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ABSTRACT

Abstract

A stream cipher is a symmetric key-scheme that turns a short key in combination with a
diversifier into a arbitrarily long keystream. The keystream is used for stream encryption,
i.e. the ciphertext is obtained by combining the plaintext with the keystream. In this thesis,
we investigate the security and efficiency of keystream generators constructed from a b-bit
permutation g, with b in the range 32 to 128, and some additions. We will call keystream
generators built with this construction runaway generators. In this construction the state
consists of n blocks of each b bits. It operates as a filtered non-linear feedback shift register.
To update the state, all state blocks are shifted right and the feedback function computes the
leftmost block from the state using some additions and one call to the permutation g. The
construction is generic and the computation is defined by two vectors, ¢ and d. Every cycle,
the generator outputs a b-bit keystream block that is the sum of state blocks determined by

the vector e.

We assess the performance of the runaway generators by looking at how many state ele-
ments can be computed in parallel. We show that parallelizability is completely dependent
of the vectors ¢ and d. We also analyze their security in terms of how many bits of guess-
and-determine (G&D) resistance different runaway generators offer, where we use a generic
block function. We show that finding the best G&D-attack for a runaway generator can be
automated, which allows us to test the security of many specific runaway generators. From
this research, we can conclude that it is possible to make a specific generator that achieves
the upper bound of (n— 1)b bits of G&D-resistance. We make some recommendations that
increase the probability of obtaining a high G&D-resistance and parallelizability. We finally
use our tool to assess the G&D-resistance when a modified version of the round function of

SKINNY is used in the update function.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Keystream generators (KSGs) are used to transform a small key into an arbitrary long one.
The resulting keystream is then used to encrypt some message. Stream ciphers belong to
the symmetric key cipher realm and allow for stream encryption, where each plaintext bit is
combined with a keystream bit to obtain a ciphertext bit. The diversifier ensures that keeping
the same key for the stream cipher will not result in equal keystreams. Block ciphers in OFB
or counter mode are stream ciphers where a part of the state stays fixed, namely the key. We
call our KSGs “runaway generators” because the full state evolves. There is no part of the
state that keeps its value as the keystream is being generated. The diversifier and key of a
stream cipher can be combined into an initial state for the runaway generator. In this thesis,
we assume that we are given an initial state, which is secret and uniformly distributed. Then

we can expand the initial state with the generator, resulting in an arbitrary-length keystream.

There are various KSGs, such as linear feedback shift registers (LFSRs). However, these
have a linear update function which allows using linear algebra to construct the initial (se-
cret) state when having enough keystream bits. More interesting stream ciphers are irregu-
larly clocked LFSRs and non-linear feedback shift registers (NLFSRs). Instances of the first
class of LFSRs are broken, such as GSM A5/1 [Barkan and Biham, 2006|] [Shah and Maha-
lanobis, 2012]]. Examples of the latter include Trivium [Canniere, 2006] and Snow [Ekdahl
and Johansson, 2003]]. In this thesis we aim to add to the range of KSGs, namely the sim-
ple, lightweight and plausibly secure keystream generators. We will investigate the runaway
generators, which promise a good trade-off between efficiency and cryptographic security.
Bit-oriented stream ciphers, such as LFSRs, are significantly slower in software implementa-

tions than word-oriented stream ciphers like Snow [Ekdahl and Johansson, 2003]. Hence, we
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define a runaway generator as word-oriented stream cipher. Whether a specific runaway gen-
erator is hardware- or software-oriented depends on the block function. What runaway gen-
erators look like will be discussed in Chapter [2] We explain there what we think is low-cost
enough. In Chapter [3] we describe the performance of runaway generators as parallelizabil-
ity. We assess the cryptographic security of the runaway generators as how well they resist
guess-and-determine attacks, namely the guess-and-determine resistance, in Chapter i We
do that, with use of self-made tool, which also allows us to assess the guess-and-determine
resistance of runaway generators with a specific block function, an adaptation of the round
function of SKINNY. In Chapter [6] we show that runaway generators look promising in both

security and performance, compared to the state-of-the-art stream ciphers.
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Chapter 2

Preliminaries

A keystream generator is defined as a triplet (S, Y, f), with internal state S, update function
Y and output filter f. Figure 2.1] shows an iterative KSG. It is also synchronous, as the

keystream is computed independent of the plaintext and ciphertext.
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Figure 2.1: Graphical display of the keystream generator. The initial state is denoted as
59, this is the input of the KSG. Then all other states S’ for 1 > 0 can be computed from
this, using the update function Y. Using the output filter / and §', the keystream block at
time 7 is computed.
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As described in Chapter [T, a KSG can be used as part of a stream cipher. A stream cipher
has as input a key K and diversifier D and creates an arbitrary-length keystream. The key
and diversifier will serve as the initial state. This is shown below in Figure [2.2] The resulting

keystream zpz1z2 ... can be used for stream encryption.
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Figure 2.2: A stream cipher takes as input a key K and diversifier D. These are combined
into the initial state S° of our KSG. The KSG then produces a keystream, which can be
used as key in stream encryption. The plaintext P is bitwise XOR’ed with the keystream,
to obtain the ciphertext C.
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2.1 Runaway Generator

We are interested in a type of KSG with specific properties, namely the runaway generators,
which we will now describe. The internal state S' = {a;,...,a;1n,—1} at time ¢ for t > 0,
consists of n elements of some finite field, in this thesis, the elements are in GF(2)?. We
assume we have a uniform, secret initial state SO = {ao,...,a,—1}, consisting of n blocks of

b bits. We can compute the state S'*! at time 7 4 1 as a function of S':

SIJFI = Y(St) :T(ahat-‘rla s 7at+n—1) = (at+17al‘+27' . ')al+n—17al‘+n) (21)

= (a[+17at+2) s 7at+nfluU(al)af+17' . 7at+n71)) (22)

In words, the state S"*! consists of a linear combination of the state blocks in S’ shifted by 1.
However, we then get a block a;,, which can be expressed in terms of a;,a;1,...a;,—1 using
the feedback function U. We call the list of all state elements a, the “inner sequence”. We
will use both state block and inner sequence element to refer to a;,. So every state consists of n
consecutive elements of the inner sequence. The feedback function U is a linear combination

of state blocks added to the block function g applied to a linear combination of state blocks:

n n

ar = U(Stin) =U(@r—n,@r—nt1,---,4-1) = Z(Ciat—i) +g( Z djat—j) (2.3)
i=1 j=1

Vectors ¢ and d determine which state blocks are present in the computation for the inner
sequence element a,. Note that vectors ¢ and d start from index 1 and are in reversed order
with respect to the index of the inner sequence element. We aim to develop a low-cost KSG,
namely one where the feedback function U only has one application of the block function g
and one or a few additions. For binary vectors ¢ and d, we can see this as HW (c¢) + HW (d)
being small. The block function call is much more expensive than an XOR, so we want to
limit ourselves to only one call to the block function in the feedback function. The block

function can be a function that is

* a permutation. The output of a permutation is uniformly distributed, so there is no bias
towards a specific value. We want this for our block function, otherwise imbalance
accumulates every time we apply g. Any permutation is invertible, as every permutation

is a bijective mapping which allows to invert the operation.
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* non-linear. A non-linear block function makes our update function also non-linear. In
general, no cryptographic system should be completely linear. This allows the attacker
to express every bit of output as a linear function of inputs. With more equations than
unknowns, the attacker is able to solve the system using linear algebra. We will also
see a specific case in Section where linearity of the block function decreases the

G&D-resistance.

* low-cost. We want the block function to be low-cost, such that the runaway generator

is efficient.

We want U to be invertible. If U is not invertible, it is not a bijective mapping, then we
lose entropy when we apply the function. This will increase imbalance in our keystream
sequence. An attacker could then exploit statistical differences with the Random Oracle (Z0)
to distinguish it from a Z easier, i.e. using a smaller amount of keystream blocks. We
need the keystream to be reasonably uniformly distributed such that we can securely use it
for stream encryption. Invertibility of U requires that the block function g is invertible and
that Equation can be rearranged into the form a,_, = V(a;,a;1,...,a;—n—1), where the
function V defines the right-hand side of the equation solved for a,_,. This can only be done
if either ¢, = 1, then

n—1
a,_n:at—z Cidr—;) Zdat j 24
i=1

or d, = 1, then

n—1
n=g"" (a, — Z City—;) Z dja,j ) (2.5)
i=1

This last part is possible due to invertibility of the block function. Note that if U is invertible,

we are able to solve for any inner sequence element in S’, not just for a,_, as shown here.

The output filter f computes keystream block z; based on §' as:

n—1
:f(St) :f(ataatJrl)"'aatJrnfl) = Zeiat+i (26)
i=0

Where ¢; € {0, 1} indicates whether g; is present in the equation for z,. Note here that e starts
at index 0. z is just a linear combination of HW (e) blocks. We want the output filter to be

as low-cost as possible, so we only allow a few additions. The idea behind this is that all
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computation done in the output filter is only used once, namely to compute one keystream
block. Because a, is dependent of the inner sequence elements in state S’, computations
performed in the feedback function U are used in all future inner sequence elements. The
inner sequence elements are also used to compute the keystream blocks. This is why we
perform the block function call in the feedback function, and not in the output filter. This

also means that we have a non-linear feedback function, but a linear output filter.

The vectors ¢, d and e of length n define the runaway generator, where we keep the block
function generic. In a concrete implementation of the runaway generator, the state can be
stored in n memory cells. Each of these cells contain an element in GF(2)?. When we
apply the update function Y, we shift the state S’ to S'*!. This can be implemented in a shift
register. The new highest inner sequence element g, is computed using the function U on §'.
As the block function works on blocks of b bits, it can be stored in less amount of memory

than the internal state.
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Figure 2.3: The generic runaway generator. The shift register contains the inner sequence
elements S’ = (a;,...a,,—1) at time 7. To obtain state S'*1, the register is shifted to the
right. The leftmost element will then become 4, ,, which is computed using Equation@
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Example 1. Consider the case with n =2, so S° = (ag,a,), and with ¢ = (0,1), d = (1,0) and
e = (1,1). We can write this as the recurrence relation a; = a;—» + g(a,—1). Then the keystream
sequence is defined as z; = a; + ary1. Table 2.1 shows the inner sequence elements expressed

as a function of the initial state blocks ag and a;.

t a;

0 aop

1 aj

2 ap+g(ar)

3 a1 +g(a2) = a1 +g(ao+g(ar))

4 | ax+g(a3) = ao+g(ar) +glar +g(ao+g(ar)))

Table 2.1: The inner sequence for the runaway generator defined by ¢ = (0,1),d = (1,0)
and ¢ = (1,1). The inner sequence elements are expressed in terms of the initial state
S0 = (ag,ay).

2.2 Attacker Model

The goal of the attacker is to distinguish our keystream from a random sequence. The
runaway generator is initialized with a uniformly random state. The attacker makes one
query giving a desired output length [ to the runaway generator/%¢. She then receives the
keystream sequence Z of length [. This is the data complexity. The computational complexity
is the amount of queries to the block function g and the output filter f. The attacker can query
g and f as these are public due to Kerckhoffs’s principle. We also assume that the attacker

can perform any other computation. Figure [2.4] displays the situation.

SO
g | g
KSG f ? RO f

—1 I |77 1

[ Z [ Z

Figure 2.4: Graphical display of the attacker model.

A Z0 has the property that its output, the keystream sequence, is perfectly random. This
means that if the output of the runaway generator is not uniformly distributed, it can be dis-

tinguished from the Z¢. The attacker can perform a distinguishing attack by looking at
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the statistical differences between the keystream generated by a KSG and a perfectly ran-
dom keystream. For any real-life keystream generator, it is the case that the keystream is not
perfectly uniformly distributed. However, the KSG provides enough security against distin-
guishing attacks if the attacker needs more than 2% keystream bits to distinguish the KSG
from the Z0'.

Another way of distinguishing can be to recover n consecutive elements of the inner sequence.
If the attacker can do this, she can generate all other states S', for any time 7. Then she
can generate the entire keystream again to check for consistency. Typically, if the attacker
has knowledge of some §’, she can also recover the initial state, if the update function is
invertible. Since runaway generators have an invertible update function, we can say that the
attack is successful if the attacker can reconstruct any state. The attacker is then able to
distinguish the runaway generator from Z¢. Recovering a state can be done using a guess-

and-determine attack. We will discuss this in Chapter {]

10
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Chapter 3

Parallelizability

High-end CPUs support parallelizing operations, i.e. performing multiple operations at the
same time, using pipelined or SIMD instructions. To exploit that, it is preferable to support
parallelism in the computation of the inner sequence of the runaway generators. The require-
ment for two state blocks a; and a; to be able to be computed in parallel is that a; is not
dependent of a; and vice versa. Actually, for i < j, we can say that a; should not be depen-
dent of a; to be computed in parallel with g;. Since a; is computed before a;, a; can never be

dependent of a;.

Definition 1 (Parallelizability). We define the inner sequence to be x-parallelizable if x inner

sequence blocks can be computed in parallel.

Inner sequence element a; can never be dependent of a,, this would lead to self-recursion.
Parallelizability is thus always at least 1, so there is no parallelizability, namely we can always
compute one inner sequence element. Parallelism in this setting is highly dependent of what
state blocks are used in the function U. Recall that U is defined by vectors ¢ and d. These
vectors fully determine the parallelizability for runaway generators. Let’s first look at an

example.

Example 2. Consider the case with n =4, ¢ = (0,0,0,1) and d = (0,1,0,0). Recall from

Chapter[2]that vectors c and d are in reversed order with respect to the state index and that the

11
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vectors start at index 1. Since parallelizability only concerns state blocks, we do not have to

define an output filter. See the following table:

a;

ap
ag
a
as
ap+g(az)
ar+g(az)
ar+g(as) = ax +glao + g(az))
as+g(as) = a3 +g(a1 +g(az))

~N NN Bk = O

We see that ag dependent is of a4. So as needs to be computed before ag can be computed. as
is not dependent on a4, so ay and as can be computed in parallel. This holds for all pairs of

elements of the inner sequence: a, and a,. can be computed in parallel.

Definition 2 (Recursion Gap). For the relation for a; = Y. (cia;—;) + 8(27': vdja;— j) from
Equation we define the recursion gap as the distance from the highest indexed state block
present in the expression for a; to t. The recursion gap rg is the lowest index in vectors ¢ and
d to be non-zero. We denote by k the lowest index such that all ¢, with x < k are zero and by |
the lowest index such that all d, with x < | are zero, for 1 <k, | <n. The recursion gap is then

rg =min{k,l}. The highest state block present in the expression for a; has index a; .

Theorem 1 (Parallelizability of Runaway Generator). The parallelizability of the inner se-

quence is rg blocks, i.e. the inner sequence is rg-parallelizable.

Proof. The inner sequence at time ¢ as described in Equation can be rewritten as

a; = Z;’:rg(c,-at,i) +g(2?:rg d ja,,.,-). In words, the inner sequence element at time ¢ is only
dependent of state blocks a;_,...,a;—,, and not of the elements a; _,¢1,...,a;,—1. The latter
consists of t — 1 — (t —rg+ 1)+ 1 = rg — 1 state blocks. So a, can be computed in parallel

with rg — 1 elements. Then in total rg blocks can be computed in parallel. 0

Let’s look back to Example |2, From the vectors ¢ = (0,0,0,1) and d = (0, 1,0,0) we see that
rg = min{4,2} = 2. Recall that the indices of ¢ and d start at 1. From Theorem 1| we know
that this runaway generator is 2-parallelizable. If we are not satisfied with a parallelizability
of 2 blocks, we could take the runaway generator with d = (0,0,1,0). Now we have that the

recursion gap rg = min{4,3} = 3, such that this new runaway generator is 3-parallelizable.

12
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Chapter 4

Guess-and-Determine Attack

Resistance

If the attacker knows the initial state, or any n consecutive inner sequence elements, the
attacker can generate all keystream blocks. This is undesirable, since it allows the attacker
to distinguish the runaway generator from a Random Oracle. To obtain the initial state, the
attacker could perform an exhaustive search on the initial state. This can be done by guessing
a value for S°, generating the keystream that follows from that guess and compare it with the
given keystream. We saw in Section that the initial state consists of n blocks, each of

length b. The security strength is therefore upper bounded to nb bits.

However, the runaway generator is based on fixed functions U and f, which are defined by
the three vectors c,d and e. Note that to completely define the generator also a concrete
block function g has to be specified. The attacker can use the knowledge of the algorithm to

perform a more efficient attack than brute forcing S°.

Definition 3 (Guess-and-determine attack in KSG setting). In a guess-and-determine (G&D)
attack, an attacker guesses some inner sequence elements. Combined with the knowledge of
the keystream elements, other elements of the inner sequence can be determined. If the attacker
is able to determine n consecutive inner sequence blocks, she can generate an output sequence

and compare it with the observed keystream sequence.

13
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Definition 4 (G&D-resistance). The G&D-resistance of a KSG is the number of bits an attacker
has to guess in order to recover n consecutive inner sequence elements. If the attacker has to
guess x inner sequence elements of b bits to successfully recover n consecutive inner sequence

elements, the G&D-resistance is x - b bits or equivalently, x blocks.

The attack for recovering any n consecutive inner sequence elements is similar for recovering
the n initial state blocks. In this chapter, we will focus on recovering the initial state S° for

simplicity.

Remark 1. In this thesis, we restrict ourselves to only making guesses for initial state blocks.
We will not guess combinations of initial state blocks. Guessing combinations of initial state

blocks, in some specific cases, could lead to a lower G&D-resistance than our approach.

Let’s find the G&D-resistance of the runaway generator from Example [I] Recall that n =2,
so §Y = (ag,a;), and ¢ = (0,1), d = (1,0) and e = (1,1). Thus we can compute the next
element of the inner sequence as a; = a;— + g(a,—1). Then the keystream sequence is defined
as z; = a; +a,41. An exhaustive search for S° has a worst-case complexity of 22, However,
we can reduce our expected workload from 2?” to 0 by using the knowledge of the KSG!
We can mount a G&D attack, but we do not even have to guess any blocks. Recall from
Section [2.2] that the attacker can perform any computation, so the attacker can also compute
combinations of keystream blocks. If we, for example, add zo and z; we get zo+z; = g(ay).
In Section [2.1] we specified that we only inspect runaway generators with invertible block
functions g. This means we can solve the equation for a;, so a; = g~ '(z0 +2z1). Since we
know a; and zy, we can also determine ay = zg — a;. Then we need to check for correctness
by computing a> + a3 and checking whether this equals z;. Since we do not have to guess

any blocks, the G&D-resistance is O bits.

Here, we used that we can solve for a; in the equation zg+z;. Let’s define when an element is

solvable in a certain equation. This allows us to define when we can determine that element.

Definition 5 (Solvability and Determinability). An element a, is solvable in a given equation
z if there is only one occurrence of a, in the equation. Solvability of a, allows us write the
equation with a, on the LFS and at least 7 on the RHS. The RHS can contain other inner

sequence elements, but it cannot contain a,. a, is determinable from z if and only if a, is

14
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solvable in z, we don’t have knowledge of a, and all elements on the RHS of the equation

solved for a; are known.

Let’s look at an example where we can apply this.

Example 3. Consider the case with n =3 and with ¢ = (0,0,1), d = (0,1,0) and e = (1,0,1).

See the table below for the iterations of the feedback function and output filter.

t a; 2t

0 ao ap+ap

1 aj ap+ay +g(ar)

2 ar ar+ap —|—g(a2)

3 ao+g(a1) ao+a2+g(a1)+g(ao+g(a1))

4| a1 +g(az) | ao+ar+glar)+glaz) +glar +g(a2))

Looking at the output blocks, we see that zg, z; and z each depend on only two distinct
blocks. Then we have two equations z3 and z4 that are dependent of 3 distinct blocks. We
want to find the easiest and quickest way to obtain the initial state S® = (ag,a;,a»). It can
be the case that a certain combination of keystream blocks results in an equation where an
element of the initial state is determinable. In this example, the result of adding two or more
keystream blocks together is dependent of at least 2 inner sequence elements. For example,
20+z1+z22=g(a1)+g(ax) and zo +z; = a; +a, + g(a;). Combining keystream blocks does
not lead to a determinable element, so let us look only at the keystream sequence. If we
guess ap, we can determine ag = zo — @y, or vice versa. We still need to gain knowledge of a;
to know S°. We have to find an equation from which a; is determinable. Equation z; is not
solvable for a; (there are two occurrences of a;), so we cannot use that one. z» is solvable
for a; and we have knowledge of all other elements in the equation, namely a,. This means
we can determine a; = zp —ap — g(az). To obtain the initial state, we only needed to guess
ap, so we have a G&D-resistance of b bits. The attack can be written down as the following

algorithm:

for all guesses a5, for ap:
determine a,=z0—d,
determine o} =z —da,—g(d})
if z3==ay+ay+g(d)) +glap+g(a))):

return S = (aj),d|,d)

15
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We can specify an upper and lower bound of the G&D-resistance.

Theorem 2. The G&D-resistance of the runaway generator is lower bounded by 0 bits and

upper bound by (n— 1)b bits. There is one special case which is an exception to this rule, see

Example

Proof. The lowest G&D-resistance is 0 bits. This happens when the KSG is defined in such a
way that the initial state is revealed by the keystream sequence, either directly or by combin-
ing keystream elements. Or equivalently, some state " at time ¢ is fully recoverable without

making any guesses. We of course cannot have less than 0 bits G&D-resistance.

The highest resistance theoretically possible is nb bits, which would mean the best attack is
an exhaustive search for the initial state. However, this is not achievable with the runaway
generator. The output filter is simply a linear combination of state blocks. What blocks are
present is defined by the vector e, as described in Section [2.1] The first keystream block zo
is always dependent of HW (e) blocks. So from guessing HW (e) — 1 initial state blocks, you
can always determine the last initial state block. Recall that vector e has length n. That means
that we can never have HW (e) > n. Hence we can never have a G&D-resistance of more than

n — 1 blocks. OJ

Example 4 (Exception to Theorem[2). Consider the case withn =1 and with ¢ = (0), d = (1).
Then, if we take as output filter z; = a; +a;+1, we get the equations displayed in the table below.
Note that we cannot express e in a vector of length n = 1, hence we give the recurrence relation

directly.

o | s
0] ao ap+g(ao)
1| glao) | g(ao)+g(g(ao))

All keystream blocks are of the form z; = g*(ao) + & (ap), where x < y. Also all combinations
of keystream blocks are of this form. This means that all equations are not solvable for ay,
hence we can never determine ag. So we need to guess ag. This runaway generator has a

G &D-resistance of b bits, which is larger than (n — 1)b = 0 bits as specified by Theorem

16
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4.1 Automated Attack

Now that we have seen how to perform the attack by hand, we can automate this process. So
far, we have only been looking at simple examples that are good to get some intuition from,
but are not that interesting. To find an interesting runaway generator, we need to assess its
parallelizability and G&D-resistance. As we have seen in Chapter (3| assessing the paralleliz-
ability of a runaway generator is pretty straightforward. The G&D-resistance requires some
trial and error. As the resistance is highly dependent on the cancellation of initial state blocks
in (combinations of) keystream blocks, there is no theorem on what the G&D-resistance is
for generic runaway generators. We can look at many generators and try to find some pattern,
varying n, ¢, d and e. As it costs a lot of effort to assess all these variants for G&D-resistance
by hand and mistakes are easily made, it is preferable to automate this process. More impor-
tantly, if we can try every attack possible, we have assurance that we indeed find the most
efficient attack under our assumptions. In this Section, we will describe our G&D-attack

program and show why it indeed gives the most efficient attack, keeping Remark |1 in mind.

As input of the program, we get the three vectors ¢, d and e that completely describe the
runaway generator. We can also give a list of equations as input, this will come in handy in
Chapter [5] We compute all the equations based on ¢, d and e. To display these equations
as simple as possible, we strip them. Each equation z; becomes a list stripped;. In the
program, we will keep a list of stripped equations, where the index ¢ indicates that it concerns
z;. Bach term in z; is either an inner sequence element, or a block function call with certain
inner sequence elements as input. The first option, for a, that is present in z;, we represent
simply as an integer x, so we only take the index. For each block function call, we remove
the function g and place its inputs into a list. This is a recursive process, as the input of
the block function call can either be inner sequence elements or block function calls to the
inner sequence. The following example will make this idea clearer. For equation z, = ag +
ai + g(ay), stripping leads to st ripped, = [0,1,[1]]. Another example is z, = ap +g(a1) +
g(ai+g(az)). Then stripped, = [0,[1],[L,[2]]].

A description of the attack in pseudocode is given in Listing .11 We have simplified the

algorithm by removing some optimizations. We also leave out the stripping of equations, the
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generation of equations and calling the program.

The general idea of the attack is as follows. We want to try every possible attack to recover
the initial state. We can achieve this by trying out all orders of guessing. For runaway
generator with state size n, we can try all variations of (0,...,n—1) of length upper. upper
is the upper bound as specified in Theorem [2} so n — 1, but one can also give some other
value. First we guess the first integer in the permutation, then the second, etc., until we have
knowledge of all n initial state blocks. Maybe we don’t have to guess anything and we can
determine S° right away. In the beginning, for some variation p, we have no knowledge of
any of the initial state blocks (known = []). If there is something to determine, we add
those state blocks to known and update the equations accordingly, using remove. Then
we try to guess p[0]. Perhaps we can determine more initial state blocks after this guess
has been made. If at any point we know the entire initial state (known = [ao,...,as—1]),
we are done with the attack. We then count how many blocks we have guessed in total and
this is the G&D-resistance for that variation. We then move on to the next variation. The
function determinalble checks for each equation whether there is a single element in that
equation. If that is the case, we can use determine to recover that inner sequence element.
Determining and guessing basically come down to removing a certain element from each
equation. When we guess the first element in p, we remove it from p. As it makes no sense
to guess an element that we already have knowledge of, we have to remove elements in p
that are also in known. It can happen that for some variation, each element has either been
guessed or determined, without known being equal to S°. We will show this with an example
in Section .1.1] This means p will be empty and the attack is incomplete. We stop with this

attack and we continue to the next variation.
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Listing 4.1: Pseudo-code for all possible G&D-attacks.

def attack (equations, n, upper)
gd < upper + 1
vars < all variations of [0, ..., n-1] of length upper
for each p in vars
known, guessed <+ []
eqgs <4 equations
while known != [0, ..., n-1]
while determinable (egs) [0]
eqgs, determined ¢ determine (egs)
known < known ++ determined
if known = [0, ..., n-1]
continue
for each element in p that is in known
remove element from p
if p is empty
this attack is incomplete, go to the next variation
eqgs, known < guess_element (eqgs, pl[0], known)
guessed < guessed ++ p[0]
if the length of guessed < gd
gd 4 length of guessed
return gd

def determine (egs)
_, dets, z = determinable (egs)
copy = edgs
for each element in dets
for each index, eg in egs
copylindex] = remove (eq, element)
return egs, dets

def guess(eqgs, i, known)
copy = edgs
for each index, eg in egs
copy[index] < remove(eq, 1)
known < known ++ i
return copy, known

def remove (eq, 1)

new <+ []
for each elem in eq
if type(elem) = int

if elem # 1
new < new ++ [elem]

else if type(elem) = list
temp < remove (elem, i)
if temp # []

new < new ++ [temp]
return new

def determinable (egs)
for each index, eqg in eqgs
deter, var < determinable_eqg(eq)
if deter is True
return True, [var], index
return False, [], []

def determinable_eqg(eq)

if len(eq) =1
if type(eq(0]) = int
return True, eq[0]
else if type(eq[0]) = list and len(eq[0]) =1

return determinable_eq(eq[0])
return False, []
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4.1.1 Example Run

Let’s use the program to assess and example runaway generator. Let’s pick the following
runaway generator, with n =3, ¢ = (0,0,1), d = (1,1,0) and e = (1,0,1). We collect n

keystream blocks and their combinations to get the following equations.

20 =ao+a
721 =ap+ay +glar +az)
n=ai+ay+g(ay+ar+g(ar +az))
2+zi =a1+ar+glai +ay)
20+2 =ao+ar+g(ao+a+g(a1 +az))

w+u+zn=glai+a)+glap+ar+glar +az))

We strip these equations as described in Section The result is in the first row of Table
M1l As the G&D-resistance cannot be larger than n — 1, we define upper= 2. There are
ﬁ = 6 variations, i.e. 6 different orders of guessing. We will now show the attack using
the first variation, p = (0, 1). Initially, determinable (eqgs) returns false, as there is
no equation that contains in total just one variable. Hence, we have to guess the first element
in the variation, being 0 (agp). As we saw before, this comes down to simply removing all

occurrences of 0 from the equations. The result can be seen in the second row of Table

After this, we have known= [0] and p = (1). We do not know all initial state elements yet, so

\ 20 \ 21 \ 22 \ 20+ 21 \ 20 +22 \ p+u+2
Stripped [0,2] | [0,1,[1,2]] | [1,2,[0,2,[1,2]]] | [1,2,[1,2]] | [O,1,[0,2,[1,2]]] | [[1,2],[0,2,[L,2]]]
Guessed 0 | [2] | [L[12] | (L2202 | [1,22] | [L[202]) | [11.2),[2.[0,2]]
Determined 2 | ] [1,[1]] [1,[[1
]

, [1,
Nl [1,[1]] [, [[11]] ({11, [{1]]]
[ ] [

Table 4.1: An overview of the equations during an attack on runaway generator defined
byn=3,c=(0,0,1),d =(1,1,0) and e = (1,0, 1). The order of guessing used is (0, 1).

Guessed 1 ( [

we iterate the while loop again. Now, the equation for zg is of length 1, so determinable
returns t rue. Hence we can determine variable 2 from equation zp, so we remove all occur-
rences of 2 from the equations. See the third row of Table Now we have known= [0, 2]
and p = (1), so we iterate the while loop again. All the remaining equations are not solvable

for 1, so we cannot determine a;. determinable for these equation returns false, as we
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cannot determine a;. Hence, we have to guess p[0] = 1. This leads to all empty equations, as
can be seen in the fourth row of Table known= [0,1,2], so the attack for this variation

is done. Summarizing, we have performed the following attack:

Guessing variable ag
Determining a, from gz

Guessing variable a

The G&D-resistance against this attack is 2b bits. We then continue with doing this for the
other 5 variations. The attacks that are not incomplete will all give a G&D-resistance of 2b
blocks. So we take this attack shown above as the most efficient attack. As promised above,
let’s look at one such variation that leads to an incomplete attack. Take for example p = (0,2).
At the beginning of the attack, we have no knowledge of any of the initial state blocks and
we cannot determine any of them. So we have to make a guess, namely for p[0] = 0. From
this, we can determine the value of a, = zop —ag. We now update p, as it makes no sense to
guess elements that we have knowledge of, we remove them from p. But then p becomes
empty! In words, we don’t have knowledge of the complete initial state, but we also cannot
guess any elements any more. Since we can never determine a; with knowledge of just ag

and aj, all variations that do not contain 1 lead to incomplete attacks.

4.1.2 Correctness

We want to show correctness of the program, i.e. the correctness of the function attack.
First, we have to define what correctness means in this context: using the program should

result in the correct G&D-resistance.

To show this, we first need to show that the way that we are stripping equations is allowed.
We do this by showing that the stripping process is invertible, since if that is the case, we
don’t lose any information by stripping an equation. As we are working in F,, applying
plus and minus have the same result. We can then remove these operations entirely from the
equation, resulting in a list of terms that occur in the original equation. This is invertible

as we can simply add pluses between the terms again to obtain the original equation. Each
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term can be either an inner sequence element or a block function call. For the first case, we
simply take the index of the inner sequence element and place it in the list. In Section {4.1]
this process is described as recursive, but it doesn’t have to be. Another way to perform the
stripping, which makes showing invertibility easier, is to say we remove the block function

E3]

by replacing each “g(” with “[” and each “)” with a “]”. We can reconstruct the original
equation from the stripped list. For each term in the list, if it contains a list, replace that list
with a block function call. Then sum all terms together to get the original equation. Hence,
stripping equations is invertible. You could see the stripping as an invertible encoding of an

equation.

We will now show the correctness of the subroutines of the function at tack to finally prove

correctness of attack.

remove

To show that the program is correct, we start by showing that removing known elements from
the equations is allowed. Known elements are just constants, so we use that terminology. Re-
moving constants is allowed, if it results in exactly the same G&D-resistance as not removing
them. We obtain the same G&D-resistance if we can determine exactly the same elements
as without removing the known elements, since then we also have to guess exactly the same

elements as without removing the constants.

Let’s say we want to determine initial state element a, from equation z;. We can only do this
if a, is determinable from z,. This was described in Definition [5] To prove that we don’t
change the determinability of a, in z;, we have to show that we do not change the solvability

of a, in z; and we do not change the unknown elements on the RHS of z; solved for a.

We never remove an unknown element from the equation, so we never change the unknown
elements of the RHS of z, solved for a,.

For solvability, we have to show that if a, is solvable in z;, we can still solve a, from z; after
removing the constants from z,. We also have to show that if a, is not solvable in z;,, we

can also not solve a, from z; after removing the constants from z,. The first requirement is
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fulfilled, as we can only make z; unsolvable for a, by adding a term a, on the RHS. We are
only removing, so this can never happen. The second requirement follows if we can show
that we never remove a term a, from the RHS. We only remove a term if we have knowledge
of its value. So we can only remove a, from the RHS if we have knowledge of a,. We are
trying to determine a,, so we have no knowledge of a,, hence we will never remove it from

the equation.

If we do not change the determinability of some initial state element in some equation, it
follows that we do not change the determinability of all elements in all equations. We can
determine exactly the same elements as without removing the constants, then we also have
to guess exactly the same elements as without removing the constants. Hence, the G&D-

resistance is the same as without removing the constants.

The correctness of determine and guess follow from the correctness of remove. In
both functions, we obtain knowledge of some initial state block and we have just shown that

known elements can be removed from the equations.

determinable

Here we have to show that we only determine elements that are determinable according to
Definition 5] In the program, we defined that an inner sequence element can be determined if
we have a list of length 1. Let’s call the only element in z; again a,. The LHS of the equation
is a constant, since z; is known. The ¢’th stripped equation [X] represents ¢, = ay + c¢1, SO
we can easily write a, = ¢; — ¢ = c3, where ¢; is a constant. The equation is solvable for
ay, since there is only one variable and the rest is constant. We don’t have knowledge of a;,
otherwise it would have been removed from the equation. We have no unknown elements in
the equation besides a,. The three requirements for determinability are fulfilled, so we can

say that the function determinable works according to Definition [3]
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attack

We have already shown that the subroutines of attack are correct. We still need to show
that we indeed try all relevant orders of guessing and that we call the subroutines in the right

order for some variation.

If we have the upper limit of the G&D-resistance to be upper, we only have to perform
the attack for all orders of guessing of length upper. This is achieved by computing the

variations of [0,...,n— 1] of length upper.

For variation p, we want to continue the attack as long as known is not equal to S° and we
can still guess and/or determine elements. We should always start to check determinable
as we might not have to guess anything. Once determinable becomes false, we need
to check whether we now know S°. If that’s the case, we are done for this variation. We
might have guessed state elements that are present in p. We want to prevent that we guess a
value that we already know, so we have to remove all known elements from p. Then it also
might happen that p becomes empty. At that point, we cannot guess anything and we do not
know the full initial state, so this order of guessing is not relevant. If p is not empty, we guess

its first element. In the next iteration of the while-loop, the guessed element is removed from

p-

4.2 Results of the Tool

We want a KSG with a security strength of at least 128 bits. We can achieve this with a
KSG with 1 block of G&D-resistance if the block size b = 128. We can also achieve this
with a KSG with 2 blocks of G&D-resistance, namely if b = 64, and so on. Depending on
what block function one wants to use, n needs to be adapted accordingly to obtain a reason-
able security strength. For some application, we might want 128 bits of security but paral-
lelizability also needs to be high enough. Defining what a good runaway generator should
look like is difficult as we do not know the application. Using the G&D-attack automation

tool, we have generated an overview in Appendix |A| of some runaway generators and their
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parallelizability and G&D-resistance. A remarkable result is the third to last generator in
Table The generator is described by the relations a; = a;—, + g(@;—n+1 + a;—n+2) and
% = @+ ayy[n) a1, S€€ Figure @ for a graphical representation. Noticeable is that
the internal state consists of n =4 elements and this generator achieves a G&D-resistance of
n— 1 = 3 inner sequence elements, so 3b bits. This is the upper bound of G&D-resistance
for runaway generators as was specified in Theorem [2] This means that if we want at least
128 bits of security, we could use a block function that operates on blocks of b > 43 bits.
This means we could store the initial state in 4 -43 = 172 bits, which is 21.5 bytes. However,
when instantiating the block function with an actual function, the G&D-resistance might be

lowered as opposed to the black box case. In Chapter [5] we show an example of this.

™ » T y z
N N > A
F'y A
at+3 ats2 At+1 at J
X5 J
9 J€ a

J

Figure 4.1: Graphical display of the runaway generator described by ¢ = (0,0,0, 1),
d=1(0,1,1,0) and e = (1,0,1,1).

4.2.1 The Amount of Input Equations and Combinations

Another result of the tool was that we could test our intuitions. Throughout the research,
our intuition was that we only needed combinations of the keystream blocks including zg to
recover the initial state as efficiently as possible. The idea behind this was that for example
71 + 22 contains the same information as zg + z;, but shifted. However, running the program
on all combinations of keystream blocks occasionally resulted in a lower G&D-resistance. In
hindsight, this result seems fair. Shifting an equation can make for blocks to cancel out. If
we have x distinct blocks in equation zp 4 z;, we might have y distinct blocks in equation
721 +z2. If x >y, we could have a better attack by including all combinations than by only
having combinations with zp. It could also occur that by shifting zo 4+ z; the determinability

of inner sequence elements in that equation changes.
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Example 5. Consider the runaway generator withn =9, ¢ = (0,...,0,1), d = (0,...,0,1,0),
e=(1,0,0,1,0,0,0,0,1). When we only consider combinations of n keystream blocks, we get

the following attack:

Guessing variable ag
Guessing variable a;

Determining ac from z;

Determining asz from zo+z3+26

Guessing variable ap
Determining a; from 2
Determining ag from z3
Determining as from z

Determining as from zs

Hence, we have a G&D-resistance of 3b bits. If we now consider all possible combinations of

keystream blocks, we can improve on this attack. We get the following output from the program:

Guessing variable as
Guessing variable ay

Determining a; from z1+z24+25+27
Determining a; from 2o
Determining a4 from zs
Determining az from zo+z3+z4
Determining ag from z3
Determining ay from zg

Determining ag from z

The interesting thing happens in determining a, from z1 + z4 + 25 + z7. Before we didn’t have
this combination of keystream blocks. Our assumption was that 7o + 73 + z4 + Z¢ contains the
same information as 71 + z4 + 25 + z7. The first can be worked out as 7o+ 73 + 24 + 26 = a4 +
g(ar) +g(aa) + as + g(ag), which is only solvable for a;. The second one is z; +z4 + 25+ 27 =
as+g(ay) +g(as) + a7+ g(az). We can determine a, from this. So from including both these
equations, we can determine a, if we know a4 and ag, and we can determine a, if we know

as and ay. Including all combinations of keystream blocks gives us more information. Having
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more information could allow us to improve our attack.

Another assumption we made was that having n equations allowed us to perform the attack
as efficiently as possible. That assumption also turned out to be incorrect. Having more
equations is having more information to perform the attack. This can also lead to a lower
G&D-resistance. In Appendix [A]under G&D-resistance there are two columns, one for having
n equations and one for having 2n equations. You can see that the G&D-resistance is in some
cases lower for 2n equation than for n equations. Having more equations can decrease the
G&D-resistance, but it also takes much longer to perform the attacks. Maybe having 3n
equations will lead to even better attacks, but this at this moment, the tool is too slow to

check that.

In the following section, we will give some general recommendations and observations based

on the results of the tool.

4.3 Recommendations

In this section we will make some recommendations. We found these recommendations by

seeing a pattern in the results from the tool, or by confirming intuitions we already had.

4.3.1 Non-Linearity of the Block Function

In Section besides being a permutation, we also stated that g should be non-linear. We
saw there that no keystream generator should have a fully linear feedback function and output
filter, as it allows the attacker to solve a linear system of equations, given more equations than
unknowns. For the runaway generators, this property also ensures that less inner sequence
elements cancel out in the (combinations of) keystream blocks. For larger n, the non-linearity
aspect seems to be more important than for small n. The following example will illustrate

this.
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Example 6 (Non-Linear Block Function). We have the runaway generator defined by with
n=38, ¢=(0,0,0,0,0,0,0,1), d = (0,0,0,0,0,1,1,0) and e = (1,0,0,0,1,0,0,1). This KSG

has a G&D-resistance of 4b bits. The program outputs the following attack:

Guessing variable ay
Guessing variable a
Guessing variable ap

Determining as from z;

Guessing variable a3
Determining as from 2
Determining ay from Zzs

Determining a; from 2o

If we now change the program such that the block function is a linear function, i.e. g(a+b) =

g(a) +g(b), we get the following attack:

Guessing variable ag
Guessing variable a;

Guessing variable ap
Determining as from z;
Determining az from zo+z3+2
Determining ag from 2z
Determining ays from zs

Determining a; from 2o

The G&D-resistance has decreased from 4b to 3b bits! Apparently, in equation zo+ 23 + 24
blocks cancel out because of the linearity of g. Let’s inspect that equation.
20+23+24=ax+g(ar+ax)+g(as +as) + g(as +as) becomes
20+z3+zu=a+gla)+gla)+glaz) +glas). State block as has cancelled out, making
this equation dependent of 1 less initial state block. The latter equation is only dependent of 4

distinct blocks, so the knowledge of a1, ar and as gives us knowledge of as.

Linearity of the block function has decreased the G&D-resistance in this example. Hence, we

want a non-linear block function.
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4.3.2 Feedback Function

In order for the feedback function to be invertible, we need that ¢ Ad = (0,...,0). In words,
for each index i € [0,...,n— 1], at most one of c[i] and d[i] can be one, so not both (c[i] =
d[i] = 1). This we already knew from Section

From the results in Appendix [A] we can see that it is beneficial for the G&D-resistance that
we add blocks as input of the block function, so we increase HW (d). However, there is a

trade-off with parallelizability, as can also be seen in Appendix

4.3.3 Output Filter

We can make a recommendation about what the output filter, i.e. the vector e, should look
like. Consider the following example.

Example 7. Consider the case with n =3 and with ¢ = (0,0,1), d = (0,1,0) and e = (0,1, 1).
This example differs from Example |3|in the output filter. See the table below for the iterations

of the feedback function and output filter.

o a | :

0 ap ar+ap

1 aj ar+a3=apg+ax+g(ar)

2 ar az+as = ag+ai+g(ar) +g(az)

3 a0+g(a1) a4+a5:a1+a2+g(az)+g(ao+g(a1))

Some output blocks like z1 now have more distinct state blocks than before. However, now if we
look at the combination 7o + z1 + 22 = g(ay) we see that we get ay for free. Then we can also
compute ay = zo —ay and ap = 71 —ay — g(ay). Hence the G&D-resistance has decreased from
b bits to 0! The problem is that we are not using the first inner sequence element in the state
block, i.e. e|0] # 1. Adding the first three keystream blocks results in zo+z1 + 22 = a; + aa.
Adding ay = a1 + g(ay) and a) cancels out the a, term, as as contains a terms a;. We don’t
have this problem if we would have e = (1,0, 1) like in Example It that example, adding the

first three keystream blocks leads to zo+z1 +z2 = ap+a; +az +as = g(ay) + g(az).

A similar idea holds for the last block. If for z,, we do not incorporate the a;_; block, but
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instead take term a,_;, we get that zo and z; are both just dependent of 2 blocks. This makes

it easier for an attacker to retrieve the initial state.

Our recommendation is to have e¢[0] = e[n— 1] = 1, i.e. z should at least be dependent of
a;—, and a;_1, to decrease the likelihood of inner sequence elements cancelling out. It can
still happen that you obtain a G&D-resistance of O bits while following this recommendation.
Or that you get a higher G&D-resistance without following this recommendation. But so far,

we have reason to believe that this can improve the G&D-resistance.
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Chapter 5

SKINNY as Block Function

In this chapter, we will investigate what happens to the G&D-resistance if we use a spe-
cific block function. In Section [2.1] we described some requirements for the block function,
namely it should be non-linear and a permutation. We can use a block cipher such as AES
as block function, as these are per definition a permutation when the key is fixed, how-
ever, we want the block function to be relatively lightweight. SKINNY [Beierle et al., 2016]
is a family of lightweight block ciphers, where we can choose between a block size b of
64 or 128 bits. To make it even more lightweight, we alter the round function somewhat.
Namely, we don’t perform the AddConstants and AddRoundTweakey operations. The
AddConstants transformation, as the name suggests, adds constants. We are performing
our G&D-attacks abstractly, namely without concrete values for the keystream and the initial
state. Adding constant does not make a difference in analysing the G&D-resistance. Leaving
out the AddRoundTweakey transformation is the same as taking the tweakey words and

subtweakeys as 0. We will denote this adapted round function as SKINNY”’ .

ShiftRows

L
>
> &
sSC * ¥
> (5557 &
>
—_

Figure 5.1: One round of SKINNY’, an adaptation of the SKINNY round function. We
only perform the SubCells, ShiftRows and MixColumns transformations, leaving
out AddConstants and AddRoundTweakey.

We will show that exploiting specific properties of SKINNY’ allows us to perform a better
G&D-attack than in the black box case, so performing a generic attack. In Chapter 4, we

used an abstract block function g. We will show that performing a single round of SKINNY'
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allows us the reduce the G&D-resistance of some examples we saw before. We will then also
show how many rounds of SKINNY'’ are needed to obtain the same G&D-resistance as in

the black box case.

We start by showing what the result is of applying SKINNY’ to some message m. For the

initial state, we split m into 16 nibbles (or bytes) as follows:

mop mp my m3
nmy nis g my
(5.1)

mg  mg mpo My

mip mi3 mi4 Mmis

For this initial state, we can write out the result of applying 1 round of the adapted SKINNY
round function.

The 4-bit S-box is defined in Table 2 in [Beierle et al., 2016]. Instead of using a lookup
table, the authors also describe how to compute each bit of the output of the S-box. It can be
computed by applying the transformation shown just below Table 2 four times and three left
rotations. For a nibble m; consisting of four bits (m;3,m;2,m;1,m;o), where m; 3 is the most

significant bit, the S-box(m;) is:

( e
m; 3 =mio@® (miV m;3)

My =mj3® (mj1Vm)

(
(
(
(

m; 1 =mip® (miyV (mio® (mizVm;3)))

mi o =mi1 @ ((mio® (miaVmi3))V (miz® (miyVmy)))

The result of the S-box is solely based on its input, so there is no diffusion between nibbles
m;. We can see that each equation for m; ; is dependent of m; j. We can also see that learning
some m; ; has no influence on the other equations. This means we can never guess some bits
and determine some others for free. So at least for G&D-attacks, working on bit-level does

not yield more information that we would improve the G&D-attack. Hence, let’s write the
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result of the SubCells transformation, so applying the S-box to each nibble as:

! !
my mp  m; mj
/ !/ / /
m m m m
4 5 6 7
(5.2)
! !/ !/ !
mg Mg Ny My
/ / / /
My Mz My Mg

Then ShiftRows transformation rotates row j right with j positions, where 0 < j < 3. This

leads to

(5.3)
myy my omg o mg
my3 my, mys m
And finally, applying MixColumns yields:
1 011 my my omhy  mj
1 000 mh  ml, mi  m
SKINNY(m) = [ (5.4)
0110 my, my, mg mg
1 0 1 0 / / / /

/ ! ! / / / ! / / ! / /
Mo+ Mg +ny3  my+my +my  my+mg+nys M3+ nmg+mp,

my m) m m,
/ / / / / / / /
my =+ My My =y, ms + img Mg =+ 1My
mg, +m\, m' +m\, my + mg mly +my,

5.1 Application to Non-Determinable Case

We saw that z = m+ g(m) is not determinable for m, among others in Example 4, In the
black box model, this means we can never determine m for free. However, if we instead have
one round of SKINNY’ as block function, we can greatly reduce the G&D-resistance. Using

Equation we can write out z=m+ SKINNY’ (m) as follows. Note that we also write out
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the keystream block z in nibbles.

20 21 22 23 my mp my ms3
24 Z5 26 7 my ms meg my
= + (5.5)
8 29 210 <211 mg mg mio My
212 213 214 215 mi2 mp3 ni4 mMps

my+my+myy omymy myy my+mg+mys omy 4 mg +mi,

m m ) my
/ / !/ / / / / !/
my +my my +my, ms + mg mg + Mg
/ / !/ / !/ / / !/
my + ny my +my, m, + mg ms +myg

mo+my+myy+miy my+ml+m +mly, mo+mh+mi+mls  mz+ml+my+m),

my + my, ms +m), me + m) my + ni

mg +m’ +m, my +mly +m, mio +mis +mg miy +mg +mq

mia + mg +mj my3 +m) +my, my4 +m}y + mg mys +mfy + mq

If we know the value of m; we also know the value of m/ and vice versa, by just applying
the (inverse) of the S-box. If we guess myj,, we can determine my = z4 —my. If we then also
guess m; and mg, we can determine all other nibbles. See below the full attack. So we only
have to guess 3 nibbles. This comes down to just 12 bits of G&D-resistance. Hence, with a
single SKINNY’ round as block function instead of an abstract one, the G&D-resistance has

decreased from 64 to 12 bits.

Guessing variable myg
Determining my from z4
Guessing variable m

Determining ms from zs

Guessing variable mg

Determining
Determining
Determining
Determining
Determining

Determining

mio from 210
miz from zg
m7; from zg
m3 from zy
myp from zpp

mg from z3
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Determining m;; from z
Determining my4 from z;
Determining mg from zj;

Determining

Determining

my from zg

mis from 2z

5.1.1 Performing More Rounds

Ideally, the G&D-resistance of z =m+ SKINNY' (m) is equal to the G&D-resistance of z =
m+ g(m), namely without knowledge of the block function. We can perform more rounds of
SKINNY’ until we get 64 bits of resistance, at the expense of efficiency. The findings can be

summarized in the following overview:

Number of rounds | G&D-resistance
1 12 bits

20 bits

32 bits

40 bits

52 bits

56 bits

60 bits

64 bits

e <IN Bie) NV, IEN NS I )

Table 5.1: The G&D-resistance in bits for the case z = m + SKINNY’ —x(m), where the
block function used is x-rounds of SKINNY'.

These results have been generated using the G&D-attack tool. We had to define the round
function of SKINNY’ . For any number of rounds r, we can define the matrix for the keystream
block in nibbles (or bytes) like z = m + skinny.n(m, r). We obtain 16 equations from
this. By looking at the structure of the equations in Equation [5.5] we see we can perform
Gaussian elimination to get simpler equations. For example, we can add the last row of the
matrix to the first row of the matrix. We can add the second row to the last row. Note that
this doesn’t decrease the amount of distinct blocks in the last row, but it changes what blocks

are present. In the attack for SKINNY’ -3 and SKINNY’ —4, this sum of rows was used to
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improve the attack. We obtain the following matrix:

Mo g 1 F iy m ey ey mo A g s ms G mg

my + myj, ms +m), me + m) my + n;
/ !/ / / / / !/ /
mig + mg, +m}, mi3 +m\ +m}, mi4 + 4+ mg mis + m'y + myg

mo+mp+myy mi+miz+my, my+myg+mis mz+ms+ml,
Ro=Ry-+R; ma +m ms +1my me -+ 1y my +
Ro=RtRs g+ ml+mlyy  mo+mly+mhy mig+ms+mg  miy +my + m
m4—|—m12—|—m’10 ms +m13—|—m’11 m6+m14+m§ m7+m15+m’9
For the attack, we use the original equations, so the top matrix, and we use the first and last
row of the lower matrix. We could have added more or different rows to each other, which
would perhaps lead to a more efficient attack. Having all the 2}22 C(16,i) = 65519 equations

gives more information, hence having all of these would possibly give a better attack. We feed

the equations to the G&D-automation tool with n = 16, as we need to recover 16 nibbles.

The program shows us that we need z = m+ SKINNY’ -8(m) to have the same G&D-
resistance as the generic block function case. It is possible that these attacks can be improved
upon. Like described in Remark |1} we only guess inner sequence elements (or nibbles of in-
ner sequence elements), and not combinations of inner sequence elements. Also, having more
information, so more equations could lower the G&D-resistances listed in Table [5.1] Ideally,
we would also use all combinations of these equations, of any length between 2 and 16. This
would result in Y19, C(16,i) = C(16,2) + C(16,3) +--- +C(16,16) = 65519 equations. As
the G&D-tool has to perform each order of guessing for 16 nibbles, this becomes way too
slow. Even though the attacks could be improved on, our intuition is that the G&D-resistance

for taking as block function 8-round SKINNY’ will remain 16 nibbles.
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5.2 More Complex Example

Let’s again look at Example |3, where ¢ = (0,0,1), d = (0,1,0) and e = (1,0,1). We want
to use our knowledge of SKINNY’ to improve on the attack described before. The G&D-
resistance in the original attack in Example [3| was 1 block. We again start by writing out the
equations zg,z; and zp in nibbles. So we will get 3- 16 = 48 equations. Since zg = ap + a»
contains no block function call, we will simply get zo; = ag ; +az; for 0 <i < 16. From these
equations we learn ay; if we know ay ; or vice versa. Writing out z; = ap+a; +SKINNY' (a;)

using Equation [5.4] becomes:

210 2,1 22 A3 apo 4do,1 4oz  dog3 aip a1 dip 43
4 U5 A6 27 apsa aos dos 4o a4 ais die  apg

= - +
218 21,9 21,10 Z1,11 aps Ap9 dop10 do,11 aig ayy aplo a4l
21,12 21,13 21,14 21,15 ae,12  Go,13 do14 40,15 aila a3z ap4 ails

/ / ! ! !
pTdigtay s ajztajgtd

—_

/ ! / ! ! !
ajgtaypptdy ;3 aptayt+ap, a

/ / / !
aio ap ajn a3
/ / / / / ! / !
a7 +aj g aj4t+ay g ajstapg ajetdig
/ / ! ! ! ! / !
ayota g aytag ay,tag ayjztdag

And very similar for z; = a; +ay + SKINNY’ (ap):

20 221 22 223 aip ap1 aip aij ap a1 ap a3
24 225 6 227 a4 ais aie ayg ar4 s A a7

= + +
28 229 22,10 22,11 aig aye aplo 4aiiil ars a9 axio azii
2212 22,13 22,14 22,15 aiiz ap13 a4 ails a2 a213 az14 4z ]s

/ ! / ! ! ! ! ! / / ! !
Aot ayjptay s Gy +ay +ay1y ayrtaygtay s dy3+dyg+a,

/ / / /
a0 a1 %) a3
/ / ! ! / ! / !
ay7+a3 9 ay4tas aystayg aytdyg
/ / ! ! ! ! / !
ayot+a; g ay+ay ay,t+ayg ay3+a;q

To improve on the generic case with abstract g, we should be able obtain all 48 nibbles (ao,

a; and ap) with less than 16 guessed nibbles. We have the equations zg, z; and zp, but the
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combination of the first three keystream blocks is also interesting. We already saw in Chapter

Example |3 that zo + 21 + 22 = g(a1) + g(az). If we use the adapted SKINNY function, this

becomes:
200 20,1 202 203 210 21,1 212 UJ3 20 221 222 23
204 205 206 20,7 214 215 26 27 24 225 26 227
+ + =
208 20,9 20,10 20,11 218 219 21,10 21,11 228 229 22,10 22,11
20,12 20,13 20,14 20,15 21,12 21,13 21,14 21,15 22,12 22,13 22,14 22,15

/ ! / ! ! ! ! ! / ! / !
ajgtapjotdiy ataytag aptdigta s aztdigta

/ / / !
a a a a
1,0 1,1 12 13
' +
/ / / ! ! / / /
ay7+aj g aj4t+ay g ajstapg ajgt+dpg
/ / ! / ! ! / !
ajot+ay o appt+apg aj,t+apg aj3t+dpg
a, +d ., +d a,, +d ., +d dy,+d, . +d . +do+d
20Ty 10Ty 13 Gy +ay 1 Tay 14 Ay targtdy s dy3+Tdyetdy)
/ / / !
a a a a
2,0 21 22 23
’ (5.6)
/ _|_a/ a/ +a/ a/ +a/ a/ +a/
a7 1410 24T Ay 25T drg 26 T
/ / / ! ! ! / /
ayot+az g a1 +ay ay,tayg ay3+d;g

We are especially interested in the second row of Equation @ If we guess axp,az1,a22
and a, 3, we can determine aj,d1,1,a12 and a; 3. Before we also saw that with knowledge
of some a; we can also determine ap;. We can then actually determine all 48 nibbles by
guessing 5 nibbles. However, feeding these equations to the G&D-attack tool, we find an
even more efficient attack. If we guess ag, ao.1, ap and ag 10, we can determine all other
nibbles. Thus, with one round SKINNY’, we can reduce the G&D-resistance from 64 bits to

16 bits!

5.2.1 Performing More Rounds

Here also, we can perform more rounds SKINNY’ . However, already when using SKINNY’ -2,
the equations become so fuzzy that it is really hard performing an attack by hand. The fol-

lowing results were generated by the tool:
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Number of rounds ‘ Gé&D-resistance

1 16 bits
2 40 bits
3 56 bits
4 64 bits

Table 5.2: The G&D-resistance in bits for Example |3, where the block function used is
x-rounds of SKINNY'.

We perform the same Gaussian elimination as described in Section[5.1.1] namely Ry = Ro+R3
and R3 = Ry + R3. We perform this Gaussian elimination on zj, zo and zo +z; +22. We use
the G&D-tool in the same manner as was described in Section namely we feed the
equations to the tool, now with n = 3-16 = 48. Checking the result is also difficult, as we
have 60 equations and 48 unknowns. What is noticeable is that the Gaussian elimination is

only used to recover 1 nibble in total, for all number of rounds 1 < r < 5.

It is noticable that for this example we only need 4 rounds of SKINNY’ , whereas for the case

described in Section [5.1.1] we needed 8 rounds to obtain 64 bits of security.
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Chapter 6

Related Work

We already described in Chapter [I| that LESRs are not suited as a cryptographic KSG. The
main characteristics of runaway generators are non-linearity of the update function and that
no part of the initial state is kept during generation of the keystream. In addition, they are
low-cost, word-oriented and synchronous. To make a stream cipher non-linear, non-linearity
can be introduced in the update function, the output filter, or both. Runaway generators only
have non-linearity in the feedback function. Our idea behind taking this first approach is that
making a function non-linear introduces computational overhead, making the generator less
efficient, as was described in Section @ In this chapter, we will describe some of the related

work, i.e. stream ciphers that have similar characteristics.

RC4 is similar to the runaway generators in the fact that it has a simple structure and it has a
non-linear update function. However, multiple vulnerabilities in RC4 have been shown, such
as in [Fluhrer et al., 2001], where the authors performed a related key attack. HC-128 [Wu,
2008]] is a modernised version of RC4. The authors claim that the most efficient attack for
recovering the initial key is exhaustive key search, as the key is 128-bit, it offers 128-bit
security. Apart from having a non-linear update function, it also has a non-linear output filter,
which adds overhead. The internal state consists of two tables of 512 registers containing
32-bit words, in total taking up 4096 bytes. Even though runaway generators could have any
internal state size, we aim for it to be smaller. We saw for example in Section 4.2]a runaway
generator that has an internal state of 21.5 bytes, while having 128-bit security against G&D-

attacks.

RC4 and HC-128 are both software-efficient. For the runaway generators, the block function
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decides whether it is software- or hardware-oriented, but it would be nice to have both. Triv-
ium [Canniere, 2006] is both software- and hardware-efficient. However, they only claim 80

bits of security, whereas we strive to have at least 128-bit security.

The Snow stream ciphers [Ekdahl and Johansson, 2003]] are also software-oriented. A differ-
ence between Snow and the runaway generators is that Snow has non-linearity in the output
filter. As mentioned in the beginning of this chapter, this increases the computational com-

plexity.

Two ciphers that are also similar to the runaway generators are Tiaoxin-346 [Nikolic,
2016|] and AEGIS [Wu and Preneel, 2013]. These are not stream ciphers but authenticated
encryption algorithms. Authenticated encryption provides both confidentiality and integrity of
the data. One can achieve this by using an encryption scheme and a message authentication
code (MAC) for message authentication. However, it is more efficient to make a scheme
that does both of this, an authenticated encryption algorithm. These schemes do not output a
keystream, but a ciphertext and a tag. The plaintext is used in the state update function, such
that AEGIS and Tiaoxin are asynchronous. Both schemes use AES in the update function
to make it non-linear. In this sense they are similar to the runaway generators: the update
function is a simple non-linear function where XORs and a block function (AES) is used.
They both are also runaway, namely no part of the initial state is kept throughout generation

of the keystream.
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Chapter 7

Conclusions and Future Research

In this thesis, we have seen that we can make keystream generators from simple building
blocks. In particular, we have seen that we can even achieve the upper bound of n — 1 blocks
(of b bits) of G&D-resistance for some specific configurations. In Section 4.3 we have
made some recommendation on what the vectors ¢, d and e should look like to have a high
probability of getting a good G&D-resistance. For example, adding more inner sequence
elements together as input of the block function generally leads to a better G&D-resistance,
i.e. having some more non-zero values in d. This comes at the expense of parallelizability.
We have seen in Chapter [3]that it is easy to assess the parallelizability of a runaway generator.

It simply comes down to finding the lowest index in ¢ and d which has a non-zero value.

We have also shown that G&D-attacks can be automated. This comes in particularly handy
for larger n or when assessing generators with a specific block function. The main goal of the
tool is to find the most efficient G&D-attack possible under the assumption made in Remark
by checking every attack possible. It is hard to verify the result, as we cannot check
every attack by hand. We have shown our algorithm finds the correct G&D-resistance in
Section [4.1.2] However, more information could lead to a better attack, such as having more
equations and combinations of those equations. In specific cases, so far only for some n > 7
cases, having 2n equations leads to a better attack than having n equations. Maybe having 3n
equations will further reduce the G&D-resistance of some runaway generators. Unfortunately,
this is computationally too hard to do with the current program. For 2n equations we already
had problems with computing the G&D-resistance for large n, as can be seen in the overview
in Appendix [A] A dash “-” shows that it took too long to compute. In future research, it

would be good to allow the attacker to query the runaway generator any amount of keystream
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blocks. The attaker should also be allowed to guess combinations of inner sequence elements.

We have only looked at the security of the runaway generators in terms of the G&D-resistance,
but of course, other attacks are possible. When we take a concrete block function, the at-
tacker might be able to perform a better attack than in the black box case, like we have seen
in Chapter [5| using the round function SKINNY’ . The attacker could also distinguish the run-
away generator from a Z¢ by looking at statistical properties of the generated keystream.
The block function could have imbalance in its output, namely a bias towards specific val-
ues. We have also assumed so far that the initial state is a given uniform secret, whereas
in a real application, we would have to generate this, leading to an imbalanced initial state.
An attacker could exploit these statistical properties, perhaps leading to a better attack than a

G&D-attack.

The research done for this thesis is useful to construct specific lightweight keystream gener-
ators. We have seen some configurations of runaway generators that look promising. Further
research could be done in picking a specific block function and assessing how it changes the
G&D-resistance as opposed to the generic block function case. G&D-attacks are just one
way to distinguish the runaway generator from a Z¢. Implementing a specific block func-
tion can give rise to other attacks. The block function used might be statistically biased, i.e.
the keystream will have imbalance. An attacker can then also try to distinguish the runaway
generator from a Z¢ by looking at statistical properties of the keystream. So to get to a
specific efficient and low-cost stream cipher, other properties such as imbalance should be

investigated in future work.

An application of a specific runaway generator would be that we can use the structure of
the generator to do compression, instead of expansion like a stream cipher does. These two
functionalities, being expansion and compression, is what doubly extendable cryptographic
keyed (deck) functions such as Xoofff [Daemen et al., 2018|] are able to do. These functions
take both variable length input and output, with which one could build stream ciphers, MAC

functions and authenticated encryption schemes.
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Appendix A

G &D-Automation Tool Results

a; = ‘ = n | G&D-resistance | Parallel.
neqgs. | 2n eqs.
ar—n+ g(dr—n+1) Y0 ik 31 0 2
4 0 3
5 0 4
6 0 5
7 0 6
8 0 7
9 0 8
10 0 9
ar—n+8g(a—pnt1) A+ Gy a7+ Arin— 3 0 0 2
4 1 1 3
5 1 1 4
6 2 2 5
7 2 1 6
8 2 2 7
9 2 - 8
ai—n+ g(at7n+2) a+a (4] +ar1n—1 3 0 0 1
4 1 1 2
5 1 1 3
6 2 2 4
7 2 1 5
8 3 2 6
9 4 - 7
a,_n+g(a,_n+1) at+a,+m —&—atHqu + Ar4n—1 4 0 0 3
5 1 1 4
6 0 0 5
7 1 1 6
8 2 2 7
9 3 - 8
10 3 - 9
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a; = = n | G&D-resistance | Parallel.
neqs. | 2n eqs.
ar—n+8g(a—pn12) N R 4 0 0 2
5 1 1 3
6 0 0 4
7 1 1 5
8 2 2 6
9 4 - 7
10 3 - 8
a—n+ g(atfrH*l + atfn+2) ar + Qrn—1 3 2 2 1
4 2 2 2
5 2 2 3
6 2 2 4
7 2 2 5
8 2 2 6
9 2 - 7
at—n+a—pt+1+ g(atfrH»Z) ar+arn—1 3 2 2 1
4 1 1 2
5 2 2 3
6 1 1 4
7 2 2 5
8 1 1 6
9 2 - 7
a;—pn+8(Ar i1 +ar—ny2) ar + Q2]+ Aryn—1 3 0 0 1
4 3 3 2
5 2 2 3
6 3 3 4
7 3 3 5
8 4 4 6
9 3 - 7
a—n+ g(ZZ;} a;_i) ar+aryp—1 3 2 2 1
4 2 2 1
5 3 3 1
6 4 - 1
7 4 - 1
8 4 - 1
r—n+&(Li_) ) Y7o dr+k 301 1 1
4 2 2 1
5 3 3 1
6 4 1
7 4 1
8 4 1

Table A.1: The results of the G&D-automation tool. The first two columns define the
runaway generator. We then compute the G&D-resistance with the tool, using » and 2n

equations. The dashes “-”

indicate that we were not able to use the G&D-tool, due to it

taking a long time (> 4 hours). We list the generator’s parallelizability in the last column.
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