
Master’s Thesis Computing Science

Transforming Compile-Time to
Load-Time Variability in C Projects

David Korsman
s4619579

8 February 2024

First supervisor/assessor:
Dr. Daniel Strüber

Second assessor:
Dr. Mathijs Schuts

Abstract

Programs written in the C language commonly use preprocessor directives
such as #ifdef to delimit parts of the code that should not always be in-
cluded in the final program. The editing decisions stemming from these
directives are made at time of compilation, meaning any desired changes to
the configuration require the program to be compiled anew. This is often an
advantage, but it can also lead to problems. Furthermore, the intermixing
of two structures in the source code – the one formed by the preprocessor
directives and the to-be-formed structure of the C code itself – make un-
preprocessed programs challenging to parse by analysis tools, and this is
therefore seldom supported by such tools.

In this research we have studied the transformation of C code from its usual
compile-time variability form, containing #ifdef preprocessor directives,
to a run-time variability form, using equivalent if statements and other
solutions. We have given a definition of twelve nontrivial cases for such
transformations as well as an approach for transforming these cases pro-
grammatically, and we have developed a tool that aims to implement this
approach, with partial success. We have also tested our tool on the source
code of 22 open-source projects, including Linux. These tests identify a
somewhat promising success rate, with an overall percentage of 97.0% of
all files that the tool could transform without running into issues. Manual
verification of a sample taken from these transformed files reveals that trans-
formations in 87 out of 110 files were apparently valid, with varying success
rates between different projects.

Acknowledgement

I would like to express my deepest gratitude to my supervisor, Daniel Strüber,
for his advice, feedback and patience throughout this project. His guidance
contributed to my self-confidence, and allowed me to finish this project with
success. I would also like to thank my second assessor, Mathijs Schuts, for
his feedback. Last but not least, I would like to thank my parents for always
being encouraging and supportive.

1

Contents

1 Introduction 4

2 Background 9

2.1 Preprocessor directives . 9

2.2 Parser design . 10

3 Related work 13

4 Methodology 15

5 Approach 19

5.1 Transforming preprocessor directives 19

5.2 Nontrivial transformation cases 21

5.2.1 Case 1: Optional whole statement 22

5.2.2 Case 2: Optional part of statement 22

5.2.3 Case 3: Optional conditionals and braces 23

5.2.4 Case 4: #if 0 and #ifdef __cplusplus 24

5.2.5 Case 5: Struct with optional fields 25

5.2.6 Case 6: Alternative types 26

2

5.2.7 Case 7: Variable declarations inside #ifdefs being
visible after the new block 28

5.2.8 Case 8: Optional shadowing 29

5.2.9 Case 9: Conditional #define 29

5.2.10 Case 10: Conditional goto 30

5.2.11 Case 11: Optional switch cases that override the default 31

5.2.12 Case 12: Compile-time string concatenation 32

5.3 Non-transformation cases . 34

6 Description of the tool 36

6.1 Functionality . 37

6.2 Load-time variability versus run-time variability 38

7 Tool evaluation 40

7.1 Correctness . 40

7.2 Comparison with Hercules . 47

7.3 Performance behavior . 48

7.4 Additional insights . 51

7.5 Threats to validity . 52

8 Discussion and future work 53

9 Conclusion 55

3

Chapter 1

Introduction

Software products can contain features that can be added or removed at will.
Being able to create different versions of a program by removing unneeded
functionality and only adding what is needed can have benefits, such as
making the resulting program less complicated, saving storage space, having
a smaller attack vector or making the software work at all in a specific
environment [5].

A common method for defining variability is preprocessor directives in C
and C++, such as #if or #ifdef. This is an example of compile-time
variability, which means a certain variant of a program needs to be derived
from the source code at compile time. However, when needing to analyze all
program variants, needing to build and test each different derived version
may be infeasible due to the combinatorial explosion caused by even small
numbers of features. Therefore, bugs that only occur in specific variants
may go unnoticed, and it may be harder to maintain correctness of the
program when having to account for all possible configurations. Even outside
of program analysis and correctness, there are disadvantages to compile-
time variability. For example, where it is desirable to change configuration
options, it is not possible to do so dynamically at runtime, since the program
needs to be recompiled entirely.

It may therefore be beneficial to transform instances of compile-time variab-
ility in a program (e.g. #ifdef A <code> #endif) to load-time variability
(e.g. if (pd_defined(A)) { <code> }). Here, pd_defined() is a func-
tion which has access to the configuration while the program is being run.
The goal thus is to eliminate preprocessor directives from the code, while
keeping the behavior of the program equivalent. This could allow static
analysis tools to analyze all variants of a program at once from a single

4

build (or a significantly reduced number of builds), and simplify the testing
process. This is especially true because significant parts of the code in any
product will be shared between all variants. Another benefit would be that
load-time variability could provide greater flexibility in general, since the
software will not need to be recompiled to make changes to the configura-
tion, as long as sacrificing the advantages of compile-time variability (such
as better performance and a smaller memory footprint) is acceptable.

Even if it is not possible to transform 100% of the compile-time variability
to load-time variability, a partial transformation could still provide part of
the advantages, such as increased analyzability and more flexible run-time
configuration. This is related to staged configuration, where the number of
possible configurations is reduced in stages by making parts of the feature
selections at different points in time [6]. Indeed, a partial transformation
from compile-time variability to load-time variability reduces the compile-
time feature model.

The conversion process from compile-time variability to load-time variabil-
ity is challenging, however. Preprocessor directives can “textually” include
or exclude any arbitrary code at any point in the program, even where
if statements required for load-time variability can not be used, and the
programmer can choose to include or exclude even parts of statements in
certain conditions. Therefore, the conversion process will need to apply dif-
ferent transformations to the code to ensure the result will remain legal and
produce the same observable behavior as an original compile-time-derived
variant of the program would.

The code example in listing 1.1 demonstrates a simple use of preprocessor
directives for conditionally-compiled code. In this case, if the feature A is
enabled, the statement is compiled as return 1 + 2;, but if it is disabled,
the statement is instead compiled as return 1;. A simple find-and-replace
of the #ifdef to a regular C if statement will not be possible, since if

statements cannot occur in the middle of other statements. Therefore, a
valid transformation to run-time variability might look as in listing 1.2.

5

1 int f(void) {
2 return 1
3 #ifdef A
4 + 2
5 #endif
6 ;
7 }

Listing 1.1: A simple use of prepro-
cessor directives

1 int f(void) {
2 if (pd defined(”A”)) {
3 return 1
4 + 2
5 ;
6 } else {
7 return 1
8 ;
9 }

10 }

Listing 1.2: A result of transform-
ing to run-time variability

In the example in listing 1.3, where a struct has optional fields depend-
ing on compile-time configuration, such an approach is not possible. if

statements can only occur inside functions, and struct definitions cannot be
made conditional in any way. A possible solution to this problem in this
case might be to leave all attributes in the struct unconditional, as shown in
listing 1.4. Like this example, there are many more conceivable examples of
code that introduce challenges to transform, because #ifdef is exceedingly
flexible.

1 struct point {
2 int x;
3 int y;
4 #ifdef POINT 3D
5 int z;
6 #endif
7 };
8
9 int f(struct point s) {

10 return s.x + s.y
11 #ifdef POINT 3D
12 + s.z
13 #endif
14 ;
15 }

Listing 1.3: Optional struct fields

1 struct point {
2 int x;
3 int y;
4 int z;
5 };
6
7 int f(struct point s) {
8 if (pd defined(”POINT 3D”)) {
9 return s.x + s.y

10 + s.z
11 ;
12 } else {
13 return s.x + s.y
14 ;
15 }
16 }

Listing 1.4: A result of transform-
ing to run-time variability

Our research contribution will be a definition of nontrivial cases for trans-
forming compile-time variability in C programs to run-time variability, an
approach to programmatically transform these cases, and a tool that aims

6

to implement this approach. Due to the flexibility of #ifdef directives,
which can textually include or exclude any arbitrary code at any point in
the program, finding and handling all possible cases would be a monumental
task. Luckily, real-world code may not be actively, “maliciously”, trying to
seek out these cases. Therefore, our approach is to support a systematically
elected subset of problematic cases, retrieved from real software projects. To
scope the project, part of these solutions were implemented into the tool,
and part of the cases require manual intervention, while we do provide a
description of how each case could be transformed programmatically.

While preprocessor directives are a broader concept that also applies to
certain other languages, notably C++, we have decided to only focus on C
in this project for a simpler and more achievable goal.

We address the following research questions:

RQ1 How can compile-time variability be transformed to run-time variab-
ility in C source code?

RQ1.1 What (trivial and nontrivial) cases for transformation can exist
in source code?

RQ1.2 How could those cases be transformed?

RQ1.3 Are there cases where compile-time variability should not be
transformed to run-time variability?

RQ2 What is the quality of the developed tool for transforming compile-
time variability to run-time variability?

RQ2.1 What is the correctness of the tool?

RQ2.2 What is the performance behavior of the tool?

RQ2.3 How does our tool compare against existing, state-of-the art
tools?

RQ2.4 What additional insights does the tool give about open-source
projects?

This report will detail the approach of transforming compile-time variability
to run-time variability in C projects, as well as the process of developing a
tool to do so. The remainder of this paper is structured as follows. Chapter 2
will give some background information, including about preprocessor dir-
ectives and parser design. Chapter 4 will give an overview of our research
process, and the (planned) process of developing our tool. Chapter 3 will
outline related work. Chapter 5 will detail our approach of transforming
compile-time variability to run-time variability, by examining different cases
and patterns of C code, encompassing the answers to RQ1. Chapter 6 will

7

describe our implementation of this approach into a tool. Chapter 7 will
focus on the evaluation of the developed tool, encompassing the answers to
RQ2.

8

Chapter 2

Background

2.1 Preprocessor directives

In our previous work, we have also studied preprocessor directives, so this
section with background information is shared with our previous work [11].

Preprocessor directives in C code follow a relatively simple syntax, where
a line in a source file either is a directive or is not a directive. If the first
non-whitespace character on a line is a hash symbol (#), then it is a direct-
ive. The hash is followed by the instruction given to the preprocessor, for
example include or ifdef. Preprocessor directives are standardized in the
C standard [3].

Some example code using preprocessor directives can be given as follows:

1 #ifdef linux
2 #include <sys/utsname.h>
3
4 struct utsname lin ver;
5 uname(&lin ver);
6
7 printf (”Linux version: %s\n”, lin ver . release) ;
8 #endif
9 #ifdef WIN32

10 #include <windows.h>
11
12 OSVERSIONINFOA win ver;
13 ZeroMemory(&win ver, sizeof(OSVERSIONINFOA));
14 win ver.dwOSVersionInfoSize = sizeof(OSVERSIONINFOA);
15 GetVersionExA(&win ver);
16
17 printf (”Windows version: %d.%d\n”, win ver.dwMajorVersion,

9

win ver.dwMinorVersion);
18 #endif

This example also shows that code which can not be compiled (because it
references missing header files and APIs meant for another operating sys-
tem) can still be textually present, because the preprocessor decides whether
to include or remove it before it is passed to the compiler. When this system
is therefore used to implement optional features, it can really make the res-
ulting product smaller and more optimized if certain features are unneeded.
Just like #ifdef, there is also #ifndef, to only include code if a certain
identifier is not defined.

Preprocessor directives can get more complicated than #ifdef and #ifndef.
In fact, #ifdef X itself is shorthand notation for #if defined(X). #if dir-
ectives function on a constant expression that can consist of logic, compar-
ison, and certain operators like defined. #elif and #else directives also
exist, and work as one might expect. A more complicated example can thus
be given as follows:

1 #if defined(linux) || defined(unix)
2 /∗ Linux/Unix code... ∗/
3 #elif defined(WIN32)
4 /∗ Windows code... ∗/
5 #else
6 /∗ Other code... ∗/
7 #endif

In this example, we can reason that the second block of code will be included
if the following condition holds:

!(defined(__linux__) || defined(__unix__)) && defined(_WIN32)

And the third block of code will be included if the following holds:

!(defined(__linux__) || defined(__unix__)) && !defined(_WIN32)

2.2 Parser design

Syntactically valid source code in a programming language usually follows a
certain structure that can be described by the grammar of that language [4].
For example, the grammar could define that a program consists of a list of
functions, which consist of lists of whole statements, where statements could
be variable assignments or function calls, but also whole blocks that contain
lists of statements themselves (such as for if statements and loops). A

10

parser for that programming language could thus create a tree-based data
structure representing the source code, also known as an Abstract Syntax
Tree (AST). An AST is a structured and balanced data structure that follows
the grammar of the programming language.

Normally, a complete parser consists of a lexer or tokenizer step, followed
by a parser step. The lexer or tokenizer translates a plain-text source code
file (i.e. consisting of a sequence of characters such as ‘i’ ‘f’ ‘(’ ‘1’

‘2’ ‘)’) into a sequence of tokens, which have a defined meaning in the
programming language (such as IF and decimal 12 (twelve)).

The parser step then translates this sequence of tokens into an Abstract Syn-
tax Tree (AST). This AST gives unambiguous semantics to the combinations
and arrangements of tokens. For example, the code val * 10 would, after
tokenization, be an identifier val (function or variable), an asterisk (which is
used for both multiplication and pointer declaration and dereferencing) and
the decimal number 10. After parsing, this would unambiguously become
the multiplication of two values: the variable val and the decimal number
10. A visual representation of this design is given in figure 2.1.

Tokenizer Parser

Figure 2.1: Regular parser design

In a compiler, the AST can be used to generate machine code. In a library
like pycparser, which is not a compiler itself, the AST can be used for code
analysis or similar purposes.

The C language, as well as related languages like C++, introduce a complic-
ation for this standard parser design: preprocessor directives can include or
remove any arbitrary text at the time the source code is compiled, regard-
less of the grammar of the C language. The existence of these directives
would significantly hamper generation of an AST, because preprocessor dir-
ectives can subvert the regular structure and balance of the program. For
a compiler, this is not an issue, since preprocessing is intended to be a step
before parsing takes place, where the directives can be completely removed
by making the corresponding “edits” in the source code directly. The condi-
tions given by preprocessor directives are constant expressions that can be
evaluated at time of compilation, such as features being enabled or disabled,
or the operating system that the program is compiled for.

For tools that need to process or analyze source code as a whole, the situ-

11

ation is more complicated. It may be impossible to view the source code
as a structured and balanced tree, because preprocessor directives may ar-
bitrarily cut parts of the code covered by distinct nodes of the tree, cut
out intermediate parent nodes, and anything else possibly resulting in a
combinatorial explosion of possible program variants. Analysis tools that
reason about source code as a whole may therefore prefer to not support
preprocessor directives altogether, and therefore assume that a preprocessor
has already been applied to source code. This includes pycparser [1], the
library we based our tool on.

Parsing and working with C code containing preprocessor directives has
been the subject of earlier tool development. For instance, a well-known
tool is TypeChef [2], which is a research project to discover bugs caused
by variability in C projects, and to typecheck the whole source code in a
variability-aware fashion. Related is SuperC [8], which is an approach by
Gazzillo et al. to parse C code containing preprocessor directives, by forking
new subparsers when encountering a conditional and merging them again
after the conditional.

12

Chapter 3

Related work

Von Rhein et al. made an analysis of transforming compile-time variability
to load-time variability, which means creating a variant simulator of a pro-
gram [18]. Their main contributions are related to a simplified version of the
Java language. They also discuss hypothetical solutions to certain problems
when transforming compile-time variability with preprocessor directives to
load-time variability, as in C. These hypothetical solutions seem to not have
been implemented in practice thus far - they are merely part of a discussion
about the challenges of potentially automatically creating variant simulators
of real-world programs in a language like C using preprocessor directives.

Rosenmüller et al. have presented an approach to allow seamless implement-
ation of features without being forced to make choices between compile-time
and load-time variability during the design process of the program [15].
In other words, their approach allows a programmer to implement a soft-
ware product line (SPL) once and to decide per feature at deployment time
whether it should be bound statically or dynamically. Their approach is
based on feature-oriented programming (FOP), and is implemented on top
of FeatureC++. The main drawback of this approach is that a programmer
has to specifically choose to use this system at the time they design their
program. It therefore does not concern existing real-world programs, unless
the approach gains popularity.

Dimovski et al. have implemented an analysis for proving program termina-
tion, for #if-based C programs [7]. Since static-analysis tools can tradition-
ally only analyze pre-processed single programs, they use variability-aware
(lifted) analysis to prove that all variants of a program terminate. While
termination may be an important property for certain types of programs,
also from a validity and security viewpoint, some programs are never inten-

13

ded to terminate (e.g. server software) and it is only a small part of what
constitutes a correct and secure program.

Lazar et al. have documented their experiences implementing software trans-
formations with the goal to ‘modernize’ source code [9]. This transformation
involves specifically structured code, which needed to be changed from an
imperative style to a declarative, side-effect free style.

Schuts et al. have implemented and described a large-scale semi-automated
migration of legacy testing code written in C and C++ [16]. This particular
migration would not have been conducted without automation, due to the
scale of the project and the risk of introducing errors and loss of productivity
with a manual migration.

Meinicke et al. have analyzed the execution of Java programs with variability-
aware execution, to study feature interactions in configurable programs [14].
They find that the essential configuration complexity (“the configuration-
related differences in an execution that actually need to be explored given
an optimal execution strategy”) of the programs they studied is much lower
than would be indicated by the combinatorial explosion of the configuration
space, due to sharing of code among variants.

Liebig et al. have made a distinction between disciplined and undisciplined
preprocessor directives - disciplined directives being defined as those direct-
ives that encompass only entire statements, functions, type definitions, or
elements inside type definitions [13]. The purpose of this distinction was
to make the implementation of tool support for code analysis significantly
easier, by defining a standard that, if the source code of a program adheres
to it, the code can be analyzed by a much wider variety of tools. They have
also discussed transformations of undisciplined directives to disciplined ones.

Finally, von Rhein has similarly implemented a tool, Hercules, with the goal
to convert compile-time variability (with #ifdefs) to load-time variability
in an automated or semi-automated manner [17]. This tool is based on
TypeChef, which is a variability-aware parser, and is written in the Scala
language. As far as we are aware, this is the only previously available tool
that aims to solve this problem. We have made a comparison between this
and our own tool as part of this research.

14

Chapter 4

Methodology

This project has researched transformations of compile-time variability with
preprocessor directives in C to load-time variability. This involves designing
solutions for a number of different non-trivial applications of preprocessor
directives for conversion to load-time variability. This process has been
partially helped by prior research (such as [17] and [18]), which has given
hypothetical solutions for certain problematic cases. Prior research does
not provide complete coverage for all problematic cases one may encounter
(more details on specific cases can be found in section 5.2), therefore we have
needed to study possible cases and design solutions for those cases. We then
attempted to apply these solutions in practice by implementing them into
a tool. The goal to work towards is to be able to transform compile-time
variability to load-time variability in real-world C programs.

The research methodology of this thesis is best described as a form of design
science [10]. We developed an innovative artifact (the tool) to help solving
a concrete problem, with cycles of problem understanding, implementation,
and evaluation. This process comprises three main cycles, where the first
cycle mostly focuses on prototyping a basic initial version, the second cycle
consists of smaller “sub-cycles” of designing solutions to individual problem-
atic cases, and the third cycle mostly focuses on evaluation and hardening
the existing functionality. The phases in each “sub-cycle” are mostly re-
lated to the goals of the tool being able to support more and more cases: to
understand the problem, we have had to discover the most important pro-
gramming patterns that are blocking the tool from functioning on expected
or real-world code. We then designed and implemented a solution to each
part of the problem, and evaluated whether our solution works with specific
test cases.

15

The goals of developing the tool are both to be useful in practice – for
example, helping to increase the analyzability and flexibility of software –
and also to explore our research questions. The development process of the
tool itself will be described in more detail in chapter 6.

Main process

The starting point was a basic proof-of-concept, where a C program with
compile-time variability limited to the level of whole statements inside func-
tion bodies could be transformed to load-time variability. Starting with
the source code of pycparser, we extended the tokenization and parsing
steps with basic recognition of #ifdef and #endif tokens. At the most
basic level, these could unconditionally be transformed into corresponding
if statements. This working example was then extended with problem-
atic cases of variability, meaning recognition of cases had to be introduced
where #ifdefs should be removed rather than transformed, or should be
transformed in a different way.

Problematic cases can mainly be found where inserting a C if statement
to replace the preprocessor #if directives is not possible without resulting
in invalid syntax or different observable behavior. The aforementioned ex-
ample with optional struct fields is an example of this. Another example is
variable declarations conditional to an #if directive, because the transform-
ation to run-time variability involves introducing a new block (at the level
of C), meaning the variable has a smaller scope than originally intended.
There are multiple ways to discover these special cases, which we have used,
to a greater or lesser extent, for this research. Some cases are already doc-
umented in existing literature, for example [17] and [18]. Other cases were
“self-developed”, that is, deduced from prior knowledge of and experience
with C. For lack of a better term, we will apply the word “deduction” to
label such cases. It is also possible to explicitly look for additional cases by
studying the syntax of C [3] or the source code of real-world software. This
falls under roughly the same category, as a person’s prior experience with C
would also have been shaped by studying the language and reading existing
code. For the end result, it does not matter if a case was conceived from
memories formed by studying in the past, or directly from studying. (RQ1.1
and RQ1.2)

Once we could make valid transformations of more complicated constructs
in programs, we applied testing techniques in order to test the implementa-
tion more rigorously, to further indicate and improve correctness. For each
transformation case, we wrote a test case, and manually verified that the

16

expected results for these test cases were correct. These verified results are
stored, so that if the result for a test case does not change, that case does
not need further attention. This is also useful as a regression test suite: if
the result for a test case changes later, it’s easier to know what caused it.
(RQ2.1)

The performance behavior of the tool can be measured by using the tool to
process larger projects, and measuring the time it takes to complete each
project. Knowing the scale of each project – such as the number of lines
and source files – can help clarify whether the tool is practical enough to
be applied to average software projects. (RQ2.2). We have examined the
documentation and working of Hercules, the existing tool we are aware of
which serves a similar purpose. (RQ2.3) By using the tool on real-world
software, we may encounter additional insights about this software, such as
unexpected parsing errors that were not caused by mistakes in our parser,
or interesting patterns that were previously unknown. (RQ2.4)

Project selection

Since our ambition was to study real-world software projects, we needed to
select such projects. As part of my research internship about higher-order
feature interactions in open-source software projects [11][12], we selected
33 open-source C and C++ projects, which mainly consisted of popular
GitHub repositories and projects studied in prior research. In this thesis,
only C will be studied, not C++. 22 of the 33 projects from the previous
selection would still qualify, as their (main) programming language is C. The
full list of projects used in this research can be found in table 4.1.

17

Project What is it URL

Apache HTTP server An HTTP server https://github.com/apache/httpd

axTLS A very configurable TLS library http://axtls.sourceforge.net/

Busybox UNIX toolkit https://git.busybox.net/busybox/

Emacs A (terminal and GUI) text editor https://github.com/emacs-mirror/emacs

GIMP A graphics editor https://gitlab.gnome.org/GNOME/gimp

Gnumeric A spreadsheet program https://gitlab.gnome.org/GNOME/gnumeric

gnuplot A plotting tool https://github.com/gnuplot/gnuplot

Irssi An IRC client https://github.com/irssi/irssi

libxml2 An XML parser https://gitlab.gnome.org/GNOME/libxml2

lighttpd An HTTP server https://git.lighttpd.net/lighttpd/lighttpd1.4.git/

Linux The Linux kernel https://github.com/torvalds/linux

mbedTLS A portable, easy to use, readable
and flexible TLS library

https://github.com/ARMmbed/mbedtls

MPSolve A polynom solver https://github.com/robol/MPSolve

Netdata A real-time infrastructure monit-
oring system

https://github.com/netdata/netdata

NGINX An HTTP server https://github.com/nginx/nginx

OpenSSL A TLS and crypto library https://github.com/openssl/openssl

OpenVPN A VPN client https://github.com/OpenVPN/openvpn

Parrot A virtual machine https://github.com/parrot/parrot

Redis An in-memory database that
persists on disk

https://github.com/redis/redis

SQLite A file-based database system https://github.com/sqlite/sqlite

uClibc-ng An embedded C library https://uclibc-ng.org/

Vim A terminal-based text editor https://github.com/vim/vim

Table 4.1: The full list of projects

Experience from the same research internship can be applied to answer
RQ1.3: we expect it to be necessary to make certain exceptions to the
transformation from compile-time variability to run-time variability, par-
ticularly when APIs for operating systems such as Windows, macOS and
Linux are used in software. The findings from that research can help to
select which feature identifiers are exclusive to which operating system. To
exempt such directives from being transformed, the approach is to prepro-
cess those directives as would normally be done by a preprocessor. That is,
our tool recognizes operating system recognition features like _WIN32, and
only includes such sections if a Windows version of the code is requested.
This way, the number of possible program variants would be limited to one
variant per operating system. Alternatively, these directives could simply
be retained in the transformed code.

The ‘ideal’ final goal for the project is complete support for transforming any
valid C program from compile-time variability to load-time variability. Des-
pite the relative simplicity of C compared to a more expressive language like
C++ or Java, being able to transform any valid C program is unfortunately
elusive, due to the nature of preprocessing to freely include or exclude parts
of the source code before it is tokenized and parsed. Therefore, instead of
attempting to implement support for all edge cases, we imposed constraints
to forbid rarely used and/or difficult to handle cases or language constructs,
and focus on a more realizable subset of the language.

18

Chapter 5

Approach

Our research process has consisted of several elements, such as design of an
approach to transforming compile-time variability to run-time variability on
paper, the development of a tool with the aim to implement that approach,
and application of knowledge from prior research. This chapter will focus on
the approach from a conceptual perspective, thus encompassing the answers
to RQ1.

5.1 Transforming preprocessor directives

As mentioned in chapter 2, there are several reasons why one might want
to transform compile-time variability to load-time variability. One of those
reasons is that analysis of all configurations of a C program becomes much
more difficult, because preprocessor directives coexist with and subvert the
structure of the C code itself. Our approach thus aims to help general
analysis of C code by removing preprocessor directives and transforming
them into equivalent run-time code, before the code can be fed into tools
that do not support preprocessor directives. On the other hand, we are
now facing the exact same challenge: we are developing a tool that needs to
reason about and modify the structure of C code that may contain arbitrary
#ifdef statements.

In the most trivial case, an #ifdef is applied to a whole statement or set of
statements inside a function. In this case, the #ifdef can be transformed to
an if statement with an opening brace ({), and the corresponding #endif

can be transformed to a closing brace (}). The conditional for the if state-
ment needs to be possible to evaluate at run-time. Therefore, a static feature

19

like FEAT_A may need to be replaced by a variable or function call. We have
decided to define the function pd_defined(), which takes a string represent-
ing the feature identifier as an argument. This choice was made for full flex-
ibility, since it allows for the configuration to be easily human-modifiable, by
editing a configuration file or even by employing a user interface at run-time.
Thus, #ifdef A would be transformed into if (pd_defined("A")) {. A
result of this transformation can be seen in listings 5.1 and 5.2.

1 int f(void) {
2 handle(x);
3 handle(y);
4 #ifdef POINT 3D
5 handle(z);
6 #endif
7 }

Listing 5.1: A use of preprocessor
directives on a whole statement

1 int f(void) {
2 handle(x);
3 handle(y);
4 if (pd defined(”POINT 3D”)) {
5 handle(z);
6 }
7 }

Listing 5.2: A result of transform-
ing to run-time variability

Most cases cannot be solved with a simple find-and-replace action. If an
#ifdef is applied to parts of statements, the transformation would need
to duplicate unconditional parts of the statement to make the syntax valid
again, since if statements cannot be applied to parts of statements. Ac-
cording to the definition of Liebig et al. [13], this is an example of an
undisciplined directive. The code example in listing 5.3 demonstrates this.
In this case, if the feature A is enabled, the statement is compiled as return
1 + 2;, but if it is disabled, the statement is instead compiled as return

1;. A transformation to run-time variability might look as in listing 5.4.

1 int f(void) {
2 return 1
3 #ifdef A
4 + 2
5 #endif
6 ;
7 }

Listing 5.3: An undisciplined use of
preprocessor directives

1 int f(void) {
2 if (pd defined(”A”)) {
3 return 1
4 + 2
5 ;
6 } else {
7 return 1
8 ;
9 }

10 }

Listing 5.4: A result of transform-
ing to run-time variability

20

5.2 Nontrivial transformation cases

We will detail the difficult transformation cases we discovered, as well as
possible solutions to transform these cases, in this section. An overview of
all cases and the extent of support can be found in table 5.1. The cases will
each be explained in more detail in the sections below.

In addition to our tool, we found a tool with a similar goal - Hercules [17]
- which is based on TypeChef. Since it is the only previously available
approach for the problem that we are aware of, we have included it in the
table for comparison. While Hercules seems to have support for a broader
set of cases than our tool, we believe there are situations where our tool
would be more suitable. This comparison between our tool and Hercules is
explained in more detail in section 7.2.

The column “Origin” lists the method or source through which we discovered
each case. As described in chapter 4, some cases were documented in prior
research, and others (which are labeled “Trivial” or “Deduction”) were de-
duced from knowledge and experience with C (possibly including studying
done for this research project specifically).

There is a caveat to this column. While some cases were inspired by
or quoted from prior research, we have always studied possible solutions
ourselves. We therefore do not always agree with the solutions given in
prior research, since there is not necessarily a single exact method to re-
solve a case. In some cases, the prior research offered a solution idea, but
did not implement the solution. Therefore, this column should mostly be
interpreted as “Inspiration”: we discovered a problem case by reading prior
research. The arguments for these disagreements will be given in more detail
in the sections corresponding to each case.

21

Supported in
our tool

Supported in
Hercules

General functionality

Multiple files support

Can parse with incomplete declarations or big #includes

Supports run-time variability

Transformation cases Origin

1. Optional whole statement Trivial

2. Optional part of statement Trivial

3. Optional conditionals and braces Deduction

4. #if 0 and #ifdef __cplusplus Deduction

5. Struct with optional fields [18]

6. Alternative types [18] †
7. Variable declarations inside #ifdefs Deduction †
8. Optional shadowing [18] †
9. Conditional #define [17] †
10. Conditional goto [17] † †
11. Optional switch cases [17] † †
12. Compile-time string concatenation [17] †

Table 5.1: The nontrivial cases we discovered

no support partial support full support
† hypothetically resolved in paper

In the end, while we believe all these cases should be possible to transform
programmatically, we have needed to consider many of these nontrivial cases
out of scope for our tool due to the amount of time and work needed. How-
ever, where encountered, these can still be transformed manually, according
to the transformations we give in the following sections.

5.2.1 Case 1: Optional whole statement

As described in section 5.1, by the definition of Liebig et al., the simplest
transformation case is where #ifdefs are disciplined, such as those that
enclose whole statements inside functions only. An example of this case is
given by listings 5.1 and 5.2, and described further in section 5.1.

5.2.2 Case 2: Optional part of statement

Similarly, if an #ifdef splits up a statement into separate parts that will
be merged into a single statement by the preprocessor, a transformation to
run-time variability should duplicate every variant of the entire statement
to let the transformation result remain valid C code. An example of this
case is given by listings 5.3 and 5.4, and described further in section 5.1.

22

5.2.3 Case 3: Optional conditionals and braces

It may occur that a certain block of code should always run in a cer-
tain compile-time configuration, but be conditional at runtime in another
compile-time configuration. For example, an authentication feature may
prevent the user from carrying out certain actions if not logged in, but if the
authentication feature is not configured, any user should be able to carry
out those actions. This is shown in listing 5.5.

1 #ifdef AUTH
2 if (logged in)
3 #endif
4 do something();

Listing 5.5: Optional if conditional

1 if (!pd defined(”AUTH”) || logged in)
2 do something();

Listing 5.6: A result of transform-
ing to run-time variability

The most elegant transformation (as would be made by a human program-
mer) is given in listing 5.6. A valid alternative however, is to simply du-
plicate the call to do_something(), and have one branch where logged_in
is checked and another branch where the function is called unconditionally.
This is the approach taken by both our tool and Hercules.

A similar edge case is when both an opening brace and its corresponding
closing brace are removed by #ifdefs, as given in listing 5.7. The interesting
implication of this is that depending on the value of the feature given by
the #ifdef, only the first, or all statements in the block become optional at
run-time. A possible transformation is therefore given in listing 5.8.

1 if (special check)
2 #ifdef AA
3 {
4 #endif
5 do something sometimes();
6 do something maybe always();
7 #ifdef AA
8 }
9 #endif

Listing 5.7: Optional braces

1 if (pd defined(”AA”)) {
2 if (special check)
3 {
4 do something sometimes();
5 do something maybe always();
6 }
7 } else {
8 if (special check)
9 do something sometimes();

10 do something maybe always();
11 }

Listing 5.8: A result of transform-
ing to run-time variability

23

5.2.4 Case 4: #if 0 and #ifdef __cplusplus

Code within an #if 0 directive will never evaluate to be included. It is
therefore sometimes used by programmers to “comment out” blocks of code
without having to use standard /* */ comments, since the latter requires
existing /* */ comments in the code to be modified or removed to avoid a
syntactical conflict (for example, by changing existing */ to * /).

There is no requirement that text commented out by an #if 0 is valid C
code, and in fact, real-world code sometimes does include unparseable code
in #if 0 blocks [11]. An extreme example of this possibility, which is entirely
legal and balanced, is given as follows:

1 #if 0
2 This is not actually code! But this comment is real: /∗ this
3 #endif
4 #endif
5 aa ∗/ aa
6 #endif

Listing 5.9: A demonstration of #if 0 and comments

Depending on the goal of the transformation, it may or may not be ne-
cessary to remove the block. In either case, it should not be transformed
into an if (0) statement, since this would cause the resulting code to be
syntactically invalid regardless of configuration or further preprocessing. If
the goal is to compile the program after the transformation, then the #if 0

block could be left in place as-is, because it does not affect the number
of configurations and does not stop compilers from building the program,
as long as the regular preprocessor is still in place. However, if the goal
is to analyze the source code using analysis tools, then it would be bet-
ter to remove the block completely. This allows tools that do not support
preprocessor directives to parse the code without them.

A similar problem applies to the feature identifier __cplusplus, which is
used to distinguish if a compiler is set to compile C or C++. This is used
in case code needs to be able to compile as both C and C++, and a C++
construct must be used without affecting compilations as C. Since C++
syntax is unsupported by tools which focus on C, including our parser,
we decided to treat __cplusplus as always 0, and thus remove the blocks
altogether in our transformations.

24

5.2.5 Case 5: Struct with optional fields

In this case, #ifdefs appear in the middle of a struct definition, so the
struct has different fields in different configurations.

1 struct point {
2 int x;
3 int y;
4 #ifdef POINT 3D
5 int z;
6 #endif
7 };
8
9 int f(struct point s) {

10 return s.x + s.y
11 #ifdef POINT 3D
12 + s.z
13 #endif
14 ;
15 }

Listing 5.10: Optional struct fields

1 struct point {
2 int x;
3 int y;
4 int z;
5 };
6
7 int f(struct point s) {
8 if (pd defined(”POINT 3D”)) {
9 return s.x + s.y

10 + s.z
11 ;
12 } else {
13 return s.x + s.y
14 ;
15 }
16 }

Listing 5.11: A result of transform-
ing to run-time variability

This case is also described in [18]. However, we provide an alternative
solution. The solution presented in [18] is to duplicate each unique variant
of the struct, and give a unique name to each. In all parts of the code that
refer to the original struct, conditional code needs to be added to switch
between the correct struct variant at runtime. The reason for this code
duplication is that the decision to include or exclude fields from a struct
affects the return value of sizeof() at runtime, which could count as a
change in behavior. However, we think this is not a big problem. The
intended usecase for sizeof() is to check the required amount of memory to
store the data. Transformed code might break if it had unusual workarounds
such as checking size to see which fields are in the struct rather than using
#ifdefs, but we have yet to encounter this in real-world software.

Therefore, our solution is to simply make all fields unconditional, as seen
in listing 5.11. There is space reserved for unused struct fields, but this is
otherwise harmless since these fields will not be used. A possible conflict
might occur if two fields in mutually incompatible configurations have the
same name, and now occur together. The solution in that case would be to
rename one of the fields and all its usages in code.

25

A possible change in behavior might happen if a union contains multiple
structs, of which not all have optional fields, and most importantly, the pro-
gram writes to one of the structs and then reads from another. An example
of this situation is given in listing 5.12. In this case, when transformed, the
fields of the different structs may be aligned differently than in the original
program. This seems to be a very rare scenario, and the solution may not
be very straightforward unless structures share a common initial sequence
of member types, so this would require manual intervention. In listing 5.13,
our solution is to dynamically change the field that is read out. In more
complicated scenarios, for example if the initial types mismatch between
the structs, it would also be possible to insert extra structs inside the union
to use in different configurations.

1 union u {
2 struct {
3 #ifdef HAS X
4 int x;
5 #endif
6 int y;
7 int z;
8 } point;
9 struct {

10 int mem 0;
11 int mem 1;
12 int mem 2;
13 } mem;
14 };
15
16 union u uu;
17 uu.point.y = 2;
18 uu.point.z = 5;
19 printf (”%d\n”, uu.mem.mem 1);

Listing 5.12: Optional struct fields
inside a union

1 union u {
2 struct {
3 int x;
4 int y;
5 int z;
6 } point;
7 struct {
8 int mem 0;
9 int mem 1;

10 int mem 2;
11 } mem;
12 };
13
14 union u uu;
15 uu.point.y = 2;
16 uu.point.z = 5;
17 printf (”%d\n”, pd defined(”HAS X”)

? uu.mem.mem 1 :
uu.mem.mem 2);

Listing 5.13: A result of transform-
ing to run-time variability

5.2.6 Case 6: Alternative types

As briefly described in [18], it would be possible to declare a variable with
a type dependent on configuration. An example of this is given in list-
ing 5.14, where the variable name altt_i is of type double if the config-
uration option DO_DOUBLE is set, and type int otherwise. As noted, the
variable declaration needs to be duplicated with separate identifiers, and
all uses of the variable need to be modified accordingly as well. A solution
here would thus be to declare a separate double _double_altt_t = 1; as

26

well as int _int_altt_i = 1;. However, for behavior preservation, it is
also important to note that the expression that initializes a variable (in this
case, 1) may not necessarily be free of side effects. For example, it can be
the return value of a function call, or it can contain increment (++) or decre-
ment (--) operations. Therefore, our solution is to make the initial value of
the variable conditional to whether that variant of the variable should exist
based on configuration, as shown in listing 5.15.

If the variable is unused in the current configuration, the variable will be
initialized by a default ‘placeholder’ value. To avoid introducing compiler
warnings, the types of the placeholder values should match or be compatible
with the types of each variable. For example, a numeric type could be
initialized to 0, and a pointer type could be initialized to NULL. Initialization
of struct types can be done using compound literals, with a 0 initializer-list
as a default value, which looks like (struct point){0}.

1 #ifdef DO DOUBLE
2 double
3 #else
4 int
5 #endif
6 altt i = 1;
7
8 handle(altt i) ;

Listing 5.14: Alternative types

1 double double altt i =
pd defined(”DO DOUBLE”) ? 1 :
0;

2 int int altt i =
!pd defined(”DO DOUBLE”) ? 0
: 1;

3
4 handle(pd defined(”DO DOUBLE”) ?

double altt i : int altt i);

Listing 5.15: A result of transform-
ing to run-time variability

In Hercules, the variable renaming approach is followed, but initial value
expressions are duplicated, even when they cause side-effects. A result of
this transformation, when init() is used for the initialization of the variable
instead of 1, is given in listing 5.17.

1 #ifdef DO DOUBLE
2 double
3 #else
4 int
5 #endif
6 altt i = init() ;
7
8 handle(altt i) ;

Listing 5.16: Alternative types

1 double double altt i = init() ;
2 int int altt i = init() ;
3
4 handle(pd defined(”DO DOUBLE”) ?

double altt i : int altt i);

Listing 5.17: An incorrect trans-
formation of alternative types

27

C is not a functional programming language, so there is no method to ensure
the implementation of the init() function is free of side-effects. Therefore,
because init() is called twice, this transformation might have different
behavior compared to the original program.

5.2.7 Case 7: Variable declarations inside #ifdefs being vis-
ible after the new block

If a variable is declared within a block in C (such as within a function, or
inside the {} of an if statement), then the scope of that variable is limited
to that block; the variable ceases to exist beyond the corresponding }. This
forms a problem if we simply change #ifdefs to ifs, because #ifdefs do not
limit the scope of variables declared inside them, while if blocks do. This
problem may be solved by moving variable declarations to an earlier point
in the code as part of the transformation, or by interrupting the generated
if block for the variable declaration and re-opening it afterwards. We have
chosen the latter approach. This is most important for variables that are
declared with the const qualifier, which enforces the constraint that the
variable may not be modified after initialization. If the variable declaration
were to be moved to an earlier point in the code, and the first value set later,
the const qualifier would need to be removed, negating the reason it was
used and weakening compiler type checks. The result of this transformation
can be seen in figure 5.19. As in Case 6, the expression that initializes the
(now unconditionally declared) variable may not be side-effect free, so the
original initialization should be changed to only occur if the variable is used
in this configuration, using a ternary expression.

1 #ifdef AA
2 aa only code 1();
3 const int i = aa only get i() ;
4 aa only code 2();
5 #endif
6
7 code();
8
9 #ifdef AA

10 aa use(i) ;
11 #endif

Listing 5.18: Variable declarations
inside #ifdefs

1 if (pd defined(”AA”)) {
2 aa only code 1();
3 }
4 const int i = pd defined(”AA”) ?

aa only get i() : 0;
5 if (pd defined(”AA”)) {
6 aa only code 2();
7 }
8
9 code();

10
11 if (pd defined(”AA”)) {
12 aa use(i) ;
13 }

Listing 5.19: A result of transform-
ing to run-time variability

28

5.2.8 Case 8: Optional shadowing

Similar to Case 7, a variable declaration can be declared conditionally to
an #ifdef, but in this case, the declaration ‘shadows’ another variable with
the same name in an outer scope. This is a feature of C, where a variable
in an inner scope can temporarily override another variable with the same
name, as long as the scope is different [3]. This case is also highlighted in
[18].

1 int shadow = 0;
2 for (int i = 0; i < 10; i++) {
3 #ifdef SHADOWS
4 int shadow = 1;
5 #endif
6 shadow++;
7 }
8 int whatshadow = shadow;

Listing 5.20: Optional shadowing

1 int shadow = 0;
2 for (int i = 0; i < 10; i++) {
3 if (pd defined(”SHADOWS”)) {}

// (interrupted because
variable declaration)

4 int opt shadow = 1;
5 if (pd defined(”SHADOWS”)) {}

// (the compiler will probably
optimize this away...)

6 if (pd defined(”SHADOWS”)) {
7 opt shadow++;
8 } else {
9 shadow++;

10 }
11 }
12 int whatshadow = shadow;

Listing 5.21: A result of transform-
ing to run-time variability

5.2.9 Case 9: Conditional #define

Not just code can be conditional to #ifdefs – other preprocessor directives
such as #define can be conditional too. This means a given identifier can
have multiple different definitions in different configurations of the program,
and #ifdefs can be hidden in code that does not appear to have them, by
simply referencing an identifier that depended on an #ifdef for its definition.
An example of this problem can be found in listing 5.22.

There are two methods to transform this: changing uses of such tokens to
ternary conditionals, or copying the #ifdefs in place.

If the replaced token is part of an expression, then the former method could
be applied. An example is the replacement of ALTT2_L in listing 5.23. This
method leads to less code duplication, but cannot always be applied, since
ternaries cannot be used anywhere in the code. An automatic transforma-

29

tion would need to recognize which syntax changes are valid and only apply
those. Care also needs to be taken not to cause unexpected changes in the
order of operations. For example, if the expression TWO_OR_TWELVE + 8 is
changed to pd_defined("TWO_OR_TWELVE")?2:12 + 8, then the + 8 takes
higher priority than the ternary, causing the possible resulting values to
change to 2 and 20, not 10 and 20.

Copying #ifdefs in place is the second method. In this case, every usage of
the defined identifier is changed to include an #if chain to give it all possible
values for every configuration. The intermediate result of this change could
look like listing 5.14 in Case 6 (Alternative types). Afterwards, the #if

chain can be transformed as would otherwise be done. The end result can
be seen in the transformation of ALTT2_T in listing 5.23.

1 #ifdef DEF DOUBLE
2 #define ALTT2 L 6
3 #define ALTT2 T double
4 #else
5 #define ALTT2 L 3
6 #define ALTT2 T int
7 #endif
8
9 printf (”We’re using a type of len

%d\n”, ALTT2 L);
10
11 ALTT2 T altt2 i = 5;

Listing 5.22: Conditional #define

1 printf (”We’re using a type of len
%d\n”,
pd defined(”DEF DOUBLE”) ? 6
: 3);

2
3 double double altt2 i =

pd defined(”DEF DOUBLE”) ? 5
: 0;

4 int int altt2 i =
!pd defined(”DEF DOUBLE”) ?
0 : 5;

Listing 5.23: A result of transform-
ing to run-time variability

5.2.10 Case 10: Conditional goto

C has the (sometimes controversial) possibility of jumping to a different
statement by using a goto statement. goto can jump to any label in the
same function, which is an identifier followed by a colon (:) that can be
placed before any statement. Of course, it is possible using #ifdefs to add
and remove labels depending on configuration. Thus, a given goto which
is not conditional to #ifdefs itself, could still jump to different statements
depending on compile-time configuration. An example of this setup is given
in listing 5.24.

A solution for transforming this to run-time variability would be to rename
the labels, and add conditionality to each goto statement which jumps to
such a label. An example of this solution is given in listing 5.25.

30

This is also the approach described by von Rhein et al [17]. Interestingly, in
our testing, Hercules did not handle this situation. Therefore, this descrip-
tion was likely also intended as a hypothetical approach, not as document-
ation of implemented behavior.

1 #ifdef INFINITE LOOP
2 cursed:
3 #endif
4 str = ”Well...”;
5 goto cursed;
6 #ifndef INFINITE LOOP
7 cursed:
8 #endif

Listing 5.24: Conditional goto

1 inf cursed :
2 str = ”Well...”;
3
4 if (pd defined(”INFINITE LOOP”))
5 goto inf cursed;
6 else
7 goto noinf cursed;
8 noinf cursed :

Listing 5.25: A result of transform-
ing to run-time variability

5.2.11 Case 11: Optional switch cases that override the de-
fault

switch statements in C are used as a form of lookup table for the possible
values of a given variable. They are more flexible than that, however: if
a break statement is not used at the end of a case, then the following
case will be executed as well. This is called a fallthrough. Additionally,
it’s possible to specify a default case, which will be executed if none of
the other cases match the value of the variable. Therefore, the behavior of
switch statements is quite flexible.

Naturally, #ifdefs can be added anywhere in them to remove certain (parts
of) cases, and thus change the behavior in different configurations. An
example of a switch statement is given in listing 5.26. In this example,
cases 3 and 5 are not present in every configuration. If ALSO_CASE3 is
defined, then case 2 will fallthrough to case 3, otherwise it will fallthrough
to case 4. If i has the value 3 or 5, and the corresponding case is disabled,
then the default branch will be used instead.

The main solution to transform this is to insert labels and goto statements
to simulate the behavior in different configurations dynamically. An example
of this transformation is given in listing 5.27. Still, the endless flexibility
that #ifdefs allow for makes this problem hard to solve generically. For
example, a case label could be removed, but not all code below it. Switch
statements can also be nested, meaning inner cases could be made to look
like outer cases in only some configurations.

31

Another valid solution is a bruteforcing approach, to duplicate the entire
switch block for all possible feature permutations. This can lead to a com-
binatorial explosion of variants of the same switch block, but this is only
determined by the amount of features present inside that switch statement.

1 switch (i)
2 {
3 case 0:
4 case 1:
5 case 2:
6 puts(”Cases 0 1 2”);
7 // fallthrough !
8 #ifdef ALSO CASE3
9 case 3:

10 puts(”And 3!”);
11 break;
12 #endif
13 case 4:
14 puts(”And not 3!”);
15 break;
16 #ifdef ALSO CASE5
17 case 5:
18 puts(”This is case 5, also

conditional to a define”);
19 break;
20 #endif
21 default:
22 puts(”Case not recognized, maybe

it was 3/5 and not
ALSO CASE3/5?”);

23 }

Listing 5.26: Optional switch cases

1 switch (i)
2 {
3 case 0:
4 case 1:
5 case 2:
6 puts(”Cases 0 1 2”);
7 // fallthrough !
8 if (!pd defined(”ALSO CASE3”))
9 {

10 goto case 4 sw;
11 }
12 case 3:
13 if (!pd defined(”ALSO CASE3”))
14 {
15 goto default sw;
16 }
17 puts(”And 3!”);
18 break;
19 case 4:
20 case 4 sw:
21 puts(”And not 3!”);
22 break;
23 case 5:
24 if (!pd defined(”ALSO CASE5”))
25 {
26 goto default sw;
27 }
28 puts(”This is case 5, also

conditional to a define”);
29 break;
30 default:
31 default sw:
32 puts(”Case not recognized, maybe

it was 3/5 and not
ALSO CASE3/5?”);

33 }

Listing 5.27: A result of transform-
ing to run-time variability

5.2.12 Case 12: Compile-time string concatenation

Unlike many other programming languages, C does not have a straight-
forward method to concatenate multiple strings at runtime to form a new

32

string, such as "Hello, " + name. It only allows a string literal to be
composed of multiple string literals at compile time, so "A" "B" would be
equivalent to "AB". It is therefore possible to have differently concatenated
string literals depending on which features are enabled or disabled. For
example, a program could display a help menu with only documentation
about features that are enabled, as displayed in listing 5.28. A transform-
ation could be to simply duplicate every possible version of the string, as
shown in listing 5.29.

1 puts(
2 ”Welcome to the documentation of

this configurable program!\n”
3 ”To launch the rocket, press the

big LAUNCH button.\n”
4 #ifdef CANCELABLE
5 ”To cancel the launch, press the

CANCEL button.\n”
6 #endif
7) ;

Listing 5.28: Compile-time string
concatenation

1 if (pd defined(”CANCELABLE”)) {
2 puts(
3 ”Welcome to the

documentation of this
configurable program!\n”

4 ”To launch the rocket, press
the big LAUNCH
button.\n”

5 ”To cancel the launch, press
the CANCEL button.\n”

6) ;
7 } else {
8 puts(
9 ”Welcome to the

documentation of this
configurable program!\n”

10 ”To launch the rocket, press
the big LAUNCH
button.\n”

11) ;
12 }

Listing 5.29: A result of transform-
ing to run-time variability

The example given here is a relatively trivial case. However, it is possible
to include many optional string parts, which would lead to a combinatorial
explosion of unique strings. Therefore, a more scalable solution would be
to transform cases like this to code that concatenates the string at run-time
(using, for example, the strcat() family of functions, to a buffer that is
the maximum possible length if all string parts were added). Due to time
constraints and the complexity involved, we have decided not to implement
that solution in our tool, and neither have the authors of Hercules.

33

5.3 Non-transformation cases

There may be circumstances where some #ifdefs should not be transformed
to run-time variability, and should in fact remain #ifdefs as-is. These cases
will be described in this section.

One common case that we encountered in software is usage of operat-
ing system dependent programming interfaces. Operating systems
provide Application Programming Interfaces (APIs) that can be used by
programs for various functionality, such as file and window management, or
internet access. However, many of these APIs are unique to each individual
operating system, and a C program cannot be compiled if it uses “foreign”
APIs or header files that do not exist on every operating system, such as
windows.h which is only present on Microsoft Windows, or sys/stat.h

which is only present on POSIX-based systems like Linux or macOS. A
common solution to this problem is to guard both these #include directives
as well as the functions that are used from them, with #ifdefs, such that
no compiler ever encounters missing functionality from another operating
system. It would therefore break a program in practice to transform these
cases to run-time variability, since a program that uses non-cross-platform
functions from two different operating systems will not be compilable on
any operating system. Yet, if the goal of transforming the source code is
only to analyze it using analysis tools, it may not be a problem to do this
transformation. This is because such tools may not require all function defin-
itions or implementations to be present, or to match the operating system
the tool is run on.

Whenever it is desired that the transformation result be compilable, another
option might be to provide empty placeholder functions for all incompat-
ible operating system-specific APIs, and not support the user selecting a
configuration for an incorrect operating system. However, this may not be
practical, as it requires assembling and maintaining a list of all functions
that exist in each operating system. Another solution is to simply blacklist
the relevant feature flags from being transformed to run-time variability.
Since there is only a limited number of operating systems, keeping these
#ifdefs in source code does not result in a very high number of unique pro-
gram configurations, so it’s possible to transform e.g. a Windows variant
and a Linux variant of a program separately.

Another commonly used pattern is include guards. In this pattern, the
code in an entire file (normally a header file) is made conditional to a
#define placed in the same file, to include the code only once within any
compilation unit, even if multiple #include directives refer to it. This is

34

necessary to avoid multiple inclusions of the same file causing the program
to be invalid because of duplicated declarations for functions and variables.
The main cause of this duplication is that header files often need to include
other header files themselves. An example of include guards is given in
listing 5.30.

1 #ifndef UTIL H
2 #define UTIL H
3
4 /∗ rest of file goes here ... ∗/
5
6 #endif

Listing 5.30: Example of include guards (util.h)

This pattern cannot be transformed to run-time variability, since there is
no variability at play here – there is no code that is present in some config-
urations and absent in others. Therefore, the best option is to leave these
untouched.

There is an alternative to include guards, namely the #pragma once direct-
ive, which achieves the same goal by simply including it in the code instead.
This directive is widely supported by compilers, but it is not defined by
the C standard [3]. Some programs may also aim to support older versions
of compilers which still lacked this directive. Therefore, traditional include
guards are still commonly found in source code.

35

Chapter 6

Description of the tool

To provide practical support for transformations from compile-time variab-
ility to run-time variability, we developed a tool that aims to implement the
previously identified cases and solution strategies.

Our tool1 is written in Python, and is based on the tokenizer of pycparser [1],
a parser for C99 [3] written in Python. As described in section 2.2, pycparser
follows the standard design of having a tokenizer, which converts plain
text into tokens, followed by a parser, which converts tokens into an Ab-
stract Syntax Tree. As also described, generation of an AST is significantly
hampered by the existence of preprocessor directives, therefore pycparser

does not support them and expects code to be pre-processed before being
parsed. Therefore, we have modified pycparser to handle preprocessor dir-
ectives in a special way, as described in chapter 5. Now we will detail our
implementation of this approach.

We extended the tokenizer step of pycparser with support for preprocessor
directives, and replaced the regular parser step by a so-called transformator
step. The main purpose of the transformator step is to convert all #ifdef
and #if preprocessor directives into plain C code wherever possible, at the
level of tokens. In other words, it takes the output from the tokenizer
step (a list of tokens), and analyzes and modifies it to give a new list of
tokens. This could, depending on the placement of the directives, involve
simple changes from preprocessor directives to if statements, duplication of
parts of statements or blocks to resolve syntactic problems, or in some cases
removal of the conditionality.

Conceptually, the output of the transformator step should be ready to be

1https://github.com/dkorsman/pycparser/tree/trafo

36

consumed by the original parser step that would normally get its input
from the tokenization step. After all, any conditional preprocessor directives
would have been changed into regular C code, so the structure and balance
of the program should be valid and consistent. However, there are more
complicating factors preventing the parser step from working, mainly the
preservation of #include and #define directives. Since we did not make
any changes to the parser step of pycparser, meaning none of our processing
requires that step, supporting it is considered out of scope for this project.
Instead, output from the transformator step is output as regular C code,
which could be compiled with a real C compiler.

Tokenizer Transformator Parser

Figure 6.1: Our transformator design

6.1 Functionality

Given a single file, our tool will transform that file and output it. The
tool can also be given an input and output directory, in which case it will
enumerate all files with a recognized C extension (.c or .h) in the input
directory and its subdirectories. It will then write transformed versions of
these files to the output directory.

The tool also has some options to control the transformation process. The
option -p can be used to change the target platform of the code (such as
Linux, Windows or macOS), and can also be set to treat operating system-
specific feature identifiers as regular features (if the code does not need to be
compilable). Specific features can be treated as always disabled with -U (for
example, -U AA -U BB to treat AA and BB as always 0). For better support
for staged configuration (as described in [6]), it would be relatively simple to
modify the tool to also accept a list of features that should be transformed
to run-time variability, leaving all other features completely untransformed.

One more challenge was how to make our new function, pd_defined(),
work in C code in a universally applicable way. The implementation of a
function may not be declared multiple times in C [3], so we cannot simply
copy the definition into all transformed files. If we add our own source file
to a project, we would need to choose the correct folder to place it in, even

37

though folder layouts are not standardized in C projects. Furthermore, this
will likely require modifications to build scripts to compile this new source
file. These build scripts may be set up in a unique way in any given project,
making it difficult to automate modifying them. Therefore, our aim was to
avoid the need to modify build scripts at all.

Our basic solution was to inject our function definitions in any file containing
a main() function. Since main() is a standard function intended for any
regular C program to use as its entry point [3] and since definitions of main()
must be unique like any other function, this method should be reasonably
robust for most programs. In other cases, such as when parts of the program
are linked independently from each other, or in highly low-level projects such
as the Linux kernel, this may still need manual intervention.

6.2 Load-time variability versus run-time variab-
ility

Compile-time variability means that configuration options are determined
at time of compilation, and cannot be changed without recompiling the
program. There is a further distinction between load-time variability and
run-time variability. Load-time variability implies that the configuration can
be changed without recompiling the program, but the program needs to be
restarted in order to change the configuration. Run-time variability implies
that the configuration can be changed at any time, even while the program
is still running.

Our tool adds support for transformation to both load-time variability and
run-time variability. Load-time variability is implemented with a configur-
ation text file that is read when the transformed program is started, which
can contain all features and their values. This text file is editable by the
user, and follows a simple key=value format. Run-time variability is an
optional addition, and is configured with the feature PD_GUI as a load-time
variability option. If this feature is enabled, a separate window will open
with a list of all features as loaded from the configuration file, which can
then be enabled or disabled interactively. An example is shown in figure 6.2.
Like the implementation of our pd_defined() function, the implementation
of this user interface is injected into the file containing the main() function.

38

Figure 6.2: A screenshot of the user interface for run-time variability

Run-time variability has a much lower chance of working as expected than
load-time variability – as the #ifdef conditionals were originally not de-
signed to be able to change during program execution, crucial initialization
steps may have been permanently missed by the time the program is up and
running. Still, it might be very helpful to test different configurations if it
works, especially with staged configuration in mind.

39

Chapter 7

Tool evaluation

This chapter will focus on an evaluation of the developed tool, encompassing
the answers to RQ2. We have evaluated the correctness of transformations
made by the tool by testing it on manually-written test cases as well as
real-world open-source projects, and we have analyzed in which situations
our tool could still be improved. We have also looked at the performance
characteristics of our tool, and we have made a comparison between our tool
and Hercules.

7.1 Correctness

Our methodology to verify the correctness of our tool, to answer RQ2.1, was
based on testing techniques. We used two separate suites of test cases: a
set of manually-written test cases to verify specific transformations, and a
collection of real-world software.

We made a suite of manually verified test cases to ensure that our imple-
mentation makes correct transformations from compile-time variability to
run-time variability, and never regresses from making correct transforma-
tions after making changes to the algorithm. The basic transformation rules
are supported, and have test cases to verify them, as detailed in table 7.1
below.

40

Name Description Supported

and_no.c #if 1 && 0 should be removed

assignments.c Several assignments split by #ifdefs (as in listing 5.3)

assignments_different_comments.c Same as above, with differently placed comments

big_no_ifdefs.c Code with various kinds of syntax, without #ifdefs

blank.c Simple main function without code other than return 0;

define_normal.c Testing token replacements with #define and #undef

if_0_in_func.c Remove #if 0, replace its corresponsing #else by if (1)

if_0_outside_func.c Remove #if 0, place its corresponsing #else at top level

if_brace.c #ifdef around if conditional, with braces

if_cplusplus_in_func.c #if __cplusplus should behave like #if 0

if_cplusplus_outside_func.c #if __cplusplus should behave like #if 0

if_defined.c Testing #ifdef variants (#if defined(A), #if defined A)

if_nobrace.c #ifdef around if conditional, without braces

multiline_if.c Testing multiline #if expression with multiple features

optional_braces.c #ifdef around opening and closing {} (as in listing 5.7)

prefunc_enums_structs.c Testing various #ifdefs inside and around enums and structs

simple_elif.c Testing an #ifndef in combination with an #elif defined

simple_nest.c Testing nesting of #ifdefs

string.c Testing compile-time string concatenation with #ifdefs

Table 7.1: The list of test cases

Of course, these test cases only verify that our tool gives a correct result for
the test cases, and cannot give an accurate picture of “all of C”. Indeed, due
to the amount of time and work needed, we could not implement support
for transforming many nontrivial cases. Our manually verified test cases are
thus especially useful as a regression testing suite, allowing modification of
the algorithm while ensuring that these modifications do not cause regres-
sions, and then allowing an additional test case to be written to verify the
new behavior. This process hardens the tool step by step.

Unfortunately, the range of possible C programs is very large, and many
transformations are complicated to automate. Therefore, we did not even-
tually manage to make a perfect tool that can fully automatically transform
most real-world software. However, this does mean that our tool could be
used to reduce a programmer’s workload, by transforming part of the dir-
ectives where supported, while requiring manual changes for the remaining
cases, based on our approach outlined in chapter 5.

Our second testing method, to give a more comprehensive indication of the
state of the parser, is to run the tool on real-world software. For this purpose,
as detailed in chapter 4, we collected 22 open-source projects. We ran the
tool on all projects, and counted the number of files that the tool had, as well
as did not have, success parsing and applying its transformations to. The
tool could fail to transform files for a variety of reasons, for example due
to non-termination of the transformation process, or an unexpected error
condition. These problems could be caused either by cases that we deemed
out of scope for this project, or by errors in the tool itself (caused by cases
which we may have considered in scope, but caused an unexpected error

41

nonetheless). These files will be flagged to the user for further attention.
For the successful files, we sampled five files per project, to manually verify if
the transformations that were made are correct. This totals to 110 checked
files. The results of running the tool on all projects, as well as the manual
review of the samples, can be found in table 7.2.

Project Successful files Manual review

Apache HTTP server 377/549 (68.7%) 2/5

axTLS 58/60 (96.7%) 4/5

Busybox 658/744 (88.4%) 4/5

Emacs 373/564 (66.1%) 4/5

GIMP 3211/3240 (99.1%) 5/5

Gnumeric 592/607 (97.5%) 5/5

gnuplot 187/207 (90.3%) 5/5

Irssi 361/361 (100.0%) 5/5

libxml2 173/193 (89.6%) 3/5

lighttpd 174/193 (90.2%) 5/5

Linux 51493/52598 (97.9%) 3/5

mbedTLS 287/365 (78.6%) 1/5

MPSolve 182/183 (99.5%) 4/5

Netdata 446/455 (98.0%) 5/5

NGINX 332/343 (96.8%) 5/5

OpenSSL 1702/1769 (96.2%) 4/5

OpenVPN 245/252 (97.2%) 5/5

Parrot 253/265 (95.5%) 5/5

Redis 503/520 (96.7%) 5/5

SQLite 367/394 (93.1%) 2/5

uClibc-ng 3518/3604 (97.6%) 4/5

Vim 186/259 (71.8%) 2/5

Table 7.2: The findings running the tool on each complete project

As can be seen, when the goal is to transform all features from compile-
time variability to run-time variability, most projects require some level of
manual intervention. We have found one project where the tool could apply
transformations to 100% of files. Many other projects are close, and require
only a small number of files to be transformed manually. The lowest success
percentage is 66.1%. However, the overall percentage of all files combined is
97.0%. The overall percentage of all files excluding those from Linux – an
outlier in the number of files – is 93.8%. The success rate could be further
improved by further development of the tool.

When it comes to manual verification of the transformations, the methodo-
logy was to compare the original versions of source files (with #ifdefs) with
the transformed versions (with ifs as substitutions). In doing this compar-
ison, most transformations that were made seemed probably valid – that is,

42

not invalid in an apparent way. The files deemed invalid were mainly found
to have one of the following problems:

Conditional #defines. This was the most common cause of problems,
mostly concerning the case described in section 5.2.9, since this case was not
supported yet. Often, a token can represent different values depending on a
compile-time feature, and the given #define can appear multiple times in
the source code. Commonly, this difference is about detection of a specific
hardware architecture (such as 32-bit or 64-bit) or specific compilers and
their features (such as Microsoft Visual C compilers before 2015 requiring
inline to be substituted by __inline). The main focus to fix this issue
would thus be to include better recognition for “environment” features such
as hardware or compilers, and either process them with the correct values,
or exclude those from transformations at all.

Global-scope data structures with varying contents. This case was
found in a source file of Vim, and can be found in listing 7.1. As a bonus,
this snippet also contains a conditional #define.

43

1 struct vimoption
2 {
3 char ∗fullname; // full option name
4 char ∗shortname; // permissible abbreviation
5 long u flags ; // see below
6 char u ∗var; // global option: pointer to variable ;
7 // window−local option: VAR WIN;
8 // buffer−local option: global value
9 idopt T indir ; // global option: PV NONE;

10 // local option: indirect option index
11 char u ∗def val [2]; // default values for variable (vi and vim)
12 #ifdef FEAT EVAL
13 sctx T script ctx ; // script context where the option was last set
14 # define SCTX INIT , {0, 0, 0, 1}
15 #else
16 # define SCTX INIT
17 #endif
18 };
19
20 // ...
21
22 static struct vimoption options[] =
23 {
24 {”aleph”, ”al”, P NUM|P VI DEF|P CURSWANT,
25 #ifdef FEAT RIGHTLEFT
26 (char u ∗)&p aleph, PV NONE,
27 #else
28 (char u ∗)NULL, PV NONE,
29 #endif
30 {
31 #if defined(MSWIN) && !defined(FEAT GUI MSWIN)
32 (char u ∗)128L,
33 #else
34 (char u ∗)224L,
35 #endif
36 (char u ∗)0L} SCTX INIT},
37 // ...
38 }

Listing 7.1: A sample of the conditional data structure part in the Vim
project, src/optiondefs.h

What can be seen in this snippet is a struct (vimoption) which either has
six or seven fields, depending on the feature FEAT_EVAL. Then, a static array
of this structure is declared, of which one element is shown. Depending on
the feature FEAT_RIGHTLEFT, the fourth and fifth attribute can be filled in
with different values. Trivially shown, there is no possible configuration
where these different values are both included in sequence, or where both
are completely missing, so in the original code, this struct will always have

44

the correct number of attributes under any configuration.

Whenever data structures are initialized within functions, and such an ini-
tialization is split by preprocessor directives, we handle the problem by du-
plicating the entire initialization, and making it conditional in its entirity.
Outside of functions however, it is not possible to make code conditional
at run-time. Our automated approach outside of functions is generally to
remove the #ifdefs and leave the code inside intact, because in many cases
where #ifdefs are used outside of functions, the “optional” code does not
directly affect configurations that do not have that feature enabled. For ex-
ample, if an entire function is #ifdef’d out, that function still needs to be
called from within another function, which thus needs #ifdefs to prevent
calling a non-existent function.

In the case of this file from Vim, however, the result is a struct with eight
values, instead of six or seven. Here, a solution to transform this code
automatically would become quite complex: either this static initialization
needs to be moved to code at runtime, or the array (in this case options[])
would need to be duplicated altogether and thus renamed throughout the
entire program. We have deemed both methods out of scope due to the
complexity involved.

Single-line comments at the end of #defines. This highlights a small
oversight in our tool, where there can be a single-line comment at the end of
a #define, which is then copied into code that has more tokens after that
replaced identifier. The // comment will invalidate the other tokens, which is
not intended behavior; normally during preprocessing, the comments should
be removed first, then the #defined tokens filled in. However, we want to
normally keep comments intact in the transformed code. A solution would
thus be to either remove these comments specifically, insert a new line, or
change the // comments into /* comments. An example of this problem
can be found in Vim, shown in listing 7.2 and listing 7.3.

45

1 // values for vv flags :
2 #define VV COMPAT 1//compatible, also used without ”v:”
3 #define VV RO 2//read−only
4 #define VV RO SBX 4//read−only in the sandbox
5
6 // ...
7
8 {VV NAME(”count”,VAR NUMBER), VV COMPAT+VV RO},
9 {VV NAME(”count1”,VAR NUMBER), VV RO},

10 {VV NAME(”prevcount”,VAR NUMBER), VV RO},
11 {VV NAME(”errmsg”,VAR STRING), VV COMPAT},

Listing 7.2: A sample of the comment error in the Vim project,
src/evalvars.h

1 {VV NAME(”count”,VAR NUMBER), 1//compatible, also used without
”v:”+2//read−only},

2 {VV NAME(”count1”,VAR NUMBER), 2//read−only},
3 {VV NAME(”prevcount”,VAR NUMBER), 2//read−only},
4 {VV NAME(”errmsg”,VAR STRING), 1//compatible, also used without ”v:”},

Listing 7.3: The result of transforming this code

Minor previously-unknown bugs. A small number of errors were seem-
ingly misidentifications of cases that were supposed to be already supported.
An example is one file in Linux and one in BusyBox, where the contents of
an #if 0 are not removed. This would thus require an investigation into
the circumstances where this problem occurs, and fix that problem while
hardening the test cases as usual.

Overall, our tool could reduce the workload of a user tasked with converting
preprocessor directives, and further development of the tool could focus on
the above common problems to increase success rates. Yet, the goal of trans-
forming all instances of compile-time variability to run-time variability in
large C projects may remain a big undertaking, depending on the complexity
of the code and other factors. We therefore believe a staged configuration
approach ([6]) would be a promising alternative. If a limited number of
features is chosen to be transformed, part of the difficulty and complexity
is eliminated, which could drastically reduce the amount of errors, and the
need for manual intervention. In particular, there could be a practical use
for making only a handful of features dynamic, or modifying the code to
remove the #ifdefs or the features altogether, in a tool-assisted way.

In our experience, creating a tool to transform compile-time variability us-

46

ing #ifdef directives to run-time variability is a much more difficult task
than implementing a compiler or interpreter for the language, as the lan-
guage and its preprocessor system was designed for. Mainly the possibility
to intermingle the structure formed by preprocessor directives with the to-
be-formed structure of the program code itself, is something that causes
many problems. A regular compiler with a preprocessor does not encounter
these problems, since all conditionals have only one final value at time of
compilation, and the preprocessor can thus trivially simplify away all dir-
ectives before the syntax of C needs to be considered. It is for this reason
that there seems to be so little existing support for handling preprocessor
directives in C code in a generalized way, or in any way where the prepro-
cessing directives – or the editing decisions that they make – remain in the
code in some form while the C code is also processed.

On paper, however, we do find it possible to get far when making hypothet-
ical solutions to determine which transformations need to be made in which
situations. This is namely what we have done in chapter 5. Therefore, we
believe it is possible that future work can improve on this, given enough
time.

7.2 Comparison with Hercules

For completeness, we have also looked into Hercules, and compared our tool
against it, from a perspective of practicality to use for real-world software.
As the only previously available tool for this problem that we are aware
of, this will thus answer RQ2.3. Both tools have their own strengths and
tradeoffs, and the tools have a different focus, meaning there are different
scenarios where each tool does best.

For controlled, experimental pieces of code, we were able to see that Her-
cules supports some difficult cases well - it handles some nontrivial cases
well that our tool does not. These cases are described in more detail in
section 5.2. Compared to our tool, Hercules may have had a ‘head start’
in supporting complicated code since it was based on TypeChef, which is
already a variability-aware parser. However, during our testing, for any
code that had a large #include such as <stdio.h>, transformation would
no longer be possible due to the included file needing to be transformed
as well, which seemed too large to process within reasonable time. This
problem might have been reduced with a fast enough computer, or by pre-
paring special versions of header files that only contain the definitions that
are actually used by the source code. The tool also only supports a single
file to be supplied at a time, and it is much more strict on code definitions

47

being complete. Almost all real-world files were therefore hard for us to test
on, and prevented us from making a comparison between Hercules and our
tool for real-world projects. In comparison, our tool does not need complete
code definitions, and leaves #include directives as-is, which means it does
not suffer from the same problems. It also allows transforming of entire
directories, so entire projects can be transformed.

In general, both our own tool, as well as Hercules, are stuck in a stage not
far from proof-of-concept. This is telling for the difficulty of making such a
tool fully functional – and we find that it is easy to underestimate the task
at hand. A similar pattern was visible in other research projects related to
preprocessor directives that we studied during this research. For example,
a paper on the discipline of preprocessor directives by Liebig et al. ([13])
stated that there was ongoing work to create a tool to convert undisciplined
directives to disciplined directives. We have not been able to find a finished
version of this tool.

7.3 Performance behavior

RQ2.2 is about the performance behavior of our tool. To measure this, we
have looked at the time needed to process all validation projects. The results
can be found in table 7.3.

48

Project SLOC
SLOC
no-error

Total
runtime (s)

Runtime no-
error (s)

Lines/s
Lines/s
no-error

Apache HTTP server 225948 76070 20.6 15.1 10987 5028

axTLS 19219 18304 18.1 3.5 1061 5161

Busybox 187772 107986 413.7 28.7 454 3762

Emacs 369106 47435 68.0 10.5 5428 4512

GIMP 805274 780045 133.5 115.5 6033 6756

Gnumeric 295551 273337 49.6 47.3 5964 5779

gnuplot 106792 66356 39.2 12.7 2726 5209

Irssi 63577 63577 9.6 9.6 6635 6635

libxml2 232194 91395 104.6 21.5 2220 4249

lighttpd 89143 61224 69.8 15.9 1277 3846

Linux 21075159 17716961 8304.6 5418.8 2538 3270

mbedTLS 114679 48643 154.8 13.2 741 3693

MPSolve 27051 26451 14.2 4.2 1903 6332

Netdata 269374 115323 49.9 23.6 5394 4890

NGINX 145674 134726 62.6 21.6 2328 6237

OpenSSL 475036 410771 150.9 94.3 3148 4355

OpenVPN 87873 74300 15.0 12.4 5876 6015

Parrot 116487 104610 30.0 24.1 3886 4341

Redis 156297 139438 44.7 31.9 3497 4365

SQLite 262504 202544 118.1 48.0 2223 4221

uClibc-ng 223275 188797 148.5 48.9 1504 3858

Vim 383980 164043 277.6 58.5 1383 2805

Table 7.3: The performance statistics of running the tool on each complete
project

In this table, we list for each project the number of significant lines of code
(SLOC), that is the total amount of lines of code that are not whitespace
or a comment. We also list the total runtime of our tool for this project (in
seconds), as well as a calculated number of lines per second that the tool
can thus process.

The total runtime includes files which could not be processed, because they
reached the processing timeout. Therefore, every such file induces a ten-
second “penalty” to the total runtime, and the more timeouts are reached,
the slower the tool seems for the files which are successful. Additionally,
the more files that quickly caused a parsing error, the faster the tool seems,
because no more time is spent on a file once an error is detected caused by
that file. Therefore, to give a second indication, we also counted the total
time the tool spent on files that it transformed successfully.

The numbers of lines per second are visualized in figure 7.4 below.

49

Figure 7.4: The number of lines per second for each project, with the blue
bars counting all lines and the red bars only counting lines in successful files

What we can see is that there is a significant difference in the total runtimes.
In lines per second, the Apache HTTP server was processed at the fastest
rate, while Busybox was processed at the slowest rate. Looking at only suc-
cessful files however, it becomes clear that ‘erroneous’ files heavily impacted
these numbers: for Apache, 76,070 lines were processed in 15.1 seconds,
but the tool took an additional 5.5 seconds for 149,878 unsuccessful lines,
suggesting that unsuccessful files had high numbers of lines. For Busybox,
107,986 lines were processed in 28.7 seconds, but an additional 79,786 lines
took 385 seconds, hinting at a high number of timeouts.

Looking at the speed of the tool for only successful files, the numbers are
much closer together. The lowest number of lines per second is 2,805, and
the highest is 6,756, which is 2.4 times as much. We believe the fluctuation
in processing speed of successful files between projects can conceivably be
explained by other factors that may differ between projects, such as the
number of individual files and the nesting levels of #ifdefs.

Overall, we think our tool has acceptable performance behavior. The longest
total processing time for a single project is 2 hours and 18 minutes, which –
perhaps understandably – corresponds to the largest project we tested our
tool on by a large factor, Linux. We will also note that these tests were run
on a Dell Latitude E7250 from 2015 with an Intel Core i5-5300U processor,
not a particularly high-end computer, so results will likely improve further
on a more modern system. This means that, for transforming a project
as large as Linux on a PC with moderate performance characteristics, one
would have to wait two hours, but the tool can be left unattended and will

50

finish in a time that should not cause any user too many issues if planned
ahead. The next longest runtime, Busybox, took less than seven minutes in
total.

7.4 Additional insights

In our previous research [11], we discovered erroneous files across several
projects. We categorized these errors into two categories: testing code,
and errors in production code. The former category included files which
were not meant for compilation, but rather for testing software that pro-
cesses C/C++ code in some way, for example syntax highlighters. This
kind of testing code is not always valid – on the contrary, we have shown
purposeful errors that were clearly used to test whether software handled
or reported such errors correctly. The second error category consisted of
legitimate mistakes that had gone unnoticed, presumably since they would
only generate warning messages in compilers.

It was easy to analyze the errors we encountered in our previous research,
because our parser needed to operate only on preprocessor directives and
comments, and could ignore most other syntax and language constructs.
Due to the complexity of our current project goal, there are more files that
we are not yet able to transform to the fullest extent, and it is therefore
harder to determine which errors are caused by the incompleteness of our
own tool, and which errors are genuine mistakes in real-world source code
that has gone unnoticed during all compilations for any particular reason.

For RQ2.4, we were curious to see how our new tool handled the same files
that our old tool reported as errors. Due to C++ being out of scope for this
project, two C files remain: util/check-format-test-positives.c from
OpenSSL, and test/manual/etags/c-src/h.h from Emacs. Interestingly,
both files can be transformed without errors by our new tool. This can
be explained by the fact that our new tool works in a different way, and
is designed to work on source code that is well-formed. Due to the higher
complexity of the new tool, it has less rigorous error checking in place to
catch invalid source files. If a source file truly has invalid preprocessor
directives, then it should also raise an error during normal compilation of
either the original source files or the transformed versions.

For our new tool, it is more difficult to pinpoint additional insights about
real-world projects in the same way, since unsuccessful transformations are
more often caused by the tool not handling more complex situations. From
validating the correctness of a random selection of files in projects, our

51

impression was that #ifdefs more commonly appear outside of or around
functions than inside them.

7.5 Threats to validity

For the evaluation of our tool, we have used twenty two open-source projects
and nineteen groups of regression test cases. Of course, this provides us with
a vast amount of code, especially with the inclusion of the Linux kernel with
its 21 million lines of code. However, given the popularity of the C language,
there would always be room to test a wider range of projects. It is also left
to be wondered if the practical choice of exclusively open-source projects
has had an unforeseen influence on the results compared to if closed-source
projects had been included – which might conceivably have different working
cultures and different ‘ways of programming’.

We have looked at the projects as they were at this point in time. Fu-
ture changes to these programs, or future revisions of the C language itself,
could create new incompatibilities and introduce new cases that need novel
solutions to be made.

Our validation of correctness is based on testing. Proof of correctness could
have been further improved with a formal mathematical proof, which was
considered out of scope for this project. Regardless of whether there is a
formal mathematical proof, there could be implementation bugs which only
manifest themselves in certain circumstances.

As we will also highlight in the following chapter, it is very difficult to achieve
the level of perfection needed to automatically transform sizeable programs
in their entirity. Therefore, we have not been able to verify exhaustively
what percentage of our transformed files can fully be compiled, do not in-
troduce additional compiler warnings outside of our controlled test cases,
and pass existing test suites belonging to the projects themselves.

52

Chapter 8

Discussion and future work

We have experienced that this is a more challenging problem to solve than
originally expected. While high success rates sound good, the posed problem
is one that, unfortunately, asks for a level of near-perfection. Any single error
in a part of a program can cause the whole program to fail to compile. Most
attempts to transform entire codebases will therefore still require some level
of manual intervention to fix cases that were hard for us to automate. Still,
we believe that our tool and approach could lighten the workload of any
person wishing to make such transformations, and we hope it will enable
further research and development to continue where we left off.

One improvement we would propose is for the tool to support a form of
staged configuration ([6]), whereby the user can choose any given subset of
features to transform. All other features would then be left as-is. Such
an approach would make it much easier to convert an entire program to
(partial) run-time variability, since it becomes much less overwhelming for a
user to check which transformations were made, and for them to verify that
these transformations are valid and work as expected. By transforming only
a small number of features, the error rate would go down significantly, and
any specific errors would be easy to recognize and can be corrected quickly.
A program could thus be transformed gradually by iteratively feeding it
through the tool, prioritizing the features that could benefit the most from
being transformed to run-time variability first.

One problem that would ideally be solved in a tool like this is for it to keep
the original code style intact as much as possible, and to mimic the existing
style when inserting new code. From the perspective of transformation cor-
rectness and the workings of the code this is irrelevant, but from a practical
perspective this can be a big roadblock to anyone attempting to use any

53

transformation tool to contribute back to the original codebase, since soft-
ware maintainers often impose the requirement that the style of entire files
not be suddenly changed. Our tool keeps track of which line each token was
originally on, so it can attempt to keep the numbers of blank lines between
each statement the same. There are still other consistency gains to be made,
such as the difference between indentation with spaces or tabs, or the pres-
ence of spaces between specific pairs of tokens. One way to solve this is by
using an automatic formatting tool after running our transformation tool,
but this requires extra setup and attention to detail as to what the style rules
of the specific project are. If the project follows the rules inconsistently, or
follows certain unwritten rules, this may still require manual changes.

For a simpler and more achieveable goal, we have only focused on C in
this study. Most of our results could also be applicable other programming
languages that have #ifdef directives, particularly C++. An extension of
the scope to C++ would thus further increase the practical applicability of
this project.

Application of artificial intelligence and machine learning might also be
rewarding when solving this problem. For example, supervised machine
learning could involve presenting a model with examples of transformed
compile-time variability, and reinforcement learning could involve reward-
ing a model for making code transformations that have equivalent behavior
with the least amount of code changes possible – a learning process which
could conceivably be automated. Generative artificial intelligence may also
be used without the need for additional purpose-specific training. It will
probably still take a long time before the output of AI-transformed source
code can be trusted to be free of errors, but developments are being made
quickly in recent times, so it may end up outperforming existing tools if
applied well.

54

Chapter 9

Conclusion

In this research we have studied the transformation of C code from its usual
compile-time variability form, containing #ifdef preprocessor directives, to
a run-time variability form. We have given a definition of nontrivial cases
for such transformations as well as an approach for transforming these cases
programmatically, and we have developed a tool that aims to implement
this approach.

We have identified the general challenges to overcome when transforming
C code from compile-time variability to run-time variability. This includes
to what extent compile-time variability can and should be transformed to
equivalent if statements or requires other solutions, such as removing the
#ifdef directives without replacement or leaving certain #ifdef directives
in place. In particular, we have compiled a list of twelve cases, that we
have each given specific transformation approaches for. We have had partial
success implementing these approaches into a tool. About half of the cases
we identified are fully or partially implemented, and correctness is verified
with test cases. We have also tested our tool on the source code of 22 open-
source projects, including Linux. These tests identify a somewhat promising
success rate, with an overall percentage of 97.0% of all files that the tool
could transform without running into issues. One project even had a success
rate of 100%. Manual verification of a sample taken from these transformed
files reveals that transformations in 87 out of 110 files were apparently valid,
with varying success rates between different projects. Our tool seems to
have acceptable performance characteristics. We have also compared our
tool against Hercules, the only previously available tool for this problem we
are aware of. Both tools have their strengths and tradeoffs, and we found
that both tools are not yet ready for unattended transformations of arbitrary
code at scale.

55

Bibliography

[1] pycparser. https://github.com/eliben/pycparser. Accessed: 2023-08-
28.

[2] Typechef. https://github.com/ckaestne/TypeChef. Accessed: 2023-08-
28.

[3] ISO/IEC 9899:1999. Programming languages – C. Standard, Interna-
tional Organization for Standardization, Geneva, CH, September 2007.

[4] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools (2nd Edition). Addison-
Wesley Longman Publishing Co., Inc., USA, 2006.

[5] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-
Oriented Software Product Lines. Springer, Berlin, Heidelberg, 2013.

[6] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged con-
figuration through specialization and multilevel configuration of feature
models. Software process: improvement and practice, 10(2):143–169,
2005.

[7] Aleksandar S. Dimovski. Lifted termination analysis by abstract inter-
pretation and its applications. In Proceedings of the 20th ACM SIG-
PLAN International Conference on Generative Programming: Concepts
and Experiences, GPCE 2021, page 96–109, New York, NY, USA, 2021.
Association for Computing Machinery.

[8] Paul Gazzillo and Robert Grimm. Superc: Parsing all of c by taming
the preprocessor. SIGPLAN Not., 47(6):323–334, jun 2012.

[9] Alexandru Iosif-Lazar, Ahmad Al-Sibahi, Aleksandar Dimovski, Juha
Savolainen, Krzysztof Sierszecki, and Andrzej Wasowski. Experiences
from designing and validating a software modernization transformation
(e). pages 597–607, 11 2015.

56

[10] Eric Knauss. Constructive master’s thesis work in industry: guidelines
for applying design science research. In 2021 IEEE/ACM 43rd Inter-
national Conference on Software Engineering: Software Engineering
Education and Training (ICSE-SEET), pages 110–121. IEEE, 2021.

[11] David Korsman. Tool support for detecting and analysing higher-order
feature interactions in open-source software projects, February 2022.
Research internship report, Radboud University.

[12] David Korsman, Carlos Diego N. Damasceno, and Daniel Strüber. A
tool for analysing higher-order feature interactions in preprocessor an-
notations in c and c++ projects. In Proceedings of the 26th ACM
International Systems and Software Product Line Conference - Volume
B, SPLC ’22, page 70–73, New York, NY, USA, 2022. Association for
Computing Machinery.

[13] Jörg Liebig, Christian Kästner, and Sven Apel. Analyzing the dis-
cipline of preprocessor annotations in 30 million lines of c code. In
Proceedings of the Tenth International Conference on Aspect-Oriented
Software Development, AOSD ’11, page 191–202, New York, NY, USA,
2011. Association for Computing Machinery.

[14] Jens Meinicke, Chu-Pan Wong, Christian Kästner, Thomas Thüm, and
Gunter Saake. On essential configuration complexity: Measuring in-
teractions in highly-configurable systems. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engin-
eering, ASE 2016, page 483–494, New York, NY, USA, 2016. Associ-
ation for Computing Machinery.

[15] Marko Rosenmüller, Norbert Siegmund, Sven Apel, and Gunter Saake.
Flexible feature binding in software product lines, 2010.

[16] Mathijs T. W. Schuts, Rodin T. A. Aarssen, Paul M. Tielemans, and
Jurgen J. Vinju. Large-scale semi-automated migration of legacy c/c++
test code. Software: Practice and Experience, 52(7):1543–1580, 2022.

[17] Alexander von Rhein. Analysis Strategies for Configurable Systems.
PhD thesis, Universität Passau, 2016.

[18] Alexander von Rhein, Thomas Thüm, Ina Schaefer, Jörg Liebig, and
Sven Apel. Variability encoding: From compile-time to load-time vari-
ability. Journal of Logical and Algebraic Methods in Programming, 85(1,
Part 2):125–145, 2016. Formal Methods for Software Product Line En-
gineering.

57

