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Abstract

The standard approach to query processing in database systems is to optimize before
executing. When available statistics are accurate, optimization yields the optimal plan,
and execution is as quick as it can be. However, when queries become more complex,
the quality of statistics degrades, which leads to sub-optimal query plans, sometimes up
to several orders of magnitude worse. Improving statistics for these queries is infeasible
because the cardinality estimation error propagates exponentially through the plan. This
problem can be alleviated through re-optimization, which is to progressively optimize
the query, executing parts of the plan at a time, improving plan quality at the cost
of additional overhead. In this work, re-optimization is implemented and simulated
in DuckDB, a main-memory database system designed for analytical workloads, and
evaluated on the Join Order Benchmark. Total plan cost of the benchmark is reduced
by up to 44% using this method, and a reduction in end-to-end query latency of up to
20% is observed using only simple re-optimization schemes, showing the potential of this
approach.
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1 Introduction

1.1 Background

A database management system (DBMS) is a software system that enables
users to define, create, maintain and control access to a database (DB)
[1]. Tt is a highly complex and sophisticated piece of software of which
the core functionality is to provide its users the ability to store, retrieve,
and update data in the database. The data can be viewed at different
levels of abstraction. At the external level, which is the user’s view of
the database, implementation details are hidden. The internal level, the
physical implementation of the database, describes how the data is stored.
Between these is the conceptual level, which describes what data is stored,
and the relationships among the data.

1.1.1 Query Processing

Users interact with the database through a high-level query language, typ-
ically the standardized query language (SQL). Queries are processed into
a efficient query plan, expressed in a low-level language, before they are
executed to retrieve the required data. In general, a query is processed by
the following components:

Parser Transforms the query string into a parse tree representation

Logical Planner Converts the parse tree into a logical query plan, an
operator tree

Optimizer Translates the logical query plan into a logically equivalent,
more efficient query plan, by performing various optimizations

Physical Planner Converts the logical query plan into a physical query
plan that describes the physical operations that need to be performed
to execute the query (e.g. choosing between a nested loop join or a
hash join)
The physical plan will yield the user results when executed. Without a
doubt the optimizer is the most complex component. It has a difficult
task, and there are many possible optimizations that can be done, such
as expression rewriting, filter pushdown, and join order enumeration. The
problem of finding the optimal join order is NP-complete [2], and one of
the most studied problems in the field of database research.

Join Order Enumeration When a DBMS receives a query that addresses
multiple tables, it has to combine their rows through a join. Usually the
query contains join predicates, that specify how to combine the rows of the
queried tables. A join without a predicate is called a cartesian or cross join:
each row of a table is matched with each row of another table. Cross joining
tables T;,T; with cardinalities |T;|,|T}| results in a table with cardinality
|T; x T;| = |T;] - |T3]. An inner join combines rows based on a column



equality predicate: a row of a table is only matched with a row of another
table if the specified column is equal. The cardinality of join |T; Xa—p Tj]
depends on how many times 7;’s column a is equal to 7}’s column b, up to
|T;| - |T}| if columns a and b consist of the same, single value.

Suppose the logical planner has translated a query into a logical plan
that can be expressed as T7 X Ty X,—, T3. With only three input tables,
the plan space is small, and the optimizer only has to choose between two
alternatives: (77 X Ty) Xo—p T3 0r T1 X (T gy, Tg)ﬂ Larger intermediate
results translate into more work, therefore the second alternative, which
delays the cross join, is more efficient. This is perhaps the optimizer’s
most important task: to find the query plan with an optimal join order.
In the example it is easy to determine the optimal join order because the
entire search space can be searched. However, the join ordering problem is
NP-hard [2], therefore this task becomes infeasible as the number of input
tables grows.

Despite the complexity, even for large queries with difficult join predi-
cates, the search space can be fully examined with dynamic programming
and clever tricks. The DPhyp algorithm [3], for instance, models the query
graph as a hypergraph, which reducing the search space before searching for
the optimal plan. PostgreSQL, a open-source DBMS that is widely used in
the commercial world, does this for queries with less than 12 relations, then
switches to genetic algorithms for larger queries to efficiently approximate
the optimal plan. For bigger queries other techniques can be employed, e.g.
search space linearization, which allows optimal or near-optimal solutions
to be found for chain queries with up to 100 relations that have a linear
query graph [4].

Rsearchers have proposed to apply reinforcement learning to prevent the
optimizer from making the same mistakes when the same queries are repeat-
edly issued [5]. Preliminary results show that it matches or outperforms
the PostgreSQL optimizer. However, it takes many training iterations to
reach this level of performance. More fundamentally, such an approach is
likely to suffer from updates to the DB.

Cardinality Estimation In the example, the plan that minimizes the cardi-
nality of the intermediate results is considered optimal. This is an example
of a cost model. In general, a cost model assigns a cost to each database
operation, using the cardinalities of the tables as its principal input. The
objective is to choose the cheapest query plan, which should result in the
lowest runtime. However, the actual cardinalities of the intermediate tables
are not known until the plan is executed, therefore the optimizer relies on
cardinality estimation (CE). Theoretically, if the cost model and cardinality
estimates are accurate, the plan found by the dynamic programming algo-
rithm is optimal. In practice, optimizers are found to produce sub-optimal

1 Actually, there is a third alternative which cross joins the three tables, and then applies the filter
a = b, but this is trivially less efficient



query plans frequently.

Virtually all industrial-strength database systems estimate cardinalities
using histograms coupled with statistical assumptions of uniformity and
independence. This approach is simple to implement, computationally effi-
cient, and tends to work well for workloads found in standard benchmarks
for evaluating query engine performance such as those by the Transaction
Processing Performance Counciﬂ (TPC). The researchers at TUM point
out that TPC generates its data using the very same simplifying assump-
tions that most query optimizers make, while real-world datasets such as
IMDB are full of correlations and skewed data distributions. Therefore
they argue that while TPC benchmarks have proven their value for query
engine evaluation, they are not useful for evaluating the cardinality esti-
mation component of query optimizers.

In 2015, researchers at the Technical University Munich (TUM) intro-
duced the Join Order Benchmark (JOB), and used it to investigate the
quality of the main components of industrial-strength query optimizers [6].
The three main components of a query optimizer are the cardinality esti-
mation module, the cost model, and the join order enumeration technique.
A novel methodology was used to isolate the influence of each individual
component on query performance. JOB consists of 113 analytical SQL
queries over real data: the Internet Movie Databasdtj (IMDB). It has a
challenging, diverse, and realistic workload. Their experiments reveal that
the cost model has much less impact on query performance than cardinality
estimates. Simple cost models achieve similar performance to those used
in industrial-strength database systems, while cardinality misestimations
by a factor of 1000 or more were routinely observed in all tested systems.
Small errors are exacerbated by propagating exponentially through the
query plan [7], increasing the runtimes of the longest-running queries by
up to several orders of magnitude. Finally, they show that it is worthwhile
to fully examine the search space using dynamic programming rather than
using a heuristic approach, despite the large cardinality misestimations.

An alternative to histogram-based cardinality estimation is sampling.
By taking samples of the base tables, a probability distribution can be
computed over the selectivity of a predicate (the fraction of rows matching
the predicate). These distributions are multiplied to compute a distribu-
tion over the cardinality of the joined tables, instead of just a single point
estimate. This can be used to make the query optimization process more
robust, by avoiding plans that appear to have a slightly lower cost, but
carry a high risk of underestimation [8]. Sampling has been studied for
several decades, and although it produces much more accurate estimates,
it is rarely used in practice. One reason is that the many 1/O operations
required to take a sample cause too much overhead, especially in disk-based
systems. Nowadays, many databases reside in main memory, significantly

%http://www.tpc.org/
3http://www.imdb.com/
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reducing the amount of overhead, making sampling a more viable alterna-
tive as demonstrated on JOB [9]. Despite all of these reasons in favour
sampling, it is almost exclusively found in cutting-edge research database
systems such as HyPeif!] not yet in commercial systems. An approach that
uses machine learning poses another alternative to estimate cardinalities
on JOB [10]. It addresses some of the weak spots of sampling, but suffers
from generalization issues.

1.1.2 Re-Optimization

JOB has brought to light the weakest component in query optimization:
cardinality estimation. Since the benchmark’s inception, researchers have
worked on improving this component, and with some success. While im-
proving cardinality estimates will certainly improve runtime, another strat-
egy has been proposed that attempts to avoid or react to inefficient query
plans that were selected due to poor estimates, rather than facing the
problems with CE head-on. All of the methods discussed so far share the
same approach when it comes to query processing, which is to plan-first
execute-next. This is why problems with cardinality estimates arise. Even
when cardinality estimates become more accurate, small errors propagate
exponentially through the query plan, causing huge misestimations as the
number of joins increases, sometimes leading to disastrous plans, especially
in the presence of skewed and correlated data distributions.

A technique called re-optimization attempts to overcome this problem
by interleaving the planning and execution phases. It does this by exe-
cuting a portion of an optimized plan, measuring the true cardinalities,
and optimizing the plan again before continuing execution. A simple re-
optimization scheme was simulated on JOB, demonstrating that it can
improve the end-to-end latency of the top 20 longest running queries in the
benchmark by 27% in PostgreSQL [11]. Another big takeaway from this
research is that, without re-optimization not much improvement was ob-
served on this workload, even when perfect cardinality estimates for joins
of 3 or fewer tables were injected into the optimizer. When the cardinalities
of joins with 4 or fewer tables were injected, improvements were observed,
showing the challenge that CE must overcome to improve performance on

JOB.

1.2 Objectives

The aim of this research is to explore query re-optimization in more detail,
and evaluate its effectiveness in a practical setting, beyond simulation.
Based on experiments with a real-world dataset, conclusions are drawn
about re-optimization in order to help the field of query processing forward
in making the right steps forward in improving end-to-end query latency.

4https://hyper-db.de/
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The main objective of this research can be formulated as:

“To research query re-optimization schemes and evaluate their strengths
and weaknesses compared to the plan-first execute-next approach, in order
to expose problems with current query processing, and explore alternatives.”

1.3 Research Questions

To achieve the main objective, the following central research question is

defined:

“When do re-optimization schemes improve end-to-end latency, balanc-
ing the trade-off between increased planning and materialization cost, versus
the benefit of improving the query plan, and how to define such schemes?”

In order to answer the central question, the following sub questions are
defined:

1. What does it mean to re-optimize a query plan?

a. Which methods for re-optimization exist, and what do they aim
to do?

b. How can a query optimizer decide to re-optimize a plan effec-
tively?

2. How can re-optimization be implemented?

(a) If not implemented fully, can schemes be simulated? If so, is the
simulation realistic?

3. When does re-optimization improve end-to-end query latency?
a. How big is the trade-off between costs and benefits?
b. What is the difference between real and simulated schemes?

4. How does re-optimization make query processing robust against car-
dinality misestimations?

a. To what extent does it reduce plan cost?

Question 1 is aimed at gaining a greater understanding of the subject as a
whole, and question 2 is aimed at learning the internals of a DBMS. The
goal of questions 3 and 4 is to obtain quantitative evidence on the effects
of re-optimization.



1.4 Structure

An overview of related work as well as a theoretical framework can be found
in [section 2] This is where question 1 is answered: through studying both
the history of query processing, as well as literature on re-optimization.
Question 1b differs per DBMS, therefore the answers found in literature will
differ from what is presented here. Section [3| explains how re-optimization
is implemented in this work, and is where question 2 is answered. This
section also introduces various re-optimization schemes, and goes into the
setup of the experiments. The next section, [section 4} presents the results of
the experiments. These are discussed in [section 5 where questions 3 and
4 are answered. In the same section, question 2b is revisited, to answer
the second part of the question. Finally, the central research question is

answered in [section 6 Additional results can be found in the appendices.



2 Theory

This chapter reviews the history and background of developments in the
field of query processing and re-optimization (section 2.1)), which forms the
basis of a theoretical framework (section 2.2]).

2.1 Related Work

Many research papers on query processing and optimization focus on the
industry standard benchmarks by TPC. As explained in the introduction,
these are not appropriate for evaluating the CE component of optimiz-
ers, because simple estimators work unrealistically well on them. Re-
optimization pays off more when cardinalities are difficult to predict. The
oversimplified benchmarks, and the fact that modern query execution en-
gines incorporate new technologies that make implementing re-optimization
more complex together may provide the reason why most of the research
on re-optimization was conducted over a decade ago, despite interesting
ideas [12], and calls to change the execution model that is prevalent today
[13].

2.1.1 Optimization

Before SQL and relational databases were the norm, querying a DB was
more challenging. Users had to define how their query was to be exe-
cuted, and the difference between a well- and poorly optimized query was
huge. SQL is a high level query- and data manipulation language, in which
requests are stated non-procedurally, without reference to access paths, de-
signed for a relational database management system. This implies that the
optimization challenge is left to the DBMS. The first implementation of
SQL was IBM System R. Many of its design choices influenced later rela-
tional systems and still hold up to this day, notably the decision to optimize
a query at compile time using dynamic programming, as described by one
of IBM’s influential publications [14].

For a while, most of the research on optimization focused on this plan-
first execute-next approach. In these years it became clear that many of
the assumptions that were made during planning do not hold up during
execution, leading to sub-optimal plans. This lead to the development of
new techniques that attempt to deal with such limitations by changing
the plan at some point during query processing. These are referred to as
adaptive, dynamic or re-optimization approaches, but often mean different
things. In this section, from onward, these approaches are
discussed.

10
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Figure 1: A dynamic query evaluation plan in Volcano.

2.1.2 Volcano Model

Before going into re-optimization, background information is discussed to
understand how the evaluation of a query plan is modelled. The Volcano
Model [15] describes what is now known as the ‘classical’ evaluation strategy
of a query. It is still influential to date, with many modern databases
implementing a variant of this model.

Tuple Streams Formerly known as the Iterator Model, the Volcano Model
implements operators using an interface that produces an iterable stream of
tuples, using the open-next-close protocol. Queries are expressed as query
plans in which the operators are executable processing algorithms. When
next is called on the root of a query plan, the operator tree is propagated
recursively, calling nezt on its children until a tuple can be produced at the
root. This entails that tuples can flow freely through the plan as if it were a
pipeline i.e. operators do not need to process all input tuples before being
able to output them. That is, unless the operator is said to be blocking. An
example of this is the MAX operator: one cannot be sure of the maximum
value until all tuples are processed.

Choose-Plan If a query evaluation evaluation plan is used repeatedly over
an extended period of time, while the underlying data changes, the assump-
tions that were made when the plan was optimized lose their validity, which
could cause the plan to be sub-optimal. At this point the plan should be
re-optimized. Note that this is a different kind of re-optimization than in
the introduction: re-optimization takes place between queries, rather than
mid-query. To enable this, Volcano includes the choose-plan meta-operator
that allows delaying optimization decisions until run-time, which creates
a dynamic query evaluation plan. This can avoid a costly re-optimization
of the plan as follows: consider the query plan shown in [Figure 1 The
choose-plan operator decides at run-time, based on some policy, to join
tables T1, Ty using a hash join (hj) or a nested loop join (nlj), rather than
having a static join method that is chosen during optimization.

The choose-plan operator could be used to change the join order of a
query plan, but only if its children are logically equivalent plans with dif-

11



ferent pre-defined join orders. As mentioned in the introduction, join order
enumeration is NP-hard, therefore it is infeasible to include all the different
join orders using choose-plan operators. The query plan is dynamic, but
the alternatives are planned before execution. Clearly, this differs from the
plan-first execute next approach, but it does not offer a lot of flexibility,
especially for complex queries with many joins.

2.1.3 Distributed Databases

The limitations of static query processing approaches are especially notice-
able in distributed database systems, due to the fluctuating characteristics
of resources. Therefore, adaptive approaches have gained significant atten-
tion in this field.

Initial Delay Query scrambling |16], |17] attempts to deal with unexpected
delays in accessing remote sources, using two methods called rescheduling,
and operator synthesis. Rescheduling does not alter the query plan, but
rather the order of execution. For example, consider the bushy query plan
qpy that jOiIlS tables T1_5I qpy = (T1 X Tg) X (Tg X <T4 X T5)) If
processing starts at Ty X 75, but there is a big delay in accessing T,
the result of T, x Tj is materialized in a temporary table, and T
T, is processed while waiting for the delay. If no progress can be made
anymore using this method, operator synthesis is invoked, which creates
new operators (e.g. a join between two relations that were not directly
joined in the original plan), significantly modifying the shape of the plan.
Introducing new operators will likely increase the overall cost, but allows
processing to continue instead of waiting.

The first method works best on bushy trees, which could have many
sub-trees that can be processed as is, independent of other nodes in the
tree. However, optimizers often produce linear trees (left-deep, right-deep,
or zig-zag) that do not have sub-trees that can be processed independently.
For example, a reordering of query plan ¢p, could lead to a left-deep plan
gp =Ty % (Ty, x (T3 x (Ty x T5))), which is logically equivalent to the
bushy one, but has only one sub-tree (7, x T5) that can be processed as
is, therefore no progress can be made using rescheduling.

Continuous Adaptation An influential paper in this field is Eddies [18].
It describe a query processing mechanism that continuously reorders op-
erators in a query plan as it runs. This is achieved by merging multiple
unary and binary operators into a single n-ary operator (an eddy), wherein
each tuple has a flexible ordering of the query operators. Eddies imple-
ment Volcano’s open-next-close protocol. Suppose an eddy performs the
join Ty ™ Ty ™ T3 x Ty. Tables T;_4 come from different sources, and all
have different initial delays and different bandwidths, possibly also varying
over the course of execution. If the join order was chosen statically based

12



on cardinality estimates, e.g. T} ™ (Ty X (T3 x T})), but data source T,
has a low bandwidth, we encounter a synchronization barrier: processing
cannot continue until all of T3 x T} is finished. Eddies solve this problem
by allowing each tuple that they have to process to be routed individu-
ally through its operators, such that joins 77,75, T3 can be processed while
waiting for data from Ty to arrive.

Eddies are not only able to reorder joins mid-execution, which is an
example of logical plan re-optimization, they are also able to adaptively
change the behaviour of join algorithms. They have chosen specifically for
non-blocking join algorithms that have many moments of symmetry that
allow the left and right sides of the join to be swapped during execution.
This adaptation pertains to the physical operator, therefore this is an ex-
ample of physical plan re-optimization.

Limitations The methods discussed in this section are able to change the
query plan mid-execution, partly by means of a flexible join order. It would
that these could alleviate the join ordering problem that was introduced
in the previous section, but they suffer from the same limitations, because
they are aimed so specifically at the distributed database setting. Their
flexibility deals with lack of certainty in delay and throughput, misesti-
mated cardinalities not as much. The initial query still plan heavily influ-
ences the join order, which is based on cardinality estimates. Neither offers
a complete reordering of the join operators in a plan, therefore neither are
suitable for the CE problem.

2.1.4 Mid-Query Re-Optimization

The first work on re-optimization that allows for a complete reordering
of joins dates back to 1998 [19]. The authors state that optimizers of-
ten produce sub-optimal query plans due to out-of-date statistics and ex-
ponential error propagation, but also due to filter predicates correlation,
causing histogram-based approaches to be inaccuratd’] Furthermore, fil-
ter predicates may be fuzzy (e.g. the SQL LIKE operator), or contain a
user-defined function, in which case there is no way for the DBMS to (ac-
curately) estimate selectivity. They the dynamic re-optimization algorithm
that, through collecting statistics, detects sub-optimalities during execution
and attempts to correct them.

Statistics Collection Sub-optimalities are detected by inserting a statistics
collector operator at key points in the query plan. An example is given in
[Figure 2| After the filter on 77, the selectivity, but also statistics about at-
tributes that appear in predicates in the remainder of the plan (T}.as, T7.a3)
are collected. If the collected statistics indicate that the current query plan

5The authors specifically separate experiments on the TPC-D benchmark from experiments on
skewed datasets

13
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Figure 2: A plan with run-time statistics collection, adapted from Kabra & DeWitt [19].

is sub-optimal, the remainder of the plan is re-optimized , incurring a small
cost. Re-optimization possibilities include reordering joins, changing join
strategy, or swapping the left and right sides of a join.

Trade-Off There is a trade-off between gaining information and improving
the query plan versus letting the execution plan run its course. Dynamic
re-optimization has two parameters can be set to define a policy that weighs
up the costs and benefits. The authors chose to materialize the intermediate
result as a temporary table, which is easier to implement than suspending
the query, but incurs slightly more cost due to I/O. Nonetheless, a sig-
nificant improvement in execution time was achieved for complex queries.
Note that this could unnecessarily slow down simple queries for which the
additional overhead of re-optimizing is large compared to the already low
of the plan.

POP In practice, dynamic re-optimization only speeds up processing by
re-optimizing hash joins (most hash join implementations are blocking, and
need to be fully materialized anyway), and only if query results were not
pipelined. Researchers at IBM raised these problems and improved on the
approach with progressive query optimization (POP) [20], claiming to be
more generally applicable. They define CHECK operators, checkpoints
that collect statistics much like the statistics collector operator (although
only cardinality was measured in their experiments). CHECK additionally
has a check range parameter that succeeds when the measured cardinal-
ity is within a certain range. The range is determined during join order
enumeration, and is set such the remaining plan at the checkpoint is guar-
anteed to be sub-optimal with respect to the optimizer’s cost model when
CHECK fails. They also observe that intermediate results should not al-
ways be reused: continuing execution from a sub-optimal initial choice of
join order could incur more cost than restarting from scratch. The speedup

14



of this approach on a real-world dataset was much more significant than
on the TPC-H benchmark.

2.1.5 Avoiding Risks

Generally speaking, cardinality estimates are rough, uncertain, single-point
estimates. Cardinality is usually estimated using histograms, in which the
attribute value independence (AVI) assumption is used, which rarely holds
up in practice due to the correlations present in real-world data. These
estimates are the principal input of the cost model, which treats them as
precise and accurate. The optimizer selects the plan with the lowest cost,
as determined by this model. An important quality of the estimates is
overlooked, namely their certainty.

Robust Plans Babcock & Chaudhuri propose Robust Cardinality Estima-
tion (RCE) [8], a trade-off between predictability and performance. Their
method combines sampling and Bayesian inference to compute a proba-
bility distribution over the possible selectivities. A confidence threshold T
parameter can be set, which specifies the percentile value of the distribu-
tion to take as input for the cost model. Taking [Figure 3 as an example,
setting the confidence threshold to T'= 50% (equal to the expected value)
will cause the optimizer to select Plan 1. However, the cost of Plan 1 grows
drastically as the selectivity of the query increases: it is a risky plan. By in-
creasing the confidence threshold, e.g. T = 80%, Plan 2 is selected, which
has a higher expected cost, but is much more robust to an unexpected
change in selectivity.

By selecting robust plans over (seemingly) optimal plans with regard to
the cost model, more predictable query times can be achieved, at the cost an
overhead incurred by sampling. The authors claim that their method avoids
degradation in estimation quality due to the propagation of estimation
errors. However, this is only true for estimates on selectivities on the base
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Figure 3: Two Hypothetical Plans, adapted from from Babcock & Chaudhuri [8].
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tables, because they do not consider techniques that join random samples.
Errors in join cardinality estimation propagate through the remainder of
the plan. Therefore, error propagation is still a real issue for RCE.

Robust Re-Optimization Re-optimization could benefit from from RCE:
robust plans are less likely to be sub-optimal, therefore incurring the cost
of re-optimization is less often needed. The authors of Rio [21], a Proactive
Re-Optimization approach, recognize this and combine the ideas of robust-
ness and re-optimization. Rio computes bounding boxes around the size of
relations, similar to the CHECK operator in POP. These bounding boxes
are considered when selecting the plan, like in RCE, yielding more robust
plans. When there are multiple close-to-optimal plans, a switchable plan
is created, like the choose-plan operator in Volcano.

Whereas the re-optimization approaches discussed so far are reactive,
Rio also has a proactive component. As an example, assume that a check
on the selectivity o of a filter operation fails when 25% of the records in
relation R are read. Re-optimization is triggered, a new plan is created,
with a new bounding box. The check on the new bounding box might fail
when 80% of the records in R are read, triggering re-optimization again.
This is costly, and will lead to slow processing. Rio deals with this problem
by treating the records that are read so far as a sample, and extrapolating
the selectivity of the filter operation to the remainder of the records. This
way the re-optimization mechanism is given an estimate of an operator’s
selectivity before it has finished processing. However, extrapolation is done
under the assumption that tuples in R are randomly ordered, which is
questionable.

2.1.6 Re-Optimization Revisited

After being largely ignored for over a decade, the introduction of JOB has
sparked new interest in re-optimization. Rather than fully implementing re-
optimization, researchers simulated its effects in PostgreSQL [11], by using
the CREATE TEMPORARY TABLE to materialize intermediate results. Materi-
alization is triggered when the Q-error, the factor by which the estimated
cardinality of an intermediate table is larger or smaller the actual cardi-
nality, is greater than a threshold. Total planning time was measured by
summing the planning time of the original query, and all generated SELECT
queries. Total execution time was measured by summing the execution time
of each CREATE TEMPORARY TABLE command and the final SELECT query,
excluding parsing and optimization time (in most graphs/tables). The re-
searchers believe that this is a reasonable approximation of a simplistic
re-optimization scheme.
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Re-Optimization vs. CE The effects of this scheme were compared to the
effects of improved cardinality estimation, by injecting the true cardinal-
ities of up to n joins or fewer into the optimizer. This showed that re-
optimization improves end-to-end latency of the 20 longest running queries
in JOB just as much as having perfect cardinality estimates for joins of up
to 4 tables. Many short queries saw a large relative increase in runtime,
but this is negligible when looking at the absolute increase, and can be
avoided with a more sophisticated re-optimization scheme. Combining re-
optimization with perfect cardinality estimates of joins with up to 4 tables
continued to reduce execution time, but only slightly.

The speedup on JOB with perfect cardinality estimates for joins of up
to 4 tables is comparable to that of the simple simulated re-optimization
scheme. Estimated cardinality perfectly for joins with this many tables
is a difficult challenge. With clever sampling techniques plan quality on
JOB can be improved significantly [9], if foreign key indices are available.
However, due to the way the results are presented (geometric rather than
arithmetic mean, relative rather than true runtimes), it is hard to judge
what the total speedup on the benchmark is. The findings of the cardi-
nality injection experiment suggest that sampling improves queries with a
small number of joins much more than a large number of joins; exponen-
tial error propagation continues to be a problem Given these observations,
re-optimization is likely to lead to the biggest gains in end-to-end latency,
rather than improving CE.

2.2 Theoretical Framework

The field of data management has evolved to consider increasingly com-
plex queries, for which traditional statistics-based cardinality estimation
techniques fall short due to exponential error propagation [7]. Query op-
timizers rely on these estimates to select the optimal query plan. Inaccu-
rate estimates can lead to a significant degradation of performance, and
it has been acknowledged that this happens often in practice [6]. Dis-
tributed database systems ran into similar issues due to statistics being
less available, and due to data coming from remote sources being delayed,
for which adaptive approaches have been deployed successfully [16]-[1§].
In the non-distributed setting, research has focused on other ways to im-
prove processing speeds, e.g. by increasing bandwidth through switching
to columnar rather than row storage to increas pipeline throughput, faster
(de)compression [22], automatic parameter configuration based on CPU
characteristics, and sampling-based cardinality estimation [8], [9].

These developments have significantly reduced query latency, but have
not addressed the problem of exponential error propagation in cardinal-
ity estimates. Since the introduction of JOB [6], shortcomings in query
optimization gained more attention, but most of the research has been
confined to the plan-first execute-next paradigm [5], [9], [10]. One piece of
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work has shown with a simulation experiment that a simple re-optimization
scheme can already yield better results on JOB in PostgreSQL [11]. Re-
optimization requires materialization of intermediate results, which would
usually be too expensive in a disk-based DBMS like PostgreSQL, but the
researchers configured the system to cache all tables in memory. The simu-
lation experiment showed improvement especially for long-running queries.
Many of the adaptive techniques were proposed over a decade ago [19]-[21],
but none of the widely-used database systems have adopted them, despite
the increasing need to evaluate complex queries. Since then, hardware has
evolved, and main-memory database systems have gained traction. In these
systems, the cost of reading and writing tables is less, therefore material-
ization is cheaper, which makes a strong case for re-optimization.

These observations indicate that there is likely much to be gained from
re-optimization. Exploratory research is needed in order to determine its
strengths and limitations in different settings:

1. Row vs. Column storage
2. Disk-based vs. Main-memory
3. Volcano-style vs. Other execution models

Throughout the rest of this thesis, the term re-optimization refers to the
style of approach described by Dynamic Re-Optimization and POP, in
which statistics of intermediate results are measured and used to re-optimize
the remaining plan. A simple example is sketched in[Figure 4, Re-optimization
is evaluated in DuckDB, a main-memory DBMS that uses column storage
and has a Volcano-style execution model, in order to answer the research
questions posed in the previous section. Many of the findings presented in
this work will pertain only to this setting, with some exceptions.

X X X
N VRN N
X X M X T3 X
/ N\ / N\ / N\ / N\
T Tz Ty s Ty M T
(a) Initial plan (b) Plan with a material- (¢) Re-optimized plan

ized intermediate result

Figure 4: An example of re-optimization where a join in the initial plan (a), Ty x 75, is
materialized into a temporary table M (b). Based on the measured statistics of M, the
decision to re-optimize the remaining plan is made, resulting in a different join order

().
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3 Approach

This section introduces various re-optimization schemes, as well as describ-
ing implementation details and experimental setup.

3.1 Implementation

The first step in this research has been to implement re-optimization in
DuckDB 23], a novel DBMS in development by the Database Architectures
group of the Centrum Wiskunde & Informatica in Amsterdam. DuckDB
has been designed to execute analytical SQL queries while embedded in an-
other process e.g. interactive data analysis using tools such as R or Python.
DuckDB is written in C++4-, operates in main-memory, uses columnar stor-
age, and executes queries in a so-called Vector-Volcano model, pulling
chunks at a time, rather than tuples. Due to the early stage of devel-
opment, DuckDB does not yet keep track of table statistics, and lacks a
CFE module.

As remarked by Perron et al. |11], modern query execution engines
have different storage and execution models than a decade ago when re-
optimization was more actively researched, making the issue more com-
plex. DuckDB is a good example of this, but was created with a plan-
first execute-next model of query execution in mind, not re-optimization.
Therefore, a distinction has to be made between the implementation of
re-optimization in DuckDB, and a simulation of its performance were it
created with re-optimization in mind. Both approaches require roughly
the same components.

3.1.1 General Design

Re-optimization is a constant back and forth between executing parts of the
logical plan, measuring statistics, and evaluating whether to re-optimize the
remainder of the plan. DuckDB executes the physical plan in a pipelined
query engine, which cannot easily be suspended. Therefore, the decision
was made to manipulate only the logical query plan and execute parts of
it. Re-optimization can be realized in this paradigm if the following three
operations can be carried out:

1. Select a node in the logical plan
2. Materialize the selected node as a table
3. Replace the selected node with the table

By repeating these steps in order, a query plan can be incrementally exe-
cuted. The implementation of each operation is discussed in detailf|

6The implementation is publicly available at: https://github.com/lnkuiper/duckdb
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Node Selection A node is selected by traversing the operator tree of the
logical query plan. The choice of node depends on the re-optimization
scheme (see [section 3.2). It is important to select operators for which it is
difficult to estimate cardinality (aggregate, join, distinct, and filter), rather
than those for which it is trivial (project, sort, get, etc.). Without issuing
any queries, the only information available in DuckDB about nodes in the
query plan is the structure of the operator tree, the parameters of the
operators, as well as the types and cardinalities of the base tables at the
leaves of the tree.

Intermediate Result Materialization Parameters are extracted from the
operator tree T’ with the selected node as the root node. Using these
parameters, a SQL query Q7 that yields a logically equivalent plan to 7"
is constructed. The node is materialized into a temporary table by issuing
the query CREATE TEMPORARY TABLE AS ((Q)7);. Within the parameters,
tables and columns are referred to by column bindings. These bindings are
unique to each plan, consisting of a tuple of (table index, column index),
assigned at the leaf nodes of the plan by the table scan operator. Because
column bindings cannot be used in a SQL query, these must be mapped
back to their original names.

The cost of writing intermediate results to a table are expensive, there-
fore care must be taken as to not materialize more columns than needed.
Only the columns that are used in the remainder of the plan (excluding
the selected node) should be materialized. This information is collected by
recursing through the logical operator tree and keeping track of occurrences
of column bindings.

Node Replacement The selected node is replaced with a table scan op-
erator on the materialized result. Replacing one operator with another is
trivial, but requires modifications to the remainder of the plan. Because
the table scan operator is tasked with assigning column bindings, the ma-
terialized node receives different bindings. All references to the original
column bindings in the remaining plan must be replaced with the new
column bindings.

3.1.2 Procedure

Using the described components, re-optimization is defined in [algorithm 1]
The re-optimization module obtains the plan after it has been parsed,
planned, and optimized. In the following section, re-optimization schemes
are explained by means of this procedure.
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Algorithm 1 Re-optimization algorithm.

1: procedure REOPTIMIZE(p) > Input: optimized logical plan p
2 while — Materialized(p) do

3 n < SelectNode(p) > Selection depends on scheme
4: t + MaterializeNode(n)

5: p.ReplaceNode(n, t)

6 if DecideOptimize(p, n,t) then > Decision depends on scheme
7 p < Optimize(p)

8 end if

9 end while

10: return p > Fully materialized plan
11: end procedure

3.2 Re-Optimization Schemes

Two types of re-optimization schemes are considered. Real schemes have
been implemented into DuckDB, and follow the steps infalgorithm 1} Simu-
lated schemes are simulations of schemes that would be possible if DuckDB
could be suspended mid-execution.

3.2.1 Real Schemes

Schemes introduced in this section allow for basic analysis of the benefits
and costs of re-optimization. Join ordering cannot be optimized when there
is only one join in the remaining plan. Therefore, none of these schemes
will choose to materialize a join that leaves the remaining plan with only
one join.

Baseline The baseline scheme is to not re-optimize, equivalent to selecting
the root node for materialization, no additional optimization, ending the
procedure after 1 iteration. This is DuckDB’s regular mode of operation,
using the classical plan-first execute-next approach.

Filters Only This scheme selects Filter operation nodes to materialize un-
til there are none left. The plan is optimized once after all Filter nodes
have been materialized. Then, the root node is selected for materialization,
ending the procedure after f+ 1 iterations, where f is the number of filters
in the plan.

N-Join For N € 2,...., N-Join selects nodes that join NV tables at a time.
Note that for N > 2, e.g. N = 3 it is not always possible to find a node
that joins exactly 3 tables, as shown in [Figure 5| In this case the algorithm
chooses the node that joins the smallest number of tables greater than N.
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Figure 5: A plan in which there is no join possible between 3 tables.

One Step This scheme starts the same as Filters Only, but after the Filter
nodes have been exhausted and the plan is optimized, it selects Join nodes
that combine only two tables at a time, optimizing after each join. This
continues until three tables are left, at which point the root node is selected,
ending the procedure in f 4t — 2 iterations, where ¢ is the number of base
tables in the plan.

Smart Step The error in the estimated cardinality of a certain node in
the query plan is the product of the errors of its children times the error of
that node. Errors in cardinality estimation occur only in nodes that require
estimation, which are in aggregate, join, distinct, and filter operations.
Assuming a constant error rate e, the error rate of a node v is €" where n is
the number of aggregate, join, distinct, and filter operations in the sub-tree
with v as the root node.

The join, being a binary operator, is interesting because its error rate
combines that of its children. Therefore, join nodes with large subtrees
as children form a large risk, because their error rate has a high exponent.
Smart Step searches for the join node with the smallest error rate exponent
n > N, where N is a parameter, and selects its child with the largest error
rate exponent for materialization. With this selection a moderate risk is
taken, rather a large one. An example with parameter N = 3 is given in

RN !

1 .

Figure 6: Logical plan with error annotated error rate exponent. Smart Step with N = 3
searches for the join node with smallest exponent greater than 3, finding 4. Its child
with the largest exponent is then chosen for materialization, which is .
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3.2.2 Simulated Schemes

A DBMS that is able to suspend its execution can select a node to materi-
alize not before, but rather during execution. This can be simulated using
of the components described in [section 3.1.1] Simulation causes additional
overhead that would not be there were this a true implementation. This

overhead is not added to the total query time, explained in [section 3.3.1}|
Simulated re-optimization schemes are defined by means of

Algorithm 2 Simulated re-optimization algorithm.

1: procedure SIMULATEREOPTIMIZE(p) > Input: optimized logical plan p
2 while — Materialized(p) do

3 for n in p do > Loop from leaf nodes to root
4: n.cardinality < TrueCardinality(n) > Inject measured cardinality
5: if DecideMaterialize(p,n) then > Decision depends on scheme
6 break

7 end if

8 end for

9: t + MaterializeNode(n) > Final n before loop was broken
10: p.ReplaceNode(n, t)

11: p < Optimize(p,n) > Always optimize: decision is already made at line 5
12: end while

13: return p > Fully materialized plan

14: end procedure

Cardinality Q-Error This scheme defines the DecideMaterialize(p,n)
function to yield true when the the g-error between the estimated and
measured cardinality of a node exceeds a threshold value T', otherwise false.
This corresponds to the simulated re-optimization procedure described by
Perron et al. |11].

Cost Q-Error A large g-error in cardinality estimation does not always
indicate a sub-optimal query plan, as demonstrated in [Figure 71 In theory,
if the cost of the remaining plan does not change much given the measured
cardinality, the remaining plan should theoretically run for as long as it
was expected to. This scheme defines DecideMaterialize(p,n) to yield
true when the g-error between the cost of the remaining plan with the
estimated cardinality of node n and the cost of the remaining plan with
the true cardinality of node n exceeds a threshold value 7', false otherwise.
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Figure 7: An example of a plan where a large g-error in cardinality does not indicate
a sub-optimal query plan. The estimate for o is off by orders of magnitude, but o still
much smaller than 77, and therefore should be joined with T5 first to keep intermediate
results small.

3.3 Experimental Setup

This section describes the setup employed in the experiments of this re-
search.

3.3.1 Query Latency

The duration of the planning and execution phases, time to write materi-
alized results to a table, as well as the duration of re-optimization ‘tooling’
(e.g. fixing column bindings after replacing a node in the plan) and simula-
tion overhead were recorded using DuckDB’s PRAGMA enable _profiling;
statement. The following steps were performed five times to measure an
average:

1. Connect to a fresh in-memory database
2. Initialize tables
3. Execute query

The database was initialized for each query because executing the same
query multiple times in a row can cause a speedup due to data being ‘hot’:
residing in cache rather than main memory.

Re-Optimization For the real schemes the total query time is measured
as the total end-to-end latency. This is split up into three query profiling
categories:

1. Planning
e Initial planning time
e Sub-query planning time
e Re-optimization tooling

e Additional calls to Optimize
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2. Execution

e Sub-query execution time

e Root node execution time (after sub-queries are done)
3. 1/0
e Time to write materialized result to table

I/O profiling was measured differently from the other categories, because
DuckDB’s query profiler does not explicitly measure it. It was observed
that for queries that create a table, the total time of a query is not fully
covered by the phases that the profiler measures. This excess is assumed
to be the cost of writing data to a table. This assumption is verified in
lsection 4.3

Some unnecessary overhead is incurred by planning sub-queries. This is
added to the total to illustrate the difference between the real implemen-
tation and the simulation.

Simulated Re-Optimization For simulated schemes the same three profil-
ing categories are measured. Sub-query planning time is taken out of the
equation for these.

3.3.2 Plan Cost

The cost model that DuckDB uses to optimize join order is simple. Given
a join tree T', the cost function C' is defined as

C(T) = 0 if T is a leaf node
NI+ C(M)+C(T) T =Ty xTy,

In short, the cost model sums up the size of (intermediate) results, and
ignores the cost of single relations as they have to be read anyway. The
rationale is that larger intermediate results cause more work.

According to the cost model, the cost of a logical query plan is obtained
by looping over its join nodes, and summing over their cardinalities. Node
cardinalities are obtained by converting each one to a query, and executing
SELECT COUNT(*) FROM (<query>);. The cost of a re-optimized plan is
obtained by treating each selected node as a logical plan, computing its
cost, and adding it to a total.
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3.3.3 Benchmark

Query profiling and plan cost experiments are performed on the Join Order

Benchmark (JOB) [6].

Join Order Benchmark This benchmark was introduced in 2015 by Leis et
al. [6], and consists of 113 multi-join queries on a real-world dataset. The
query set consists of 33 query structures, consisting of one select-project-
join block, each with 2-6 variants. JOB is designed to test the cardinality
estimation component of query optimizers, specifically to find a good join
order. Each query has between 3 and 16 joins, with an average of 8.

3.3.4 Hardware
All experiments were carried out on a server machine provided by Spinque
B.V[] with the following specifications:

CPU Intel Xeon E5-1650 v4 @ 3.60GHz

Memory Kingston 32GB DDR4 @ 2400MHz (x4)

DuckDB operates on a single thread, because it does not (yet) support
intra-query parallelism. Having 128GB of memory is more than enough for
JOB, therefore swapping is not an issue.

"https://www.spinque.com/
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4 Results

This section reports the results of the query profiling and plan cost exper-
iments, and some ad hoc analysis. Section [5| gives thorough analysis.

4.1 Query Latency

For each scheme, only the results of the most successful parameter config-
uration in terms of overall benchmark run-time are shown in the figures in

this section. The complete results can be found in

Per Query The latency per query is shown in [Figure 8| Queries are sorted
by their latency in baseline DuckDB, with longer running queries appearing

at the right side of the bar plot. Query runtime has a rather large range
without re-optimization; some queries take a fraction of a second, and
others take multiple seconds. Re-optimization schemes seem to have a
more consistent query runtime.

The best overall performance is Cardinality Q-Error, the simulated
scheme by Perron et al. . Multiple parameter configurations were tried
(see [Appendix A)), but the same threshold value (N = 32) was found to
be optimal. The other simulated scheme, Cost Q-Error, did not perform
nearly as well. This is likely due to the interaction between the underde-
veloped cardinality estimation and the cost model. The interaction causes
big differences in estimated and measured cardinality to not alter the cost
of the remaining plan by much in many cases. But even if these compo-
nents were fully developed, this scheme is not guaranteed to succeed, as
remarked by Perron et al. “To arrive at a plan near optimal, all catas-
trophic plans must have higher costs than a good plan. This is difficult to
guarantee when improving only a subset of cardinality estimates.”.
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Figure 8: JOB end-to-end latency by query comparison of baseline DuckDB with re-
optimization schemes.
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4.1.1 Profiling

The overall performance on JOB with aggregated query profiling is shown
in Profiling is split into three sections: execution, planning and
I/O. Execution is measured as the time to process the data through the
query plan. Planning is measured as the time to generate and optimize a
query plan. I/O is measured as the time to write intermediate results to
temporary tables. Even though DuckDB is a main-memory DBMS, 1/0 is
still a factor. Writing data to memory is much cheaper than to disk, but
not negligible, especially for schemes that materialize more often, such as
One Step.

Baseline
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One Step

1-Join
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N E ti
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Filters Only

Smart Step (N=3)

Cardinality Q-Error (T=32)
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Profiling Time (s)
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Figure 9: JOB query profiling of baseline DuckDB compared with re-optimization
schemes.

Longest vs. Shortest Queries Query profiling of the 20 shortest and 20
longest running queries are shown in |[Figure 10| and |[Figure 11| respectively.
Baseline DuckDB performs better than re-optimization on queries that take
shorter to complete. Execution time is increased, as well as the additional
overhead of planning and I/0O. Re-optimization schemes that materialize
less often perform better on these queries.

For queries that take longer to complete, re-optimization pulls ahead.
Schemes that materialize more often perform best. Execution time is re-
duced, and the additional overhead of planning and I/O is not as significant
because execution time dominates. The Cardinality Q-Error simulation
performs only slightly better than the simple One Step and 1-Join schemes.
The flexibility of being able to adjust more often pays off for longer queries,
which was definitely not the case for shorter queries.
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Figure 10: JOB query profiling of the 20 shortest queries in baseline DuckDB compared
with re-optimization schemes.
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Figure 11: JOB query profiling of the 20 longest queries in baseline DuckDB compared
with re-optimization schemes.

The difference in results between the longest and shortest queries raises
the question how re-optimization performs on the ‘average’ query. By leav-
ing out the longest- and shortest 20 queries (removing ‘outliers’), a work-
load with 73 average queries remains. Results on this subset of queries is
shown in [Figure 12| There is less difference in performance between the
schemes on this subset, and baseline DuckDB performs quite well. Cardi-
nality Q-Error comes out on top.

The difference in performance between the different subsets of queries
shows that no single scheme performs well in every setting. Creating a
scheme that is able to perform well on a wide variety of workloads, perhaps
parameterized, is a difficult challenge, and an interesting subject of future
work.
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Figure 12: JOB query profiling of all queries except the longest- and shortest 20 in
baseline DuckDB compared with re-optimization schemes.

4.2 Plan Cost

For each scheme, only the results of the most successful parameter config-
uration in terms of overall benchmark run-time are shown in the tables in

this section. The complete results can be found in

Relative Cost The cost of generated query plans was compared to the
lowest-cost plan that was found by at least one scheme. The percentage of
queries falling in a relative cost range are shown in [Table 1

Despite having poor CE as its principal input, DuckDB’s optimizer chose
query plans with a much lower cost than re-optimization schemes several
times. One reason for this is that cardinality estimates, even when they are
inaccurate, can capture approximately the right cardinality ratio between
relations, causing an efficient join order to be chosen. As intermediate
results are materialized, their actual cardinality is measured, which can
lead to a re-optimization that chooses a different, sub-optimal query plan.
As such, re-optimization schemes were observed to pick plans with over 10
times the cost of the lowest-cost plan that was found at about the same
rate as baseline DuckDB.

Total Cost Re-optimization schemes can lower the cost of JOB signifi-
cantly, shown in Baseline DuckDB has a higher overall cost than
any re-optimization scheme. These results are in line with with
the exception of Smart Step with parameter N = 3, which has the same
cost as baseline, while it reduces runtime the most out of the real schemes.
One explanation could be that while join order is not much better, choice
of join strategy is improved. Smart Step, by materializing the child of a
‘risky’ join, allows the optimizer to make more informed decisions for these
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Table 1: Percentage of queries with a relative execution plan cost compared to the
lowest-cost plan that was found by at least one scheme.

Scheme |<1.2 | [1.2,15) | 1.5,2) | [2,5) | [5,10) | > 10
Baseline 48.7% 15.0% | 14.2% | 11.5% 3.5% | 7.1%
Filters Only 66.4% 11.5% 8.8% 5.3% 0.9% | 7.1%
One Step 73.5% 6.2% 6.2% 8.8% 0.0% | 5.3%
1-Join 62.8% 8.0% 8.8% | 12.4% 0.9% | 7.1%
Smart Step (N=3) 48.7% 15.0% 13.3% | 10.6% 2.7% | 9.7%
Cardinality Q-Error (T=32) [71.7% 4.4% 9.7% | 8.8% 0.9% | 4.4%
Cost Q-Error (T=20%) 65.5% 15.9% 71% | 3.5% 0.9% | 7.1%

joins. Join strategy can make a big difference: Leis et al. found that dis-
abling nested loop joins in PostgreSQL reduced JOB run-time significantly
[6], because the cost of erroneously choosing this join (due to cardinality
misestimations) strategy is big. Furthermore, the cost model does not take
join strategy into account, therefore cost does not reflect join strategies
chosen by the optimizer.

Table 2: Total cost of JOB in terms of the cost model (sum of intermediate result
cardinalities).

Scheme Total Cost
Baseline 631M
Filters Only 489M
One Step 364M
1-Join 467M
Smart Step (N=3) 625M
Cardinality Q-Error (T=32) 352M
Cost Q-Error (T=20%) 560M

4.3 Materialization Characteristics

For each scheme, the number and cardinality of temporary tables created
during re-optimization were recorded. shows the averages for the
most successful parameter configuration in terms of overall benchmark run-
time. The complete results are found in

The Cardinality Q-Error scheme materializes small intermediate results
in comparison with other schemes. This is explained by DuckDB’s sim-
plistic CE, which is to estimate a node’s cardinality to be the max of its
children, therefore always estimating a selectivity of 1. In many cases the
selectivity, and therefore the cardinality, are much lower, resulting in a high
cardinality g-error, triggering materialization of the filter node. As such,
this scheme tends to materialize small tables.
By combining these results with 1/O profiling results, the assumption from
[section 3.3.1] that the excess in total query time, that is not covered by the
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Table 3: Materialization characteristics of re-optimization schemes. Materializations
are the per-query average number of temporary table creations, whereas Cardinality is
the average size of these tables.

Scheme ‘ Materializations Cardinality
Baseline 0.00 0.0K
Filters Only 5.57 290.9K
One Step 11.21 337.2K
1-Join 5.65 87T7T.9K
Smart Step (N=3) 3.03 320.2K
Cardinality Q-Error (T=32) 5.15 39.3K
Cost Q-Error (T=20%) 1.65 326.9K

profiling categories, belongs to the time it takes to write data to a table,
can be tested. Figure |13| plots these against each other, with a correlation
of r = 0.96, supporting the assumption.
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Total I/O overhead (S)
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Figure 13: Total I/O overhead of all schemes against total size of materialized interme-
diate tables.

4.4 Query Plan Analysis

This section describes how the Cardinality Q-Error (N = 32) re-optimization
scheme executes two interesting query plans.

Query 5a  Out of all queries in JOB, the execution time of query 5a was
slowed down the most by this re-optimization scheme, from 0.17s to 0.94s,
more than 5 times slower than the baseline duration. The cost of both the
baseline plan and re-optimized plan are 154K. shows the plan
initially generated by the optimizer. Above it query 5a is shown. In the
figure, the true cardinality of a node in the plan is denoted with 7', the
predicted cardinality with P, and the cardinality of base tables with C'.
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SELECT MIN(t . title) AS typical_european_movie
FROM company_type AS ct,
info_type AS it ,
movie_companies AS mc,
movie_info AS mi,
title AS t
WHERE ct . kind = ’production.companies’
AND mc.note LIKE ’%(theatrical)%’
AND mc. note LIKE ’%(France)%’
AND mi.info IN (’Sweden’,
’Norway ',
’Germany ',
’Denmark ’ |
’Swedish 7,
"Denish’
"Norwegian ',
’German )
AND t.production_year > 2005
AND t.id = mi.movie_id
AND t.id = mc. movie_id
AND mc. movie_id = mi.movie_id
AND ct.id = mc.company_type_id
AND it .id = mi.info_type_id;

™

MIN()
X
T=0
P—148M
X X
T = 154K T=0
P =14.8M P=26M
. N ; .
T = 154K it -0 T=1
, , c=113 =
P =148M P=26M P=4
. ag .
mi / T = 24K T=1.0M ch
C=148M P=26M P=25M =4

Figure 14: Initial plan for JOB query 5a.

The scheme re-optimized query ba three additional times. The query
plan after each iteration is found in as well as the queries
that were used to materialize the intermediate results. Even when ignoring
planning and I/O overhead, the execution time of this query is much slower
with re-optimization than without.

The join between the filtered base tables mc and ¢ yields no matches.
Without re-optimization, execution starts by pulling chunks from these
base tables up the pipeline. No chunk are emitted by the join, therefore no
chunks ever need to be pulled from tables mi, it and ct, because there is
nothing to join them with. As such, base tables mi and it are never read,
and the join between them is not performed. In reality the plan cost is
much less than the cost model predicts.
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Re-optimization on the other hand chooses to materialize a filter node
due to a large g-error, before re-optimizing. The re-optimized plan has a
different join order, causing more base tables to be read as well as causing
an intermediate result of 154K to be materialized in the second iteration,
incurring a high cost that is avoided when executing the plan normally.
This is partially caused by an implementation detail: re-optimization pri-
oritizes materialization of the right children of joins first, rather than e.g.
the deepest join.

Query 16a Out of all queries in JOB, the execution time of query 16a was
sped up the most by this re-optimization scheme, from 4.45s to 0.65s, more
than 7 times faster than the baseline duration. The baseline plan cost is
37M , while the cost of the re-optimized plan is only 964K. [Figure 15(shows
the plan initially generated by the optimizer. Above it query ba is shown.

SELECT MIN(an.name) AS cool_actor_pseudonym ,
MIN(t.title) AS series_named_after_char
FROM aka_name AS an,
cast_info AS ci,
company_name AS cn,
keyword AS k,
movie_companies AS mc,
movie_keyword AS mk,
name AS n,
title AS t
WHERE cn . country_code =’[us]’
AND k.keyword =’character —name—in—title
AND t.episode_nr >= 50
AND t.episode_nr < 100
AND an.person_id = n.id
AND n.id = ci.person_id
AND ci.movie_id = t.id
AND t.id = mk.movie_id
AND mk. keyword_id = k. id
AND t.id = mc.movie_id
AND mc. company_id = cn.id
AND an.person_id = ci.person_id
AND ci.movie_id = mc. movie_id
AND ci.movie_id = mk. movie_id
AND mc. movie_id = mk. movie_id;

)

The scheme re-optimized query 16a six additional times. In the figure,
the true cardinality of a node in the plan is denoted with 7', the predicted
cardinality with P, and the cardinality of base tables with C'. The query

plan after each iteration is found in [Appendix D] as well as the queries that
were used to materialize the intermediate results.
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Figure 15: Initial plan for JOB query 16a.

The 37M cost of the initial plan is dominated by the join between ci, n,
and an, which costs 36 M. This is a disastrous plan, caused by one disas-
trous join. After materializing small intermediate results in iterations 1-5,
this join is avoided by the re-optimization scheme after the sixth iteration.
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5 Discussion

In this section, results are analysed in order to gain insights and answer
research questions. Based on the analysis, and on insights gained through
working with DuckDB, ideas for future work are suggested.

5.1 Result Analysis

The answers to research questions 3 and 4, and their sub-questions, are
given by analyzing the results.

Trade-Off As shown in[Figure 10} re-optimizing the shortest running queries
slows down processing. In theory, re-optimization should decrease execu-
tion time due to an improved query plan, at the cost of increasing planning
and I/O time. Increases in planning and I/O time are observed, but a
reduction in execution time is not. The reason for this is that materializing
intermediate results breaks the execution pipeline that would otherwise
speed up inter-operator processing. For these queries, the 1/O costs are
huge in comparison with the execution costs, especially with schemes that
materialize many/all filter nodes (One Step, Filters Only, Smart Step with
N =2).

On the contrary, re-optimizing the longest running queries always re-
sults in a reduced query time, shown in [Figure 11, Here, the real schemes
that materialize the most often (One Step, 1-Join) perform the best, al-
most as well as the best simulated schemes, despite their high 1/O cost.
Although the trade-off between the costs and benefits of re-optimization
is huge for short queries, there is not much of a trade-off for long queries:
re-optimization is almost always worth it.

Furthermore, in a DBMS that was built with re-optimization in mind
that would be able to suspend execution mid-query, intermediate results
would not have to be materialized as a temporary table, but would rather
be kept as an object in the stack (e.g. DataChunk in DuckDB). This would
entail less movement of data, meaning less I/O costs, and a higher perfor-
mance for schemes that materialize often.

Real vs. Simulated The top simulated schemes perform best on long
queries by a margin (Figure 11f), and only slightly worse than baseline on
short queries (Figure 10). Because long queries have a much larger impact
on overall benchmark performance, simulated schemes come out on top
. Simulated schemes are able to react to differences in estimated
and measured statistics, deciding when to optimize on the fly, in contrast
with real schemes, which statically select these moments. Therefore, it is
no surprise that simulated schemes perform better.

However, the margin by which these perform better for the longest
queries in the benchmark is lower than this author expected. Some of the
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real schemes that perform poorly when looking at overall benchmark per-
formance, perform very well on long queries. By combining these schemes
with a policy that only re-optimizes long queries, their overall performance
could be closer to the top simulated schemes. This shows that most types
of re-optimization, even such naive schemes as 1-Join, can improve end-to-
end performance on JOB, even if re-optimization is an afterthought rather
than a main objective of a DBMS.

Robustness From it is clear that re-optimization reduces the to-
tal cost of JOB by a significant amount, down to almost half the cost of
baseline DuckDB depending on the scheme. This is in line with the latency
experiments, reinforcing the notion that re-optimization reduces query la-
tency by improving join order.

Table 1| shows that for many queries, re-optimized query plans are often
closer to the optimal plan. This is in line with the reduced number of
‘outliers’ seen in [Figure 8 disastrous plans are consistently avoided. It can
be concluded that re-optimization has a more robust performance on this
workload.

5.2 Simulation: Realistic?

The simulation proposed by Perron et al. [11] (described in [section 3.2.2)

simulates a DBMS that can suspend execution after each operator. How-
ever, database systems that have a Volcano-style execution engine do not
have to process all of the data through an operator before starting the next
operator, unless it is a blocking operator e.g. hash-join, sort, etc. Instead,
tuples are pulled through the operators row by row “tuple-at-a-time”. This
approach is known as pipelined query execution, which avoids the need to
fully materialize intermediate results that may not fit in memory and would
therefore significantly slow down processing due to the high costs of writ-
ing them to disk. It also allows queuing multiple instructions (for multiple
operators down the pipeline) that are to be executed on a single tuple
sequentially, allowing the CPU to keep the tuple in cache. This speeds
up processing, if there are not too many cache misses (mispredicted CPU
instructions).

DuckDB has a vector-Volcano model, which does a better job at ex-
ploiting modern CPUs. Data is stored in columns rather than rows, and is
processed using fixed-size vectors (chunks of a column) at a time, similar
to PAX [24]. Because a single instruction usually has to process an entire
chunk, and not just one tuple, it can be loaded once for the chunk, allowing
for more efficient CPU cycle usage. This also reduces the number of cache
misses, speeding up execution even further. This, however, complicates the
simulation, because the simulation does not take the benefits of pipelining
into account at all.
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DuckDB’s execution model is more heavily pipelined than that of Post-
greSQL. The difference lies in PostgreSQL’s tuple-at-a-time execution model,
in contrast with DuckDB’s chunk-at-a-time that uses CPU cycles more ef-
ficiently. Therefore, the difference in execution time of processing a query
plan one operator at a time (as is assumed in the simulation) rather than as
a pipelined whole are smaller in PostgreSQL than in DuckDB, because the
performance gain of pipelining in PostgreSQL is not as significant. Per-
ron et al. acknowledge pipelining, but they believe that their simulation
provides a reasonable approximation for an upper bound of the cost of re-
optimization schemes. It could be argued that they cannot be sure of this
because the pipeline is not respected in their simulation, but this author is
inclined to side with them for the reasons given.

Since the effect of pipelining is more noticeable for more heavily pipelined
column-stores, the simulation seems however less representative in the case
of DuckDB. To make it realistic, pipelining could for instance be completely
disabled, forcing operator-at-a-time processing. A reasonable estimation of
the performance of this modified simulation would lie somewhere between
the simulated and real re-optimization schemes (these do not differ much

for long queries, see [Figure 11)), which is a significant speedup compared to
the plan-first execute-next approach.

5.3 Parallelism

Parts of query plans that are independent, could be evaluated concurrently,
raising the question what effect parallelism has on re-optimization. An-
toshenkov’s competition model [25], [26] starts multiple evaluation plans of
the same query at the same time, stopping sub-optimal plans when it be-
comes clear that one plan is better than the others. An obvious application
of the competition model in this context is to let the plan-first execute-next
approach compete with the re-optimization approach. This ensures that
short queries are never slowed down.

The approach can also be extended to intra-query parallelism. Indepen-
dent parts of a query plan can be materialized at the same time. When the
first part is materialized, re-optimization might be triggered. At this time,
the other threads are still processing, but the cardinality estimation of the
part that they are processing is becoming more precise. An informed deci-
sion can be made whether the other independently processed parts should
be used in the re-optimized plan, or dumped.

Parallelism may also be introduced within operators, where e.g. threads
process one chunk of data. Ignoring the fact that it could prove difficult
to preserve row order in such a setting, this author does not believe that
this kind of parallelism has a very different effect on the re-optimization vs.
plan-first execute-next paradigms. Both the speedup of pipelined execution
and that of operator-at-a-time execution should increase linearly with the
number of threads.
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5.4 Limitations

The results in this work showcase the potential of re-optimization, even
though the implementation has some limitations. Some of these limitations
can be alleviated by building on ideas that have been proposed in related
work, which are discussed here.

Plan-First Execute-Next Although the real re-optimization schemes pre-
sented in this work improve DuckDB’s performance on JOB, they essen-
tially exist out of multiple plan-first execute-next steps. Ideally, statistics
are measured during execution, and execution is suspended whenever the
optimizer decides it should re-optimize the remainder of the plan. This
was not possible because re-optimization was implemented into DuckDB
as an afterthought, rather than as an essential part of its execution engine.
Building a DBMS with this quality is outside of the scope of this work, and
remains a subject of future research.

Cut Your Losses One limitation is that this implementation cannot fully
recover from some of the mistakes made by the optimizer. In some instances
it is better to discard a materialized intermediate result, if the cost of
continuing execution using it is higher than starting over without it, having
gained statistical information about the intermediate table. An example
of this is illustrated in Suppose o1, 09 are filter operations that
have a low selectivity, but highly correlate in their respective selections
of rows from T3,7T,. Joining these yields a large intermediate result of
1000, with the remaining plan costing 850 (following the cost model from
. Knowing this information, a plan with a cost of 650 can
be constructed. Clearly, starting over would be the right choice. This is
realised by injecting cardinalities into the optimizer, which could be the
subject of future work.

In a pipelined execution model M.—; may not ever be fully materialized
if it is non-blocking. However, the large error in cardinality estimation
could be detected early by measuring how many tuples flow through the
operator. Partial work further down the pipeline could be lost by switching
plans.

Quantifying Risk The choice of which node to materialize is highly impor-
tant, and influences the rest of the plan. Some joins carry more ‘risk’ than
others, which is not taken into account by any of the schemes apart from
SmartStep, which identifies risky joins using the structure of the query
plan. The results show that this is more effective than blindly picking joins
with the NJoin scheme, but ideally not only the structure of the plan, but
also the data that is being processed should be taken into account when
quantifying risk.
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Figure 16: A plan where the initial choice of join should be discarded.

The cardinality estimation method proposed by Babcock & Chaudhuri
[8] uses probability distributions instead of a single-point estimate to gen-
erate robust query plans. This cardinality estimation technique could be
used to more accurately identify risky joins that have an uncertain cardi-
nality estimate, which would almost certainly improve the performance of
SmartStep. The uncertainty of the join would be more important for the
re-optimization mechanism than the actual cardinality estimate in such a
scheme.

5.5 Generalization

At the time of writing, DuckDB is still in development, and some of its com-
ponents are unfinished. Among these are the cardinality estimation module
and the cost model. Currently, there is almost no CE: a node’s cardinality
is estimated to be the maximum cardinality of its children. The cost model
used for join order enumeration, explained in [gection 3.3.2, minimizes in-
termediate results, but is too simplistic because it does not take e.g. cost
of join strategy into account. It is scheduled for improvement along with
the CE component. This raises the question whether the results presented
in this work generalize to a DBMS that does have finished components.
The question can be answered in two parts. First, consider the expo-
nentiality of error propagation through the query plan. All five commercial
database systems tested in the article that introduced JOB [6] were ob-
served to produce cardinality estimates that were off by several orders of
magnitude as the number of joins increased. Likely, there is room for im-
provement in this area, but on the other hand this result seems inevitable;
small errors in each step of the plan can result in large misestimations
when the number of joins is high. Second, the results by Perron et al.
[11], where perfect cardinality estimates are given PostgreSQL’s query op-
timizer by an oracle, show us that even with perfect cardinality estimates
for joins with up to 4 tables, re-optimization still yields a reduced execu-
tion time. Given these observations, it is safe to say that the result that
query re-optimization significantly reduces run-time on this workload, will
generalize to a DBMS that has finished CE and cost model components.

40



5.6 Research Questions

Research question 1 has been answered by reviewing related literature,
apart from 1b, which has partly been answered by experimentation in this
work. Re-optimization schemes vary in their effectiveness, but for long
queries, any re-optimization is better than none.

Research question 2 has been answered by implementing re-optimization
in DuckDB. Of course, there are many design decisions to be made, and
therefore many ways to implement re-optimization. It was decided to keep
the implementation simple, sacrificing some performance for ease of im-
plementation. Additionally, it was discovered that a simulation has some
caveats, which have been discussed in this section.

Research questions 3 & 4 have been answered in-depth through exper-
imentation and result analysis in this section, and the previous section.
It was discovered that for long-running queries the trade-off between costs
and benefits is not a difficult one, while for short-running queries it is, leav-
ing room for interesting re-optimization policies. Across JOB, robustness
was improved by avoiding disastrous plans with a high cost.
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6 Conclusion

In this work it has become evident that re-optimization significantly im-
proves end-to-end latency in a workload that stresses the CE component
of the query optimizer. Delaying the decision on join order can help pro-
duce query plans that are closer to optimal regarding join order, by using
statistics that are collecting during execution. This approach works better
for long running queries, in which case simple schemes that process one
operator at a time provide a reduced runtime.

In DuckDB, with the workload used in this research, the cost of optimiz-
ing a plan multiple times and writing intermediate results to a temporary
table pales in comparison to the benefit of a better plan. This is true even
for simple re-optimization schemes that materialize each intermediate re-
sult. The reason for this is that DuckDB is a main-memory DBMS: the cost
of reading and writing data is much lower than for a disk-based system.

Implementing re-optimization in an existing DBMS is challenging, and
brings limitations that prevent it from reaching its potential. A true imple-
mentation would require an overhaul of the execution engine, which is one
of the reasons it has not been adopted in commercial database systems.
Depending on the execution model, a close-to-realistic simulation can be
made to get an approximation of how a true implementation would per-
form. Unfortunately, the more a system benefits from pipelined execution,
the less realistic the simulation becomes.

Clearly, the next step in re-optimization is to fully implement it by build-
ing a new DBMS or overhauling an existing execution engine. This would
allow for more sophisticated schemes that have more advanced decision
making behaviour like POP [20] or Rio [21]. Because it performs better on
longer queries, re-optimization will likely have even more benefit in the dis-
tributed main-memory DBMS setting where more data is processed, such
as Spark SQL. Reducing the intermediate results could greatly reduce the
need to move data between machines, which is a costly operation.

As a final remark, this author would like to discuss why this research
has become important especially now, after re-optimization has not been
researched actively for more than 10 years. Developments in the database
field, as well as advances in hardware, have alleviated the need for adap-
tive query optimization, by drastically increasing data bandwidth. This
can explain why the plan-first execute-next approach has remained popu-
lar. However, over these years, data has been collected in larger quantities,
and there has been an increasing demand for database technology in analyt-
ical processing. This use-case is precisely the scenario where the adaptive
approach excels, and is precisely why re-optimization is becoming more
important.
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A Query Latency Results
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Figure 17: JOB end-to-end latency by query comparison of baseline DuckDB with all
re-optimization scheme parameter configurations.
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Figure 18: JOB query profiling of baseline DuckDB with all re-optimization scheme
parameter configurations.
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Figure 19: JOB query profiling of the 20 shortest queries in baseline DuckDB compared
with all re-optimization scheme parameter configurations.
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Figure 20: JOB query profiling of the 20 longest queries in baseline DuckDB compared
with all re-optimization scheme parameter configurations.
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Figure 21: JOB query profiling of all queries except the longest- and shortest 20 in
baseline DuckDB compared with all re-optimization scheme parameter configurations.
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B Plan Cost Results

Table 4: Percentage of queries with a relative execution plan cost compared to the
lowest-cost plan that was found by at least one scheme, all parameter configurations.

Scheme |<1.2 | [1.2,15) | [1.5,2) | [2,5) | [5,10) | > 10
Baseline 48.7% 15.0% 14.2% | 11.5% 3.5% 7.1%
Filters Only 66.4% 11.5% 8.8% 5.3% 0.9% 7.1%
One Step 73.5% 6.2% 6.2% 8.8% 0.0% 5.3%
1-Join 62.8% 8.0% 8.8% | 12.4% 0.9% 7.1%
2-Join 51.3% 13.3% 12.4% 9.7% 2.7% | 10.6%
3-Join 52.2% 124% | 15.0% | 9.7% | 3.5% | 7.1%
Smart Step (N=2) 61.9% | 15.0% | 8.8% | 4.4% | 0.9% | 8.8%
Smart Step (N=3) 48.7% 15.0% 13.3% | 10.6% 2.7% 9.7%
Smart Step (N=4) 49.6% 14.2% | 15.0% | 10.6% 3.5% | 7.1%
Cardinality Q-Error (T=8) [81.4% 1.8% 35% | 71% | 09% | 5.3%
Cardinality Q-Error (T=16) [78.8% 2.7% 6.2% | 6.2% 0.9% | 5.3%
Cardinality Q-Error (T=32) [71.7% 4.4% 9.7% | 8.8% 0.9% | 4.4%
Cardinality Q-Error (T=64) [67.3% 6.2% 10.6% 9.7% 0.9% 5.3%
Cost Q-Error (T=5%) 51.3% 14.2% | 10.6% | 12.4% 1.8% | 9.7%
Cost Q-Error (T=10%) 61.1% 12.4% 71% | 8.0% | 0.9% | 10.6%
Cost Q-Error (T=15%) 60.2% 14.2% 10.6% 3.5% 2.7% 8.8%
Cost Q-Error (T=20%) 65.5% 15.9% 7.1% 3.5% 0.9% 7.1%

Table 5: Total cost of JOB in terms of the cost model (sum of intermediate result
cardinalities), all parameter configurations.

Scheme Total Cost
Baseline 631M
Filters Only 489M
One Step 364M
1-Join 467M
2-Join 626M
3-Join 629M
Smart Step (N=2) 560M
Smart Step (N=3) 625M
Smart Step (N=4) 626M
Cardinality Q-Error (T=8) 381M
Cardinality Q-Error (T=16) 357TM
Cardinality Q-Error (T=32) 352M
Cardinality Q-Error (T=64) 390M
Cost Q-Error (T=5%) 615M
Cost Q-Error (T=10%) 606M
Cost Q-Error (T=15%) 616M
Cost Q-Error (T=20%) 560M
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C DMaterialization Characteristics

Table 6: Materialization characteristics of re-optimization schemes, all parameter con-
figurations. Materializations are the per-query average number of temporary table cre-
ations, cardinality is the average size of these tables.

Scheme Materializations ‘ Cardinality
Baseline 0.00 0.0K
Filters Only 5.57 290.9K
One Step 11.21 337.2K
1-Join 5.65 8TTI9K
2-Join 1.52 921.6 K
3-Join 1.01 282.4K
Smart Step (N=2) 5.42 622.9K
Smart Step (N=3) 3.03 320.2K
Smart Step (N=4) 2.03 299.2K
Cardinality Q-Error (T=8) 6.35 929K
Cardinality Q-Error (T=16) 5.73 82.8K
Cardinality Q-Error (T=32) 5.15 39.3K
Cardinality Q-Error (T=64) 4.64 16.5K
Cost Q-Error (T=5%) 4.17 395.8K
Cost Q-Error (T=10%) 2.98 328.5K
Cost Q-Error (T=15%) 2.32 414.7K
Cost Q-Error (T=20%) 1.65 326.9K
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D Query Plan Analysis

This appendix describes the full execution of query 5a and 16a by the
Cardinality Q-Error scheme with parameter (N = 32). In figures, the true
cardinality of a node in the plan is denoted with 7', the predicted cardinality
with P, and the cardinality of base tables with C'.

Query 5a The query plan after iterations 1-3 is shown in —
followed by the queries that were used to materialize the inter-
mediate results.

T
MIN()
X
T=0
P = 148M
X X
T = 154K T=0
P=148M P=25M
a \ P a X
T = 154K it T=10M 7=
P=148M C=113  p_o5u P —uK
| /N
mi t tempg T—1
C=148M C=25M C=24K P4
ct
C=4

MIN()
X
T=0
P=25M
X X
7= T = 154K
P=25M P = 154K
i ) t / \ t
T=10M T=0 empy : (3 .
P=25M pooug O ¢=13
l t / 7
empo T=1
C=25M 24K P4
ct
c=1

Figure 23: Plan for JOB query 5a after two iterations.
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Figure 24: Plan for JOB query 5a after three iterations.

In the generated temporary table queries, the table index is appended
to column names to avoid reoccurencen of column names, as various tables
have overlapping column names.

CREATE TEMPORARY TABLE main. _reopt_temp_-8096346510212993050.0 AS (
SELECT t8 . movie_.id AS movie_id8 ,
t8.company_type_-id AS company_type_id8
FROM main. movie_companies AS t8
WHERE t8 .note LIKE *%(theatrical)%’
AND t8.note LIKE ’%(France)%’
)i

CREATE TEMPORARY TABLE main. _reopt-temp-8096346510212993050-1 AS (
SELECT t9.movie_id AS movie_id9 ,
t9.info_type_-id AS info_type-id9
FROM main. movie_info AS t9
WHERE t9 .info IN (’Sweden’,
’Norway ',
’Germany ’ ,
’Denmark ’ |
’Swedish 7,
’Denish’,
’Norwegian’,
’German )

);

CREATE TEMPORARY TABLE main. _reopt-temp-8096346510212993050-2 AS (
SELECT t8.movie_id8 AS movie_id88
FROM main. _reopt_temp_-8096346510212993050_0 AS t8,
main.company_type AS t6
WHERE t8 . company_type_id8 = t6.id
AND t6.kind = ’'production._companies’
)i
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Query 16a The query plan after iterations 1-6 is shown in -
followed by the queries that were used to materialize the inter-

mediate results.
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Figure 25: Plan for JOB query 16a after one iteration.
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Figure 26: Plan for JOB query 16a after two iterations.
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Figure 27: Plan for JOB query 16a after three iterations.
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Figure 28: Plan for JOB query 16a after four iterations.
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Figure 29: Plan for JOB query 16a after five iterations.
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Figure 30: Plan for JOB query 16a after six iterations.

CREATE TEVIPORARY TABLE main. _reopt_temp_13213788151736028524_0
SELECT t13.id AS id13,
t13.title AS titlel3
FROM main. title AS t13
WHERE t13.episode_nr BETWEEN 50 AND 100

) k)

CREATE TEVMIPORARY TABLE main. _reopt_temp_-13213788151736028524_1
SELECT t9.id AS id9
FROM main. keyword AS t9
WHERE t9 . keyword = ’character —name—in—title’

)

CREATE TEVIPORARY TABLE main. _reopt_temp-13213788151736028524_2
SELECT t10.movie_id AS movie_id10 ,
t10.company_id AS company_-id10 ,
t13.titlel3 AS title1313
FROM main.movie_companies AS t10,
main. _reopt_-temp-13213788151736028524_0 AS t13
WHERE t10.movie_id = t13.id13

) k)

CREATE TEMPORARY TABLE main. _reopt_temp_-13213788151736028524_3
SELECT t11.movie_id AS movie_id1l1
FROM main.movie_keyword AS t11,
main. _reopt_temp_13213788151736028524_1 AS t9
WHERE t11.keyword_id = t9.1d9

) )

CREATE TEMPORARY TABLE main. _reopt_temp-13213788151736028524_4
SELECT t11.movie_.id11l AS movie_id1111 |
t13.company_id10 AS company_-id1013,
t13.title1313 AS title131313
FROM main. _reopt_-temp_-13213788151736028524_3 AS t11,
main. _reopt-temp-13213788151736028524_2 AS t13
WHERE t11.movie_idl1l = t13.movie_id10

) b

CREATE TEMPORARY TABLE main. _reopt_temp_-13213788151736028524_5

SELECT t13.movie_id1111 AS movie_id111113 ,

t13.title131313 AS title13131313
FROM main.company_name AS t8,
main. _reopt_-temp-13213788151736028524_4 AS t13
WHERE t8 .id = t13.company-id1013
AND t8.country_code = ’[us]’

)i
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