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Abstract
In this thesis, I present a domain-specific language for modeling straight-

line assembly code, along with a plugin that extends Why3 with support for
this language. This plugin contains its own VC generator that emits verifica-
tion conditions that generally can be proven in less time and by more provers
compared to what Why3 would generate for equivalent WhyML code. This VC
generator differs among other things, in that, for each sub-goal, it automati-
cally omits premises that do not appear useful. The language has an alternative
to Why3’s ref references, which, unlike those references, supports aliasing and
offsets while not increasing the verification time.

This thesis starts with a short introduction to Why3 and a list of shortcom-
ings of using Why3’s WhyML language for modeling assembly code. I introduce
the Asm3 language and the VC generator of the Asm3 plugin. I demonstrate
how this plugin performs compared to plain Why3, using a short 16×16 multi-
plication AVR assembly routine as an example. Finally, I show what the effects
of the Asm3 plugin’s VC generation optimizations are on the verification times
and the number of goals each prover was able to verify, using a 64×64 Karatsuba
multiplication routine as a benchmark.
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1 Introduction
Software verification is an important process with which we can help make sure that
mission-critical code doesn’t crash or fail and make sure that cryptographical soft-
ware doesn’t leak secrets. Unfortunately, this is often a complex, tedious, and time-
intensive process.

Verifying properties of highly optimized assembly code can be especially tricky
as routines can be hundreds to thousands of instructions long, contain steps that
are interleaved with other steps, and contain tricks that are non-trivial to reason
about. The number of instructions is not only larger than the number of statements
in high–level programming languages, each instruction may have a large number of
effects. For example, an instruction may update a register but also update 5 flags. In
many cases, only a few of these effects are relevant for the result of a piece of code.
For example, the next instruction may already overwrite all status flags set by the
previous instruction, without using any of these flags to generate its output.

Marc Schoolderman and I have previously used the Why3 platform to formally
verify a high-speed implementation of the Curve25519 key agreement scheme for 8-
bit AVR microcontrollers [13]. While modeling the AVR instruction set in Why3’s
WhyML language and translating the assembly code to WhyML using this model was
generally straightforward, we hit several issues.

Among other things, the verification conditions (See page 10) Why3 discharged
contained a lot of hypotheses that weren’t useful for the current proof goal. Another
issue was that due to Why3’s strict aliasing requirements it wasn’t feasible to model
registers with separate variables. This made it more complicated to specify which
registers were modified by a section of code and also negatively impacted the veri-
fication of the generated goals. When comparing these verification conditions with
hand-made verification conditions that did not suffer from these issues, the verifica-
tion times of Why3’s verification conditions generally were higher and fewer provers
were able to verify these verification conditions.

In this thesis, I will present a proof-of-concept plugin that allows for the generation
of verification conditions that are generally both easier to read by users, and easier to
prove for automated theorem provers. This plugin provides a way to automatically
filter out hypotheses that are unlikely to positively contribute to the proof of the
current goal. It also provides a means to model the value stored in objects such as
registers separately while allowing aliasing and working with offsets of these objects.

2 Why3
Why3 [8] is a platform for deductive program verification. This platform features a
language, WhyML, that is suitable for modeling the behavior of most programs while
also allowing the user to formally specify the semantics of the code using annotations.
Why3 automates the process of proving these properties as much as possible. Why3
generates proof obligations for the annotated programs and can encode these problems
into the input of a wide range of automated theorem provers and interactive proof
assistants. In many cases, SMT solvers such as Z3, CVC4, or Alt-Ergo or ATP
systems such as E or Vampire can automatically verify that a property holds, while
proof assistants (Isabelle/HOL, Coq, or PVS) can be used in cases where automated
theorem provers fail.

2.1 WhyML
Why3 provides an ML-like language called WhyML. WhyML can be divided into
a logical specification language part [2] and an ML-like programming language part.
Similarly, the world of Why3 can be divided into a logic and a program part. The logic
part contains mathematical constructs such as predicates, lemmas, and mathematical
functions while the program part contains variables and program functions. The
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function f (x: a) : b = X defines a logic function f of type b taking an argument of
type a. The definition of f is X.

let f (x: a) : b S = X defines a program function f of type b taking an argument
of type a. S is the specification given for f while X is the body of this function.

val f (x: a) : b S axiomatically defines a program function f of type b taking an
argument of type a. Axiomatic here means that no implementation of this f is
given. The specification S is used as an axiom to describe the behavior of f.

m[x] this returns element of the map m stored at key x. [] is the map-get operator.

m[x <- y] this returns a copy of m with the value stored at x replaced with y. [<-] is
the map-set operator.

Table 1: Important WhyML syntax descriptions

programming part of WhyML isn’t constrained to just specifying program functions:
lemmas and mathematical functions can be constructed with it as well, as long as the
code is purely functional1. This can be useful as, for example, this allows defining a
mathematical function and a program function at the same time. Another advantage
is that it is sometimes easy to provide an algorithm to prove a lemma. An example
of some WhyML code is given in listing 1. Table 1 describes the WhyML syntax
essential to understanding the listings contained in this thesis.

Listing 1: Example of some simple definitions in WhyML
module ExampleModule

(* Use module Int from standard library file int *)
use int.Int

use ref.Ref

(* functions can be defined in WhyML’s logic language *)
function xor (x y: bool) : bool = (x \/ y) /\ not (x /\ y)

lemma double_xor_ident: forall x y. xor (xor x y) y = x

(* functions can be logic and program functions *)
(* fib is both a logic and a program function *)
let rec function fib (n: int) : int

requires { n >= 0 }
(* fib terminates because n always decreases

while remaining >= 0 *)
variant { n }

= if n = 0 then 0 else
if n = 1 then 1 else
fib (n-1) + fib (n-2)

(* iterative_fib is just a program function *)
let iterative_fib (n: int) : int

requires { n >= 0 }
ensures { result = fib n }

= if n = 0 then 0 else
let prev = ref 0 in
let current = ref 1 in
for i = 2 to n do

1The code doesn’t modify or depend on any global state.
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invariant { !current = fib (i-1) }
invariant { !prev = fib (i-2) }
let new_prev = !current in
current := !current + !prev;
prev := new_prev

done;
!current

(* Lemmas can be defined using code.
This is equivalent to:

lemma fib_is_pos : forall n:int. n >= 0 -> fib n >= 0
But here we already provide the induction steps. *)

let rec lemma fib_is_pos (n: int)
requires { n >= 0 }
ensures { fib n >= 0 }
variant { n }

= if n > 1 then begin
fib_is_pos (n-2);
fib_is_pos (n-1)

end

end

An example of how working with Why3’s IDE looks like is shown in figures 1 and
2. These figures give a glimpse into the process of writing WhyML code proving
specifications of this code in Why3’s IDE.

2.2 Proving program properties
The formal specification of WhyML programs is provided by specifying preconditions
(for what initial state is the behavior defined) and postconditions (what are the ef-
fects of the program; what does it do). Preconditions are given by requires { · · · }
annotations while postconditions are given by ensures { · · · } annotations. Why3
will create a proof obligation each time a program function with preconditions is
called to check that these preconditions are met. It uses the postconditions of each
called function to encode the resulting state after executing this function. For each
program function, Why3 will generate a single logic formula, a verification condition,
that holds if and only if, given all preconditions are satisfied, the program function
executes correctly and terminates in a state where all postconditions hold.
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Figure 1: Interface of the Why3 IDE: Working with the WhyML code from listing 1
The right pane shows the WhyML code in the IDE’s editing tab, while the left pane shows
the proof goals generated for this code. Currently a sub-goal of the proof goal generated for

iterative_fib is selected. The IDE highlights the source of the sub-goal with yellow,
while sections of code that are used to generate this goal are highlighted with green.

Formulas of which the negation is used are highlighted red.
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Figure 2: Interface of the Why3 IDE: Showing a sub-goal generated from the WhyML
code in listing 1
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2.2.1 Defining bytes in WhyML

To look at how we can prove the specification of a program function we will generate
a verification condition for a simple function operating on bytes. If we want to model
code working with bytes in WhyML, we would first need to model what a byte is.
Listing 2 provides an example of a type byte along with a corresponding definition
of addition. The infix function + (let (+) · · · in listing 2) defines addition in terms
of integer addition (addition in Z). This program function has ensures { byte’int
result = byte’int b1 + byte’int b2 } as postcondition, which states that the integer
projection of the output2 is equal to the sum of the integer projections of its input.
This can only hold if the sum of the inputs would fit in a byte. This requirement is
encoded in the precondition requires { in_bounds (byte’int b1 + byte’int b2) }.

Listing 2: Modeling bytes in Why3’s WhyML language
type byte = < range 0 255 >

(*
Currently very little is defined for type byte.
We just have the projection function byte’int which gives the
projection of a byte in Z (Why3 type int).
We can use this to define operations on bytes.
*)

predicate in_bounds (n: int) = 0 <= n <= 255

(*
byte’int is only a logic function and not a program function,
so we cannot call it from a program function.
We can use it in the specification of a program function,
though.
*)
val to_int (n: byte) : int

ensures { result = byte’int n }

val of_int (n: int) : byte
requires is_in_bounds { in_bounds n }
ensures { byte’int result = n }

(* Defining addition for bytes *)
let (+) (b1 b2: byte) : byte

requires { in_bounds (byte’int b1 + byte’int b2) }
ensures { byte’int result = byte’int b1 + byte’int b2 }

= return of_int (to_int b1 + to_int b2)

We can let Why3 automatically insert byte’int when it encounters a byte where
it expects an int. This can be accomplished by adding the following line below the
definition of byte:

meta coercion function byte’int

As leaving out all applications of byte’int makes the specifications significantly easier
to read we will no longer explicitly use it past this point.

2.2.2 Building a simple verification condition for double

Now we have this basic definition we can write some simple program functions oper-
ating on bytes and verify that their specification holds. Listing 3 contains a program

2The keyword result denotes the output of a program function.
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function double which returns a value that is twice as large as its input.

Listing 3: WhyML program function double
let double (b: byte): byte

requires result_fits { in_bounds (2 * b) }
ensures { result = 2 * b }

= b + b

We will now show how the specification of a program function such as double is
proven in Why3. To verify that the specifications of programs are correct, Why3
generates Verification Conditions (VCs). VCs are logical formulas that are generated
to help prove that the specifications of code are correct. A VC implies that given that
the preconditions of a piece of code hold, the specification of its body is consistent
and after execution the postconditions hold.

Why3 generates VCs using a standard weakest-precondition procedure [8]. The
weakest precondition [6] of a statement S with respect to a formula Q, is a formula
encoding the most general initial state such that, when executing S

• Execution does not go wrong. (i.e. assertions do not fail and the preconditions
of program functions called in S are met.)

• Upon termination Q holds.

This weakest precondition of a statement S with respect to a formula Q is given by
wp(S, Q). For straight-line WhyML code we can approximate the weakest precondi-
tion of a statement with the following two rules:

• wp(S, Q) ≈ preS∧ (postS → Q): the preconditions preS of statement S hold and
the postconditions postS imply that Q holds.

• wp(S1;S2, Q) = wp(S1, wp(S2, Q)) gives the weakest precondition of the se-
quence S1;S2.

These rules only approximate the weakest precondition as they do not state how
program variables are modeled. Section 2.2.3 provides some information on this topic.

We can apply these rules to generate a verification condition for double. For
this program function we need to prove that the postcondition result = 2* b holds
given in_bounds (2* b). We haven’t defined how program variables such as b and
result are used to build the weakest precondition. For now, we will replace these
variables JbK and JresultK which should be interpreted as representing the semantics
of b and result respectively. As the body of double consists of the single statement
b + b we need to generate in_bounds(2 × JbK) → wp(b + b, JresultK = 2 × JbK).
The statement b + b has in_bounds (b + b) as precondition and result = b + b as
postcondition, meaning that we can approximate the weakest precondition of double
with in_bounds(2× JbK)→ in_bounds(JbK + JbK) ∧ (JresultK = JbK + JbK→ JresultK =
2× JbK)

Figure 3 shows the proof obligation Why3 generates for double. Observe that this
closely matches the formula we generated previously. While almost any automatic
theorem prover will be able to verify the goal formula of this VC, often it is necessary
to verify a sub-goal (such as an assertion) individually. After introducing the bound
variables and splitting the formula at the conjunction we are left with the more
readable sub-goals shown in figures 4 and 5.

10



Figure 3: Verification condition containing all proof obligations generated for double.
This image is a crop of a screenshot of the Why3 IDE window.

Figure 4: First sub-goal of the VC of double: the precondition of b + b
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Figure 5: Second sub-goal of the VC of double: the postcondition of double
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2.2.3 Mutable variables

So far, we have only shown code without mutable variables. WhyML is also suitable
for modeling imperative code. We can, for example, easily model mutable variables by
using Why3’s ref references. Why3 includes the writes annotation to specify which
mutable variables will be modified and the reads annotation to specify whether the
values initially stored in mutable variables are used by the code. In Why3 version
1.3, these annotations are often optional: Why3 will derive this information itself.
quadruple_by_ref in listing 4 gives an example of a program function working with
mutable variables. It updates the value where b points to. Here := denotes assignment
and the ! operator returns the value to which a reference points.

While the programming part of Why3 supports mutable variables, the logic part
does not. Why3 solves this issue by modeling mutable variables by creating a new
incarnation of a variable each time a program this variable is updated. For ex-
ample the sequence x := 0; x := 1; x := 2; assert {!x > 1} can be encoded as
∀x1,x2,x3∈Z x1 = 0 ∧ x2 = 1 ∧ x3 = 2 → x3 > 1 where x1 represents the value
stored in x after executing x := 0, x2 represents the value after executing x := 1, and
x3 represents the value after executing x := 2.

Listing 4: WhyML program function that quadruples a value passed by reference
use ref.Ref

let quadruple_by_ref (b: ref byte) : unit
requires result_fits { in_bounds (4 * !b) }
ensures { !b = 4 * old !b }
reads { b }
writes { b }

= b := !b + !b;
b := !b + !b

The user can refer to previous values stored in a mutable variable or field by using
the at and old keywords. The keyword old allows us to refer to the state prior to
execution, while the keyword at can be used to refer to the state at a specific point
during execution. When using at, a label is used to specify the specific state during
execution. This label doesn’t affect the execution of the code, but simply allows us
to assign a name to a specific moment during execution. Listing 5 provides a simple
demonstration of how at can be used to refer to a previous state.

Listing 5: WhyML fragment showing how the keyword at can be used.
· · ·
x := 0;
label L in y = · · ·;
· · ·
x := !x + !y;
assert { !x = !y by ((!x = 0) at L) }
(* This is equivalent to (!x = 0) at L /\ (!x = 0) at L -> !x = !y *)

Using the information from above, we can improve our previous approximation of
the weakest precondition of straight-line WhyML code:

• wp(S, Q) = preS ∧ (∀i0 · · · ∀in
postS → Q′) where i0 through in are new incar-

nations of the program variables v0 through vn modified by S. Q′ is Q with
v0 through vn replaced with these new incarnations, unless this variable ap-
pears under either at or old. For example: wp(Ja:=!a+1K , J!aKub > Jold !aKub)
(where J!aKub is an unbound variable modeling !a): results in ∀anew anew =

13



J!aKub + 1→ anew > Jold !aKub given postS is defined as anew = J!aKub + 1 and
preS is defined as true.

• wp(label L in S, Q) = remove_label(L, wp(S, Q)). Where remove_label re-
moves the given label from its second argument.
If wp(S, Q) = Q′ and remove_label(L, Q′) = Q′′ then Q′′ is Q′ with every
sub-formula “X at L” is replaced with “X” in Q′. Unbound program variables
appearing in X are now available to be replaced by incarnations generated by
subsequent applications of the first rule.

• wp(S1;S2, Q) = wp(S1, wp(S2, Q)), this rule remains unchanged.

We can now apply these rules to generate the weakest precondition for quadruple_by_ref
(here J!bKub is an unbound variable modeling !b):

wp(b:=!b+!b;b:=!b+!b, J!bKub = 4× Jold !bKub) =
wp(b:=!b+!b, wp(b:=!b+!b, J!bKub = 4× Jold !bKub)) =

wp(b:=!b+!b, in_bounds(J!bKub + J!bKub) ∧
(∀b0 b0 = J!bKub + J!bKub → b0 = 4× Jold !bKub)) =

in_bounds(J!bKub + J!bKub) ∧ (∀b1 b1 = J!bKub + J!bKub →
in_bounds(b1 + b1) ∧ (∀b0 b0 = b1 + b1 → b0 = 4× Jold !bKub))

We now need to bind the remaining unbound program variables and add the precon-
dition:

∀b2 in_bounds(4× b2)→ in_bounds(b2 + b2)∧
(∀b1 b1 = b2 + b2 → in_bounds(b1 + b1) ∧ (∀b0 b0 = b1 + b1 → b0 = 4× b2))

When we look at the VC generated by Why3 itself, shown in figure 6, we can see that
this VC is equivalent to the formula we just generated.

Figure 6: The VC generated for quadruple_by_ref by Why3
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3 Modeling assembly code in Why3
This chapter describes some of the factors that make analyzing and verifying assembly
code difficult. Section 3.2 describes techniques that have previously been used to
combat these issues. Section 3.3 describes difficulties that remain even when these
techniques are used.

3.1 What makes verifying assembly code difficult?
Assembly code has some properties that make it more difficult to analyze and verify
than most code written in high level languages. In this thesis I will focus on two
aspects that complicate the verification of assembly code: the prevalent occurence of
aliasing and the length of assembly routines.

3.1.1 Aliasing

One issue when verifying assembly code is that aliasing occurs often. To see why this
would be an issue consider the program function add in listing 6. Why3 requires that
aliasing of mutable arguments must be statically known and will thus not allow rd
and rr to alias. One could annotate add with alias {rd with rr}, but in that case,
rd and rr must alias.

Listing 6: WhyML program function which adds the value stored in two 8 bit registers
and stores the lowest 8 bits of the result in the first register and the carry bit in flag
cf.
type reg = ref byte (* registers *)

val cf: ref bool (* carry flag *)

let add (rd rr: reg) : unit
ensures {

let result = old (!rd + !rr) in
!rd = mod result 256 /\
!cf = not div result 256 = 0

}
writes { rd, cf }

= let result = to_int !rd + to_int !rr in
rd := of_int (mod result 256);
cf := not div result 256 = 0

It is, of course, possible to model functions in which arguments may alias. We
could, for example, model such arguments as indices into a single mutable map3. add
could then be modeled as shown in listing 7.

Aside from solving the aliasing issue this also allows us to work with offsets, which
is desirable when working with registers and essential when modeling main memory.
Otherwise, we would need to pass a reference for every byte that is read from or
written to, which would not only be cumbersome but in many cases impossible4.

Modeling mutable objects such as registers using indices into a single mutable
object has its disadvantages. All aliasing is allowed by default, meaning that the
user must write preconditions to explicitly exclude all undesired aliasing cases. As
long as the indices used are constants, the verification conditions Why3 generates are
generally simple enough that most provers perform well. However, providing indices
as arguments to the program function complicates these verification conditions to such
a degree that provers perform much worse. In practice, this means that it takes more
effort to verify functions that generalize a recurring step in an assembly routine for
which the registers used vary. Another disadvantage is that tracking which values were

3In Why3’s standard library the type map is defined as type map ’a ’b = ’a -> ’b
4Example: a function that copies n bytes of memory, where n is passed as an argument.
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Listing 7: Alternative implementation of add

val regs : ref (map int byte) (* registers *)
val cf: ref bool (* carry flag *)

val reg_set (r : int) (b : byte) : unit
ensures { !regs = !(old regs)[r <- b] }
writes { regs }

let add (rd rr: int) : unit
ensures {

let result = !(old regs)[rd] + !(old regs)[rr] in
(*implicit byte’int*) !regs[rd] = mod result 256 /\
!cf = not div result 256 = 0

}
ensures {

!regs = !(old regs)[rd <- !regs[rd]]
}
writes { regs, cf }

= let result = to_int !regs[rd] + to_int !regs[rr] in
reg_set rd (of_int (mod result 256));
cf := not div result 256 = 0

modified becomes more expensive, both in the time needed to write specifications and
verification times of these specifications. Why3 can automatically track what memory
has been modified and what remained unchanged if simple ref objects are used to
model memory. This is not the case when modeling a memory address space in a
single object. In that case, the user will need to manually specify all writes in the
ensures part of the specification. These postconditions result in extra premises for
any subsequent goals, which has a cost.

3.1.2 Code length

Highly optimized assembly code often consists of a large number of instructions.
Branching is often kept to a minimum as jumping is costly5 and having separate
branches may leak information on the internal state (for example: through difference
in timing or energy usage). The latter issue is of great concern if the code is handling
sensitive data. Steps may also be interleaved to best make use of resources such as
the available registers. For example, in one step some values may be produced which
are needed for a subsequent step. It may be the case that, not enough registers are
available to efficiently complete the current step while keeping these values untouched.
Here, it could be better to execute a part of this next step and write the results to main
memory. If these steps are performed sequentially then these values would have to be
temporarily stored in main memory and retrieved in the subsequent step. Meanwhile,
the results may still need to be stored in main memory. In this case, executing the
steps sequentially would result in an extra store and load instructions having to be
executed.

The minimal amount of branching combined with interleaved steps, and possibly
other optimizations to best utilize the still available resources, can result in large
intricate pieces of code that cannot neatly be divided into separate parts. This division
would enable, or at least simplify, the separate analysis of the steps present in an
assembly routine. It would allow for straightforward proof reuse if a continuous
section of code reoccurs multiple times.

While instructions perform simple operations they can have a large number of
5Jumping itself adds a bit of overhead, but the main issue is that, if the branch predictor doesn’t

predict the right branch, the instruction pipeline has to be flushed.
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effects6, though this is highly dependent on the instruction set architecture (ISA).
Take addition, in a language such as C the statement a = a + b will simply add the
values of a and b together and store the result in a. In AVR assembly, the instruction
ADD R2, R3 not only adds the values stored in registers R2 and R3 together and stores
the result in R2, but it will also update a number of flags. Specifically, it will update

• the carry flag (did the addition cause an overflow?)

• the zero flag (is the new value stored in R2 all zeroes?)

• the negative flag (is the sign bit of R2 now 1?)

• the two’s complement overflow indicator (does the most significant bit of the
result differ from the inputs?)

• the sign flag

• the half carry flag (did the addition of the lowest 4 bits result in a carry?)

While some of these effects may influence the end result of the code it is unlikely that
all of these effects have an impact.

The large number of instructions combined with potentially a large number of
effects per instruction results in a large number of premises in the generated VCs.
This can be an issue as provers tend to perform worse as the number of premises
increases.

3.2 Previous techniques used when verifying assembly code
with Why3

3.2.1 Abstract blocks

One intuitive step to deal with the amount of premises is to break the code up into
smaller chunks. In WhyML it is possible to divide code into abstract blocks. Abstract
blocks hide their contents from any subsequent code. Only the specification given
by the user and the information on what memory is modified are exported. These
abstract blocks allow us to summarize the relevant effects while discarding all irrele-
vant information. If necessary, abstract blocks can be nested. The advantage of using
abstract blocks instead of dividing the code into multiple program functions is that
the information from earlier parts of the code is still available (such as the precondi-
tions at the start of the assembly routine and the effects of previous instructions and
abstract blocks). If code is divided into multiple program functions this information
would likely need to be explicitly restated as preconditions which would result in a
larger number of annotations overall.

3.2.2 Ghost code

While dividing the code into blocks helps it is still desirable to keep these blocks as
large as possible without having to provide additional annotations such as assertions.
Here Why3’s concept of ghost code [7] is quite useful. Ghost code is code for which
Why3 guarantees that it cannot affect the outcome of normal code. This allows us to
insert or extend code without the risk of affecting the behavior modeled by the code.

One of the things that ghost code enables is that we can pass values as ghost
parameters. An example of a case where this is very helpful is in cases where a
consecutive area of main memory is modified. This is often done by storing a pointer
to the start of this area in one or multiple registers (depending on whether the pointer
fits in a single register), followed by repeated writing to the memory the pointer refers

6Here an effect means a modification of the system state. Some examples of effects are: setting
the carry flag, loading a constant into a register or storing the contents of a register in main memory
(RAM memory).
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to and incrementing the pointer. Normally this might result in a list of postconditions
like shown in listing 9.

Listing 8: A sequence of 16 ST Z+, r1 "Store Indirect From Register to Data Space
using Index Z" instructions modeled in WhyML.
label START in
st_inc r30 r1;
label L1 in
st_inc r30 r1;
label L2 in
st_inc r30 r1;
label L3 in
st_inc r30 r1;

. . .
label L15 in
st_inc r30 r1;
label L16

Listing 9: Example of what formulas would result from the code from listing 8. The
at keyword is used here to refer to the state of the main memory and registers at
previous points of execution. Why3 itself will not generate formulas containing the
at keyword. Here it is used to relate the incarnations of mem to the original code.
(* pointer is stored in registers r30 and r31 *)
(* START and L1 through L16 are code labels (positions in the code) *)
mem at L1 = (mem[(reg[r30] + 256 * reg[r31]) <- reg[r1]]) at START
(reg[r30] + 256 * reg[r31]) at L1 = (1 + reg[r30] + 256 * reg[r31]) at START
mem at L2 = (mem[(reg[r30] + 256 * reg[r31]) <- reg[r1]]) at L1
(reg[r30] + 256 * reg[r31]) at L2 = (1 + reg[r30] + 256 * reg[r31]) at L1
mem at L3 = (mem[(reg[r30] + 256 * reg[r31]) <- reg[r1]]) at L2
(reg[r30] + 256 * reg[r31]) at L3 = (1 + reg[r30] + 256 * reg[r31]) at L2

. . .
mem at L16 = (mem[(reg[r30] + 256 * reg[r31]) <- reg[r1]]) at L15
(reg[r30] + 256 * reg[r31]) at L16 = (1 + reg[r30] + 256 * reg[r31]) at L15

If we store the initial pointer value in a ghost variable we can use this variable to
define the postconditions in terms of the initial pointer value. The postconditions
now could look like what is shown in listing 11.

Listing 10: A sequence of 16 ST Z+, r1 instructions modeled in WhyML. Here the
pointer stored in Z (registers r30 and r31 combined) is passed as a ghost argument to
st_inc’.
label START in
let ghost ptr = uint 2 reg r30 in
st_inc’ r30 r1 ptr;
label L1 in
st_inc’ r30 r1 (ptr + 1);
label L2 in
st_inc’ r30 r1 (ptr + 2);
label L3 in
st_inc’ r30 r1 (ptr + 3);

. . .
label L15 in
st_inc’ r30 r1 (ptr + 16);
label L16

Listing 11: Example of what formulas would result from the code from listing 10.
These formulas are easier to work with than the formulas from listing 9 as the pointer
values are expressed directly in terms of the original value. Previously we would need
to work back through all previous versions of reg to see how this value has changed.
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(* The initial pointer value is stored in ghost variable ptr *)
ptr = reg[r30] + 256 * reg[r31] at START
mem at L1 = (mem[ptr <- reg[r1]]) at START
(reg[r30] + 256 * reg[r31]) at L1 = ptr + 1
mem at L2 = (mem[ptr+1 <- reg[r1]]) at L1
(reg[r30] + 256 * reg[r31]) at L2 = ptr + 2
mem at L3 = (mem[ptr+2 <- reg[r1]]) at L2
(reg[r30] + 256 * reg[r31]) at L3 = ptr + 3

. . .
mem at L16 = (mem[ptr+15 <- reg[r1]]) at L15
(reg[r30] + 256 * reg[r31]) at L16 = ptr + 16

Another area where ghost code is quite useful is in using mutable ghost variables
to help express what registers were modified. While we can not directly use separate
variables to model the registers we can still use them to help express what register got
updated in a block of code. By specifying that these ghost variables are synchronized
with the modeled registers both before and after execution of a block of code while
only updating the ghost variables corresponding to registers that were updated in
this block, we can provide the provers with enough information on what registers
have changed. An example of this technique in use can be seen in listing 12. While
this notation isn’t more compact than specifying the same information without ghost
registers (see listing 13) this technique seems to generally scale better.
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Listing 12: Example of specifying register modifications with shadow registers
use avrmodel.Shadow as S

let mul16 (): unit
(* The ghost registers in S.shadow are synchronized with reg.
* The registers are modeled in reg, which is a mutable map
* from integers to bytes. *)
requires { S.synchronized S.shadow reg }

(* uint is a function that returns the value stored in multiple
* consecutive bytes interpreted as an unsigned integer *)
ensures { uint 4 reg 12 = old(uint 2 reg 2 * uint 2 reg 7) }

(* After execution the ghost registers are again synchronized with reg *)
ensures { S.synchronized S.shadow reg }

(* Implicit: writes {reg, S.r0, S.r1, S.r12, etc.} *)
=

clr r23;
mul r3 r8;
movw r14 r0;
mul r2 r7;
movw r12 r0;
mul r2 r8;
add r13 r0;
adc r14 r1;
adc r15 r23;
mul r3 r7;
add r13 r0;
adc r14 r1;
adc r15 r23;

(* Update the shadow registers for which the register in reg was updated *)
S.modify_r0();
S.modify_r1();
S.modify_r12();
S.modify_r13();
S.modify_r14();
S.modify_r15();
S.modify_r23()

Listing 13: An alternative way of specifying which registers where modified in mul16.
ensures {
reg = (old reg)[r0 <- reg[r0]][r1 <- reg[r1]]

[r12 <- reg[r12]][r13 <- reg[r13]][r14 <- reg[r14]][r15 <- reg[r15]]
[r23 <- reg[r23]]

}
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The assembly code modeled in listing 12 can be seen in listing 14. Observe that
the WhyML code looks very much alike.

Listing 14: 16×16 bits multiplication implementation in AVR assembly
mul16: CLR R23

MUL R3, R8
MOVW R14, R0
MUL R2, R7
MOVW R12, R0
MUL R2, R8
ADD R13, R0
ADC R14, R1
ADC R15, R23
MUL R3, R7
ADD R13, R0
ADC R14, R1
ADC R15, R23

3.2.3 Underspecification

Another measure that helps to keep the amount of premises in check is to only model
those parts of the architecture that are relevant for the modeled code. Parts of the
architecture that aren’t relevant for the instructions of the modeled code can be
safely omitted. For example, when working with AVR code without branching it is
safe to omit the zero flag as this part of the state is only used by branch (jump)
instructions. Any effects that describe modifications on the modeled state can also be
safely omitted, as long as the writes specification is complete (for any part X of the
architecture model state it is fine to omit information on how an instruction modifies
X, but not that it modifies X.). This is equivalent to removing premises in a logic
formula: the new formula will only hold if the original formula did.

3.3 Issues with modeling assembly code in Why3
While an implementation of Curve25519 in AVR assembly modeled in WhyML [12, 13]
has previously been verified, some difficulties were noticed during this effort.

3.3.1 Type system issues

One of the most noticeable issues is that we previously weren’t able to port our work
from Why3 0.88 to Why3 1.2 within a reasonable time frame. Why3 1.0 changed how
type invariants (constraints placed on the values instances of a type can take) are
modeled in its SMT output, which had a dramatic effect on the performance of the
provers. Proofs that previously finished within a fraction of a second now no longer
succeeded within a minute or ran out of the set 2GB memory limit. While emulating
the old behavior by manually modeling type invariants using pre- and postconditions
did work, this resulted in at least one additional precondition for each instruction.
This greatly increased clutter and would slow (re-)loading files with hundreds of in-
structions down to such a degree of being unusable. Using range types showed some
promise, but it seemed that we still would not be able to match the performance
of 0.88 in the number of instructions per annotation. Due to time constraints, we
decided to stick with Why3 version 0.88 for [13].

3.3.2 Proof context pollution

The proof context contains all information available to prove the generated proof
obligations. The proof context contains all previously defined lemmas and axioms,
constants and types as well as the current premises. Examples of the (local) proof
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context can be seen in figures 2 through 6: the proof context is the part between
Local Context and Goal. Every annotation or instruction not inside the body of a
previous abstract block adds information to the proof context. While this information
often is essential, we only need information on the current state and how this relates
to the initial state, not all information may be necessary to prove local properties. In
section 3.2 some techniques were described to limit the number of premises present
in the proof context, but these techniques are not always sufficient. Much of the
information is relevant for some of the proof obligations, but not necessarily for the
current goal. The proof context may contain so much noise that provers are no longer
able to verify the current goal. If the proof context cannot be reduced any further
without removing any information necessary to prove later goals it may be useful to
model a block of code in a separate program function.

It may be useful to pass some of the registers used as arguments if a step is repeated
but some of the registers the step operates on differ. Unfortunately, this comes with
disadvantages: where provers generally perform well with registers modeled as static
indices, with known values, into a mutable map, they perform far worse if the value of
the index isn’t known. Additionally, the user needs to manually exclude any register
passed as an argument from aliasing with (nearly) any other register in use by the
code.

Another disadvantage of dividing code into program functions is that code may
be harder to relate to the original assembly code. Why3 doesn’t provide a way to
recursively replace calls to program functions with the contents of these functions until
only calls to the functions modeling instructions are left. This means that checking
that a verified program function indeed models a given assembly routine takes an
increasing amount of effort the more this routine has been divided into program
functions.

3.3.3 Prover dependence

Another issue we hit was that for some goals only a single version of a single prover
would be able to prove this goal. Specifically: CVC4 1.4 was often the only prover able
to verify that blocks of code performed the specified multiplications. Newer versions
of the same prover often wouldn’t be able to prove these same goals or would take
much longer to do so. While I’m not aware of any soundness issues of CVC4 version
1.4, depending on a single outdated version is something that is best to be avoided.

4 Asm3 framework
To combat the issues listed in section 3.3 the Asm3 framework was created. This
framework consists of a plugin for Why3 and it provides a language specializing in
modeling assembly code based on Why3’s WhyML. The language contains a special
feature for modeling statically accessed memory while additionally providing syntax
for working with multi-byte integers. The framework provides its own VC generator
which features heuristics to automatically filter out most premises that are unlikely
to contribute to proving the current proof goal. This filtering step can be configured
or disabled per sub-goal.

4.1 The Asm3 language
The Asm3 language is designed to be an annotated variant of traditional assembly
source code.The language is similar to WhyML but doesn’t have program functions,
instead, it has instructions, macros, and entry points.

Instructions are the most basic programming elements in Asm3 and can be used
to model assembly instructions. Currently, it is only possible to define instructions
axiomatically7 as it currently is the smallest building block available.

7In the future it would be desirable to have the user give a proof of the consistency of the
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Macros can be used to model reusable sequences of instructions. The body of
a macro consists of a sequence of instructions or invocations of other macros. The
arguments for instructions or macro invocations appearing in this body do not have
to be constants, but can also be expressed in terms of the arguments of the macro.
Like WhyML’s program functions macros abstract their implementation details from
their users.

Listing 15: Asm3 macro modeling the assembly code from listing 14
let macro mul16
ensures { $r12...4 = old ($r2...2 * $r7...2) }
reads { r2, r3, r7, r8 } (* Reads specification is optional here *)
writes { r0, r1, r12, r13, r14, r15, r23 }
writes { cf, hf, sf, vf, nf, zf }
=

clr r23;
mul r3 r8;
movw r14 r0;
mul r2 r7;
movw r12 r0;
mul r2 r8;
add r13 r0;
adc r14 r1;
adc r15 r23;
mul r3 r7;
add r13 r0;
adc r14 r1;
adc r15 r23

Entry points are quite similar to macros in that both model the behavior of se-
quences of instructions, but unlike macros, entry points cannot be included in another
entry point or macro. Where macros model reusable sections of code, entry points
are used to model entire assembly programs or routines. Once implemented it would
be possible to extract a sequence of instructions and labels by recursively expanding
any macros appearing in the body of an entry point. As code extraction currently
isn’t implemented using entry points does not provide an advantage over using only
macros.

4.1.1 Index references

Asm3 contains a concept of index references that can be thought of as a hybrid
approach between working with Why3’s ref references and indices into mutable maps.
In Asm3 it is possible to use these index references to model memory such as registers
using (seemingly) separate references while allowing aliasing and working with offsets.
To properly explain what an index reference is and what we can do with it we first
need to introduce the related concepts of index types and indexed objects.

To define an index reference we first need to define an index type. For example,
we can define an index type i-type with

index i-type = create_index i-obj (a, b)

Here index and create_index are keywords, while a and b are types. i-obj is the
name of the memory space indexed by references of index type i-type. We will refer
to these memory spaces indexed by index references as indexed objects.

For simplicity, i-obj can be thought of as a mutable variable of type map a b while
references of index type i-type can be thought of as constants of type a. i-obj never
appears in any code or specifications, but may appear in the VCs generated by the
Asm3 plugin. It is accessed only through references of index type i-type.

specification of an instruction. Users should be able to prove that an implementation of an instruction
could exist.
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Now we have defined an index type we can define an index reference. We can
define such a reference in a similar way to defining a variable, only we don’t specify
a type, but an index type. For example, we can define an index reference x of index
type i-type with x: i-type. When x is used by itself it is coerced to a value of type
a. An index reference is generally only useful when used in combination with the $
operator: the index dereference operator. This operator returns the value stored at
the position of an index reference in its corresponding indexed object. For example,
we can think of $x as returning i-obj[x].

Listing 16 provides an example in which two index types get defined. The index
type reg is used to model 32 8-bit wide registers, while the index type srbit is used
to model 8 bits of the status register SREG. Listing 16 also shows how we can define

Listing 16: A simple example of using index references in the Asm3 language
(* Definition of 32 8 bits registers *)
type reg_index : <range 0 31>
(* Definition of index type reg with its indexed object regs *)
index reg = create_index regs (reg_index, byte)
(* variables (x: reg) implicitly index the indexed object regs *)
(* regs is an internal mutable object containing bytes *)

(* Definition of status register SREG, which contains the status flags *)
type rb_index = <range 0 7> (* SREG is 8 bits wide *)
index srbit = create_index sreg (rb_index, bit)

(* Carry flag *)
let constant cf: srbit = 0 (* cf is the value stored in sreg at position 0 *)

(* This instruction models a simplified version of the AVR ADD instruction *)
(* $ dereferences index references *)
val instr add (rd rr: reg)
ensures Post_rd { $rd = mod (old ($rd + $rr)) 256 }
ensures Post_cf { $cf = div (old ($rd + $rr)) 256 }
reads { rd, rr }
writes { rd, cf }
may_alias { rd with rr }

let macro avr_double (dst: reg)
requires { $dst < 128 }
ensures { $dst = 2 * old $dst }
writes {dst, cf}
=

add dst dst

an index reference. The declaration let constant cf: srbit = 0 defines an index
reference cf. This reference models the value stored at position 0 in SREG.

Index references are fairly similar in use to Why3’s ref references. In both cases
mutable, memory locations can be modeled with separate references, where modifi-
cations are specified in terms of just this reference. (Here memory refers to registers
and RAM or any other form of volatile memory.) This allows for a syntax that is
very close to that of Why3’s ref references: if one were to rewrite WhyML code using
references to Asm3 code the specifications would need very few changes. The writes
and reads annotations remain unchanged while in the pre- and postconditions the !
ref dereference operators need to be replaced with $. Listings 17, 18 show how the
syntax of working with index references compares to working with ref in WhyML8.
Observe that the specifications of simple_add in listings 17 and are nearly identical.

8Do note that, although rd rr : reg appears in listings 17 and 18 the meaning of reg differs.
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Listing 17 Asm3: defining a simple addition instruction using index references
type reg_index = <range 0 31>
index reg = create_index regs (reg_index, byte)

val instr simple_add (rd rr : reg)
ensures Post_rd { $rd = mod (old ($rd + $rr)) 256 }
reads { rd, rr }
writes { rd }

Listing 18 WhyML: defining a simple addition instruction using ref references
type reg = ref byte

val simple_add (rd rr : reg): unit
ensures Post_rd { !rd = mod (old (!rd + !rr)) 256 }
reads { rd, rr }
writes { rd }

Syntax comparison between modeling registers in Asm3 with index
references and modeling registers with ref references in WhyML

Unlike WhyML’s ref references, it is possible to work with offsets. This makes it
possible to define instructions that interact with consecutive sections of memory while
only passing a single element of this memory. An example of this is given in listing
19, which not only operates on registers rd and rr, which are given as arguments,
but also on the registers next to those registers. Listing 19 also demonstrates why it

Listing 19: Axiomatic defintion of the AVR movw instruction in Asm3
val instr movw (rd rr: reg)
writes { rd, rd+1 }
reads { rr, rr+1 }
requires Pre_rd_rr { mod rd 2 = 0 /\ mod rr 2 = 0 }
ensures Post_rd { $rd = old ($rr) }
ensures Post_rdp1 { $(rd+1) = old $(rr+1) }

can be useful to be able to interpret index references as a value, rather than just a
reference. Here a precondition is given to check that rd and rr are even as the movw
instruction in AVR architecture requires its arguments to be aligned to register pairs.

We have previously demonstrated that it is possible to work with offsets and
aliasing in WhyML by modeling memory with a single mutable object. The previous
description of index references and indexed objects may lead one to expect that index
references just introduce a new syntax for working with a mutable map. That is
not the case, however. The Asm3 framework tracks the state of the memory at each
position in the indexed object. As long as Asm3 can determine that the memory
pointed to by an index reference was last modified from this specific index reference
or wasn’t modified at all, Asm3 models this memory separately from the rest of the
memory modeled by the indexed object. For example, for the following abstract block
(abstract blocks are sections of code along with a specification enclosed by the begin
and end keywords):

Listing 20: Abstract block containing two load immidate instructions.
begin ensures { $r0 = 37 /\ $r1 = 0 }

In listing 18 it denotes a type while in 17 it declares reg as a an index into the virtual variable regs.
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ldi r0 37;
ldi r1 0

end

Asm3 will generate a proof formula that looks similar to:

∀r0new, r1new r0new = 37→ r1new = 0→ r0new = 37 ∧ r1new = 0

Observe that the new values of registers r0 and r1 are modeled separately using the
variables r0new and r1new. This is quite different from the proof formula that Why3
would generate if we would model registers with a single mutable map. In that case
we would get a formula that would look similar to:

∀regstemp regstemp = regsold[0← 37] →
∀regsnew regsnew = regstemp[1← 0] →

regsnew[0] = 37 ∧ regsnew[1] = 0

Where regsold models the initial state of the registers.
The syntax for index references generally leads to more succinct specifications

than working with mutable maps. An example of the difference is given in listings 21
and 22. Observe that the postcondition Post_rd in the Asm3 version is much shorter
than the one in the WhyML version.

Listing 21 Asm3: defining a simple addition instruction using index references
type reg_index = <range 0 31>
index reg = create_index regs (reg_index, byte)

val instr simple_add (rd rr : reg)
ensures Post_rd { $rd = mod (old ($rd + $rr)) 256 }
reads { rd, rr }
writes { rd }
may_alias {rd with rr}

Listing 22 WhyML: defining a simple addition instruction using mutable maps
type reg = <range 0 31>
val regs : ref (map reg byte)

val simple_add (rd rr : reg): unit
ensures Post_rd { !regs = old (!regs[rd <- mod (!regs[rd] + !regs[rr]) 256]) }
reads { regs }
writes { regs }

Syntax comparison between modeling registers in Asm3 with index
references and modeling registers in WhyML with indices of an integer

type into a mutable map

One might wonder why indexed objects are assigned names (such as regs and sreg
in listing 16). The user can only interact with these objects through index references,
so why mention these objects at all? The reason is that it isn’t always possible to
model the values index references point to separately. In cases where index references
may be aliased and to one of them an assignment is made these values will be modeled
using a single map. To make it clear where this map originates from, this map will
appear in VCs as a variable with its name based on the name assigned to the indexed
object.
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4.1.2 Multi-byte integers

In assembly code it is often necessary to store values with a higher bit size than can be
stored at a single memory location, for example in AVR architecture a 32 bits number
would need to be stored in 4 separate registers (or other memory locations). In Asm3
it is straightforward to describe values spread over multiple memory locations. It
includes an operator for concatenating sized integers: for example, for sized integer
expressions9 x and y, the expression x::y gives a value of x and y concatenated. This
concatenation is defined as Jx::yK = JxK + radix (x) × JyK, where JeK is the semantic
value of the Asm3 formula e.

Asm3 also contains syntax for describing values stored in consecutive locations in
memory. With the triple dot operator f(x)...y one can specify numbers stored over y
consecutive memory locations. In its current state this is only defined for $ (J$x...yK =
J$x::$(x+1):: · · · ::$(x+y-1K) and for the map get operator [] (Jx[z]...yK =
Jx[z]::x[z+1]:: · · · ::x[z+y-1]K). If modeling a big endian architecture a negative
value for y can be used to reverse the order of the components of the value. Examples:
J$r2...3K = J$r2::$r3::$r4K = J$r2K + 256 × (J$r3K + 256 × J$r4K), J$r4...(-3)K =
J$r4::$r3::$r2K = J$r4K + 256× (J$r3K + 256× J$r2K), where r2, r3 and r4 are three
consecutive registers.

The ensures part of the specification of movw given in listing 19 could alternatively
be given as ensures { $rd...2 = old ($rr...2) }.

4.1.3 Alias annotations

Unlike references in WhyML, whether index references will or will not alias doesn’t
have to be statically defined. The user only has to specify if indices are allowed to
alias. To accomplish this the Asm3 language includes the may_alias annotation. With
this annotation, the user can specify that in invocations of a macro, given pairs of
index object indices may alias. For each invocation of a macro, the framework checks
if any aliasing that would occur is allowed. Take the following example:

Listing 23: Example of an procedure in which some arguments may be aliased.
let macro add_reg_to_word (dst src tmp: reg)
requires { $dst...2 + $src <= 0xFFFF }
ensures { $dst...2 = old ($dst...2 + $src) }
may_alias { src with tmp }
may_alias { dst, dst+1 with src }
writes {dst, dst+1, tmp}
=

add dst src;
clr tmp;
adc (dst+1) tmp

This macro adds src to dst and adds the carry bit to the register that follows dst.
add_reg_to_word r2 r2 r1 would be allowed as while dst src both map to r2 this is
allowed by the specification. add_reg_to_word r2 r2 r2 on the other hand wouldn’t
be allowed as then dst tmp both map to r2 which isn’t allowed according to the
specification (may_alias is reflexive, but not transitive).

4.1.4 Expressive power of index references

Section 4.1.1 states that index refrences can be thought of as a hybrid approach
between WhyML’s references and working with mutable maps, but didn’t go into
detail about what that means.

9x is positive and has a radix. For for binary values the radix is 2b where b is the number of bits
of the integer size. The radix of a byte is 256, so for any byte i the following holds: 0 ≤ i < 256.
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In cases where aliasing cannot occur or cases where no writes occur to indices
that can be aliased (with an index passed as argument or a statically defined in-
dex), index references can be considered to be a less restrictive version of WhyML’s
references. Like with WhyML’s references, in the generated proof obligations the
value stored at the location of each index is modeled with separate variables. Take
add a b (*a := a + b*); assert {$a = 5 /\ $b = 3} where a cannot alias with b, the
following formula would appear in the obligation generated for this code:

anew = aold + bold → anew = 5 ∧ bold = 3

Here aold and bold model the original values of a and b respectively and variable anew
models the new value stored in a.

Once a write occurs to an index that may be aliased with another index the
modeled memory starts to behave much more similarly to a map. If we again look at
add a b; assert {$a = 5 /\ $b = 3}, now with the condition that a and b are allowed
to alias.

anew = aold +bold∧regsnew = regsold[b← bold][a← anew]→ anew = 5∧regsnew[b] = 3

Now maps regsnew and regsold along with locations a and b (for a and b respectively)
appear in the formula to model the new value stored in b. The sub-formula regsnew =
regsold[b← bold][a← anew] constructs a new map to model the new value of b (Here
it is assumed that b is not already modeled with regsold). If a and b are indeed aliases
regsnew[b] will be equal to anew, while it will be bold if these indices do not alias.
While the new value of a is now stored in regsnew we can continue to model a with
the new incarnation anew until we would write to b.

As soon as a write occurs to an index that could be aliased with other indices these
other indices are no longer modeled separately. In these cases Asm3 will construct
maps, write the old value stored at the affected indices to it and include the new value
of the index that was written to.

Using maps directly is much more powerful, however, as index reference appear-
ing in terms must be statically defined with respect to local (arguments passed to the
current macro) or global indices (globally defined indices). This isn’t an issue when
modeling statically addressed memory such as registers10, but this makes index refer-
ences generally unsuitable for modeling main memory. For example, it isn’t suitable
for modeling a loop that doesn’t iterate a predetermined amount of times (the loop
can not be unrolled at compile time) that writes to a new location every iteration.
An example of this is shown in listing 24 (assume that n isn’t a constant).

Listing 24: Example of something (written in C) that cannot be modeled with just
index references
// given arrays x and y, positive integer n
for (int i = 0; i < n; i++) {

x[i] = y[i];
}

The advantages index references have over simple mutable maps in Why3 are that
it is easier to specify which specific parts of memory get modified and that values at
separate indices can often be modeled in a fully separate way. This last difference can
make a large difference in a automatic theorem prover’s ability to verify a property
in a reasonable amount of time.

4.1.5 Weak types

As previously stated in section 3.3.1 Why3 1.0 changed the way type invariants are
modeled in its SMT2 output. This led to an unacceptable loss of prover performance

10Architectures exist in which the register being accessed can be determined at run time. Index
references aren’t a good match for code in which this is prevalent.
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when performing a simple syntactic port of our verification work of a curve25519
implementation written in AVR assembly. To be specific: in Why3 0.88 we would
model the registers and main memory as an instance of type address_space, which
was defined as:

type address_space = { mutable data: map int int }
invariant { forall i. 0 <= self.data[i] < 256 }

In the SMT2 input it generated for SMT solvers instances of this type were modeled
using arrays of integers along with a premise that the invariant held for this instance.
In Why3 1.0 and later address_space would be modeled as some abstract type with
a projection function11 to an array of integers. Here the type invariant is encoded
into the projection function. While this is a perfectly valid way of modeling types
with type invariants, the fact that the values are no longer directly modeled but only
the projection of these values, had a profound negative effect on the performance of
provers used previously.

Asm3 provides an alternative way of modeling types with type invariants. It can
model a limited number of type invariants in a similar way as to how it was modeled
in earlier versions of Why3. Currently, this is limited to modeling range types, maps
containing range types, maps containing maps containing range types, etc.

Asm3 can model the type invariants of these types using only integers and arrays.
For example: in both WhyML and Asm3 one could model bytes with type byte =
<range 0 255>. As previously stated in section 2.2.1 a byte defined this way is not
modeled as an integer, but as some abstract type byte with an projection function
to the integers. In Asm3 bytes can also be defined with weak_type byte = <range
0 255>, in which case bytes will be modeled as integers for which the following
(automatically generated) predicate applies: predicate byte’constraint (b: int) =
(-1) < b < 256. We will refer to types modeled this way as weak types.

To demonstrate how this difference in modeling bytes translates to different ver-
ification conditions it may be useful to have a practical example of the differences.
For example, when modeling bytes using a Why3 range type the following VC would
get generated for the postcondition of avr_double from listing 16:

Listing 25: Proof goal of listing 16 when modeling bytes using Why3s type system
constant dst’0 : byte
constant dst’1 : byte

add_Post_dst: byte’int r5’1 = mod (byte’int dst’0 + byte’int dst’0) 256

goal: byte’int dst’1 = 2 * byte’int dst’0

If we were to model bytes using a weak type the following VC would get generated:

Listing 26: Proof goal of listing 16 when modeling bytes using weak types
constant dst’0 : int
constant dst’1 : int

H1: byte’constraint dst’0
H: byte’constraint dst’1
add_Post_dst: dst’1 = mod (dst’0 + dst’0) 256

goal: dst’1 = 2 * dst’0

Note that the new value dst’1 of register dst is described directly while previously only
information on byte’int dst’1 was provided. For some SMT solvers, notably Z3 this
can make a significant difference in verification time and/or memory usage. It is worth
noting that Why3’s IDE offers an option to hide applications of projection function

11The projection functions generated by Why3 are not always visible to the user. In some cases
the projection function only appears in the input Why3 generates for the provers.
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such as byte’int that Why3 itself inserted. In this case the formula add_Post_dst
as well as the goal formula would look identical.

Outside of the generated VCs, weak types have the advantage that less casting
functions need to be used, which can make specifications a bit cleaner in cases where
Why3 cannot insert the projection function itself.

Weak types come with their own drawbacks: these “types” are not modeled using
Why3’s type system, meaning that they cannot be used in the definitions of normal
types and are not available within logic terms. If bytes are modeled using a weak type,
forall x : byte. f x = y will be rejected by Why3’s type system (it will complain
that it doesn’t know type byte) however forall x : int. byte’constraint i -> f (
x) = y will work fine.

4.2 VC generation in the Asm3 framework
Why3 has support for language plugins. These plugins allow users to prove the spec-
ifications of code written in languages other than WhyML. Normally this is accom-
plished by transforming such code into a WhyML AST representation of the code.
After parsing the process of generating VCs is identical to that of code written in
WhyML. Why3 itself provides plugins to allow working with a small subset of C and
Python.

This method wouldn’t work well with Asm3, as the Asm3 language doesn’t map
well to WhyML andWhy3’s VC generator isn’t suitable for applying the optimizations
that Asm3 can perform on each sub-goal. Because of this the Asm3 plugin features its
own VC generator. A large difference between Why3’s VC generator and Asm3’s VC
generator is that Asm3’s VC generator collects information on which premises and
variables are likely to be useful for each sub-goal. This information can then be used
to generate an optimized VC for each sub-goal. Why3’s VC generator, on the other
hand, does not keep track of this information and generates a single VC containing
the combined proof obligation of all sub-goals.

Unlike Why3, the Asm3 plugin doesn’t construct the weakest precondition to
generate a VC. Instead, it constructs a set of goal triples (P, I, g) where g is a
sub-goal, P is the set of premises encountered until reaching g and I is the set of
index reference incarnations appearing in P and g. This triple is a representation of
a formula proving one of the sub-goals appearing in the weakest precondition. For
example, ({a ∨ b,¬b}, {a, b}, a) would be a representation of the formula ∀a,b (a ∨
b) ∧ ¬b→ a.

To give a more concrete example: In section 2.2.3 we constructed the weakest
precondition for the postcondition of quadruple_by_ref:

∀b2 in_bounds(4× b2)→ in_bounds(b2 + b2)∧
(∀b1 b1 = b2 + b2 → in_bounds(b1 + b1) ∧ (∀b0 b0 = b1 + b1 → b0 = 4× b2))

Instead of generating a single formula equivalent to this weakest precondition the
Asm3 plugin would generate the following set of triples:

(
{in_bounds(4× b2)}, {b2}, in_bounds(b2 + b2)

)
,(

{in_bounds(4× b2), b1 = b2 + b2}, {b1, b2}, in_bounds(b1 + b1)
)
,(

{in_bounds(4× b2), b1 = b2 + b2, b0 = b1 + b1}, {b0, b1, b2}, b0 = 4× b2
)


This set represents the following formulas:

∀b2 in_bounds(4× b2)→ in_bounds(b2 + b2)

∀b1,b2 in_bounds(4× b2) ∧ b1 = b2 + b2 → in_bounds(b1 + b1)

∀b0,b1,b2 in_bounds(4× b2) ∧ b1 = b2 + b2 ∧ b0 = b1 + b1 → b0 = 4× b2

Observe that, if these three formulas hold, the weakest precondition must hold and
vice versa.
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The conjunction of the formulas represented by the sets Asm3’s VC generator
generates is equivalent to the weakest precondition. The advantage that these goal
triples have over the single weakest precondition formula is that it is easier to remove
premises and reduce the number of incarnations of index references that need to be
modeled. To prove that the formula represented by (P, I, g) holds it suffices to prove
that the one for (P ′, I ′, g) holds, where P ′ ⊆ P and I ′ ⊆ I and I ′ is chosen such that
P ′ and g do not contain free variables. This is useful as P ′ and I ′ may be significantly
smaller than P and I, which can lead to a significantly faster verification time.

I contains information on which incarnations of other references an index reference
incarnation may be aliased with. Using a subset I ′ instead of I itself may prevent
the need to model the effects of aliased writes. For example, take the case where a
write occurs to a reference x that may be aliased with a single reference y, but no
incarnations of y after this write occur in either P ′ or g. In this case we do not have
to model these incarnations of y and can treat x the same as a reference without
possible aliases.

4.2.1 Effect selection

The Asm3 framework can automatically discard premises and variables it deems
to be unrelated to the current proof goal. To understand how Asm3 determines which
variables and premises are unlikely to be useful we will first look at a naive approach.

Postconditions are formulas that generally relate the new state of the system to
a prior state. This means that we will want to pick our premises in such a way that
we can see how the relevant parts of the state have evolved from the old to the new
state. We can expect variables appearing in the current proof goal to be relevant and
that for other variables to be relevant it should at least appear in a premise along
with a variable determined to be relevant. We can expect relevant premises to contain
at least one relevant variable. In other words: we can expect useful premises to be
connected to the goal formula via shared variables. For example, if we want to prove
x > 0 given x = 5 and y = −3 the first premise is useful as both formulas share
variable x while the second premise doesn’t provide any information on x.

Lets look at a slightly less trivial example: take the premises for ensures { !a =
15 } in listing 27. These premises are listed in table 2 as formulas h1 through h7.
Figure 7 shows which premises and variables are connected to the goal term. Using
the existence of a path via shared variables as a heuristic yields some success: premise
h1 and variable c0 (which models the initial value stored in c) aren’t connected to the
goal formula and can thus be discarded. But clearly we can do better: h4 and h6 also
aren’t useful in proving a2 = 15. These formulas are connected via b0, however.

Listing 27: A simple WhyML program function used to demonstrate how the Asm3
plugin filters out irrelevant effects.
let silly_program_func (a b c : ref int) : unit

requires { !a = 3 /\ !b = 6 /\ !c = 0 }
ensures { !a = 15 }
ensures { !c = 16 }

=
c := !b - 2;
a := 3 * !a;
c := !c * !c;
a := !a + !b

31



formula name formula variables
h1 c0 = 0 c0
h2 b0 = 6 b0
h3 a0 = 3 a0

h4 c1 = b0 − 2 b0, c1
h5 a1 = 3× a0 a0, a1
h6 c2 = c1 × c1 c1, c2
h7 a2 = a1 + b0 a1, a2, b0

Goal a2 = 15 a2

Table 2: Premises and goal formula for ensures !a = 15 in listing 27

h1 h2h3

a0 b0c0

a1

h5

a2

h7

c1

h4

c2

h6

Goal

Figure 7: Graph showing which formulas and variables from table 2 are connected
to the goal formula. Rectangular nodes represent premises, elliptical nodes represent
variables.

We can improve on this naive heuristic by taking into account that not every
variable appearing in a formula is alike. Code updates memory so formulas describing
the effects of this code likely describe the new values of this updated memory rather
than the memory prior to being updated or memory that remained unchanged. Take
for example h7 (a2 = a1 +b0) which resulted from a := !a + !b. We know that of the
variables appearing in this statement only a is updated, so it is reasonable to assume
that this formula provides information on the new value stored in a: a2. The formula
is unlikely to provide useful information on the old values stored in a and b, modeled
by a1 and b0, as these values were only used and not produced by the statement h7
resulted from.

We should still use the fact that a1 and b0 appear in this term, however, as we
generally need to use the information from more than a single statement back. We
will look at which formulas provide information on these variables and recursively
look for formulas providing information on variables appearing in these terms. Using
this method we can construct table 3 and its corresponding directed graph in figure
8. Observe that premises h4 and h6 cannot be reached from the goal and should be
discarded according to this method.
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formula name formula Include information on Provides information on
h1 c0 = 0 c0
h2 b0 = 6 b0
h3 a0 = 3 a0

h4 c1 = b0 − 2 b0 c1
h5 a1 = 3× a0 a0 a1
h6 c2 = c1 × c1 c1 c2
h7 a2 = a1 + b0 a1, b0 a2

Goal a2 = 15 a2

Table 3: Table 7 extended with information on direction of information.

h1 h2h3

a0 b0c0

a1

h5

a2

h7

c1

h4

c2

h6

Goal

Figure 8: Graph showing which formulas and variables from table 3 can be reached
from the goal term

While this heuristic can be a bit overaggressive with removing premises12, it gener-
ally performs very well on filtering out irrelevant effects of code. The Asm3 framework
uses this heuristic to filter premises for each proof goal. For each statement or block
of code, it combines the writes specification of this code with the variables appearing
in the postcondition formulas to determine on which variables these formulas provide
information. Asm3 then constructs a dependency graph using this information and
uses this graph to determine which premises and variables are relevant. Premises
can also be explicitly included by annotating the assertion or postcondition with
using premise-name.

The user can disable Asm3’s automatic premise selection for specific goals by
annotating these assertions with the attribute asm3vc:filter_premises:off.

4.2.2 Predictable premise names

To improve readability as well and make it easier for users to manually include or
remove premises the Asm3 plugin assigns names to premises resulting from postcon-

12It assumes that postconditions do not provide useful information on the old state of the system
and will fail to include formulas containing only variables bound by quantifiers.
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ditions. These names are prefixed with the name of the instruction used or macro
invoked, followed by the name of the postcondition and the position of this invocation
within the macro or entry point. For example, if a macro contains four instruction/-
macro invocations and the second invocation is a invocation of add this will result in
a premise named add_Post_rd_at_2, if add has a postcondition named Post_rd.

As long as the macro contains the same invocations in the same order, the premises
generated by these calls will always have the same name. This means that the user can
add assertions or divide the code with abstract blocks without fear of proofs breaking
because the Why3’s remove transformation suddenly removed the wrong premise.

5 Comparison with WhyML: 16×16 multiplication
We will take a look at how modeling assembly code in the Asm3 language compares
to modeling assembly code in WhyML. Here we will take a look at the difference
between the Asm3 code and the WhyML code as well as the difference in the VCs
generated for this code. We will use the the 16×16 bits multiplication example code
from listing 14 as an example to illustrate this difference.

In listing 28 the 16×16 bits multiplication routine is modeled in the Asm3 lan-
guage. The code is broken up into two macros: the macro mul16 models the entire
multiplication routine while mul_add_to_3_regs models a step that is performed twice
in this routine. mul16 also contains an abstract block (the code enclosed by the begin
and end keywords) to abstract away from the implementation details of a section of
the code. While it isn’t necessary to break this code up into small sections in order
to prove the specification of this code, it helps to illustrate that Asm3 specifications
are generally less verbose and results in small VCs.

Listing 28: 16×16 multiplication modeled using two macros
let macro mul_add_to_3_regs (dst a b zr: reg)

requires zr_is_0 { $zr = 0 }
(* Only define for cases where an overflow can’t occur *)
requires result_fits { $dst...3 + $a * $b <= 0xffffff }
ensures { $dst...3 = old (($dst...3) + $a * $b) }
writes { r0, r1, dst, dst+1, dst+2 }
writes { cf, hf, sf, vf, nf, zf }
reads { a, b, zr, dst, dst+1, dst+2 }
may_alias { a, b with b, dst, dst+1, dst+2 }

=
mul a b;
add dst r0;
adc (dst+1) r1;
adc (dst+2) zr

let macro mul16
ensures { $r12...4 = old ($r2...2 * $r7...2) }
writes { r0, r1, r12, r13, r14, r15, r23 }
writes { cf, hf, sf, vf, nf, zf }
reads { r2, r3, r7, r8 }
=

clr r23;
begin ensures { $r12...4 = $r2 * $r7 + 0x010000 * ($r3 * $r8) }

mul r3 r8;
movw r14 r0;
mul r2 r7;
movw r12 r0;

end;
mul_add_to_3_regs r13 r2 r8 r23;
mul_add_to_3_regs r13 r3 r7 r23
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5.1 Comparing specification annotations
Listing 29 shows a WhyML definition equivalent to the formalization of the 16×16
multiplication given in listing 28. Observe that the WhyML version requires an addi-
tional ensures annotation in the abstract block. The ensures annotations specifying
the writes in the WhyML version are also harder to read than the writes annotations
in the Asm3 version. The ensures annotations limiting aliasing are harder to get right
than the may_alias annotations in WhyML. If the user forgets13 that some arguments
might alias the Asm3 specification is still correct (albeit a bit weaker). While if the
user forgets to specify that arguments are not allowed to alias in the WhyML ver-
sion, the specification is incorrect. For example, if the user forgets to specify that
dst must not alias with r0 or r1 in mul_add_to_3_regs (WhyML), then the current
postcondition cannot be proven.

Listing 29: WhyML version of the code from listing 28
let mul_add_to_3_regs (dst a b zr: reg): unit

requires zr_is_0 { !regs[zr] = 0 }
(* Only define for cases where an overflow can’t occur *)
requires result_fits { uint3b !regs dst + !regs[a] * !regs[b] <= 0xffffff }
requires { 30 > dst > 1 }
requires { dst <> zr /\ dst+1 <> zr /\ zr > 1 }
ensures { uint3b !regs dst = old (uint3b !regs dst + !regs[a] * !regs[b]) }

}
ensures {

let nregs = !regs in
let oregs = !(old regs) in
let dst_p1 = reg_add_int dst 1 in
let dst_p2 = reg_add_int dst 2 in
nregs = oregs[r0 <- nregs[r0]]

[r1 <- nregs[r1]]
[dst <- nregs[dst]]
[dst_p1 <- nregs[dst_p1]]
[dst_p2 <- nregs[dst_p2]]

}
writes { regs }
writes { cf, hf, sf, vf, nf, zf }
reads { regs }

=
mul a b;
add dst r0;
adc (dst+(1:reg)) r1;
adc (dst+(2:reg)) zr

let mul16 (): unit
ensures {

uint4b !regs r12 =
old ((!regs[r2] + 256 * !regs[r3]) * (!regs[r7] + 256 * !regs[r8]))

}
ensures Reg_writes {

let nregs = !regs in
let oregs = !(old regs) in
nregs = oregs

[r0 <- nregs[r0]]
[r1 <- nregs[r1]]
[r12 <- nregs[r12]]
[r13 <- nregs[r13]]
[r14 <- nregs[r14]]
[r15 <- nregs[r15]]

13In fact, the specification given in 28 is weaker than it could have been as a or b aliasing with r0
or r1 would still be safe, but isn’t included in the specification.
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[r23 <- nregs[r23]]
}
writes { regs }
writes { cf, hf, sf, vf, nf, zf }
reads { regs }
=

clr r23;
begin ensures {

uint4b !regs r12 =
old (!regs[r2] * !regs[r7] + 0x010000 * (!regs[r3] * !regs[r8]))

}
ensures {

let nregs = !regs in
let oregs = !(old regs) in
nregs = oregs

[r0 <- nregs[r0]]
[r1 <- nregs[r1]]
[r12 <- nregs[r12]]
[r13 <- nregs[r13]]
[r14 <- nregs[r14]]
[r15 <- nregs[r15]]

}
mul r3 r8;
movw r14 r0;
mul r2 r7;
movw r12 r0;

end;
mul_add_to_3_regs r13 r2 r8 r23;
mul_add_to_3_regs r13 r3 r7 r23

Listing 30: Definitions for type reg and several functions used in listing 29
type reg = uint5 (* where uint5 is defined as a 5 bit unsigned integer *)

(* Addition is only defined for int *)
val function reg_add_int (x : reg) (y : int): reg
requires { -1 < uint5’int x + y < 256 }
ensures { uint5’int result = uint5’int x + y }

function uint3b (regs: map reg byte) (start : reg): int =
regs[start] + 256 *

(regs[reg_add_int start 1] + 256 * regs[reg_add_int start 2])
function uint4b (regs: map reg byte) (start : reg): int =

regs[start] + 256 *
(regs[reg_add_int start 1] + 256 * (

regs[reg_add_int start 2] + 256 * regs[reg_add_int start 3]
))

5.2 Comparing VCs
To illustrate the difference in size between the VCs generated for the Asm3 code and
the WhyML code we will look at the VCs generated for mul_add_to_3_regs. The
behavior of the instructions used in the multiplication routine have been fully mod-
eled14. While it isn’t necessary to model the full behavior of these instructions in this
case, it should provide a good approximation of real-world usage of using WhyML or
Asm3 to prove the specification of existing assembly code. It allows for an automatic
translation of straight-line assembly code to Asm3 or WhyML and doesn’t require the

14With the exception of the effects on the the program counter.
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user to know up front what behavior is relevant of the modeled code. The axiomatic
definitions of the instructions used by the Asm3 code are listed in appendix 5.

During the generation of the VC for the postcondition ensures { $dst...3 =
old (($dst...3) + $a * $b) } of mul_add_to_3_regs the Asm3 plugin can discard a
number of effects and variable incarnations. Figure 9 shows how the effects and vari-
able incarnations are connected in the dependency graph the Asm3 plugin generates
for this VC. The effects and variable incarnations that aren’t considered to be useful
by Asm3’s effect selection heuristic are marked red. Observe that the majority of the
effects is not considered to be useful.

Figure 10 shows the VCs (after introducing the premises and variables) generated
for both the WhyML and Asm3 version side by side. Here we can see that the VC
generated for the WhyML version we can see that the Asm3 version has a significantly
smaller proof context as a result of the effect selection optimization.
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Figure 9: Dependency graph generated by Asm3 for the postcondition of
mul_add_to_3_regs (node labels shortened for readability). This graph has been gen-
erated by the Asm3 plugin.
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constant regs4 : uint5 -> uint8
 
constant dst : uint5
 
constant a : uint5
 
constant b : uint5
 
constant zr : uint5
 
zr_is_0 : regs4[zr] = 0
 
H4 : 30 > dst
 
H3 : dst > 2
 
H2 : not dst = zr
 
H1 : not (dst + 1) = zr
 
H : zr > 1
 
result_fits : (uint3b regs4 dst + (regs4[a] * regs4[b])) <= 0xFFFFFF
 
constant zf3 : bit
 
constant cf3 : bit
 
constant regs3 : uint5 -> uint8
 
Ensures9 : regs3 = regs4[r0 <- regs3[r0]][r1 <- regs3[r1]]
 
Ensures8 :
  let result = regs4[a] * regs4[b] in
  regs3[r0] = mod1 result 256 /\
  regs3[r1] = div1 result 256 /\
  cf3 = div1 result 0x8000 /\ zf3 = (if result = 0 then 1 else 0)
 
constant hf2 : bit
 
constant sf2 : bit
 
constant vf2 : bit
 
constant nf2 : bit
 
constant zf2 : bit
 
constant cf2 : bit
 
constant regs2 : uint5 -> uint8
 
Ensures7 : regs2 = regs3[dst <- regs2[dst]]
 
Ensures6 :
  let result = regs3[dst] + regs3[r0] in
  regs2[dst] = mod1 result 256 /\
  regs2 = regs3[dst <- regs2[dst]] /\
  cf2 = div1 result 256 /\
  hf2 = div1 (mod1 regs3[dst] 16 + mod1 regs3[r0] 16) 16 /\
  sf2 = mod1 (vf2 + nf2) 2 /\
  nf2 = div1 (mod1 result 256) 0x80 /\
  zf2 = (if mod1 result 256 = 0 then 1 else 0) /\
  vf2
  = (if regs3[dst] >= 128 /\ regs3[r0] >= 128 /\ not mod1 result 256 >= 128 \/
        not regs3[dst] >= 128 /\
        not regs3[r0] >= 128 /\ mod1 result 256 >= 128
     then 1 else 0)
 
constant o1 : uint5
 

Ensures5 : o1 = (dst + 1)
 
constant hf1 : bit
 
constant sf1 : bit
 
constant vf1 : bit
 
constant nf1 : bit
 
constant zf1 : bit
 
constant cf1 : bit
 
constant regs1 : uint5 -> uint8
 
Ensures4 : regs1 = regs2[o1 <- regs1[o1]]
 
Ensures3 :
  let result = (regs2[o1] + regs2[r1]) + cf2 in
  regs1[o1] = mod1 result 256 /\
  cf1 = div1 result 256 /\
  hf1 = div1 (mod1 regs2[o1] 16 + mod1 regs2[r1] 16) 16 /\
  sf1 = mod1 (vf1 + nf1) 2 /\
  nf1 = div1 (mod1 result 256) 0x80 /\
  zf1 = (if mod1 result 256 = 0 then 1 else 0) /\
  vf1
  = (if regs2[o1] >= 128 /\ regs2[r1] >= 128 /\ not mod1 result 256 >= 128 \/
        not regs2[o1] >= 128 /\
        not regs2[r1] >= 128 /\ mod1 result 256 >= 128
     then 1 else 0)
 
constant o : uint5
 
Ensures2 : o = (dst + 2)
 
constant hf : bit
 
constant sf : bit
 
constant vf : bit
 
constant nf : bit
 
constant zf : bit
 
constant cf : bit
 
constant regs : uint5 -> uint8
 
Ensures1 : regs = regs1[o <- regs[o]]
 
Ensures :
  let result = (regs1[o] + regs1[zr]) + cf1 in
  regs[o] = mod1 result 256 /\
  cf = div1 result 256 /\
  hf = div1 (mod1 regs1[o] 16 + mod1 regs1[zr] 16) 16 /\
  sf = mod1 (vf + nf) 2 /\
  nf = div1 (mod1 result 256) 0x80 /\
  zf = (if mod1 result 256 = 0 then 1 else 0) /\
  vf
  = (if regs1[o] >= 128 /\ regs1[zr] >= 128 /\ not mod1 result 256 >= 128 \/
        not regs1[o] >= 128 /\ not regs1[zr] >= 128 /\ mod1 result 256 >= 128
     then 1 else 0)
 
------------------------------- Goal --------------------------------
 
goal mul_add_to_3_regs'vc :
  uint3b regs dst = (uint3b regs4 dst + (regs4[a] * regs4[b]))
 

VC generated for WhyML version

constant zr'0 : byte
 
constant cf'2 : bit
 
constant cf'3 : bit
 
constant r1'1 : byte
 
constant r0'1 : byte
 
constant dst'p2'0 : byte
 
constant dst'p2'1 : byte
 
constant dst'p1'0 : byte
 
constant dst'p1'1 : byte
 
constant dst'0 : byte
 
constant dst'1 : byte
 
constant b'0 : byte
 
constant a'0 : byte
 
zr_is_0 : zr'0 = 0
 
result_fits :
  ((dst'0 + (256 * (dst'p1'0 + (256 * dst'p2'0)))) + (a'0 * b'0)) <= 0xFFFFFF
 
mul_Post_r0_at_1 : r0'1 = mod (a'0 * b'0) 256
 
mul_Post_r1_at_1 : r1'1 = div (a'0 * b'0) 256
 
add_Post_rd_at_2 : dst'1 = mod (dst'0 + r0'1) 256
 
add_Post_cf_at_2 : cf'2 = div (dst'0 + r0'1) 256
 
adc_Post_rd_at_3 : dst'p1'1 = mod ((dst'p1'0 + r1'1) + cf'2) 256
 
adc_Post_cf_at_3 : cf'3 = div ((dst'p1'0 + r1'1) + cf'2) 256
 
adc_Post_rd_at_4 : dst'p2'1 = mod ((dst'p2'0 + zr'0) + cf'3) 256
 
------------------------------- Goal --------------------------------
 
goal mul_add_to_3_reg_VC_1'vc :
  (dst'1 + (256 * (dst'p1'1 + (256 * dst'p2'1))))
  = ((dst'0 + (256 * (dst'p1'0 + (256 * dst'p2'0)))) + (a'0 * b'0))
 

VC generated for Asm3 version

Figure 10: Proof context comparison for mul_add_to_3_regs

39



6 Real world example: 64×64 Karatsuba multipli-
cation

To demonstrate the effects of the optimizations the Asm3 plugin can apply during
VC generation. I have ported the formalization of the AVR implementation of 64×64
Karatsuba multiplication from [12, 13] to Asm315. Like the WhyML formalization
this is based on, only a part of the AVR architecture is modeled. Specifically, six of
the special register (SREG) flags as well as the stack have been omitted and only the
instructions used in this code have been modeled. The resulting Asm3 code is included
in appendix C. This assembly routine was chosen as a benchmark to demonstrate that
the Asm3 language and VC generator combination can be applied to model assembly
routines of at least a few hundred instructions in length. This assembly routine
consists of 286 instructions and is modeled as one continuous section of code.

First the formalization of the 64×64 Karatsuba multiplication routine was ported
from WhyML to Asm3. Next assertions were added or modified and the abstract
block specifications were adjusted until all resulting VCs could be verified when all of
Asm3’s VC optimizations are enabled. Next the verification time for each proof goal
of a selection of provers were recorded16. This step was repeated for any combination
of tested optimizations.

The verification times were recorded for the following optimization combinations:

1. Effect selection enabled and independent (no aliasing can occur or neither has
been written to this point) index references modeled with separate variables.

2. Effect selection disabled and independent index references modeled separately.

3. Effect selection disabled and index references modeled as indices into shared
maps. In this case index references would provide little more than syntactic
sugar for working with maps. The VCs generated by the Asm3 plugin are
similar to those generated by Why3.

Additionally the effect of modeling bytes with a weak type as opposed to modeling
bytes with a Why3 range type was tested for each combination, giving us six total
combinations. Applying the effect selection optimization without modeling indepen-
dent index references separately isn’t implemented currently, so unfortunately this
couldn’t be tested separately.

The following provers were used to measure the effects of the optimizations on
verification performance: versions 4.8.9 and 4.4.1 of Z3 [5], versions 1.7 and 1.4 of
CVC4 [1], versions 2.0.0 and 2.3.3 of Alt-Ergo [4], CVC3 version 2.3 and version 2.3
of the E prover [15]. Multiple versions of the same prover were used as some previous
proofs in [13] depended on a specific version of a prover. Because of this I thought it
relevant to check whether multiple versions of the same prover respond similarly to
the same optimizations.

We will consider proof goals generated for assertions and instruction preconditions
separately. The 32 preconditions of the load and store instructions used are fairly
similar. As these instructions are used in three separate sections of the code, we can
use the verification time of these preconditions to get an idea of how the optimizations
affect how well the method scales to increasingly large code sizes. The 39 goals
resulting from the assert and ensures annotations give an indication of how the
optimizations affect more challenging verification goals.

15The resulting code isn’t a 1:1 port, most notably some postconditions of the abstract blocks have
been changed.

16Excluding goals that could be verified using the compute transformation.
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6.1 Effects of each configuration on verification of assertions
and postconditions

We will first look at the effects of each optimization level on the number of proof
goals that each prover was able to verify. Figure 11 shows this number for each of the
provers. Having both the effect selection optimization enabled and modeling index
references separately always led to the highest number of verified goals. Whether
modeling bytes using a weak type or using a why3 range type led to better performance
depends on the prover. Z3, CVC3, alt-ergo 2.0.0 and the E prover performed better
when bytes were modeled using a weak type, while the reverse is true for CVC4.
Modeling index references with separate variables instead of with shared maps usually
led to better results. However, when looking at CVC4 1.7 and CVC3 and modeling
bytes using weak types this led to slightly worse results if no premises get discarded.

Of course the total number of verified goals, doesn’t paint a complete picture. The
provers were able to verify different goals depending on which optimizations were used.
If bytes are modeled using a weak type both versions of CVC4 can prove two goals that
could not be proven if bytes are modeled using a Why3 range type. However, in that
case CVC4 1.7 can prove three additional goals and CVC4 1.4 five additional goals. Z3
4.4.1 could prove 2 goals only if index references were modeled as indices into maps.
No other prover could verify goals that couldn’t be verified when the effect selection
was optimization enabled and index references modeled using separate variables.

6.1.1 Verification time

Figure 12 shows verification speed compared to median verification speed for all six
configurations. The results for Alt-Ergo aren’t shown as both versions were only
usable when both the effect selection and aliasing optimizations were enabled.

On average, modeling bytes using a weak type instead of using Why3’s own range
type led to shorter verification times for both versions of Z3 and version 1.4 of CVC4
while other provers showed no significant difference. Disabling the optimizations
Asm3 offers nearly universally led to longer verification times. The way in which
bytes were modeled made a significant difference here. For the two Z3 versions as
well as CVC4 version 1.4, disabling optimizations had a much more profound effect
on verification times if bytes were modeled using Why3’s own range type. For CVC3
and CVC4 1.7 the verification times increased much more if bytes were modeled using
a weak type. A number of goals was impacted especially severely with, for example,
the verification the postcondition Compute_L by Z3 4.8.9 jumping from 11.68 to 75.68
seconds when disabling the effect selection optimization. Another striking example
is that the verification by CVC4 1.7 of the two goals generated for the assertion
tf_abs_property jumps from 0.12 seconds to 28.87 seconds total when disabling this
optimization (bytes modeled using Why3 range type).
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Bytes modeled using a weak type:

� Effect selection enabled and independent index references modeled separately.

� Effect selection disabled and independent index references modeled separately.

� Effect selection disabled and index references modeled as indices into shared
maps.

Bytes modeled using a Why3 range type:

� Effect selection enabled and independent index references modeled separately.

� Effect selection disabled and independent index references modeled separately.

� Effect selection disabled and index references modeled as indices into shared
maps.
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Figure 11: Effect of Asm3’s VC optimizations on the number of goals proven. These
goals are generated for assertions and postconditions.
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Bytes modeled using a weak type:

� Effect selection enabled and independent index references modeled separately.

� Effect selection disabled and independent index references modeled separately.

� Effect selection disabled and index references modeled as indices into shared
maps.

Bytes modeled using a Why3 range type:

� Effect selection enabled and independent index references modeled separately.

� Effect selection disabled and independent index references modeled separately.

� Effect selection disabled and index references modeled as indices into shared
maps.

CVC3 2.3

Ve
ri

fi
ca

ti
on

 t
im

e

1%

10%

100%

1,000%

10,000%

E 2.3

Ve
ri

fi
ca

ti
on

 t
im

e

1%

10%

100%

1,000%

10,000%

Figure 12: Box plots showing the effect of Asm3’s VC optimizations on the verification
time relative to the median verification time of that goal.
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Z3 4.8.9 26 2.49s 9.75s 10.99s
Z3 4.4.1 17 9.63s 22.11s 26.09s
CVC4 1.7 28 4.88s 19.48s 21.52s
CVC4 1.4 27 10.31s 9.83s 9.38s
CVC3 2.3 19 11.99s 44.3s 69.01s
E 2.3 8 10.72s 16.02s 10.39s

Table 4: Comparison of cumulative verification time of goals that could be verified
with all optimization levels (bytes modeled with a weak type)
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Z3 4.8.9 20 11.55s 34.75s 142.45s
Z3 4.4.1 14 8.41s 22.81s 104.17s
CVC4 1.7 31 10.65s 55.99s 53.35s
CVC4 1.4 30 29.34s 48.24s 45.1s
CVC3 2.3 13 5.97s 13.04s 12.19s
E 2.3 6 7.82s 7.29s 18.92s

Table 5: Comparison of cumulative verification time of goals that could be verified
with all optimization levels (bytes modeled with Why3 range type)
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6.2 Effects of each configuration on verification of precondi-
tions

Figure 13 shows the change in verification time of the preconditions of the three sec-
tions of load and store instructions when changing which optimizations are used (See
lines 231-238, 306-320 and 659-670 of appendix C for these sections of load and store
sections). For these proof goals having the effect selection optimization enabled re-
sults in little change in verification speed over the span of the code. However, without
this optimization the verification time increases greatly as the proof context grows.
Modeling index reference incarnations using shared maps also resulted in an increase
in verification time, albeit less severe. Both versions of Alt-Ergo as well as CVC3
were no longer able to verify the VCs generated for the load and store instructions
past instruction 274 when the effect selection optimization wasn’t enabled. Z3 didn’t
suffer as much without this optimization, but wouldn’t verify any of the VCs of this
category if index reference incarnations were modeled using shared maps. Alt-Ergo
also did not perform well in that case but could still verify the preconditions of in-
structions 4 up to and including 11. The E prover wasn’t able to verify any of the
VCs generated for instruction preconditions.

6.3 Summary
Asm3’s optimizations in general have a large positive influence on the number of
goals each prover can verify as well as the time that is needed to verify these goals.
Z3, CVC3, and Alt-Ergo especially benefit from the optimizations. When modeling
bytes using a weak type instead of a why3 range type and applying Asm3’s VC
generation optimizations, the total number of proof goals Alt-Ergo 2.3.3 was able to
verify increased from 8 to 45 goals, for Z3 4.8.9 this increased from 20 to 63 and for
CVC3 this increased from 37 to 60. For CVC4 the difference was mainly expressed
in a significantly shorter verification time.

When using the optimizations every goal was provable by at least two provers,
counting different prover versions as separate provers and excluding Alt-Ergo 2.0.0
due to this version containing a soundness error. Every goal was provable without
using the relatively old CVC3 2.3, CVC4 1.4, and Z3 4.4.1 provers and when excluding
these older provers 74% of the goals generated for the assertions and postconditions
could be proven by at least two provers. Without Asm3’s optimizations this number
drops to just 54%, even worse only 90% of the goals were verified at all. From this
we can conclude that the effect selection optimization combined with the use of index
references generally results in more efficient VCs.

Note that the performance numbers of the provers given in this thesis shouldn’t
be used to gauge the quality of each prover. For example, with some modifications
such as adding additional assertions it should be possible to increase the percentage
of goals that most provers can verify. Furthermore different provers tend to have
different areas in which they perform well. Being able to use a wide selection of
provers is one of Why3’s main advantages over similar platforms.

6.4 Comparison with prior verification work on this assembly
routine

When compared to the verification from [12] of the 64×64 Karatsuba multiplication
routine the total number of used annotations has remained similar. In this prior article
21 annotations were used to prove the specification of this routine, while in the Asm3
version 19 annotations are used17 (22 if counting the eliminate_if transformations

17This number could be reduced, but this results in longer verification times and a lower average
number of provers able to prove a goal. Additionally, I do not expect real-world usage to include a
process of reducing the number of annotations after having succeeded in verifying that the specifi-
cation is correct.
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(a) Z3 4.8.9
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(c) Alt-Ergo 2.3.3

Bytes modeled using a weak type:

� Effect selection enabled and independent index references modeled separately.

� Effect selection disabled and independent index references modeled separately.

� Effect selection disabled and index references modeled as indices into shared
maps.

Bytes modeled using a Why3 range type:

� Effect selection enabled and independent index references modeled separately.

� Effect selection disabled and independent index references modeled separately.

� Effect selection disabled and index references modeled as indices into shared
maps.

Figure 13: Effect of Asm3’s VC optimizations on the verification time of instruction
preconditions relative to the median verification time of all instruction preconditions.
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used among the annotations). The minimum verification time when using the provers
used in [12] (CVC418, CVC3, E) was lower: 19 seconds instead of 96 seconds. This
time was achieved on slightly faster hardware, however. When also using both version
of Z3 as well as Alt-Ergo 2.3.3 this time could be further reduced to 16 seconds (12
seconds if cherry picking the fasted time for each goal across all tested optimization
combinations).

My prior port of this formalization to Why3 1.2 resulted in similar results as when
Asm3’s optimizations are not enabled. The Asm3 version features a much faster (re-
)load time however as the number of (sub-)goals is significantly lower.

7 Future work
While the current Asm3 framework is functional, it has some significant limitations.

7.1 Integration into Why3
Currently, the features the Asm3 plugin provides are built on top of Why3 rather
than integrated into it. This wouldn’t be a problem if this plugin simply performed a
syntax level translation from the Asm3 language to WhyML, but instead it generates
its own VCs. This is undesirable because of several reasons. Most importantly this
leads to a larger than necessary trusted code base size as both Asm3’s VC generator
and Why3’s own VC generator need to be trusted. Aside from an increased likelihood
of bugs this also leads to an increased maintenance burden.

Another issue is that Asm3’s VC optimizations cannot be performed as normal
goal transformations. In Why3 it is possible to modify a verification condition using
transformations, for example a transformations exists to split the current goal at
conjunctions, perform a case distinction or apply the default rewrite rules. Whether
or not Asm3 filters out premises can only be controlled via annotations in the Asm3
code. Another thing that can be considered to be an optimization, using weak types
instead of Why3’s own way of modeling type invariants can only be controlled by
defining something as either a weak type or a type. Aside from being undesirable
from a consistency standpoint, this means that it currently isn’t possible to disable
or enable optimizations for each prover separately.

Finally, Asm3 has no knowledge of WhyML definitions which results in several
issues during VC generation. For example it cannot resolve identifiers that are defined
in WhyML code19. Another example of an issue that occurs is that Asm3 doesn’t
know the radix of range types defined in a WhyML file. Because of this variables of
these types cannot be used in combination with the :: operator.

While Asm3 can be useful despite these issues, these issues could be mitigated by
integrating part of Asm3’s features in Why3 itself. Ideally Why3 should be extended
in such a way that a syntax level translation from Asm3 to WhyML would be possible
without losing functionality. This would mean adding the following features to Why3:

• Recording the flow of information in the generated VCs and adding a transfor-
mation to discard premises based on this information. Recording what variable
incarnations were produced by an effect. This doesn’t require any changes to
the WhyML language and has use outside of modeling assembly code. Why3
already includes some information such as premise names as annotations in its
formulas, so including this information wouldn’t require large changes to the
structure of VCs.

18Version 1.4 and 1.7 of CVC4 were both used instead of just CVC4 1.4 that was used in this
article. The reason for this is that CVC4 1.7 was needed to verify a goal that required working with
bitvector theories.

19For this reason Asm3 requires the user to specify a namespace in front of identifiers it itself
cannot resolve.
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• Adding a transformation to model type invariants with predicates. The is-
sue with modeling type invariants shouldn’t be much of a problem (modeling
without abstract types) as it has worked in the past. Moreover this wouldn’t
necessarily require changes to the VC generator: it could be implemented as a
transformation to Why3’s current VCs.

• Adding index references. I personally do not expect the maintainers of Why3
to accept something similar to the index references found in Asm3 as the alias-
ing limitations of Why3’s own references appear to be intentional and does not
allow the user to model anything that couldn’t be modeled using maps. The
least invasive way to support something similar in WhyML would be to include
a modified may_alias annotation and a more fine grained writes annotation for
mutable maps. For example, for aliasing the following annotation could be in-
troduced: may_alias { x with y in m } where m is a mutable map and x and
y can be indices into this map. The writes annotation could be extended by
specifying the modified map indices, for example: writes { m[x;y] } instead of
just writes { m }. If this information is then retained in the generated VCs a
transformation could be added to compute an updated VC where for incarna-
tions mi of m, occurrences of mi[x] could be replaced with some t if the system
can compute that mi[x] = t.

Aside from helping resolve VC related issues a number of features would become
easier to support if the Asm3 plugin would simply transform its Asm3 input to an
equivalent WhyML AST representation. For example, it would become easier to fix
the following shortcomings:

• Ghost code is currently missing from the Asm3 language.

• While it is possible to import WhyML definitions in Asm3 code the reverse isn’t
possible.

7.2 Missing features
Asm3 currently lacks several important features.

7.2.1 Jumps

It currently isn’t possible to model jumps in Asm3. An approach to modeling assembly
code containing branches with Why3 has been described in [11], something similar
could be implemented for Asm3. Appendix D contains an outline for an alternative
approach to extend Asm3 with support for branching. However I have not conducted
sufficient research on if this approach would indeed work well enough or how this
approach would compare to the aforementioned article or other published approaches.

7.2.2 Code extraction

Another important feature that is missing is code extraction. It wouldn’t take much
work to export a list of instructions with arguments along with labels. This output
wouldn’t match the syntax of expected by an assembler, however. Some scripting
would be needed to transform it to assembly code of the desired assembly language,
though it should be possible to perform this step with a number of regular-expression
replace rules.

7.3 Further improvements
7.3.1 Improved memory separation

While index references work well for modeling things like registers, Asm3 brings little
improvement for modeling memory such as the stack or heap. During my work [13]
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on verifying an implementation of curve25519 written in AVR assembly I found that
proving that the verification times of assertions stating which areas of main memory
aren’t modified rise sharply as the number of store instruction increases. Being able
to separate accessed memory from the rest of the memory would help here. It should
be possible to generalize index references to the most common patterns of accessing
main memory.

Somewhat related, when working with values constructed out of multiple registers
or multiple bytes of main memory it currently isn’t straightforward to work with just
this value and abstract away from the underlying memory. It could be useful if the
system could automatically detect if just composite values are referenced instead of
one of the underlying values. The system could then optimize the underlying values
away. For example, if an assembly routine works with 256 bits wide values it may
often be useful to abstract away from operations on individual bytes or registers and
only reason about the composite values.

7.3.2 Improving effect selection

While the current system of automatically inferring relations between goals and
premises based on writes and reads works reasonably well, it would be useful to
be able to manually specify on which variables a postcondition or assertion provides
information.

8 Related work
The Vale DSL introduced in [3] is a DSL for writing efficient verified assembly code.
This language is somewhat similar to the Asm3 language but has a greater emphasis on
writing new verified code instead of verifying existing implementations. Unlike Asm3
this language can generate varying assembly code based on conditions checked during
the code extraction phase, making Vale more flexible. Another large advantage of Vale
is that its VC generator is not part of the trusted code base. Aside from the different
focus Asm3 has some advantages over Vale. While Vale/F? introduced in [9] generates
more efficient VCs than the first version its VCs still seem significantly less efficient
than the VCs generated by Asm320. In my personal experience Vale/F? features a
much steeper learning curve than working with Why321 and Asm3. For example, a
user of Vale/F? needs to be able to understand both the Vale and F? languages, which
are not alike. Adding support for another instruction set architecture requires writing
a significant amount of code in both Vale and F? while it takes relatively little effort
to model a useful subset of a new architecture in Asm3. Finally, Why3 allows for the
use of a wide variety of provers while F? currently depends on Z3.

Pereira and Sousa describe a tool, army, that generates purely sequential Why3
programs for annotated ARM assembly code [11]. These generated programs are
related to the original code in that, if these generated programs are proven correct the
initial assembly program is also correct. The Why3 programs generated by this tool
appear to be similar to the Why3 programs written to model AVR assembly programs
in [12, 13], on which this thesis is based. The focus of that paper is different from the
latter papers as well as this thesis. Pereira and Sousa’s paper focuses on being able to
verify unstructured programs, with an emphasis on verifying the complexity of these
programs. Marc’s work in [12] on the other hand focuses on methods of letting Why3
generate more efficient verification conditions by breaking assembly routines up with
abstract blocks and by using ghost code. This thesis iterates on this by allowing code
and proof reuse by using macros

20I cannot fully exclude the possibility that this is the result of the vast difference in experience I
have in working with WhyML or Asm3 and Vale.

21Why3 is reported to be a suitable tool for performing deductive program verification, for software
engineers with no prior experience in this field [14].
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Kamkin et al. [10] suggest an approach to verify both ACSL annotated C code
and the assembly code generated for this code. The goal of Asm3 is a bit different
as it is made with a focus on handwritten assembly code. It is also not clear if the
approach from Kamkin et al. scales to larger C methods. The C method resulting the
largest number of instructions still resulted in just 32 instructions. The instructions
of the RISC-V instruction set architecture used in this article generally have only
one effect instead of several effects. Because of this the effect selection optimization
described in this thesis would be somewhat less useful for the case described in the
case study.

9 Conclusion
I have presented the Asm3 DSL for modeling assembly code in Why3 and imple-
mented support for this language in a Why3 plugin containing its own VC generator.
Compared to Why3’s WhyML language, this language allows for more succinct speci-
fications for code working with statically addressed memory, such as registers. For the
64×64 bits Karatsuba multiplication routine, the optimizations the Asm3 plugin can
apply during VC generation resulted in increased prover performance. Using these
optimizations led to a significant increase in the number of goals that could be veri-
fied by multiple provers, as well as a decrease in verification times. The optimizations
also seem to greatly improve how verification time scales with the number of verified
instructions. Of the provers tested, the Z3 and Alt-Ergo provers were most affected
by the optimizations. As the Asm3 plugin doesn’t contain any optimizations that are
specifically geared towards verifying code containing multiplications, I expect these
findings to hold up in general. Though the presented language and plugin currently
lack too many features to be useful in most real-world applications, the language fea-
tures and VC generation optimizations should be useful in many applications. While
this thesis has focused on verifying the specifications of assembly code, the VC gen-
eration optimizations could also be applied when verifying code written in high-level
languages.

The code of the Asm3 plugin can be found at https://gitlab.science.ru.nl/
jmoerman/asm3-why3-plugin. The commit corresponding to the version presented
in this thesis is abc89516314aff363d8eb474e86d8bec53b18fb3.
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Appendix
A Instruction definitions used in section 5

Listing 31: Definitions for flags in special register SREG
type bit = <range 0 1>
weak_type rb_index = <range 0 8> (* To constrain indexes into SREG *)

(* variables (x: srbit) implicitly index mutable variable sreg *)
index srbit, sreg : rb_index, bit

(* Carry flag *)
let constant cf: srbit = 0
(* Zero flag *)
let constant zf: srbit = 1
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(* Negative Flag *)
let constant nf: srbit = 2
(* Two’s complement overflow indicator *)
let constant vf: srbit = 3
(* N ⊕ V, for signed tests *)
let constant sf: srbit = 4
(* Half Carry Flag *)
let constant hf: srbit = 5
(* Transfer bit used by BLD and BST instructions *)
let constant tf: srbit = 6
(* Global Interrupt Enable/Disable Flag *)
let constant ifl: srbit = 7

Listing 32: Axiomatic definition of Add without Carry instruction
val instr add (rd rr: reg)
writes { rd, cf, hf, sf, vf, nf, zf }
reads { rd, rr }
ensures Post_rd { $rd = mod (old ($rd + $rr)) 256 }
ensures Post_cf { $cf = div (old ($rd + $rr)) 256 }
ensures Post_hf {

$hf = div (
old ((mod ($rd) 16) + (mod ($rr) 16))

) 16
}
ensures Post_sf { $sf = mod ($vf + $nf) 2 }
ensures Post_vf {

let rd7 = old ($rd) >= 128 in
let rr7 = old ($rr) >= 128 in
let r7 = mod (old ($rd + $rr)) 256 >= 128 in
$vf = if (

(rd7 /\ rr7 /\ not r7) \/
((not rd7) /\ (not rr7) /\ r7)

) then 1 else 0
}
ensures Post_nf { $nf = div (mod (old ($rd + $rr)) 256) 0x80 }
ensures Post_zf {

$zf = if mod (old ($rd + $rr)) 256 = 0 then 1 else 0
}
may_alias { rd with rr }

Listing 33: Axiomatic definition of Add with Carry instruction
val instr adc (rd rr: reg)
writes { rd, cf, hf, sf, vf, nf, zf }
reads { rd, rr }
ensures Post_rd { $rd = mod (old ($rd + $rr + $cf)) 256 }
ensures Post_cf { $cf = div (old ($rd + $rr + $cf)) 256 }
ensures Post_hf {

$hf = div (
old ((mod ($rd) 16) + (mod ($rr) 16) + $cf)

) 16
}
ensures Post_sf { $sf = mod ($vf + $nf) 2 }
ensures Post_vf {

let rd7 = old ($rd) >= 128 in
let rr7 = old ($rr) >= 128 in
let r7 = mod (old ($rd + $rr + $cf)) 256 >= 128 in
$vf = if (

(rd7 /\ rr7 /\ not r7) \/
((not rd7) /\ (not rr7) /\ r7)

) then 1 else 0
}
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ensures Post_nf { $nf = div (mod (old ($rd + $rr + $cf)) 256) 0x80 }
ensures Post_zf {

$zf = if mod (old ($rd + $rr + $cf)) 256 = 0 then 1 else 0
}
may_alias { rd with rr }

Listing 34: Axiomatic definition of Multiply Unsigned instruction
val instr mul (rd rr: reg)
writes { r0, r1, cf, zf }
reads { rd, rr }
ensures Post_r0 { $r0 = mod (old ($rd * $rr)) 256 }
ensures Post_r1 { $r1 = div (old ($rd * $rr)) 256 }
ensures Post_cf { $cf = div (old ($rd * $rr)) 0x8000 }
ensures Post_zf { $zf = if old ($rd * $rr) = 0 then 1 else 0 }
may_alias { r0, r1 with rd, rr }

Listing 35: Axiomatic definition of the Clear Register instruction
val instr clr (rd: reg)
writes { rd }
writes { sf, vf, nf, zf }
ensures Post_rd { $rd = 0 }
ensures Post_sf { $sf = 0 }
ensures Post_vf { $vf = 0 }
ensures Post_nf { $nf = 0 }
ensures Post_zf { $zf = 1 }

B Observations made during the process of verify-
ing the 64×64 karatsuba multiplication routine

The default SMT2 drivers used to generate the input for the CVC4 and Z3 provers,
often performed poorly. Using the alternative “noBV” (no bitvector) driver22 for
CVC4 1.4 often yielded much better results. This difference appears to be mainly
caused by the way the mod and div functions are modeled in the resulting SMT2
prover input. When the default drivers are used for CVC4 and Z3 built in definitions
for these functions are used while this isn’t the case when this driver is used.

This driver was needed to get CVC4 and Z3 to verify the proof goals generated for
the preconditions of the load and store instructions. When verifying the proof goals
generated for the assertions and postconditions the default drivers for both versions of
Z3 performed significantly better. For these goals the default drivers of both versions
of CVC4 performed similarly to the CVC4 noBV driver. Using that driver some
proof goals could be verified that couldn’t be verified with the default drivers, but
the reverse was also true.

C Asm3 code for the 64×64 Karatsuba multiplica-
tion routine

Code listing starts next page.

22The driver file for this alternative is cvc4.drv.
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1 module KaratAvr
2  
3 use_why3 int.Int
4 use_why3 int.EuclideanDivision
5 use_why3 map.Map
6 use_why3 bv.BV8
7 use_why3 bv.Pow2int
8 use_why3 int.Abs
9  
10 (* Lemmas for instructions modeled with bitvectors *)
11 lemma of_int_zeros: of_int 0 = zeros
12 lemma of_int_ones: of_int 0xFF = ones
13  
14 lemma xor_0: forall w. 0 <= w < 256 -> t'int (bw_xor (of_int w) zeros) = w
15 lemma xor_1: forall w. 0 <= w < 256 -> t'int (bw_xor (of_int w) ones) = 255-w
16  
17 lemma or_0: forall w. bw_or zeros w = w
18  
19 (* Lemmas for multiplications *)
20 lemma mul_bound_preserve:
21   forall x y l. 0 <= x <= l -> 0 <= y <= l -> x*y <= l*l
22  
23 (* necessary for goals Compute_L, Add_H_to_L_high1 and M_computation *)
24 lemma byte_mult_range: 
25   forall i j : int. -1 < i < 256 /\ -1 < j < 256 -> -1 < i*j <= 255*255
26  
27 (** Program definitions ****************************************************)
28  
29 weak_type byte = <range 0 255>
30 weak_type bit = <range 0 1>
31 weak_type rb_index = <range 0 7> (* To constrain indexes into SREG *)
32 weak_type reg_index = <range 0 31> (* To constrain the range of registers *)
33  
34 index reg = create_index regs (reg_index, byte)
35 index srbit = create_index sreg (rb_index, bit)
36  
37 (** Register definitions ***************************************************)
38 let constant rX: reg = 26
39 let constant rY: reg = 28
40 let constant rZ: reg = 30
41  
42 let constant r0: reg = 0
43 let constant r1: reg = 1
44 let constant r2: reg = 2
45 let constant r3: reg = 3
46 let constant r4: reg = 4
47 let constant r5: reg = 5
48 let constant r6: reg = 6
49 let constant r7: reg = 7
50 let constant r8: reg = 8
51 let constant r9: reg = 9
52 let constant r10: reg = 10
53 let constant r11: reg = 11
54 let constant r12: reg = 12
55 let constant r13: reg = 13
56 let constant r14: reg = 14
57 let constant r15: reg = 15
58 let constant r16: reg = 16
59 let constant r17: reg = 17
60 let constant r18: reg = 18
61 let constant r19: reg = 19
62 let constant r20: reg = 20
63 let constant r21: reg = 21
64 let constant r22: reg = 22
65 let constant r23: reg = 23
66 let constant r24: reg = 24
67 let constant r25: reg = 25
68 let constant r26: reg = 26
69 let constant r27: reg = 27
70 let constant r28: reg = 28
71 let constant r29: reg = 29

54



72 let constant r30: reg = 30
73 let constant r31: reg = 31
74  
75 (** SREG definitions *******************************************************)
76 (* carry flag *)
77 let constant cf: srbit = 0
78 (* T flag *)
79 let constant tf: srbit = 6
80 (* other flags are not modelled *)
81  
82 (* MOV - Copy Register *)
83 val instr mov (rd rr: reg)
84 writes { rd }
85 reads { rr }
86 ensures { $rd = old ($rr) }
87 may_alias { rd with rr }
88  
89 (* MOVW - Copy Register Word *)
90 val instr movw (rd rr: reg)
91 writes { rd, rd+1 }
92 reads { rr, rr+1 }
93 requires { rd < 31 /\ rr < 31 }
94 ensures { $rd = old ($rr) }
95 ensures { $(rd+1) = old $(rr+1) }
96 may_alias { rd with rr,rr+1 }
97 may_alias { rd+1 with rr,rr+1 }
98  
99 (* MUL- Multiply Unsigned *)
100 val instr mul (rd rr: reg)
101 writes { r0, r1, cf }
102 reads { rd, rr }
103 ensures { $r0 = EuclideanDivision.mod (old ($rd * $rr)) 256 }
104 ensures { $r1 = EuclideanDivision.div (old ($rd * $rr)) 256 }
105 may_alias { r0 with rd,rr }
106 may_alias { r1 with rd,rr }
107  
108 (* ADD - Add without Carry *)
109 val instr add (rd rr: reg)
110 writes { rd, cf }
111 reads { rd, rr }
112 ensures { $rd = EuclideanDivision.mod (old ($rd + $rr)) 256 }
113 ensures { $cf = EuclideanDivision.div (old ($rd + $rr)) 256 }
114 may_alias { rd with rr }
115  
116 (* ADC - Add with Carry *)
117 val instr adc (rd rr: reg)
118 writes { rd, cf }
119 reads { rd, rr, cf }
120 ensures { $rd = EuclideanDivision.mod (old ($rd + $rr + $cf)) 256 }
121 ensures { $cf = EuclideanDivision.div (old ($rd + $rr + $cf)) 256 }
122 may_alias { rd with rr }
123  
124 (* SUB- Subtract without Carry *)
125 val instr sub (rd rr: reg)
126 writes { rd, cf }
127 reads { rd, rr }
128 ensures { $rd = EuclideanDivision.mod (old ($rd - $rr)) 256 }
129 ensures { $cf = - EuclideanDivision.div (old ($rd - $rr)) 256 }
130 may_alias { rd with rr }
131  
132 (* SBC- Subtract with Carry *)
133 val instr sbc (rd rr: reg)
134 writes { rd, cf }
135 reads { rd, rr, cf }
136 ensures { $rd = EuclideanDivision.mod (old ($rd - $rr - $cf)) 256 }
137 ensures { $cf = - EuclideanDivision.div (old ($rd - $rr - $cf)) 256 }
138 may_alias { rd with rr }
139  
140 (* DEC- Decrement *)
141 val instr dec (rd: reg)
142   writes { rd }
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143   ensures { $rd = EuclideanDivision.mod (old ($rd) - 1) 256 }
144  
145 (* CLR - Clear Register *)
146 val instr clr (rd: reg)
147 writes { rd }
148 ensures { $rd = 0 }
149  
150 (* EOR - Exclusive OR *)
151 val instr eor (rd: reg) (rr: reg)
152   writes { rd }
153   reads { rd, rr }
154   ensures { $rd = old (BV8.t'int (BV8.bw_xor (BV8.of_int ($rd)) (BV8.of_int 

($rr)))) }
155  
156 (* ASR - Arithmetic Shift Right *)
157 val instr asr (rd: reg)
158   writes { rd, cf }
159   ensures { let rdv = old ($rd) in
160             $rd = EuclideanDivision.div rdv 2 + 128 * EuclideanDivision.div 

rdv 128 }
161   ensures { $cf = EuclideanDivision.mod (old ($rd)) 2 }
162  
163 (* BST - Bit Store from Bit in Register to T Flag in SREG *)
164 val instr bst (rd: reg) (bit: rb_index)
165   writes { tf }
166   reads { rd }
167   ensures { $tf = if BV8.nth (BV8.of_int ($rd)) bit then 1 else 0 }
168  
169 function bitset (w: BV8.t) (b: int) (v: bool): BV8.t =
170   let mask = BV8.lsl (BV8.of_int 1) b in
171   if v then
172     BV8.bw_or w mask
173   else
174     BV8.bw_and w (BV8.bw_not mask)
175  
176 (* BLD - Bit Load from the T Flag in SREG to a Bit in Register. *)
177 val instr bld (rd: reg) (bit: rb_index)
178   writes { rd }
179   ensures { $rd = BV8.t'int (bitset (BV8.of_int (old $rd)) bit (if ($tf) = 1 

then true else false)) }
180  
181 weak_type ram = map int byte
182  
183 mutable val mem: ram
184  
185 (* ST (STD) – Store Indirect From Register to Data Space using Index Y *)
186 val instr std (dst: reg) (ofs: reg_index) (rr: reg)
187   writes { mem }
188   reads { dst, dst+1, rr }
189   requires { 32 <= ($dst...2) + ofs < Pow2int.pow2 16 }
190   ensures { $mem = old ($mem)[($dst...2)+ofs <- $rr] }
191  
192 (* LD - Load Indirect from data space to Register using Index X
193  *** LD Rd, X+ ***)
194 val instr ld_inc (dst src: reg)
195   writes { dst, src, src+1 }
196   reads { mem, src, src+1 }
197   requires { 32 <= $src...2 < Pow2int.pow2 16-1 }
198   ensures { $dst = old (($mem)[$src...2]) }
199   ensures { $src...2 = old ($src...2) + 1 }
200  
201 (* LD (LDD)- Load Indirect from data space to Register using Index Y
202  *** LDD Rd, Y+q ***)
203 val instr ldd (dst: reg) (src: reg) (q: reg_index)
204   writes { dst }
205   reads { mem, src, src+1 }
206   requires { 32 <= $src...2 + q < Pow2int.pow2 16 }
207   ensures { $dst = old (($mem)[$src...2 + q]) }
208  
209 let entry["karatsuba64.asm"] karatsuba64
210   requires { 32 <= $rX...2 < 32768 }
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211   requires { 32 <= $rY...2 < 32768 }
212   requires { 32 <= $rZ...2 < 32768 }
213   writes { mem, cf, tf, r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, 

r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, rX, 
rX+1, rY, rY+1 }

214   ensures Result_at_Z {
215     let i = $rZ...2 in
216     let j = old ($rX...2) in
217     let k = old ($rY...2) in
218     ($mem)[i]...16 = old ((($mem)[j]...8) * (($mem)[k]...8))
219   }
220   ensures Unchanged_memory {
221     let i = $rZ...2 in
222     forall x. x < i \/ x > i + 15 -> ($mem)[x] = old ($mem)[x]
223   }
224 =
225  (* init rZero registers *)
226   clr r20;
227   clr r21;
228   movw r16 r20;
229  
230  (* read arguments A and B from SRAM *)
231   ld_inc r2 rX;
232   ld_inc r3 rX;
233   ld_inc r4 rX;
234   ld_inc r5 rX;
235   ldd r6 rY r0;
236   ldd r7 rY r1;
237   ldd r8 rY r2;
238   ldd r9 rY r3;
239  
240 label L00 in
241 begin
242 ensures Compute_L { $r10...8 = $r2...4 * $r6...4 }
243   mul r2 r8; (* a0*b2 *)
244   movw r12 r0;
245   mul r2 r6; (* a0*b0 *)
246   movw r10 r0;
247   mul r2 r7; (* a0*b1 *)
248   add r11 r0;
249   adc r12 r1;
250   adc r13 r21;
251   mul r3 r9; (* a1*b3 *)
252   movw r14 r0;
253  
254   mul r2 r9; (* a0*b3 *)
255   movw r18 r0;
256   mul r3 r6; (* a1*b0 *)
257   add r11 r0;
258   adc r12 r1;
259   adc r13 r18;
260   adc r19 r21;
261   mul r3 r7; (* a1*b1 *)
262   add r12 r0;
263   adc r13 r1;
264   adc r19 r21;
265   mul r4 r9; (* a2*b3 *)
266   add r14 r19;
267   adc r15 r0;
268   adc r16 r1;
269  
270   mul r4 r8; (* a2*b2 *)
271   movw r18 r0;
272   mul r4 r6; (* a2*b0 *)
273   add r12 r0;
274   adc r13 r1;
275   adc r14 r18;
276   adc r19 r21;
277   mul r3 r8; (* a1*b2 *)
278   add r13 r0;
279   adc r14 r1;

57



280   adc r19 r21;
281   mul r5 r9; (* a3*b3 *)
282   add r15 r19;
283   adc r16 r0;
284   adc r17 r1;
285  
286   mul r5 r7; (* a3*b1 *)
287   movw r18 r0;
288   mul r4 r7; (* a2*b1 *)
289   add r13 r0;
290   adc r18 r1;
291   adc r19 r21;
292   mul r5 r6; (* a3*b0 *)
293   add r13 r0;
294   adc r18 r1;
295   adc r19 r21;
296   mul r5 r8; (* a3*b2 *)
297   add r14 r18;
298   adc r0 r19;
299   adc r1 r21;
300   add r15 r0;
301   adc r16 r1;
302   adc r17 r21;
303 end;
304  
305  (*    load a4..a7 and b4..b7    *)
306   ldd r22 rY 4;
307   ldd r23 rY 5;
308   ldd r24 rY 6;
309   ldd r25 rY 7;
310   movw r28 r20;
311   ld_inc r18 rX;
312   ld_inc r19 rX;
313   ld_inc r20 rX;
314   ld_inc r21 rX;
315   movw r26 r28;
316  
317   std rZ 0 r10;
318   std rZ 1 r11;
319   std rZ 2 r12;
320   std rZ 3 r13;
321  
322 label L11 in
323 begin
324 ensures M_factors_computation { (* compute the factors |A_l − A_h| and |B_l − 

B_h| *)
325   let a = old ($r2...4) in
326   let b = old ($r18...4) in
327   let c = old ($r6...4) in
328   let d = old ($r22...4) in
329   (if $tf = 0 then 1 else -1)*($r2...4*$r6...4) = (a - b)*(c - d) (* 

transformations: elimininate_if, split *)
330   by
331   ($tf = 0 <-> ((a - b) < 0 <-> (c - d) < 0)) /\
332   ($r2...4*$r6...4 = Abs.abs ((a - b)*(c - d))
333     by ((
334       $r2...4 = Abs.abs (a - b) /\
335       $r6...4 = Abs.abs (c - d) /\
336       (
337         Abs.abs (a - b) * Abs.abs (c - d) = Abs.abs ((a - b) * (c - d)) by (
338           forall x y. Abs.abs x * Abs.abs y = Abs.abs (x*y)
339         )
340       )
341     )
342   ))
343   } using neg_mult_is_pos (* transformations: split(_right) until reaching 

sub-goals  *)
344  
345 label B in
346  (*    subtract a0 a4      *)
347   sub r2 r18;

58



348   sbc r3 r19;
349   sbc r4 r20;
350   sbc r5 r21;
351  (* 0xff if carry and 0x00 if no carry *)
352   sbc r0 r0;
353  
354  (*    subtract b0 b4    *)
355   sub r6 r22;
356   sbc r7 r23;
357   sbc r8 r24;
358   sbc r9 r25;
359  (* 0xff if carry and 0x00 if no carry *)
360   sbc r1 r1;
361   assert { $r0 = if ($r2...4 < $r18...4) at B then 0xFF else 0x00 };
362   assert { $r1 = if ($r6...4 < $r22...4) at B then 0xFF else 0x00 };
363  
364  (*    absolute values    *)
365   eor r2 r0;
366   eor r3 r0;
367   eor r4 r0;
368   eor r5 r0;
369   eor r6 r1;
370   eor r7 r1;
371   eor r8 r1;
372   eor r9 r1;
373  
374   sub r2 r0;
375   sbc r3 r0;
376   sbc r4 r0;
377   sbc r5 r0;
378   sub r6 r1;
379   sbc r7 r1;
380   sbc r8 r1;
381   sbc r9 r1;
382  
383   eor r0 r1;
384   bst r0 0 ;
385   assert { $tf = if (($r0) = 0xFF) then 1 else 0 };
386   assert {
387     let an = ($r2...4 < $r18...4) at B in
388     let bn = ($r6...4 < $r22...4) at B in
389     $tf = if (an \/ bn) /\ not (an /\ bn) then 1 else 0
390   };
391   assert neg_mult_is_pos {forall x y. x < 0 /\ y < 0 -> x*y > 0};
392  
393   (* useful as (tf = 0) <-> xv < 0 <-> yv < 0 *)
394   assert tf_abs_property {
395     forall x y.
396       x * y = if (x < 0 <-> y < 0) then
397         Abs.abs (x * y) else
398         - Abs.abs (x * y)
399   }; (* Proving general property in clean proof context *)
400   assert {
401     let xv = ($r2...4 - $r18...4) at B in
402     let yv = ($r6...4 - $r22...4) at B in
403     xv * yv = if (xv < 0 <-> yv < 0) then
404       Abs.abs (xv * yv) else
405       - Abs.abs (xv * yv)
406   } using tf_abs_property;
407 end;
408  
409 begin
410 ensures Add_H_to_L_high1 { $r14...4::$r28...2::$r18...2 = old (($r14...4) + 

$r18...4*$r22...4) }
411  
412  (*    compute h  (l4 l5 l6 l7)    *)
413   mul r18 r22;
414   add r14 r0;
415   adc r15 r1;
416   adc r16 r26;
417   adc r29 r26;
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418  
419   mul r18 r23;
420   add r15 r0;
421   adc r16 r1;
422   adc r29 r26;
423   mul r19 r22;
424   add r15 r0;
425   adc r16 r1;
426   adc r17 r29;
427   adc r28 r26;
428  
429   mul r18 r24;
430   add r16 r0 ;
431   adc r17 r1;
432   adc r28 r26;
433   mul r19 r23;
434   add r16 r0;
435   adc r17 r1;
436   adc r28 r26;
437   mul r20 r22;
438   add r16 r0;
439   adc r17 r1;
440   adc r28 r26;
441  
442   clr r29;
443   mul r18 r25;
444   add r17 r0;
445   adc r28 r1;
446   adc r29 r26;
447   mul r19 r24;
448   add r17 r0;
449   adc r28 r1;
450   adc r29 r26;
451   mul r20 r23;
452   add r17 r0;
453   adc r28 r1;
454   adc r29 r26;
455   mul r21 r22;
456   add r17 r0;
457   adc r28 r1;
458   adc r29 r26;
459  
460   mul r19 r25;
461   movw r18 r26;
462   add r28 r0;
463   adc r29 r1;
464   adc r18 r26;
465   mul r20 r24;
466   add r28 r0;
467   adc r29 r1;
468   adc r18 r26;
469   mul r21 r23;
470   add r28 r0;
471   adc r29 r1;
472   adc r18 r26;
473  
474   mul r20 r25;
475   add r29 r0;
476   adc r18 r1;
477   adc r19 r26;
478   mul r21 r24;
479   add r29 r0;
480   adc r18 r1;
481   adc r19 r26;
482  
483   mul r21 r25;
484   add r18 r0;
485   adc r19 r1;
486 end;
487  
488 begin
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489 ensures M_computation { $r20...6::$r2...2 = old ($r2...4 * $r6...4) }
490  
491  (*    compute m    *)
492   mul r2 r6;
493   movw r20 r0;
494  
495   movw r22 r26;
496   mul r2 r7;
497   add r21 r0;
498   adc r22 r1;
499   mul r3 r6;
500   add r21 r0;
501   adc r22 r1;
502   adc r23 r26;
503  
504   movw r24 r26;
505   mul r2 r8;
506   add r22 r0;
507   adc r23 r1;
508   adc r24 r26;
509   mul r3 r7;
510   add r22 r0;
511   adc r23 r1;
512   adc r24 r26;
513   mul r4 r6;
514   add r22 r0;
515   adc r23 r1;
516   adc r24 r26;
517  
518   mul r2 r9;
519   add r23 r0;
520   adc r24 r1;
521   adc r25 r26;
522   mul r3 r8;
523   add r23 r0;
524   adc r24 r1;
525   adc r25 r26;
526   mul r4 r7;
527   add r23 r0;
528   adc r24 r1;
529   adc r25 r26;
530   mul r5 r6;
531   add r23 r0;
532   adc r24 r1;
533   adc r25 r26;
534  
535   mul r3 r9;
536   movw r2 r26;
537   add r24 r0;
538   adc r25 r1;
539   adc r2 r27;
540   mul r4 r8;
541   add r24 r0;
542   adc r25 r1;
543   adc r2 r27;
544   mul r5 r7;
545   add r24 r0;
546   adc r25 r1;
547   adc r2 r27;
548  
549   mul r4 r9;
550   add r25 r0;
551   adc r2 r1;
552   adc r3 r27;
553   mul r5 r8;
554   add r25 r0;
555   adc r2 r1;
556   adc r3 r27;
557  
558   mul r5 r9;
559   add r2 r0;
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560   adc r3 r1;
561  
562 end;
563  
564 begin
565 ensures Add_H_to_L_high2 { $r10...8::$cf = old($r10...8 + 

$r14...4::$r28...2::$r18...2) }
566  (*    add l4 h0 to l0 and h4    *)
567   add r10 r14;
568   adc r11 r15;
569   adc r12 r16;
570   adc r13 r17;
571   adc r14 r28;
572   adc r15 r29;
573   adc r16 r18;
574   adc r17 r19;
575  (* store carrrY in r26 *)
576 end;
577  
578 begin
579 ensures Correct_M_sign { $r20...6::$r2...2 = (if $cf = 1 then 1 else 

0)*(Pow2int.pow2 64 - 1) - ((($r2...4 - $r18...4)*($r6...4 - $r22...4)) at 
L11) } (* rewrite pow2_64, eliminate_if, split, split *)

580 ensures Carry_value { let cor = $r26 + (Pow2int.pow2 8 + Pow2int.pow2 16 + 
Pow2int.pow2 24) * $r0 in cor = (old $cf) - $cf \/ cor = Pow2int.pow2 32 + 
(old $cf) - $cf }

581  
582  (*    process sign bit      *)
583 label B in
584   bld r27 0;
585 assert { $r27 = $tf by $r27 at B = 0 };
586   dec r27;
587 assert { $r27 = 0xFF*(1 - $tf) };
588  
589  (* merge carry and borrow *)
590   adc r26 r27;
591   mov r0 r26;
592   asr r0;
593  
594 label B in
595  (* invert all bits or do nothing *)
596   eor r20 r27;
597   eor r21 r27;
598   eor r22 r27;
599   eor r23 r27;
600   eor r24 r27;
601   eor r25 r27;
602   eor r2  r27;
603   eor r3  r27;
604   assert {$r27 = 0xFF -> (
605     $r3 = 255 - $r3 at B /\
606     $r2 = 255 - $r2 at B /\
607     $r25 = 255 - $r25 at B /\
608     $r24 = 255 - $r24 at B /\
609     $r23 = 255 - $r23 at B /\
610     $r22 = 255 - $r22 at B /\
611     $r21 = 255 - $r21 at B /\
612     $r20 = 255 - $r20 at B
613   )};
614   assert {$r27 = 0 -> (
615     $r3  = $r3  at B /\
616     $r2  = $r2  at B /\
617     $r25 = $r25 at B /\
618     $r24 = $r24 at B /\
619     $r23 = $r23 at B /\
620     $r22 = $r22 at B /\
621     $r21 = $r21 at B /\
622     $r20 = $r20 at B
623   )};
624   add r27 r27; (* sets carry flag if r27 = 0xff *)
625 end;
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626  
627 begin
628 ensures Add_M { $r10...8::$r28...2::$r18...2::$cf = old($cf + 

$r10...8::$r28...2::$r18...2 + $r20...6::$r2...2 + Pow2int.pow2 64*($r26 + 
(Pow2int.pow2 8+Pow2int.pow2 16+Pow2int.pow2 24) * $r0)) }

629  
630  (* add in m *)
631   adc r10 r20;
632   adc r11 r21;
633   adc r12 r22;
634   adc r13 r23;
635   adc r14 r24;
636   adc r15 r25;
637   adc r16 r2;
638   adc r17 r3;
639  
640  (* propagate carry/borrow *)
641   adc r28 r26;
642   adc r29 r0;
643   adc r18 r0;
644   adc r19 r0;
645 end;
646  
647 assert L11_product_limits {
648   let a = ($r2...4::$r18...4) at L11 in
649   let b = ($r6...4::$r22...4) at L11 in
650   let c = Pow2int.pow2 64-1 in
651   0 <= a * b <= c*c by (0 <= a <= c /\ 0 <= b <= c)
652 }; (* transformations: rewrite pow2_64, split, split *)
653  
654 assert Mult_after_L11 {
655   $r10...4 at L11::$r10...8::$r28...2::$r18...2 =
656   ( $r2...4::$r18...4 * $r6...4::$r22...4 ) at L11
657 };
658  
659   std rZ 4 r10;
660   std rZ 5 r11;
661   std rZ 6 r12;
662   std rZ 7 r13;
663   std rZ 8 r14;
664   std rZ 9 r15;
665   std rZ 10 r16;
666   std rZ 11 r17;
667   std rZ 12 r28;
668   std rZ 13 r29;
669   std rZ 14 r18;
670   std rZ 15 r19
671 end
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D A possible approach for extending Asm3 with
support for branching

I propose to extend Asm3 with two additional annotations. One annotation would
allow the user to specify how an instruction or macro continues execution. Another
annotation should allow the user to specify what happens if a jump from outside the
macro to a label inside the macro occurs. If a macro contains a jump to an assembly la-
bel present in its body this jump can be modeled. Modeling jumps forwards would be
similar to modeling conditional statements, while modeling jumps backwards would
be similar to modeling loops. The biggest difference with normal conditional state-
ments and loops is that the branches and loop bodies might themselves contain jumps,
as well as labels that can be jumped to.

To generate provable VCs for code containing jumps some additional annotations
would be required. If the code jumps forwards no additional annotations would be
required. However, if the code jumps to an earlier instruction the user would need to
provide a loop variant and invariant. In this case the user would also need to specify
on which conditions it would jump to a later instruction, should this be possible. An
example of how something like this might look is given in listing 36. This listing
demonstrates how a user might annotate code containing jumps and labels that can
be jumped to, however, it isn’t a good example of how real code containing jumps
might look like. Listing 37 gives a more realistic example how real code modeled in
Asm3 could look like. Proving the specification of this code would be very similar to
proving the specification of the WhyML code from listing 38.

Listing 36: Rough example of how jumps could be implemented in a future version
of Asm3
let label label1 = "A"
let label label2 = "B"

let macro jump_example1 ( label3 : label )
reads { · · · }
writes { · · · }
(* Pre- and postconditions for execution starting anywhere within

jump_example1 *)
requires[_] { $r1 = 0 }
ensures[_] { · · · }
ensures[_] { old $5 <> 37 -> $r18 = old $r18 - 1 }
(* after jump_example1 finishes, execution continues at label3 if
* the value stored in r5 is equal to 37,
* or at label1 if the value stored in r18 is not 0. *)

jumps_to[label1] { $r5 <> 37 /\ $r18 > 0 }
jumps_to[label3] { $r5 = 37 }
= asm_label label2 in (* inserts the label label2 in front of the next

instruction *)
· · · (* Some useful operations *)
cpi r5 37;
breq label3; (* conditional jump to label3 *)
dec r18;
cp r18 r1;
brne label1

let macro jump_example2 ( label3 : label )
reads { · · · }
writes { · · · }
(* Specification for execution starting at the start of this macro *)
requires { · · · }
ensures { · · · }
(* Specification for execution starting at label1 *)
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requires[label1] { · · · }
ensures[label1] { · · · }
(* Specification for execution starting at label2 (inside jump_example1) *)
requires[label2] { · · · }
ensures[label2] { · · · }
(* Specification for execution starting at the first instruction or at label1

*)
ensures[(), label1] { · · · }
(* jump_example2 can finish by jumping to a label not inside its body *)
jumps_to[label3] { · · · }
= · · ·

asm_label label1 in
· · ·
jump_example1 label3 with

| label1 (* the jump to earlier label1 has the following loop (in)variants
*)
variant { $r18 }
invariant { · · · };

. . .

Listing 37: An example of how an AVR assembly implementation of 8 bits fibonacci
might look if modeled in Asm3 extended with support for jumps.
let macro avr_fib (n current : reg) (prev temp i : reg) (loop next_l : label)
requires { fib $n < 256 }
ensures { $current = fib $n }
jumps_to[next_l] { true }
=

clr current;
cpi n 0;
breq next_l;
clr prev;
inc current;
ldi i 2;
cp i n;
brsh next_l;
asm_label loop in
mov temp current;
add current prev;
mov prev temp;
inc i;
cp i n;
brlo loop with

| loop
variant { 255 - $i }
invariant { $n >= $i - 1 /\ $i > 2 }
invariant { $current = fib ($i - 1) }
invariant { $prev = fib ($i - 2) };

jmp next_l

Listing 38: WhyML code for which roughly the same proof goals would be generated
as for the Asm3 code from listing 37.
let byte_ref_fib (n: byte) (current prev temp i: ref byte) : unit
requires { fib n < 256 }
ensures { !current = fib n }
=

current := (0: byte); (* clr current *)
if not to_int n = 0 then begin (* cpi current 0; breq next_l *)

prev := (0: byte); (* clr prev *)
current := !current + (1: byte); (* inc current *)

65



i := (2: byte); (* ldi i 2 *)
if not to_int n < to_int !i then begin (* cpi i n; brsh next_l *)

temp := !current; (* mov temp current *)
current := !current + !prev; (* add current prev *)
prev := !temp; (* mov prev temp *)
i := !i + (1: byte); (* inc i *)
while to_int n >= to_int !i do (* cpi i n; brlo loop *)

variant { 255 - !i }
invariant { n >= !i - 1 /\ !i > 2 }
invariant { !current = fib (!i - 1) }
invariant { !prev = fib (!i - 2) }
temp := !current; (* mov temp current *)
current := !current + !prev; (* add current prev *)
prev := !temp; (* mov prev temp *)
i := !i + (1: byte); (* inc i *)

done
end

end
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