
Runaway Keystream Generators and
their Parallelizability and

G&D-Resistance

BSc. Maaike van Leuken

Supervisors:
Prof. Dr. Joan Daemen

Dr. Silvia Mella

Second Assessor:
Dr. Shahram Rasoolzadeh

Master Thesis Cyber Security
July 15, 2021

ABSTRACT

Abstract

A stream cipher is a symmetric key-scheme that turns a short key in combination with a

diversifier into a arbitrarily long keystream. The keystream is used for stream encryption,

i.e. the ciphertext is obtained by combining the plaintext with the keystream. In this thesis,

we investigate the security and efficiency of keystream generators constructed from a b-bit

permutation g, with b in the range 32 to 128, and some additions. We will call keystream

generators built with this construction runaway generators. In this construction the state

consists of n blocks of each b bits. It operates as a filtered non-linear feedback shift register.

To update the state, all state blocks are shifted right and the feedback function computes the

leftmost block from the state using some additions and one call to the permutation g. The

construction is generic and the computation is defined by two vectors, c and d. Every cycle,

the generator outputs a b-bit keystream block that is the sum of state blocks determined by

the vector e.

We assess the performance of the runaway generators by looking at how many state ele-

ments can be computed in parallel. We show that parallelizability is completely dependent

of the vectors c and d. We also analyze their security in terms of how many bits of guess-

and-determine (G&D) resistance different runaway generators offer, where we use a generic

block function. We show that finding the best G&D-attack for a runaway generator can be

automated, which allows us to test the security of many specific runaway generators. From

this research, we can conclude that it is possible to make a specific generator that achieves

the upper bound of (n− 1)b bits of G&D-resistance. We make some recommendations that

increase the probability of obtaining a high G&D-resistance and parallelizability. We finally

use our tool to assess the G&D-resistance when a modified version of the round function of

SKINNY is used in the update function.

1

TABLE OF CONTENTS

Table of Contents

Abstract 1

1 Introduction 3

2 Preliminaries 5
2.1 Runaway Generator . 6
2.2 Attacker Model . 9

3 Parallelizability 11

4 Guess-and-Determine Attack Resistance 13
4.1 Automated Attack . 17

4.1.1 Example Run . 20
4.1.2 Correctness . 21

4.2 Results of the Tool . 24
4.2.1 The Amount of Input Equations and Combinations 25

4.3 Recommendations . 27
4.3.1 Non-Linearity of the Block Function 27
4.3.2 Feedback Function . 29
4.3.3 Output Filter . 29

5 SKINNY as Block Function 31
5.1 Application to Non-Determinable Case . 33

5.1.1 Performing More Rounds . 35
5.2 More Complex Example . 37

5.2.1 Performing More Rounds . 38

6 Related Work 40

7 Conclusions and Future Research 42

References 44

Appendix A G&D-Automation Tool Results 46

2

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Keystream generators (KSGs) are used to transform a small key into an arbitrary long one.

The resulting keystream is then used to encrypt some message. Stream ciphers belong to

the symmetric key cipher realm and allow for stream encryption, where each plaintext bit is

combined with a keystream bit to obtain a ciphertext bit. The diversifier ensures that keeping

the same key for the stream cipher will not result in equal keystreams. Block ciphers in OFB

or counter mode are stream ciphers where a part of the state stays fixed, namely the key. We

call our KSGs “runaway generators” because the full state evolves. There is no part of the

state that keeps its value as the keystream is being generated. The diversifier and key of a

stream cipher can be combined into an initial state for the runaway generator. In this thesis,

we assume that we are given an initial state, which is secret and uniformly distributed. Then

we can expand the initial state with the generator, resulting in an arbitrary-length keystream.

There are various KSGs, such as linear feedback shift registers (LFSRs). However, these

have a linear update function which allows using linear algebra to construct the initial (se-

cret) state when having enough keystream bits. More interesting stream ciphers are irregu-

larly clocked LFSRs and non-linear feedback shift registers (NLFSRs). Instances of the first

class of LFSRs are broken, such as GSM A5/1 [Barkan and Biham, 2006] [Shah and Maha-

lanobis, 2012]. Examples of the latter include Trivium [Cannière, 2006] and Snow [Ekdahl

and Johansson, 2003]. In this thesis we aim to add to the range of KSGs, namely the sim-

ple, lightweight and plausibly secure keystream generators. We will investigate the runaway

generators, which promise a good trade-off between efficiency and cryptographic security.

Bit-oriented stream ciphers, such as LFSRs, are significantly slower in software implementa-

tions than word-oriented stream ciphers like Snow [Ekdahl and Johansson, 2003]. Hence, we

3

CHAPTER 1. INTRODUCTION

define a runaway generator as word-oriented stream cipher. Whether a specific runaway gen-

erator is hardware- or software-oriented depends on the block function. What runaway gen-

erators look like will be discussed in Chapter 2. We explain there what we think is low-cost

enough. In Chapter 3, we describe the performance of runaway generators as parallelizabil-

ity. We assess the cryptographic security of the runaway generators as how well they resist

guess-and-determine attacks, namely the guess-and-determine resistance, in Chapter 4. We

do that, with use of self-made tool, which also allows us to assess the guess-and-determine

resistance of runaway generators with a specific block function, an adaptation of the round

function of SKINNY. In Chapter 6, we show that runaway generators look promising in both

security and performance, compared to the state-of-the-art stream ciphers.

4

CHAPTER 2. PRELIMINARIES

Chapter 2

Preliminaries

A keystream generator is defined as a triplet (S,ϒ, f), with internal state S, update function

ϒ and output filter f . Figure 2.1 shows an iterative KSG. It is also synchronous, as the

keystream is computed independent of the plaintext and ciphertext.

Figure 2.1: Graphical display of the keystream generator. The initial state is denoted as
S0, this is the input of the KSG. Then all other states St for t > 0 can be computed from
this, using the update function ϒ. Using the output filter f and St , the keystream block at
time t is computed.

As described in Chapter 1, a KSG can be used as part of a stream cipher. A stream cipher

has as input a key K and diversifier D and creates an arbitrary-length keystream. The key

and diversifier will serve as the initial state. This is shown below in Figure 2.2. The resulting

keystream z0z1z2 . . . can be used for stream encryption.

Figure 2.2: A stream cipher takes as input a key K and diversifier D. These are combined
into the initial state S0 of our KSG. The KSG then produces a keystream, which can be
used as key in stream encryption. The plaintext P is bitwise XOR’ed with the keystream,
to obtain the ciphertext C.

5

CHAPTER 2. PRELIMINARIES

2.1 Runaway Generator

We are interested in a type of KSG with specific properties, namely the runaway generators,

which we will now describe. The internal state St = {at , . . . ,at+n−1} at time t for t ≥ 0,

consists of n elements of some finite field, in this thesis, the elements are in GF(2)b. We

assume we have a uniform, secret initial state S0 = {a0, . . . ,an−1}, consisting of n blocks of

b bits. We can compute the state St+1 at time t +1 as a function of St :

St+1 = ϒ(St) = ϒ(at ,at+1, . . . ,at+n−1) = (at+1,at+2, . . . ,at+n−1,at+n) (2.1)

= (at+1,at+2, . . . ,at+n−1,U(at ,at+1, . . . ,at+n−1)) (2.2)

In words, the state St+1 consists of a linear combination of the state blocks in St shifted by 1.

However, we then get a block at+n which can be expressed in terms of at ,at+1, ...at+n−1 using

the feedback function U . We call the list of all state elements at the “inner sequence”. We

will use both state block and inner sequence element to refer to at . So every state consists of n

consecutive elements of the inner sequence. The feedback function U is a linear combination

of state blocks added to the block function g applied to a linear combination of state blocks:

at =U(St−n) =U(at−n,at−n+1, . . . ,at−1) =
n

∑
i=1

(ciat−i)+g
(n

∑
j=1

d jat− j
)

(2.3)

Vectors c and d determine which state blocks are present in the computation for the inner

sequence element at . Note that vectors c and d start from index 1 and are in reversed order

with respect to the index of the inner sequence element. We aim to develop a low-cost KSG,

namely one where the feedback function U only has one application of the block function g

and one or a few additions. For binary vectors c and d, we can see this as HW (c)+HW (d)

being small. The block function call is much more expensive than an XOR, so we want to

limit ourselves to only one call to the block function in the feedback function. The block

function can be a function that is

• a permutation. The output of a permutation is uniformly distributed, so there is no bias

towards a specific value. We want this for our block function, otherwise imbalance

accumulates every time we apply g. Any permutation is invertible, as every permutation

is a bijective mapping which allows to invert the operation.

6

CHAPTER 2. PRELIMINARIES

• non-linear. A non-linear block function makes our update function also non-linear. In

general, no cryptographic system should be completely linear. This allows the attacker

to express every bit of output as a linear function of inputs. With more equations than

unknowns, the attacker is able to solve the system using linear algebra. We will also

see a specific case in Section 4.2 where linearity of the block function decreases the

G&D-resistance.

• low-cost. We want the block function to be low-cost, such that the runaway generator

is efficient.

We want U to be invertible. If U is not invertible, it is not a bijective mapping, then we

lose entropy when we apply the function. This will increase imbalance in our keystream

sequence. An attacker could then exploit statistical differences with the Random Oracle (RO)

to distinguish it from a RO easier, i.e. using a smaller amount of keystream blocks. We

need the keystream to be reasonably uniformly distributed such that we can securely use it

for stream encryption. Invertibility of U requires that the block function g is invertible and

that Equation 2.3 can be rearranged into the form at−n = V (at ,at−1, . . . ,at−n−1), where the

function V defines the right-hand side of the equation solved for at−n. This can only be done

if either cn = 1, then

at−n = at −
n−1

∑
i=1

(ciat−i)−g
(n−1

∑
j=1

d jat− j
)

(2.4)

or dn = 1, then

at−n = g−1
(

at −
n−1

∑
i=1

(ciat−i)−g
(n−1

∑
j=1

d jat− j
))

(2.5)

This last part is possible due to invertibility of the block function. Note that if U is invertible,

we are able to solve for any inner sequence element in St , not just for at−n as shown here.

The output filter f computes keystream block zt based on St as:

zt = f (St) = f (at ,at+1, . . . ,at+n−1) =
n−1

∑
i=0

eiat+i (2.6)

Where ei ∈ {0,1} indicates whether ai is present in the equation for zt . Note here that e starts

at index 0. zt is just a linear combination of HW (e) blocks. We want the output filter to be

as low-cost as possible, so we only allow a few additions. The idea behind this is that all

7

CHAPTER 2. PRELIMINARIES

computation done in the output filter is only used once, namely to compute one keystream

block. Because at+1 is dependent of the inner sequence elements in state St , computations

performed in the feedback function U are used in all future inner sequence elements. The

inner sequence elements are also used to compute the keystream blocks. This is why we

perform the block function call in the feedback function, and not in the output filter. This

also means that we have a non-linear feedback function, but a linear output filter.

The vectors c, d and e of length n define the runaway generator, where we keep the block

function generic. In a concrete implementation of the runaway generator, the state can be

stored in n memory cells. Each of these cells contain an element in GF(2)b. When we

apply the update function ϒ, we shift the state St to St+1. This can be implemented in a shift

register. The new highest inner sequence element at is computed using the function U on St .

As the block function works on blocks of b bits, it can be stored in less amount of memory

than the internal state.

Figure 2.3: The generic runaway generator. The shift register contains the inner sequence
elements St = (at , . . .at+n−1) at time t. To obtain state St+1, the register is shifted to the
right. The leftmost element will then become at+n, which is computed using Equation 2.3.

8

CHAPTER 2. PRELIMINARIES

Example 1. Consider the case with n = 2, so S0 = (a0,a1), and with c = (0,1), d = (1,0) and

e = (1,1). We can write this as the recurrence relation at = at−2+g(at−1). Then the keystream

sequence is defined as zt = at + at+1. Table 2.1 shows the inner sequence elements expressed

as a function of the initial state blocks a0 and a1.

t at

0 a0
1 a1
2 a0 +g(a1)
3 a1 +g(a2) = a1 +g(a0 +g(a1))
4 a2 +g(a3) = a0 +g(a1)+g(a1 +g(a0 +g(a1)))

Table 2.1: The inner sequence for the runaway generator defined by c = (0,1), d = (1,0)
and e = (1,1). The inner sequence elements are expressed in terms of the initial state
S0 = (a0,a1).

2.2 Attacker Model

The goal of the attacker is to distinguish our keystream from a random sequence. The

runaway generator is initialized with a uniformly random state. The attacker makes one

query giving a desired output length l to the runaway generator/RO . She then receives the

keystream sequence Z of length l. This is the data complexity. The computational complexity

is the amount of queries to the block function g and the output filter f . The attacker can query

g and f as these are public due to Kerckhoffs’s principle. We also assume that the attacker

can perform any other computation. Figure 2.4 displays the situation.

Figure 2.4: Graphical display of the attacker model.

A RO has the property that its output, the keystream sequence, is perfectly random. This

means that if the output of the runaway generator is not uniformly distributed, it can be dis-

tinguished from the RO . The attacker can perform a distinguishing attack by looking at

9

CHAPTER 2. PRELIMINARIES

the statistical differences between the keystream generated by a KSG and a perfectly ran-

dom keystream. For any real-life keystream generator, it is the case that the keystream is not

perfectly uniformly distributed. However, the KSG provides enough security against distin-

guishing attacks if the attacker needs more than 264 keystream bits to distinguish the KSG

from the RO .

Another way of distinguishing can be to recover n consecutive elements of the inner sequence.

If the attacker can do this, she can generate all other states St , for any time t. Then she

can generate the entire keystream again to check for consistency. Typically, if the attacker

has knowledge of some St , she can also recover the initial state, if the update function is

invertible. Since runaway generators have an invertible update function, we can say that the

attack is successful if the attacker can reconstruct any state. The attacker is then able to

distinguish the runaway generator from RO . Recovering a state can be done using a guess-

and-determine attack. We will discuss this in Chapter 4.

10

CHAPTER 3. PARALLELIZABILITY

Chapter 3

Parallelizability

High-end CPUs support parallelizing operations, i.e. performing multiple operations at the

same time, using pipelined or SIMD instructions. To exploit that, it is preferable to support

parallelism in the computation of the inner sequence of the runaway generators. The require-

ment for two state blocks ai and a j to be able to be computed in parallel is that ai is not

dependent of a j and vice versa. Actually, for i < j, we can say that a j should not be depen-

dent of ai to be computed in parallel with ai. Since ai is computed before a j, ai can never be

dependent of a j.

Definition 1 (Parallelizability). We define the inner sequence to be x-parallelizable if x inner

sequence blocks can be computed in parallel.

Inner sequence element at can never be dependent of at , this would lead to self-recursion.

Parallelizability is thus always at least 1, so there is no parallelizability, namely we can always

compute one inner sequence element. Parallelism in this setting is highly dependent of what

state blocks are used in the function U . Recall that U is defined by vectors c and d. These

vectors fully determine the parallelizability for runaway generators. Let’s first look at an

example.

Example 2. Consider the case with n = 4, c = (0,0,0,1) and d = (0,1,0,0). Recall from

Chapter 2 that vectors c and d are in reversed order with respect to the state index and that the

11

CHAPTER 3. PARALLELIZABILITY

vectors start at index 1. Since parallelizability only concerns state blocks, we do not have to

define an output filter. See the following table:

t at

0 a0
1 a1
2 a2
3 a3
4 a0 +g(a2)
5 a1 +g(a3)
6 a2 +g(a4) = a2 +g(a0 +g(a2))
7 a3 +g(a5) = a3 +g(a1 +g(a3))

We see that a6 dependent is of a4. So a4 needs to be computed before a6 can be computed. a5

is not dependent on a4, so a4 and a5 can be computed in parallel. This holds for all pairs of

elements of the inner sequence: at and at+1 can be computed in parallel.

Definition 2 (Recursion Gap). For the relation for at = ∑
n
i=1(ciat−i)+ g

(
∑

n
j=1 d jat− j

)
from

Equation 2.3, we define the recursion gap as the distance from the highest indexed state block

present in the expression for at to t. The recursion gap rg is the lowest index in vectors c and

d to be non-zero. We denote by k the lowest index such that all cx with x < k are zero and by l

the lowest index such that all dx with x < l are zero, for 1 < k, l ≤ n. The recursion gap is then

rg = min{k, l}. The highest state block present in the expression for at has index at−rg.

Theorem 1 (Parallelizability of Runaway Generator). The parallelizability of the inner se-

quence is rg blocks, i.e. the inner sequence is rg-parallelizable.

Proof. The inner sequence at time t as described in Equation 2.3 can be rewritten as

at = ∑
n
i=rg(ciat−i)+g

(
∑

n
j=rg d jat− j

)
. In words, the inner sequence element at time t is only

dependent of state blocks at−n, . . . ,at−rg and not of the elements at−rg+1, . . . ,at−1. The latter

consists of t− 1− (t− rg+ 1)+ 1 = rg− 1 state blocks. So at can be computed in parallel

with rg−1 elements. Then in total rg blocks can be computed in parallel.

Let’s look back to Example 2. From the vectors c = (0,0,0,1) and d = (0,1,0,0) we see that

rg = min{4,2}= 2. Recall that the indices of c and d start at 1. From Theorem 1 we know

that this runaway generator is 2-parallelizable. If we are not satisfied with a parallelizability

of 2 blocks, we could take the runaway generator with d = (0,0,1,0). Now we have that the

recursion gap rg = min{4,3}= 3, such that this new runaway generator is 3-parallelizable.

12

CHAPTER 4. GUESS-AND-DETERMINE ATTACK RESISTANCE

Chapter 4

Guess-and-Determine Attack

Resistance

If the attacker knows the initial state, or any n consecutive inner sequence elements, the

attacker can generate all keystream blocks. This is undesirable, since it allows the attacker

to distinguish the runaway generator from a Random Oracle. To obtain the initial state, the

attacker could perform an exhaustive search on the initial state. This can be done by guessing

a value for S0, generating the keystream that follows from that guess and compare it with the

given keystream. We saw in Section 2.1 that the initial state consists of n blocks, each of

length b. The security strength is therefore upper bounded to nb bits.

However, the runaway generator is based on fixed functions U and f , which are defined by

the three vectors c,d and e. Note that to completely define the generator also a concrete

block function g has to be specified. The attacker can use the knowledge of the algorithm to

perform a more efficient attack than brute forcing S0.

Definition 3 (Guess-and-determine attack in KSG setting). In a guess-and-determine (G&D)

attack, an attacker guesses some inner sequence elements. Combined with the knowledge of

the keystream elements, other elements of the inner sequence can be determined. If the attacker

is able to determine n consecutive inner sequence blocks, she can generate an output sequence

and compare it with the observed keystream sequence.

13

CHAPTER 4. GUESS-AND-DETERMINE ATTACK RESISTANCE

Definition 4 (G&D-resistance). The G&D-resistance of a KSG is the number of bits an attacker

has to guess in order to recover n consecutive inner sequence elements. If the attacker has to

guess x inner sequence elements of b bits to successfully recover n consecutive inner sequence

elements, the G&D-resistance is x ·b bits or equivalently, x blocks.

The attack for recovering any n consecutive inner sequence elements is similar for recovering

the n initial state blocks. In this chapter, we will focus on recovering the initial state S0 for

simplicity.

Remark 1. In this thesis, we restrict ourselves to only making guesses for initial state blocks.

We will not guess combinations of initial state blocks. Guessing combinations of initial state

blocks, in some specific cases, could lead to a lower G&D-resistance than our approach.

Let’s find the G&D-resistance of the runaway generator from Example 1. Recall that n = 2,

so S0 = (a0,a1), and c = (0,1), d = (1,0) and e = (1,1). Thus we can compute the next

element of the inner sequence as at = at−2+g(at−1). Then the keystream sequence is defined

as zt = at +at+1. An exhaustive search for S0 has a worst-case complexity of 22b. However,

we can reduce our expected workload from 22b to 0 by using the knowledge of the KSG!

We can mount a G&D attack, but we do not even have to guess any blocks. Recall from

Section 2.2 that the attacker can perform any computation, so the attacker can also compute

combinations of keystream blocks. If we, for example, add z0 and z1 we get z0 + z1 = g(a1).

In Section 2.1 we specified that we only inspect runaway generators with invertible block

functions g. This means we can solve the equation for a1, so a1 = g−1(z0 + z1). Since we

know a1 and z0, we can also determine a0 = z0−a1. Then we need to check for correctness

by computing a2 + a3 and checking whether this equals z2. Since we do not have to guess

any blocks, the G&D-resistance is 0 bits.

Here, we used that we can solve for a1 in the equation z0+z1. Let’s define when an element is

solvable in a certain equation. This allows us to define when we can determine that element.

Definition 5 (Solvability and Determinability). An element ax is solvable in a given equation

z if there is only one occurrence of ax in the equation. Solvability of ax allows us write the

equation with ax on the LFS and at least z on the RHS. The RHS can contain other inner

sequence elements, but it cannot contain ax. ax is determinable from z if and only if ax is

14

CHAPTER 4. GUESS-AND-DETERMINE ATTACK RESISTANCE

solvable in z, we don’t have knowledge of at and all elements on the RHS of the equation

solved for at are known.

Let’s look at an example where we can apply this.

Example 3. Consider the case with n = 3 and with c = (0,0,1), d = (0,1,0) and e = (1,0,1).

See the table below for the iterations of the feedback function and output filter.

t at zt

0 a0 a0 +a2
1 a1 a0 +a1 +g(a1)
2 a2 a1 +a2 +g(a2)
3 a0 +g(a1) a0 +a2 +g(a1)+g(a0 +g(a1))
4 a1 +g(a2) a0 +a1 +g(a1)+g(a2)+g(a1 +g(a2))

Looking at the output blocks, we see that z0, z1 and z2 each depend on only two distinct

blocks. Then we have two equations z3 and z4 that are dependent of 3 distinct blocks. We

want to find the easiest and quickest way to obtain the initial state S0 = (a0,a1,a2). It can

be the case that a certain combination of keystream blocks results in an equation where an

element of the initial state is determinable. In this example, the result of adding two or more

keystream blocks together is dependent of at least 2 inner sequence elements. For example,

z0 + z1 + z2 = g(a1)+g(a2) and z0 + z1 = a1 +a2 +g(a1). Combining keystream blocks does

not lead to a determinable element, so let us look only at the keystream sequence. If we

guess a2, we can determine a0 = z0−a2, or vice versa. We still need to gain knowledge of a1

to know S0. We have to find an equation from which a1 is determinable. Equation z1 is not

solvable for a1 (there are two occurrences of a1), so we cannot use that one. z2 is solvable

for a1 and we have knowledge of all other elements in the equation, namely a2. This means

we can determine a1 = z2− a2− g(a2). To obtain the initial state, we only needed to guess

a2, so we have a G&D-resistance of b bits. The attack can be written down as the following

algorithm:

f o r a l l g u e s s e s a′2 f o r a2 :

determine a′0 = z0−a′2

determine a′1 = z2−a′2−g(a′2)

i f z3 == a′0 +a′2 +g(a′1)+g(a′0 +g(a′1)) :

r e t u r n S0 = (a′0,a
′
1,a
′
2)

15

CHAPTER 4. GUESS-AND-DETERMINE ATTACK RESISTANCE

We can specify an upper and lower bound of the G&D-resistance.

Theorem 2. The G&D-resistance of the runaway generator is lower bounded by 0 bits and

upper bound by (n−1)b bits. There is one special case which is an exception to this rule, see

Example 4.

Proof. The lowest G&D-resistance is 0 bits. This happens when the KSG is defined in such a

way that the initial state is revealed by the keystream sequence, either directly or by combin-

ing keystream elements. Or equivalently, some state St at time t is fully recoverable without

making any guesses. We of course cannot have less than 0 bits G&D-resistance.

The highest resistance theoretically possible is nb bits, which would mean the best attack is

an exhaustive search for the initial state. However, this is not achievable with the runaway

generator. The output filter is simply a linear combination of state blocks. What blocks are

present is defined by the vector e, as described in Section 2.1. The first keystream block z0

is always dependent of HW (e) blocks. So from guessing HW (e)−1 initial state blocks, you

can always determine the last initial state block. Recall that vector e has length n. That means

that we can never have HW (e)> n. Hence we can never have a G&D-resistance of more than

n−1 blocks.

Example 4 (Exception to Theorem 2). Consider the case with n = 1 and with c = (0), d = (1).

Then, if we take as output filter zi = ai+ai+1, we get the equations displayed in the table below.

Note that we cannot express e in a vector of length n = 1, hence we give the recurrence relation

directly.

t at zt

0 a0 a0 +g(a0)
1 g(a0) g(a0)+g(g(a0))

All keystream blocks are of the form zt = gx(a0)+gy(a0), where x < y. Also all combinations

of keystream blocks are of this form. This means that all equations are not solvable for a0,

hence we can never determine a0. So we need to guess a0. This runaway generator has a

G&D-resistance of b bits, which is larger than (n−1)b = 0 bits as specified by Theorem 2.

16

CHAPTER 4. GUESS-AND-DETERMINE ATTACK RESISTANCE

4.1 Automated Attack

Now that we have seen how to perform the attack by hand, we can automate this process. So

far, we have only been looking at simple examples that are good to get some intuition from,

but are not that interesting. To find an interesting runaway generator, we need to assess its

parallelizability and G&D-resistance. As we have seen in Chapter 3, assessing the paralleliz-

ability of a runaway generator is pretty straightforward. The G&D-resistance requires some

trial and error. As the resistance is highly dependent on the cancellation of initial state blocks

in (combinations of) keystream blocks, there is no theorem on what the G&D-resistance is

for generic runaway generators. We can look at many generators and try to find some pattern,

varying n, c, d and e. As it costs a lot of effort to assess all these variants for G&D-resistance

by hand and mistakes are easily made, it is preferable to automate this process. More impor-

tantly, if we can try every attack possible, we have assurance that we indeed find the most

efficient attack under our assumptions. In this Section, we will describe our G&D-attack

program and show why it indeed gives the most efficient attack, keeping Remark 1 in mind.

As input of the program, we get the three vectors c, d and e that completely describe the

runaway generator. We can also give a list of equations as input, this will come in handy in

Chapter 5. We compute all the equations based on c, d and e. To display these equations

as simple as possible, we strip them. Each equation zt becomes a list strippedt . In the

program, we will keep a list of stripped equations, where the index t indicates that it concerns

zt . Each term in zt is either an inner sequence element, or a block function call with certain

inner sequence elements as input. The first option, for ax that is present in zt , we represent

simply as an integer x, so we only take the index. For each block function call, we remove

the function g and place its inputs into a list. This is a recursive process, as the input of

the block function call can either be inner sequence elements or block function calls to the

inner sequence. The following example will make this idea clearer. For equation zx = a0 +

a1 +g(a1), stripping leads to strippedx = [0,1, [1]]. Another example is zy = a0 +g(a1)+

g(a1 +g(a2)). Then strippedy = [0, [1], [1, [2]]].

A description of the attack in pseudocode is given in Listing 4.1. We have simplified the

algorithm by removing some optimizations. We also leave out the stripping of equations, the

17

CHAPTER 4. GUESS-AND-DETERMINE ATTACK RESISTANCE

generation of equations and calling the program.

The general idea of the attack is as follows. We want to try every possible attack to recover

the initial state. We can achieve this by trying out all orders of guessing. For runaway

generator with state size n, we can try all variations of (0, . . . ,n−1) of length upper. upper

is the upper bound as specified in Theorem 2, so n− 1, but one can also give some other

value. First we guess the first integer in the permutation, then the second, etc., until we have

knowledge of all n initial state blocks. Maybe we don’t have to guess anything and we can

determine S0 right away. In the beginning, for some variation p, we have no knowledge of

any of the initial state blocks (known = []). If there is something to determine, we add

those state blocks to known and update the equations accordingly, using remove. Then

we try to guess p[0]. Perhaps we can determine more initial state blocks after this guess

has been made. If at any point we know the entire initial state (known = [a0, . . . ,an−1]),

we are done with the attack. We then count how many blocks we have guessed in total and

this is the G&D-resistance for that variation. We then move on to the next variation. The

function determinable checks for each equation whether there is a single element in that

equation. If that is the case, we can use determine to recover that inner sequence element.

Determining and guessing basically come down to removing a certain element from each

equation. When we guess the first element in p, we remove it from p. As it makes no sense

to guess an element that we already have knowledge of, we have to remove elements in p

that are also in known. It can happen that for some variation, each element has either been

guessed or determined, without known being equal to S0. We will show this with an example

in Section 4.1.1. This means p will be empty and the attack is incomplete. We stop with this

attack and we continue to the next variation.

18

CHAPTER 4. GUESS-AND-DETERMINE ATTACK RESISTANCE

Listing 4.1: Pseudo-code for all possible G&D-attacks.
def attack(equations, n, upper)
gd ← upper + 1
vars ← all variations of [0, ..., n-1] of length upper
for each p in vars

known, guessed ← []
eqs ← equations
while known != [0, ..., n-1]

while determinable(eqs)[0]
eqs, determined ← determine(eqs)
known ← known ++ determined

if known = [0, ..., n-1]
continue

for each element in p that is in known
remove element from p

if p is empty
this attack is incomplete, go to the next variation

eqs, known ← guess_element(eqs, p[0], known)
guessed ← guessed ++ p[0]

if the length of guessed < gd
gd ← length of guessed

return gd

def determine(eqs)
_, dets, z = determinable(eqs)
copy = eqs
for each element in dets
for each index, eq in eqs

copy[index] = remove(eq, element)
return eqs, dets

def guess(eqs, i, known)
copy = eqs
for each index, eq in eqs

copy[index] ← remove(eq, i)
known ← known ++ i
return copy, known

def remove(eq, i)
new ← []
for each elem in eq
if type(elem) = int

if elem 6= i
new ← new ++ [elem]

else if type(elem) = list
temp ← remove(elem, i)

if temp 6= []
new ← new ++ [temp]

return new

def determinable(eqs)
for each index, eq in eqs
deter, var ← determinable_eq(eq)
if deter is True
return True, [var], index

return False, [], []

def determinable_eq(eq)
if len(eq) = 1

if type(eq[0]) = int
return True, eq[0]

else if type(eq[0]) = list and len(eq[0]) = 1
return determinable_eq(eq[0])

return False, []

19

CHAPTER 4. GUESS-AND-DETERMINE ATTACK RESISTANCE

4.1.1 Example Run

Let’s use the program to assess and example runaway generator. Let’s pick the following

runaway generator, with n = 3, c = (0,0,1), d = (1,1,0) and e = (1,0,1). We collect n

keystream blocks and their combinations to get the following equations.

z0 = a0 +a2

z1 = a0 +a1 +g(a1 +a2)

z2 = a1 +a2 +g(a0 +a2 +g(a1 +a2))

z0 + z1 = a1 +a2 +g(a1 +a2)

z0 + z2 = a0 +a1 +g(a0 +a2 +g(a1 +a2))

z0 + z1 + z2 = g(a1 +a2)+g(a0 +a2 +g(a1 +a2))

We strip these equations as described in Section 4.1. The result is in the first row of Table

4.1. As the G&D-resistance cannot be larger than n− 1, we define upper= 2. There are
3!

(3−2)! = 6 variations, i.e. 6 different orders of guessing. We will now show the attack using

the first variation, p = (0,1). Initially, determinable(eqs) returns false, as there is

no equation that contains in total just one variable. Hence, we have to guess the first element

in the variation, being 0 (a0). As we saw before, this comes down to simply removing all

occurrences of 0 from the equations. The result can be seen in the second row of Table 4.1.

After this, we have known= [0] and p= (1). We do not know all initial state elements yet, so

z0 z1 z2 z0 + z1 z0 + z2 z0 + z1 + z2

Stripped [0,2] [0,1, [1,2]] [1,2, [0,2, [1,2]]] [1,2, [1,2]] [0,1, [0,2, [1,2]]] [[1,2], [0,2, [1,2]]]
Guessed 0 [2] [1, [1,2]] [1,2, [2, [1,2]]] [1,2, [1,2]] [1, [2, [1,2]]] [[1,2], [2, [1,2]]]

Determined 2 [] [1, [1]] [1, [[1]]] [1, [1]] [1, [[1]]] [[1], [[1]]]
Guessed 1 [] [] [] [] [] []

Table 4.1: An overview of the equations during an attack on runaway generator defined
by n = 3, c = (0,0,1), d = (1,1,0) and e = (1,0,1). The order of guessing used is (0,1).

we iterate the while loop again. Now, the equation for z0 is of length 1, so determinable

returns true. Hence we can determine variable 2 from equation z0, so we remove all occur-

rences of 2 from the equations. See the third row of Table 4.1. Now we have known= [0,2]

and p = (1), so we iterate the while loop again. All the remaining equations are not solvable

for 1, so we cannot determine a1. determinable for these equation returns false, as we

20

CHAPTER 4. GUESS-AND-DETERMINE ATTACK RESISTANCE

cannot determine a1. Hence, we have to guess p[0] = 1. This leads to all empty equations, as

can be seen in the fourth row of Table 4.1. known= [0,1,2], so the attack for this variation

is done. Summarizing, we have performed the following attack:

Guessing v a r i a b l e a0

Determining a2 from z0

Guessing v a r i a b l e a1

The G&D-resistance against this attack is 2b bits. We then continue with doing this for the

other 5 variations. The attacks that are not incomplete will all give a G&D-resistance of 2b

blocks. So we take this attack shown above as the most efficient attack. As promised above,

let’s look at one such variation that leads to an incomplete attack. Take for example p=(0,2).

At the beginning of the attack, we have no knowledge of any of the initial state blocks and

we cannot determine any of them. So we have to make a guess, namely for p[0] = 0. From

this, we can determine the value of a2 = z0−a0. We now update p, as it makes no sense to

guess elements that we have knowledge of, we remove them from p. But then p becomes

empty! In words, we don’t have knowledge of the complete initial state, but we also cannot

guess any elements any more. Since we can never determine a1 with knowledge of just a0

and a2, all variations that do not contain 1 lead to incomplete attacks.

4.1.2 Correctness

We want to show correctness of the program, i.e. the correctness of the function attack.

First, we have to define what correctness means in this context: using the program should

result in the correct G&D-resistance.

To show this, we first need to show that the way that we are stripping equations is allowed.

We do this by showing that the stripping process is invertible, since if that is the case, we

don’t lose any information by stripping an equation. As we are working in F2, applying

plus and minus have the same result. We can then remove these operations entirely from the

equation, resulting in a list of terms that occur in the original equation. This is invertible

as we can simply add pluses between the terms again to obtain the original equation. Each

21

CHAPTER 4. GUESS-AND-DETERMINE ATTACK RESISTANCE

term can be either an inner sequence element or a block function call. For the first case, we

simply take the index of the inner sequence element and place it in the list. In Section 4.1,

this process is described as recursive, but it doesn’t have to be. Another way to perform the

stripping, which makes showing invertibility easier, is to say we remove the block function

by replacing each “g(” with “[” and each “)” with a “]”. We can reconstruct the original

equation from the stripped list. For each term in the list, if it contains a list, replace that list

with a block function call. Then sum all terms together to get the original equation. Hence,

stripping equations is invertible. You could see the stripping as an invertible encoding of an

equation.

We will now show the correctness of the subroutines of the function attack to finally prove

correctness of attack.

remove

To show that the program is correct, we start by showing that removing known elements from

the equations is allowed. Known elements are just constants, so we use that terminology. Re-

moving constants is allowed, if it results in exactly the same G&D-resistance as not removing

them. We obtain the same G&D-resistance if we can determine exactly the same elements

as without removing the known elements, since then we also have to guess exactly the same

elements as without removing the constants.

Let’s say we want to determine initial state element ax from equation zt . We can only do this

if ax is determinable from zt . This was described in Definition 5. To prove that we don’t

change the determinability of ax in zt , we have to show that we do not change the solvability

of ax in zt and we do not change the unknown elements on the RHS of zt solved for ax.

We never remove an unknown element from the equation, so we never change the unknown

elements of the RHS of zt solved for ax.

For solvability, we have to show that if ax is solvable in zt , we can still solve ax from zt after

removing the constants from zt . We also have to show that if ax is not solvable in zt , we

can also not solve ax from zt after removing the constants from zt . The first requirement is

22

CHAPTER 4. GUESS-AND-DETERMINE ATTACK RESISTANCE

fulfilled, as we can only make zt unsolvable for ax by adding a term ax on the RHS. We are

only removing, so this can never happen. The second requirement follows if we can show

that we never remove a term ax from the RHS. We only remove a term if we have knowledge

of its value. So we can only remove ax from the RHS if we have knowledge of ax. We are

trying to determine ax, so we have no knowledge of ax, hence we will never remove it from

the equation.

If we do not change the determinability of some initial state element in some equation, it

follows that we do not change the determinability of all elements in all equations. We can

determine exactly the same elements as without removing the constants, then we also have

to guess exactly the same elements as without removing the constants. Hence, the G&D-

resistance is the same as without removing the constants.

The correctness of determine and guess follow from the correctness of remove. In

both functions, we obtain knowledge of some initial state block and we have just shown that

known elements can be removed from the equations.

determinable

Here we have to show that we only determine elements that are determinable according to

Definition 5. In the program, we defined that an inner sequence element can be determined if

we have a list of length 1. Let’s call the only element in zt again ax. The LHS of the equation

is a constant, since zt is known. The t’th stripped equation [x] represents c2 = ax + c1, so

we can easily write ax = c1− c2 = c3, where ci is a constant. The equation is solvable for

ax, since there is only one variable and the rest is constant. We don’t have knowledge of ax,

otherwise it would have been removed from the equation. We have no unknown elements in

the equation besides ax. The three requirements for determinability are fulfilled, so we can

say that the function determinable works according to Definition 5.

23

CHAPTER 4. GUESS-AND-DETERMINE ATTACK RESISTANCE

attack

We have already shown that the subroutines of attack are correct. We still need to show

that we indeed try all relevant orders of guessing and that we call the subroutines in the right

order for some variation.

If we have the upper limit of the G&D-resistance to be upper, we only have to perform

the attack for all orders of guessing of length upper. This is achieved by computing the

variations of [0, . . . ,n−1] of length upper.

For variation p, we want to continue the attack as long as known is not equal to S0 and we

can still guess and/or determine elements. We should always start to check determinable

as we might not have to guess anything. Once determinable becomes false, we need

to check whether we now know S0. If that’s the case, we are done for this variation. We

might have guessed state elements that are present in p. We want to prevent that we guess a

value that we already know, so we have to remove all known elements from p. Then it also

might happen that p becomes empty. At that point, we cannot guess anything and we do not

know the full initial state, so this order of guessing is not relevant. If p is not empty, we guess

its first element. In the next iteration of the while-loop, the guessed element is removed from

p.

4.2 Results of the Tool

We want a KSG with a security strength of at least 128 bits. We can achieve this with a

KSG with 1 block of G&D-resistance if the block size b = 128. We can also achieve this

with a KSG with 2 blocks of G&D-resistance, namely if b = 64, and so on. Depending on

what block function one wants to use, n needs to be adapted accordingly to obtain a reason-

able security strength. For some application, we might want 128 bits of security but paral-

lelizability also needs to be high enough. Defining what a good runaway generator should

look like is difficult as we do not know the application. Using the G&D-attack automation

tool, we have generated an overview in Appendix A of some runaway generators and their

24

CHAPTER 4. GUESS-AND-DETERMINE ATTACK RESISTANCE

parallelizability and G&D-resistance. A remarkable result is the third to last generator in

Table A.1. The generator is described by the relations at = at−n + g(at−n+1 + at−n+2) and

zt = at + at+d n
2 e+ at+n−1, see Figure 4.1 for a graphical representation. Noticeable is that

the internal state consists of n = 4 elements and this generator achieves a G&D-resistance of

n− 1 = 3 inner sequence elements, so 3b bits. This is the upper bound of G&D-resistance

for runaway generators as was specified in Theorem 2. This means that if we want at least

128 bits of security, we could use a block function that operates on blocks of b ≥ 43 bits.

This means we could store the initial state in 4 ·43 = 172 bits, which is 21.5 bytes. However,

when instantiating the block function with an actual function, the G&D-resistance might be

lowered as opposed to the black box case. In Chapter 5, we show an example of this.

Figure 4.1: Graphical display of the runaway generator described by c = (0,0,0,1),
d = (0,1,1,0) and e = (1,0,1,1).

4.2.1 The Amount of Input Equations and Combinations

Another result of the tool was that we could test our intuitions. Throughout the research,

our intuition was that we only needed combinations of the keystream blocks including z0 to

recover the initial state as efficiently as possible. The idea behind this was that for example

z1 + z2 contains the same information as z0 + z1, but shifted. However, running the program

on all combinations of keystream blocks occasionally resulted in a lower G&D-resistance. In

hindsight, this result seems fair. Shifting an equation can make for blocks to cancel out. If

we have x distinct blocks in equation z0 + z1, we might have y distinct blocks in equation

z1 + z2. If x > y, we could have a better attack by including all combinations than by only

having combinations with z0. It could also occur that by shifting z0 + z1 the determinability

of inner sequence elements in that equation changes.

25

CHAPTER 4. GUESS-AND-DETERMINE ATTACK RESISTANCE

Example 5. Consider the runaway generator with n = 9, c = (0, . . . ,0,1), d = (0, . . . ,0,1,0),

e = (1,0,0,1,0,0,0,0,1). When we only consider combinations of n keystream blocks, we get

the following attack:

Guess ing v a r i a b l e a0

Guess ing v a r i a b l e a1

Determining a6 f rom z1

Determining a3 f rom z0 + z3 + z6

Guess ing v a r i a b l e a2

Determining a7 f rom z2

Determining a8 f rom z3

Determining a5 f rom z0

Determining a4 f rom z5

Hence, we have a G&D-resistance of 3b bits. If we now consider all possible combinations of

keystream blocks, we can improve on this attack. We get the following output from the program:

Guess ing v a r i a b l e a5

Guess ing v a r i a b l e a7

Determining a2 f rom z1 + z4 + z5 + z7

Determining a1 f rom z2

Determining a4 f rom z5

Determining a3 f rom z0 + z3 + z4

Determining a8 f rom z3

Determining a0 f rom z0

Determining a6 f rom z1

The interesting thing happens in determining a2 from z1 + z4 + z5 + z7. Before we didn’t have

this combination of keystream blocks. Our assumption was that z0 + z3 + z4 + z6 contains the

same information as z1 + z4 + z5 + z7. The first can be worked out as z0 + z3 + z4 + z6 = a4 +

g(a1)+g(a4)+a6 +g(a6), which is only solvable for a1. The second one is z1 + z4 + z5 + z7 =

a5 +g(a2)+g(a5)+a7 +g(a7). We can determine a2 from this. So from including both these

equations, we can determine a1 if we know a4 and a6, and we can determine a2 if we know

a5 and a7. Including all combinations of keystream blocks gives us more information. Having

26

CHAPTER 4. GUESS-AND-DETERMINE ATTACK RESISTANCE

more information could allow us to improve our attack.

Another assumption we made was that having n equations allowed us to perform the attack

as efficiently as possible. That assumption also turned out to be incorrect. Having more

equations is having more information to perform the attack. This can also lead to a lower

G&D-resistance. In Appendix A under G&D-resistance there are two columns, one for having

n equations and one for having 2n equations. You can see that the G&D-resistance is in some

cases lower for 2n equation than for n equations. Having more equations can decrease the

G&D-resistance, but it also takes much longer to perform the attacks. Maybe having 3n

equations will lead to even better attacks, but this at this moment, the tool is too slow to

check that.

In the following section, we will give some general recommendations and observations based

on the results of the tool.

4.3 Recommendations

In this section we will make some recommendations. We found these recommendations by

seeing a pattern in the results from the tool, or by confirming intuitions we already had.

4.3.1 Non-Linearity of the Block Function

In Section 2.1, besides being a permutation, we also stated that g should be non-linear. We

saw there that no keystream generator should have a fully linear feedback function and output

filter, as it allows the attacker to solve a linear system of equations, given more equations than

unknowns. For the runaway generators, this property also ensures that less inner sequence

elements cancel out in the (combinations of) keystream blocks. For larger n, the non-linearity

aspect seems to be more important than for small n. The following example will illustrate

this.

27

CHAPTER 4. GUESS-AND-DETERMINE ATTACK RESISTANCE

Example 6 (Non-Linear Block Function). We have the runaway generator defined by with

n = 8, c = (0,0,0,0,0,0,0,1), d = (0,0,0,0,0,1,1,0) and e = (1,0,0,0,1,0,0,1). This KSG

has a G&D-resistance of 4b bits. The program outputs the following attack:

Guess ing v a r i a b l e a0

Guess ing v a r i a b l e a1

Guess ing v a r i a b l e a2

Determining a5 f rom z1

Guess ing v a r i a b l e a3

Determining a6 f rom z2

Determining a4 f rom z5

Determining a7 f rom z0

If we now change the program such that the block function is a linear function, i.e. g(a+b) =

g(a)+g(b), we get the following attack:

Guess ing v a r i a b l e a0

Guess ing v a r i a b l e a1

Guess ing v a r i a b l e a2

Determining a5 f rom z1

Determining a3 f rom z0 + z3 + z4

Determining a6 f rom z2

Determining a4 f rom z5

Determining a7 f rom z0

The G&D-resistance has decreased from 4b to 3b bits! Apparently, in equation z0 + z3 + z4

blocks cancel out because of the linearity of g. Let’s inspect that equation.

z0 + z3 + z4 = a2 +g(a1 +a2)+g(a3 +a4)+g(a4 +a5) becomes

z0 + z3 + z4 = a2 + g(a1)+ g(a2)+ g(a3)+ g(a5). State block a4 has cancelled out, making

this equation dependent of 1 less initial state block. The latter equation is only dependent of 4

distinct blocks, so the knowledge of a1, a2 and a5 gives us knowledge of a3.

Linearity of the block function has decreased the G&D-resistance in this example. Hence, we

want a non-linear block function.

28

CHAPTER 4. GUESS-AND-DETERMINE ATTACK RESISTANCE

4.3.2 Feedback Function

In order for the feedback function to be invertible, we need that c∧d = (0, . . . ,0). In words,

for each index i ∈ [0, . . . ,n− 1], at most one of c[i] and d[i] can be one, so not both (c[i] =

d[i] = 1). This we already knew from Section 2.1.

From the results in Appendix A, we can see that it is beneficial for the G&D-resistance that

we add blocks as input of the block function, so we increase HW (d). However, there is a

trade-off with parallelizability, as can also be seen in Appendix A.

4.3.3 Output Filter

We can make a recommendation about what the output filter, i.e. the vector e, should look

like. Consider the following example.

Example 7. Consider the case with n = 3 and with c = (0,0,1), d = (0,1,0) and e = (0,1,1).

This example differs from Example 3 in the output filter. See the table below for the iterations

of the feedback function and output filter.

t at zt

0 a0 a1 +a2
1 a1 a2 +a3 = a0 +a2 +g(a1)
2 a2 a3 +a4 = a0 +a1 +g(a1)+g(a2)
3 a0 +g(a1) a4 +a5 = a1 +a2 +g(a2)+g(a0 +g(a1))

Some output blocks like z1 now have more distinct state blocks than before. However, now if we

look at the combination z0 + z1 + z2 = g(a2) we see that we get a2 for free. Then we can also

compute a1 = z0−a2 and a0 = z1−a2−g(a1). Hence the G&D-resistance has decreased from

b bits to 0! The problem is that we are not using the first inner sequence element in the state

block, i.e. e[0] 6= 1. Adding the first three keystream blocks results in z0 + z1 + z2 = a1 + a4.

Adding a4 = a1 + g(a2) and a1 cancels out the a1 term, as a4 contains a terms a1. We don’t

have this problem if we would have e = (1,0,1) like in Example 3. It that example, adding the

first three keystream blocks leads to z0 + z1 + z2 = a0 +a1 +a3 +a4 = g(a1)+g(a2).

A similar idea holds for the last block. If for zt , we do not incorporate the at−1 block, but

29

CHAPTER 4. GUESS-AND-DETERMINE ATTACK RESISTANCE

instead take term at−2, we get that z0 and z1 are both just dependent of 2 blocks. This makes

it easier for an attacker to retrieve the initial state.

Our recommendation is to have e[0] = e[n− 1] = 1, i.e. zt should at least be dependent of

at−n and at−1, to decrease the likelihood of inner sequence elements cancelling out. It can

still happen that you obtain a G&D-resistance of 0 bits while following this recommendation.

Or that you get a higher G&D-resistance without following this recommendation. But so far,

we have reason to believe that this can improve the G&D-resistance.

30

CHAPTER 5. SKINNY AS BLOCK FUNCTION

Chapter 5

SKINNY as Block Function

In this chapter, we will investigate what happens to the G&D-resistance if we use a spe-

cific block function. In Section 2.1 we described some requirements for the block function,

namely it should be non-linear and a permutation. We can use a block cipher such as AES

as block function, as these are per definition a permutation when the key is fixed, how-

ever, we want the block function to be relatively lightweight. SKINNY [Beierle et al., 2016]

is a family of lightweight block ciphers, where we can choose between a block size b of

64 or 128 bits. To make it even more lightweight, we alter the round function somewhat.

Namely, we don’t perform the AddConstants and AddRoundTweakey operations. The

AddConstants transformation, as the name suggests, adds constants. We are performing

our G&D-attacks abstractly, namely without concrete values for the keystream and the initial

state. Adding constant does not make a difference in analysing the G&D-resistance. Leaving

out the AddRoundTweakey transformation is the same as taking the tweakey words and

subtweakeys as 0. We will denote this adapted round function as SKINNY’.

Figure 5.1: One round of SKINNY’, an adaptation of the SKINNY round function. We
only perform the SubCells, ShiftRows and MixColumns transformations, leaving
out AddConstants and AddRoundTweakey.

We will show that exploiting specific properties of SKINNY’ allows us to perform a better

G&D-attack than in the black box case, so performing a generic attack. In Chapter 4, we

used an abstract block function g. We will show that performing a single round of SKINNY’

31

CHAPTER 5. SKINNY AS BLOCK FUNCTION

allows us the reduce the G&D-resistance of some examples we saw before. We will then also

show how many rounds of SKINNY’ are needed to obtain the same G&D-resistance as in

the black box case.

We start by showing what the result is of applying SKINNY’ to some message m. For the

initial state, we split m into 16 nibbles (or bytes) as follows:


m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

 (5.1)

For this initial state, we can write out the result of applying 1 round of the adapted SKINNY

round function.

The 4-bit S-box is defined in Table 2 in [Beierle et al., 2016]. Instead of using a lookup

table, the authors also describe how to compute each bit of the output of the S-box. It can be

computed by applying the transformation shown just below Table 2 four times and three left

rotations. For a nibble mi consisting of four bits (mi,3,mi,2,mi,1,mi,0), where mi,3 is the most

significant bit, the S-box(mi) is:



m′i,3 = mi,0⊕ (mi,2∨mi,3)

m′i,2 = mi,3⊕ (mi,1∨mi,2)

m′i,1 = mi,2⊕ (mi,1∨ (mi,0⊕ (mi,2∨mi,3)))

m′i,0 = mi,1⊕ ((mi,0⊕ (mi,2∨mi,3))∨ (mi,3⊕ (mi,1∨mi,2)))

The result of the S-box is solely based on its input, so there is no diffusion between nibbles

mi. We can see that each equation for m′i, j is dependent of mi, j. We can also see that learning

some m′i, j has no influence on the other equations. This means we can never guess some bits

and determine some others for free. So at least for G&D-attacks, working on bit-level does

not yield more information that we would improve the G&D-attack. Hence, let’s write the

32

CHAPTER 5. SKINNY AS BLOCK FUNCTION

result of the SubCells transformation, so applying the S-box to each nibble as:


m′0 m′1 m′2 m′3

m′4 m′5 m′6 m′7

m′8 m′9 m′10 m′11

m′12 m′13 m′14 m′15

 (5.2)

Then ShiftRows transformation rotates row j right with j positions, where 0≤ j≤ 3. This

leads to 
m′0 m′1 m′2 m′3

m′7 m′4 m′5 m′6

m′10 m′11 m′8 m′9

m′13 m′14 m′15 m′12

 (5.3)

And finally, applying MixColumns yields:

SKINNY(m) =


1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0

 ·


m′0 m′1 m′2 m′3

m′7 m′4 m′5 m′6

m′10 m′11 m′8 m′9

m′13 m′14 m′15 m′12

= (5.4)


m′0 +m′10 +m′13 m′1 +m′11 +m′14 m′2 +m′8 +m′15 m′3 +m′9 +m′12

m′0 m′1 m′2 m′3

m′7 +m′10 m′4 +m′11 m′5 +m′8 m′6 +m′9

m′0 +m′10 m′1 +m′11 m′2 +m′8 m′3 +m′9



5.1 Application to Non-Determinable Case

We saw that z = m+ g(m) is not determinable for m, among others in Example 4. In the

black box model, this means we can never determine m for free. However, if we instead have

one round of SKINNY’ as block function, we can greatly reduce the G&D-resistance. Using

Equation 5.4, we can write out z = m+SKINNY’(m) as follows. Note that we also write out

33

CHAPTER 5. SKINNY AS BLOCK FUNCTION

the keystream block z in nibbles.


z0 z1 z2 z3

z4 z5 z6 z7

z8 z9 z10 z11

z12 z13 z14 z15

=


m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

+ (5.5)


m′0 +m′10 +m′13 m′1 +m′11 +m′14 m′2 +m′8 +m′15 m′3 +m′9 +m′12

m′0 m′1 m′2 m′3

m′7 +m′10 m′4 +m′11 m′5 +m′8 m′6 +m′9

m′0 +m′10 m′1 +m′11 m′2 +m′8 m′3 +m′9

 =


m0 +m′0 +m′10 +m′13 m1 +m′1 +m′11 +m′14 m2 +m′2 +m′8 +m′15 m3 +m′3 +m′9 +m′12

m4 +m′0 m5 +m′1 m6 +m′2 m7 +m′3

m8 +m′7 +m′10 m9 +m′4 +m′11 m10 +m′5 +m′8 m11 +m′6 +m′9

m12 +m′0 +m′10 m13 +m′1 +m′11 m14 +m′2 +m′8 m15 +m′3 +m′9


If we know the value of mi we also know the value of m′i and vice versa, by just applying

the (inverse) of the S-box. If we guess m′0, we can determine m4 = z4−m′0. If we then also

guess m1 and m8, we can determine all other nibbles. See below the full attack. So we only

have to guess 3 nibbles. This comes down to just 12 bits of G&D-resistance. Hence, with a

single SKINNY’ round as block function instead of an abstract one, the G&D-resistance has

decreased from 64 to 12 bits.

Guessing v a r i a b l e m0

Determining m4 from z4

Guessing v a r i a b l e m1

Determining m5 from z5

Guessing v a r i a b l e m8

Determining m10 from z10

Determining m13 from z0

Determining m7 from z8

Determining m3 from z7

Determining m12 from z12

Determining m9 from z3

34

CHAPTER 5. SKINNY AS BLOCK FUNCTION

Determining m11 from z9

Determining m14 from z1

Determining m6 from z11

Determining m2 from z6

Determining m15 from z2

5.1.1 Performing More Rounds

Ideally, the G&D-resistance of z = m+SKINNY’(m) is equal to the G&D-resistance of z =

m+g(m), namely without knowledge of the block function. We can perform more rounds of

SKINNY’ until we get 64 bits of resistance, at the expense of efficiency. The findings can be

summarized in the following overview:

Number of rounds G&D-resistance
1 12 bits
2 20 bits
3 32 bits
4 40 bits
5 52 bits
6 56 bits
7 60 bits
8 64 bits

Table 5.1: The G&D-resistance in bits for the case z = m+SKINNY’-x(m), where the
block function used is x-rounds of SKINNY’.

These results have been generated using the G&D-attack tool. We had to define the round

function of SKINNY’. For any number of rounds r, we can define the matrix for the keystream

block in nibbles (or bytes) like z = m + skinny n(m, r). We obtain 16 equations from

this. By looking at the structure of the equations in Equation 5.5, we see we can perform

Gaussian elimination to get simpler equations. For example, we can add the last row of the

matrix to the first row of the matrix. We can add the second row to the last row. Note that

this doesn’t decrease the amount of distinct blocks in the last row, but it changes what blocks

are present. In the attack for SKINNY’-3 and SKINNY’-4, this sum of rows was used to

35

CHAPTER 5. SKINNY AS BLOCK FUNCTION

improve the attack. We obtain the following matrix:


m0 +m′0 +m′10 +m′13 m1 +m′1 +m′11 +m′14 m2 +m′2 +m′8 +m′15 m3 +m′3 +m′9 +m′12

m4 +m′0 m5 +m′1 m6 +m′2 m7 +m′3

m8 +m′7 +m′10 m9 +m′4 +m′11 m10 +m′5 +m′8 m11 +m′6 +m′9

m12 +m′0 +m′10 m13 +m′1 +m′11 m14 +m′2 +m′8 m15 +m′3 +m′9



R0=R0+R3−−−−−−→
R3=R2+R3


m0 +m12 +m′13 m1 +m13 +m′14 m2 +m14 +m′15 m3 +m15 +m′12

m4 +m′0 m5 +m′1 m6 +m′2 m7 +m′3

m8 +m′7 +m′10 m9 +m′4 +m′11 m10 +m′5 +m′8 m11 +m′6 +m′9

m4 +m12 +m′10 m5 +m13 +m′11 m6 +m14 +m′8 m7 +m15 +m′9


For the attack, we use the original equations, so the top matrix, and we use the first and last

row of the lower matrix. We could have added more or different rows to each other, which

would perhaps lead to a more efficient attack. Having all the ∑
16
i=2C(16, i) = 65519 equations

gives more information, hence having all of these would possibly give a better attack. We feed

the equations to the G&D-automation tool with n = 16, as we need to recover 16 nibbles.

The program shows us that we need z = m + SKINNY’-8(m) to have the same G&D-

resistance as the generic block function case. It is possible that these attacks can be improved

upon. Like described in Remark 1, we only guess inner sequence elements (or nibbles of in-

ner sequence elements), and not combinations of inner sequence elements. Also, having more

information, so more equations could lower the G&D-resistances listed in Table 5.1. Ideally,

we would also use all combinations of these equations, of any length between 2 and 16. This

would result in ∑
16
i=2C(16, i) = C(16,2)+C(16,3)+ · · ·+C(16,16) = 65519 equations. As

the G&D-tool has to perform each order of guessing for 16 nibbles, this becomes way too

slow. Even though the attacks could be improved on, our intuition is that the G&D-resistance

for taking as block function 8-round SKINNY’ will remain 16 nibbles.

36

CHAPTER 5. SKINNY AS BLOCK FUNCTION

5.2 More Complex Example

Let’s again look at Example 3, where c = (0,0,1), d = (0,1,0) and e = (1,0,1). We want

to use our knowledge of SKINNY’ to improve on the attack described before. The G&D-

resistance in the original attack in Example 3 was 1 block. We again start by writing out the

equations z0,z1 and z2 in nibbles. So we will get 3 · 16 = 48 equations. Since z0 = a0 + a2

contains no block function call, we will simply get z0,i = a0,i+a2,i for 0≤ i < 16. From these

equations we learn a0,i if we know a2,i or vice versa. Writing out z1 = a0+a1+SKINNY’(a1)

using Equation 5.4 becomes:


z1,0 z1,1 z1,2 z1,3

z1,4 z1,5 z1,6 z1,7

z1,8 z1,9 z1,10 z1,11

z1,12 z1,13 z1,14 z1,15

=


a0,0 a0,1 a0,2 a0,3

a0,4 a0,5 a0,6 a0,7

a0,8 a0,9 a0,10 a0,11

a0,12 a0,13 a0,14 a0,15

+


a1,0 a1,1 a1,2 a1,3

a1,4 a1,5 a1,6 a1,7

a1,8 a1,9 a1,10 a1,11

a1,12 a1,13 a1,14 a1,15

+


a′1,0 +a′1,10 +a′1,13 a′1,1 +a′1,11 +a′1,14 a′1,2 +a′1,8 +a′1,15 a′1,3 +a′1,9 +a′1,12

a′1,0 a′1,1 a′1,2 a′1,3

a′1,7 +a′1,10 a′1,4 +a′1,11 a′1,5 +a′1,8 a′1,6 +a′1,9

a′1,0 +a′1,10 a′1,1 +a′1,11 a′1,2 +a′1,8 a′1,3 +a′1,9


And very similar for z2 = a1 +a2 +SKINNY’(a2):

z2,0 z2,1 z2,2 z2,3

z2,4 z2,5 z2,6 z2,7

z2,8 z2,9 z2,10 z2,11

z2,12 z2,13 z2,14 z2,15

=


a1,0 a1,1 a1,2 a1,3

a1,4 a1,5 a1,6 a1,7

a1,8 a1,9 a1,10 a1,11

a1,12 a1,13 a1,14 a1,15

+


a2,0 a2,1 a2,2 a2,3

a2,4 a2,5 a2,6 a2,7

a2,8 a2,9 a2,10 a2,11

a2,12 a2,13 a2,14 a2,15

+


a′2,0 +a′2,10 +a′2,13 a′2,1 +a′2,11 +a′2,14 a′2,2 +a′2,8 +a′2,15 a′2,3 +a′2,9 +a′2,12

a′2,0 a′2,1 a′2,2 a′2,3

a′2,7 +a′2,10 a′2,4 +a′2,11 a′2,5 +a′2,8 a′2,6 +a′2,9

a′2,0 +a′2,10 a′2,1 +a′2,11 a′2,2 +a′2,8 a′2,3 +a′2,9



To improve on the generic case with abstract g, we should be able obtain all 48 nibbles (a0,

a1 and a2) with less than 16 guessed nibbles. We have the equations z0, z1 and z2, but the

37

CHAPTER 5. SKINNY AS BLOCK FUNCTION

combination of the first three keystream blocks is also interesting. We already saw in Chapter

4 Example 3 that z0 + z1 + z2 = g(a1)+g(a2). If we use the adapted SKINNY function, this

becomes:
z0,0 z0,1 z0,2 z0,3

z0,4 z0,5 z0,6 z0,7

z0,8 z0,9 z0,10 z0,11

z0,12 z0,13 z0,14 z0,15

+


z1,0 z1,1 z1,2 z1,3

z1,4 z1,5 z1,6 z1,7

z1,8 z1,9 z1,10 z1,11

z1,12 z1,13 z1,14 z1,15

+


z2,0 z2,1 z2,2 z2,3

z2,4 z2,5 z2,6 z2,7

z2,8 z2,9 z2,10 z2,11

z2,12 z2,13 z2,14 z2,15

=


a′1,0 +a′1,10 +a′1,13 a′1,1 +a′1,11 +a′1,14 a′1,2 +a′1,8 +a′1,15 a′1,3 +a′1,9 +a′1,12

a′1,0 a′1,1 a′1,2 a′1,3

a′1,7 +a′1,10 a′1,4 +a′1,11 a′1,5 +a′1,8 a′1,6 +a′1,9

a′1,0 +a′1,10 a′1,1 +a′1,11 a′1,2 +a′1,8 a′1,3 +a′1,9

 +


a′2,0 +a′2,10 +a′2,13 a′2,1 +a′2,11 +a′2,14 a′2,2 +a′2,8 +a′2,15 a′2,3 +a′2,9 +a′2,12

a′2,0 a′2,1 a′2,2 a′2,3

a′2,7 +a′2,10 a′2,4 +a′2,11 a′2,5 +a′2,8 a′2,6 +a′2,9

a′2,0 +a′2,10 a′2,1 +a′2,11 a′2,2 +a′2,8 a′2,3 +a′2,9

 (5.6)

We are especially interested in the second row of Equation 5.6. If we guess a2,0,a2,1,a2,2

and a2,3, we can determine a1,0,a1,1,a1,2 and a1,3. Before we also saw that with knowledge

of some a2,i we can also determine a0,i. We can then actually determine all 48 nibbles by

guessing 5 nibbles. However, feeding these equations to the G&D-attack tool, we find an

even more efficient attack. If we guess a0,0, a0,1, a0,2 and a0,10, we can determine all other

nibbles. Thus, with one round SKINNY’, we can reduce the G&D-resistance from 64 bits to

16 bits!

5.2.1 Performing More Rounds

Here also, we can perform more rounds SKINNY’. However, already when using SKINNY’-2,

the equations become so fuzzy that it is really hard performing an attack by hand. The fol-

lowing results were generated by the tool:

38

CHAPTER 5. SKINNY AS BLOCK FUNCTION

Number of rounds G&D-resistance
1 16 bits
2 40 bits
3 56 bits
4 64 bits

Table 5.2: The G&D-resistance in bits for Example 3, where the block function used is
x-rounds of SKINNY’.

We perform the same Gaussian elimination as described in Section 5.1.1, namely R0 =R0+R3

and R3 = R2 +R3. We perform this Gaussian elimination on z1, z2 and z0 + z1 + z2. We use

the G&D-tool in the same manner as was described in Section 5.1.1, namely we feed the

equations to the tool, now with n = 3 · 16 = 48. Checking the result is also difficult, as we

have 60 equations and 48 unknowns. What is noticeable is that the Gaussian elimination is

only used to recover 1 nibble in total, for all number of rounds 1≤ r < 5.

It is noticable that for this example we only need 4 rounds of SKINNY’, whereas for the case

described in Section 5.1.1 we needed 8 rounds to obtain 64 bits of security.

39

CHAPTER 6. RELATED WORK

Chapter 6

Related Work

We already described in Chapter 1 that LFSRs are not suited as a cryptographic KSG. The

main characteristics of runaway generators are non-linearity of the update function and that

no part of the initial state is kept during generation of the keystream. In addition, they are

low-cost, word-oriented and synchronous. To make a stream cipher non-linear, non-linearity

can be introduced in the update function, the output filter, or both. Runaway generators only

have non-linearity in the feedback function. Our idea behind taking this first approach is that

making a function non-linear introduces computational overhead, making the generator less

efficient, as was described in Section 2.1. In this chapter, we will describe some of the related

work, i.e. stream ciphers that have similar characteristics.

RC4 is similar to the runaway generators in the fact that it has a simple structure and it has a

non-linear update function. However, multiple vulnerabilities in RC4 have been shown, such

as in [Fluhrer et al., 2001], where the authors performed a related key attack. HC-128 [Wu,

2008] is a modernised version of RC4. The authors claim that the most efficient attack for

recovering the initial key is exhaustive key search, as the key is 128-bit, it offers 128-bit

security. Apart from having a non-linear update function, it also has a non-linear output filter,

which adds overhead. The internal state consists of two tables of 512 registers containing

32-bit words, in total taking up 4096 bytes. Even though runaway generators could have any

internal state size, we aim for it to be smaller. We saw for example in Section 4.2 a runaway

generator that has an internal state of 21.5 bytes, while having 128-bit security against G&D-

attacks.

RC4 and HC-128 are both software-efficient. For the runaway generators, the block function

40

CHAPTER 6. RELATED WORK

decides whether it is software- or hardware-oriented, but it would be nice to have both. Triv-

ium [Cannière, 2006] is both software- and hardware-efficient. However, they only claim 80

bits of security, whereas we strive to have at least 128-bit security.

The Snow stream ciphers [Ekdahl and Johansson, 2003] are also software-oriented. A differ-

ence between Snow and the runaway generators is that Snow has non-linearity in the output

filter. As mentioned in the beginning of this chapter, this increases the computational com-

plexity.

Two ciphers that are also similar to the runaway generators are Tiaoxin-346 [Nikolić,

2016] and AEGIS [Wu and Preneel, 2013]. These are not stream ciphers but authenticated

encryption algorithms. Authenticated encryption provides both confidentiality and integrity of

the data. One can achieve this by using an encryption scheme and a message authentication

code (MAC) for message authentication. However, it is more efficient to make a scheme

that does both of this, an authenticated encryption algorithm. These schemes do not output a

keystream, but a ciphertext and a tag. The plaintext is used in the state update function, such

that AEGIS and Tiaoxin are asynchronous. Both schemes use AES in the update function

to make it non-linear. In this sense they are similar to the runaway generators: the update

function is a simple non-linear function where XORs and a block function (AES) is used.

They both are also runaway, namely no part of the initial state is kept throughout generation

of the keystream.

41

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

Chapter 7

Conclusions and Future Research

In this thesis, we have seen that we can make keystream generators from simple building

blocks. In particular, we have seen that we can even achieve the upper bound of n−1 blocks

(of b bits) of G&D-resistance for some specific configurations. In Section 4.3, we have

made some recommendation on what the vectors c, d and e should look like to have a high

probability of getting a good G&D-resistance. For example, adding more inner sequence

elements together as input of the block function generally leads to a better G&D-resistance,

i.e. having some more non-zero values in d. This comes at the expense of parallelizability.

We have seen in Chapter 3 that it is easy to assess the parallelizability of a runaway generator.

It simply comes down to finding the lowest index in c and d which has a non-zero value.

We have also shown that G&D-attacks can be automated. This comes in particularly handy

for larger n or when assessing generators with a specific block function. The main goal of the

tool is to find the most efficient G&D-attack possible under the assumption made in Remark

1, by checking every attack possible. It is hard to verify the result, as we cannot check

every attack by hand. We have shown our algorithm finds the correct G&D-resistance in

Section 4.1.2. However, more information could lead to a better attack, such as having more

equations and combinations of those equations. In specific cases, so far only for some n > 7

cases, having 2n equations leads to a better attack than having n equations. Maybe having 3n

equations will further reduce the G&D-resistance of some runaway generators. Unfortunately,

this is computationally too hard to do with the current program. For 2n equations we already

had problems with computing the G&D-resistance for large n, as can be seen in the overview

in Appendix A. A dash “-” shows that it took too long to compute. In future research, it

would be good to allow the attacker to query the runaway generator any amount of keystream

42

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

blocks. The attaker should also be allowed to guess combinations of inner sequence elements.

We have only looked at the security of the runaway generators in terms of the G&D-resistance,

but of course, other attacks are possible. When we take a concrete block function, the at-

tacker might be able to perform a better attack than in the black box case, like we have seen

in Chapter 5 using the round function SKINNY’. The attacker could also distinguish the run-

away generator from a RO by looking at statistical properties of the generated keystream.

The block function could have imbalance in its output, namely a bias towards specific val-

ues. We have also assumed so far that the initial state is a given uniform secret, whereas

in a real application, we would have to generate this, leading to an imbalanced initial state.

An attacker could exploit these statistical properties, perhaps leading to a better attack than a

G&D-attack.

The research done for this thesis is useful to construct specific lightweight keystream gener-

ators. We have seen some configurations of runaway generators that look promising. Further

research could be done in picking a specific block function and assessing how it changes the

G&D-resistance as opposed to the generic block function case. G&D-attacks are just one

way to distinguish the runaway generator from a RO . Implementing a specific block func-

tion can give rise to other attacks. The block function used might be statistically biased, i.e.

the keystream will have imbalance. An attacker can then also try to distinguish the runaway

generator from a RO by looking at statistical properties of the keystream. So to get to a

specific efficient and low-cost stream cipher, other properties such as imbalance should be

investigated in future work.

An application of a specific runaway generator would be that we can use the structure of

the generator to do compression, instead of expansion like a stream cipher does. These two

functionalities, being expansion and compression, is what doubly extendable cryptographic

keyed (deck) functions such as Xoofff [Daemen et al., 2018] are able to do. These functions

take both variable length input and output, with which one could build stream ciphers, MAC

functions and authenticated encryption schemes.

43

REFERENCES

References

[Barkan and Biham, 2006] Barkan, E. and Biham, E. (2006). Conditional estimators: An

effective attack on a5/1. In Preneel, B. and Tavares, S., editors, Selected Areas in Cryptog-

raphy, pages 1–19, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Beierle et al., 2016] Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T.,

Sasaki, Y., Sasdrich, P., and Sim, S. M. (2016). The SKINNY family of block ciphers and

its low-latency variant mantis. In Robshaw, M. and Katz, J., editors, Advances in Cryptol-

ogy – CRYPTO 2016, pages 123–153, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Cannière, 2006] Cannière, C. D. (2006). Trivium: A stream cipher construction inspired by

block cipher design principles. In Katsikas, S. K., López, J., Backes, M., Gritzalis, S., and

Preneel, B., editors, Information Security, 9th International Conference, ISC 2006, Samos

Island, Greece, August 30 - September 2, 2006, Proceedings, volume 4176 of Lecture Notes

in Computer Science, pages 171–186. Springer.

[Daemen et al., 2018] Daemen, J., Hoffert, S., Van Assche, G., and Van Keer, R. (2018). The

design of xoodoo and xoofff. IACR Transactions on Symmetric Cryptology, 2018(4):1–38.

[Ekdahl and Johansson, 2003] Ekdahl, P. and Johansson, T. (2003). A new version of the

stream cipher snow. In Nyberg, K. and Heys, H., editors, Selected Areas in Cryptography,

pages 47–61, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Fluhrer et al., 2001] Fluhrer, S., Mantin, I., and Shamir, A. (2001). Weaknesses in the key

scheduling algorithm of rc4. In Vaudenay, S. and Youssef, A. M., editors, Selected Areas

in Cryptography, pages 1–24, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Nikolić, 2016] Nikolić, I. (2016). Tiaoxin-346. https://competitions.cr.yp.

to/round3/tiaoxinv21.pdf.

44

https://competitions.cr.yp.to/round3/tiaoxinv21.pdf
https://competitions.cr.yp.to/round3/tiaoxinv21.pdf

REFERENCES

[Shah and Mahalanobis, 2012] Shah, J. and Mahalanobis, A. (2012). A new guess-and-

determine attack on the a5/1 stream cipher. Cryptology ePrint Archive, Report 2012/208.

https://eprint.iacr.org/2012/208.

[Wu, 2008] Wu, H. (2008). The Stream Cipher HC-128, pages 39–47. Springer Berlin Hei-

delberg, Berlin, Heidelberg.

[Wu and Preneel, 2013] Wu, H. and Preneel, B. (2013). Aegis: A fast authenticated en-

cryption algorithm. Cryptology ePrint Archive, Report 2013/695. https://eprint.

iacr.org/2013/695.

45

https://eprint.iacr.org/2012/208
https://eprint.iacr.org/2013/695
https://eprint.iacr.org/2013/695

APPENDIX A. G&D-AUTOMATION TOOL RESULTS

Appendix A

G&D-Automation Tool Results

at = zt = n G&D-resistance Parallel.
n eqs. 2n eqs.

at−n +g(at−n+1) ∑
n−1
k=0 at+k 3 0 2

4 0 3
5 0 4
6 0 5
7 0 6
8 0 7
9 0 8
10 0 9

at−n +g(at−n+1) at +at+d n
2 e+at+n−1 3 0 0 2

4 1 1 3
5 1 1 4
6 2 2 5
7 2 1 6
8 2 2 7
9 2 - 8

at−n +g(at−n+2) at +at+d n
2 e+at+n−1 3 0 0 1

4 1 1 2
5 1 1 3
6 2 2 4
7 2 1 5
8 3 2 6
9 4 - 7

at−n +g(at−n+1) at +at+d n
4 e+at+d 3n

4 e
+at+n−1 4 0 0 3

5 1 1 4
6 0 0 5
7 1 1 6
8 2 2 7
9 3 - 8
10 3 - 9

46

APPENDIX A. G&D-AUTOMATION TOOL RESULTS

at = zt = n G&D-resistance Parallel.
n eqs. 2n eqs.

at−n +g(at−n+2) at +at+d n
4 e+at+d 3n

4 e
+at+n−1 4 0 0 2

5 1 1 3
6 0 0 4
7 1 1 5
8 2 2 6
9 4 - 7

10 3 - 8
at−n +g(at−n+1 +at−n+2) at +at+n−1 3 2 2 1

4 2 2 2
5 2 2 3
6 2 2 4
7 2 2 5
8 2 2 6
9 2 - 7

at−n +at−n+1 +g(at−n+2) at +at+n−1 3 2 2 1
4 1 1 2
5 2 2 3
6 1 1 4
7 2 2 5
8 1 1 6
9 2 - 7

at−n +g(at−n+1 +at−n+2) at +at+d n
2 e+at+n−1 3 0 0 1

4 3 3 2
5 2 2 3
6 3 3 4
7 3 3 5
8 4 4 6
9 3 - 7

at−n +g(∑n−1
k=1 at−k) at +at+n−1 3 2 2 1

4 2 2 1
5 3 3 1
6 4 - 1
7 4 - 1
8 4 - 1

at−n +g(∑n−1
k=1 at−k) ∑

n−1
k=0 at+k 3 1 1 1

4 2 2 1
5 3 3 1
6 4 - 1
7 4 - 1
8 4 - 1

Table A.1: The results of the G&D-automation tool. The first two columns define the
runaway generator. We then compute the G&D-resistance with the tool, using n and 2n
equations. The dashes “-” indicate that we were not able to use the G&D-tool, due to it
taking a long time (> 4 hours). We list the generator’s parallelizability in the last column.

47

	Abstract
	Introduction
	Preliminaries
	Runaway Generator
	Attacker Model

	Parallelizability
	Guess-and-Determine Attack Resistance
	Automated Attack
	Example Run
	Correctness

	Results of the Tool
	The Amount of Input Equations and Combinations

	Recommendations
	Non-Linearity of the Block Function
	Feedback Function
	Output Filter

	SKINNY as Block Function
	Application to Non-Determinable Case
	Performing More Rounds

	More Complex Example
	Performing More Rounds

	Related Work
	Conclusions and Future Research
	References
	Appendix G&D-Automation Tool Results

