
Master Thesis
Computing Science

Radboud University Info Support B.V.

Evaluating Adversarial Attack Detectors
using Formal Verification Methods

Author:
Reinier Joosse
R.Joosse@student.ru.nl

Student number: s4698649

University supervisor,
First assessor:
dr. N. Jansen
n.jansen@science.ru.nl

Second assessor:
dr. D. Strüber
d.strueber@cs.ru.nl

External supervisors:
E. Stoelinga

Emiel.Stoelinga@infosupport.com

L. van Neutegem
Leo.vanNeutegem@infosupport.com

External process supervisor:
H. Nieboer

Harry.Nieboer@infosupport.com

June 7, 2021

Abstract

Neural networks are known to be vulnerable to so-called adversarial attacks: in-
puts that are deliberately slightly modified to make the networks misclassify them.
Several defenses against these attacks exist. It is hard, however, to know if these de-
fenses are effective against unseen types of attacks. One can test whether an attack
detector detects old attacks, but an attacker can always come up with attacks that
the detector was not trained against. To prevent this historical bias when testing
a detector, we propose two new metrics that estimate the quality of attack detec-
tors independently of which attack method is used. The new metrics are shown to
be computable using SMT solving techniques. The usefulness of the new metrics
is demonstrated in experiments where their results are compared to the results of
traditional test metrics.

Acknowledgments

I would like to thank my university supervisor Nils Jansen for the useful tips and
feedback he provided during this thesis project. I would also like to thank Emiel
Stoelinga, Leo van Neutegem and Harry Nieboer for their guidance. They supported
me not only with the content of the thesis, but also with all other aspects that sur-
rounded the project. I would like to thank the company Info Support for providing
this opportunity. Finally, I would like to thank my fellow graduation students at
Info Support and my other Info Support colleagues. The contact with them made
the thesis period enjoyable despite the fact that most work was done from home due
to the pandemic.

Contents

1 Introduction 2

2 Preliminaries 5

3 Related Work 8
3.1 Adversarial examples . 8
3.2 SafetyNet . 9
3.3 Metzen et al. 10

4 Problem Statement 11
4.1 Detector quality metrics . 11
4.2 Motivation . 13
4.3 Research question . 14

5 Method 15
5.1 Experimental setup . 15
5.2 Noisy MNIST . 19
5.3 Marabou . 19
5.4 SMT encoding of the queries . 21

6 Results 27
6.1 General results . 27
6.2 Confusion matrix and SMT scores do not always agree 28
6.3 False Negatives metrics negatively correlate 28
6.4 False Positives metrics weakly positively correlate 28

7 Discussion of the Results 32
7.1 Added value of the new metrics . 32
7.2 Additional insights . 33
7.3 Limitations and future work . 34

A Results Data 39

1

Chapter 1

Introduction

In the past decade, new machine learning techniques have made it possible for
machines to process increasingly complex data. For example, machine learning is
currently used for recognizing the content of images and for distinguishing spoken
words in audio recordings. As the number of applications increases, it becomes
increasingly important for these systems to be reliable. For example, if a traffic sign
recognition system in a self-driving car does not recognize a red traffic light, the
consequences could be severe.

In previous research, it was found that neural networks (an important machine
learning method) are vulnerable to so-called adversarial attacks [24]. An adversarial
attack is an input for a neural network that has been deliberately modified in such a
way that the network fails to recognize it, while a human does not see any difference
(or almost none). For example, in a picture of a stop sign, a few pixels are changed
such that the network thinks it is a 30 km/h sign. Another example is shown in
Figure 1.1, taken from Athalye et al. [2], who 3D-printed a turtle with an adversarial
color pattern which was classified as a rifle almost all of the time by an ImageNet
classifier.

To prevent such attacks, several solutions have been proposed in recent literature.

Figure 1.1: Pictures of an “adversarial” turtle classified as rifles. Taken from [2].

2

Figure 1.2: Normal operation of an adversarial attack detector. The detector ana-
lyzes the input for a neural network to check if it is an adversarial attack. If it does
not detect an attack, the input is given to the network as usual. The detector may
or may not use information about the structure or operation of the neural network.

These solutions usually fall into one of two categories:

1. Methods that change the neural network itself to make it more robust against
adversarial attacks.

2. Methods that try to detect whether a given input is an adversarial attack. The
input can then be ignored or rejected. Figure 1.2 shows the context in which
an attack detector operates.

In this thesis, we only discuss techniques from the second category: adversarial
attack detectors. Concretely, we try to measure the effectiveness of several known
adversarial attack detectors.

A typical way to evaluate the effectiveness of an adversarial attack detector is to
evaluate its performance on a test set. Such a test set contains both attacked inputs
and normal inputs. If such a test set is available, it can be checked how many of the
attacks are detected by the detector, and whether it raises any false alarms about
normal examples. This approach depends on the quality of the test set, however.
If the test set only contains attacks generated with one specific attack method, the
test result may indicate that the detector is very effective. But when it is attacked
using a different attack, it may suddenly perform much worse.

Instead of the traditional test set performance, we propose two new quality met-
rics for adversarial attack detectors based on Satisfiability Modulo Theories (SMT)
solving. SMT solvers are programs that automatically formally prove properties [19].
For example, if an SMT solver concludes that there does not exist any undetected
adversarial example close to an original image, then we can be sure that this conclu-

3

sion is correct.1 That way, we can be sure that a detector detects all close adversarial
examples regardless of which attack technique is used.

This thesis proposes two quality metrics of adversarial attack detectors can be
computed using SMT solving; calculates those metrics, as well as traditional test set
metrics, for several different adversarial attack detection techniques; and compares
and analyzes the results. To our knowledge, we are the first to assess the quality of
adversarial attack detectors using SMT solving techniques.

The contributions of this thesis include the following:

1. Two new quality metrics for adversarial attack detectors are proposed: the
fraction of test samples that have close false positives, and the fraction of test
samples that have close false negatives.

2. The new quality metrics are shown to be computable using SMT solving tech-
niques.

3. Experiments show that these metrics provide useful information about the
quality of adversarial attack detectors that is not obtained by using only the
test set accuracy. For instance, one detector’s test set accuracy was 0.9999,
yet the SMT solver found undetected adversarial examples requiring no more
than 0.2% change per pixel for 100% of tested normal inputs. More generally,
as the test set accuracy improved for different detectors, the detectors’ quality
worsened according to one SMT metric. This result suggests that the detectors
with high test set accuracies overfit on the particular adversarial attack used
to generate the test set. Evidently, the new SMT metrics effectively estimate
a detector’s quality independent of which attack technique is used, in contrast
to traditional test set metrics.

The remainder of this thesis is structured as follows. Before diving deeper into
the contents of this thesis, some notations and definitions are given in Chapter 2.
Subsequently, we will give an overview of related literature in Chapter 3. Chapter 4
presents the problem statement that will be answered using the method described
in Chapter 5. The results can be found in Chapter 6. We conclude in Chapter 7.

1Except, of course, if the code of the SMT solver itself or the asked query contains bugs or logical
errors.

4

Chapter 2

Preliminaries

This chapter lists some notations and definitions that will be necessary to understand
the following chapters in this thesis.

Throughout this thesis, we will denote scalar variables with plain characters, such
as x. Column vectors will be represented with bold face characters: x. Matrices will
be written with capital bold face characters: X. The notation X[i] refers to the i-th
row of matrix X.

When a unary function that normally operates on scalars is applied to a vector
or matrix, this means it is applied to every element in that vector or matrix, unless
stated otherwise. For example, if φ(x) = max(0, x), then

φ

((
−5

3

))
=

(
φ(−5)

φ(3)

)
=

(
0

3

)

Definition 1 (Neural Network). An (artificial) neural network is a function f that
maps an input vector x to an output vector f(x). The input and output vectors are
not necessarily of the same size. A neural network is composed of n layers fi, such
that f(x) = fn(fn−1(. . . f1(x))). Each layer works by multiplying a weight matrix
Wi by its input x, adding a bias vector bi and passing it through an activation
function φi, namely: fi(x) = φi(Wix + bi). The last layer of a neural network (fn)
is called the output layer. Note that f0 does not exist as the input layer simply
consists of the input values.

Let Dj denote the number of dimensions in layer j. For example, D0 is the
number of pixels in the input image, D1 is the number of nodes in the first hidden
layer and Dn is the number of outputs of the neural network.

Note that the arity of the layers may vary: for example, a neural network with
three layers (n = 3) may have f1 : R4 → R3, f2 : R3 → R4 and f3 : R4 → R. This
makes f : R4 → R, meaning that the neural network takes a four-dimensional input
and returns one value. Different layers may also have different activation functions.

Neural networks can be depicted as in Figure 2.1. In this figure, the neurons are
depicted as white circles, and the layers as the vertical arrangements of the neurons.

5

Figure 2.1: A schematic depiction of a neural network.

The activation value of each neuron depends on the activation values of all neurons
in the previous layer, depicted by the lines which connect them. The strength of
these connections is defined by the weight matrices.

The weights and biases of a neural network are learned in the training phase
by training the network on a large amount of data of which the correct outputs
are known. Neural networks are (usually) trained using the backpropagation al-
gorithm [22]. Once training is complete, the weights and biases are fixed and the
network only performs its learned computation.

Definition 2 (Linear SVM). A linear support vector machine consists of a decision
function f(x) = wTx + b. To perform binary classification, we say that the SVM’s
output is 0 (“non-adversarial”) if f(x) ≤ 0 and 1 (“adversarial”) if f(x) > 0.

Similarly to neural networks, the weights w and biases b are learned during the
training phase of the SVM. After the training phase, they are fixed.

Definition 3 (Satisfiability Modulo Theories). For the purposes of this thesis, an
SMT formula consists of two ingredients:

1. A set of variables that can be assigned real values;

2. A conjunction of linear equalities and inequalities over these variables.

6

For example, the following is an SMT formula:

x ≤ y + 2 and y ≥ 5 and y < 9

An SMT formula is satisfiable if and only if there exists an assignment to all its vari-
ables such that the constraint evaluates to “true”. The formula above is satisfiable;
for example, one possible assignment for the formula above is [x 7→ 8, y 7→ 6].

For this instance, it is trivial to find a solution, but when the formulas become
larger (in the order of thousands of variables or more), it becomes very hard to
find a solution by hand. Computer programs that can solve SMT instances are
called SMT solvers. An SMT solver takes an SMT formula as input and either
proves that is unsatisfiable, or outputs a satisfying assignment. The SMT problem
is NP-complete [19], but many instances can nevertheless be solved quickly by SMT
solvers.

SMT solvers are very useful, since many problems can be formalized and trans-
lated into SMT formulas. One can then use an SMT solver to find a satisfying
assignment (or conclude that it is unsatisfiable). A satisfying assignment can be
translated back to a solution for the original problem. We use this property in this
thesis.

7

Chapter 3

Related Work

The research done in this thesis project builds on the previous work of other re-
searchers. In this chapter, we relate this thesis to relevant previous work. First, we
describe some important works related to adversarial examples and verification of
neural networks. Subsequently, we describe two adversarial attack detection tech-
niques of which the basic forms were evaluated in this thesis.

3.1 Adversarial examples

Adversarial examples have been studied for a long time, also outside the field of
neural networks. For example, one of the first applications was the evasion of e-mail
spam filters [23]. Adversarial attacks gained attention from the research commu-
nity when Szegedy et al. [24] discovered that neural networks are susceptible to
them. Since this publication, many defenses have been proposed, many of which
have subsequently been broken again by other researchers with increasingly power-
ful attacks [23, 26].

There are several hypotheses to explain why adversarial examples exist, but none
is universally accepted yet [23]. Their existence demonstrates that trained neural
networks do not use the same reasoning that humans use to make sense of data such
as images. Researchers have come up with several different ways to find adversarial
examples for a given neural network. A literature survey of attacks and defenses
may be found in [23].

With the increased usage of neural networks in everyday life and their poten-
tial future applications, security concerns related to neural networks have gained
increased interest. This has also partially inspired increased interest in the appli-
cation of formal verification techniques on neural networks. If applied successfully,
these methods would guarantee certain properties of the networks, such as the safety
of their decisions or robustness against adversarial attacks.

For example, Huang et al. [12] found a way to perform a layer-by-layer analysis
of neural networks with an SMT solver to see if an adversarial example exists within
a given distance of a normal input. Also, Katz et al. [13] created an SMT-based

8

tool called Reluplex which can verify properties of neural networks, including ro-
bustness against adversarial examples. Reluplex was later extended and integrated
in a tool called Marabou [14]. There are also works that focus on evaluating the
robustness of neural networks using Mixed Integer Linear Programming (MILP, a
formal verification method like SMT), e.g. [11, 25].

SMT-based tools have already been used to estimate the robustness of neural
networks against adversarial examples. Carlini et al. [4] evaluated the adversarial
robustness of a neural network after making it more robust using a particular de-
fense technique. They did this by using Reluplex to find the minimally distorted
adversarial attack. The intuition is that if the defense is effective, then the attack
will need to make more modifications to an original input (e.g. change more pix-
els) than when the defense is not applied. Hence, better defenses will increase the
minimal distortion of an adversarial example. In short, Carlini et al. [4] focused
on evaluating a defense that made a neural network more robust. In contrast, this
thesis evaluates attack detection techniques.

3.2 SafetyNet

One method for detecting adversarial attacks on neural networks is SafetyNet, pro-
posed in [17]. The method is claimed to effectively detect both normal adversarial
attacks and attacks that actively try to outsmart the detector.

The SafetyNet method is based on the assumption that adversarial examples
cause unusual activation patterns of neurons in layers near the end of the network’s
calculation. SafetyNet performs the usual calculation of the network up to a layer
fi. Subsequently, it passes the activation values of that layer to a mechanism that
decides whether these activation values are likely to be caused by an adversarial
example. Figure 3.1 gives an overview of how SafetyNet works.

To be precise, before the activation values are used as input for the attack detec-
tor, they are first converted to (binary) codes. An activation value is converted to
a 1 if it passes a threshold; otherwise it becomes a 0. For example, if the threshold
value is 0.43, then the activation values (0.2, 0, 0.6, 3.21, 0.3) are converted to the
code (0, 0, 1, 1, 0). It is also possible to use n > 1 thresholds, which results in an
(n+ 1)-ary code.

The attack detection mechanism is a Support Vector Machine (SVM) with a Ra-
dial Basis Function (RBF) kernel. This is simply a classification method, comparable
to a neural network. The RBF-SVM is trained on a data set of labeled inputs, which
contains codes at layer fi of both normal and adversarial inputs (labeled with the
true class, namely whether the example is adversarial). The adversarial examples in
this training data set can be generated using any existing attack method.

9

Figure 3.1: SafetyNet.

3.3 Metzen et al.

Metzen et al. [18] proposed a similar approach to SafetyNet to detect adversarial
examples. Again, the values of the nodes at a specific layer in the network are
investigated to see if they were likely caused by an adversarial example. This time,
however, these values are not converted to codes; and they are not classified by
an SVM, but by a feed-forward neural network. The size and architecture of this
detection network can vary based on the original network and based on which layer
of the original network is used as input for the detection network.

The paper by Metzen et al. [18] was published before the SafetyNet paper [17].
The authors of the SafetyNet paper found out (experimentally) that their detection
approach was more difficult to defeat using standard (gradient-based) attack meth-
ods; and that it generalized better to defend against attack methods that it had not
been trained against.

10

Chapter 4

Problem Statement

We propose and evaluate two new quality metrics for adversarial attack detectors. In
this chapter, we will introduce those metrics and pose the central research question.

4.1 Detector quality metrics

Some metrics that indicate the quality of an adversarial attack detector can be
calculated without an SMT solver. In particular, as with any binary classifier, we
can look at its confusion matrix (see Table 4.1). To understand the confusion matrix,
note that a binary classifier has two possible outputs, which we will call positive and
negative. In our case, a positive outcome will mean that the detector concludes that
its input is adversarial; a negative outcome will mean that it concludes that its input
is normal.1 The confusion matrix contains four numbers:

� True positives: the fraction of adversarial examples that are classified as ad-
versarial.

� True negatives: the fraction of normal examples that are classified as normal.

� False positives: the fraction of normal examples that are classified as adver-
sarial.

� False negatives: the fraction of adversarial examples that are classified as
normal.

To calculate these fractions, we can gather many normal examples and generate
adversarial examples using a known attack method, and see how the detector clas-
sifies them. Naturally, for a good detector, the number of true positives and true
negatives will be high, and the number of false positives and false negatives will be
low. Depending on the application, some of these numbers may be more important

1Here, we use the convention from medical tests, where a positive test outcome implies that the
patient has the disease.

11

Actually adversarial Actually normal

Classified as adversarial True positives False positives

Classified as normal False negatives True negatives

Table 4.1: The confusion matrix for an adversarial attack detector.

Accuracy true positives+true negatives
true positives+false positives+false negatives+true negatives

False positive rate false positives
true negatives+false positives

False negative rate false negatives
true positives+false negatives

Table 4.2: Different ways to summarize a confusion matrix.

than others. For example, in security-critical applications, it may be acceptable if
some normal examples are flagged as adversarial (false positives), but unacceptable
if some attacks remain undetected (false negatives).

The values from the confusion matrix can also be combined into one number.
For example, the accuracy is the number of correctly classified inputs (true positives
and true negatives) divided by the total number of inputs. The accuracy is a good
choice if the set of test inputs is class-balanced, i.e. there are as many positive as
negative examples. If we are mainly interested in the number of false positives, we
may also use the false positive rate; and for false negatives, there is the false negative
rate. Table 4.2 lists the definitions of these metrics.

On top of the confusion matrix metrics, we propose two quality metrics that can
be calculated using SMT solvers. For these metrics, we assume that we have a test
set of normal inputs. The metrics are as follows:

1. The fraction of the test inputs that are close to a false negative. That is: the
input is close to another input that is not classified correctly (it is adversarial),
but the detector thinks it is non-adversarial.

2. The fraction of the test inputs that are close to a false positive. That is: the
input is close to another input that is classified correctly (it is non-adversarial),
but the detector thinks that it is adversarial.

Of course, the exact meaning of the word “close” in these metrics must still
be defined. Intuitively, an input is close to another input if it is hard to spot the
difference between the two. This can be formalized using several different distance
metrics, such as the Manhattan distance (L1) or the Euclidean distance (L2).

In this thesis, we use grayscale images as inputs, with pixels values ranging
between 0 and 1. To measure the distance between two images, we use the Chebyshev
distance (L∞), and we will say that two images are close if the distance between
them is smaller than or equal to 0.002. This means that image A is close to image
B if one can obtain image B from image A by adding to or subtracting from each

12

(a) The original image.
(b) An image 0.002 distance away from the
original.

Figure 4.1: An example of a Chebyshev distance of 0.002.

pixel (which ranges from 0 to 1) no more than 0.002. An example of this is shown
in Figure 4.1: the difference is barely noticeable.

Our choice for the Chebyshev distance is straightforward to encode in SMT
and suffices for the purposes of this thesis. In practice, however, it may be worth
investigating other notions of distance. Our choice for the bound of 0.002 is based
on the practical observations. First of all, larger bounds quickly lead to longer run
times for the SMT solver. Secondly, we observed that there already exists a false
negative or false positive within this bound for many of the original inputs; so a
bound of 0.002 suffices.

4.2 Motivation

One way to think about how the new metrics work, is that they measure the sparsity
of the false positives and false negatives. If there are few false positives (resp. false
negatives), then few normal inputs will be close to a false positive (resp. false
negative). A good detector will have few false positives and false negatives; therefore,
calculating the two metrics for that detector should result in low numbers.

The two metrics described above are closely related to the amounts of false
negatives and false positives in the confusion matrix, but there is an important
difference. Namely, we hypothesize that the objectivity of the values in the confusion
matrix suffers from a problem that the new metrics do not suffer from, as we will
see now.

As mentioned before, to calculate the values in the confusion matrix, we eval-
uate a detector on an existing test set with both normal examples and adversarial
examples. The problem with this approach is that it depends on the way the ad-
versarial examples in the test set are generated. Researchers usually generate the
adversarial examples using one attack technique. However, a detector may be very
good at detecting adversarial examples generated using one attack technique, but
worse when a different attack is used. Hence, a detector that performs very well on

13

a test set generated with the best currently known attack methods may fail when a
new attack technique is invented.2

This problem was already observed by Carlini et al. [4], who tried to evaluate
the adversarial robustness of a neural network. Instead of evaluating the network
on a test set, they proposed to only use a set of non-adversarial examples, and
for each example, compute the distance to the closest adversarial example. This
involves repeatedly invoking an SMT solver to find the closest adversarial example
for each test input. The rationale behind this approach is that increased adversarial
robustness will increase the average distance to the closest adversarial example.

Like the metric proposed by Carlini et al, the metrics in this thesis depend on
SMT solving and not on a test set with generated adversarial examples. However,
unlike their metric, computing the new metrics requires only one question (or a fixed
number of questions) to the SMT solver for each test input.3 Additionally, they are
specifically tailored to determining the quality of adversarial attack detectors rather
than the adversarial robustness of a neural network.

In summary, the motivation behind the new metrics is that they estimate the
quality of attack detectors independent of which attack technique is used. This also
allows us to compare the values for the new metrics to the confusion matrix values.
If the confusion matrix values are consistently better than the SMT metrics, then
that may indicate that the detector is indeed good at detecting adversarial attacks
generated with a specific attack technique, but not very good at detecting attacks
in general.

4.3 Research question

For this thesis, implementations were made and experiments were done to answer
the following central research question:

Does calculating the two proposed metrics (described in Section 4.1)
result in information about the quality of detectors that contradicts their
confusion matrices?

If this turns out to be the case (e.g. the confusion matrix suggests that a detector is
very good, but the SMT metrics suggest the opposite), then we can conclude that
the new metrics provide valuable information that cannot be deduced from only the
confusion matrix. If, on the other hand, the proposed metrics do not lead to different
conclusions than the confusion matrix, then the new metrics are of less added value.

2This has indeed happened before; see e.g. [5].
3To calculate the average distance to the closest adversarial example, one has to iteratively

invoke the SMT solver and perform binary search. In contrast, the new metrics search for a specific
input bounded around each original input, which does not require iteratively invoking the SMT
solver.

14

Chapter 5

Method

To answer the research question, we calculate the proposed metrics and the confusion
matrices for several setups of classification networks and detectors. This chapter
describes the full experimental setup that was used, followed by some important
comments about the data set that was used for these experiments. The chapter
closes with a description of how our proposed metrics were encoded and calculated
using the Marabou tool.

5.1 Experimental setup

A schematic representation of the verification setup for calculating the SMT metrics
can be seen in Figure 5.1. Some properties of neural networks can already be verified
using existing tools (see Chapter 3). However, existing approaches do not encode
attack detectors.

The adversarial attack detectors we used detect attacks on a neural network
that recognizes handwritten digits. We trained this network to classify the images
of handwritten digits from the MNIST data set [16]. In other words, the network
was trained to recognize which digit from 0 to 9 is shown in an image.1 To keep the
setup simple, we chose not to use a deep convolutional neural network (commonly
used in image recognition tasks) but a small fully connected feed-forward network
instead. A classification network with one hidden layer, 32 hidden nodes and the
ReLU activation function was used (shown in Figure 5.2). It has one input for each
of the pixels in the input images, and ten output nodes. Each output node represents
one of the classes. In the output layer, no activation function is used. This network
was trained for 20 epochs. When classifying an image, the class of the output
node with the highest value is the network’s predicted class.2 Before training, the

1To train all neural networks in our experiments, the Adam optimizer with a learning rate of
0.001 was used, using the cross-entropy loss function. When training SVMs, the squared hinge loss
was used.

2If there are multiple output nodes with the same highest value, an arbitrary decision is made
between them.

15

Figure 5.1: Verification setup for an attack detector. A verification tool creates a
formal encoding of the neural network and the attack detector, in an SMT input
language. The user gives a safety specification for a normal input of the neural
network, such as: “Does there exist a perturbation of this input within a distance
of 0.002 that will both fool the neural network AND pass the detector?” The
verification tool passes the encodings and the question to an SMT solver. This
solver solves the problem; the verification tool translates its output back to the
original problem and outputs the solution.

16

Figure 5.2: The MNIST classifier. In this picture, computation happens from top
(input) to bottom (output).

biases are set to 0 and the other weights are initialized randomly using the Glorot
uniform initializer [9]. This network architecture gives us worse than state-of-the-art
techniques on the MNIST data set [3], but our setup is a good trade-off between
accuracy and network and training complexity.

We trained several adversarial attack detectors to detect whether an input to
the classification network is adversarial. The following detectors were trained:

� A linear SVM. This detector may be seen as a simplification of the SafetyNet
approach [17]. In contrast to the SafetyNet paper, this detector does not use
thresholds and instead operates directly on the values of the ReLU nodes in
the classification network. In addition, it uses a linear basis function instead
of an RBF kernel.

� A fully connected feed-forward neural network with one hidden layer, 10 nodes
per hidden layer, the ReLU activation function on the hidden nodes and no
activation function on the output nodes. We refer to this as the “1x10” neural
network detector.

� A fully connected feed-forward neural network with two hidden layers, 32 nodes
per hidden layer, the ReLU activation function on the hidden nodes and no
activation function on the output nodes. We refer to this as the “2x32” neural
network detector.

The neural network detectors are similar to the ones used by Metzen et al. [18],
although Metzen et al. also propose a special training procedure for extra adversarial

17

robustness which was not used in this case. The neural network detectors were
all trained for 10 epochs.3 They are similar to the classification network shown
in Figure 5.2, except the number of hidden nodes are different, and the second
detector network has two hidden layers instead of one. Additionally, the output
layer of these detectors only contain two nodes: one that indicates “adversarial”
and one that indicates “not adversarial”. Again, in a computation, the output node
with the highest value determines the network’s classification decision.

These detectors were chosen because they are fairly small and simple while still
achieving reasonable accuracies, as shown in Chapter 6. Their small size and sim-
plicity also makes it faster and easier to calculate our metrics.

Furthermore, we created three instances of each of these detectors and connected
each instance to a specific layer of the MNIST classification network. The first
instance classified the input images directly; hence it decided whether an input
image is adversarial without taking the MNIST classification network into account.
The second instance takes the output of the hidden layer of the MNIST classification
network as its input. The third instance decides adversariality based on the output
values (logits) of the MNIST classification network.

In total, this leaves us with 3 · 3 = 9 different detector setups. The detectors
were trained on a training data set with normal and adversarial examples. To
obtain this training data set, we started with the normal MNIST training set and
generated attacks on the images using the Fast Gradient Sign Method (FGSM) [10]
with parameter ε = 0.1. We kept only the subset of original examples for which
the original classification was correct, but for which FGSM successfully found an
adversarial example. This set of normal examples was combined with the found
adversarial examples to form the training set. Hence, the training set is perfectly
class-balanced, as there is one adversarial example for each normal example.

For each of these setups, we determined the values of its confusion matrix, as well
as its values for our two proposed metrics. To determine the values of the confusion
matrix, we generated a test set with both normal and adversarial examples from the
MNIST test set, analogously to how the training set was generated. To calculate
the new metrics, 200 images were randomly selected from the MNIST test set. The
same 200 images were used to calculate the metrics for all detector setups.

We used the following libraries to implement our experiments in the Python
programming language:

� TensorFlow [1], for creating, training and testing the neural networks for both
the MNIST classifier and the detectors.

� Scikit-learn [21], for creating, training and testing the linear SVM detector.

� CleverHans [20], for generating adversarial examples with the FGSM method.

3All detectors were trained for the same amount of epochs to make experimenting convenient.
The goal of this thesis was not to train the best possible detectors, but to compare the quality of
detectors using different metrics.

18

(a) The original image.
(b) The same image, with added random
noise of at most 0.2.

Figure 5.3: Adding random noise to MNIST images.

� Marabou [14], for calculating our proposed metrics using SMT solving.

5.2 Noisy MNIST

In our experiments, the MNIST data set [16] was used: a set of images of handwritten
digits. Each sample is a square of 28 by 28 grayscale pixels. We represent each pixel
value as a float in the range [0, 1] where 0 is black and 1 is white. The MNIST data
set is divided in a set of 60 000 training images and 10 000 test images. We did not
use a validation set. It is often used to evaluate machine learning techniques, but
when evaluating techniques related to adversarial attacks on it, we need to take a
precaution.

A potential problem with this data set was pointed out by Carlini & Wagner [5]:
any pixel that is not part of the digit in a sample, has the exact value 0. Digit recog-
nition networks can overfit on this property, meaning that if only a tiny amount was
added to these black pixels, the network may be confused and produce a misclassi-
fication. Adversarial attacks can easily make use of this property.

Since this issue is specific to the MNIST data set, evaluating detectors on the
original MNIST data set might result in results that do not generalize. For this
reason, we modified the images in the MNIST data set in the following way: a
random noise value from the range [0, 0.2] (with uniform probability) is added to
each pixel. An example of this can be seen in Figure 5.3. This modification prevents
the detector from detecting adversarial examples solely by observing that the non-
digit pixels are no longer pitch black. This modified MNIST data set was used in
all experiments: for training the classifier as well as the detectors.

5.3 Marabou

We now turn to a description of how our new metrics may be calculated using SMT.

19

Most automated SMT solvers use the Simplex algorithm [7] at their core. The
way the Simplex algorithm works will not be discussed here; see e.g. [19, 6] for a
detailed description. The Simplex algorithm requires that all of the constraints in
the input query are linear (in)equalities. This becomes a problem when we want
to verify properties of neural networks, because neural networks typically do not
represent linear calculations. This is caused by their use of non-linear activation
functions such as the ReLU function. An image of the ReLU function is shown in
Figure 5.4. It is clearly not linear.

Figure 5.4: The ReLU activation function.

The open source Marabou tool [14] is based on the Reluplex [13] algorithm.
Reluplex extends the Simplex algorithm to make it possible to handle ReLU con-
straints. It essentially does this by using the fact that although the ReLU function
is not linear, it is piecewise linear. That is, it is both linear on the interval (−∞, 0],
defined by the function φ(x) = 0; and on the interval [0,+∞), defined by the func-
tion φ(x) = x. In principle, this observation makes it possible to do a case split on
each ReLU node, resulting in a system of only linear equations. This leads to an
unfeasible number of cases, however.4

Instead of case splitting on every node, Reluplex explicitly keeps track of upper
and lower bounds for all variables while performing Simplex. When a lower or
upper bound of 0 is discovered on a ReLU node, a case split on that node is no
longer necessary. When an upper or lower bound of 0 cannot be derived easily, the
case split can still be done. In practice, it turns out that this optimization makes
the verification process significantly faster than when case splitting on every ReLU
node [13].

4Worst case, 2n where n is the number of nodes.

20

5.4 SMT encoding of the queries

To calculate our proposed quality metrics for detectors using Marabou, we repeatedly
need it to find false positives or false negatives within a certain bound of an existing
original input. We will now see how these queries can be encoded in SMT. Figure 5.5
shows a concrete example of how to construct an SMT query following the method
described in this section.

The question posed by these queries is essentially the following: does there exist
an input which satisfies some constraints? Namely: 1) it is close enough to my
original input; and 2) it is a false positive (or a false negative) for a specific classifier
and detector. Such an input is essentially a collection of real numbers (e.g. pixel
values). If we represent each input dimension (pixel) with one variable, then an
input is an assignment to all input variables. Hence, the SMT solver needs to either
find an assignment to the input variables that satisfies these constraints, or conclude
that such an assignment does not exist (within reasonable time).

In summary, the SMT encoding will have the following ingredients:

1. A variable for each dimension of the desired answer to the query.

2. A constraint that specifies that the answer to the query must be close enough
to the original input.

3. A constraint that specifies that the answer to the query must be a false positive
(or false negative) for the classifier and detector under consideration.

The first ingredient is straightforward: we simply create one variable xi for each
input dimension (pixel).

For the second ingredient, we need to limit the possible values of these variables
to a range around the original input. Since we chose the bound to be a Chebyshev
distance of at most 0.002, we can straightforwardly encode this using a constraint on
each individual variable. For each variable, we specify that the difference between
its assignment and the value of the corresponding input dimension in the original
input cannot be greater than 0.002. Formally, for the variable xi, suppose that x′i
is the value of the corresponding dimension in the original input. Then, we require
that x′i − 0.002 ≤ xi ≤ x′i + 0.002.

The third ingredient specifies either that the answer is a false positive or a false
negative. Whether an input is a false positive or a false negative depends on the
outcome when it is used as an input for the classifier and the detector. Namely, it is
only a false positive if the detector classifies it as adversarial, but the main classifier
classifies it correctly; and it is only a false negative if the detector classifies it as
non-adversarial, but the main classifier classifies it incorrectly. Therefore, we need
to encode the computations of the main classifier and the detector in SMT and add
constraints on their outcomes.

The main classifier is simply a neural network. Therefore, to encode the compu-
tation of the classifier in SMT, we need to encode a neural network. The Marabou

21

The Reluplex encoding of a neural network works as follows [13]. For each hidden
layer 0 < j < n, we introduce two variables for each node 0 ≤ i < Dj , namely aji
and rji . The first variable, aji , is constrained to the activation value of the node.

The second variable, rji , is constrained to the ReLU’ed activation value of the node.

Concretely, aji constrained to:

aji = Wj [i]


rj−10

...

rj−1Dj−1−1

+ bj

where Wj is the weight matrix of layer j; and rji is constrained to:

rji = ReLU(aji)

For each node 0 ≤ i < D0 in the input layer, we only have one variable r0i , which will
ultimately take a (pixel) value of the network’s input. For each node 0 ≤ i < Dn in
the output layer, we only have one variable ani , constrained to the activation value
of that node (as for the hidden layers). Hence, the variables a0i and rni do not exist.
By construction, the introduced constraints ensure that the variables can only take
the values that represent the neural network’s computation. In particular, if the
input variables r0i are assigned the values of a particular input for the neural network,
then the constraints will ensure that the output variables ani take the values that
would result from computing the network’s output values on this input in the usual
way. This is how the Reluplex algorithm encodes a neural network in its variant of
SMT.

Box 5.1: How Reluplex encodes neural networks in SMT.

tool already has built-in support for importing neural networks, as proposed in the
Reluplex paper [13]. Box 5.1 describes how neural networks are encoded in SMT.

To specify that the result must be a false positive or a false negative, we encode
both the main classification network and the detector network. In case the detector is
a linear SVM, we can add the necessary constraints without requiring extra variables,
as we shall see shortly. We first consider the case when the detector is a neural
network. For increased readability, we will assume in the following that the main
classification network is a MNIST classifier, but the approach is not limited to the
MNIST case.

We want Marabou to find an image similar to an original input that is classi-
fied either correctly or wrongly by the MNIST classification network. We already
introduced variables xi to hold the pixel values. To input these to the classifica-
tion network, we simply add one constraint for each pixel. Namely, xi = r0i for
all 0 ≤ i < D0 where r0i are the input variables of the Marabou encoding of the

22

classification network.5

The MNIST classification network has ten output nodes, and hence ten corre-
sponding output variables ani in the encoding. The output node with the highest
value represents the network’s final output value. Therefore, if we want to spec-
ify that the input is classified correctly (in the false positive case), we add nine
constraints anj < ani for all j 6= i where i is the correct class.

Conversely, if we want to specify that the input is classified incorrectly (in the
false negative case), there are nine possible cases: namely, in each case, the input
is classified as one of the nine other classes. Therefore, we duplicate the entire
encoding nine times. In each of these copies, we specify with nine constraints that it
is classified as one of the other classes, as discussed above. If Marabou can find an
example that satisfies all constraints for any of the nine copies, then we have found
an input that is classified incorrectly. If all nine queries are unsatisfiable, then we
conclude that such an example does not exist.

We have now specified that any example found by Marabou must be either
classified correctly or incorrectly by the MNIST classifier. Next, we must specify
that the detector must either flag the example as adversarial or non-adversarial
(depending on whether it must be a false positive or a false negative). We distinguish
two cases: one where the detector is a neural network, and one where the detector
is a linear SVM.

In case the detector is a neural network, we can encode the requirement similarly
to how we encoded the constraint on the output of the MNIST classifier. First, we
encode the network using the method described in Box 5.1. (From now on, we will
write ca and cr if we mean the variables from the MNIST classifier, and da and
dr if we mean the variables from the detector network.) Next, we specify which
variables are used as input to the detector network. Depending on the experiment,
the detector can be connected to the MNIST classifier’s input, the classifier’s hidden
layer values or the classifier’s output layer values. To specify this, we add one
constraint for each input variable. If the detector is connected to the classifier’s
input, we add the constraints dr0i = cr0i for all 0 ≤ i < D0. If it is connected to the
classifier’s first hidden layer, we add the constraints dr0i = cr1i . If it is connected
to the classifier’s output layer, we add the constraints dr0i = cani .6 A detector
network has two outputs: one representing “adversarial” and one representing “non-
adversarial”. Again, the output node with the highest value determines the class.
Therefore, we can constrain the detector to label the input as adversarial or non-
adversarial by adding the constraint dan0 <

dan1 or dan1 <
dan0 , depending on whether

we are looking for false positives or false negatives.7 This way, any example found

5Equivalently, we could remove the variables xi and turn all constraints on xi into constraints
on the corresponding r0i . This is what we did in our test implementation.

6Again, we can equivalently remove the detector’s input layer variables and turn all constraints
on them into constraints on the corresponding variables of the MNIST classifier, which we did in
the implementation.

7We deliberately avoid the case when dan
1 = dan

0 , as that means the classification is uncertain
and the detector may choose to either classify the input as adversarial or non-adversarial. If dan

1

23

False Positive False Negative

Input Layer f




cr00
...

cr0D0−1


 > 0 f




cr00
...

cr0D0−1


 ≤ 0

First Hidden Layer f




cr10
...

cr1D1−1


 > 0 f




cr10
...

cr1D1−1


 ≤ 0

Output Layer f




crn0
...

crnDn−1


 > 0 f




crn0
...

crnDn−1


 ≤ 0

Table 5.1: Encoding the linear SVM constraint depending on which layer is input
to the detector, and whether to look for a false positive or a false negative.

by Marabou will be either flagged as adversarial or non-adversarial (according to
our wish) by detector neural networks.

If the detector is not a neural network, but a linear SVM, we do not need to
encode a detector network using the procedure in Box 5.1. Instead, one constraint
suffices. As described in Chapter 2, the SVM is simply a function f(x) = wTx + b,
where w and b are fixed constants. An input x is labeled as adversarial if f(x) > 0,
and f(x) ≤ 0 otherwise. We can use this exact equation as a linear inequality
constraint, taking into account which layer the detector uses as input. Table 5.1
lists the correct constraints in each situation.

and dan
0 are not equal, the detector’s decision is deterministic. The detector’s choice matters even if

they are almost equal, since a potential attacker will be looking for a false positive or false negative
regardless of how certain the detector is.

24

N
ot

at
io

n

L
et

n
W

i
d
en

o
te

th
e

w
ei

g
h
t

m
at

ri
x

of
n
eu

-
ra

l
n
et

w
o
rk

n
at

la
ye

r
i.

W
e

h
av

e
ei

th
er

n
=
c,

th
e

M
N

IS
T

cl
as

si
fi
er

,
or
n

=
d
,

a
d
et

ec
to

r
n
eu

ra
l

n
et

w
or

k
.

L
et

n
ri

a
n
d

n
a
i

d
en

o
te

ve
ct

or
s

o
f

va
ri

ab
le

s
re

la
te

d
to

la
ye

r
i

of
n
eu

ra
l

n
et

w
or

k
n

.
L

et
n
ri j

an
d

n
a
i j

d
en

ot
e

th
e
j-

th
el

em
en

t
o
f

th
os

e
ve

ct
o
rs

,
n
a
m

el
y

va
ri

ab
le

s
re

la
te

d
to

th
e
j-

th
n
o
d
e

in
th

e
i-

th
la

ye
r.

M
N

IS
T

cl
as

si
fi
er

en
co

d
in

g

V
a
ri

ab
le

s:

x
i

fo
r

al
l

0
≤
i
<

78
4

c
r0 i

fo
r

0
≤
i
<

78
4

c
a
1 i

fo
r

0
≤
i
<

32
c
r1 i

fo
r

0
≤
i
<

32
c
a
2 i

fo
r

0
≤
i
<

10

C
on

st
ra

in
ts

: x
i
≥
x
′ i
−

0.
00

2
fo

r
0
≤
i
<

7
84

x
i
≤
x
′ i
+

0
.0

02
fo

r
0
≤
i
<

7
84

c
r0 i

=
x
i

fo
r

0
≤
i
<

7
84

c
a
1

=
c
W

1
c
r 0

+
c
b
1

c
r1

=
R
eL
U

(c
a
1
)

c
a
2

=
c
W

2
c
r 1

+
c
b
2

S
u
p
p

os
e
y

is
th

e
co

rr
ec

t
cl

as
s.

If
lo

ok
in

g
fo

r
a

fa
ls

e
p

os
it

iv
e,

ad
d

co
n
st

ra
in

ts
:

c
a
2 i
<

c
a
2 y

fo
r

0
≤
i
≤

9,
i
6=
y

If
lo

o
k
in

g
fo

r
a

fa
ls

e
n
eg

at
iv

e,
d
u
p
li
ca

te
q
u
er

y
9

ti
m

es
.

In
ea

ch
co

p
y

0
≤
k
≤

9,
k
6=
y
,

ad
d

co
n
st

ra
in

ts
:

c
a
2 i
<

c
a
2 k

fo
r

0
≤
i
≤

9
,i
6=
k

N
N

d
et

ec
to

r

N
N

d
et

ec
to

r
en

co
d
in

g

V
ar

ia
b
le

s:

d
r0 i

fo
r

0
≤
i
<

3
2

d
a
1 i

fo
r

0
≤
i
<

3
2

d
r1 i

fo
r

0
≤
i
<

3
2

d
a
2 i

fo
r

0
≤
i
<

2

C
o
n
st

ra
in

ts
: d
r0 i

=
c
r1 i

fo
r

0
≤
i
<

3
2

d
a
1

=
d
W

1
d
r 0

+
d
b
1

d
r1

=
R
eL
U

(d
a
1
)

d
a
2

=
d
W

2
d
r 1

+
d
b
2

If
lo

ok
in

g
fo

r
a

fa
ls

e
p

o
si

ti
ve

,
a
d
d

co
n
st

ra
in

t:

d
a
2 1
>

d
a
2 0

If
lo

o
k
in

g
fo

r
a

fa
ls

e
n
eg

a
ti

ve
,

ad
d

co
n
st

ra
in

t:

d
a
2 0
>

d
a
2 1

S
V

M
d
et

ec
to

r

S
V

M
d
et

ec
to

r
en

co
d
in

g

If
lo

o
k
in

g
fo

r
a

fa
ls

e
p

o
si

ti
ve

,
a
d
d

co
n
st

ra
in

t:

d
W

T
c
r1

+
d
b
>

0

If
lo

o
k
in

g
fo

r
a

fa
ls

e
n
eg

a
ti

ve
,

a
d
d

co
n
st

ra
in

t:

d
W

T
c
r1

+
d
b
≤

0

F
ig

u
re

5.
5:

C
re

at
in

g
an

S
M

T
en

co
d

in
g

fo
r

fi
n

d
in

g
fa

ls
e

p
os

it
iv

es
or

fa
ls

e
n

eg
at

iv
es

in
a

se
tt

in
g

w
it

h
a

n
eu

ra
l

n
et

w
o
rk

th
a
t

cl
a
ss

ifi
es

M
N

IS
T

im
ag

es
in

to
on

e
of

te
n

cl
as

se
s.

T
h

is
d

ia
gr

am
as

su
m

es
th

at
th

e
M

N
IS

T
cl

as
si

fi
er

h
as

th
re

e
la

y
er

s:
th

e
in

p
u

t
la

ye
r

w
it

h
28
·2

8
=

78
4

n
o
d

es
,

th
e

h
id

d
en

la
ye

r
w

it
h

32
n

o
d

es
an

d
th

e
ou

tp
u

t
la

ye
r

w
it

h
10

n
o
d

es
.

T
h

e
d

et
ec

to
r

is
co

n
n

ec
te

d
to

th
e

cl
as

si
fi

er
’s

h
id

d
en

la
ye

r.
T

h
e

n
eu

ra
l

n
et

w
or

k
d

et
ec

to
r

(i
f

ch
os

en
)

h
as

th
re

e
la

y
er

s:
th

e
in

p
u

t
la

ye
r,

th
e

h
id

d
en

la
y
er

w
it

h
32

n
o
d

es
an

d
th

e
ou

tp
u

t
la

ye
r

w
it

h
2

n
o
d

es
.

25

In summary, this procedure encodes the classification network and the detector
as variables and constraints in Marabou and restricts the result to be a false positive
or false negative around the original input. This way, we obtain queries to calculate
our proposed metrics with Marabou. The total amount of required SMT variables
is no more than twice the number of nodes in the classification and detector neural
networks. Hence, the number of variables scales linearly with the size of the neural
networks.

26

Chapter 6

Results

6.1 General results

After training the MNIST classification network, it achieved an accuracy of 0.957
on the test set.

After running the FGSM attack on the noisy MNIST data set, the number of
resulting examples that were truly adversarial was 58 408 for the training set and
9540 for the test set. Hence, the size of the entire training and test sets for the detec-
tors, which combined the adversarial examples with the originals, was respectively
2 · 58 408 = 116 816 and 2 · 9540 = 19 080.

Figure 6.1 shows a false positive and a false negative generated on one of the
inputs by Marabou.

(a) The original image. Clas-
sified as “6”.

(b) A false negative. Classi-
fied as “7”, but the detector
does not flag it as adversarial.

(c) A false positive. Classified
as “6”, but the detector flags
it as adversarial.

Figure 6.1: False positives and false negatives generated by Marabou on an original
image of a handwritten “6”. For these examples, the neural network detector with
2 hidden layers and 32 nodes per hidden layer was used, trained on the hidden
node values of the MNIST classifier. The distance between the found examples and
the original is so small (exactly 0.002 in both cases) that it is hard to notice the
difference.

27

6.2 Confusion matrix and SMT scores do not always
agree

The confusion matrices and SMT metrics of all setups are listed in Appendix A
in Boxes A.1–A.9. Thanks to the small “closeness” bound of 0.002, none of the
Marabou queries took longer than one minute to complete. The results are visually
summarized with graphs in Figures 6.2 and 6.3.

It can be observed from these results that even though the scores in the confusion
matrix sometimes look quite good, the new metrics sometimes paint a different
picture. For example, the neural network detectors which get the original input
image as their image have very few false negatives in their confusion matrices (33
and 2 out of 19 080 examples). However, in both cases, all of the 200 original test
inputs used for the SMT metrics have a false negative within a distance of 0.002.

6.3 False Negatives metrics negatively correlate

We are interested whether the discrepancy between the confusion matrix and the
SMT metrics holds more broadly than for these two examples alone. To do this, we
draw a scatter plot to see if the number of false negatives in the confusion matrix
correlates to the number of inputs with close false negatives (found with SMT)
across different detector setups. The result is shown in Figure 6.4. Pearson’s sample
correlation coefficient for these sets is −0.804. If the confusion matrix is reliable,
then one would expect that when the number of false negatives increases, so will
the number of inputs with close false negatives. Remarkably, in this case, there
is a rather strong negative correlation instead. So for the false negatives case, the
confusion matrix scores do not correspond to the scores found with SMT.

6.4 False Positives metrics weakly positively correlate

The same approach is taken to compare the number of false positives in the confusion
matrix and the number of inputs with close false positives (found with SMT). The
result is shown in Figure 6.5. Pearson’s sample correlation coefficient for these
sets is 0.673. Again, for a reliable confusion matrix, one would expect the number
of false positives and the number of inputs with close false positives to have a
positive correlation. This indeed appears to be the case, although it is not a strong
correlation. So for the false positives case, the confusion matrix scores do correspond
somewhat to the scores found with SMT.

28

(a) False negative rates for detectors with different inputs.

(b) The number out of 200 test inputs with close false negatives for detectors with different
inputs.

Figure 6.2: False negatives metrics.

29

(a) False positive rates for detectors with different inputs.

(b) The number out of 200 test inputs with close false positives for detectors with different
inputs.

Figure 6.3: False positives metrics.

30

Figure 6.4: Scatter plot investigating a potential correlation between the number of
false negatives in the confusion matrix and the number of test inputs with a close
false negative. Each dot represents a detector setup.

Figure 6.5: Scatter plot investigating a potential correlation between the number of
false positives in the confusion matrix and the number of test inputs with a close
false positive. Each dot represents a detector setup.

31

Chapter 7

Discussion of the Results

The results from the previous chapter lead to a number of interesting conclusions.
In this chapter, we first answer the research question based on the results. Next, we
analyze the results to find some additional insights about the tested detectors. We
close with a discussion and suggestions for future work.

7.1 Added value of the new metrics

Recall that our research question was:

Does calculating the two proposed metrics (described in Section 4.1)
result in information about the quality of detectors that contradicts their
confusion matrices?

Our results indicate that this is sometimes indeed the case. For example, in the case
of the neural network detectors trained on the original input images, the confusion
matrix scores suggest the detector is very good, but the SMT metrics indicate the
opposite. Namely, in all of the 200 test cases, an attacker only has to perturb an
original input to a distance of no more than 0.002 to obtain a working adversarial
example.

In the general case, this added value is also confirmed. This is shown by Fig-
ure 6.4 and the calculated correlation coefficient of −0.804. If detector A has fewer
false negatives than detector B (according to the confusion matrix), then you would
expect fewer of the 200 inputs to be close to a false negative for A than to a false neg-
ative for B. This negative correlation shows the opposite. Figure 6.2 shows the same:
the false negative rates of the detectors go up as the detectors are connected to later
layers of the classification network (implying degrading performance), whereas the
numbers of inputs with close false negatives generally go down (implying improving
performance).

This apparent paradox can be explained by the test set used to calculate the
confusion matrix. Recall the main difference between the confusion matrix and the
SMT metrics: the confusion matrix is calculated based on a set of adversarial inputs

32

calculated with the FGSM attack, while the SMT metrics look for adversarial inputs
regardless of how they can be generated. Apparently, when there are few false
negatives in the confusion matrix, the detector is good at recognizing adversarial
inputs generated with FGSM, but worse at recognizing the adversarial examples the
SMT solver throws at it.

Since the correlation is negative, it would appear that the detectors are even over-
fitting on the examples generated with FGSM, and sacrificing some performance on
other adversarial examples in the process. As their performance on FGSM adversar-
ial examples improves (according to the confusion matrix), their performance on the
SMT adversarial examples becomes worse. In any case, the false negatives metric
calculated with SMT adds some very interesting information that cannot be deduced
from the confusion matrix alone.

We also need to consider the false positive case. That is, examples that are not
adversarial, but still labeled as adversarial by the detector. In this case, there is a
positive correlation between the SMT metric and the false positives metric from the
confusion matrix. This suggests that even if the detector overfits on FGSM adver-
sarial examples, the detector still does not flag significantly more non-adversarial
examples as being adversarial. The difference between the metrics is therefore less
extreme than in the false negatives case, Nevertheless, it can still be interesting to
see that even though a detector scores fairly good on the false positives metric in
the confusion matrix, there are still false positives close to many inputs.

7.2 Additional insights

In addition to the value of the SMT metrics, there is a number of other interesting
points that can be made when looking at the results from the previous chapter.

First of all, we can compare the two different neural network detectors and
the SVM detector. When looking at the test accuracy or the false negative or
false positive rates computed from the confusion matrix, the 2x32 neural network
performs the best, followed by the 1x10 neural network, followed by the linear SVM.
This is confirmed by the SMT metric that measures the number of inputs with close
false positives. However, the number of inputs with close false negatives shown in
Figure 6.2b shows the reverse order. This may be because the larger neural networks
have more parameters and are therefore more prone to overfitting on the adversarial
examples present in the training set, as we have discussed before. Hence, to train a
good detector, it is important to use a training set with diverse adversarial examples,
and a detector that does not have too many parameters, to prevent overfitting. The
number of inputs with close false negatives proves to be a good way to check whether
a detector is overfitting.

Furthermore, there is an interesting difference in the performance of detectors
trained on different inputs. Each detector was trained three times: one copy was
trained on the input layer values (i.e. the original images), one on the hidden layer
values of the classification network, and one on the output layer of the classification

33

network. According to the accuracy, false positive rate and false negative rate, each
of the detectors performs the best on the input layer, followed by the hidden layer,
followed by the output layer. The number of inputs with a close false positive show
the same trend, except for an outlier of the linear SVM trained on the output layer.
The number of inputs with a close false negative again shows the opposite trend, for
which a potential cause has already been discussed.

The fact that the detectors performed better on earlier layers is interesting, since
both Metzen et al. [18] and Lu et al. [17] suggested attaching the detectors at deeper
layers. This may have to do with the simplicity of our classification network, which
only had one hidden layer. In contrast, the mentioned papers used more complicated
classification networks such as residual and convolutional networks.

Finally, an interesting point from the results is that, for all tested detector se-
tups, there are more inputs with close false negatives than inputs with close false
positives. This means that the inputs are more frequently close to an input that is
adversarial but not detected, than to an input that is non-adversarial yet labeled as
adversarial by the detector. This suggests that the detectors are more likely to miss
an adversarial example than to wrongly flag a non-adversarial input as adversarial.
The confusion matrices do not confirm this, however: they do not always report
more false negatives than false positives. More research is necessary to investigate
this further and to find the root cause of this observation.

7.3 Limitations and future work

The research in this thesis has a number of limitations. In this section, several of
them are discussed. At the same time, these limitations represent possible directions
for future research.

First of all, the experiments in this thesis were only done with classification
networks trained on the MNIST data set. As already discussed in Section 5.2, this
data set has some potential problems. Some of these problems were reduced by
adding noise, as discussed; however, there may be more issues that cause the results
of the experiments to be specific to the MNIST data set. To further validate our
results, it would be interesting to run similar tests on classification networks trained
on other data sets, such as CIFAR-10 [15].

Another limitation of the experiments in this thesis is that the detectors were
only trained on sets with adversarial examples generated with the FGSM attack. Ar-
guably, putting adversarial examples generated with multiple (and stronger) attacks
could improve the detectors’ quality. It would be interesting to see if the metrics cal-
culated with SMT improve when the detectors are trained on such improved training
sets.

In addition, this thesis only considered linear SVMs and some fairly simple neu-
ral networks as detectors. The SafetyNet detector [17] discussed in Chapter 3 used
an RBF-SVM instead of a linear SVM, and Metzen et al. [18] used special training
methods for the detectors. In a realistic application, the detector would be tuned

34

to give optimal adversarial example detection rates. Therefore, applying the exper-
iments in this thesis to better detector setups could make the results more relevant
in realistic scenarios.

Furthermore, a choice was made in this thesis to only consider the Chebyshev
distance metric and a “closeness” bound of 0.002. It might be interesting to exper-
iment with different definitions of distance, and to attempt to encode those in an
SMT solver. It is also worth noting that even if an attacker only has to perturb an
image by a distance of no more than 0.002 to find an adversarial example, that does
not immediately mean that the classification network is easy to attack. Finding the
correct image may still be very hard for an attacker depending on, for example, their
knowledge of the network and available computing power.

It would also be interesting to run experiments on classification networks with
much larger inputs, such as ImageNet [8]. To classify these images accurately, larger
classification networks than the one used in this thesis are typically used, which
only contained one hidden layer. The fact that this thesis only experimented with
relatively low-dimensional inputs and small classification networks may limit the
validity of the results for realistic situations. To run the experiments from this
thesis on larger inputs and networks, some work would have to be done to scale the
Marabou experiments to larger queries and prevent them from timing out. This
could be done by, for example, only considering a subset of the most important
input dimensions; or by scaling up the used computing power. There has already
been some research that used cloud computing power to run Marabou queries [27];
it might be interesting to see if this is applicable to the queries used in this thesis.

Finally, there may be some opportunities to experiment with some more practical
applications. A case study would be interesting to find out if the SMT metrics
proposed in this thesis are useful in real-life situations where adversarial attack
detectors are used.

35

Bibliography

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J.,
Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Va-
sudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X. Tensor-
Flow: A system for large-scale machine learning. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation (USA,
2016), OSDI’16, USENIX Association, p. 265–283.

[2] Athalye, A., Engstrom, L., Ilyas, A., and Kwok, K. Synthesizing robust
adversarial examples. In Proceedings of the 35th International Conference on
Machine Learning (10–15 Jul 2018), J. Dy and A. Krause, Eds., vol. 80 of
Proceedings of Machine Learning Research, PMLR, pp. 284–293.

[3] Benenson, R. Classification datasets results, 2021. http://rodrigob.

github.io/are_we_there_yet/build/classification_datasets_results.

html.

[4] Carlini, N., Katz, G., Barrett, C., and Dill, D. L. Provably minimally-
distorted adversarial examples, Feb 2018. arXiv:1709.10207.

[5] Carlini, N., and Wagner, D. Adversarial examples are not easily detected.
In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Secu-
rity (Nov 2017), ACM.

[6] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Intro-
duction to Algorithms, 3rd ed. The MIT Press, 2009.

[7] Dantzig, G. B. Linear Programming and Extensions. Princeton University
Press, 1991.

[8] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition (2009), IEEE, pp. 248–255.

[9] Glorot, X., and Bengio, Y. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the Thirteenth International

36

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

Conference on Artificial Intelligence and Statistics (May 2010), Y. W. Teh and
M. Titterington, Eds., vol. 9 of Proceedings of Machine Learning Research,
PMLR, pp. 249–256.

[10] Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harness-
ing adversarial examples. In International Conference on Learning Represen-
tations (Mar 2015). arXiv:1412.6572.

[11] Gross, D., Jansen, N., Pérez, G. A., and Raaijmakers, S. Robustness
verification for classifier ensembles. In Automated Technology for Verification
and Analysis (2020), Lecture Notes in Computer Science, Springer International
Publishing, p. 271–287.

[12] Huang, X., Kwiatkowska, M., Wang, S., and Wu, M. Safety verifica-
tion of deep neural networks. In Computer Aided Verification (2017), Springer
International Publishing, pp. 3–29.

[13] Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochenderfer,
M. J. Reluplex: An efficient SMT solver for verifying deep neural networks. In
Computer Aided Verification (2017), Springer International Publishing, pp. 97–
117.

[14] Katz, G., Huang, D. A., Ibeling, D., Julian, K., Lazarus, C., Lim, R.,
Shah, P., Thakoor, S., Wu, H., Zeljić, A., Dill, D. L., Kochenderfer,
M. J., and Barrett, C. The Marabou framework for verification and analysis
of deep neural networks. In Computer Aided Verification, Lecture Notes in
Computer Science. Springer International Publishing, 2019, pp. 443–452.

[15] Krizhevsky, A. Learning multiple layers of features from tiny images. Mas-
ter’s thesis, University of Toronto, May 2012.

[16] LeCun, Y., Cortes, C., and Burges, C. MNIST handwritten digit
database. ATT Labs [Online] 2 (2010). http://yann.lecun.com/exdb/mnist.

[17] Lu, J., Issaranon, T., and Forsyth, D. SafetyNet: Detecting and reject-
ing adversarial examples robustly. In 2017 IEEE International Conference on
Computer Vision (ICCV) (Oct 2017), IEEE.

[18] Metzen, J. H., Genewein, T., Fischer, V., and Bischoff, B. On detect-
ing adversarial perturbations. In Proceedings of 5th International Conference
on Learning Representations (ICLR) (2017). arXiv:1702.04267.

[19] Moura, L. D., and Bjørner, N. Satisfiability modulo theories. Communi-
cations of the ACM 54, 9 (Sep 2011), 69–77.

[20] Papernot, N., Faghri, F., Carlini, N., Goodfellow, I., Feinman, R.,
Kurakin, A., Xie, C., Sharma, Y., Brown, T., Roy, A., Matyasko, A.,

37

http://yann.lecun.com/exdb/mnist

Behzadan, V., Hambardzumyan, K., Zhang, Z., Juang, Y.-L., Li, Z.,
Sheatsley, R., Garg, A., Uesato, J., Gierke, W., Dong, Y., Berth-
elot, D., Hendricks, P., Rauber, J., and Long, R. Technical report on
the CleverHans v2.1.0 adversarial examples library. arXiv:1610.00768.

[21] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., and Duchesnay, E. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12 (2011), 2825–2830.

[22] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning repre-
sentations by back-propagating errors. Nature 323, 6088 (Oct 1986), 533–536.

[23] Serban, A., Poll, E., and Visser, J. Adversarial examples on object
recognition. ACM Computing Surveys 53, 3 (Jul 2020), 1–38.

[24] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D.,
Goodfellow, I., and Fergus, R. Intriguing properties of neural networks.
In Proceedings of 2nd International Conference on Learning Representations
(ICLR) (Feb 2014). arXiv:1312.6199.

[25] Tjeng, V., Xiao, K., and Tedrake, R. Evaluating robustness of neural
networks with mixed integer programming. In Proceedings of 7th International
Conference on Learning Representations (ICLR) (Feb 2019). arXiv:1711.07356.

[26] Wiyatno, R. R., Xu, A., Dia, O., and de Berker, A. Adversarial exam-
ples in modern machine learning: A review, Nov 2019. arXiv:1911.05268.

[27] Wu, H., Ozdemir, A., Zeljic, A., Julian, K., Irfan, A., Gopinath, D.,
Fouladi, S., Katz, G., Pasareanu, C. S., and Barrett, C. W. Paral-
lelization techniques for verifying neural networks. In 2020 Formal Methods in
Computer Aided Design, FMCAD 2020, Haifa, Israel, September 21-24, 2020
(2020), IEEE, pp. 128–137.

38

Appendix A

Results Data

This appendix lists the confusion matrices and SMT metrics of all tested detector
setups.

Actually adversarial Actually normal

Classified as adversarial 8408 917

Classified as normal 1132 8623

Test accuracy: 0.8926
Number out of 200 test inputs close to a false negative: 192
Number out of 200 test inputs close to a false positive: 49

Box A.1: Test results for the linear SVM detector trained on the classifier’s input
layer values.

39

Actually adversarial Actually normal

Classified as adversarial 6291 2491

Classified as normal 3249 7049

Test accuracy: 0.6992
Number out of 200 test inputs close to a false negative: 116
Number out of 200 test inputs close to a false positive: 95

Box A.2: Test results for the linear SVM detector trained on the classifier’s hidden
layer values.

Actually adversarial Actually normal

Classified as adversarial 6156 3831

Classified as normal 3384 5709

Test accuracy: 0.6219
Number out of 200 test inputs close to a false negative: 175
Number out of 200 test inputs close to a false positive: 38

Box A.3: Test results for the linear SVM detector trained on the classifier’s output
layer values.

Actually adversarial Actually normal

Classified as adversarial 9507 0

Classified as normal 33 9540

Test accuracy: 0.9983
Number out of 200 test inputs close to a false negative: 200
Number out of 200 test inputs close to a false positive: 0

Box A.4: Test results for the 1x10 neural network detector trained on the classifier’s
input layer values.

Actually adversarial Actually normal

Classified as adversarial 8926 424

Classified as normal 614 9116

Test accuracy: 0.9456
Number out of 200 test inputs close to a false negative: 193
Number out of 200 test inputs close to a false positive: 16

Box A.5: Test results for the 1x10 neural network detector trained on the classifier’s
hidden layer values.

40

Actually adversarial Actually normal

Classified as adversarial 8454 1257

Classified as normal 1086 8283

Test accuracy: 0.8772
Number out of 200 test inputs close to a false negative: 183
Number out of 200 test inputs close to a false positive: 34

Box A.6: Test results for the 1x10 neural network detector trained on the classifier’s
output layer values.

Actually adversarial Actually normal

Classified as adversarial 9538 0

Classified as normal 2 9540

Test accuracy: 0.9999
Number out of 200 test inputs close to a false negative: 200
Number out of 200 test inputs close to a false positive: 0

Box A.7: Test results for the 2x32 neural network detector trained on the classifier’s
input layer values.

Actually adversarial Actually normal

Classified as adversarial 9318 189

Classified as normal 222 9351

Test accuracy: 0.9785
Number out of 200 test inputs close to a false negative: 196
Number out of 200 test inputs close to a false positive: 7

Box A.8: Test results for the 2x32 neural network detector trained on the classifier’s
hidden layer values.

Actually adversarial Actually normal

Classified as adversarial 8971 776

Classified as normal 569 8764

Test accuracy: 0.9295
Number out of 200 test inputs close to a false negative: 192
Number out of 200 test inputs close to a false positive: 16

Box A.9: Test results for the 2x32 neural network detector trained on the classifier’s
output layer values.

41

	Introduction
	Preliminaries
	Related Work
	Adversarial examples
	SafetyNet
	Metzen et al.

	Problem Statement
	Detector quality metrics
	Motivation
	Research question

	Method
	Experimental setup
	Noisy MNIST
	Marabou
	SMT encoding of the queries

	Results
	General results
	Confusion matrix and SMT scores do not always agree
	False Negatives metrics negatively correlate
	False Positives metrics weakly positively correlate

	Discussion of the Results
	Added value of the new metrics
	Additional insights
	Limitations and future work

	Results Data

