
Radboud University Nijmegen

Model-based testing Smart Cable Guard, an
embedded system

Master Thesis
Software Science

Author:
G.P. Noordbruis
Gunnar.Noordbruis@dnv.com

Gunnar.Noordbruis@ru.nl

DNV supervisor:
dr. P. Wagenaars

Paul.Wagenaars@dnv.com

Radboud supervisor & First
Assessor:

dr. ir. G.J. Tretmans
Jan.Tretmans@tno.nl

Jan.Tretmans@ru.nl

Second Assessor:
dr. F.W. Vaandrager

Frits.Vaandrager@ru.nl

September 2, 2022

Acknowledgements

First and foremost, I am extremely grateful to Jan Tretmans, Gijs van Cuyck and
Paul Wagenaars for their advice, feedback, and patience during my master thesis. My
gratitude extends to Jurgen de Bruijne, Richard van Harten and Bart Kruizinga for their
help with SCG. Additionally, I would like to thank Pieter Koopman for his feedback
and guidance during my internship, Richard Denissen for the opportunities at DNV
and Frits Vaandrager for his willingness to aid in the final assessment of this thesis. I
would like to thank all the members of the SCG team.
Also, I would like to thank Axini for allowing me to use their model-based testing tool
and for providing support. Finally, I would like to express my deepest gratitude to
my parents, brothers and girlfriend. Without their tremendous support, understanding
and encouragement in the past years, it would have been an impossible journey.

Abstract

Smart Cable Guard (SCG) is an embedded system that protects medium voltage power
cables all over the world using Control Units (CUs). These CUs perform measurements
to detect and locate problems within the cable. The current testing strategy to check
critical functions is costly and time consuming. Therefore, the SCG team is looking to
apply Model-Based Testing (MBT) to SCG. This thesis presents a comparison between
manual, automated and model-based testing of SCG, and between the two applied
testing tools. Alongside that, a generalization of applying MBT to embedded systems
is discussed. Most importantly, this thesis explores applying MBT to SCG to find
defects and to increase software quality.
The System Under Test (SUT) and test harness used for MBT are constructed. Two
MBT tools are applied on the SUT. Then, manual, automated and model-based testing
are compared. Additionally, the two testing tools are compared. Based on the literature
and the approach of applying MBT to SCG, a generalized approach for applying MBT
to embedded systems was created.
The application of MBT to SCG resulted in two proof of concept implementations,
which found three software defects. The implementations are a replacement for 14 out
of the 27 system level tests. Unlike the system tests, MBT takes into account the
timing requirements. In addition, MBT performs several scenarios concurrently and
for a longer period of time. Furthermore, the generalization of MBT on embedded
systems resulted in a new hardware layer in the test harness. Applying MBT to SCG
on a system level had the advantages that it does not require any test doubles. In some
cases additional interfaces are needed to apply MBT.
To conclude, it was shown how to apply MBT to SCG. MBT can contribute to the
testing of SCG by reducing manual effort and increasing the test coverage. Both MBT
tools, TorXakis and Axini, have points of improvement. However, Axini is more refined
than TorXakis. It is difficult to generalize MBT for embedded systems. The SUT
needs to be carefully chosen. The testing of embedded generally requires an additional
hardware layer in the test harness.

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Faults and Partial Discharge . 3
2.2 Smart Cable Guard . 4
2.3 Labeled Transition Systems . 6
2.4 Input Output Conformance Relation 9
2.5 Model based testing . 10
2.6 TorXakis . 12
2.7 Axini . 16

3 Testing Smart Cable Guard 21
3.1 System under test . 21
3.2 Test harness Smart Cable Guard . 22
3.3 TorXakis . 24

3.3.1 Message structure . 24
3.3.2 Time management . 26
3.3.3 State management . 31
3.3.4 Modeling the Control Unit in TorXakis 34

3.4 Axini . 38
3.4.1 Message structure . 38
3.4.2 Time management . 39
3.4.3 State management . 39
3.4.4 Modeling the Control Unit in Axini 39
3.4.5 Alternative behaviour . 43

3.5 Found issues . 44
3.6 Conclusion . 44

4 Model-based testing compared 46
4.1 Current testing strategy . 46
4.2 Manual, automated and model-based testing 47

4.2.1 Development & Maintenance . 47

I

4.2.2 Cost . 48
4.2.3 Test execution . 48
4.2.4 Edge cases . 49
4.2.5 Diagnosis . 49
4.2.6 Current test cases . 49

4.3 Conclusion . 50

5 TorXakis and Axini compared 52
5.1 The modeling language . 52
5.2 Communication . 53
5.3 Functions . 55
5.4 Error messages . 55
5.5 Documentation . 56
5.6 Visualization . 57
5.7 Conformance theory . 57
5.8 Constraint satisfaction problems . 58
5.9 Conclusion . 58

6 Model-based testing in embedded systems 60
6.1 System Under Test . 60
6.2 Test harness . 61
6.3 Testing tool . 61
6.4 Conclusion . 62

7 Concluding remarks 63
7.1 Conclusion . 63
7.2 Advice . 64
7.3 Future work . 64

A Code coverage Sensor Unit controller 70

II

Glossary

ADT Algebraic Data Type. 12, 18, 25, 26, 41, 52, 54

AMP Axini Modeling Platform. 16, 17

CFE Communication Front-End. 5

CU Control Unit. 1, 4–6, 21–23, 25, 34–37, 39, 44–48, 60

GPIO General Purpose Input/Output. 23

IOCO Input Output Conformance. 3, 9–12, 26, 28, 57, 59, 62

IUT Implementation Under Test. 9

LTS Labeled Transition System. 3, 6–9, 43, 57

MBT Model-Based Testing. 1–3, 6, 9–12, 16, 21, 22, 44–46, 48–50, 52, 53, 60–65

MQTT MQ Telemetry Transport. 6, 22, 23, 25, 26, 39

PD Partial Discharge. 3, 6, 22–24, 37, 47

RTIOCO Relativized Timed Input Output Conformance. 62

SCG Smart Cable Guard. 1–5, 21, 22, 24, 38, 41, 43–50, 60, 63, 64

SIOCO Symbolic Input Output Conformance. 57

SMT Satisfiability Modulo Theories. 58, 59

STS Symbolic Transition System. 57

SU Sensor Unit. 1, 5, 6, 21–23, 44–47, 60

SUT System Under Test. 1, 2, 8–11, 13–17, 19–23, 25, 27, 28, 32, 35–37, 39, 40, 43,
44, 49, 50, 53, 58, 60–62, 64

III

TCP Transmission Control Protocol. 6, 15, 16

TIOCO Timed Input Output Conformance. 62

TOCTOU time-of-check time-of-use. 34, 37

TTL Transistor-Transistor Logic. 22–24

TXS TorXakis Syntax. 24

IV

Chapter 1

Introduction

The dependence on electricity is high and still increasing with electricity replacing more
and more fossil fuels. This electrification demands a very stable electrical network. The
increasing demand is also putting many networks at their maximum capacity. Addi-
tionally, more homes are being equipped with solar panels causing periodic surges on
the net 1. For the first time network operators in Northern Holland are allowed to uti-
lize more than 50% of the capacity. The other 50% is strictly reserved for maintenance
and outages2.
In recent years more network operators have indicated that their networks are being
overloaded3. Cables that are being overloaded have a higher chance of failure. If up-
coming failure can be predicted, adequate measures can be taken before power outages
occur.
To predicted upcoming failure, monitoring of the electricity network is possible using
Smart Cable Guard (SCG). SCG in total is a sensor based electricity cable monitoring
platform. SCG uses a brain called the Control Units (CUs) and sensors called Sensor
Unit (SU) to monitor a cable. The SUs detect and locate both weak spots in the cable
and faults (e.g. earth faults). To determine the location of a problem two sensors are
required per cable.
Accurate around the clock monitoring requires a high degree of reliability of the hard-
ware and software of device in the field. The devices in the field are what can be seen
as a brain (CUs) and multiple sensors . During the lifetime of SCG several software
defects have shown that the current testing strategy is insufficient. The strategy does
not provide adequate confidence in the reliability of SCG. The test strategy consists
of unit tests combined with manual verification of several system requirements on an
actual CU. While unit tests are an essential part to ensure software quality [1]. Unit
tests only test a very small part of the system. Furthermore, manual verification is error

1nos.nl/l/2390461
2nos.nl/l/m/2298022
3volkskrant.nl/cs-bd07d87a

1

https://nos.nl/l/2390461
https://nos.nl/l/m/2298022
https://volkskrant.nl/cs-bd07d87a

prone and tedious work. SCG wishes to increase the confidence in the reliability of the
devices. This can potentially be done using simple automated testing or by applying
Model-Based Testing (MBT) to the devices. Both options are being considered, this
thesis investigate the MBT possibilities and to guide the SCG team in the next steps
in test automation. The focus in this thesis is on the devices, since they are deployed
in the field, where physical access is infrequent. It is costly and not trivial to service
these devices in case of a software problem.

The MBT tools TorXakis4 and Axini5 will be applied to the SCG system. The MBT
tools have different feature sets that could make one tool more suitable for the System
Under Test (SUT). Axini is capable of modeling time constraints while TorXakis is not.
Additionally, there is ongoing research and development with both tools, which is a
requirement of possible usage at DNV. The desire to realize higher software reliability
lead to the research questions handled in this thesis.

1. How can model-based testing be applied to the Smart Cable Guard system to
find defects and to increase software quality?

2. How does model-based and automated testing compare to each other and to the
manual system testing currently applied to SCG?

3. How do TorXakis and Axini compare on the aspects of their modeling language,
communication functions, error messages, documentation, visualization, confor-
mance theory and constraint solving?

4. How can the experience of model-based testing SCG be generalized to other em-
bedded systems?

In this thesis, chapter 2 provides the preliminary information related to the SCG system,
the theory behind MBT, basic information of MBT and finally the syntax of the two
MBT tools used. Chapter 3 goes into detail on the chosen SUT, the test harness
used for MBT, the approaches for both MBT tools and the found issues. Chapter 4
discusses the current testing strategy and compares it to the model-based testing of SCG
presented in chapter 3. Chapter 5 presents a comparison of TorXakis and Axini base on
their modeling language, functions, communication, error messages and documentation.
Chapter 6 discusses the generalization of the approach taken in chapter 3. In particular,
defining the SUT and creating an appropriate test harness for an embedded system are
discussed.

4torxakis.org
5axini.com

2

https://torxakis.org
https://axini.com

Chapter 2

Preliminaries

In this chapter the needed background for this thesis will be discussed. This includes
basic information regarding problems in electricity cables and high level information
of the SCG system. MBT will be applied to SCG in this thesis. As such, this chap-
ter introduces the modeling formalisms underpinning the formal specifications and the
models of implementations used in MBT.
Labeled Transition Systems (LTSs) are the basic model used by the conformance rela-
tion Input Output Conformance (IOCO). Additionally, LTSs are often used in model
checking [2] and model-based testing [3]. They are introduced in section 2.3. Further-
more, in section 2.4 the conformance relation IOCO is presented. IOCO specifies when
an implementation conforms to the provided model. Besides this, the notion of model
based testing will be discussed in section 2.5. Finally, the workings and syntax of the
two MBT tools used in this thesis will be explained in sections 2.6 and 2.7 respectively.

2.1 Faults and Partial Discharge

SCG looks for faults like earth faults or short-circuit faults and Partial Discharge (PD).
There is an important distinction between faults and PD. PD does not directly cause
failure of the cable. PD is a very small discharge occurring in a void within the insulation
of a cable. Figure 2.1 shows where PD takes place within a cable. The small discharge
bridges the void in the insulation. It will slowly erode the insulator. The voids are
usually impurities within the insulator. It is hard to discover as the amplitude of the
charge is very small compared to a fault. Faults have a large amplitude and they usually
occur when a cable breaks down. Due to their large amplitude faults are not difficult
to detect. Detecting and locating both faults and PD is useful to perform quick and
precise repairs.

3

conductor

void
partial discharge

insulator

Figure 2.1: A partial discharge shown within a void in a section of cable.

2.2 Smart Cable Guard

Smart Cable Guard is a sensor-based system that monitors medium voltage cables to
detect and locate faults and weak spots in underground cables. This is done by sensors,
called Sensor Units (SUs), placed around the cable at two ends. The system is accom-
panied by a backend for analysis, processing and viewing of data. The current version
of SCG has been under development since 2015. Figure 2.2 displays how a measurement
system is deployed in the field. On either side of the cable the sensors are placed around
the cable. The houses are secondary substations or in Dutch ”transformatorhuisjes”.
The black sections in each substation is a joint, connecting the cable to another. There
is no connection between the two Control Units (CUs) other than the electricity cable.
The CUs are not part of the backend but merely submit data to the backend using
their mobile network connection.

4

!

CU CU

SU SU

Backend

Figure 2.2: Depiction of two CUs and their SU installed in the field. The maximum length between
the two SUs is 15Km.

A more detailed depiction of the backend can be seen in figure 2.3. In this figure,
the SUs and the cables between the CUs are left out. The Communication Front-End
(CFE) in the middle provides the system with communication capabilities. If a CU
loses the capability to communicate or perform commands, a technician needs to visit
the unit in the field to either replace it or perform manual reset steps. This is a time
consuming and costly endeavour. In the past the SCG team has seen several cases
where the software caused such failures. Due to this, increasing the reliability of a CU
through thorough testing is desired.

CFE

GPU

GPU

GPU

MQTT MQTT

Back Office

RTMon

Service

Fault Service

Pulse Service

Asset Manager

Service

HTTP(S)

Request

Processor

CUs

CFE

MQTT

Figure 2.3: SCG platform design

In figure 2.3 the CUs are depicted in a simple manner. However, each monitoring system
is more complex. As already discussed each monitoring system is made up out of at
least two CUs and at least one SU each. Figure 2.2 shows how the monitoring systems
are installed with a live electricity cable going through the SUs. One CU has multiple in

5

and outputs. The SU provides the CU with fault and PD information. Additionally, the
SUs establish synchronization with each other over the medium voltage power cable.
The synchronisation is required to locate faults and PDs. In addition, the CU can
be managed locally or remotely. The remote interface uses MQ Telemetry Transport
(MQTT), which is a communication protocol on top of Transmission Control Protocol
(TCP). These two have some overlap in terms of configuration options. Furthermore,
the CU has 4 buttons, 4 LEDs and input power. The buttons are used to attempt auto
synchronization for the different SUs and restart the CU. This can also be performed
through the remote interface. The LEDs indicate the state of the SUs and if the CU is
connected with the backend. The input power is considered an input because the CU is
often powered by the cable being monitored. In the case of a fault it is useful to know
if the power also went down. All these different in and outputs are shown in figure 2.4.

SU

MQTT

InterfaceLocal REST

API

Cable: input
Faults, PD,

sync

CU

Status LED SU1

Backend connection LED

Status LED SU2
Status LED SU3

Sync button SU1
Sync button SU2

Sync button SU3

Power Supply
Restart button

Figure 2.4: A single CU and SU with all in and ouputs.

2.3 Labeled Transition Systems

In this section, the relevant theory of Labeled Transition systems is introduced. They
are used as a the underlying structure for MBT. LTSs are a combination of states,
labels and transitions from a state to a state. The transitions are accompanied by a
label. In light of MBT, these labels represent different actions. The structure of an
LTS can vary. A basic LTS is a triple of the above mentioned parts [4, 5]. In other
cases an LTS is a 4-tuple adding an initial state [6, 7] this is called a rooted LTS [4].
Furthermore there is a 5-tuple that additionally separates Input and Output labels [8].
Below the 4 and 5 tuple LTS will be discussed as shown in [6, 7, 8] by Tretmans,
Stoelinga et al. and Tretmans et al.

Definition 1. An LTS is a 4-tuple ⟨S, s0, L, T ⟩ where

• S is a countable, non-empty set of states;

• s0 ∈ S is the initial state;

• L is a countable set of labels;

6

• T ⊆ S × (L ∪ {τ})× S, with τ ̸∈ L, is the transition relation;

s
ℓ−→ s′ denotes the transition from state s to state s′ using the label ℓ. Formally this is

denoted as (s, ℓ, s′) ∈ T . Informally, a transition can be thought of as the system being
in state s performing action ℓ and through that arriving in state s′.

Definition 2. Considering an LTS A = ⟨S, s0, L, T ⟩ and two states s, s′ ∈ S.

A path of length n from s to s′ is a sequence of n transitions s
ℓ1−→ s1

ℓ2−→ s2 ... sn−1
ℓn−→ s′

where ∀1..nn : ℓn ∈ (L∪ {τ}) If n = 0 the path is empty and s = s′. Such a path can also

be written as: s
ℓ1·...·ℓn−−−−→ s′.

s
ℓ1−→ s′ ⇔def (s, ℓ1, s

′) ∈ T

s
ℓ1·...·ℓn−−−−→⇔def ∃s′ : s

ℓ1·...·ℓn−−−−→ s′

s ̸ℓ1·...·ℓn−−−−−→⇔def ¬∃s′ : s
ℓ1·...·ℓn−−−−→ s′

These transitions can be composed. If two transitions exist such that s
ℓ−→ s′ and

s′
ℓ′−→ s′′, the composition can be written as s

ℓ·ℓ′−→ s′′. The labels in L are observable
actions that a system can perform. This set does not include τ . τ is a special transition
label indicating an unobservable internal step. If a · τ · b · τ · τ · c is a sequence of

actions from s to s′ (s
a·τ ·b·τ ·τ ·c−−−−−→ s′) then s

a·b··c
===⇒ s′ is the sequence of observable

actions from s to s′. Let sigma be a sequence of actions such that a system being in
a state s may reach state s′ by performing all actions in σ. It is possible that it does
not arrive in s′ due to nondeterminism. The function traces(s) denotes all possible
sequences of observable actions starting in the provided state s. Traces can be defined
as traces(s) = {σ ∈ L∗|s σ

=⇒} with their corresponding label set L. Functions defined

on a state can be applied to LTS by applying them on the initial state. As such, for a
LTS TS = ⟨S, ts0, L, T ⟩: traces(TS) = {σ ∈ L∗|ts0

σ
=⇒}

s1 s2
button

s3

s4 s5
choco

tea

button

Figure 2.5: example graph representing LTS G with the double circle in state s1 indicating the initial
state.

G =⟨{s1, s2, s3, s4, s5}, s1, {button, tea, choco},
{(s1, button, s2), (s2, tea, s3), (s2, button, s4), (s4, choco, s5)}⟩

traces(G) ={ϵ, button, button · tea, button · button, button · button · choco}

7

In the LTS in figure 2.5, it can be seen that no distinction has been made based on input
and output labels. All labels are collected in one set. However, on closer inspection
the label ’button’ can be considered input while tea and choco are usually considered
outputs of the SUT.

Definition 3. A LTS with separate input and output labels is a 5-tuple ⟨S, s0, I, O, T ⟩
where

• S is a countable, non-empty set of states;

• s0 ∈ S is the initial state;

• I and O are countable sets of input and output labels respectively; where L = I∪O
and ∅ = I ∩O

• T ⊆ S × (I ∪O ∪ {τ})× S, with τ ̸∈ (I ∪O), is the transition relation;

To distinguish the in and output labels in representations like figure 2.6, question and
exclamation marks are used in front of labels for input and output, respectively.
The class of all LTSs over a given Input and Output label set I and O is represented by
LT S(I,O). A state that lacks a transition labeled with τ is called stable. Furthermore,
a state lacking both an internal and an output action is called quiescent, which is
denoted by the symbol δ (δ ̸∈ (I ∪O ∪ τ)). The shorthand notion Lδ is used for L ∪ δ.
The transition s

δ−→ s represents the absence of any transition s
ℓ−→ where ℓ ∈ (O∪{τ}).

In figure 2.6 states s1, s3 and s5 are quiescent.

s2
?button

s3

s4 s5
!choco

!tea

?button
s1

Figure 2.6: Example LTS S with marked input and output labels

G =⟨{s1, s2, s3, s4, s5}, s1, {?button}, {!tea, !choco},
{(s1, ?button, s2), (s2, !tea, s3), (s2, ?button, s4), (s4, !choco, s5)}⟩

The function traces does not include the above introduced quiescence. These can be
captured with suspension traces. Suspension traces are the traces over the set Lδ. They
are defined as Straces(s) =def {σ ∈ L∗

δ|s
σ
=⇒}. Besides this, for conformance relations

it is important to know which states are reachable using a given suspension trace. This
can be defined as TS after σ = {s′|ts0

σ
=⇒ s′} where TS ∈ LT S(I, O), ts0 is the initial

8

state of TS and σ ∈ L∗
δ . Moreover, the function out(s) denotes all observable outputs

from a given state s. It is defined as: out(s) = {ℓ ∈ O|s ℓ−→} ∪ {δ|s δ−→}. When out is
applied to a set of states it is defined as out(S) =

⋃
{out(s)|s ∈ S}. Bellow there are

some examples of after and out for the LTS S displayed in figure 2.6.

S after ϵ = {s1}
S after ?button = {s2}

S after ?button·?button = {s4}
S after ?button·!tea = {s3}

out(S) = {δ}
out(s2) = {!tea}

out(S after ?button) = {!tea}

An LTS is input enabled when every state has an outgoing transition for every input.
The class of input enabled LTSs is denoted as IOT S(I,O). For this class it holds that
for all input and output label sets I and O: IOT S(I,O) ⊆ LT S(I,O)

2.4 Input Output Conformance Relation

In the previous section the basic models on which IOCO is defined are introduced. In
this section, the IOCO theory will be explained and in the next section the notion of
MBT will be presented. Different MBT tools utilize the IOCO relation. IOCO is a
conformance relation for LTSs [8, 9]. It is used to compare implementations to their
specification. Specifically IOCO expresses that an SUT conforms to the specifications
if the SUT never produces an output that cannot be produced by the specification in
the same situation[10]. It is important that the SUT is input enabled LTS.

Definition 4. For a specification s and an Implementation Under Test (IUT) i.

i ioco s =def ∀σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ)

From the definition of IOCO it follows that in any situation the possible outputs of
the implementation need to be a subset of the specification. It can thus be a partial
implementation or an under-specification of the actual specifications. Let us specify a
tea, coffee of hot chocolate (choco) machine. Once the button is pressed the machine
will dispense any of the hot beverages. The specification s is shown in figure 2.7 as an
LTS in graph form.
The implementation i0 is IOCO conformant to the specification as for every σ ∈

9

Straces(s) it holds that out(i0 after σ) ⊆ out(s after σ).

out(i0 after ϵ) = {δ} ⊆ {δ} = out(s after ϵ)

out(i0 after ?but) = {!tea} ⊆ {!choco, !tea, !coffee} = out(s after ?but)

out(i0 after ?but·!choco) = ∅ ⊆ {δ} = out(s after ?but·!choco)
out(i0 after ?but·!tea) = {δ} ⊆ {δ} = out(s after ?but·!tea)

out(i0 after ?but·!coffee) = ∅ ⊆ {δ} = out(s after ?but·!coffee)

?but

!coffee!tea!choco

?but

!tea

s

?but

?but

?but

!choco

?but ?but

?but

Figure 2.7: Example hot beverage machine specification and implementation LTSs

However, implementation i1 is not IOCO conformant. Take for example the suspension
trace ?but, for the implementation out(i1 after ?but) = {!choco, δ} which is not a subset
of out(s after ?but) = {!choco, !tea, !coffee}.

2.5 Model based testing

In the previous section IOCO was introduced. IOCO is used in several MBT tools like
TorX [11], JtorX [12], TorXakis [10] and Axini [13]. This section, explains how MBT
works and how it uses the IOCO theory.
MBT is a form of black box testing that checks the compliance of a system to the
provided model. Where white box testing looks at the internal workings, black box
testing only considers external observable actions of the SUT in combination with
input actions called stimuli. For a calculator performing only addition, the input is
two numbers. The observable output should be the numbers added up. The model
represents the expected behaviour of the SUT. A systems behaviour is the sequence
of observable actions. The model describes in which order the stimuli and output
can be performed and observed respectively. Such a model is manually created from

10

specifications, requirements, and domain knowledge. In the end the MBT tool emits a
verdict, which can either be pass or fail. This pass or fail is determined based on the
SUT and the model. However, the relation between the SUT and model can vary. In
the previous chapter such a relation (IOCO) was discussed. This relation is used to
determine if the observed actions are in accordance with the model.
It is almost never the case that the MBT tool is able to interpret the observable actions
or provide the SUT with correctly formatted input. To achieve this it is common
practice to wrap the SUT with a test harness that provides a translation service to and
from the SUT. This can be seen in both figure 2.8 and 2.9. The blue lines are interfaces
where the SUT and test harness communicate.
The model can be turned into tests in two ways. The first and most simple is offline
tests, several test cases are derived from the model. These test cases are traces through
the model. This means that for a pregenerated test case the non-deterministic parts
have to be removed. An overview of offline tools can be seen in figure 2.8.
On the other hand, online, also known as on-the-fly tests, do not have a predetermined
set of tests. The model is stepped through on-the-fly, branch decisions and checks are
performed as the test progresses. Tools that use on-the-fly testing can often deal with
non-determinism. They maintain the several possibilities until observed actions can
resolve the non-determinism. An overview of on-the-fly tools can be seen in figure 2.9.
On-the-fly tools combine the test generation and execution. Neither approaches are
required to have one interface between the tool and the test harness, nor three between
the test harness and SUT.

Test
Execution

SUT

Test harness

Model

pass / fail

Test cases

Model-based
test

generation

Figure 2.8: Generic diagram of an offline model-
based testing tool.

Model-based
testing tool

SUT

Test harness

Model

pass / fail

Figure 2.9: Generic diagram of an on-
the-fly model-based testing tool.

This thesis utilizes the MBT tools TorXakis and Axini. Both of these tools perform
tests on-the-fly. However, as mentioned earlier there are differences in approach, feature
set and syntax. For example, TorXakis is incapable modeling time constraints.

11

Running a single test using an MBT tool does not guarantee full conformance. If
the test results in a pass, for the IOCO theory it means that the used suspension
trace produces expected outputs. Models that contain loops have an infinite number of
possible suspension traces. Not all of these can be checked. Tools can provide strategies
like transition coverage or a random approach. Test engineers should determine how
long a test run should be based on the systems complexity and desired confidence in
the system.

2.6 TorXakis

The notion of MBT was introduced in the previous section. TorXakis is one of the
MBT tools used in this thesis. TorXakis is open source and developed at TNO1 and
the Radboud University2.
The syntax of TorXakis will be explained. In particular, this section will go over defin-
ing new data types, functions, channels for internal and external communication, model
building blocks like processes and operators, model definitions, and connecting TorX-
akis to a test harness using a connect definition.
TorXakis is build using the Haskell programming language3. This is a functional pro-
gramming language. TorXakis inherits some key characteristics from Haskell. This will
become apparent in the construction of new data types and functions.

Data type definition

The TorXakis syntax allows for Algebraic Data Types (ADTs) to be defined and to
be use during testing. Data types can be defined in a TYPEDEF block. ADTs are
recursively defined sum and product types. The simplest sum type that is commonly
used in Haskell is the Bool type data Bool = False | True. This denotes that a
Bool value can either be False or True but not both. Furthermore, a product type is
a type that combines multiple other types into one. An example of a product types is
a tuple. In TorXakis types can be defined as shown in listing 2.1. Here the attributes
name and age are what constitutes a person. Retrieval of these attributes can be done
by applying functions corresponding to the names of the attributes. For example let p
= Person(”Peter”,24) then name(p) == ”Peter” and age(p) == 24.

1 TYPEDEF Person : :=
2 Person{
3 name : : S t r ing ;
4 age : : Int
5 }

1tno.nl
2ru.nl
3haskell.org

12

https://tno.nl
https://ru.nl
https://haskell.org

6 ENDDEF

Listing 2.1: Example type definition

Function definition

Functions can be defined and used like most other programming languages. However,
due to TorXakis being build on top of Haskell, TorXakis also uses a functional pro-
gramming approach. The control flow in TorXakis is done using only IF statements,
which is simpler compared to Haskell’s additional pattern matching and monads. The
function definition that computes if a person is an adult (being 18+) can be seen in
listing 2.2.

1 FUNCDEF isAdul t (p : : Person) : : Bool : :=
2 age (p) >= 18
3 ENDDEF

Listing 2.2: Example function definition

Channel definition

Channels are used to perform communication either internally (i.e. communication be-
tween different processes) or externally (i.e. communication with the SUT). A channel
can be defined using the CHANDEF keyword, requiring the name of the channel and
the type of the communicated objects. If a channel has type Int no other types can
be communicated over that specific channel. Furthermore, channels are arguments of
a process and can thus undergo renaming, meaning that channels are not defined on a
global scale but are used by passing them around as arguments in a local context. The
only exception to this is when channels are used in the MODELDEF block that will be
discussed later.

1 CHANDEF Channels : :=
2 ca l c u l a t o r i npu t ,
3 c a l c u l a t o r ou tpu t : : Int
4 ENDDEF

Listing 2.3: Example channel definition

Operators

The build-in operators in TorXakis allow for the modeling of simple concepts. Two of
the most common are the sequential operator and the choice operator. The sequential
operator A >-> B means that after performing the communication A, behaviour B is
expected. The choice operator A ## B allows for indicating two possible options. Com-
munication and transitions can be combined with guards to apply certain requirements.

13

A guard is defined as [[expr]] where expr is a boolean expression. Execution of a
process or communication can be made conditional using a guard [[expr]] =>> A.
Here A is only performed when expr evaluates to true. To perform communication over
two or more channels simultaneously the | can be used ChanA ? x | ChanB ? y. The
ChanA ? x means that some value is communicated over ChanA and bound to x.
TorXakis has special operators that allow for modeling of more complex problems. The
parallel operator A ||| B allows one to indicate if two process run concurrently. For
example channel1 ? x ||| channel2 ? y can lead to the following execution orders:
channel1 ? x >-> channel2 ? y, channel2 ? y >-> channel2 ? x and
channel1 ? x | channel2 ? y. When A and B are not a single communication ac-
tion the interleaving becomes more complex. An example of this can be seen in figure
3.4.
Next to the parallel operator there are more ways to perform some synchronization.
For example A || B is used to synchronize two processes over all of their channels.
This means that if process A and B can not perform the exact same communication
a deadlock state is reached. Two process can be synchronized over specific channels
instead of all channels using A |[Channel1, Channel2]| B.
The disable operator A [>> B is used to model possible failures or unexpected issues.
For example when creating or using any kind of ethernet connection in process A there
is a possibility of becoming disconnected. Then B can be a process that attempts to
reconnect or restart. Process A is immediately discontinued when process B starts.
Another operator is the interrupt operator A [>< B. It stops process A as soon as pro-
cess B starts, but after process B finishes, process A is resumed. It has similar use
cases as the disable operator.

Process definition

Process definitions specify the behaviour of an SUT or a part of an SUT. They can be
combined to produce bigger processes using operators. A very simple thing to model
would be an addition process. The process in listing 2.4 starts similar to a function.
However, the arguments in between the square brackets are not variables but channels
which can be used for communication. The input and output channels are meant as
input and output to the SUT. Next to the brackets are parentheses, these can hold
initial variables. Do note that these variables are not mutable. This means that new
ones can be created but old ones can never be updated.
Furthermore, on line 2 the first input is sent to the SUT. For the SUT, input is a
stimulus. Stimuli are communicated over SUT input channels. Whether a channel
is an input channel or an output channel is defined in a connection definition, which
will be introduced below. For convenience the ’input’ channel is assumed to be an
SUT input channel and ’output’ is assumed to be an SUT output channel. SUT input
channels can be used in two ways. The first way is by providing a concrete value using
the exclamation mark. For example if the first input needs to be the Integer value 5,
line 2 should be replaced with input ! 5. The second way is to use a question mark.

14

This indicates that there is no specific Integer value that needs to be communicated.
Thus TorXakis will create a value and bind that to lhs. This option also allows the
user to indicate constraints using guards like input ? lhs [[lhs > 5]]. TorXakis
will attempt to resolve these guards using SAT solvers.
For channels that are output of the SUT, the exclamation mark means that the SUT’s
output should be exactly equal to the provided value. The question mark will bind the
SUT’s output to the given variable and check the optional constraint. The sequence
operator >-> is used to sent the second input used for addition. Then at last on the
output channel the output of the addition is expected. This can be indicated using the
exclamation mark.

1 PROCDEF Addit ion [input , output : : Int] () : :=
2 input ? l h s
3 >−>
4 input ? rhs
5 >−>
6 output ! l h s+rhs
7 ENDDEF

Listing 2.4: Example process definition

Model definition

In a model definition the process and the channels are combined. A model definition
can be seen as the main function from which everything starts. The incoming and
outgoing channels are defined with CHAN {IN/OUT} depending on if it is an SUT input
or output channel. Furthermore the process that described the appropriate behaviour
can be called after the BEHAVIOUR keyword with all its needed parameters.

1 MODELDEF Main : :=
2 CHAN IN ca l c u l a t o r i n pu t
3 CHAN OUT ca l cu l a t o r ou tpu t
4 BEHAVIOUR Addit ion [c a l c u l a t o r i npu t , c a l c u l a t o r ou tpu t] ()
5 ENDDEF

Listing 2.5: Example model definition

Connection definition

Connection definitions tie a channel to a TCP connection. These TCP connections
usually connect to a test harness that sits in between TorXakis and the SUT to facilitate
translation to and from TorXakis. Listing 2.6 is an example, connecting the calculator in
and outputs. The CLIENTSOCK indicates that TorXakis will connect as a client and thus
the test harness must host a server. Next to that, the CHAN OUT is quite contradictory
to the name of the channel calculator_input. This is due to the fact the channel

15

name represents the view of the SUT while the keyword is seen from TorXakis’ point of
view. Furthermore, the hostname and port for the connection are indicated. Because
TCP offers bi-directional communication the same connection can be used for one of
the SUT’s outputs.

1 CNECTDEF Con : :=
2 CLIENTSOCK
3
4 CHAN OUT ca l c u l a t o r i n pu t HOST ” l o c a l h o s t ” PORT 7890
5 ENCODE ca l c u l a t o r i n pu t ? get −> ! t oS t r i ng (get)
6
7 CHAN IN ca l cu l a t o r ou tpu t HOST ” l o c a l h o s t ” PORT 7890
8 DECODE ca l cu l a t o r ou tpu t ! f romStr ing (s) <− ? s
9 ENDDEF

Listing 2.6: Example connection definition

2.7 Axini

In the previous section, the MBT tool TorXakis was discussed. In this section, the
workings of Axini and the syntax are introduced. Axini is the second MBT tool used
in this thesis. It is produced by Axini B.V.4 in the Netherlands. It has a proprietary
platform called the Axini Modeling Platform (AMP) and engine to efficiently handle
the transition system. The modeling language of Axini is build on top of the Ruby pro-
gramming language5. Furthermore, Axini also connects to a test harness, like figure 2.9.
However, everything except the SUT and harness are on the AMP in the cloud. There
are some key difference between TorXakis and Axini. The first is the modeling ap-
proach. This is due to the underlying programming languages. The TorXakis language
is a functional one. Axini does not inherit as much of the modeling and programming
structure from its base language as TorXakis does. Nonetheless, programming in Axini
is imperative. The second difference is the fact that Axini has time related capabilities.
In light of this, this section will discuss: communication, functions, variables, control
flow, processes and timeouts.

Communication

Axini has two types of communication channels internal and external. Internal channels
are to perform communication between processes. External channels are to communi-
cate with the SUT. This communication takes place over a websocket connected to

4axini.com
5ruby-lang.org

16

https://axini.com
https://ruby-lang.org

the AMP. The addition example can also be modeled in Axini. All the messages and
channels required for the communication are shown in listing 2.7.

1 ex t e rna l ' c a l cu l a t o r '
2
3 proce s s (' addit ion ') {
4 timeout 5 .0
5 channel (' c a l cu l a t o r ') {
6 st imulus ' input ' , ' number ' => : i n t e g e r
7
8 re sponse ' output ' , ' r e s u l t ' => : i n t e g e r
9 }
10
11 r e c e i v e ' input '
12 r e c e i v e ' input '
13 send ' output '
14 }

Listing 2.7: Example Axini communication for addition

There exists a external channel on line 1 called ’calculator’. Besides that, there is one
channel block in the ’addition’ process. This block indicates that all messages inside
it belong to the channel ’calculator’. There is thus no need to indicate the channel
per message. The messages in the channel block have an identifying name and its
arguments are declared. Furthermore, on line 11 to 13 the messages are send. This
time the keyword ’receive’ and ’send’ are relative to the SUT. The SUT will receive
’input’ and send ’output’. However, the values of ’ number’ is unknown and the output
value is not checked. To prevent providing the calculator a void input, the constraint
constraint: '_number != :void' can be applied. To keep the expected result around
a variable is needed. They will be introduced next.

Variables

During the execution of a test, it can be useful to store different values. These values can
be used in other parts of the model. Take for example listing 2.7, here three messages
are send. However, the two input values are not stored and thus the output is never
checked. This can be solved by adding an variable. Adding a variable can be done
using the var keyword followed by a name, type and optional initial value.

1 p roce s s (' addit ion ') {
2 timeout 5 .0
3 channel (' c a l cu l a t o r ') {
4 st imulus ' input ' , ' number ' => : i n t e g e r
5
6 re sponse ' output ' , ' r e s u l t ' => : i n t e g e r

17

7 }
8
9 var ' expe c t ed r e su l t ' , : i n t ege r , 0
10
11 r e c e i v e ' input ' , c on s t r a i n t : ' number != : void ' , update : '

e xp e c t e d r e s u l t = number '
12 r e c e i v e ' input ' , c on s t r a i n t : ' number != : void ' , update : '

e xp e c t e d r e s u l t = exp e c t e d r e s u l t + number '
13 send ' output ' , c on s t r a i n t : ' r e s u l t == expec t ed r e su l t '
14 }

Listing 2.8: The addition example updated to include constraints, a variable and variable updating.

To update the variable with the input, the ’update’ keyword can be used as shown on
line 11 and 12. Here the two inputs are added up and can thus be compared to the
output. The output comparison is done using a constraint on line 13.

Custom types

It is not possible to create ADTs like TorXakis. However, it is possible to create custom
structs. These structs can be defined using a def macro as can be visible in listing 2.9.
A new variable can be declared using the types like so: ”var 'P', person”.

1 de f person
2 {
3 'name ' => : s t r i ng ,
4 ' age ' => : i n t e g e r
5 }
6 end

Listing 2.9: An example of a person (name and age) as custom struct type.

Next to that, one can define an enumeration of a set of concrete values.

1 de f gender
2 Set [' male ' , ' female ' , ' other ']
3 end

Listing 2.10: An example of a enumeration/set.

A variable with this type can only be one of these concrete options. It is possible to
add the type person to a set. Nevertheless, it is then not possible to have a variable be
an instance of the set and a person. As that instance is not in the set.

18

Functions

Functions can be used to perform complex computations and manipulate variables
in the model. Axini provides some functions out of the box. These functions can
be applied in the model for constraining output and input values or updating local
variables. However, these functions can not be used when defining custom functions. It
is possible to define custom functions. The difference between the provided and custom
functions is that the first can be solved as a constraint for SUT input. This means
that Axini is not capable of generating any input to a custom function to satisfy a
constraint. It is only capable of evaluating a custom function given its arguments. This
is something that TorXakis can do.

1 func t i on (' equal names ' , [person , person] => : boolean) { | a , b |
2 i f a . name != : void
3 i f b . name != : void
4 a . name == b . name
5 e l s e
6 f a l s e
7 end
8 e l s e
9 f a l s e
10 end
11 }

Listing 2.11: An example function that checks if two persons names are equal.

In the example in listing 2.11, first the presence of both names is checked. If this is the
case, they can be compared, otherwise they are not equal and false is returned.

Control flow

The model in listing 2.7 only performs one addition computation on the SUT. Non-
deterministic options and repeating can be modeled using the ’choice’ and ’repeat’
blocks. The ’repeat’ block can perform actions multiple times, until the keyword
stop_repetition is encountered. The repeat block is capable of modeling non-determinism
by allowing multiple options. A single non-deterministic branch can be modeled using
the ’choice’ block. There also exist deterministic counterparts namely, the ’_while’
loop for repeating actions and the ’_if’ statement for a single branch. The multiple
options in a repeat or choice block can be indicated with the character ’o’.

1 repeat {
2 o {
3 r e c e i v e ' input ' , c on s t r a i n t : ' number != : void ' , update : '

e xp e c t e d r e s u l t = number '
4 r e c e i v e ' input ' , c on s t r a i n t : ' number != : void ' , update : '

e xp e c t e d r e s u l t = exp e c t e d r e s u l t + number '

19

5 send ' output ' , c on s t r a i n t : ' r e s u l t == expec t ed r e su l t ' ,
update : ' e xp e c t e d r e s u l t = 0 '

6 }
7 }

Listing 2.12: Repeat block with one possible branch.

Listing 2.12 shows how to encapsulate the three actions in a repeat block. The repeat
does not have a branch with the stop_repetition keyword and will thus loop forever.

Processes

Processes combine the define messages and order of these messages to make up the
(partial) behaviour of an SUT. Every action needs to be in a process. Processes can
only transmit messages that are defined or imported within them. One interesting
feature of Axini is it’s ability to have more control over time. Within each process a
timeout in seconds must be defined. This timeout will be used to wait for an observable
action/reply from the SUT.
However, unlike in TorXakis, where the parallel operator can be applied on actions
and processes, processes are the only level at which parallelization can be applied. An
example process has already been shown in listing 2.8.

Time

In testing time can be an important factor. Waiting forever on an action that is expected
to take seconds is not acceptable. As mentioned before, Axini has per process timeouts.
Additionally, Axini allows for more restrictive time constraints per message. Say the
output of the calculator needs to be exactly between 2 and 3 seconds. This can be
modeled with the ’after’ and ’before’ keywords.

1 send ' output ' , c on s t r a i n t : ' r e s u l t == expec t ed r e su l t ' ,
update : ' e xp e c t e d r e s u l t = 0 ' , a f t e r : 2 , b e f o r e : 3

The current time can be accessed using current_time. This can be used to apply more
constraints on incoming data related to time.

20

Chapter 3

Testing Smart Cable Guard

In the previous chapter the background information regarding SCG, MBT and TorXakis
and Axini was discussed. In this chapter, TorXakis and Axini will be applied to the SCG
system. This chapter aims to provide a proof of concept implementation showing how
MBT can be applied to SCG to find defects and to increase software quality. However,
first the SUT and test harness will be defined. This harness is used for both TorXakis
and Axini. Furthermore, the modeling of SCG in TorXakis and Axini is discussed
including encountered difficulties and solutions to overcome these difficulties. Finally,
the problems found within the SUT are presented. During testing both TorXakis and
Axini are applied to the same firmware version, with the same setup.

3.1 System under test

The SUT is what is in the black box of MBT. The SUT has to be carefully chosen based
on the systems environment and interfaces. These interfaces are the location where
MBT will apply stimuli and observe actions. For SCG there are multiple possibilities.
The first option is defining the SUT as one CU. This would require stubbing the SU.
Since this communication is less than trivial and undocumented the effort required to
achieve this would exceed the possibilities of this thesis. The second option is including
the SU. This is a viable option as it limits the complexity of the test harness and does not
require creating any test doubles1. The benefit of this is that there is no need to obtain
confidence in the correctness of a test double. The third and final option is placing a
whole measurement system (two CUs and two SUs) in the black box. This is another
viable option as it would extend the possibilities of the model to more thoroughly check
the measurement. This can only be done using two CUs as it requires information from
both sides of the cable.
Due to the earlier mentioned time constraints it is only possible to create a model for
one of these SUTs. The most crucial aspect is that a CU remains operational. Hence,

1The term test double is a generic term for a mock, fake or stub

21

the second option of one CU and SU will be the SUT. The test harness and SUT will
utilize the following interfaces:

1. The MQTT interface, used for remote control over the CU.

2. The Arduino, it controls:

• The power cable, this cable provides the CU with power.

• The cable, this cable is the cable being monitored. It is used for Synchro-
nization and Fault & PD generation.

3.2 Test harness Smart Cable Guard

The test harness connects to the SUT to make communication between the MBT tool
and the SUT possible. Furthermore, SCG measures occurring cable faults and PD.
These are rarely seen in the lab environment. These different inputs are thus simulated,
this can be reliably done using two generators. One generator for faults and one for
PD. However, these generators require physical interaction via a Transistor-Transistor
Logic (TTL) input. The test harness should be able to signal these generators. To solve
this issue a laptop is used to run the software side of the harness while an Arduino has
been programmed to accept commands via a Serial connection. The Arduino will then
trigger the TTL ports of the generators. The test harness will thus consist of a hardware
layer that can interact with the environment of the SUT. This is done through the fault
and PD generators as well as the power supply. Besides this, there will be software
that interacts with the MQTT API. The SUT with the test harness surrounding it, is
displayed in figure 3.1. Everything outside the dotted lines of the SUT box is part of
the test harness.

22

Dip
simulator

SU
PD

Generator
Fault

Generator
Cable input:
Faults, PD,

sync
SU

CU
Power

Supply

Arduino

GPIO

Serial

Broker

MQTT

MQTT

TTL

TTL

SUT

CU

Laptop

Test
harness

MBT

tool

Test engineer
Serial

pass / fail

Figure 3.1: Test harness and the single CU SUT with accompanying connections

Diving deeper into the test harness there are multiple blocks. The laptop shown in
figure 3.1 provides the harness with an internet connection to use the MQTT interface
of the SUT and connect to outside sources. For example Axini does its decision making
in the cloud, while TorXakis runs locally.
Using the General Purpose Input/Output (GPIO) pins of the Arduino three separate
events can be triggered. The first is the Dip simulator. This device is used to simulate
power loss on both the CU and SU of the SUT. The second is a fault generator, it
injects high voltage pulses into the cable. In the real world faults can cause power loss
due to the cable truly breaking or a protection mechanism kicking in. Combining the
dip simulator and fault generator, it is possible to recreate the scenario where a fault
causes power loss. The last device is the PD generator, which creates PD signals. As
stated in figure 3.1 all three of these devices are controlled using TTL.
Faults and PD are injected into the cable. Besides that, the cable also provides another
variable, namely if the system is in sync. The left and right CUs need to be in sync for
the SUT to show operational behaviour. The CU on the right of figure 3.1 can cause
desynchronization by adjusting several values via MQTT. This will result in different
behaviour from the SUT.

23

The Arduino in the system can perform the TTL triggers at a rate that vastly ex-
ceeds 100Hz. This is achieved by writing directly to the register instead of using the
digitalWrite function. The maximum expected frequency is 2MHz2. The maximum
measurement frequency of faults is 100Hz. Additionally, the system should only cap-
ture a maximum of 25 pulses per minute. When monitoring the cable similarly to how
SCG functions, injecting 100 fault pulses in one second looks like figure 3.2.
PD can occur at a higher frequency and thus requires faster triggering than 100Hz.

0s1s1.1s

850v

0v

Figure 3.2: 100 Fault pulses injected in one second with normal noise.

3.3 TorXakis

Above the test harness was described including all interaction methods that are con-
sidered. In this section a closer look will be taken at model-based testing SCG using
TorXakis. Firstly, the message structure and translation into TorXakis Syntax (TXS)
will be discussed. After which the difficulties of time and state management that mod-
eling SCG in TorXakis causes and how these difficulties were handled is discussed in
detail.

3.3.1 Message structure

Within TorXakis all messages have been recreated as an Algebraic Data Type. Each
of these messages are send over a specific TorXakis channel. The mapping of channels,
messages to interfaces is shown in table 3.1. The message types mentioned are explained
below.

2billporter.info/2010/08/18/ready-set-oscillate-the-fastest-way-to-change-arduino-pins

24

http://billporter.info/2010/08/18/ready-set-oscillate-the-fastest-way-to-change-arduino-pins

TorXakis Test harness interface

MqttIn
RootRequest−−−−−−−→

MQTT
MqttOut

RootResponse←−−−−−−−−
PhysicalIn

Trigger−−−−→ Arduino

Table 3.1: Mapping of TorXakis channels, messages and test harness interfaces.

All messages that the SUT can transmit on the MQTT interface are translated into
TorXakis ADTs. This is done so that TorXakis can reason about all information on
this interface. The MQTT messages start at a root message and then branch out into
Get, Set and Run messages. Which in turn branch out into specific sections like con-
figurations, measurements, etc. This structure is recreated as an ADT with at the root
the RootRequest and RootResponse shown in listing 3.1. The RootRequest shows that
it is possible for TorXakis to send either a Get, Set or Run request to the SUT. Besides
that, RootResponse includes all messages that the SUT can generate. These messages
are created when a requests warrants a reply or when certain criteria are met. For
example when the CU connects to the network a Connected message is send.

1 TYPEDEF RootRequest : :=
2 Get { get : : GetRequestRPC}
3 | Set { s e t : : SetRequestRPC}
4 | Run { run : : RunRequestRPC}
5 ENDDEF
6 TYPEDEF RootResponse : :=
7 GetResponse { ge t r e spon s e : : GetResponseRPC}
8 | StatusCode { code : : ResponseStatusCode}
9 | Connected {cu : : IdMessage}
10 | Disconnected {cu2 : : IdMessage}
11 | PushedFaultReport { f a u l t r e p o r t : : FaultReportMessage}
12 | ImplodingMessage { t ex t : : S t r ing }
13 ENDDEF

Listing 3.1: Root communication structure

The Root instances can be unfolded to individual messages. An example of this is the
location information request and response shown in listing 3.2. The location information
has multiple fields: city or area name, company name, station code and station name.
These can be individually or collectively requested by one message through the MQTT
interface.

1 TYPEDEF GetLocationConf ig : :=
2 Locat ion { c i ty or area name , company name ,
3 s ta t i on code , stat ion name : : Bool}

25

4 ENDDEF
5
6 TYPEDEF Locat ionConf ig : :=
7 Loc {
8 c i ty or area name ,
9 company name ,
10 s ta t i on code ,
11 stat ion name : : S t r ing
12 }
13 ENDDEF

Listing 3.2: TorXakis representation location retrieval and location response/state message

The request is identical to its MQTT counterpart in functionality. A subset can be
requested by only setting the needed fields to true. (e.g. only the city or area name).
Nonetheless, the response is not identical in functionality. A valid TorXakis response
must contain all fields. As a consequence the response is only capable of representing a
message with all fields set. To achieve an incomplete message, every field in all messages
would need to be wrapped in a custom optional type, just like the Haskell Maybe type.
This is not implemented in such a way due to a lack of time. This would also require two
almost identical implementations of the current state and the messages. Besides that,
TorXakis does not allow the creation of custom Eq class implementations. This forces
the user to either choose the default strict equality check or create a custom top down
equality function for all possibilities in the ADT. It is not possible to overwrite the Eq
class of a single type. Comparing the Maybe types would require a long function that
individually checks every field. As such, requesting a subset is possible, but receiving a
subset is not possible. To deal with this, subsets are not retrieved.
Furthermore, simple messages are added to trigger the Arduino using the PhysicalIn
channel. These can be seen in listing 3.3. The PhysicalOut channel is not used and
can be ignored

1 TYPEDEF Trigger : :=
2 Faul tTr igger { pu l s e s0 : : Int } |
3 Pul seTr igger { pu l s e s1 : : Int } |
4 PowerTrigger { pu l s e s2 : : Int }
5 ENDDEF

Listing 3.3: TorXakis messages used to trigger control the Arduino.

3.3.2 Time management

A large part of embedded systems perform actions that are related to time [14, 15].
Think of a coffee machine or an ATM. From the users perspective it is reasonable to
expect that their coffee and money will not take hours to produce. A very simple coffee
machine could be modeled in TorXakis as in figure 3.3. Within the IOCO theory the

26

phenomena of observing no output from the SUT is called quiescence as introduced
in chapter 2.3. This is a fundamental concept of modeling system behaviour [16].
TorXakis is able to determine quiescence. This is done with a variable amount of time
that TorXakis waits for output until determining quiescence has occurred.

button coffee

Figure 3.3: Simple coffee machine with single input button and output coffee

Specifically for quiescence to occur there must be no output of the entire SUT. When
moving to more complex machines this can provide a challenge. Imagine an advanced
coffee machine that is made up out of two simple coffee machines shown in figure 3.3.
The advanced coffee machine is displayed in figure 3.4 and can dispense two beverages
at the same time.

left

button

left

coffee

right

button

right

coffee

left

button

right

button

left

coffee

right

coffee

right

coffee

left

coffee

right

button

left

button

Figure 3.4: Advanced coffee machine with two input buttons and two output coffees

A coffee can be produced on the left and right simultaneously. Sadly, the left side of the
SUT is broken and the coffee will never dispense. Now imagine that someone presses
the left button. Quickly after attempting the left button a line of infinite people start
getting coffee on the right. TorXakis will not ’see’ the quiescence on the left as the

27

system itself is not quiescent. This is an undesirable consequence of the IOCO theory.
Only if right button is not pressed sufficiently long enough will any tester using the
IOCO theory eventually notice that the SUT failed due to never dispensing coffee on
the left. When testing it is only possible to perform a finite number of steps within the
model before needing to label the test with a PASS or FAIL. In the case of continuous
interaction with the right side from the moment of the left button press, the test verdict
will be a pass.
Nevertheless, there are different ways to achieve recognition of the failure. For example,
synchronizing all inputs and outputs with a time channel. In this approach all messages
are tagged with their corresponding time. However, caution is required. TorXakis does
not provide any guarantee regarding input and output frequencies. It is thus unknown
when the posted timestamp on the time channel will be consumed. There exists a
real risk of inaccurate time information. With this approach it is best to let the test
harness create a new timestamp on the channel when the SUT has created output or
when TorXakis has created SUT input. This matches the number of timestamps to the
number of messages between TorXakis and SUT and limits the time between creation
and consumption of the timestamp compared to periodically adding a new timestamp.
The largest drawback to this approach is the possibility of introducing false positive
failures. The problem is that there is not a fixed time between the stimuli of the event
and TorXakis seeing the response. If the SUT and the timestamp creation are run
concurrently, it becomes possible that they intertwine in such a way that an extra
message gets created. Now, the TorXakis channel holds an extra timestamp that is not
expected and might fail the system if it is not dealt with.
A second approach, which is used in this thesis, moves the time management from
TorXakis to the test harness. There are two reasons for this. The first being that it
is simpler compared to also modeling time. The second being that this approach does
not accumulate inaccuracy over time.
The least timing inaccuracy is incurred if the timer is started as close as possible to the
event to be timed. As such, it is best if the SUT stimuli can simultaneously be used
to start a timer in the harness, or if a starting message is send using the synchronous
operator3. From either of these approaches the test harness starts a timer and stops it
if the required result is produced on time by the SUT. If the timer is not stopped on
time the test harness sends a message that is never expected by TorXakis thus always
failing the test. In this thesis such a halting message is called an imploding message.

1 TYPEDEF Cof f ee : :=
2 Cof f ee
3 | ImplodingMessage { i n f o : : S t r ing }
4 ENDDEF
5 PROCDEF Advanced Coffee Machine [l e f tButton , r ightButton ;

l e f tCo f f e e , r i g h tCo f f e e : : Co f f ee] () : :=
6 Simple Cof fee Machine [l e f tButton , l e f t C o f f e e] ()

3torxakis.org/userdocs/stable/grammar/Synchronous Operator.html

28

https://torxakis.org/userdocs/stable/grammar/Synchronous_Operator.html

7 | | |
8 Simple Cof fee Machine [r ightButton , r i g h tCo f f e e] ()
9 ENDDEF
10 PROCDEF Simple Cof fee Machine [Button , Co f f ee : : Co f f ee] ()

: :=
11 Button
12 >−>
13 Cof f ee ! Co f f ee
14 >−>
15 Simple Cof fee Machine [Button , Co f f ee] ()
16 ENDDEF

Listing 3.4: TorXakis representation of the advanced coffee machine with imploding messages to enforce
time

In listing 3.4 it is visible that the imploding message has been added. This is done so
TorXakis can read the message without crashing and instead fails the test run.

1 c l a s s Harness :
2 de f i n i t () :
3 . . .
4
5 de f t o r xak i s hand l e r (s e l f) :
6 # Receive data from TorXakis
7 data = s e l f . t o r xak i s . recv (10240)
8 i f not data :
9 break
10
11 # proce s s TorXakis message :
12 s t imu l i = t r a n s l a t e to SUT s t imu l i . . .
13
14 i f s t imu l i == l e f t b u t t o n p r e s s :
15 t imer = Countdown (30 , ac t i on = lambda : s e l f .

imploding message (” Le f t ”))
16 s e l f . l e f t t im e r = timer
17 t imer . s t a r t ()
18
19 e l i f s t imu l i == r i gh t bu t t on p r e s s :
20 . . . idem . . .
21
22 s e l f . sut . s e nda l l (s t imu l i)
23
24 de f su t hand l e r (s e l f) :
25 data = s e l f . sut . recv (10240)
26

29

27 # proce s s sut message/ response
28 resp = . . . t r a n s l a t e to TorXakis . . .
29
30 # i f d e s i r ed behaviour i s seen stop t imer .
31 i f r e sp == l e f t c o f f e e :
32 s e l f . l e f t t im e r . stop ()
33 e l i f r e sp == r i g h t c o f f e e :
34 . . . idem . . .
35
36 s e l f . t o r xak i s . s e nda l l (r e sp)
37
38 de f imploding message (s e l f , s i d e : s t r) :
39 message = (” ImplodingMessage (” + s i d e + ” c o f f e e was too

l a t e) ”) . encode (' utf −8 ')
40 s e l f . t o r xak i s . s e nda l l (message)
41
42
43 c l a s s Countdown :
44 de f i n i t (s e l f , s e c onds to wa i t : int , a c t i on) :
45 s e l f . seconds = seconds to wa i t
46 s e l f . a c t i on = act i on
47 s e l f . s t op = False
48
49 de f wa i t f o r a c t i o n (s e l f) :
50 f o r i in range (s e l f . seconds) :
51 i f s e l f . s t op :
52 re turn
53 time . s l e e p (1)
54 i f s e l f . s t op :
55 re turn
56 s e l f . a c t i on ()
57
58 de f stop (s e l f) :
59 s e l f . s t op = True
60
61 de f s t a r t (s e l f) :
62 t = Thread (t a r g e t=s e l f . w a i t f o r a c t i o n)
63 t . s t a r t ()

Listing 3.5: Test harness example demonstrating imploding messages in python code

The extra TorXakis message is a small change. The main adjustment is done in the
test harness. Pseudo python code of such a test harness can be seen in listing 3.5. This,
code is only an example on how to implement imploding messages.

30

The most important changes are identifying when to start and stop a specific timer as
seen on line 14-20 and 31-34. A Countdown object is created with 30 seconds to count-
down and a lambda function4 to abstract from the arguments to imploding message.

As soon as the countdown is started a new thread is spawned. This allows other
processes and communication to continue. Thus starting a countdown is non blocking.
In the case of the coffee machine, the countdown is stopped when coffee is produced
on the corresponding side. If the countdown has been flagged to stop it does so and
the message is not sent. However, when the coffee is produced too late. The timer has
run out and the test harness automatically performs the provided action. This action
can be any callable object. Above, the provided action sends the imploding message.
Resulting in TorXakis marking the test run as failed.

3.3.3 State management

Most models have state, meaning that their behaviour depends on previous actions.
Take for example the simple coffee machine from figure 3.3. Coffee is made with grounds
usually stored in a hopper on top of the machine. To represent this in a model, the
amount of grounds in the machine needs to be tracked. This is done in the state of the
coffee machine. Let this state be how many coffees can be made with what is in the
hopper. Decreasing by one every time a coffee is made.

button

coffee

grounds

-1

No grounds

Figure 3.5: Simple coffee machine with state tracking the number of coffees that can be produced

Keeping the state within the model works well when the model is a single simple
process. Because the state only requires modification by a single process at most.
However, problems arise when introducing more processes that require mutable access
to the shared state. Extending the hopper/grounds analogy to the advanced coffee
machine with a single hopper shown in figure 3.4 results in a TorXakis process in listing
3.6.

4docs.python.org/3/tutorial/controlflow.html#lambdaexpressions

31

https://docs.python.org/3/tutorial/controlflow.html#lambda\protect \discretionary {\char \hyphenchar \font }{}{}expressions

1 PROCDEF Advanced Coffee Machine [l e f tButton , r ightButton ,
l e f tCo f f e e , r i gh tCo f f e e , l e f tE r r o r , r i gh tEr r o r] (grounds
: : Int) : :=

2 Simple Cof fee Machine [l e f tButton , l e f tCo f f e e ,
l e f t E r r o r] (?)

3 | | |
4 Simple Cof fee Machine [r ightButton , r i gh tCo f f e e ,

r i gh tEr r o r] (?)
5 ENDDEF
6 PROCDEF Simple Cof fee Machine [Button , Cof fee , Error] (

grounds : : Int) : :=
7 Button
8 >−>
9 [[grounds > 0]]
10 (
11 Cof f ee
12 >−>
13 Simple Cof fee Machine [Button , Cof fee , Error

] (grounds − 1)
14)
15 ##
16 [[grounds == 0]] =>>
17 (
18 Error
19 >−>
20 Simple Cof fee Machine [Button , Cof fee , Error

] (grounds)
21)
22 ENDDEF

Listing 3.6: TorXakis representation of the advanced coffee machine with state

In listing 3.6 the grounds state information in the advanced coffee machine is not passed
to the sub processes. As it is unclear what each simple coffee machine should get as a
state. If the left and right coffee machine both get the total number of grounds then the
model would be able to produce twice as many coffees as the machine. Giving each sub
coffee machine half of the grounds means that one side would not be able to produce
all coffees. The models used in model based testing specify the desired behaviour of
a SUT [6, 17]. However, the advanced coffee machine shown above would not model
the desired behaviour. Staying as close as possible to the actual desired behaviour is
important.
The problem here is that the two simple coffee machines are never synchronized. This
could be achieved by performing communication over internal channels once either sub
process has produced coffee. This way both internal processes can keep their state

32

updated with the actions of the other process. However, adding a third simple coffee
machine to that would require adjusting all other processes to also synchronize with
the third simple coffee machine. A more elegant solution is to model the state as a
separate process with which hidden synchronization occurs. This process is displayed
in figure 3.7. It can be seen as a sort of global variable.

1 PROCDEF Cof f e eS ta t e [GetGrounds : : Int ; DecreaseGrounds] (
grounds : : Int) : :=

2 (
3 GetGrounds ! grounds
4 >−>
5 Co f f e eS ta t e [GetGrounds , DecreaseGrounds] (grounds)
6)
7 ##
8 [[grounds > 0]] =>>
9 (
10 DecreaseGrounds
11 >−>
12 Co f f e eS ta t e [GetGrounds , DecreaseGrounds] (grounds

− 1)
13)
14 ENDDEF

Listing 3.7: TorXakis state process for advanced coffee machine

Lines 2-6 are for retrieving the internal information. In this case that is the total num-
ber of grounds left. Lines 8-13 are for decreasing the internal grounds variable. The
guard on line 8 and decreasing recursive call on line 12 guarantee that the total number
of decreasing transitions that can be made is equal to the amount of grounds (i.e. the
grounds variable will never become negative.)

1 PROCDEF Simple Cof fee Machine [Button , Cof fee , Error ;
GetGrounds : : Int ; DecreaseGrounds] () : :=

2 Button
3 >−>
4 (
5 Cof f ee | DecreaseGrounds
6 >−>
7 Simple Cof fee Machine [Button , Cof fee , Error ,

GetGrounds , DecreaseGrounds] ()
8)
9 ##
10 (
11 Error | GetGrounds ? grounds [[grounds == 0]]

33

12 >−>
13 Simple Cof fee Machine [Button , Cof fee , Error ,

GetGrounds , DecreaseGrounds] ()
14)
15 ENDDEF

Listing 3.8: TorXakis model of the simple coffee machine with state process

1 PROCDEF Advanced Coffee Machine [l e f tButton , r ightButton ;
l e f tCo f f e e , r i g h tCo f f e e ; l e f tE r r o r , r i gh tEr r o r] (grounds
: : Int) : :=

2 HIDE [GetGrounds : : Int ; DecreaseGrounds] IN
3 Co f f e eS ta t e [GetGrounds , DecreaseGrounds] (grounds)
4 | [GetGrounds , DecreaseGrounds] |
5 (
6 Simple Cof fee Machine [l e f tButton , l e f tCo f f e e ,

l e f tE r r o r , GetGrounds , DecreaseGrounds] ()
7 | | |
8 Simple Cof fee Machine [r ightButton , r i gh tCo f f e e ,

r i ghtErro r , GetGrounds , DecreaseGrounds] ()
9)
10 NI
11 ENDDEF

Listing 3.9: TorXakis model of the advanced coffee machine with state process

In listing 3.9 the advanced coffee machine is shown as TorXakis model, which internally
uses the simple coffee machine and coffee state. On line 2 new internal channels are
created and hidden. On line 3-9 the coffee state process and two interleaved simple coffee
machines are synchronized with each other. Adding another simple coffee machine is
simple and requires no rewriting of processes. Furthermore, there are no edge cases
that need to be dealt with. Coffee can only be produced if it is also possible to decrease
the total amount of grounds. Besides that, if an error is produced by the system, there
should be no grounds left (The only error). Mutable access is achieved while making
that access relatively safe. Caution is still required as it is rather trivial to introduce
classic time-of-check time-of-use (TOCTOU) problems. For example if the retrieving
of the grounds from the state process on line 11 in listing 3.8 is done at the beginning
of the process. Usage of the state happens some time later, in the mean time the state
could have been altered multiple times.

3.3.4 Modeling the Control Unit in TorXakis

Using the main message structure, time management and state management it is pos-
sible to define the desired behaviour of a CU. In listing 3.10 the process that maintains
the accurate state is shown. This state process is more complex than the one shown in

34

listing 3.7. However, the idea is the same. On line 2 to 4 the process can provide the in-
ternal state, which is used in constraints. On line 6-8, the state is adjusted on the basis
of a set request called ‘req‘. Finally, on line 10 the kept state needs to be adjusted using
the response from the SUT. The response can contain information regarding performed
measurements that have become available for retrieval. In some cases the request is also
required to make the correct state update. This is the case when it contains identifying
information regarding what measurement has been requested.

1 PROCDEF StateHandler [Request : : RootRequest ; Response : :
RootResponse ; State : : CuState] (s t a t e : : CuState) : :=

2 State ! s t a t e
3 >−>
4 StateHandler [Request , Response , State] (s t a t e)
5 ##
6 Request ? req
7 >−>
8 StateHandler [Request , Response , State] (

upda t e s t a t e r eq (req , s t a t e))
9 ##
10 Response ? resp
11 >−>
12 (
13 StateHandler [Request , Response , State] (

upda t e s t a t e r e sp (resp , s t a t e))
14 ##
15 (
16 Request ? req
17 >−>
18 StateHandler
19 [Request , Response , State]
20 (upda t e s t a t e r e s p r e q (resp ,

req , s t a t e))
21
22)
23)
24 ENDDEF

Listing 3.10: CU state handler process

1 PROCDEF CU [Phys i ca l In : : Tr igger ; PhysicalOut : : Int ; MqttIn
: : RootRequest ; MqttOut : : RootResponse] (s t a t e : :

CuState ; cuRestarts , networkRestarts : : Int) : :=
2 HIDE [Request : : RootRequest ; Response : : RootResponse ;

State : : CuState] IN
3

35

4 r e q u e s t s a nd t r i g g e r s l o o p [
5 Phys ica l In , PhysicalOut ,
6 MqttIn , MqttOut ,
7 Request , Response , State
8] (cuRestarts , networkRestarts)
9
10 | [Request , Response , State] |
11
12 StateHandler
13 [Request , Response , State]
14 (s t a t e)
15 NI
16 ENDDEF

Listing 3.11: First part of the process defining the behaviour of a CU

The process shown in listing 3.11 is the main process of the behaviour of the CU. The
multiple input and output channels connect to the physical side and MQTT interface of
the SUT. It is directly visible that the state management discussed in chapter 3.3.3 has
been applied. Furthermore, on line 4 the process that interleaves requests and triggers
is called. This process is shown in 3.12.

1 PROCDEF r e qu e s t s a nd t r i g g e r s l o o p [
2 Phys i ca l In : : Tr igger ; PhysicalOut : : Int ;
3 MqttIn : : RootRequest ; MqttOut : : RootResponse ;
4 Request : : RootRequest ; Response : : RootResponse

; State : : CuState
5] (cuRestarts , networkRestarts : : Int) : :=
6 State ? s t a t e
7 >−>
8 (
9 (
10 CU requests [
11 MqttIn , MqttOut ,
12 Request , Response , State
13] ()
14 | | |
15 Tr igge r s [Phys ica l In , PhysicalOut , MqttOut ,

Response] ()
16)
17 [>>
18 . . . system / network r e s t a r t r ou t i n e s . . .
19)

36

20 ENDDEF

Listing 3.12: Process that interleaves MQTT requests and Physical triggers

These requests and triggers are performed within different processes due to the recursive
calls required for looping and continuing after disabling routines. If the recursive calls
are done needlessly the number of interrupt or disable branches increases. Tests that
run for multiple hours to days this will become problematically slow. The system and
network restart on line 18 are not shown due to size. To provide some detail, when a
restart is requested the SUT disconnects and reconnects some time later.
On line 6 the internal state is retrieved from the state handler. The state is only used
within the restart routines on line 18 to retrieve identifiers. This does not require an
up-to-date state so TOCTOU issues do not occur.
Diving deeper into the physical side of the model and test harness. CUs are continuously
looking for faults and PDs. These can be simulated using specific generators. Taking
faults as an example, TorXakis can indicate that the fault generator should be triggered
by sending a FaultTrigger message to the test harness. As is visible on line 2 of listing
3.13. Furthermore, TorXakis awaits the pushed FaultReport and then hands it off to
the state handler to include the FaultReport in the state such that further requests can
be based of that FaultReport.

1 PROCDEF Tr igge r s [Phys i ca l In : : Tr igger ; MqttOut : :
RootResponse ; Response : : RootResponse]

2 Phys i ca l In ? t r i g g e r [i sFau l tTr i g g e r (t r i g g e r)]]
3 >−>
4 −− Poten t i a l 3 min de lay here
5 MqttOut ? x [[i sPushedFaultReport (x)]]
6 >−>
7 Response ! x
8 ENDDEF

Listing 3.13: Simple Fault trigger modeled in TorXakis

Next to the trigger loop, a straightforward request loop is used. A snippet of the
request loop can be seen in listing 3.14. In this listing, only the simple get request is
shown. A get request based on the state is created, think of retrieving a configuration
like location. The functions ’checkSutGetInputRoot’ makes sure that only specific
requests are generated. The response to the request is checked against the state by
applying the request to the known state in the function ’getFromState’. The same is
done within the other request branches (i.e complex get, set and run). The only extra
thing they do extra is updating the state based on the request and response.

1 PROCDEF CU requests [
2 MqttIn : : RootRequest ; MqttOut : : RootResponse ;
3 Request : : RootRequest ; Response : : RootResponse ;

State : : CuState

37

4] () : :=
5 State ? s t a t e
6 >−>
7 (
8 (
9 MqttIn ? req [[checkSutGetInputRoot (req ,

s t a t e)]]
10 >−>
11 MqttOut ? resp [[getFromState (req , resp ,

s t a t e)]]
12 >−>
13 r e c u r s i v e c a l l
14)
15 ##
16 Get request , r e t r i e v i n g new in fo rmat ion (

a l t e r s s t a t e)
17 ##
18 Set r eque s t (a l t e r s s t a t e)
19 ##
20 Run reques t (a l t e r s s t a t e)
21)
22 ENDDEF

Listing 3.14: Request loop modeled in TorXakis

3.4 Axini

Previously modeling SCG in TorXakis was discussed. In this section the same will be
done for Axini. The problem of time and state management have not been encountered
in Axini. Axini has time constructs built in and has variables on a process basis. These
variables with some added internal communication between processes are enough to
perform state management. In this section, the message structure, the model of SCG in
Axini and the problem of alternative behaviours such as TorXakis’ disable and interrupt
will be discussed.

3.4.1 Message structure

The translation from SCG to Axini is less one on one compared to TorXakis. Within
TorXakis new data types are equivalent to build in data types. However, Axini has a
different approach, a message is not a type, but a label. This label can be accompanied
by additional data. The Axini syntax creates a flat message structure as messages are
not nested within each other.
As an example, the location information message is used again. The information can be

38

retrieved using the label ”get_location”, which results in a ”location” label reply.
This location message holds an attribute with the key ”_location” and value struct
”location”. This structure holds the relevant fields. Every message is defined as a
separate label.

1 s t imu l i ' g e t l o c a t i o n '
2 response ' l o ca t i on ' , ' l o c a t i on ' => l o c a t i o n
3
4 de f l o c a t i o n
5 {
6 ' c i t y a r e a ' => : s t r i ng ,
7 ' company ' => : s t r i ng ,
8 ' s t a t i on code ' => : s t r i ng ,
9 ' stat ion name ' => : s t r i n g
10 }
11 end

3.4.2 Time management

Axini provides functionality to retrieve the current time and apply timing constraints.
This can be used to model that an observable action needs to be performed before or
after a given number of seconds. TorXakis ignores the possible observable output and
instead continues to provide the SUT with input. Axini usually considers observable
output as more important than input. Consequently, Axini chooses to observe the
output or lack thereof. This can lead to Axini waiting the entire amount of time to
conclude quiescence. Nevertheless, it guarantees that SUT failure due to unspecified
quiescence will not be missed.

3.4.3 State management

The problem of TorXakis and state management does not occur in Axini as it has
variables that can be updated during test execution without performing a recursive
call. Nonetheless, these variables are local to a process. Some communication among
the measurement and MQTT process solve the mutual access problem.

3.4.4 Modeling the Control Unit in Axini

The model can be created using the defined labels. The two main interfaces are the
physical interface and the MQTT interface. Both the physical and MQTT interface
have one process each. The physical process focuses on the measurement side of the
CU while the MQTT process focuses purely on communication. The physical process
only uses the MQTT interface for receiving pushed messages related to performed
measurements. These messages are not needed within the other processes and thus the

39

processes remain independent except for internal communication. The physical process
is partially shown in listing 3.15. The listing shows the messages used by this process,
the first one is the trigger message. This message is sent to the Arduino which triggers
the fault generator. The field _triggers indicates the number of triggers per second.
The SUT should detect the faults and create a report. This report is required to be
published within 3 minutes (180 seconds) after the event. This can simply be indicated
using the ’before’ keyword. If a report is published, the other process is informed of
the _date_time of the report, such that it can base new requests on this report. The
pulse trigger and power trigger are constructed in a similar way compared to what is
shown.

1 proce s s (' phys i ca l ') {
2 timeout 240 .0
3 channel (' phys i ca l ') {
4 st imulus ' f a u l t t r i g g e r ' , ' t r i g g e r s ' => : i n t e g e r
5 . . .
6 }
7 channel ('mqtt ') {
8 response ' f a u l t r e p o r t ' , ' pu l s e s ' => : i n t ege r , '

date t ime ' => : i n t ege r , ' power supp ly l o s t ' => :
boolean

9 . . .
10 }
11 channel (' i n t e rna l ') {
12 response ' f a u l t r e p o r t n o t i f i c a t i o n ' , ' date t ime ' => :

i n t e g e r
13 . . .
14 }
15
16 var ' f a u l t p u l s e s ' , : i n t e g e r
17 var ' f a u l t pu l s e d a t e t ime ' , : i n t e g e r
18 . . .
19
20 repeat {
21 o{
22 r e c e i v e ' f a u l t t r i g g e r ' , c on s t r a i n t : ” t r i g g e r s > 0 &&

t r i g g e r s <= 100” , update : ' f a u l t p u l s e s = t r i g g e r s '
23 send ' f a u l t r e p o r t ' , c on s t r a i n t : ' pu l s e s == min (25 ,

f a u l t p u l s e s) && powe r supp l y l o s t == f a l s e ' , b e f o r e :
180 .0 , update : ' f a u l t p u l s e d a t e t im e = date t ime ' ;

update (' f a u l t p u l s e s = 0 ')
24 send ' f a u l t r e p o r t n o t i f i c a t i o n ' , c on s t r a i n t : ”

date t ime == f au l t p u l s e d a t e t im e ”

40

25 }
26 . . .
27 }
28 }

Listing 3.15: First process of SCG model in Axini

The Axini trigger process is similar to the TorXakis implementation. However, the
request process implementation is quite different. The Axini process is flat, because
messages are not nested like ADTs in TorXakis. In listing 3.16 the requests process is
shown with the earlier talked about location and fault messages. Any other messages
have been removed to fit in this paper.
The two constructs of @config.fetch(:stub) and urgent: true have not been intro-
duced yet. The first fetches a value with the key ’stub’ from the config struct called
’config’. The second tells Axini, to take the transition over others when it is available.
This is useful to perform internal communication actions as soon as possible instead of
other actions.
On line 40, it can be seen that the constraint on set_location enforces that it does
not sent an empty location. Furthermore, the flat message structure can be seen. The
flat structure creates more points where possible alternative behaviour should be made
available. The problem will be discussed in more detail in the following section.

1 p roce s s (' r eques t s ') {
2 timeout 120 .0
3 channel ('mqtt ') {
4 # get commands
5 s t imu l i ' g e t l o c a t i on '
6
7 # get r e p l i e s
8 re sponse ' l o ca t i on ' , ' l o c a t i on ' => l o c a t i o n
9
10 # response f o r r e t r i e v e d f a u l t r epo r t s
11 re sponse ' f a u l t r e p o r t s r e s p on s e ' , ' pu l s e s ' => [: i n t e g e r

] , ' date t imes ' => [: i n t e g e r]
12
13 # se t commands
14 st imulus ' s e t l o c a t i o n ' , ' l o c a t i on ' => l o c a t i o n
15
16 # run commands
17 st imulus ' r u n d e l e t e f a u l t r e p o r t ' , ' su id ' => : s t r i ng , '

date t ime ' => : i n t e g e r
18
19 }
20 channel (' i n t e rna l ') {

41

21 st imulus ' f a u l t r e p o r t n o t i f i c a t i o n ' , ' date t ime ' => :
i n t e g e r

22 }
23
24 var ' pushed fau l t da t e t imes ' , [: i n t e g e r] , []
25 i f ! @conf ig . f e t ch (: stub)
26 var ' loc ' , l o ca t i on , i n i t l o c a t i o n
27 end
28 i f @conf ig . f e t ch (: stub)
29 var ' loc ' , l o ca t i on , i n i t l o c a t i o n s t u b
30 end
31
32 var ' t emp fau l t r epo r t da t e t ime ' , : i n t ege r , 0
33
34 repeat {
35 o{
36 r e c e i v e ' g e t l o c a t i o n '
37 send ' l o ca t i on ' , c on s t r a i n t : ” l o c a t i o n == lo c ”
38 }
39 o{
40 r e c e i v e ' s e t l o c a t i o n ' , c on s t r a i n t : ” l o c a t i o n ['

c i t y a r e a '] != : void && l o c a t i o n [' company '] != :
void && l o c a t i o n [' s t a t i on code '] != : void &&
l o c a t i o n [' stat ion name '] != : void ” , update : ” l o c =
l o c a t i o n ”

41 send ' s ta tus code ' , c on s t r a i n t : ” code == 200”
42 }
43 o{
44 send ' f a u l t r e p o r t n o t i f i c a t i o n ' , c on s t r a i n t : '

date t ime != : void ' , update : ” pu shed f au l t da t e t ime s
= append (pushed fau l t da t e t imes , da te t ime) ” ,
urgent : t rue

45 update (” pu shed f au l t da t e t ime s = l im i t (
pu shed fau l t da t e t imes , 1000) ”)

46 }
47 o{
48 r e c e i v e ' g e t f a u l t r e p o r t ' , c on s t r a i n t : ” s u i d == #{

@config . f e t ch (: s u i d)} && date t ime in
pu shed f au l t da t e t ime s ” , update : ”
t emp f au l t r epo r t da t e t ime = date t ime ”

49 send ' f a u l t r e p o r t s r e s p on s e ' , c on s t r a i n t : ' l ength (
da t e t ime s) == 1 && date t ime s [0] ==
temp fau l t r epo r t da t e t ime '

42

50 }
51 o{
52 r e c e i v e ' r u n d e l e t e f a u l t r e p o r t ' , c on s t r a i n t : ” s u i d

== #{@config . f e t ch (: s u i d)} && date t ime in
pu shed f au l t da t e t ime s ” , update : ”
pu shed f au l t da t e t ime s = r e j e c t (
pu shed fau l t da t e t imes , '{ | e | e == date t ime } ') ”

53 send ' s ta tus code ' , c on s t r a i n t : ” code == 200”
54 }
55 . . .
56 }
57 }

Listing 3.16: Requests process in Axini

3.4.5 Alternative behaviour

Besides the main behaviour, a SUT could have alternative behaviour. An example
of alternative behaviour is error handling. If it is possible to perceive the alternative
behaviour, it needs to be accounted for within the model. In SCG there are several
examples of alternative behaviour like rebooting, updating, connection loss, frequent
repeated connection loss and the application freezing or crashing. In these scenarios,
the behaviour has been specified. Take for example the reboot process, it is possible
to model this procedure in a process. However, the other processes are unaware of the
reboot and expect the SUT to show normal behaviour. This can result in wrongfully
concluding test failure.
Notifying the other processes can be done using internal communication. However, the
notification of such a problem should be available in every state. LTS lend themselves
well to interleaving these extra possibilities [7, 4]. However, Axini does not support
interleaving.
Recreating the TorXakis disable and interrupt constructs in Axini can be done man-
ually for small models. A disable is a choice between continuing the original path or
performing the disable. The interrupt can be modeled as the choice between the in-
terruption or τ . The problem is the number of points where these extra options need
to be added. For complex models it is undesirable to do this manually. To solve this,
Axini can add the disable and interrupt constructs. An example of the possible Axini
syntax of the disable block is shown in listing 3.17, this block provides the TorXakis
equivalent of A [>> B].

1 d i s ab l e {
2 A
3 }
4 with{
5 B

43

6 }
Listing 3.17: Possible syntax for Axini to model the TorXakis disable construct (A [>> B])

3.5 Found issues

During the testing of SCG several issues were found on the CU. TorXakis and Axini
have been applied to the same software versions under the same simulated conditions.
All issues were found by both TorXakis and Axini. The following issues have been
found:

• Index out of bounds – The CU does not push all available measurement data.
This would consume too much data to transmit. However, in some cases it is
interesting to be able to analyze the raw measurements. The information can be
retrieved from the CU using a pulling method. However, the user is not aware of
which raw measurements are available. A list of measurements can be retrieved
by indicating how many objects to retrieve. This leads to an index being out of
bounds when the user requests more objects than are available.

• Dereferencing a null pointer – The communication interface that was used before
this thesis allowed null pointers to indicate if an object is available. However,
the new communication interface does not expect nor allow this. This results in
dereferencing an null pointer.

• Incorrect firmware version retrieval – The SU runs firmware and has specific nor-
mal and fallback versions. The running, normal and fallback firmware information
can be queried. The request for both these versions uses the running firmware
for both normal and fallback requests. Resulting in showing the user the same
firmware version twice.

3.6 Conclusion

This chapter aimed to show how MBT can be applied to SCG to find implementation
defects and to increase software quality. This is done by providing implementations of
MBT using two tools. Furthermore, this chapter provides solutions to the challenges of
time management, state management and creating a controllable test harness for SCG.
The expected behaviour of SCG depends on time. Modeling the expected behaviour is
possible even if the tool does not support modeling time. This can be done by shifting
the time management to the test harness. Nevertheless, a tool that supports timing
constraints natively should be used. This enables test engineers at DNV to develop and
maintain the model.
Alternative behaviour is difficult to model without interleaving constructs, which Axini
does not have. There exists a limitation regarding the chosen SUT. The SUT consists

44

of one CU and SU, this causes the produced data of the other CU to not be taken into
account. As a result, it is not possible to check if the combined data of both CUs is
correct. Besides that, the Axini model can not perform modem and complete reboot
actions. This is due to Axini not supporting alternative behaviour.
The current version of SCG has been under development since 2015. The application
has already seen many bug fixes. However, additional problems have been found using
MBT. The found bugs do not affect the crucial functions of SCG, instead they show
that the current testing effort is inadequate.
The application of MBT has overlap with the current testing strategy. To identify and
recommend appropriate integration of MBT in the testing strategy a comparison of
MBT and other forms of testing is required.

45

Chapter 4

Model-based testing compared

This chapter provides a comparison between the current manual system testing and the
model-based testing of SCG. The result of the comparison is the answer of the second
research question, which is, ”How does model-based and automated testing compare to
each other and to the manual system testing currently applied to SCG?”. SCG applies
unit tests along with manual system tests. MBT will not be compared with these unit
tests because they are performed on a different level and thus not comparable.
At first the current testing strategy applied to the SCG system is presented. Subse-
quently, the relation between model-based testing and manual system verification will
be discussed. Finally a short conclusion is drawn.

4.1 Current testing strategy

The current testing strategy consists of unit tests and acceptance tests. The unit tests
accompany the SCG application, which consists of several components. The most im-
portant and largest component of the CU is the SU controller. It retrieves measurements
and frees memory blocks of the sensor. The component is vital to the operation of the
sensor. This component has an instruction and branch test coverage of 39% measured
using JaCoCo1. The results of JaCoCo for this component can be seen in appendix A.
The test coverage for the SU controller is low. Coverage metrics are not useful indica-
tors of the effectiveness of a test suite and cannot be used as a stopping criterion for
testing [18]. However, low coverage does guarantee that large areas of the code base
go untested. Untested code is a problem for software reliability. This is supported by
Barnes and Hopkins, low code coverage leads to low trust in software quality [19].
To create a more complete testing strategy SCG started performing acceptance tests
in addition to the unit tests. The acceptance tests aim to guarantee correct operation
of the most crucial functions. These tests are performed within a micronet by a DNV
test engineer. The micronet is the manual and simpler equivalent of the test harness

1eclemma.org/jacoco

46

https://eclemma.org/jacoco

displayed in figure 3.1. In total there are 27 distinct non-release specific acceptance
tests. Most of these tests use the micronet to simulate a real world environment. The
acceptance test suite is not exhaustive. It does not test all of the possible requests.
There is simply not enough time to perform these checks manually.
The acceptance tests focus on testing detection and correct localization of faults and
PD. Furthermore, the communication aspects that allow for remote problem solving
are tested. Examples of what is tested are: up and downgrading, rebooting the system,
rebooting the modem and retrieving log files. The acceptance tests are performed to
prevent unrecoverable failure in the field, as this would require a physical site visit
and possibly CU replacement. The acceptance tests do not cover, the endurance of the
system, retrieving raw faults and raw PD, correct operations using a spotty mobile con-
nection and a large part of the communication messages. These scenarios go uncovered
due to money and time constraints.

4.2 Manual, automated and model-based testing

SCG uses manual acceptance test on a system level. These tests aim to guarantee
specific functionality and prevent total functionality failure. However, it is easy to
overlook subtle errors. An example of this is the SU firmware version retrieval bug
discussed in chapter 3. In this section, manual, automated and model-based testing
will be compared on development & maintenance, test execution, cost, edge cases and
the re of current test cases.

4.2.1 Development & Maintenance

SCG provides multiple web applications including measurement data graphs. These
applications are used by DNV personal to interact with the CUs and view the pro-
cessed measurement data. These applications are also used during testing to perform
actions and check measurement results. The manual tests do not need any additional
applications to be developed. The applications do not provide direct access to the data
nor is the behaviour of the CU observable. As a consequence, they are not suitable for
automated or model-based testing. Instead, a test harness needs to be constructed to
provide an interface for automated and model-based testing. This is additional devel-
opment effort that can only be used during testing. Although, any interference from
the web applications will be removed, resulting in an interface with direct access to
the CU. Moreover, the development of model-based tests requires deeper knowledge
of more aspects like the modeling tool, modeling language and conformance theories
[20]. The developer needs to take into account how the tool operates as can be seen in
chapter 3 with time management. As a result, developing a model takes more time.
The maintenance required for automated and model-based testing is also higher. The
manual tests are loosely defined. Hence, changes to the system will not force manual
tests to be rewritten. An example of this is the change from the DLMS protocol to

47

MQTT, none of the functionality of the CU changed. There is thus no need to rewrite
the manual test cases. The protocol change would force the entire test harness to be
rewritten.

4.2.2 Cost

Testing is the leading factor of the costs of software development [21]. It is logical
to attempt to reduce this. The manual tests have high reoccurring test execution
costs due to the labor required. Automated tests have a higher initial cost due to the
required effort during the development phase compared to manual tests. Nevertheless,
research has shown that automating manual tests can reduce total costs over time
compared to manual testing [22, 23] Moreover, the cost of model-based testing is higher
compared to automated testing [24]. This can be explained by the deep understanding of
the application domain, input, output, formats, modeling tool and modeling language
that MBT requires [20]. In the case of only one to three test cycles the investment
will probably not be recouped. If the number of test cycles is between 4 and 19 the
investment can be recouped, depending on the project. The application of MBT will
almost certainly pay off if 20 or more test cycles are performed [24]. New releases of
the SCG firmware are released once to twice a year. This would result in pay off after
at least 10 years of development.

4.2.3 Test execution

The manual tests at SCG are defined in natural language. Each test comes with a list
of preconditions, a list of steps to take and a list of postconditions. The test cases
make use of the testers flexibility to interpret ambiguous test steps and scenarios. This
flexibility is an advantage as less detailed information is required. Nonetheless, the
ambiguity can also lead to a difference in test results among testers or even between
test executions. Both automated and model-based tests require an unambiguous defi-
nition of all preconditions, test steps and postconditions. These definitions can either
be given in the form of code or a model. These forms makes sure that the test steps
are performed the same every time.
The manual and automated tests are performed sequentially, MBT performs the test
cases concurrently without additional effort to perform tests concurrently. The concur-
rent execution of the test cases will cover possible interference of the different actions on
each other. In the field the system is expected to perform its functionality concurrently.
The concurrent execution simulates the real world expectations of the CU better com-
pared performing test scenarios sequentially. Java is by default not thread safe, sharing
objects and especially lists across threads can result in the ConcurrentModificationEx-
ception error. These problems can also occur within the CU application.
The manual tests only last a short period of time, repeating them many times in dif-
ferent sequences is highly labor intensive. Besides that, automated tests can be made
to be executed multiple times with random sequences of test cases. In contrast, a

48

model-based test usually does not have a specific end. It can be lengthened to check
the conformance of the SUT to its specification for a longer period of time. Performing
long tests is necessary to check the endurance and longevity of the system [25]. Besides
that, testing for long periods helps to find intermittent problems that only show up in
specific scenarios [26]. For instance, these scenarios might take place during the night
or after some amount of operational time.

4.2.4 Edge cases

Domain knowledge can be used to apply tests in areas of a project containing edge
cases and boundary conditions. Compared to model-based tests, manual tests give
more freedom to testers, as unpredictable scenarios can be tested more easily [27].
Automated testing still provides the tester with this freedom, although the tester first
has to implement the test scenario. This can take more time than performing the
test manually. Moreover, model-based testing checks if the SUT meets the desired
behaviour. The tester has little influence on the test execution. The TorXakis test
selection is primarily random, it can be given guidance using test purposes2. The
research from Marques et al. shows that MBT and ad hoc manual testing find relatively
different bugs [27].

4.2.5 Diagnosis

MBT detects an error when there is a discrepancy between the expected and observed
output. This does not mean that the cause was the previous stimuli. The cause could
be a specific sequence of stimuli, a stimuli long ago or it could not even be a stimuli
but the environment interacting with the SUT (e.g. mobile connections). In addition,
MBT is likely to never run the same test twice. This makes reproducing the error hard,
which in turn makes diagnosis a difficult process. On the contrary, the manual and
automated test cases take the same steps every time and test specific functionality. In
the case of an error, the failing functionality is known and possibly also at what stage
it failed. Reproducible errors are straightforward to diagnose, as the tester does not
have to come up with possible causes and investigate them.

4.2.6 Current test cases

The manual test cases form a strong basis for SCG, as they cover critical functionality.
Both automated and model-based testing can contribute to the automation of the
manual system tests. An automated approach could perform 24 out of 27 test cases.
The three tests that can not be automated require physical interaction (e.g. button
pressing, cable switching).
Furthermore, four of the 27 tests relate more to white-box, as they take into account
internal unobservable steps. They do not lend themselves well for black-box testing.

2torxakis.org/userdocs/stable/grammar/PurpDefs.html

49

https://torxakis.org/userdocs/stable/grammar/PurpDefs.html

As a consequence, MBT can replicate less test cases. The SUT, model and test harness
used in 3 incorporates 14 out of the 24 automatable test cases. Extending the SUT,
model and test harness will increase the tests that the model can cover to 20.

4.3 Conclusion

Manual tests require less effort to develop and maintain. Development and maintenance
of the model-based tests requires the most effort. Automated test sit in the middle.
Furthermore, the largest cost item in software development is the testing itself. The
testing costs can be reduced by automated or model-based testing given enough time
to spread the high initial investment. At the current frequency of new releases within
SCG recouping the MBT investment will take 10+ years.
Executing tests manually is error prone. Moreover, manual and automated tests are
performed sequentially. Concurrent execution is preferred due to its similarity with
the real world and the coverage between application components. In addition, the en-
durance of SCG is important, the devices need to run without issue for days on end.
Automated tests can be applied several times, while MBT can simply run for more
steps. MBT has the advantage of performing different sequences of steps that conform
to the model. Hence, MBT lends itself better for endurance testing.
Manual and automated testing provides the tester with freedom over test execution.
The tester has little influence on the test execution of MBT tools, which makes it dif-
ficult to steer towards edge cases.
The failure of a model-based test does not make clear which stimuli caused the error. In
contrast, errors found in manual or automated tests come with a specific reproducible
sequence of stimuli and responses. Consequently, uncovering the cause of the problem
usually requires more thorough analysis.
Both automated and model-based testing can cover a significant portion of the manual
test cases. Neither can cover the physical test cases (e.g. button pressing). MBT is not
able to incorporate some white-box tests.
Without a higher release frequency or clear goal to perform endurance tests, it is inad-
visable for SCG to implement MBT. Instead, implementing automated tests would be
advisable based on the lower initial costs. Manual tests are only recommended when
they are used a single time.
Below in table 4.1, an overview of this comparison can be found.

50

Comparison aspects Manual Automated Model-based Notes

Development &
Maintenance

+ ++ +++

Cost ∼ ∼ ∼ Depends on the number
of test cycles

Test execution + ++ +++
Edge cases ++ ++ +
Diagnosis + +
Manual Test coverage baseline 24/27 20/27

Table 4.1: Overview of the comparison between manual, automated and model-based testing.

51

Chapter 5

TorXakis and Axini compared

In this chapter the used MBT tools TorXakis and Axini will be compared. This compar-
ison will be done on the modeling languages, communication functions, error messages,
documentation, visualization, conformance theory and constraint solving. An overview
of these aspects for each tool will be given in the conclusion.

5.1 The modeling language

The TorXakis modeling language is based on a functional language while Axini’s ap-
proach is imperative. The TorXakis language is simple and the available constructs
are straight forward. However, the functional paradigm is generally considered to be
difficult to master [28]. Additionally, TorXakis comes with its own quirks. For example
the equality check == does not bind stronger than the logical AND (/\) operator. This
results in the expression A == True /\ B == "Hoi", where A is of type Bool and B is
of type String, to not type correctly.
Furthermore, the TorXakis language uses symbols to construct a model while the Axini
modeling language makes use of keywords instead. For example, in Axini constraints
are applied to an action using constraint: "..." where TorXakis uses [[...]]. The
former is more clear to those without experience in TorXakis.
Additionally, modeling in Axini is verbose compared to TorXakis. In both cases the ac-
tions need to be defined. In TorXakis an ADT can be used that represent multiple valid
instances. TorXakis will select one of these instances that meet the given constraint.
To model the several instances within Axini, every instance needs to be declared and
added as a communication option separately.

52

5.2 Communication

Model-based testing revolves around observable actions and stimuli. This comes in
the form of communication messages. The test harness provides the MBT tool with a
translation service to and from the SUT. TorXakis communicates user defined types,
which are translated into either strings or XML formatted strings. The TorXakis se-
rializations are unique per type. As an illustration, the instance A(”lorum”, 1) of the
type Example shown in listing 5.1 would produce the XML formatted output displayed
in listing 5.2.

1 TYPEDEF Example : :=
2 A {message : : S t r ing ; id : : Int } |
3 B { e r r o r : : S t r ing }
4 ENDDEF

Listing 5.1: Example TorXakis type

1 <TorXakisMsg>
2 <A><message>lorum</message><id>1</id>
3 </TorXakisMsg>

Listing 5.2: XML formatted output of A(”lorum”, 1)

Axini transforms the structures into protobuf1 messages. Protobuf is a compact lan-
guage agnostic message format.
In contrast with TorXakis, Axini’s messages are created from a generic structure where
the name of the field is stored separately from the value. An equivalent to the TorX-
akis A instance of the Example type can be seen in listing 5.3. The structure ex-
ampleA can be added to a stimulus or response. The resulting generic structure of
{'message' => "lorum",'id' => 1} added to a label under the _exampleA key, can
be seen in listing 5.4. The generic structure is clearly visible as key, value pairs.

1 de f exampleA
2 {
3 'message ' => : s t r i ng ,
4 ' id ' => : i n t ege r ,
5 }
6 end

Listing 5.3: Axini structure definition

1 l a b e l : ”Example”
2 channel : ”mqtt”
3 parameters {
4 name : ” exampleA”

1developers.google.com/protocol-buffers

53

https://developers.google.com/protocol-buffers

5 value {
6 s t r u c t {
7 e n t r i e s {
8 key {
9 s t r i n g : ”message”
10 }
11 value {
12 s t r i n g : ” lorum”
13 }
14 }
15 e n t r i e s {
16 key {
17 s t r i n g : ” id ”
18 }
19 value {
20 i n t e g e r : 1
21 }
22 }
23 }
24 }
25 }

Listing 5.4: Protobuf message printed as JSON

The approach of Axini has the advantage that the message itself can not be created
improperly due to a strict API that creates the messages. A downside to the generic
approach is that it requires traversal and construction of the generic structure when
translating messages. Besides that, the data inserted into the message can still be wrong
in both approaches. Besides that, the data in the message can not be type checked.
A more type safe approach would be to turn the messages into non-generic protobuf
messages. The protobuf type definitions can automatically be turned into a library.
The generated library ensures that the correct types are used in the message. This
approach is more applicable to TorXakis as it uses strict typing. The Axini structures
can be used interchangeably if the field and type combinations are the same. This
would be difficult to represent in a non-generic protobuf message.
The TorXakis ADT constructs can be mapped to protobuf. A product type can be
translated into a specific protobuf message. For example the A instance of the Exam-
ple type can be translated to:

1 message A{
2 s t r i n g message = 1 ;
3 in t64 id = 2 ;
4 }

54

A sum type can be translated into a ’oneof’ of the translation of the different instances.
For example the Example type can be translated to:

1 message Example {
2 oneof example oneof {
3 A a = 1 ;
4 B b = 2 ;
5 }
6 }

This will have the same behaviour as the sum type. However, there is one catch,
TorXakis’ fields are required, while protobuf’s fields are not required. Fields that are
not set will provide the default value. To know if a field was set or not all fields can
be marked as ’optional’ to be able to check presence. Protobuf is not the only possible
message format, other possibilities are Cap’n Proto2 and Thrift3.

5.3 Functions

In both tools, functions can be used to manipulate data structures. Axini comes with
several build-in functions, including generic functions applicable to lists. Some of these
functions are only accessible in the model and not in user defined function. On the other
hand, TorXakis only comes with basic integer, boolean, string operators and function
to retrieve attributes. A generic function such as ’contains’ requires manual creation
for each type. Furthermore, TorXakis type checks user defined functions to the best of
its ability. Besides that, TorXakis allows for the evaluation of a function, which can be
used to test functions. Axini provides no static checks on user defined functions and
no way to test them.

5.4 Error messages

The compiler provides a developer with feedback. In the case of a problem with the
code an error message is provided. Error messages play an important role in debugging
and learning to program [29]. Error messages steer the developer into the direction
of the problem, attempting to provide them with the information required to find and
solve the problem. The error messages in TorXakis leave much to be desired. TorXakis
often presents the user with a long and difficult to understand error message. In listing
5.5 it can be seen that there are two Error instance that both have an attribute called
message.

1 TYPEDEF Error : :=
2 ErrorA {message : : S t r ing } |

2capnproto.org
3thrift.apache.org/docs/idl

55

https://capnproto.org
https://thrift.apache.org/docs/idl

3 ErrorB {message : : S t r ing }
4 ENDDEF

Listing 5.5: TorXakis type that produces an error without location.

This example code is erroneous as the auto generated functions to retrieve the message
attribute, will have the same name and type. This produces a double defined function
error as shown in listing 5.6.

1 Mu l t i p l eDe f i n i t i o n s Function at <no lo ca t i on >: Functions
double de f ined : [FuncId {name = ”message ” , unid = 0 ,
funcargs = [Sort Id {name = ”Error ” , unid = 0}] , f un c s o r t =
Sort Id {name = ” St r ing ” , unid = 0}}]

Listing 5.6: Error message produced from TorXakis code shown in listing 5.5.

In this listing it can be seen that the error message includes cryptic information and
the location of ”no location”. The cryptic information is the function signature. It
looks unrecognizable because the internal representation is printed, instead of how it is
represented from a users point of view. This makes it harder for the user to relate the
error to their TorXakis code.
The function is generated, as a consequence it is logical that ”no location” is provided.
However, it would be more useful to point the user into the direction of the code that
results in the generation (i.e. line number 3 and column 12). Additionally, TorXakis
should provide error messages that are tailored to unique causes. The provided error
message in 5.6 could for example mention that it is a generated function or even that
two attributes have the same name, which is the root cause of the error. This helps
reduce possible confusion as the user has not defined the problematic functions. Axini’s
error reporting is better compared to TorXakis. In almost every case the line with the
problem is highlighted and an informative error message is shown.

5.5 Documentation

Poor documentation causes many software defects and reduces the efficiency of software
development [30]. The documentation is key in understanding and being able to use
a modeling language. Both TorXakis and Axini provide some form of documentation.
The TorXakis documentation lacks detailed information regarding some building blocks
(e.g. The interrupt operator page is blank4). In comparison, Axini does provide this
detailed information about its building blocks with small examples. Nevertheless, the
TorXakis documentation does include 5 starter examples and 5 advanced examples.
These examples contain explanations along with the TorXakis code. They help a be-

4torxakis.org/userdocs/stable/grammar/Interrupt Operator.html

56

https://torxakis.org/userdocs/stable/grammar/Interrupt_Operator.html

ginning user with inspiration for tackling their own modeling problems. Axini does not
provide advanced examples. However, they do provide a best practice guideline.

5.6 Visualization

The behaviour of a system can be unexpected due to many reasons. For example,
the developer can have wrong expectations of used code, the developer introduces an
error themselves[31] or the compiler can perform optimizations incorrectly [32]. These
mistakes can also happen during the development of a model. Visual representation
can aid in the discovery of unexpected interpretations or consequences of the source
model. Axini can transform the source model into a visual representation in the form
of an LTS. TorXakis is not capable of transforming the source model into a visual
representation. However, it is possible to transform a graphical representation of a
state-transition system in yED5 to a TorXakis model.

5.7 Conformance theory

In the preliminaries, the conformance theory IOCO for LTSs was introduced. Neither
TorXakis or Axini use LTSs, instead they use Symbolic Transition Systems (STSs) to
represent the models. STSs are transition systems that include a notion of data and
control flow based on data. TorXakis uses a special IOCO variant called Symbolic Input
Output Conformance (SIOCO) which is defined in [33]. SIOCO lifts the IOCO theory
to symbolic transition systems. However, it does not alter the IOCO specifications [6].
Ergo, the conformance in TorXakis is precisely defined by the IOCO theory. On the
other hand, Axini conformance relation is based on the IOCO theory, but does not
strictly implement it. The IOCO theory does not specify time related conformance,
which Axini is capable of.
Furthermore, TorXakis can only drive a single process at a time. The parallel operator
can combined multiple processes into one. However, this results in possible undetectable
quiescence as discussed in chapter 3. Axini chooses to wait for the observable action
and thus stop driving the other process. This is can be seen when running the example
in listing 5.7, where Axini does not produce any Example1 stimuli for the timeout of 1
hour (3600 seconds).

1 ex t e rna l 'A'
2
3 proce s s (' p1 ') {
4 timeout 2
5 channel ('A') {
6 st imulus 'Example1 '
7 }

5yworks.com/products/yed

57

https://yworks.com/products/yed

8
9 repeat {
10 o{
11 r e c e i v e 'Example1 '
12 }
13 }
14 }
15 proce s s (' p2 ') {
16 timeout 3600
17 channel ('A') {
18 response 'Example2 '
19 st imulus ' t e s t2 '
20 }
21 repeat {
22 o{
23 send 'Example2 ' , a f t e r : 2 , b e f o r e : 3600
24 }
25 }
26 }

Listing 5.7: Axini model example showing how Axini deals with quiescence.

5.8 Constraint satisfaction problems

The usage of constraints within the model is useful for the generation of non trivial
input for the SUT. Additionally, it can be used for complex control flow through the
model. Solving these constraints can be time consuming due to their complexity. This is
not ideal for on-the-fly testing tools that take time into account. The computations for
test decisions must not hinder test execution. TorXakis uses the Satisfiability Modulo
Theories (SMT) solvers z3 or cvc4 to solve constraints during testing. On the contrary,
Axini solves constraints using prolog. Research has been conducted to apply SMT
solvers in Axini. The z3 implementation is not as fast as the prolog solver, but allows
for solving regular expressions and constraints over user defined data types [34].
TorXakis’ syntax is minimal. However, this minimal syntax provides TorXakis with
the ability to solve user defined functions in constraints. Axini, in contrast, supports a
limited set of functions within constraints.

5.9 Conclusion

TorXakis and Axini use different modeling styles. The languages of both tools are simple
and expressive. However, Axini’s language is more verbose and TorXakis’ language is
more difficult without experience with the functional paradigm.

58

Both tools require string comparison for translating messages. Besides that, Axini’s
generic structure requires more template code but prevents errors in the structure and
serialization of the message. This is something that TorXakis’ approach is incapable
of, due to being entirely string based. A more strongly typed alternative would solve
this problem for TorXakis.
TorXakis comes with almost no standard functions. This requires more work writing
basic functions. On the other hand, Axini does provide standard functions but does
not provide the user with compile time feedback regarding user defined functions.
The error messages in TorXakis are a problem that requires addressing to increase
usability. They should be concise and include a best effort location instead of ”no
location”. Furthermore, TorXakis should not provide the internal representation of
functions and types. The internal representation confuses the user, instead TorXakis
should refer to the original code. Axini’s error messages are sufficient in steering the
user into the right direction and provide useful information to solve the problem.
The documentation for both Axini and TorXakis can use more information. TorXakis
can create consistent and detailed explanations about their operators. Axini can provide
and explaining complex examples.
Visualization of the model can help during debugging. Only Axini has the ability to
visualize the model and step through the graph. TorXakis can transform graphs to
models but not the other way around.
Both tools are based on the IOCO theory. TorXakis strictly follows it, while Axini
introduced extra elements that are not described in the theory. Moreover, both tools
take a different approach in scenarios where an observable action and a stimuli are
possible. TorXakis will perform the stimuli over waiting for the action. On the contrary,
Axini will wait for the observable action.
Axini allows for modeling time constraints. As a consequence, decision making needs to
be fast to not miss time constraints. TorXakis does not take time into account and can
thus apply slower SMT to solve a larger variety of constraints (e.g. regular expressions).
This conclusion is summarized in table 5.1.

Summary matrix TorXakis Axini

The modeling language Functional Imperative
Communication Strings Generic ProtoBuf
Functions ∼ ∼
Error messages ∼ ✓
Documentation ∼ ∼
Visualization × ✓
Conformance theory IOCO Based on IOCO
Constraint satisfaction problems ✓ ∼

Table 5.1: A matrix providing an overview of features per tool.
✓ : Good
∼ : Requires enhancement
× : Not implemented

59

Chapter 6

Model-based testing in embedded
systems

In this chapter the model-based testing of general embedded systems will be discussed.
The model-based testing of embedded systems is different from normal software, because
specific hardware needs to be taken into account. This chapter discusses the defining
of the SUT, handling of the hardware in the test harness and selecting a testing tool.

6.1 System Under Test

The SUT is one of the main points of focus when model-based testing. It should be
defined with care. The cost of applying MBT to an application is high and should be
considered on a project by project basis [35]. For SCG one CU and one SU is taken
as the SUT. This approach does not require the development of test doubles to replace
parts of the system, avoiding errors in the test doubles and higher development costs.
Furthermore, the modeler should consider that only observable actions can be taken into
account. The SUT should have (enough) interfaces to support the desired testability
and these interfaces must be reliable. Zander et al. label it as an anti-pattern when a
SUT does not have sufficient reliable interfaces to test [25], which should be avoided.
Nevertheless, they also note that this is not always possible for example due to a lack of
time or budget. In these cases, the SUT will need to be modified or test interfaces need
to be redesigned to be able to reliably observe actions and perform stimulation. The CU
also contains such a problem with the LEDs, buttons and mobile network connection.
The problem can be solved for the LEDs and buttons by adding signal wires to the
pins on the board or in the worst case using robotics[25]. Nevertheless, mobile network
connections are difficult to capture in such a way. To have any control over the mobile
connection requires advanced and expensive mobile networking equipment.

60

6.2 Test harness

Embedded systems have a hardware layer besides the regular software. Embedded
systems often rely on time and physical interactions (e.g. measurements, movements,
buttons, LEDs, etc). Due to this, it is not enough to only have a software based
harness. The harnesses often requires specialized equipment to achieve an observable
and controllable environment. Streitferdt et al. [36] and Shin and Lim [37] applied
offline MBT to embedded systems. In both cases additional hardware is used to control
and measure serial in and output, time, voltages and currents. This thesis also used
additional hardware. The additional hardware layer allows the testing tool to interact
with the hardware interfaces off the SUT besides the normal application programming
interfaces. Figure 6.1 presents an overview of MBT with the additional hardware layer
in the harness.

Model-based
testing tool

Model

pass / fail

Test harness

SUT

Hardware layer

Figure 6.1: Depiction of model-based testing with the additional hardware layer.

6.3 Testing tool

There are different MBT tools, each with their own features. One of these features
is online and offline testing. Online testing allows for extended test control and test
reactiveness [25]. As a result more complex systems can be modeled, where multiple
processes run concurrently or in parallel. Another important feature is the reasoning

61

of time. Not every tool can deal with time during testing. However, embedded systems
often deal with time and time constraints. Applying a tool that does not natively sup-
port time to a SUT that requires timing is difficult. There exist multiple conformance
relations like IOCO that can deal with time. Two examples of such a conformance
relation are Timed Input Output Conformance (TIOCO) [38] and Relativized Timed
Input Output Conformance (RTIOCO) [39]. The model-based testing tool called Up-
paal Tron uses the latter RTIOCO relation. Additionally, online timed testing has been
shown to work but timing discrepancies are unavoidable [40].
Zander et al. stipulate several other aspects of the tool that should be considered.
Among these aspects are: development and maintenance effort, endurance - for longevity
tests, diagnosis support, speed and time accuracy.

6.4 Conclusion

Applying MBT on a system level will limit the number of test doubles required, reducing
the overall development time and costs.
Embedded systems have a hardware and a software side. To test the full system,
interaction with the hardware side is required. A hardware layer is introduced into the
test harness. It includes the hardware to interact with the SUT. The hardware layer
has the responsibility to abstract from this hardware. This makes it straightforward to
include these calls into the model. It is important that this layer can reliably perform
the interactions. Complex systems are best captured by an online MBT tool to allow
for more test reactiveness. Besides that, the ability to model time is an important
feature when testing embedded systems. Depending on the precision of the timing
requirements a tool that implements a conformance theory that takes into account
time could be used.

62

Chapter 7

Concluding remarks

This chapter will outline the several conclusions to the research questions and provide
advice based on them. Additionally, the future work will be discussed.

7.1 Conclusion

Below the conclusions per research question will be discussed. Finally advice related
to the model-based testing of SCG will be given.

How can model-based testing be applied to the Smart Cable Guard system
to find defects and to increase software quality?

Time management, state management and alternative behaviour are difficulties of
modeling SCG. An extended test harness and a modeled state were used to success-
fully apply TorXakis to SCG. Axini was also successfully applied to SCG using its time
modeling constructs and excluding alternative behaviour. Modeling in Axini, provided
a more streamlined process usable by test engineers at DNV. Besides that, using MBT
several issues have been found, indicating that the current testing strategy is insufficient.

How does model-based and automated testing of SCG compare to each
other and to the manual system testing currently applied to SCG?

Manual testing requires the least amount of development effort. It also provides
control over test execution, however, it is slow and labor intensive. As such, it is es-
pecially suitable for running tests few times. In addition, model-based testing requires
the most amount of development effort. It also provides fast test execution, but limited
control over the execution. The generation of different test step sequences is a double
edged sword. It increases coverage but makes diagnosis more difficult. If enough test
cycles are used the initial investment can be recouped. Moreover, automated testing
provides fast and controllable test execution. It sits between manual and model-based
testing in terms of development effort. The lower initial cost compared to MBT and

63

lower execution costs compared to manual testing result in a return on investment in
fewer test cycles.

How do TorXakis and Axini compare on the aspects of their modeling
language, communication functions, error messages, documentation, visu-
alization, conformance theory and constraint solving?

Axini is the more polished tool. This can be seen in aspects such as the error
messages, modeling language and visualization. Another clear difference is the choice
between observing output and providing stimuli. Axini chooses to observe over stim-
ulation, whereas TorXakis chooses stimulation over observing. Axini is capable of
detecting quiescence in scenarios where TorXakis is not. Moreover, TorXakis should
improve their error messages and could look into extending their modeling language to
reduce repeating definitions per type or list structure.

How can the experience of model-based testing SCG be generalized to other
embedded systems?

Testing an embedded systems, requires interacting with the hardware. To accom-
plish this a hardware layer is introduced into the test harness. The hardware layer
has the responsibility to abstract from interactions on the hardware level, making it
straightforward to include these interaction into the model. Furthermore, complex
systems are best captured by an online MBT tool to allow more test reactiveness.

7.2 Advice

MBT can be applied to SCG effectively. In the case, that SCG wants to continuing with
MBT the focus should be placed on a tool like Axini for its support, time capabilities
and ease of use. However, a higher release frequency or clear goal to perform endurance
tests is required. It is inadvisable for SCG to implement MBT for a one or two test
cycles per year. Instead, implementing automated tests is advisable based on the lower
initial costs. Besides that, the hardware still prevents all tests from being automated.
There are possibilities to automate these test cases, but reliability is a serious concern.
Therefore, it is recommended to keep performing these limited number of test cases
manually.

7.3 Future work

The problems that the MBT tools report do not come with a line and column number.
In addition, it is uncertain if the previous actions have played a role in the discovered
problem. As a consequence reproducing the problem is more complicated. This leads
to an interesting research avenue to see how the user can be supported by the MBT
tool to trace the discovered problem back to the code of the SUT.
The generalization of applying MBT to embedded systems is based on the approach

64

used in this thesis and two other applications of MBT to embedded systems. The
generalization could use further validation with other applications of MBT to embedded
systems.
Finally, this thesis compared TorXakis and Axini with each other. A possible research
avenue is the comparison of more MBT tools.

65

Bibliography

[1] A. Bertolino, “Software testing research: Achievements, challenges, dreams,” in
Future of Software Engineering (FOSE ’07), pp. 85–103, 2007.

[2] E. M. Clarke, Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith, Model
Checking. Cyber Physical Systems Series, London, England: MIT Press, 2 ed.,
Dec. 2018.

[3] J. Jacky, M. Veanes, C. Campbell, and W. Schulte, Model-based software testing
and analysis with C#. Cambridge, England: Cambridge University Press, Nov.
2007.

[4] R. Gorrieri, Labeled Transition Systems, pp. 15–34. Cham: Springer International
Publishing, 2017.

[5] T. Gibson-Robinson, P. Hopcroft, and R. Lazić, eds., Concurrency, security, and
puzzles. Programming and Software Engineering, Basel, Switzerland: Springer
International Publishing, 1 ed., Dec. 2016.

[6] J. Tretmans, Model Based Testing with Labelled Transition Systems, pp. 1–38.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

[7] M. Timmer, H. Brinksma, and M. Stoelinga, Model-Based Testing, pp. 1–32. No. 30
in NATO Science for Peace and Security Series D: Information and Communication
Security, Netherlands: IOS Press, Apr. 2011. 10.3233/978-1-60750-711-6-1.

[8] M. van der Bijl, A. Rensink, and J. Tretmans, “Compositional testing with ioco,” in
Formal Approaches to Software Testing (A. Petrenko and A. Ulrich, eds.), (Berlin,
Heidelberg), pp. 86–100, Springer Berlin Heidelberg, 2004.

[9] J. Tretmans, “Testing concurrent systems: A formal approach,” in CONCUR’99
Concurrency Theory (J. C. M. Baeten and S. Mauw, eds.), (Berlin, Heidelberg),
pp. 46–65, Springer Berlin Heidelberg, 1999.

[10] G. J. Tretmans and M. Laar, “Model-based testing with torxakis: The mysteries
of dropbox revisited,” 2019.

66

[11] A. Belinfante, J. Feenstra, R. de Vries, G. Tretmans, N. Goga, L. Feijs, S. Mauw,
and A. Heerink, “Formal test automation: A simple experiment,” in Proceedings of
the IFIP TC6 12th International Workshop on Testing Communicating Systems:
Method and Applications (G. Csopaki, S. Dibuz, and K. Tarnay, eds.), IFIP Confer-
ence Proceedings, (Netherlands), pp. 179–196, Kluwer Academic Publishers, 1999.
null ; Conference date: 01-09-1999 Through 03-09-1999.

[12] A. Belinfante, JTorX: exploring model-based testing. PhD thesis, University of
Twente, 2014.

[13] A. Ghaffari, “Trace coverage strategy for symbolic transition systems,” 2016.

[14] P. Barry and P. Crowley, “Modern embedded computing: Designing connected,
pervasive, media-rich systems,” Modern Embedded Computing: Designing Con-
nected, Pervasive, Media-Rich Systems, pp. 1–518, 1 2012.

[15] S. Bhunia and M. Tehranipoor, “Hardware security: A hands-on learning ap-
proach,” Hardware Security: A Hands-on Learning Approach, pp. 1–526, 1 2018.

[16] G. Stokkink, Quiescent Transition Systems. PhD thesis, Univerity of Twente, 2012.

[17] E. Roubtsova and S. Roubtsov, “A test generator for model-based testing,” in
4th International Symposium on Business Modeling and Software Design (BMSD
2014) , 24-26 June, 2014 Luxembourg, Grand Duchy of Luxembourg, (B. Shishkov,
ed.), pp. 103–112, SCITEPRESS-Science and Technology Publications, Lda., 2014.
conference; 4th International Symposium on Business Modeling and Software De-
sign; 2014-06-24; 2014-06-26 ; Conference date: 24-06-2014 Through 26-06-2014.

[18] Y. Wei, B. Meyer, and M. Oriol, Is Branch Coverage a Good Measure of Testing
Effectiveness?, pp. 194–212. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[19] D. J. Barnes and T. R. Hopkins, “Improving test coverage of LAPACK,” Appl.
Algebra Engrg. Comm. Comput., vol. 18, pp. 209–222, May 2007.

[20] A. Neto, R. Subramanyan, M. Vieira, and G. Travassos, “A survey on model-based
testing approaches: a systematic review,” pp. 31–36, 01 2007.

[21] H. Reza and S. Lande, “Model based testing using software architecture,” in 2010
Seventh International Conference on Information Technology: New Generations,
pp. 188–193, 2010.

[22] I. Dobles, A. Mart́ınez, and C. Quesada-López, “Comparing the effort and ef-
fectiveness of automated and manual tests,” in 2019 14th Iberian Conference on
Information Systems and Technologies (CISTI), pp. 1–6, 2019.

[23] Y. Amannejad, V. Garousi, R. Irving, and Z. Sahaf, “A search-based approach
for cost-effective software test automation decision support and an industrial case
study,” in 2014 IEEE Seventh International Conference on Software Testing, Ver-
ification and Validation Workshops, pp. 302–311, 2014.

67

[24] S. Mohacsi, M. Felderer, and A. Beer, “Estimating the cost and benefit of model-
based testing: A decision support procedure for the application of model-based
testing in industry,” pp. 382–389, 08 2015.

[25] J. Zander, I. Schieferdecker, and P. J. Mosterman, eds., Model-based testing for
embedded systems. Computational Analysis, Synthesis, and Design of Dynamic
Systems, Boca Raton, FL: CRC Press, May 2010.

[26] P. E. Strandberg, T. J. Ostrand, E. J. Weyuker, W. Afzal, and D. Sundmark,
“Intermittently failing tests in the embedded systems domain,” 2020.

[27] A. Marques, F. Ramalho, and W. L. Andrade, “Comparing model-based testing
with traditional testing strategies: An empirical study,” in 2014 IEEE Seventh
International Conference on Software Testing, Verification and Validation Work-
shops, pp. 264–273, 2014.

[28] A. Khanfor and Y. Yang, “An overview of practical impacts of functional pro-
gramming,” in 2017 24th Asia-Pacific Software Engineering Conference Workshops
(APSECW), pp. 50–54, 2017.

[29] P. Denny, J. Prather, and B. A. Becker, “Error message readability and novice
debugging performance,” in Proceedings of the 2020 ACM Conference on Innova-
tion and Technology in Computer Science Education, ITiCSE ’20, (New York, NY,
USA), p. 480–486, Association for Computing Machinery, 2020.

[30] D. L. Parnas, Precise Documentation: The Key to Better Software, pp. 125–148.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

[31] B. Nagaria and T. Hall, “How software developers mitigate their errors when devel-
oping code,” IEEE Transactions on Software Engineering, vol. 48, no. 6, pp. 1853–
1867, 2022.

[32] X. Wang, H. Chen, A. Cheung, Z. Jia, N. Zeldovich, and M. F. Kaashoek, “Unde-
fined behavior: what happened to my code?,” in APSys, 2012.

[33] L. Frantzen, J. Tretmans, and T. A. C. Willemse, “Test generation based on sym-
bolic specifications,” in Formal Approaches to Software Testing (J. Grabowski and
B. Nielsen, eds.), (Berlin, Heidelberg), pp. 1–15, Springer Berlin Heidelberg, 2005.

[34] F. de Geus, “On the use of smt solvers in model-based testing,” 2020.

[35] S. Mohacsi, M. Felderer, and A. Beer, “Estimating the cost and benefit of model-
based testing: A decision support procedure for the application of model-based
testing in industry,” in 2015 41st Euromicro Conference on Software Engineering
and Advanced Applications, pp. 382–389, IEEE, 08 2015.

[36] D. Streitferdt, F. Kantz, P. Nenninger, T. Ruschival, H. Kaul, T. Bauer, T. Hus-
sain, and R. Eschbach, “Model-based testing of highly configurable embedded sys-

68

tems in the automation domain,” Int. j. embed. real-time commun. syst., vol. 2,
pp. 22–41, Apr. 2011.

[37] K.-W. Shin and D.-J. Lim, “Model-based automatic test case generation for auto-
motive embedded software testing,” Int. J. Automot. Technol., vol. 19, pp. 107–119,
Feb. 2018.

[38] J. Schmaltz and J. Tretmans, “On conformance testing for timed systems,” in
Formal Modeling and Analysis of Timed Systems, pp. 250–264, 09 2008.

[39] K. G. Larsen, M. Mikucionis, and B. Nielsen, “Online testing of real-time sys-
tems using uppaal,” in Formal Approaches to Software Testing, Lecture notes in
computer science, pp. 79–94, Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.

[40] M. Gijsen and A. Belinfante, “Timed testing with torx: The oosterschelde storm
surge barrier,” in Formal Methods 2005, 2002. Handout 8e Nederlandse Testdag;
Conference date: 20-11-2002 Through 20-11-2002.

69

Appendix A

Code coverage Sensor Unit
controller

Figure A.1: JaCoCo code coverage report of SU controller project. The full package names have been
removed.

70

	Introduction
	Preliminaries
	Faults and Partial Discharge
	Smart Cable Guard
	Labeled Transition Systems
	Input Output Conformance Relation
	Model based testing
	TorXakis
	Axini

	Testing Smart Cable Guard
	System under test
	Test harness Smart Cable Guard
	TorXakis
	Message structure
	Time management
	State management
	Modeling the Control Unit in TorXakis

	Axini
	Message structure
	Time management
	State management
	Modeling the Control Unit in Axini
	Alternative behaviour

	Found issues
	Conclusion

	Model-based testing compared
	Current testing strategy
	Manual, automated and model-based testing
	Development & Maintenance
	Cost
	Test execution
	Edge cases
	Diagnosis
	Current test cases

	Conclusion

	TorXakis and Axini compared
	The modeling language
	Communication
	Functions
	Error messages
	Documentation
	Visualization
	Conformance theory
	Constraint satisfaction problems
	Conclusion

	Model-based testing in embedded systems
	System Under Test
	Test harness
	Testing tool
	Conclusion

	Concluding remarks
	Conclusion
	Advice
	Future work

	Code coverage Sensor Unit controller

