the results on
Validation dataset for the setting where a linear learning rate scheduler is used.

Organization Grant
Epoch Precision Recall F1 Precision Recall F1

2 80.38 84.14 82.22 94.18 96.95 95.55
3 78.76 84.9 81.72 94.51 96.78 95.63
4 79.18 84.18 81.6 94.3 96.89 95.58
6 79.88 84.71 82.23 94.73 96.53 95.62
10 81.04 80.24 80.64 94.62 96.38 95.49

Table C.2: BERTNER results on Validation. Trained for 10 epochs without a scheduler,
the model is saved after every epoch.

Organization Grant
Epoch Precision Recall F1 Precision Recall F1

2 78.44 85.8 81.96 94.59 97.43 95.99
3 79.18 86.03 82.46 94.71 97.39 96.03
4 79.41 85.88 82.52 94.95 97.38 96.15

Table C.3: BERTNER results on Validation. Trained for 2,3 and 4 epochs respectively
with a scheduler, the model is saved after the training is done.

As the scores for Grant mentions are high in each setup, the model is chosen based
on the scores on Organization mentions. Recall is favored over precision and based on
this intuition, the model that is trained for 3 epochs with a learning rate scheduler is
selected. This model has the highest recall for Organization mentions and the second
highest F1 score.

C.4 BIAD

Table C.4 the scores of the models after each round on Training and Dev splits for BIAD

with the second hyperparameter setting, the one where one round corresponds to two
epochs and maximum number of tokens is set to 256 for the candidate representation.

74

Micro Averaged Macro Averaged
Dataset Round Threshold Accuracy Accuracy
Training 1 0.5 62.36 64.44
Training 2 0.5 87.06 88.33
Training 3 0.5 90.3 91.09
Training 4 0.5 94.94 95.61
Training 1 0.972 70.53 71.4
Training 2 0.75 91.66 92.29
Training 3 0.759 93.62 94.12
Training 4 0.728 96.16 96.67

Dev 1 0.5 63.62 70.03
Dev 2 0.5 82.56 87.07
Dev 3 0.5 84.16 88.21
Dev 4 0.5 86.26 89
Dev 1 0.972 70.24 75.05
Dev 2 0.75 86.38 89.45
Dev 3 0.759 86.74 89.94
Dev 4 0.728 87.74 90.14

EE Setting
Dataset Round Threshold Precision Recall F1 Score
Training 1 0.5 100 0.02 0.04
Training 2 0.5 96.68 57.56 72.16
Training 3 0.5 99.13 67.77 80.5
Training 4 0.5 99.16 87.66 93.06
Training 1 0.972 72.15 57.81 64.19
Training 2 0.75 86.11 89.88 87.96
Training 3 0.759 91.59 90.96 91.27
Training 4 0.728 95.85 96.45 96.15

Dev 1 0.5 0 0 0
Dev 2 0.5 83.75 42.69 56.55
Dev 3 0.5 87.22 44.76 59.16
Dev 4 0.5 83.84 60.3 70.15
Dev 1 0.972 66.03 55.7 60.43
Dev 2 0.75 69.64 79.98 74.45
Dev 3 0.759 72.9 73.99 73.44
Dev 4 0.728 74.81 77.91 76.33

InKB Setting
Dataset Round Threshold Precision Recall F1 Score
Training 1 0.5 62.36 76.58 68.74
Training 2 0.5 85.86 93.79 89.65
Training 3 0.5 89.02 95.44 92.12
Training 4 0.5 94.11 96.6 95.34
Training 1 0.972 70.25 73.44 71.81
Training 2 0.75 93 92.07 92.53
Training 3 0.759 94.08 94.23 94.16
Training 4 0.728 96.23 96.09 96.16

Dev 1 0.5 63.62 75.26 68.95
Dev 2 0.5 82.45 89.85 85.99
Dev 3 0.5 83.89 91.37 87.47
Dev 4 0.5 86.56 91.01 88.73
Dev 1 0.972 70.87 72.9 71.87
Dev 2 0.75 90 87.56 88.76
Dev 3 0.759 89.32 89.07 89.2
Dev 4 0.728 90.22 89.53 89.87

Table C.4: Intermediate Results for BIAD

75

	Introduction
	Background and Motivation
	Objective
	Approach and Contributions
	Outline

	Related Work
	Funding Information Extraction
	Named Entity Recognition
	Entity Disambiguation
	Entity Linking
	Domain-Specific Systems
	Entity Representation
	Using Pretrained Language Models in Domain-Specific Applications

	Approach
	Formal Task Definition
	Background
	BERT
	Domain Adaptation of BERT

	Named Entity Recognition
	Entity Disambiguation

	Evaluation
	Experimental Setup
	Data
	Evaluation Metrics
	Training, Hyperparameters and Implementation

	Results
	Analysis

	Conclusion
	Future Work

	Hyperparameters for GBMF5
	NER Data Preprocessing
	Training Details
	BERTSC
	FlairNER
	BERTNER
	BIAD

