
Assisting scientist programmers in software

engineering and development

MSc thesis Computing Science

Engin Kırmızıyüz

S1013839

Supervisor Computing Science: dr. D.G.F. Strüber

Supervisor Radboud Radio Lab: dr. S.T. Timmer

November 2, 2022

1

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my wife,
Serdıl, as she continues to support me through thick and thin and has always
encouraged and motivated me to challenge myself and keep on going.

I am very grateful to my supervisors, dr. Strüber and dr. Timmer, for their
continued support and endless patience. Their kindness and critical thinking
have been inspiring and have provided me more insight into my abilities as a
researcher instead of a student.

This journey would not have been possible without PR4 and I would like to
express my deepest gratitude to each and every past and current member. I am
also very thankful to the astrophysicists of Radboud Radio Lab, as their efforts
provided me much insight into what difficulties they experience when developing
software.

Last, but very much not least, I would like to thank my brother and my parents.
My brother, who has always supported me and has given me much advice with
his never ending wisdom. My mother, who provided us with her endless motherly
love. My father, who came to the Netherlands as a young adolescent, as one of
many children of immigrants, who worked years and years to support his wife
and children, who did his best to encourage his sons to study as much as they
could, hoping they would not face the same difficulties he did.

Therefore, I would like to dedicate this thesis to him, my father.

2

Abstract

This thesis examines common problems and difficulties experienced by scientist
programmers and aims to find methods to assist scientist programmers in soft-
ware engineering and development. The literature illustrates a wide spectrum of
problems and difficulties. In particular, the most prevalent difficulties which per-
sist to this day concern requirements engineering and maintaining. Additionally,
the literature describes how the mindset of scientist programmers differs to those
of software developers, resulting in the former seldom applying software practices.

By means of a questionnaire amongst the Astrophysicists of Radboud University
Nijmegen and interviews with a team of Astrophysics and Mathematics students
this thesis illustrates that the problems concerning requirements engineering and
maintaining persist. In addition, by means of interviews and observations, this
thesis evaluates the effect of several methods from the literature on a team of
Astrophysics and Mathematics students, in an attempt to aid them in resolving
the problems they experienced.

The results show that a session with developers and domain experts where
the requirements are made explicit has a positive impact on the productivity
but is not sufficient on its own. Deriving tasks from the requirements has proven
more crucial in the increased productivity. Furthermore, the results on the
impact of pair programming were inconclusive. However, creating specific user
stories, which are clear and concise descriptive tasks, has on multiple occasions
had a significant positive impact on the productivity of the student software
team.

This thesis therefore concludes that frequently creating user stories and
concrete tasks very likely have a significant positive impact on the productivity
of scientists programmers, and thereby can assist scientist programmers in
software engineering and development.

3

Contents

1 Introduction 5

2 Literature review 7
2.1 Common problems in scientific software development 7
2.2 Relating the problems to software practices 8
2.3 Possible misalignment of mindsets 9
2.4 This thesis . 11

3 Project and software team 12
3.1 Project . 12
3.2 Software team . 13

4 Methodology 14
4.1 Action Research . 14
4.2 Data collection . 17
4.3 Interventions . 19
4.4 Evaluation of interventions . 21

5 Results 23
5.1 Common problems and difficulties 23
5.2 Project specific difficulties before interventions 27
5.3 Summarising experienced problems 29
5.4 Interventions and their effects . 29

6 Discussion 35

7 Conclusion 37

A Radboud University Astrophysics Questionnaire 40

B Interview guide RQ3 46

4

1 Introduction

The Radboud Radio Lab and the Electronic Systems group of Eindhoven Uni-
versity of Technology have started a joint student rocketry program. The
initial project concerned the Payload for Radiation-measurement and Radio-
interferometry in Rockets (PR3). One goal of the project was to use radio-
interferometry to track moving objects. The European Space Agency’s REXUS
program has given students across Europe the opportunity to add their payload
to a sub-orbital rocket. The first rendition of the PR3 payload was successfully
launched on a REXUS rocket. However, while the launch was successful, some
components and ground stations failed during the experiment, resulting in the
lack of redundancy in the gathered data. This meant that the quality of the
data could not be assured.

For the second rendition of this program, PR4, the software team (based in
Nijmegen) aims to build a modular data analysis and simulation framework for
the radio-interferometry part of the project. However, this task is complicated
by the fact that most members of the software team are astrophysicists or
mathematicians with little to no professional experience in software engineering
and development.

Related work on scientist programmer productivity and experienced difficulties
show that scientists experience many difficulties which impede their productivity
and motivation. Several surveys, namely those by Wiese et al.[2] and Nguyen-
Hoan et al.[11], show that a large portion of difficulties concern requirements
engineering and maintaining. Additionally, Nguyen-Hoan et al. and Sanders
and Kelly[12] illustrate that scientists focus more on showing that their theory
is correct instead of their software, meaning testing their software is mostly
neglected.

Moreover, concerning the mindset of scientist programmers, Kelly and
Sanders[13] and Nguyen-Hoan et al. observe a tendency to view correctness
as the single most important thing in software, as described by their interviews
and survey respectively. Additionally, Sanders and Kelly[13], and Segal[14]
describe how software is not as important as the scientific models. The latter
even mentions that software development is seen as “a very secondary activity
to their main work”.

To combat these difficulties, Wilson et al.[3] describe twenty-four best prac-
tices to aid in a structured way of working. In addition, Sletholt et al.[10]
conducted a literature review of agile practices and their effects in scientific
software development and concluded that there is a positive impact on testing
and requirements activities.

5

However, the literature also shows that scientific programmers experience that
most software best practices are “not addressing their needs”[5]. They believe
most solutions to be too domain-independent, which leaves the scientific pro-
grammer to brush them aside. I believe it is very likely that the problems and
difficulties experienced in scientific software development are the result of this.

To provide further insight into the problems and difficulties, this thesis aims
to analyse the difficulties experienced by scientists programmers in the literature
and to build further on the literature by analysing difficulties experienced
by Astrophysicists and Mathematics and Astrophysics students affiliated with
Radboud University Nijmegen and the PR4 project.

In addition, this thesis aims to combine the best practices described by
Wilson et al. and the agile practices described by Sletholt et al. to aid scientist
programmers when engineering and developing software, and to determine the
effect of several practices from both studies on the productivity of a team of
Mathematics and Astrophysics students, with little to no prior experience in
professional software development.

The following research question has been formulated:

“How can scientist programmers be assisted in software engineering and
development?”.

To answer the research question, the following sub-questions have been for-
mulated:

RQ1 What are common problems/difficulties scientist programmers experi-
ence when writing software?

RQ2 Which methods exist in the literature to combat these difficulties?

RQ3 What is the effect of using these methods on the productivity of Mathe-
matics and Astrophysics students?

Section 2 discusses existing literature on the difficulties scientist programmers
experience when writing software and on known methods to combat these
difficulties. This section also discusses how the literature on both topics correlates
with each other, and the justification for this research.

The PR4 project and the software team are discussed in Section 3. Section 4
discusses the research methodology. This includes a detailed description of the
Action Research methodology[1], and how it has been applied to this research.

Section 5 describes the results of this research, divided per sub-question.
Then, Section 6 discusses the results and the implication of the results and their
relation to the existing literature. Finally, Section 7 concludes the thesis.

6

2 Literature review

In this section, the known literature related to scientific programming and
difficulties experienced by scientist programmers will be discussed. Scientific
programming in this context relates to the act of software development by
scientist without a background in computer or software science.

2.1 Common problems in scientific software development

Concerning the pain in developing scientific software, Wiese et al.[2] and Nguyen-
Hoan et al.[11] conducted extensive surveys amongst scientist programmers.
Wiese et al. give great insight in the problems reported, which are categorized
in three main categories, each with their sub-categories: technical problems
(70.8%), social problems (23.9%), and scientific-related problems (5.3%).

In the next paragraphs, the difficulties concerning requirements and testing
are described. In addition to the notable size of the difficulties in the literature,
these two subjects were chosen based on initial observations of the PR4 software
team and the initial interviews, which are described in Section 4, where these
subjects were also prevalent.

2.1.1 Requirements

An interesting statistic is the notable size of the reported problems relating
software requirements and management (23.2% of the technical problems) and
‘communication and collaboration’ (19.8% of social problems). This could signal
that there is a lack of software engineering practices amongst the scientific
programmers, where the two metrics could concern making requirements explicit
and maintaining these requirements.

Changing requirements. Wiese et al. mention that the respondents attribute

these problems to the volatile and evolutionary nature of functional requirements,
citing “the objective changes after having worked on it for months”. Nguyen-
Hoan et al. notice, amongst a multitude of characteristics, that requirements
documentation is the least commonly produced type of documentation. Reasons
given by their respondents against documentation include the abundance of time
and effort required and “requirements constantly changing or not specified up
front.”

Up-front requirements. In addition to the observations made by Nguyen-

Hoan et al., Sanders and Kelly [12] noticed in their research that none of
their interviewees created an up-front formal requirements specification, stating
that they wrote it when the software was almost complete, only if regulations
mandated a requirements document.

Amongst scientific programmers, requirements engineering is deemed very
difficult, especially since requirements specifications mostly cannot be specified
up-front [3, 5]. Segal and Morris even state that full up-front requirement

7

specifications are impossible [6], which is reflected in the observations of Nguyen-
Hoan et al. and Sanders and Kelly. Perhaps the ever evolving nature of scientific
software in its respective research could go hand in hand with agile software
practices.

2.1.2 Testing

Nguyen-Hoan et al. moreover found that concerning the types of testing, verifi-
cation against specified requirements and design are the least common. They
also state that verification and peer review were amongst the least performed
testing and verification activities. Sanders and Kelly [12] mention that scientists
use testing to show that their theory is correct, instead of whether their software
works or not. They mention that some of their interviewees, whose testing was
unsystematic, seemed unconcerned nevertheless, possibly due to their focus on
theory. Additionally, Sanders and Kelly [12, 13], and Segal and Morris [6] note
that there is a problem concerning verifying whether a test is successful. They
mention that testing requires data to compare against test results, which can
be very limited (or not available). In addition, they mention that in the case
of a mismatch between the data and test results, the problem might be caused
by a set of factors; either the theory, its implementation, the input data, or the
verification data might cause the problem.

Sanders and Kelly name different techniques; e.g. creating a regression
test suite and the organization of version control, and they mention how these
techniques seem to be missing in scientific software development. Nguyen-Hoan
et al. support this claim by mentioning the apparent lack of “bug/change tracking
or testing tools”. Segal takes this one step further and observed that there is a
“lack of any disciplined testing procedure.”[14]

2.2 Relating the problems to software practices

Wiese et al., in resolving the illustrated pains, refer to Wilson et al.[3], who
describe twenty-four best practices to aid scientists in writing maintainable code
and to improve scientist programmer efficiency. In a more recent paper, Wilson
et al.[4] name “good enough practices”, as an easier stepping stone to software
practices for scientists which had less computational responsibilities. Most of the
best practices incline towards a structured way of working; “Write programs for
people, not computers”, “Make incremental changes”, “Don’t repeat yourself”,
and “Collaborate”.

While these practices could prove extremely useful in aiding the aforemen-
tioned pains, applying them unfortunately is not as straightforward. Milewicz
and Rodeghero describe in their position paper the essence of usability in scien-
tific software [7] and how it is mostly ignored according to Ahmed et al. [8]. Kelly
solidifies this by discussing a “software chasm” between scientific programmers
and software engineers [9], signalling that the scientific programmers are not
applying the current solutions offered by software engineers, mostly due to them
being too domain-independent.

8

An example Kelly gives of the software chasm is that of an overwhelmingly neg-
ative response to a required software engineering course for third-year electrical-
and computer-engineers. Kelly names two major causes; the first being that the
students do not acknowledge that there is a high probability that software will
be part of their jobs. The second major cause is described to be the curriculum
itself, which fails to offer solutions geared towards the type of work the students
might undertake. This is a recurring subject in the research done by Faulk
et al.[5], where they describe that scientific programmers overwhelmingly favor
handcrafted solutions because “the computer scientists don’t address our needs”.
They signal that this causes the scientific programmers to become isolated from
the software engineers’ help. In their research, they have also noticed that “issues
important to software engineers (e.g. maintainable code, robust programming
languages and practices) receive almost no attention from scientific program-
mers”, which correlates with the findings of Milewicz and Rodeghero and those
of Kelly. Faulk et al. also name several skill sets they deem as essential: domain
science, scientific programming, scaling, and management, crucially noting that
these are only useful when they synchronize through communication and collab-
oration. This might signal that there is a tremendous need for certain practices
which could increase amongst others communication and collaboration within a
development team. As mentioned before, perhaps agile software practices could
prove extremely useful.

Sletholt et al. have conducted a literature review of agile practices and their
effects in scientific software development [10]. Here, they focus specifically on

“the impact on testing and requirements activities in projects with agile practices”.
They concluded that their findings show that projects using agile practices indeed
have a better handling of testing and requirements activities.

Therefore, in answer to RQ2, the literature provides ample methods in fa-
vor of resolving the problems reported by the literature. For example, the best
and good enough practices reported by Wilson et al.[3, 4] and the agile practices
reported by Sletholt et al.[10] encompass a broad range of solutions.

2.3 Possible misalignment of mindsets

Up until this point, the literature clearly illustrated numerous practical difficulties
impeding the scientist’s productivity in software development.

However, from the results of the survey conducted by Nguyen-Hoan et al.[11]
and the findings in existing literature, the assumption arises whether there is
a deeper rooted, less easily noticed problem; namely the misalignment of the
mindset of scientific programmers versus the mindset of software engineers.

9

2.3.1 Correctness above all

Kelly and Sanders [13] interestingly, having interviewed scientists who develop
or use scientific software, observed the following; “If the software does not return
correct answers, then it is useless. Being on-time, under budget, maintainable,
or highly usable all take a backseat to correctness.” This can also be seen in
the results of the survey Nguyen-Hoan et al.[11] conducted amongst scientific
software developers. Here, their respondents were asked to rate non-functional
requirements on a Likert scale. The results confirm the importance of correctness,
since all respondents adamantly voted Reliability (summarised by Nguyen-Hoan
et al. as the ability to perform with correct, consistent results) to be either
important or very important, resulting in it to be the only non-functional
requirement to receive a 100% importance rating. Kelly and Sanders even
observed that scientists prefer the system completely crashing, rather than it
possibly giving false results.

2.3.2 The importance of software

The previous observation might signal how scientists perceive the software they
develop, as Kelly and Sanders note the following: “Scientists see the software
code as an inseparable entity from their models. They assess the models. They
normally do not assess the software as a separate thing that needs attention.”
[13]

Interestingly, an observation made by Segal [14] describes that software
development is perceived as “a very secondary activity to their main work”,
where some interviewees mentioned they see developing software as “just a tool”.
Segal strikingly observed the lack of recognition of the skills and knowledge
required to develop software, where she among others quotes a line manager;

“everybody knows how to do [software development](...) It’s assumed that everybody
knows what to do.” [14]

Possibly, this view of software development as just a tool can be linked to
the low importance of the bottom ranked three non-functional requirements as
reported by Nguyen-Hoan et al. These are Reusability with 62% (described as

“the ability to be used in multiple applications”), Traceability with 54% (described
as “the ability to link the knowledge used to create the application through to the
code and the output”), and Portability with 52% (described as “the ability to
be easily modified for a new software/computing environment”). Nguyen-Hoan
et al. namely mention that scientific developers do not anticipate reusing parts
of their system [11].

10

2.4 This thesis

What stands out from the literature is that while there are best practices to aid
not only scientists, but any software developer, scientific programmers never-
theless experience that these are “not addressing their needs”[5]. The scientific
programmers perceive most software engineering solutions to be too domain-
independent, resulting in these solutions being brushed aside, or in extreme cases,
completely ignored. I believe that most of the reported problems and difficulties
experienced by scientific software development are very likely the result of the
isolation of scientific programmers.

To chip away at this firmly rooted tree of scientific software isolation, this
thesis aims to combine the best practices described by Wilson et al. and the agile
practices described by Sletholt et al. and to determine the impact of both studies
on the productivity of a group of student scientific programmers. By means of
the Action Research methodology [1], which is further described in Section 4,
diagnosing a specific problem before each cycle and planning actions accordingly,
this could possibly result in different practices being more effective than others.
This thesis could then contribute to the ongoing research on assisting scientist
programmers in software engineering and development, possibly having an effect
on future academic courses aimed towards scientists who are highly likely to
develop scientific software.

11

3 Project and software team

This section describes the PR4 project context and the software team. Here,
the broader context of the project is outlined, followed by the task the software
team has had at hand. Furthermore, the software team and the software process
and structure is described.

3.1 Project

The PR4 project (Payload for Radiation and Radio-Interferometry on Rockets
Revisited) is a joint student project of TU/e and the Radboud Radio Lab which
focuses on designing and building a payload for rockets. The payload consists of
two experiments; one for radio-interferometry, and one for radiation. The latter
aims to “characterize the arrival direction distribution of cosmic rays at altitudes
between 20 and 80 km”[15], which the team believes might support existing
monitoring stations and cosmic-ray satellites with additional information. To
achieve this, the team designed a CubeSat cosmic-ray detector which scans over
the Earth in orbit.[15]

The former focuses on radio-interferometry to track moving objects. To do
this, a payload on the moving object sends out a radio signal at a constant
frequency. On the ground, separated by hundreds of meters, different ground
stations are placed, each with three antennas to receive the radio signal. This is
then transformed to phase data. The exact coordinates of the moving object
should then be able to be computed using one or multiple reconstruction algo-
rithms.

The software team has been tasked with developing a modular data analysis and
simulation framework. The framework was supposed to consist of three layers,
each with their own responsibilities. The first layer concerned the phase data,
which is either simulated, replayed (from field experiments), or live data from
the ground stations. The second layer included the reconstruction algorithms.
The final layer consisted of the graphical user interface, which was intended
for the configuration of the simulations and for the graphical representation of,
among others, received data, coordinates, and trajectory.

What makes this project especially difficult is the lack of software engineering
experience within the software team. As has been made clear from the literature
review, starting a project and making the requirements clear without being able
to plan too far ahead has been a prevalent difficulty for scientist programmers.
This challenge, therefore, has been paramount for the software team, as designing
each previously described layer and their respective requirements were the first
things on their list of duties.

12

3.2 Software team

The software team has consisted entirely of students from Radboud University
Nijmegen and Eindhoven University of Technology. The size of the team has
been very variable. Since the project is an extracurricular activity for most
students, there have been new students joining and old students leaving due to,
most predominantly, a shift in their schedule. The number of active software
team members has fluctuated between two and five, with the later stages of the
team consisting of three members.

All but one student were either Mathematics or Astrophysics students,
whereas the remaining student studied Artificial Intelligence.

The software team engaged in weekly meetings to keep each other up to date
on the progress and to manage any ongoing or new problems in development.
In the beginning of this thesis project, these meetings were part of a grander
general meeting, which also included the organization of the field experiments
and other organizational matters concerning the project.

Because of this structure, the software meetings were either very short, or not
held at all. This gave incentive to organize a separate weekly software meeting,
which were much more detailed and which gave the software team members
leverage on their current and upcoming tasks.

This structure fits in very well with the research methodology of this thesis
project, which is described in the next section.

13

4 Methodology

In this section, the research methodology is described. The first part outlines
the Action Research methodology [1] and how this methodology was used in this
project. The next section describes the initial interviews and the subsequent
questionnaire study. The Action Research methodology also includes certain
types of interventions to take, in order to tackle a specific problem. The
subsequent section describes these interventions.

4.1 Action Research

The research method used in this project was based on the Action Research
methodology as described by Staron [1]. This methodology allows us to diagnose
problems by cycling through the following five phases:

1. Diagnosing. This focuses on the researcher “collecting opinions and
symptoms which they need to explore in order to decide which challenge to
address during the action research cycle”.

2. Action planning. Here, the researcher and the practitioners (in this case
the software team, which was described in Section 3) plan what actions to
take and how to take them. In this phase, planning which data is collected
and how this should be done is also determined.

3. Action taking. The planned actions are executed and its effect is ob-
served.

4. Evaluation. The collected data is statistically analysed. This analysis
should show whether the actions taken do indeed solve the diagnosed
problem. If this is not the case, either the researcher collects additional
data, or re-diagnoses the problem based on the collected data.

5. Learning. The results of the cycle are specified as “practical guidelines
for the involved organizations and contexts and as theory-building for the
research community”.

In order to refine the research questions, we needed a deeper understanding of
the problems the software team was facing. Therefore, a method was needed to
diagnose these problems, to take steps to remedy or solve these problems, and
to evaluate these steps.

Staron [1] describes how action research is “a method for co-development of
research results, where academia and industry can work together.” Staron also
argues that this results in both parties learning from each other and developing
results which contribute to both industry and academia.

The iterative nature of the methodology itself was deemed fitting for the
software project, as this gave the opportunity to map action research cycles
to different phases of the software project and to clarify, extend, and modify

14

the research question and sub questions of this thesis project. At the same
time, the actions taken during each cycle would benefit the software team in
overcoming their problems in software engineering and development. This was
done by experimenting with different software practices and by evaluating the
previous cycle and bringing to light any shortcomings during the cycle.

4.1.1 Phases and cycles within project

This project consisted of three stages, each with one or two cycles of variable
length. Each cycle contained the phases described above. However, each phase
was not strictly followed according to the points described. For example, during
evaluation, no statistical analysis was carried out, and the impact of the action
was determined by means of observation and acknowledgement of the software
team members.

Figure 1: Stages and cycles within project, September-December 2020

15

In figure 1, the stages and cycles within this project are illustrated. The
stages were defined by the state of the software team and the intervention of each
stage during the project. For example, the first stage ended with an intervention
with regard to requirements engineering and the initial interviews.

The interventions are described in detail in Section 4.3.
Stage 1 consisted mostly of exploring the project and known literature to
determine the research questions, hence two short cycles, where the second cycle
revised the diagnosis of the first one.

Following the first intervention and the initial interviews, further literature
review was conducted in stage 2, combined with the preparation and execution
of the questionnaire study. Distinguishing this stage from the first was the state
of the software team, as some members were leaving the project, this resulted
in the productivity of the team reaching near zero. Therefore, the lone cycle of
this stage focused on diagnosing and resolving this problem, combined with the
tasks described above.

The questionnaire accepted answers far into the final stage and in combina-
tion with its first cycle provided an excellent basis for the final intervention,
which concerned the scrum methodology. The second and last cycle focused on
working with the software team using scrum.

To determine the impact of each intervention, final interviews were conducted
amongst the team members. The details of these interviews follow in the next
subsection.

16

4.2 Data collection

Data collection was planned and carried out in several different ways. First,
the literature review and the initial surveying of the state of affairs within the
software team are discussed. Subsequently, the initial interviews are described.
Finally, the resulting questionnaire and its details are presented.

4.2.1 Literature review

Initial surveying and literature review was carried out to get acquainted with
the project and to define the initial problem definition of this thesis.

The literature review also served as a basis for RQ1 and as crucial to RQ2,
namely by exploring existing difficulties experienced by scientist programmers
and by describing existing methods to combat said difficulties respectively. Addi-
tionally, the literature review granted more insight into defining a questionnaire
for further data collection, described in Section 4.2.3.

Literature review was persistent throughout the first two stages of the project
and has provided solid bases for the initial interviews, the questionnaire, and
the first and third interventions.

For the initial interviews, the questionnaire, and the first intervention, find-
ings from the literature shifted the focus primarily on requirements engineering,
as it was evident that a significant portion of scientist programmers experienced
difficulties on this subject. This was also noticed in the initial surveying in
the first cycle, as observations showed that the software team struggled with
engineering and maintaining requirements, leading to the first intervention.

As for the third intervention, literature review on existing methods to com-
bat the experienced difficulties was fundamental in its preparation. Sletholt et al.
[10] found that agile practices have a positive impact on testing and requirements
activities and the best practices given by Wilson et al. [3] were deemed fitting
within the agile methodology. This provided ample basis for the intervention,
which is described in Section 4.3.3.

4.2.2 Initial interviews

The initial interviews were held to get acquainted with the project and to gain in-
sight into the difficulties the software team experienced at the time. Additionally,
this granted more insight into finding similarities between the current difficulties
and those laid out in the literature, further building upon answering RQ1.

Four interviews were conducted. Two interviewees were software team members
at the time, and the other two were domain experts.

17

All interviewees were asked five open questions:

1. Could you describe the term software development and your view on it in
your own words?

2. Can you name the most profound difficulties you experience when writing
software?

3. What are your thoughts on the current process within the project?

4. What aspects of this project would you change if you could?

5. How (if applicable) would you like to receive help in resolving the afore-
mentioned difficulties?

Subsequently, thematic analysis was carried out, as described by Staron [1], to
recognise recurring themes and to identify their importance. As described above,
this provided a basis for the questionnaire that followed.

4.2.3 Radboud University Astrophysics questionnaire

The aforementioned initial interviews and additional literature research in con-
junction with initial observations in the PR4 project laid the foundation of the
questionnaire that was conducted amongst different researchers of the Astro-
physics department of Radboud University Nijmegen. The aim of this question-
naire was to build upon the existing literature by analysing what difficulties
the astrophysicists experience when developing software, therefore granting
additional information towards answering RQ1.

This questionnaire has had 33 respondents with zero to 40 years of professional
experience in scientific software development. Of those 33 researchers, 30 signal
that their software development skills have been self taught, while, with overlap,
26 signal that they acquired their skills from programming courses during their
studies. When asked which programming languages have been used to develop
non-trivial projects, the grand majority signal either Python or C/C++ (93.8%
and 59.4% respectively).

This questionnaire also had a secondary objective, which was unrelated to
this thesis. Therefore, not all questions are discussed. The questionnaire can be
found in Appendix A in its entirety.

Initially, as can be seen in the characteristics of the respondents above, this
questionnaire starts with exploratory questions to explore different characteris-
tics of the respondents; e.g. how many years of experience in scientific software
development, how the current software development skills were acquired, and in
which language(s) non-trivial projects they have developed.

Subsequently, the respondents were given a set of statements to which they
could signal their level of agreement in the form of a Likert scale, with 1 denoting
‘strongly disagree’, and 5 denoting ‘strongly agree’. The crucial statements
mostly concerned requirements engineering and overall software development

18

habits. Their importance resulted from the initial interviews. The results of
these interviews are discussed in Section 5.1.1. The statements are as follows:

• Using third party libraries is difficult.

• Writing tests efficiently is difficult.

• I prefer using a version control system, even when working alone.

• I make sure that I can reuse my code in the future when writing software.

• I find it easy to keep track of the software’s requirements.

• Making software requirements explicit is easy.

• Making software requirements explicit is worth the effort.

• I always formally document software requirements.

• I find it demoralising when requirements change over time.

Then, the respondents were given a set of open questions. These questions gave
them the opportunity to voice their most profound difficulties in writing software
and third party library usage:

• What parts of writing software do you find (most) difficult?

• What is most important to you when choosing a third party library to use
in your software?

Finally, the respondents were given a list to choose between subjects they
might want to receive help in. This list mostly contained subjects that were
relevant to the aforementioned secondary objective. The crucial subjects included
‘Requirements engineering’ and ‘Agile software development’.

4.3 Interventions

Within this project, there were three interventions, as can be seen in figure 1.
The interventions were held to help combat the difficulties experienced by the
PR4 software team. The first and third interventions were related to the findings
from the literature, which is described accordingly in the following descriptions.
Their descriptions follow the order as seen in the figure.

4.3.1 Requirements engineering

This intervention was held during the exploratory stage of the thesis project. After
initial literature review and observations of the software team, the hypothesis
was that the productivity of the team had halted due to the lack of concrete
software requirements. It was evident that not all members had the same vision
of the software that was to be written.

19

After discussing this with the team, the idea was to hold a requirements en-
gineering session with the software team members and the domain experts. This
included creating a document with functional and non-functional requirements,
and discussing their respective priorities using the MoSCoW method.

Because the literature review was still in a very exploratory phase, the
intervention was mostly based on the intuition and previous experience of the
researcher and the software team. However, from the literature at the time,
specifically Wiese et al., Wilson et al., Faulk et al., and Segal and Morris
[2, 3, 5, 6], it was evident that scientists experienced difficulties in up-front
requirements engineering and the volatile evolutionary nature of requirements in
scientific software. The team was therefore instructed not to think too far ahead
and focus on taking small steps towards a first working version. They were also
informed of the high probability of the requirements changing over time.

4.3.2 Acquisition of new team members

A short while after the requirements engineering session, some members of the
software team mentioned that they would not have any time to spare on the
project anymore, and would be leaving. This resulted in the software team
consisting of only two students.

This was reason for the researcher to repetitively inquire the PR4 project
leaders and domain experts for new software team members. This was done on
multiple occasions, mostly during the weekly team meetings. The researcher
reasoned that, ideally, the new members should work on the project as part of a
thesis or internship project to reduce the impact of courses and deadlines on their
productivity. However, at that stage of the project, there was not yet a possibility
of defining such thesis or internship projects. This meant that the ideal measures
of recruitment were not yet possible, and had to be let loose until further notice.
Therefore, recruitment focused on students of Mathematics, Astrophysics, and
Computer Science. Ultimately, four new members were recruited, of which
three became active software team members. All three were students of the
aforementioned fields respectively.

4.3.3 Scrum training

The final intervention was inspired by the findings of Sletholt et al.[10] and by the
best practices of Wiese et al.[3] as mentioned in Section 2.2. The software team
was already using a very rudimentary agile structure by having weekly software
meetings where the progress and where new goals were discussed. However, the
new team members were not aware of any structure and felt quite lost. The idea
was, therefore, to present the Scrum methodology and to link it to the current
structure of the project.

This intervention included a training session with all software team members.
They were first introduced to the Scrum methodology and the agile ideology.
The subjects of sprints, roles, and the backlog and its user stories were presented.

20

The focus was mostly set on requirements refinement and user stories, as the
team has had most difficulties with those subjects.

The presentation also discussed several best practices mentioned by Wilson
et al.; “Make incremental changes: Frequently ask for feedback”, “Don’t repeat
yourself: Modularize your code! Make it reusable”, and “Collaborate: Use pair
programming; Use Git”. In addition, concrete examples were given, e.g. on
modularising code and using Git. The latter was supported by a document
outlining the different applicable commands, e.g. git commit, git pull, and git
push, outlining when to use which, how merging and merge conflicts work, and
how pull requests work.

Finally, the training ended with a collaborative effort on clarifying the
requirements of the first intervention and on deriving clear and small user stories
from them.

4.4 Evaluation of interventions

Since this thesis project concerned qualitative research, measuring and evaluating
the effects of the different interventions to answer RQ3 was done by means of
final interviews with the software team members. Six people were interviewed.
Two were domain experts and the rest were active members of the software team.
The interview guide can be found in Appendix B in its entirety.

The interviewees were asked several open questions concerning their opinion on
and description of each phase. For example: How would you describe the state
of affairs before intervention X?, How would you describe the state of affairs
after intervention X?, and How would you describe the effect of the intervention
on the project? Intermittently, to quantify the results of the interventions, the
interviewees were given the following statements to rate between one and ten:

1. How productive do you rate the software team?

2. How productive do you rate yourself?

3. The software team members were aware of what task everyone had.

4. I knew exactly what to do.

5. The requirements of the software were clear.

6. I as a developer am confident in writing software.

Three of the six joined the team after the second intervention, which meant
that the first phase was only relevant to the original members. Two of the
interviewees were domain experts, who only had a supporting role and were not
actively involved in developing the software. Therefore, the statements 2, 4, and
6 did not apply to them, as these focused on the software developer’s view of
themselves.

21

Subsequently, the interviewees were asked to give their opinions on each inter-
vention and whether there could be any improvements for the future.

As described before, regarding the initial interviews, thematic analysis was
carried out on the open questions of these final interviews. This was done to
recognise any recurring themes and to identify their importance. This gave solid
insight into additional items of importance, concerning the possible effects of
the interventions.

The justification behind the emphasis on solely the project process of the
questions and statements lies in the nature of the software project at the time.
Since the software project was in a very experimental and exploratory phase,
no emphasis could be put on specific topics regarding software quality and
stakeholder interests.

Nevertheless, this thesis serves as an extension on the existing literature by
means of theory testing. The thesis project aimed at finding the difficulties
scientist programmers endure and analysing the effect of best practices and agile
practices provided by the literature.

As the literature showed that there exists vast amounts of difficulties experi-
enced by scientific software developers, this thesis builds on this by providing
relevant and topical difficulties that were experienced by the PR4 software team
and the Astrophysics department of Radboud University Nijmegen. Additionally,
the impact of the best practices and agile practices provided by the literature on
the difficulties experienced by the PR4 software team was determined by means
of the interventions, observations, and final interviews.

22

5 Results

This section describes the results of the research. First, the results of the initial
interviews are discussed, followed by results of the questionnaire study.

Subsequently, the project specific difficulties are illustrated. This subsection
focuses primarily on the observations of the software team during the thesis
project. These observations are described in chronological order, as was done in
the methodology section.

Finally, the results of the interventions and their effects on the student
software team are described.

5.1 Common problems and difficulties

As discussed in Section 2 and Section 4, the literature evidently shows that a
significant portion of the difficulties scientist programmers experience concerns
requirements engineering and maintaining. Additionally, the manner in which
these findings have shaped the initial interviews and questionnaire has been
made clear.

Towards answering RQ1, the following paragraphs present the results of these
interviews and the questionnaire study.

5.1.1 Initial interviews with the software team

After the initial interviews were conducted with the PR4 software team, the
most notable difficulties mentioned concerned requirements engineering and
maintaining. Interviewees mentioned that requirements changing in the middle
of a project was very frustrating. Another interviewee notes that his lack of
software development experience restricts his abilities in contributing much to
the project, mentioning: “No one has said ‘This is what you must do exactly’,
which leaves me empty handed, because I have no idea what to do.” The same
interviewee notes: “I also feel like I cannot contribute to requirements engineering,
since I seem to lack the complete vision of the software.” This shows that there
is a recurring problem in up-front requirements engineering, and the distribution
of the overall vision of the software.

5.1.2 Surveying Radboud University’s Astrophysics department

Following the initial interviews, a questionnaire was conducted amongst different
researchers of the Astrophysics department of Radboud University Nijmegen, as
described in Section 4.

The respondents were given a set of statements to which they could signal
their level of agreement in the form of a Likert scale, with 1 denoting ‘strongly
disagree’, and 5 denoting ‘strongly agree’. As was described in Section 4, 33
responses were received.

23

Requirements. When asked about requirements, the results seem to be very
interesting. The statements and results concerning requirements can be seen
in Figure 2. On whether it is easy to keep track of the software’s requirements
(Figure 2a), the opinions are balanced. Eleven respondents agree and the same
amount disagrees.

Almost a half of the respondents (fourteen) disagree on the notion that
making software requirements explicit is easy (Figure 2b). This shows that
requirements engineering is still deemed difficult. The results also show that
requirements changing over time is experienced as demoralising (Figure 2e), as
fifteen respondents agreed with that statement. This correlates with findings
in the literature, as problems reported by Wiese et al. were attributed to the
volatile and evolutionary nature of functional requirements [2].

Interestingly, a majority of the respondents, 22 out of 33, agree that making
requirements explicit is worth the effort (Figure 2c), while only seven respondents
signal that they always formally document software requirements (Figure 2d).
These responses seem to mostly correlate with the amount of problems reported by
Wiese et al. on software requirements and management. While it is evident that
requirements engineering is especially difficult in scientific software development
[2, 3, 5, 6], only six respondents signal that they would like to receive help in
requirements engineering.

24

(a) I find it easy to keep track of the
software’s requirements.

(b) Making software requirements explicit
is easy.

(c) Making software requirements explicit
is worth the effort.

(d) I always formally document software
requirements.

(e) I find it demoralising when requirements change over time.

Figure 2: Five questions on requirements and their answers
(1 stands for ‘strongly disagree’, 5 stands for ‘strongly agree’)

25

Third party libraries. When asked whether using third party libraries is
difficult, nine respondents disagreed and eight strongly disagreed, while ten did
not agree nor disagree. The respondents were also asked what is most important
to them when choosing a third party library to use in their software. While only
nineteen responses were given, fifteen of them mentioned documentation, and
six mentioned maintenance.

Faulk et al. reported that frequent complaints about third-party libraries
and tools are that they are hard to learn and poorly supported. However, Wiese
et al. reported only a tiny fraction of all problems to be related to third-party
libraries [5, 2], which corresponds more with the responses mentioned above.

Starting a project/Initial design. On the question “What parts of writ-

ing software do you find (most) difficult?”, 26 responses were given. Most
notably, ten of the responses mention that starting a project and the initial
design of the software is most difficult. Interestingly, this coincides with the
aforementioned difficulty of requirements engineering in scientific software de-
velopment. One of the respondents even noted the following: “The software is
usually developed at the same time we understand a scientific problem. So, the
most difficult part is actually understanding which kind of software we need for
solving a specific problem.”. This signals that defining requirements up-front
is indeed not viable and this might even signal that there could be more focus
on changing the initial mindset of the scientific software developers concerning
requirements over time.

About version control, the respondents do mention that they prefer using
a version control system. On the statement “I prefer using a version control
system, even when working alone”, twenty respondents either agree (six) or
strongly agree (fourteen), possibly showing a positive change regarding software
development habits.

Earlier, in the literature review, Nguyen-Hoan et al. mention that scientific
developers do not anticipate reusing parts of their system. The respondents of
the Radboud questionnaire, however, think differently. On the statement “I
make sure that I can reuse my code in the future when writing software”, 24
respondents either agree (fourteen) or strongly agree (ten). Showing that there
might be a shift in the importance of reusable software.

26

5.2 Project specific difficulties before interventions

In this subsection, the project specific difficulties are described. Here, the focus
lies on the observations made of the software team during the thesis project,
illustrating the circumstances which lead to each respective intervention. These
observations are supported by the interviews described in Section 4.4, as each
interviewee was asked to describe each phase in their own words.

5.2.1 Overall vision/lack of concrete requirements

The first stage of the thesis project revolved around getting acquainted with the
project and the software team. An evident lack of productivity was observed,
but the cause was yet to be determined. Developers were tasked with choosing
relevant technologies for different parts of the software by means of experimen-
tation. They were able to present some alternatives and their own preferences
regarding the technologies. However, these preferences were not based on any
specific requirements of the software, as the overall vision was not clear to all
members of the software team.

The interviewees solidify the lack of productivity, as one interviewee men-
tioned: “We were not concretely working towards measurable goals. We were just
doing something.” In support of the software team, one of the domain experts
mentioned: “We were at the brink of starting the project with a new team. They
just did not know what to do at the time.”

One of the developers noted: “In that period, there was a long time where
I had no clear task. (...) We did not get much done. (...) Our team was
undermanned, and we had no idea what we were doing.”

From these observations, the hypothesis has been that the productivity of
the software team had halted due to a lack of concrete software requirements. As
mentioned above, there were no clear goals, and the team had no idea what to
do. Therefore, the decision was that there should be an intervention concerning
requirements engineering.

5.2.2 Available time

Remarkable unforeseen difficulties about the productivity of the software team
that have been observed concerned the amount of time each developer had to
spare on the project.

Since this has been an extracurricular student project since its conception,
the students working on it have done so predominantly on a voluntary basis. This
meant that the productivity came to a grinding halt as soon as exam periods or
miscellaneous deadlines approached. For some developers, finishing the semester
meant leaving the project altogether, resulting in the already undermanned
software team consisting of only two students at one point. Discussions on the
subject resulted in more effort being shifted to recruiting new team members.

27

5.2.3 Lack of unanimous vision/lack of concrete requirements II

After new team members were acquired, they were similarly tasked with experi-
menting with different libraries and developing small proofs of concept.

When evaluating the progress of the experiments during one of the weekly
meetings, one of the new software team members explicitly noted its uncertainty
on how a specific component should exactly look, since the vision of the initial
members has not been made entirely explicit. The developers started indicating
that they found the existing documentation on the requirements difficult to
understand and difficult to translate into “bite-sized chunks” for them to pick
up. This showed that a one-time requirements session is not sufficient.

The software team members solidify the observations. One developer states:
“When I first started, the task that was given to me was a bit vague. (...) I think
we had a lot of different tools that we were using, so it was a bit unclear which
one I should look at. I think that affected our productivity; It was so open that
we had to decide what to do and that made it vague and unclear.”

Another developer’s view is in line with the previous: “I didn’t have the idea
that there were any deadlines. I don’t think anyone had, which meant none of
us really had an idea what we were doing exactly. That negatively impacted my
productivity. I didn’t have the idea we were working towards something together.
That was the biggest drawback.”

While the other interviewees share the same experiences, there was also a
positive note. A third developer notes: “The first weeks were mainly to get
acquainted with the project. I believe the time we took was really needed to start
up well. Even though we were not writing software, us getting acquainted should
still be considered productive.”

Concerning the software development method of the team, the structure ob-
served had similarities with an agile method, like Scrum. For example, there
were weekly software meetings where the team discussed the progress of each
developer, eventual blockades/pitfalls, and where new goals were set for the next
meeting.

However, it was presumed that the team was not aware of any structured
method, and that the team was not aware of what they were achieving as a
collective.

28

5.3 Summarising experienced problems

To answer RQ1, we must first acknowledge that there is much correlation between
the literature and the parties observed during this thesis project. Therefore,
in addition to the scientist programmers in the literature, astrophysicists and
astrophysics and mathematics students affiliated with Radboud University and
the PR4 project respectively experience similar problems.

Most notably, difficulties concerning requirement engineering and refinement
seem to persist, most likely due to the evolutionary nature of scientific software
development.

The astrophysicists seem to acknowledge the importance of making require-
ments explicit, but also agree on the demoralising nature of volatile requirements.

Very little respondents agreed on whether using third party libraries is diffi-
cult, which is in line with the literature.

Starting a project and the initial design of it seems to be difficult for sev-
eral astrophysicists. The same was observed with the PR4 software team, as
they had difficulties with grasping the overall vision and with the requirements
of the project, which seemed to be the most prevalent problems.

5.4 Interventions and their effects

This subsection describes the reasoning behind the interventions and the effect
the interventions have had on the software team. Where the previous subsection
described the circumstances and the context of the team which led to the
interventions, this subsection describes the motivation behind each intervention
and the effect it has had on the software team, therefore providing an answer to
RQ3.

5.4.1 Requirements engineering

This intervention took place in the first stage of the thesis project. At the time,
only exploratory literature review was carried out. The software team lacked a
unanimous vision of the software and there was no clear list of software require-
ments, which meant that these problems were to be tackled first. It was duly
noted that these requirements were to be preliminary, as the literature clearly
shows that up-front requirements in scientific software development is impossible.

Effect. As mentioned in Section 4.4, only three of the six interviewees were

present at this stage of the project. Only one interviewee was a developer at the
time, as the other two were domain experts with solely a supporting role.

Thematic analysis has shown recurring themes in the opinions of the three
interviewees. The main items concerned the slow but positive effect of the
intervention on the productivity of the team, which was attributed to initial
persistent uncertainty amongst the team.

29

The interviewees mentioned that it took some time before the team picked up
the pace, as not everyone was aware of what to do next. One domain expert
noted: “There was a wait-and-see attitude. (...) I think people needed something
else, in addition to the requirements, namely a feeling for how it is all going to
work. Understanding the essence (of the software) took a while.”

The eventual increase in productivity is attributed to the tasks that were derived
from the requirements. One interviewee noted: “There were very big blocks of
things that had to be done, which in turn had to be split up in small blocks. To
me, it was pleasant to have one simple thing to work on.”

Another domain expert noted: “Initially, not everyone quite knew what they
wanted and what they could work on. Shortly after, everyone had concrete things
they could work on and they had enough knowledge to do so. That moment was
a turning point where productivity greatly increased.”

The interviewees were also asked to rate statements describing different as-
pects before and each intervention, as was described in Section 4.4. The results
can be seen in Table 1 and Table 2 respectively.

Interviewee
Team

Productivity
Individual

Productivity
Team Task
Awareness

Individual
Awareness

Requirement
Clarity

Developer
Confidence

Domain Expert 1 1 - 1 - 1 -
Domain Expert 2 5 - 1 - 1 -

Developer 1 2 1 1 1 1 1

Table 1: Statements before intervention.
Ratings are from 1 (lowest) to 10 (highest)

Interviewee
Team

Productivity
Individual

Productivity
Team Task
Awareness

Individual
Awareness

Requirement
Clarity

Developer
Confidence

Domain Expert 1 1 (+0) - 6 (+5) - 8 (+7) -
Domain Expert 2 7 (+2) - 10 (+9) - 8 (+7) -

Developer 1 3 (+1) 5 (+4) 1 (+0) 5 (+4) 4 (+3) 4 (+3)

Table 2: Statements after intervention.
Ratings are from 1 (lowest) to 10 (highest)

30

The results show some discrepancies between the domain experts and the de-
veloper. For example, Domain Expert 2 signals that the productivity increased
very much, but noted that it took a while until it did so. The others agree on
the same, but have given a low rating as they referenced the short term after
the intervention. The results also show an increase in requirements clarity and
team task awareness. However, the developer believes there was no increase in
general awareness, noting: “We were already a small team and I was starting to
become alone, as the rest of the developers were phasing out”.

Concerning RQ3, several conclusions can be drawn based on these results.
The requirements have served as a good basis for creating a clearer vision of the
software that was to be developed.

They were, however, not sufficient on their own, as it was clear that it were
the tasks derived from the requirements which served as the turning point in
productivity.

The emphasis should therefore not be solely on requirements engineering,
but on deriving said small tasks from the requirements. This enables the team
to obtain a better understanding of the software, while providing them tasks to
further shape and mold the software through experimentation.

5.4.2 New team members

As described previously, remarkable difficulties concerned the amount of time
each developer had to spare on the project. Eventually, the software team was
very undermanned and was in dire need of additional developers as little to no
tasks were getting done. After repeated inquiries at the PR4 project leaders,
four students were recruited, of which three became active developers.

Effect. All six interviewees were present at this stage of the project. This

means that four developers and two domain experts were interviewed about this
intervention.

The new developers’ view on their first period with the project has many
similarities with the previous interviews. They experienced a lot of uncertainty
and were not aware of much structure in the development methodology. Some
even showed concern about themselves, which they attributed to the amount of
freedom and openness they were given on getting acquainted with the project.
As mentioned before, one of the developers noted: “It was so open that we had
to decide what to do and that made it vague and unclear.”

To help get the developers acquainted with the project, the researcher and
domain experts discussed whether pair programming would have a positive effect.
This discussion stemmed from the best practices described by Wilson et al.[3]
This was difficult to put into practice, as the developers’ schedules did not always
align well enough. Eventually, a more rudimentary approach was taken, as pairs
of developers were given the same task to work on together.

31

There has not been any conclusive evidence on whether it had a positive effect
on the productivity of the team and on them getting acquainted with the project.
The domain experts mention that the new developers were quick to understand
the project and pick up tasks, but none attribute this to pairs working on the
same task.

In contrast, one developer has had a very negative experience; “I found it
very difficult to work on the same task with my teammate. I could not keep up
with his pace, which resulted in my falling behind very much. Ultimately, this
was one of the reasons for me leaving the software team altogether, as I did not
feel useful anymore.” This shows that working in pairs should be done with
caution, as situations where one is outpaced by another can have detrimental
effect on the motivation and productivity of developers.

The interviewees were again asked to rate the previously mentioned statements.
For the first three interviewees, Table 2 serves as the status quo before this
intervention and Table 3 as after this intervention.

Interviewee
Team

Productivity
Individual

Productivity
Team Task
Awareness

Individual
Awareness

Requirement
Clarity

Developer
Confidence

Domain Expert 1 1 (+0) - 6 (+0) - 8 (+0) -
Domain Expert 2 5 (-2) - 10 (+0) - 8 (+0) -

Developer 1 5 (+2) 5 (+0) 5 (+4) 5 (+0) 6 (+2) 3 (-1)
Developer 2 6 6 8 6 4 4
Developer 3 5 3 6 4 5 6
Developer 4 6 7 6 7 6 7

Table 3: Statements after new developers.
Ratings are from 1 (lowest) to 10 (highest)

Table 3 shows that the new developers were quite positive about their starting
period. They mentioned that starting up was difficult, but that the team was
nevertheless productive after a short while.

The domain experts, despite their positive opinion on the team starting up
quickly, were not yet willing to change their ratings, as they believed the new
team was still starting up at the time.

Nevertheless, the intervention proved itself beneficial for the team. As more
developers were acquainted with the project quickly, the overall productivity
improved.

However, in answer to RQ3, the effect of pair programming, which was
influenced by the best practices illustrated by Wilson et al.[3], is inconclusive.

32

5.4.3 Scrum training

The initial vagueness and uncertainty was attributed to the software requirements.
These were not relayed sufficiently as the new developers were tasked with
exploring different libraries to use, which sparked confusion, as one developer
had noted: “We have the requirements document, but I have no idea what to do
exactly.”

This evidently shows that a one-time requirements session is not sufficient.
As mentioned in Section 2.2, Sletholt et al. illustrate that projects using agile
practices have a better handling of testing and requirements activities. Sec-
tion 4.3.3 described how the software team was already using a rudimentary agile
approach by having weekly software meetings where the progress was reported
and new goals were set.

Since the new developers, were not aware of any structured method or of any
deadlines or goals, a presentation was given concerning the Scrum methodology.
During the presentation, the team was also shown several best practices men-
tioned by Wilson et al., as mentioned in Section 4.3.3. Subsequently, a tutorial
on Git was given and a textual version was provided for later use.

After the presentation, the present developers and domain experts collabo-
rated on creating user stories and deriving small, concrete tasks.

Effect. All interviewees agree on the great increase of productivity amongst the

team. However, most interviewees attributed this increase to the user stories
and concrete tasks, instead of on the Scrum methodology itself, as one developer
stated: “I never had the idea that we were really using Scrum, so I wouldn’t
say the presentation was very useful. However, there was a steep increase in the
team’s productivity, so from that point of view I would say it was very useful. I
believe the user stories and tasks were everything we needed. It provided us with
a clear list of concrete tasks and that was very pleasant.”

One domain expert noted: “I am not convinced that one must use Scrum to
run a project. (...) In this case, I do believe the intervention was needed, as it
stimulated the team. (...) In the future, I would focus mostly on the user stories.
In hindsight that was the part that had proven itself most useful.”

One of the developers had a different opinion on the cause: “The most
important thing for the team, what mostly helped raise the productivity of the
team, did not have to do with the intervention or the documentation, but was the
presence of a software team leader. For me, the biggest change was that there was
someone who had an idea of what everyone was doing, had experience of lead-
ing a project, and could reason with the individuals, support them and keep order.”

Concerning the best practices mentioned during the presentation, the developers
did not have a strong opinion in favor of or against them. One developer men-
tioned that modularising the code has resulted in the code being more readable
and maintainable. The others mentioned that the best practices were useful, but
quite straightforward and some even trivial.

33

They did however have a strong opinion in favor of the Git tutorial and document.
One developer mentioned: “I didn’t have a lot of experience with Git. I actually
benefited a lot from the PDF you made. (...) Sometimes when you look for
information it gets too complicated. It helped me a lot during my studies now.”
The other developers also noted that they use the document as reference during
their studies. When asked whether they believe using Git is worth the effort, all
responses were strongly in favor.

Table 4 shows the statements after the Scrum intervention.

Interviewee
Team

Productivity
Individual

Productivity
Team Task
Awareness

Individual
Awareness

Requirement
Clarity

Developer
Confidence

Domain Expert 1 8 (+7) - 8 (+2) - 8 (+0) -
Domain Expert 2 8 (+3) - 10 (+0) - 8 (+0) -

Developer 1 7 (+2) 3 (-2) 7 (+2) 5 (+0) 7 (+1) 2 (-1)
Developer 2 8 (+2) 8 (+2) 8 (+0) 9 (+3) 9 (+5) 9 (+5)
Developer 3 8 (+3) 7 (+4) 8 (+2) 7 (+3) 8 (+3) 7 (+1)
Developer 4 8 (+2) 7 (+0) 9 (+3) 9 (+2) 8 (+2) 8 (+1)

Table 4: Statements rated after scrum intervention.
Ratings are from 1 (lowest) to 10 (highest)

The results show improvements almost exclusively. The developers mentioned
that the user stories and tasks made everything much more clear. They noted
that they were setting concrete goals, were aware of what everyone was doing,
and were aware what they were involved in together.

The domain experts specified that the productivity increased due to the
concreteness of the tasks, which in turn had the developers more engaged in
their responsibilities.

With regards to answering RQ3, this has been the most influential intervention
of the three, as the productivity and motivation of the team steeply increased.
Several important remarks were made by the developers on points that increased
the productivity, such as having a figure with knowledge and experience that
leads the team, and such as modularising the code to make it more readable and
maintainable.

However, as mentioned, the crucial part of the intervention was the collab-
oration on the user stories and the tasks derived from them. Repeating what
one domain expert mentioned above, much emphasis should be laid on the user
stories in the future. A critical note in addition, which one developer rightfully
mentioned, is the importance of revising the user stories frequently, as that
makes sure all tasks can streamlined and requirements can be refined where
needed.

34

6 Discussion

This thesis project was carried out to answer the following question: “How can
scientist programmers be assisted in software engineering and development?”

In answer to RQ1, the literature has shown that requirements engineering
and refinement has been the most prevalent difficulty that is experienced by
scientist programmers, due to the evolutionary nature of the projects. The
Radboud Astrophysics questionnaire and the observations on and interviews
with the PR4 software team support this claim.

The research methodology proved itself useful, allowing this research to be
refined and extended based on observations of the PR4 software team.

Three interventions were carried out based on these observations and were
supported by methods illustrated in the literature as part of RQ2.

To answer RQ3, the effect of the interventions were measured by observations
after the interventions and interviews at the final stage of the project.

The first intervention showed that a session with developers and domain
experts where the requirements were made explicit served as a good basis for
creating a clearer vision of the software. It was however concluded that the
requirements themselves were not sufficient on their own, as the tasks derived
from the requirements were more crucial in the increased productivity.

The second intervention was very beneficial for the team, as the overall
productivity improved. However, whether pair programming had a notable effect
on this was inconclusive.

The most notable was the final intervention concerning Scrum. Observa-
tions determined that productivity of the team increased steeply. Thematic
analysis done on interviews conducted with each software team member solidify
the observations, as there were strong positive opinions concerning the team’s
productivity.

However, this has been attributed not to Scrum, but to the user stories and
the small, concrete tasks derived from the user stories, which correlates with the
findings from the first intervention.

Therefore, based on the experience of the PR4 software team consisting of
Astrophysics and Mathematics students, this thesis has shown that frequently
creating user stories and concrete tasks very likely has a significant positive
impact on the productivity of scientist programmers, and thereby can assist
scientist programmers in software engineering and development.

This thesis project did have its limitations. As the main research question
concerns scientist programmers in general, the generalisability of the results
is limited by the specific fields of the respondents and the software team, as
they are astrophysicists and Astrophysics and Mathematics students respectively.
Nevertheless, their views and input are crucial, as their problems and difficulties
illustrate that action still must be taken to assist the broader group of scientist
programmers.

35

Another aspect to consider is the small size of the software team and the fact
that only one team was observed. This leaves to speculation any additional
problems and difficulties that are experienced to this day. Furthermore, the
effect of the methods could be determined more reliably with more and/or larger
groups.

However, as the team was variable, which meant new members joined through-
out the project, the results have shown that the newer members experienced
similar problems to those experienced by the older ones. At the same time,
the effects of the first and third intervention, which concerned requirements
engineering with the older and newer members respectively, were also very
similar.

It was unforeseen that the software team members had very limited time to
spare, which resulted in the developers working around each other’s timescales.
This meant that not all methods from RQ2 were applicable. Still, the results
show clearly whether the methods that were applicable were effective or not.

Future work should consider the positive effect of user stories and concrete
tasks on the productivity of scientist programmers. In doing so, these methods
could possibly result in the difficulties concerning requirements engineering and
maintaining to be a considerably smaller burden for scientist programmers.

In addition, future work could further consider the effect of including these
methods in the curricula of students in scientific fields.

36

7 Conclusion

In light of assisting scientist programmers in software engineering and devel-
opment, this thesis project has illustrated common problems and difficulties
experienced by scientist programmers as described by the literature, supported
by a questionnaire carried out amongst the Astrophysics department of Radboud
University Nijmegen, and supported by observations and interviews on the PR4

software team consisting of Astrophysics and Mathematics students.
In addition, this thesis project has highlighted existing methods and practices

to aid in resolving the problems and difficulties.
Finally, the effect of several of the methods on the PR4 software team has

been determined based on observations and interviews regarding three interven-
tions where the methods were applied. From this, the most effective method has
been to create user stories and derive tasks from them.

The results of RQ1 show that there is significant correlation between problems
and difficulties reported by the literature, those reported by the astrophysicists of
Radboud University, and those observed by the researcher on the PR4 software
team. This shows that those problems and difficulties still persist amongst
scientist programmers.

In particular, difficulties concerning requirement engineering and refinement
continue to bug the scientist programmers. The literature illustrated how
requirements frequently changing and up-front seem to be frequently reported
difficulties and how it contributes to scientist programmers seldom producing
requirements documentation.[2, 11]

The findings of this thesis project support this, as a significant portion
of the astrophysicists signalled that requirements changing over time works
demoralising and, at the same time, a small fraction signalled that they always
formally document software requirements, while two thirds of the respondents
agree that making requirements explicit is worth the effort.

This means that finding methods to help the scientist programmers is crucial
to this day, as requirements are the foundation to each and any software project.

This thesis project described several available methods provided in the
literature in answering RQ2[3, 4, 10] and has illustrated the effect of several
of these methods on a team of Astrophysics and Mathematics students who
experienced similar difficulties as described in RQ1 in answer to RQ3.

In doing so, this thesis project concludes, in support of the findings of Sletholt
et al.[10], that sessions where user stories are created and tasks are derived have a
significant positive impact on scientist programmer productivity, thereby aiding
scientist programmers in difficulties concerning requirements engineering and
maintaining. It must be noted that this should not be a one-time session, but a
recurring event throughout the project.

37

References

[1] Staron, M. (2020). Action Research in Software Engineering. Springer, Cham.
doi: https://doi.org/10.1007/978-3-030-32610-4_2

[2] Wiese, I., Polato, I., & Pinto, G. (2020). Naming the Pain in Developing
Scientific Software in IEEE Software, vol. 37, no. 4, (pp. 75-82), July-Aug.
2020, doi: https://doi.org/10.1109/MS.2019.2899838

[3] Wilson, G., Aruliah, D.A., Brown, C.T., Chue Hong, N.P., Davis, M., et al.
(2014) Best Practices for Scientific Computing. PLOS Biology 12(1): e1001745.,
doi: https://doi.org/10.1371/journal.pbio.1001745

[4] Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal,
T.K. (2017) Good enough practices in scientific computing. PLoS Comput Biol
13(6): e1005510., doi: https://doi.org/10.1371/journal.pcbi.1005510

[5] Faulk, S., Loh, E., Vanter, M. L. V. D., Squires, S., & Votta, L. G. (Nov.-Dec.
2009) Scientific Computing’s Productivity Gridlock: How Software Engineering
Can Help in Computing in Science & Engineering, vol. 11, no. 6, (pp. 30-39),
doi: https://doi.org/10.1109/MCSE.2009.205.

[6] Segal, J., & Morris, C. (July-Aug. 2008) Developing Scientific Software in
IEEE Software, vol. 25, no. 4, (pp. 18-20), doi: https://doi.org/10.1109/
MS.2008.85.

[7] Milewicz, R. & Rodeghero, P. (2019) Position Paper: Towards Usability as a
First-Class Quality of HPC Scientific Software in 2019 IEEE/ACM 14th In-
ternational Workshop on Software Engineering for Science (SE4Science), Mon-
treal, QC, Canada, (pp. 41-42), doi: https://doi.org/10.1109/SE4Science.
2019.00012.

[8] Ahmed, Z., Zeeshan, S., & Dandekar, T. (2014) Developing sustainable
software solutions for bioinformatics by the “Butterfly” paradigm. [version
1; peer review: 2 approved with reservations]. F1000Research, doi: https:

//doi.org/10.12688/f1000research.3681.1.

[9] Kelly, D.F. (Nov.-Dec. 2007) A Software Chasm: Software Engineering and
Scientific Computin. In IEEE Software, vol. 24, no. 6, (pp. 120-119), doi:
https://doi.org/10.1109/MS.2007.155.

[10] Sletholt, M.T., Hannay, J., Pfahl, D., Benestad, H.C., & Langtangen,
H.P. (2011, May). A Literature Review of Agile Practices and Their Effects
in Scientific Software Development. In Proceedings of the 4th international
workshop on software engineering for computational science and engineering
(pp. 1-9), doi: https://doi.org/10.1145/1985782.1985784.

[11] Nguyen-Hoan, L., Flint, S., & Sankaranarayana, R. (2010, September).
A Survey of Scientific Software Development. In Proceedings of the 2010

38

https://doi.org/10.1007/978-3-030-32610-4_2
https://doi.org/10.1109/MS.2019.2899838
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1109/MCSE.2009.205
https://doi.org/10.1109/MS.2008.85
https://doi.org/10.1109/MS.2008.85
https://doi.org/10.1109/SE4Science.2019.00012
https://doi.org/10.1109/SE4Science.2019.00012
https://doi.org/10.12688/f1000research.3681.1
https://doi.org/10.12688/f1000research.3681.1
https://doi.org/10.1109/MS.2007.155
https://doi.org/10.1145/1985782.1985784

ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement (pp. 1-10), doi: https://doi.org/10.1145/1852786.1852802.

[12] Sanders, R., & Kelly, D. (2008). Dealing with risk in scientific software
development. IEEE software, 25(4), (pp. 21-28), doi: https://doi.org/10.

1109/MS.2008.84.

[13] Kelly, D., & Sanders, R. (2008). Assessing the quality of scientific software.
In Proceedings of the First International Workshop on Software Engineering
for Computational Science and Engineering.

[14] Segal, J. (2007, September). Some problems of professional end user develop-
ers. In IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC 2007) (pp. 111-118), doi: https://doi.org/10.1109/VLHCC.2007.
17.

[15] PR4 Space - Science, Technology and Engineering. https://pr4.space.
Online; accessed October 4, 2022.

39

https://doi.org/10.1145/1852786.1852802
https://doi.org/10.1109/MS.2008.84
https://doi.org/10.1109/MS.2008.84
https://doi.org/10.1109/VLHCC.2007.17
https://doi.org/10.1109/VLHCC.2007.17
https://pr4.space

Astrophysics questionnaire

Your experience in scientific software development

The goal of this questionnaire is to gain insight in the difficulties scientist
programmers endure when writing software. Additionally, with the results, the aim is
to find possible methods to assist scientist programmers in writing readable,
reusable, and modular software.

What is your age?

What is your gender?

Male

Female

Other: _____________________

For how many years have you developed software for scientific purposes?

How many hours per day do you write software for scientific purposes?

0 to 1 hour

1 to 2 hours

2 to 3 hours

3 to 4 hours

4+ hours

How many hours per day do you write software for fun?

0 to 1 hour

1 to 2 hours

2 to 3 hours

3 to 4 hours

4+ hours

How experienced do you consider yourself in writing software?

Very inexperienced	 1	 2	 3	 4	 5	 Very experienced 

1

A Radboud University Astrophysics Question-
naire

40

How did you acquire your current software development skills?

Multiple answers possible

Programming courses during studies

Programming courses during school

Programming courses in free time

Professional training

Self taught

Other: _____________________

In which language(s) have you developed non-trivial projects in the past?

Multiple answers possible

Python

Java

R

C/C++

Haskell

JavaScript

HTML/CSS

Other: _____________________

2

41

Difficulties in software development

Please rate the following expressions from 1 being ‘strongly disagree’ to 5 being
‘strongly agree’. If you do not know the answer to a question or if the question does
not apply to you, please leave it empty.

Writing object-oriented code is difficult.

Strongly disagree	 1	 2	 3	 4	 5	 Strongly agree

Using third party libraries is difficult.

Strongly disagree	 1	 2	 3	 4	 5	 Strongly agree

Working with old code is difficult.

Strongly disagree	 1	 2	 3	 4	 5	 Strongly agree

Implementing multi-threading is difficult.

Strongly disagree	 1	 2	 3	 4	 5	 Strongly agree

Connecting my application to a database is difficult.

Strongly disagree	 1	 2	 3	 4	 5	 Strongly agree

Working with memory and pointers in C/C++ is difficult.

Strongly disagree	 1	 2	 3	 4	 5	 Strongly agree

Writing tests efficiently is difficult.

Strongly disagree	 1	 2	 3	 4	 5	 Strongly agree

3

42

Preferences in software development

Please rate the following expressions from 1 being ‘strongly disagree’ to 5 being
‘strongly agree’. If you do not know the answer to a question or if the question does
not apply to you, please leave it empty.

I prefer collaborating with colleagues on a software project to working alone.

Strongly disagree	 1	 2	 3	 4	 5	 Strongly agree

I prefer using a version control system, even when working alone.

Strongly disagree	 1	 2	 3	 4	 5	 Strongly agree

I make sure that I can reuse my code in the future when writing software.

Strongly disagree	 1	 2	 3	 4	 5	 Strongly agree

I find it easy to keep track of the software’s requirements.

Strongly disagree	 1	 2	 3	 4	 5	 Strongly agree

Making software requirements explicit is easy.

Strongly disagree	 1	 2	 3	 4	 5	 Strongly agree

Making software requirements explicit is worth the effort.

Strongly disagree	 1	 2	 3	 4	 5	 Strongly agree

I always formally document software requirements.

Strongly disagree	 1	 2	 3	 4	 5	 Strongly agree

I find it demoralising when requirements change over time.

Strongly disagree	 1	 2	 3	 4	 5	 Strongly agree

4

43

Open questions

Please answer the following open questions as thoroughly as you can.

What parts of writing software do you find (most) difficult?

E.g. requirements engineering, working in a group, working with one or more
unfamiliar language(s)

Did you ever struggle with learning a new language? If so, what language was that
and what parts of learning that was (most) difficult?

What is most important to you when choosing a third party library to use in your
software?

E.g. readable manual, written in the same language

Do you feel that there are generally enough libraries that meet your criteria? If not,
what parts would you like to change about the available libraries?

5

44

Your preferences in receiving help

Would you like to receive help in any of the subjects you find difficult when writing
software? If so, please choose one or multiple subjects from the table below.

Object-oriented programming

Learning a new language

Advancing knowledge on a language (e.g. Advanced Python, C/C++, Java)

Multi-threading/concurrency

Working with databases

Memory and pointers in C/C++

Basics of testing

Advanced testing

How to collaborate on a project (via Git or other VCS)

Learning how to write clean code (e.g. SOLID principles)

Requirements engineering

Agile software development

Creating websites

How to work with TeX/LaTeX

Networking

How to work with the Linux terminal

Other: _____________________

How would you like to receive help in these subjects?

Lunch lecture (short one-time lecture)

Mini course (multiple lectures on a subject

Hands-on exercise sessions

Other: _____________________

Do you have any further comments on the subject of software development or this
questionnaire?

6

45

Monday, 17 May 2021

Interview guide RQ3
What is the effect of using these methods on scientist programmer productivity?

Context

In the context of my thesis, comes after a section on project-specific
difficulties, namely the situation before the interventions, and after a section on the
interventions. The answer to should detail the situation after the interventions,
mostly by means of observations made, which should heavily be supported by
qualitative and quantitative data acquired from the software team.

Questions

I would like to present the following questions to be asked during the interviews,
along with the rationale behind them.

To gain insight into the current state of affairs and how the interviewee experiences
the project currently, I would like to ask the following questions (Note that the
additional questions with Roman numerals serve as a guide, and are only asked to
gather further context when needed):

1. How would you describe how things are going currently?

I. With regards to overall productivity

II. With regards to progress made

III. With regards to the requirements of the software

RQ3

RQ3

1

B Interview guide RQ3

46

For the interviewees which were active in the project before the new team members
joined, I would like to ask the following questions to gain insight into the state of
affairs before and after the interventions concerning requirements and the new team
members respectively. I would also like to discover what effect these interventions
have had on them and the project.

2. How would you describe the state of affairs before the intervention on
making the software requirements explicit?

3. How would you describe it after the intervention?

4. How would you describe it before the new members joined?

5. Idem after the new members joined?

6. How would you describe the effect of these interventions on the project?

I. Idem on yourself?

To gain insight into the impact of the Scrum intervention, I would like to ask all
interviewees their opinion on the training. I would also like to ask how they
experienced the project before and after the intervention to be able to determine its
effect.

7. How would you describe the state of affairs before the intervention?

I. For the newer members when they first joined.

8. How would you describe it after the intervention?

9. How would you describe the effect of the intervention on the project?

I. With regards to the working structure

II. With regards to overall productivity

III. With regards to the user stories

IV. With regards to the requirements of the software

V. With regards to the best practices mentioned

10. What is your opinion on the intervention concerning Scrum?

2

47

Additionally, I would like to ask similar questions concerning the short tutorial I
produced on using Git to help the new developers get a feel for working together on
a project with version control. Ideally, I would like to get to know what elements they
found useful and not useful.

11. What is your opinion on the Git tutorial?

I. With regards to working structure

II. With regards to productivity

III. With regards to clarity

IV. With regards to ease of use

12. How would you describe the effect the tutorial had on you?

I. Idem 13.I

II. Idem 13.II

III. With regards to short-term usability

IV. With regards to long-term usability

I would also like to ask the interviewees if they missed any possible new
interventions, or if they found anything lacking in the interventions themselves. This
could bring to light improvements or new methods that might be useful for future
work.

13. If possible, how would you like to have improved the interventions yourself?

14. What kind of intervention(s) would you have liked to have seen/experienced?

To be able to quantify the effects of the interventions, I would like to have the
interviews rate several statements (in italic) and questions on a scale of one to ten
(lowest to highest respectively) before and after each intervention.

1. How productive do you rate the software team?

2. How productive do you rate yourself?

3. The software team members were aware of what task everyone had.

4. I knew exactly what to do.

5. The requirements of the software were clear.

6. I as a developer am confident in writing software.

3

48

	Introduction
	Literature review
	Common problems in scientific software development
	Relating the problems to software practices
	Possible misalignment of mindsets
	This thesis

	Project and software team
	Project
	Software team

	Methodology
	Action Research
	Data collection
	Interventions
	Evaluation of interventions

	Results
	Common problems and difficulties
	Project specific difficulties before interventions
	Summarising experienced problems
	Interventions and their effects

	Discussion
	Conclusion
	Radboud University Astrophysics Questionnaire
	Interview guide RQ3

