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Abstract

The field of Model Driven Optimisation combines the two fields of Model Driven Development
and Search Based Software Engineering. Models are used as first class citizens that represent
the optimisation problem within Search Based Software Engineering upon which the optimisation
algorithms are applied. A meta model is used to describe a modelling language which is used
as ruleset to define the initial population of the search space. Exploration operators, which are
ideally also models, and evaluation functions are subsequently used to explore the space. During the
exploration of the search space the models that are usually big and complex are copied often. This
slows down the performance of an optimisation algorithm significantly. There exist multiple tools
that implement Model Driven Optimisation, we focus on MDEOptimiser. Within this thesis we
provide the first steps towards improving the performance of Model Driven Optimisation techniques
by contributing an encoding of these models that does not replace, but compliments them. We
include a formal framework for expressing what such an encoding looks like, together with a Java
library that implements these ideas in the context of MDEOptimiser. Additionally, we evaluate
the improvements to the performance and offer meaningful discussion on the results that includes
pointers to where future research can be conducted.
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1 Introduction

In the field of Model Driven Optimisation 28] the two fields of Model Driven Engineering [21] and
Search Based Software Engineering [13] are combined. Model Driven Optimisation uses models to
represent the optimisation problem and directly applies the search space exploration and fitness
evaluation to them. There exist several tools that apply this concept like MDEOptimiser [4],
MoMOT [7], Viatra-DSE [1], and FitnessStudio [23].

Within Model Driven Optimisation, a user defines a meta model that describes a modelling lan-
guage which all models in the population follow. They also specify the space exploration and
fitness evaluation applied to the models. During the execution of the optimisation algorithm the
population is frequently copied as the algorithm evolves and evaluates them. In practice, these
models are big data structures with a lot of information which makes the copying of them slow.
While Model Driven Optimisation has great benefits to expressiveness and usability, the slow
performance on big models is one of the main drawbacks of this approach.

This thesis contains the first steps towards improving the performance of Model Driven Optimi-
sation using low-level encodings as the basis upon which the optimisation algorithms are applied.
To alleviate the drawback we attempt to encode the model in such a way that we do not com-
pletely replace the model, but so that we can use them together and they complimentary of each
other. We focus on the MDEOptimiser with its accompanying case studies as basis to evaluate
our contributions.

We include a formal framework for expressing what an encoding looks like for any given model
instance and meta model. Based on this framework we implemented a Java library for encoding
any meta model with model instance that is expressed within the EMF framework. With this
library we conduct several experiments to validate that the performance of the copying during the
algorithm is indeed improved. We also contribute a meaningful discussion on the results of these
experiments and provide pointers to where future research can be conducted.

The first section will contain the background information surrounding the topic of model based
optimisation techniques. We introduce two case studies upon which we have done experiments.
Additionally we describe the definitions and assumptions we use throughout the thesis. After
the background information we introduce the research questions within the thesis that we aim to
answer. We follow this up by explaining the concept of the encoding both formally and implemented
within a Java library. To then verify that these concepts work we describe a methodology for doing
experiments on the case studies to measure the performance of both the encoding based and model
based approaches. We then introduce the implementation of these experiments, after which we
evaluate the results. We then discuss the results, introduced concept and the problems that arose
during the thesis. Lastly we conclude by summarising our contributions, the questions we answered
and the questions we raised. Together with some pointers for further research to develop this field.

All of the code written for this thesis including the figures containing the results can be found on

GitHuHHl

Thttps://github.com/larsvanarragon/mde_optimiser-hilo/tree/nobitset
%https://github.com/larsvanarragon/mde_optimiser/tree/encoding


https://github.com/larsvanarragon/mde_optimiser-hilo/tree/nobitset
https://github.com/larsvanarragon/mde_optimiser/tree/encoding

2 Background

In the following sections we will explain the background of the concepts used within this thesis.
We will include some explanations of the case studies we use to measure certain aspects of our
contributions.

2.1 Model Driven Optimisation

The concept of Model Driven Optimisation (MDO) stems from the combination of Model Driven
Engineering (MDE) and Search Based Software Engineering (SBSE). Its idea is that models can
be used as a declarative problem formulation for the complex problem domains within software
engineering 28], and can then be subsequently used as the solution representation in search based
optimisation techniques. This idea enables users to approach the problem with domain-specific
knowledge instead of a low-level technical encoding that replaces the models.

2.1.1 Model Driven Engineering

Model Driven Engineering (MDE) is a paradigm where models are not just used for documentation
but are first class citizens within the space of software artifacts [21]. A tutorial on the subject in [3],
notes that models directly represent their subject to allow for a more direct coupling of problems to
solutions. The information within these models is intended to be used by some tooling that is able
to bridge the gap between the domain concepts and implementation technologies. An example of
this idea is a tool that translates models adhering to the UML standard to executable Java code.

2.1.2 Search Based Software Engineering

The goal of Search Based Software Engineering is to reformulate Software Engineering problems
as search based optimisation problems [12] and address them using meta-heuristic techniques.
At its core, SBSE is comprised of two ingredients: a representation of the problem at hand and
the definition of a fitness function which operates on this representation [13]. The problem at
hand then becomes an optimisation problem where the software engineer intends to maximize the
result of the fitness function by searching within the realm of possible solutions for optimal and
near-optimal candidates. For practicality search based algorithms usually include mechanisms for
generating new candidate solutions from existing solutions and a way to apply the fitness function
to all solutions. At the start of such an algorithm an initial set of candidate solutions is predefined.

As an example suppose the question: ‘What is the smallest set of test cases that cover all branches
in this program?’. This is called the budgeted maximum coverage problem where we attempt to
minimize the budget [16]. A simple representation of this problem would be a bit vector in which
each bit represents a test case and is used within the set. The fitness function can then evaluate
the solutions based on the amount of used test cases and how much the selected test cases cover
all branches in the program. The initial set of candidate solutions can be a randomly generated
set of bit vectors. An example for the mechanism for creating new candidate solutions would be
to take the fittest candidates and mutate them slightly while also keeping a few of the current fit
candidates.



One concept that is relevant in this thesis is a Pareto front. When we have a multi-objective
optimisation algorithm where the population is evaluated using multiple fitness functions we do
not simply have one ‘best’ candidate solution. In this case we have an entire front of good solutions
that balance the multiple objectives in different ways. This concept is called the Pareto front. In
general, a Pareto front contains candidate solutions that contain a ‘best’ balance. For further
reading on Pareto fronts we refer to [26]. It can be the case that we have two Pareto fronts where
one of them has better solutions than all or part of the solutions in the other. This concept is what
we call how much a Pareto front A dominates another Pareto front B. We can quantify this using
the Hypervolume indicator, which indicates in percantages how much one Pareto front dominates
another. For further reading on Hypervolume indicators we refer to [8].

2.1.3 Combination

The work of Zschaler and Mandow in 28] proposes that instead of creating a separate secondary
encoding for the problems, the models and meta-models should directly be used as input for the
optimisation algorithms. This way the optimisation algorithms can make use of all the information
present in these models. They state that current encodings of the models do not preserve well-
formedness and have difficulty ensuring locality.

Applying the entire optimisation algorithm to a model means that this model is copied and trans-
formed many times resulting in a high number of computations. These models are usually complex
data structures which contain a lot of information, of which some of this information is static in its
nature. In the example given in [28| of the Zoo DSL we can see that the objects do not change, but
only their relationships with each other. It is reasonable to imagine that the optimisation could be
done more efficiently by using an encoding to focus on the part that needs to be optimised while
storing static information elsewhere. By this we mean that we do not aim to create an encoding
that completely replaces the model. We aim to contribute an encoding that brings all the relevant
information for optimising the model to a low level. The model then compliments the encoding
by providing it the information which remains static or does not need to be encoded. This also
ensures that improvements to the need of repair, well-formedness and locality as mentioned in [2§]
are preserved.

2.1.4 MDEOptimiser

In order to obtain a qualitative comparison for the contributions of this thesis a concrete tool in
which to implement it should be picked. For this purpose we have picked the tool MDEOptimiser
introduced in [4]. The MDEOptimiser tool follows a model based approach and is built atop the
Eclipse Modelling Framework [22] [27], the Henshin model transformation language [24] [18] [2],
and the MOEA evolutionary search framework [10] [11]. The reasoning for this choice is that
the tool has shown a better performance than another tool with a similar, but slightly different
encoding [14]. To obtain this result they have measured the performance of MDEOptimiser using
several case studies. Another reason is that MDEOptimiser is a follow up paper from [28] where
they introduced the idea of combining MDE and SBSE. The case studies also form an excellent
starting point for implementing ideas for the improvements.



There exist several other tools that also facilitate model driven optimisation. We briefly mention
these tools here with relevant references. They can be used to further deepen the reader’s knowledge
of what is available within the domain of model driven optimisation.

e Marrying Search-based Optimization and Model Transformation Technology (MoMOT) [7]
e VIATRA Design Space Exploration Framework (VIATRA-DSE) [1], [20]
e FitnessStudio [23]

2.1.5 Eclipse Modelling Framework

The Eclipse Modelling Framework (EMF) is a modelling framework and code generation facility
for building Java application based on structured data models. Within EMF a user can describe
class models from which Java code is generated. These models can be stored statically in files and
be retrieved during runtime. The EMF is used within MDEOptimiser to define meta models and
model instances for the optimisation problems a user has. Such a class diagram is an example of a
meta model, and the concrete classes that follow this diagram is an example of a model instance.

2.1.6 MOEA Framework

The MOEA evolutionary search framework allows a user to define an optimisation problem with
its corresponding fitness functions, evolution operators and evolution algorithm. For our purposes
we only have to implement the optimisation problem, define its population and how it evolves.
We leave the fitness functions to the case studies provided by MDEOptimiser and the evolution
algorithm to those implemented by MOEA. There are three important classes we have to instan-
tiate; namely, the AbstractProblem, Variable and Variation classes. The Variable class represents
a single member of the population, and a population has many such variables. To mutate these
variables the Variation class is used. This class describes what happens to a non-empty array
of parents when they evolve. A single run of the framework can concatenate such Variations to
describe complex evolution behavior. Lastly, the AbstractProblem class describes how to evaluate
Variables and how to instantiate new Variables when creating a new population.

2.1.7 Henshin

Within MDEOptimiser the Henshin model transformation language is used to define the explo-
ration operator for the search based algorithm. Such a model transformation is called a Henshin
rule and is in itself a model. The model contains a pattern that has to be matched within the
model. Tt also describes what happens to the pattern when the Henshin rule is applied. This can
be done by changing references, creating and deleting objects and even altering attributes within
the objects. The Henshin rules are described using the aforementioned EMF and are applied to
the models by MDEOptimiser instantiating them within MOEA.



2.1.8 Case Studies

As mentioned we will use the case studies as they are specified in . Namely, we will use the case
studies Next Release Problem (NRP) and Class Responsibility Assignment (CRA). Both of these
case studies are modelled within MDEOptimiser using all the tools mentioned above.

Next Release Problem

The essence of the Next Release Problem is that we have several software artifacts that have a cost
of realisation and an importance for a customer. These customers also have a differing importance.
Now the question becomes what artifacts do we realize for the next release? We want to minimise
the cost of the realisation and maximize the customer satisfaction. This problem can be modeled as
seen in figure[l] In this case, NRP can have several solutions which contain some software artifacts
to be realised. However, in MDEOptimiser every member of the population has one solution for

NRP.
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Figure 1: Meta model for NRP




Class Responsibility Assignment

The Class Responsibility Assignment problem is a case study on how to transform a procedural
program with attributes (i.e. variables) and methods to an object oriented program, while main-
taining good cohesion and coupling. These attributes and methods are dependant on each other
which should be taken into account within the solution. The meta model for this problem is given
in [4] as follows, and is shown in figure

NamedElement
name : String

Attribute
dataDependency

| ClassModel | | Class

Feature

Method

encapsulates

functionalDependency

Figure 2: Meta model for CRA [4]

2.2 Definitions

In this section we will shortly go over the terminology used in this thesis and explain what we
mean by them. We rely on the definitions from [21] by using them and deriving new definitions
based on them.

e Model, a model is ‘a system that helps to define and to give answers of the system under
study without the need to consider it directly’ [21].

e Meta model, a meta model is ‘a model that defines the structure of a modelling language’
[21].

e Model instance / Dynamic model, a dynamic model or model instance is a model that
conforms to a certain meta model.

e Exploration operators, operators used within an optimisation technique to explore the
solution space. This includes mutation and crossover operators.

The relation of the meta models to models and a system is described in figure |3} This shows that
a modelling language is described by one or more meta models and that the models are elements
of this language. That is to say, the language can be seen as a set which contains all valid models.
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Figure 3: Relationships between model and meta model [21]

Models can be described very abstractly, [19] says that a model is an abstraction of a system that
allows predictions and inferences. They also more formally describe the concepts of a model and
a meta model. Most notably, they suppose that, in the spirit of work from [15], a formal model
of a system already exists. As an example they provide a structured set (S,rg), where S is some
set of elements and rg denotes their relationships. We will use these ideas in this thesis as well
to provide a more structural approach to these models. Additionally, in the spirit of [15] we will
not provide any formal definition of the meaning of these models, just their structure. We assume
that there are rules that give the models their meaning, but will leave their definitions implicit.

Most modeling languages, especially those considered in the context of model driven engineering
and optimisation, follow a ‘boxes-and-lines’ paradigm. For the notation we will now introduce,
we assume that any model we encounter can be seen as such. Which means that we can see any
model as a graph where the vertices are the ‘boxes’ and the edges are the ‘lines’. Usually, these
models contain more information than just boxes and lines but the structure is all we need.

Definition 2.1. Let L be a set of labels. A meta model is a directed graph (V, E) that allows
self loops where V-={ (I, P) | l € L and P is a predicate that denotes whether an object conforms
to this vertex } and E = { (UfT'OTI’L7Ut07laQ) | (Ufrmmvto) e VxVielL, and Q is a predicate
that denotes whether all relationships conform to this edge }. Vertices of a meta model are called
classes, edges are called references or relations and the set of labels is called the type names.

The predicates in this definition dictate what the modelling language looks like that is generated
by this meta model. In this context these predicates are the constraints and rules on the classes
and relations. We leave very little restrictions on the meta model as we only care about whether
all objects within a model instance conform to the meta model. The labels are used to give names
to the boxes and lines. In the context of [19] the vertices represent the classes and the edges are
the relationships/references.



Recall the meta model for NRP in figure Let us apply this definition to this example where
we consider only the Solution and SoftwareArtifact classes. We are left with three references
solutions, selectedArtifacts and requires. The rules of a UML class model are quite complex, so we
will again leave these as predicates of which we implicitly understand how they work. The formal
instantiation of this small NRP meta model is:

V = {(Solution, S), (SoftwareArtifact, SA)}

E = {((Solution, S), (SoftwareArtifact, SA), selected Artifacts, SEL),
((SoftwareArtifact, SA), (Solution, S), solutions, SOL),
((SoftwareArtifact,SA), (SoftwareArtifact, SA), requires, REQ)}

This way of representing the model does not encompass all of the information present in a UML
class model. For example we have no obvious way of representing that a SoftwareArtifact has a
name. We choose here to represent all the extra information as the implicitly defined predicates
within the meta model. This moves the problem to the model instances and further builds upon
this idea that a meta model simply defines a modelling language to which an instance can conform.
We are now ready to formally explain what it means for a model to be a model instance.

Definition 2.2. Suppose a meta model (C,R). We call a directed graph (V, E) that allows self
loops a model instance of (C, R) when:

(1) Yv e V(3(I,P) e C(P(v)))

(2) Y(vfrom,vio) € E(3((z, X), (y,Y),1,Q) € R(X(vrom) A Y (v10)))

(3) V(z,X),(y,Y),1,Q) € R(Q(E))

Again, we do not make explicit what information is present within this graph, because we do not
require this information for the encoding. The point of these two definitions is to enable reasoning
about the structure of meta models and model instances. Intuitively we have that a graph is a
model instance of a meta model if all of the vertices are compliant with the modelling rules of at
least one class in the meta model. That for all of the edges in the graph they also are defined as
such in the meta model. And that all edges in the graph comply with the modelling rules for each
edge in the meta model. Compliance to these modelling rules simply means that the modelling
language described by a meta model accepts the model instance as valid.

In order to easily show that an edge or vertex within a model instance conforms to the meta model
we overload the operator €. Suppose we have a meta model (C, R) with a corresponding model
instance (V, F), we define that for any c€ C,r € R, v € V,and e € E:

vec=ve(l,P)=Pv) (1)
ecr= (efromaeto) € ((va)’ (:%Y)J’Q) = X(efTom) A Y(eto) (2)

This overloading automatically also gives us definitions for ¢. In addition to this abbreviation we
also textually refer to v € ¢ as an object in its respective class.

Note that this abbreviation only tackles (1) and (2), we do not check whether the rules defined
by the edges apply to the entire edge set, we assume that since (V, E) is already a model instance
of (C,R) this holds. From here on we will usually refer to any vertex or edge within the meta
model with an uppercase symbol and those within the model instance with a lowercase. This way

10



of defining the conformance to the meta model also enables us to quantify over these models. In
other words, we can say that Vo € X means all x that conform to X, or all object instances that
conform to the class.

We can illustrate the definition of a model being an instance of a meta model with the example
model instance in figure {4 for the aforementioned small NRP meta model.

== Solution=>

proposedSolution
solutions selectedAtifacts
W
== Softwarebtifad=>
reguires mainArtifact reguires
-name : main
W W
<< Sotwaredrifad== <<SoftwareArtifac==
drawArtifact logArtifact
-name ; draw -name : log

Figure 4: Example model instance of the small NRP meta model

This model instance contains only 1 solution called proposedSolution, with three artifacts: mainAr-
tifact, drawArtifact, and logArtifact. We can view this example as a graph with 4 vertices and 4
edges:

V = {proposedSolution, main Arti fact, draw Artifact, logArtifact}

E = {(proposedSolution, mainArtifact), (mainArti fact, proposedSolution),
(mainArtifact, drawArtifact), (mainArti fact,logArtifact)}

We have annotated figure [4] with what these edges and vertices conform to in the meta model.
In reality, these edges and vertices would contain more information to determine that this in fact
holds. For now we just assume that the relevant predicates hold for the relevant vertices and edges,
meaning that this example is a model instance for the small NRP meta model.
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3 Research Questions / Concerns

As stated in the earlier sections the main drawbacks of current model driven optimisation tools is
the frequent copying of these models during each evolution step. The main question of this thesis
is:

Q1 Can we use an encoding instead of a model to copy a population of a model driven optimisation
problem faster?

As noted, we focus in this thesis on the model driven optimisation tool MDEOptimiser, but the
same concern also applies to other tools in this domain (e.g., MoMOT, Viatra-DSE, FitnessStudio).
We use the tools and libraries within MDEOptimiser as basis to perform experiments and tests.

A problem we can run into is that while we gain time during the copying, we lose it again at other
steps in the algorithm. To this end we can wonder whether we can easily apply the encoding within
an existing tool and immediately see improvements. This gives rise to the following question:

Q2 Does using an encoding reduce the overall execution time of the model driven optimisation
algorithm?

When we find a positive answer to either of these questions we know that we have at least reached
a partial improvement to the performance.

4 Concept

Within this section we will on a more formal level explain the concept of the encoding. Firstly,
we explain the initial concept that is the idea of the encoding. After that we establish several
assumptions and restrictions that we have surrounding the encoding. Taking all these things into
account, we propose the formal encoding. After that we describe how to implement this in a model
driven optimisation technique. Lastly we will describe a Java library we implemented based on
these concepts.

4.1 Initial Concept

Within this section we will explain the conceptual approach taken towards creating an encoding
for any model driven optimisation technique like for example MDEOptimiser. In this thesis we
focus on implementing the encoding for MDEOptimiser, but the core concept can be extrapolated
to any model driven optimisation technique. This means that, as we mentioned, any modelling
technique that follows the boxes-and-lines paradigm can be encoded using the concepts defined in
this thesis.

The idea at its core is to look at each relation within the meta model and construct a bit vector for
each object that has one or many of these references to the other objects. A bit being 1 then shows
that there is a reference between them. For this approach we assume that any one way relation in
the meta model can be seen as a one-to-many relationship. In case of a one-to-one relation there
will be only one bit in the vector that is set to 1. A many-to-many relation in this case is not one
way, and is seen as two one-to-many relationships.

12



Figure 5: A simple meta model

Figure [5] represents a very simple meta model. To obtain an encoding from this meta model we
have that for a class X we look at all of the edges (Vfrom, Vto,l, Q) € E where vfp0m = X. We can
then construct a bit vector [by,- - ,b,] for each x € X where n is the amount of y € Y. Meaning
that if b; = 1, then x is related to y;, else x is not related to y;.

With this way of encoding all the relations within any given meta model we need to be able to
figure out what the actual object instances are we point to using such a y;. At this point it is
sufficient to just assume these instances are stored somewhere and we have a way of retrieving
them.

In a given model driven optimisation problem we then have these bit vectors be the population
upon which the exploration operators are applied. Meaning that the encoding is the part that is
copied and evolved, not the model itself anymore. This should then give us a better performance
for the optimisation problem.

4.2 Assumptions

For this idea to work we make several assumptions based on the information that is provided by
the optimisation problem, and the models used within. As this work is based on MDEOptimiser,
we take the information that this tool combined with EMF provides. These assumptions are:

e We have access to both the information from the meta model and model instances of any
given problem. Specifically, we need to be able to extract the meta relation information for
any given object. The definitions we gave have already assumed that we can somehow access
this information. Standard modeling platforms such as EMF provide this information via a
suitable APIL.

e For any model driven optimisation problem, we have that applying its exploration operators
never introduces violations of the modelling language specified by the meta model. This is
in one part needed for being able to view any one way relation in the meta model as a one-
to-many relation. And also to be able to guarantee that when we evolve a model instance of
a meta model it stays a model instance.

e Lastly, we also assume that we have some way of identifying, storing, and retrieving the
objects in the model instances. This means that next to having access to the relevant
information, we also have access to code/infrastructure that can store the object instances
and if necessary generate identifiers for them.

13



4.3 Restrictions

As a starting point we only look at optimisation problems that do not have exploration operators
that alter the attributes of an object. Having this restriction means we can ignore the increased
complexity that is created by allowing this. Multiple encodings usually share references to some
object instances which means that if we were to alter the attributes in these objects we would have
to deal with potentially keeping track of each variant of these objects for every member of the
population. Suppose we were to solve this by saving a copy of each variant, we would then quickly
lose the benefits of encoding the model this way, as we still copy the actual objects a lot, and
have to store the slight variations of them as well. It is reasonable to assume that the exploration
operators do not alter the attributes of the classes in the model as none of the example problems
provided as part of the MDEOptimiser project do [4]. We do acknowledge that for completeness
it is preferable to support this, but this will be left as future work.

4.4 Proposed Encoding

In this section we formally propose the encoding to be used within model driven optimisation. We
build upon the ideas described in the initial concept and concretely define how the model instances
are retrieved and stored.

The first idea for the encoding was the creation of a bit vector for each vital one-to-many relation-
ship. When taking into account that exploration operators can add and delete objects within the
model instance this is no longer viable. Addition and deletion of objects implies that we have to
scale the bit vector for each added object and keep track of its index. It is more complicated to
delete objects as it is vital to preserve the indexes of the objects to be able to later retrieve them
from the encoding. Another argument for not using bit vector is that when we want to retrieve
the actual objects back from the encoding we would have to loop through the entire vector and
check which index contain a 1.

For the encoding we discern between two types of relations here. The abstract- or meta-relationship,
that is the edge in the meta model. And the relation instance, which is the edge in the model
instance. The abstract relationship describes the allowance of a reference between one class and
another, whereas the relationship instances is such an actual reference.

We concluded that a bit vector is not a viable way of encoding the model. Instead, we opted for
a identifier based approach to the encoding. The basic premise is that we assume that we can
create or generate an identifier for each object instance in the encoding. Using these identifiers
we can then easily link both the abstract relation to its instances and the relation instance to
its related objects. Intuitively we can see the encoding as two nested relationships. The deepest
relationship is that between the object instances and its corresponding references. We in essence
collect all of the identifiers for any objects referenced by an object. The highest relationship
sorts all these object instances according to what abstract relationship they belong in the meta
model. Recall the small NRP example, one abstract relationship we have here is the ‘requires’
relationship between SoftwareArtifact and Solution. Within the model instance in figure [4] we can
see two instances of this abstract relationship, namely between mainArtifact and drawArtifact,
and between mainArtifact and logArtifact. These references both start at mainArtifact so the
identifiers for drawArtifact and logArtifact will be related to the identifier of mainArtifact.
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4.4.1 Formal Definition

Within this section we introduce the formal definition of the encoding. We define a mapping from
a meta model (C, R) and its model instance (V, E) to an encoding P(Ra, P(Ry,P(L))). Here we
have that R4 is a set of labels that denote the abstract relations within the meta model, R; is a
set of labels that denote the relation instances within the model instance and P(L) is the powerset
of labels. The powersets in the encoding denote that we have several abstract relationships who in
turn have several relationship instances. All specific label sets like R4 and R; have that Ry C L
and R4 C L. The usage of these names is just for convenience.

To enable the encoding to link between label representations of the object instances we assume
that there is a bijective function id : V' — L from which we can obtain an identifier for any object
instance v € V. With its corresponding inverse which we call obj : L — V which links any
identifier to its object. Lastly we also assume that we have an operator + which concatenates any
two k,l € L labels. To start of this definition we need to gather all of the referenced objects of
any object within the model instance as identifiers and relate them to the identifier of the object
that references them.

Definition 4.1. Suppose a graph (V, E) with a vertex v € V, a set of relation labels Ry and a set
of labels L. We call r; : (Rr, P(L)) a relation instance of v if r; = (id(v),{ id(w’) | (w,w') €
EAnw=wv})

Using definition we can now obtain all of the relation instances for any given graph.

Definition 4.2. Suppose a graph (V, E). We define Rellnst(V, E) as all of the relation instances
for (V,E). Namely, we define Rellnst(V,E) ={ rr | v eV Ary is a relation instance of v}.

This gives us a set containing all relation instances for the graph. We now want to obtain all
relation instances for any given abstract relation. For this we restrict the relation instances to a
relation in the corresponding meta model.

Definition 4.3. Suppose a meta model (C,R) and a corresponding model instance (V, E).
For an arbitrary r € R we define RellnstRestr(V, E,r) as all of the relation instances for (V, E)
restricted to r. Namely, we define RellnstRestr(V,E,r) = { (v, W/U) | (v,W) € Rellnst(V, E)A
U={w|weW A/ (obj(v), obj(w)) € E A (obj(v), obj(w)) & v} AN\W/U # 0}.

In essence, this definition removes all of the edges from Rellnst that are not an instance of the
meta relation r. Note that we are using the overloaded € operator defined in section Using
this restriction we can now define what an encoded abstract relation looks like.

Definition 4.4. Suppose a graph (V, E) which is a model instance of a meta model (C,R)
with a relationr = ((¢, P), (d,Q),1,Q) € R. We callr4 : (Ra, RellnstRestr(V, E,r)) an encoded
relationship of v if r4 = (I +id(c) + id(d),{ r1 | r1 € RellnstRestr(V,E,r)})

We can now construct the formal encoding for any given meta model (C, R) with a corresponding
model instance (V, E). For every r € R we can construct an encoded relationship and take a
set of all of them.

Definition 4.5. Suppose a graph (V, E) which is a model instance of a meta model (C, R). We
define an encoding of (C, R) and (V,E) tobe{rs|r € RAry4 is an encoded relationship of r}
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Example

Let’s apply the abovementioned definitions to our small NRP example. Recall that we have a
small NRP meta model (C, R) and a small NRP model instance (V, E) with:

C = {(Solution, S), (SoftwareArtifact, SA)}

((Solution, S), (SoftwareArtifact, SA), selected Artifacts, SEL),
(SoftwareArtifact, SA), (Solution, S), solutions, SOL),
(SoftwareArtifact, SA), (SoftwareArtifact, SA), requires, REQ)}

proposedSolution, mainArti fact, drawArtifact,logArtifact}

R={

(

(

V={

E = {(proposedSolution, mainArtifact), (mainArti fact, proposedSolution),
(mainArtifact, drawArtifact), (mainArti fact,logArtifact)}

First, we look at what a relation instance looks like for some vertex. This small example only
has two relation instances, as there are only two classes that have outgoing relations. We show
them for mainArtifact and proposedSolution:

TImainArtifact = (#d(mainArtifact), {id(proposedSolution), id(drawArtifact), id(logArtifact)})
TIproposedSolution = (id(proposedSolution), {id(mainArtifact)})

Taking both r7mainartifact a0d TIproposedSolution aS & set now already is Rellnst(V, E). We can
now look at what all restricted relations look like for (V, E), but we will focus only on those of
mainArtifact as here we can restrict to different abstract relations.

We can either restrict to ro = ((SoftwareArtifact, SA), (Solution, S), solutions, SOL) which
gives:
RellnstRestr(V, E, rg) = {(id(mainArtifact), {id(proposedSolution)})}

Or we can restrict to 7 = ((SoftwareArtifact, SA), (SoftwareArtifact, SA), requires, REQ),
which gives:

RellnstRestr(V, E, ry) = {(id(mainArtifact), {id(drawArtifact),id(logArtifact)}) }

This enables us to encode one of these restricted relationship instances. Let’s pick rg, we have
then that r4 is an encoded relationship for ry if:

ra = (solutions+id(SoftwareArtifact, SA)+id(Solution, S), {(id(mainArtifact), {id(proposedSolution)})})

The entire encoding of (C, R) and (V, E) can now be instantiated leading to the following set:

{(solutions + id(SoftwareArtifact, SA) + id(Solution, S), {(id(mainArti fact), {id(proposedSolution)})}),
(requires + id(SoftwareArtifact, SA) + id(SoftwareArtifact, SA),
{(id(mainArtifact), {id(drawArtifact),id(logArtifact)})}),
(selectedArtifacts + id(Solution, S) + id(So ftwareArtifact, S A), {(id(proposedSolution), {id(mainArtifact)})})}
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4.4.2 Application within Model Driven Optimisation

Using the above definitions, we have encoded a meta model with its model instance. However,
this is not yet enough to actually use the encoding within any given MDO technique. To enable
this, we have to consider two things. One, how do we evolve the encoding instead of the model?
Two, how do we evaluate the encoding with the fitness function? Both of these questions concern
aspects of the process that the user inputs. The fitness function and the rules for evolving the
models. We do not want a user of an MDO technique to consider the encoding. That would defeat
the entire purpose of using models as a way of representing the population. The goal of this thesis
is to make sure the user of such an MDO technique does not even realise it is being encoded.

One way to enable the seamless integration of the encoding is to intercept relevant function calls
to the model and supply the information based on the encoding. To do this it is important that we
add an extra ingredient to the encoding. A bidirectional map of theid : V — L and obj: L — V.
We call this bidirectional map the ‘Repository’, and it implements the storage of all relevant model
instances. To use the Repository we fill it with the initial objects in the model instance during the
encoding phase. Then, whenever an exploration operator adds an object instance to the model, we
instantiate the object, generate an identifier for it, and add it to the Repository. If an exploration
operator removes an object from the model, the Repository should remove the relevant mapping
to save space.

With the addition of this Repository it is now trivial to intercept functions on the model. From
the context of the function we can retrieve the relevant abstract relationship. We can then, based
on the object on which it is called, retrieve the relevant identifiers it is related to within the
encoding, and return the list of actual objects back to caller. We will illustrate this idea using
the small NRP model example. Recall figure |1| and A logical function every Solution has
is to get its selected artifacts. The context gives us the identifier for this encoded relationship.
Namely, selectedArtifacts + id(Solution, S) +id(SoftwareArtifact, SA). With this we can then
obtain all relationship instances for this abstract relationship. Now suppose we call this function
on the proposedSolution. We can then invoke id(proposedSolution) to lookup the relevant set of
identifiers that this Solution references. We then simply return a new set that contains the actual
object instances for the set of identifiers.

This way both the fitness functions and exploration operators can still treat the population as
models, while they are actually using the encoding. Ideally, the generation of this interception
should be done automatically. This was out of scope for the thesis and will thus be left as future
work.

4.4.3 Java Library

We implemented all of the aforementioned concepts as a Java library for the EMF framework.
The library currently only supports the automatic generation of the encoding and the automatic
lookup of related objects. Within the library there are three important classes that facilitate all
the functionality for the encoding to be applied in any situation. These are the classes Converter,
Encoding, and Repository, as we can see in the class diagram in figure [} The ModelLoader class
is utility for loading in the files.
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Figure 6: Encoding Java library class model

The converter exposes an interface that accepts any meta model ecore file and a model instance
xmi file and converts it to an encoding. The Repository class is implemented as described in the
previous section, it contains the bidirectional map between object instances and identifiers. It
supplies functionality for the id and obj functions. The Encoding class itself contains as data a
HashMap that has as keys all of the abstract relationships within the meta model and as values
another HashMap which contains the RellnstRestr for that abstract relationship.

A wuser of this library should only ever have to work with the Converter.convert() function and
the lookup function from the Encoding class. This gives a two layered approach where the model
exists within the code to guide the user to not construct violations of the models within their
implementation. The encoding should now be used to do the heavy lifting of the optimisation
algorithm, namely the evolution and copying.

Within the library we also support the addition of new objects to the repository as described within
the previous section. However, we do not support the removal of objects from the repository, as
efficient garbage collection is a big challenge in itself. Therefore, we left it out of the scope of this
thesis.

The interception of the calls on the models is not supported by the Java library. There are several
options to enable this, one of them is a wrapper that is generated with the generation of the actual
code for the models by EMF. The wrapper then functions as the bridge between the model and
the encoding and should as such be context aware, which is possible because it is generated based
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on the model. Another option is to intercept the calls to the models using AspectJ. This enables a
user to redirect a call to the model to the encoding using Aspect Oriented Programming (AOP).
We will not describe AspectJ in detail within this thesis. Instead, we direct readers to |17] as a
reference to get started with AOP and AspectJ. Since AspectJ does not require us to interfere
with the code generation of EMF and gives us relative easy access to the interfaces we need this
is what we chose to implement the interception of the calls within the experiments we performed.

5 Evaluation methodology

To validate the concepts we introduced in section [d] we use the case studies described earlier. We’ll
apply one aspect of the concept to each case study to validate the concepts in a step-by-step
manner. First we apply the initial concept as mentioned within [{.1]to the NRP problem, as this is
a relatively simple problem with only one edge that is changed in the model. Then we apply the
entirety of the concept in the CRA case study. In both cases we measured the time for completion
of the optimisation based on the size of the population and the amount of evaluations. We also
use boxplots (for further details refer to [9]) to represent the data obtained from the experiments
in both NRP and CRA. These boxplots show the average of the data, where the majority of the
data points lie, and where the outliers lie. Lastly, we apply t testing on the fitness results in both
experiments to determine that there is no statistical difference between the experiments that use
the encoding and the experiments that use the standard models [6]. As critical value we take
the standard 5% that is used by most statisticians. In all cases we want to not reject the null
hypothesis, as we want there to be no statistical significance between the experiments that use the
encoding and the experiments that do not. For further reading we refer to [25] and [6]

For NRP we kept the setup simple. We only have two variants of the experiment, one with the
crucial edge encoded according to the initial concept described in section and one that just
uses the model. The way that the experiments now obtain the results is significantly different as
the exploration operators had to be adapted. To make sure that the results from these experiment
only differ within the representation of the data we checked whether the results from both runs
are comparative. We ran the algorithm for both variants on a large population for a long time.
Combining the Pareto fronts of these results and using this to calculate the hyper volume for each
subsequent run of the algorithm. On these values we then apply t testing to see whether it is
reasonable to assume that these results came from the same methods. For the data we executed
several experiments with varying population size and amount of evaluations to see whether these
variables would change the outcome. We executed them for each variant, one with the use of the
encoding and one without. During these experiments we only kept track of the final fitness, the
overall time consumption, and the hypervolumes of each population. The point of the experiments
is to enable answering our first research question (RQ1). Since the setup is so similar, we can fully
focus on whether using an encoding improves the performance or not.

With CRA we took a different approach, as we wanted to now answer the second research question
(RQ2). We turned the formal encoding into a Java library so that we can automatically generate
an encoding from any given meta model and model instance. This allowed us to apply it to any
given case study using MDEOptimiser. We chose CRA because this case study has five model
instances, each with a different size ranging from small to large. This enables us to see whether
the encoding works for different sizes of model instances.
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In this case study we chose to use the mutation operators given by [4]. That way we don’t have
to deal with crossover operators that can have multiple parents. This makes implementing and
running the encoding for CRA easier as we only had to change some edges and add some objects.
It essentially doesn’t really matter what type of exploration operators are used, because we are
only interested in whether using the encoding this way is beneficial with respect to the performance
of the algorithm.

For the measuring of CRA we took the same style of approach of doing several experiments with
the encoding as representation and several with the model as representation. This time however,
we used the Java library we created as the encoding. We again measured the time it took for the
algorithm to run for different sized model instances with varying population size and amount of
evaluations. However, this time we also measured the relevant inner steps within the algorithm
to compare them. This is relevant now, as we want to look at whether using the encoding in this
way already increases the overall performance. It enables us to more deeply analyze where the
usage of the encoding is faster, and where it might be slower. We measured the following steps
individually:

e copying a member of the population
e applying the pattern matching to a model/encoding

e applying the mutation to a member of the population

e evaluating the fitness of a member of the population

The full mutation of a member of the population is comprised from the application of the pattern
matching of the Henshin rule, and applying the corresponding rule to a member of the population.

Additionally, we also kept track of the fitness of members of the population for both variants. We
again used t testing to verify that the best fitness found for each experiment come from the same
underlying algorithm. This time by applying the test to all of the best fitnesses found for each
experiment with a model instance.
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6 Implementation

This section contains the implementation details of the experiments done for NRP and CRA. The
results that are produced by the experiments are saved to a file, which is later read by a Python
script that turns the data into comprehensible graphs.

6.1 Next Release Problem

As mentioned in the methodology we first implemented the idea for the encoding in the context
of the Next Release Problem. This means we implemented the encoding as a vector of bits.

Recall the meta model for NRP in figure[I] in this figure we can observe that the crucial relation
for this problem lies between Solution and SoftwareArtifact. The core of the NRP is just simply
adding a software artifact to the solution or not, meaning if we encode this relation as a bit vector,
we can simply evolve this vector instead of the whole model. The rest of this model will always
stay the same for each member of the population.

We use the Java implementation of the NRP provided in [4], on which we implemented the MOEA
framework. As we need to evaluate two variants we implemented two problems that represent them.
The encoded problem was quite straightforward as we could simply use the provided BinaryVariable
given by MOEA. For the model problem however, we had to implement our own custom variable.

For simplicity we have chosen to ignore the exploration operators provided in [4], and use the
standard operators for evolving a bit vector provided by the MOEA framework, namely the HUX
and BitFlip operators which will be introduced shortly. The point of this experiment is to check
whether using an encoding like this gives a performance boost when everything is the same but
the way the data is stored.

The HUX operator, also called the half uniform crossover operator, is an operator which accepts
two parents and then compares their vectors. For parents p and ¢ with vectors py,---,p, and
qi, " ,qn we have that if p; # ¢; then their values are swapped. In a usual case there is only a
chance that this swap happens, but in the case of this experiment this chance is 100%.

The BitFlip operator accepts one parent and has for each bit a 1% chance to flip its value to
the opposite.

In this experiment we apply the HUX operator first and then apply the BitFlip on the resulting
children. We let the MOEA framework handle the operators for the encoded variant of the problem,
and we implement these operators for the model variant ourselves by instantiating a Variation
class. This implementation should behave exactly the same as the standard implementations from
MOEA.

We use two model instances for this experiment, a smaller one with 5 customers, 25 requirements,
and 63 software artifacts. And a bigger one with 25 customers, 50 requirements, and 203 software
artifacts. For each model instance we run the experiment on two variables; namely, the population
size and amount of evaluations. Per combination of these variables we run the experiment several
times.

To intercept the calls to the model we use AspectJ to redirect them to obtain the information from
our bit vector. This is quite simple to implement as the only calls that we have to intercept are
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the getters in the SoftwareArtifact and Solution classes that reference each other.

6.2 Class Responsibility Assignment

For the implementation of CRA we used the Java implementation provided by [4]. As stated in
the methodology, we use the Java library we created as the representation for our encoding. To
ensure the encoding is used instead of the model we used AspectJ again to intercept the calls to
the model and redirect them to the encoding. This time however, the interception is more difficult.
As we needed to implement it for every getter within the CRA model. Performing this task is
quite tedious as the encoding guides the implementation and little effort is required to create the
advices. Ideally, this part should be automated, which we will not do in this thesis. We will leave
the automation as future work.

We wanted to stay as close as possible to the implementation MDEOptimiser uses. We copied
the way MDEOptimiser calls MOEA, and then filled in our custom AbstractProblem, Variable
and Variation that are to be used during the optimisation algorithm. This time we did use the
exploration operators as provided by [4]. Like MDEOptimiser, we rely on Henshin for the pattern
matching of the rule to the model. To enable this we implemented a stub for the graph that
Henshin expects that is filled with the information of the encoding. We then tell Henshin to
pattern match to that graph, which calls the relevant getters in the model. Henshin then gives us
back a list of changes that should happen to the model, which we apply to the encoding instead.

In order to measure the performance we recorded the time it took for each of the actions as
described in the methodology to complete as well as the overall time. Since these steps get executed
multiple times throughout the algorithm we simply take the average of each of these times per
experiment. To measure it for MDEOptimiser we add measurements as hard coded pieces within
the corresponding classes in MDEOptimiser.

We use five model instances within this experiment that are also provided by [4]. These model
instances range from only 9 features with 14 dependencies to 160 features and 600 dependencies.
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7 Results

In this section we will show and discuss the results gotten from the experiments we conducted.
Firstly, we will discuss the results for the NRP case study. Then we will move on to the results
for the CRA case study.

7.1 Next Release Problem

For the experiments using the Next Release Problem we tried to get an answer to question ‘Can we
use an encoding instead of a model to copy a population of a model driven optimisation problem
faster?’. As mentioned in the methodology we kept the setup simple such that the experiments
only differ in the representation of the data. We also wanted to see whether the population size or
the amount of evaluations had an impact on the performance. As mentioned in the methodology
we run the experiments with the population size and the amount of evaluations as variables. We
define a start value, an end value and an increment value for the experiment and then run it
multiple times for each possible combination. The value we record per experiment is the amount
of time it takes for the algorithm to complete, and its hypervolume with respect to the previously
computed reference pareto front.

Within NRP we performed the experiment on a model instance with 5 customers, 25 requirements
and 63 software artifacts. We executed this experiment with a start value for the population size
of 500, an end value of 2000, and an increment of 500. The amount of evaluations started at 10000,
ends at 30000 and has an increment of 10000. From running this experiment it was clear that the
population size of an optimisation algorithm does not nearly impact the performance of it as much
as the amount of evaluation does. We illustrate this in figure [7] and figure [§] In figure [7] we take
10000 evaluations statically and vary between all four possible population sizes. Whereas in figure
we take a static population size of 500 and vary between the three amounts of evaluations. In
the figures the ‘enc’ and ‘mod’ prefixes denote whether it was an experiment with the encoding or
the model as data representation. The p and e suffixes denote the population size and amount of
evaluations.

Like we mentioned within the methodology, we use boxplots to display the data. As a short
reminder the box contains all values between the 25th and 75th percentile, where the orange line
is the median, the lines outside the box contain the rest of the values, and the circles are the
outliers. For a more in depth explanation of boxplots refer to [9]. A boxplot that represents data
for the encoding will always have a light blue background, while a boxplot that represent data for
MDEOptimiser will have a beige background. Additionally, except for figure [7] and [§] where the
encoding results are on the left and the MDEOptimiser results are on the right, the results in each
figure alternate starting with the encoding on the left.

Since the population size does not have as much impact on the time taken as the amount of
evaluations, we combine the values of the experiments to now only vary over the amount of
evaluations for the following figures. In the raw data the varying population size is still visible.
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Figure 7: NRP with 5 customers, 25 requirements, and 63 software artifacts varying on the popu-

lation size

Figure 8: NRP with 5 customers, 25 requirements, and 63 software artifacts varying on the amount
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Figure 9: NRP with 5 customers, 25 requirements, and 63 software artifacts with combined pop-
ulation size values

Figure [9 shows all the values we obtained for the experiment on this model instance. Alternating
between the encoding variant and model variant on the x-axis, with the numbers now representing
the amount of evaluations (i.e. 10.0k mean ten thousand evaluations). As we can see the encoding
variant greatly outclasses the model variant. In this experiment we observed an average speedup
of 1.98 with a minimum speedup of 1.79 and a maximum speedup of 2.09.

Next, we ran two experiments on a bigger model instance with 25 customers, 50 requirements,
and 203 software artifacts. Figures and show their results. For figure [11| we executed this
experiment with a start value for the population size of 200, an end value of 1000 and an increment
of 200. The amount of evaluations started at 1000, ends at 10000 and has an increment of 1000.
Since we combined the results for the population size they are not visible within either figure. For
figure we executed this experiment with a static value for the population size of 1000. The
amount of evaluations started at 10000, ends at 50000 and has an increment of 10000.

In these figures we can again see that the model variant of the experiment is significantly slower
than the encoding variant. We can even draw a line through each variant in the figures and observe
them separating linearly. For the experiment corresponding to figure [I0] we observed an average
speedup of 1.96 with a minimum speedup of 1.79 and a maximum speedup of 2.04. Furthermore,
for the experiment corresponding to figure we observed an average speedup of 1.93 with a
minimum speedup of 1.41 and a maximum speedup of 2.27.
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For all three experiments we calculated the hypervolumes for each variant with respect to a pre-
viously calculated pareto front of the model instance. This pareto front is the combination of the
result of running both experiments with a large population size and amount of evaluations. We
then applied t testing with as null hypothesis that both samples have identical average (expected)
values. The p-value for all three experiments was not smaller than the 5% that we use to disprove
the null hypothesis. In fact, the p-values were significantly larger than 5% in each experiment.
This means that we can conclude that the values obtained during the experiments where obtained
from the same algorithm.

7.2 Class Responsibility Assignment

With the experiments that use the Class Responsibility Assignment case study we tried to find an
answer to the second question: ‘Does using an encoding reduce the overall execution time of the
model driven optimisation algorithm?’. Within the experiments for CRA we do not vary over the
population size and the amount of evaluations, as we established in the NRP experiments that the
speedup does not change with them. We instead take vary over the five different model instances
supplied by the case study which range from 9 features with 14 dependencies to 160 features and
600 dependencies. For the population size we have chosen 40 with 500 evaluations per member of
the population (i.e. 20000 total evaluations). Like we mentioned in the methodology, we measure
the total time for the experiments to complete and the average time per experiment it took to
complete: copying a member, applying the mutation, evaluating a member, and applying the
pattern matching. For all of the figures within this section the x-axis will contain boxplots per
model instance for each variant of the experiments. As an example with ‘A-Encoding’ we mean
the experiments that use the encoding on the model instance A.

Initially, this looks to be quite promising for the encoding. The figures [12] and [13| show that the
encoding experiments completed on average faster for the model instances A and B. For model
instance C the encoding experiments where on average as fast as MDEOptimiser, but had greater
variance among the values. However, as soon as we look at the big model instances D and E we
see the opposite picture. The encoding is no longer faster than MDEOptimiser and for instance E
it is significantly slower. To further understand a possible cause for these results we measured the
time it took an experiment to complete several steps.

We started with looking at the average time it took to copy members of the population. The
results for these experiments are shown in figures and From these results we can observe
that, like in the NRP case study, the encoding beats out MDEOptimiser for every model instance.
Having an average speedup of 2.36 for the biggest model instance E. This means that we have to
look at the other steps within the algorithm that interact with the encoding.
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Figure 12: CRA overall time until completion for model instances A, B, and C
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Figure 13: CRA overall time until completion for model instances D and E
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Figure 14: CRA average time to copy a member of the population for model instances A, B, and
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Figure 15: CRA average time to copy a member of the population for model instances D and E
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Let’s first look at the average time it takes for the experiments to mutate a member of the pop-
ulation. These results are shown in figures and What we can observe from these results
is that the encoding performs worse when applying the found match. However, the time we lose
during this step lies in the thousands of nanoseconds. Overall we should still be faster consid-
ering that during the copying step the encoding is tens of thousands of nanoseconds faster than
MDEOptimiser and both steps happen the same amount of times.

We move on to the evaluation of the members of the population. The results for this step are
visible in figures [18] and These results immediately show that the encoding is slower when
evaluating a member of the population. This slowdown becomes even more noticeable when the
size of the model increases, which is the inverse of what we aimed to achieve. The difference in
results here is also not just a small amount of time like with the mutation. It is more than tens of
thousands of nanoseconds slower than MDEOptimiser.

The same observation can be made for the results of the matching step within the algorithm.
These results are the time it took for a Henshin rule to be pattern matched to a model and are
shown in the figures [20[ and The difference here is the most extreme. We observed on average
a more than 10 million nanoseconds difference in model instance E between the encoding and
MDEOptimiser. This matching is done during the algorithm as often as the copying of a member.
When a match isn’t found for a rule this matching is repeated up to 3 times. These slowdowns
add up and they are what is reflected within the overall results.

For all five model instances we applied t testing to calculate the p-value between the best fitness
values of the encoding and MDEOptimiser. As null hypothesis we had that both samples have
identical average (expected) values. We found that for the model instances of which we had a lot
of data points (A, B, and C) the p-values where higher than those of the ones for which we had
less data points (D and E). However, all p-values were significantly larger than the 5% that we use
to disprove the null hypothesis. From this we can conclude that the values obtained during the
experiments came from the same algorithm.

In conclusion, the evaluation, matching, and mutation of members of the population is slower in
the experiments that implement the encoding than in MDEOptimiser itself. Whereas the copying
of the members of the population is still faster when using the encoding. We will further discuss
these results in the next section.
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Figure 16: CRA average time to mutate a member of the population for model instances A, B,
and C
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Figure 17: CRA average time to mutate a member of the population for model instances D and E
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Figure 18: CRA average time to evaluate a member of the population for model instances A, B,
and C
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Time for matching a Henshin rule to a member of the population
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Figure 20: CRA average time to match a member of the population to a Henshin rule for model
instances A, B, and C
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8 Discussion

This section will contain a discussion on the evaluated results of the experiments performed in this
thesis.

In the case of the NRP, we see that the results show that in both cases of the model instance
using an encoding as the representation is a lot quicker than using the model. We have however
only measured the total execution time, which means that at this stage it is too early to say that
this is definitely due to the encoding, and not just because we use a different Variation for each
variant. In hindsight, it would have been better to also measure the individual execution times for
both the evolution of a member of the population, and the copying of a member of the population.
However, since we have controlled this experiment very thoroughly such that there are little other
variables at play, we can at least say with some certainty that it makes the algorithm faster. This
is made fully certain when we also take the results for the CRA case into account. In this case we
see that the usage of the encoding also significantly improves the performance for the copying of
the members of the population.

Taking these results into account, we can answer RQ1, ‘Can we use an encoding instead of a model
to copy a population of a model driven optimisation problem faster?’. The answer to this question
is ‘yes’, using an encoding as the basis for the population does indeed speed up the copying of said
population. We can conclude this from the results of the NRP experiments in the figures [I0] [T}
and [0} and this is further confirmed by the results shown in the CRA figures [14] and

However, the same cannot be said for RQ2. When looking at all other times, we see that none
of them are actually faster than the model based approach. The worst offender in the CRA case
is the pattern matching that is done by Henshin. Now there can be several reasons for why this
is the case. Onme reasonable explanation is that since we use AspectJ to intercept all calls to
the model, the overhead that is created due to this makes it impossible to have faster or even
comparable times. This makes the most amount of sense in our opinion, AspectJ is known to
increase overhead somewhat [5], but that is usually deemed negligible due to the amount of calls
typical Java programs have to libraries, which dwarfs the amount of time spent in user code. In
our case however, we spent a lot of time in the user code, as we capture any call towards the
domain model. It is also the case that a simple getter that returns part of the model is faster than
having to gather the right objects from the object repository, as this list needs to be constructed
every time. When combining this with the fact that these getters are called a lot, we can easily
see how just a slight decrease in performance can lead to seconds or even minutes when running
an entire optimisation algorithm. Another explanation could be that using an encoding this way
and intercepting calls to the models just isn’t viable as it costs more in performance than it gains.

One thing that we also saw during the implementation of the encoding is that if we have the
underlying data structure be a bit vector lookups through this vector would take at worst n amount
of cycles where n is the amount of objects within a class. This was because in the beginning we did
not take into account that Henshin rules can add and remove objects from the model. To alleviate
this issue we adapted the encoding to use a set of identifiers instead, which cut the amount of
cycles to only those object that are actually related to the object.

The ideas we represent within this thesis can be extrapolated to tools outside of MDEOptimiser.
We think that the core concept, the formal encoding, is a useful way of encoding any meta model
with model instances. Which can solve, as we show, the performance of copying the population.
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The main problem that we see now is that MDEOptimiser and the surrouding tools are not
tailored towards using such an encoding. We thought that using AspectJ would not impact the
performance as much as it did. However, we can not yet be certain that it is the fault of AspectJ
that the performance is worse. It could just be the case that this way of encoding the models
only benefits the copying of the population. More research is needed to figure whether we can get
MDEOptimiser to a place where the overall performance of the encoded variant is as fast or faster
than the model variant.

Another big issue is the usability of the encoding. In an ideal setting we do not want the end
user that describes the domain and exploration operators to perfectly tune their models for the
encoding. This is to preserve the advantages that a tool like MDEOptimiser introduces. In the
CRA experiment we enabled this with the use of AspectJ, as that enabled us to redirect calls to the
model to the encoding. This usability issue lies directly in contrast to the next steps to actually
integrate the encoding. For that, we want the code to ideally work directly with the encoding
when we’re talking about the fitness functions, mutations, and pattern matching.

9 Conclusion

From these experiments we can draw several conclusions. The first conclusion we draw is that using
the encoding within MDEOptimiser does significantly improve the performance of the copying of
members of the population. We back this up by the results from both case studies wher we show
that the copying is faster. This means we can answer RQ1 with yes.

However, as we see from the results from the CRA experiments, the way we implemented the
encoding within MDEOptimiser using AspectJ does not increase the overall performance. This
means that we answer RQ2 with no, the current implementation to integrate the encoding in
MDEOptimiser does not improve the performance. Within the next section we describe possible
future work using a different way of intercepting the calls to the model which might increase the
overall performance.

In conclusion, we contribute a formal approach to obtaining an encoding from an arbitrary boxes
and lines model. Along with an implementation of this encoding for the EMF framework. We show
that this encoding is faster at copying the population over to the next iteration of the optimisation
algorithm. The drawback that we also show is that using AspectJ as bridge between the model
and the encoding severely decreases the performance of the other steps within MDEOptimiser.
Lastly, we discuss possible causes for this, and suggest new angles to research this topic further.
Because we do believe that the problems as described in this thesis could be alleviated and the
encoding can further increase the performance without sacrificing any of the benefits.

10 Future work

This thesis does not contain all of the appropriate answers for the questions proposed, and even
introduces new questions that should be looked into. As future work we are of the opinion that
the most important aspect to solve is how to apply the Henshin operators, and thus the match-
ing, directly on the encoding, and not intercepting everything with AspectJ. When applying this
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improvement on the CRA case we expect that the overhead for the matching will be minimized,
which should give equal or better performance than MDEOptimiser.

Another interesting aspect to explore is related to the overhead AspectJ creates. It could be
worth altering the way the model code is generated from the models the user creates, if this
takes the encoding into account, it is possible to diminish the negative impact of Aspect] even
more and maybe even completely stop using it to intercept calls to the model. This should be
done carefully as we do not want to lose the benefit of using models to describe the optimisation
problem. Additionally, we think it is important that the interception of the calls to the model is
generated automatically. This enables easier application of the concepts to new case studies.

As mentioned earlier we do not take into account that a class within the model can have its
attributes altered by the exploration operators. For completeness it is preferable that the encoding
does also accept such changes. The current way how the Repository handles the actual object
instances is not suited for this. Several encodings usually use some shared instances of objects,
what happens then if for one encoding an attribute changes? If we copy this object and alter it
only for one encoding we again introduce the problem that this thesis aims to solve. This seems
to be quite a complex issue that might be worth exploring. One could think of a possible solution
where the values of an object instance are also somehow encoded. As these values will always be
some combination of basic values like Integers, Strings and Lists.

Lastly it is useful to apply the encoding as introduced in this thesis to more different problems, as
we have now only applied it to the CRA problem. Applying it to the other case studies mentioned
in [4] will give a better idea on how to further improve the encoding itself, and possibly how to
deal with the matching and application of the exploration operators and how to deal with the
interception of calls to the model.
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