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Abstract

In the field of digital pathology, obtaining suitable datasets for training ro-

bust models is a significant challenge. This thesis delves into generative

modeling, specifically through the use of Latent Diffusion Models, to ex-

plore their potential in generating high-quality images of kidney tissue for

use in downstream tasks such as segmentation model training. We train

our own Latent Diffusion Model with histopathology images of kidney

tissue and demonstrate that the trained model is capable of producing de-

tailed images of specific renal structures using text-based guidance. We

evaluate the effectiveness of our guidance system and quantitatively assess

the realism of the generated images through a questionnaire with relevant

experts. Additionally, we illustrate how human-annotated synthetic data

can enhance real-world training datasets, improving performance of seg-

mentation models by reducing incorrectly segmented areas by up to 34%.
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1. Introduction

Histopathology is the study of tissue specimens to diagnose and understand

diseases at a microscopic level. By examining cellular structures and tissue

architecture up close, pathologists can identify abnormalities, characterize

diseases, and guide treatment decisions [1]. The field of renal histopathol-

ogy focuses on analyzing kidney tissue samples and plays a major role in

diagnosing several harmful conditions affecting the kidneys [2]. Tradition-

ally, this diagnostic process relies on the expertise of pathologists, who in-

terpret visual patterns and morphological changes through a microscope.

In recent years, the use of Whole Slide Scanners has become prevalent for

viewing histopathological images on computers. The digitization of the im-

ages has enabled the application of existing deep learning techniques, and

has sparked interest in augmenting histopathological analysis with compu-

tational tools. These technologies offer the potential to automate repetitive

tasks and uncover subtle patterns that may not be apparent to the human

eye alone. However, the application of deep learning in histopathology

is often constrained by the scarcity and variability of available annotated

datasets. In order to make structures visible on a microscope, tissue under-

goes histological staining. The most commonly used stain material is Hema-

toxylin and Eosyn (H&E), which stains the nuclei of cells a deep purplish

blue, and the surrounding tissues various grades of pink [3]. This dual

staining technique provides a contrast that allows pathologists to distin-

guish different tissue types and cellular structures with greater clarity, see

Figure 1.1.

However, the process of histological staining is highly sensitive to vari-

ations in tissue preparation, staining protocols, and environmental condi-

tions such as air humidity, water acidity and more. Even subtle differences

in staining duration or dye concentration can significantly impact the ap-

pearance and interpretation of tissue samples under the microscope. Fur-
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Introduction

thermore, variations in scanner settings can introduce additional differences

in datasets curated at different institutions [4]. Human pathologists are

able to correct for these fluctuations, but they can significantly hinder Deep

Learning based methods [5].

This sensitivity to variation means that available datasets are not always

suitable for training new models, as the training data may not generalize

well to the target data. Additionally, the difficulty of publishing datasets

due to privacy constraints [6] further exacerbates the challenge of finding

fitting training data. This situation can leave researchers and industry pro-

fessionals with a limited pool of high-quality, standardized data for training

robust and generalizable models.

Figure 1.1: Microscopic image of stained kidney tissue.

This thesis explores the application of deep learning techniques to syn-

thesize high-quality data for use in other downstream tasks [7]. Specifically,

it investigates the feasibility of utilizing synthetic data generated by latent

diffusion models [8] to supplement limited real-world datasets, aiming to

improve the robustness and generalization of computer-aided diagnostic

systems in renal pathology. Various models have been developed to im-

prove diagnostics in histopathology, most of which focussed on discrimi-

native tasks such as classification or segmentation [9]. Utilizing generative

models in pathology is by comparison much underresearched. However,

deep learning synthesis of data can help alleviate data scarcity as gener-

ated data is not bound by the same privacy regulations surrounding patient

samples. Furthermore, generated images of rare subtypes of diseases can be
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used in training of pathologists [10], providing another usecase for synthetic

data.

This thesis was conducted at Aiosyn, an AI company working within

the field of digital pathology. They allowed us access to their database of

annotated kidney tissue, giving us the opportunity to explore the use of

diffusion models within this specialization of pathology. To this end, we

will develop a latent diffusion model and research its performance.

In Chapter 2, we give a brief overview of the existing research done in the

area of image synthesis in general and in histopathology. Then, in Chapter 3,

we explain the mathematics behind latent diffusion models in detail and de-

rive an elegant formulation for optimization of them. Chapter 4 discusses

the development of our model in particular, as well as outlines the meth-

ods used to gauge the performance of it. We go on to analyze the results

in Chapter 5. Code used in the thesis is publicly available on our GitHub

repository1.

In this thesis, we explore whether synthetic data generated by diffusion

models can be effectively utilized in renal histopathology to aid in training

other models, such as segmentation model. Additionally, we assess if the

images can play a role in training of pathologists, through the ability to

create realistic images of specific structures on command.

1https://github.com/MeesMeuwissen/generationLDM
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2. Related Work

Over the past few years, a lot of progress has been made in the develop-

ment of generative models, with text-based models like OpenAIs ChatGPT

[11] being among the most well-known. Generative Adverserial Networks

(GAN), introduced by Goodfellow et al. in 2014 [12], were one of the first

succesful models for various generative tasks, such as music synthesis [13]

and image generation [14]. Levine et al. showed how GANs were capable of

synthesizing multiple different types of cancer pathology images, proving

their usefulnes to extend beyond generating natural images. [15]. Further-

more, Zhou et al. used a Unet based GAN for image synthesis in the context

of histopathology to create a data augmentation method [16] to increase per-

formance over a range of different tasks, including segmentation, detection

and classification. However, GANs suffer from issues such as mode col-

lapse, and are notoriously difficult to train [17][18], prompting researchers

to continue looking alternative generative models.

Partly because of these factors, in natural image generation, GANs are

already being replaced by different synthesis methods. This includes meth-

ods such as Flow Matching [19], but diffusion models [20] in particular are

gaining a lot of attention, beating GANs on performance since 2021 [21].

Two of the most well-known image generation models with state-of-the-

art performance are OpenAIs DALLE models [22] and Stability AIs Stable

Diffusion [8]. More recently, diffusion models have been used to generate

realistic video, as demonstrated by OpenAIs Sora, launched in early 2024

[23]. All of these models belong to a class of likelihood-based models that

generate an image by gradually removing noise from an image (or another

type of data) until only data remains (see Chapter 3 for the details of how

a diffusion model works). Nichol and Dhariwal demonstrated that these

models can scale remarkably well with model capacity and training com-

pute, paving the way to new research in this area [24].
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In the context of image synthesis in histopathology, several authors have

used diffusion models for the generation of miscroscopic images of tissue,

such as Moghadan et al. [25], who focussed on synthesizing images of brain

cancer. Müller-Franzes et al. [26] demonstrated diffusion models can out-

perform GANs on medical imagery with their model, Medfusion. Further-

more, in [27], Harb et al. presented a technique using diffusion models to

generate Whole Slide Images (WSIs) of tissue, which are gigapixel pathol-

ogy images. To our knowledge, this has not been achieved using GANs.

Recently, Yellapragada et al. harnessed the power of Large Language

Model GPT-3.5 [11] to create succinct and accurate descriptions of pathology

images, which were subsequently used to accurately guide their model to

create specific structures on command [28]. Their model, named PathLDM,

used a latent diffusion model [8], meaning they created images in a com-

pressed latent space before upscaling to pixel space. This technique allowed

them to achieve state-of-the-art performance while reducing computational

demand.

There exist notable differences between natural images and histopathol-

ogy images. Natural images, capturing scenes of people and diverse en-

vironments, contain a broad spectrum of colors and textures inherent to

their subjects. Objects can be lit in different manners, viewed from differ-

ent angles and can vary in distance from the camera, to name a few. In

contrast, histopathology images tend to look quite similar to each other, at

least to the untrained eye. However, in this uniformity lies a critical chal-

lenge: these images contain intricate details crucial for accurate clinical as-

sessment. Therefore, generative models tailored for histopathology images

must be able to preserve and reproduce these minuscule structures with

high accuracy. In our thesis, we will use PathLDM’s trained network as a

starting point, given its demonstrated effectiveness in this area.
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3. Mathematical Background

In this chapter, we will explain how diffusion models function mathemati-

cally, as well as provide you with some insights into their implementation.

We shall take a deep-dive into the mathematics behind it all, and is largely

based on the excellent overview by Calvin Luo [29].

3.1 Generative Models

Generally speaking, the goal of a generative model is the following: Given

observed data x, we want to learn to model the underlying true data distri-

bution p(x). Once we have a model for p(x), we can generate new data by

sampling from the distribution p(x) which will closely match the observed

data. One method of achieving this is through a diffusion model.

Oftentimes, we can think of the data we observe as generated or influ-

enced by an associated, unseen, latent variable. For sake of clarity, let us

denote the latent variable with z. A frequently used method to explain the

concept of latent variables is that of Plato’s Allegory of the Cave [30]. In the

allegory, you are to imagine a group of people in a cave. They are chained

to the wall, and their heads are secured so that they can only look forward,

to the opposing wall. On that wall, shadows of various objects are visi-

ble. To a prisoner, having lived their entire life only seeing two-dimensional

shadows, this is all that is real. They would never be able to comprehend

that what they are seeing is simply a result of a higher-dimensional object

being passed before a fire. In this allegory, the shadow is the data, and

the object is the latent variable that produces the data. One caveat about

this analogy: We generally try to learn lower dimensional latents in machine

learning. This way we are able to learn representations that contain seman-

tically meaningful and important properties. This can be seen as a form of

compression, storing only the most defining properties of a datapoint.
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3.2 Evidence Lower Bound

In the same vein, objects, data, and everything else that we encounter in

the world may be generated by some higher-dimension representations. For

example, representations may carry information about the abstract proper-

ties of objects, like color, size, orientation and more. Our three-dimensional

observation of an object can be interpreted as an instantiation of this latent

variable, just as the shadow visible in the cave can be seen as an instantiation

of the object in front of the fire, just in a lower dimension.

As an example of latent variables in machine learning, consider the im-

ages of handwritten digits in MNIST [31]. They are 28 × 28 pixels, meaning

they exist in a 784-dimensional space. However, a lot of the information

can be stored in only a few semantically meaningful variables. For exam-

ple, perhaps we can use one variable to encode the digit, one for the slant,

another for the stroke-width, and so on. With only a handful dimensions,

one is able to accurately describe an image. By removing unnecessary infor-

mation from data, machine learning models can focus on the most relevant

features of a given datapoint.

3.2 Evidence Lower Bound

Mathematically, we can consider the latent variables z and the data we ob-

serve x to be modeled by a joint distribution p(x, z). The approach diffusion

models take, dubbed ’likelihood-based’, is to learn a model to maximize the

likelihood p(x) over all observed x. Put differently, we have a dataset of

observations, named x. We want to tune the parameters of a function p in

order to maximize the probability of observing the data, given the parame-

ters of p.

There are two ways to manipulate the joint distribution to obtain a rep-

resentation of the likelihood. The first is by explicitly marginalizing out the

latent z:

p(x) =
∫

p(x, z)dz (3.1)
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Mathematical Background

The second method is by using the chain rule of probability:

p(x) =
p(x, z)
p(z|x) (3.2)

However, neither method is easy or even feasible. Marginalizing out z

involves integrating out all variables (so, dimensions) in z, which becomes

intractable for even slightly complex models. Using Equation (3.2) requires

use of a ground-truth latent encoder, p(z|x). This function calculates the

probability of a latent z when given an observation x. This is referred to

as the posterior of a distribution. This posterior is also not easy to obtain,

as we will show later in this chapter. However, using the equations, it is

possible to derive another equation, the Evidence Lower Bound (ELBO),

which is often used in practice. As the name suggests, this equation gives a

lower bound of the evidence, which in this case is the log likelihood of the

observed data.

The idea is as follows: If we optimize (increase as much as possible) the

ELBO, we must also increase the evidence, and therefore the likelihood of

the data. Formally, the equation for the ELBO is:

log p(x) ≥ Eqϕ(z|x)

[
log

p(x, z)
qϕ(z|x)

]
(3.3)

Let us analyse the equation part by part: qϕ(z|x) is a flexible distribution

with parameters ϕ that we wish to optimise. We aim for qϕ(z|x) to approxi-

mate p(z|x). In the fully optimized case qϕ(z|x) becomes exactly equal to the

true posterior p(z|x). To achieve this, we adjust the parameters ϕ based on

our observations x. To gain some intuition, you can think of q being a neu-

ral network, and ϕ being its parameters. We train the network using data x.

As we will see later in this chapter, optimizing the parameters to maximize

the ELBO gives us access to components that can be used to model the true

12



3.2 Evidence Lower Bound

data distribution. This in turn enables us to sample from it, effectively cre-

ating a generative model. For now, let us analyze why the ELBO is worth

maximizing.

It is possible to derive the ELBO using Equation (3.1) and Jensen’s In-

equality [32], but it obscures a lot of the intuitive reasons as to why the ELBO

is actually a lower bound as Jensen’s Inequality does all the work for us. Ad-

ditionally, simply knowing the ELBO is true does not tell us why we want to

maximize it. A much more informative derivation starts at Equation (3.2).

We make use of the fact that the integral over qϕ(z|x) equals 1 as it is a

probability distribution.

log p(x) = log p(x)
∫
(qϕ(z|x)dz

=
∫

qϕ(z|x)(log p(x))dz

= Eqϕ(z|x) [log p(x)]

= Eqϕ(z|x)

[
log

p(x, z)
p(z|x)

]
= Eqϕ(z|x)

[
log

p(x, z)qϕ(z|x)
p(z|x)qϕ(z|x)

]
= Eqϕ(z|x)

[
log

p(x, z)
qϕ(z|x)

]
+ Eqϕ(z|x)

[
log

qϕ(z|x)
p(z|x)

]
= Eqϕ(z|x)

[
log

p(x, z)
qϕ(z|x)

]
+ DKL(qϕ(z|x) ∥ p(z|x))

≥ Eqϕ(z|x)

[
log

p(x, z)
qϕ(z|x)

]

In the final step, we used the fact that the Kullbeck-Leibler (KL) diver-

gence (the term denoted as DKL(. . . ∥ . . .) of two distributions is always

≥ 0. This also makes clear the relationship between the evidence and the

ELBO, and why optimizing the ELBO makes any sense at all: The KL Di-

vergence term quantifies how similar the approximate posterior qϕ(z|x) and

the true posterior p(z|x) are. Ultimately, we want these two to match as
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closely as possible and thus reduce their KL Divergence to zero. Sadly, we

cannot directly compute the KL Divergence, since we do not have access

to the ground truth p(z|x) (If we did, we would not have to approximate

it). However, we notice that the evidence (log p(x)) does not depend in any

way on the parameters of the approximate posterior, ϕ, instead remaining

constant. Therefore, since the ELBO term and the KL Divergence term sum

up to this constant, any increase of the ELBO must necessarily be paired

with an equal decrease of the KL Divergence term. Thus, optimization of

the ELBO can be used as a proxy for minimizing the KL Divergence, which

in turn optimizes our approximation of the true posterior distribution.

3.3 Variational Autoencoders

One Deep Learning construct that uses the ELBO is the Variational Autoen-

coder (VAE) [33]. In that setting, the ELBO is directly optimized, although it

is often stated in a more dissected form. Let us explore this dissection here.

Eqϕ(z|x)

[
p(x|z)

qϕ(z|x)

]
= Eqϕ(z|x)

[
pθ(x, z)p(z)

qϕ(z|x)

]
= Eqϕ(z|x) [log(pθ(x|z)] + Eqϕ(z|x)

[
log

p(z)
qϕ(z|x)

]
= Eqϕ(z|x) [log(pθ(x|z)]︸ ︷︷ ︸

reconstruction term

− DKL(qϕ(z|x) ∥ p(z))︸ ︷︷ ︸
prior matching term

(3.4)

In the first step, we are able to split the joint distribution p(x, z) into com-

ponents pθ(x|z) and prior p(z). In essence, pθ(x|z) can be considered the re-

verse of qϕ(z|x): autoencoders are trained to predict (i.e., reconstruct) input

data from an intermediate bottlenecked form. qϕ(z|x) is the encoder, trans-

forming observations x to bottlenecked latents z, and pθ(x|z) converts the

latents back into observations (Section 3.3). These two models are trained

simultaneously, optimizing both ϕ and θ.
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3.3 Variational Autoencoders

x z

p(x|z)

q(z|x)

Figure 3.1: A graphical representation of a Variational Autoencoder. q(z|x) en-
codes observations x to latents z, and p(x|z) decodes latents into observations.

Both terms in Equation (3.4) are intuitively interpretable: the first term

measures a reconstruction loss, steering the parameters toward effective la-

tents which allow for original data to be recoverd accurately. The second

term, prior matching term, is used to guide the learned distribution toward

a prior held belief over the latent variables. This encourages the encoder to

learn a usable distribution (such as a normal distribution) enabling easy

sampling from the latent space, possibly to generate more observations.

Furthermore, fixing p(z) to a known distribution allows us to calculate the

KL Divergence term of the ELBO analytically.

Commonly, the encoder of the VAE is chosen to be a multivariate Gaus-

sian with a diagonal covariance matrix, and the prior is a standard multi-

variate Gaussian. This partially fixed the distribution, but we can optimize

the mean and exact standard deviation by adjusting parameters ϕ:

qϕ(z|x) = N (z; µϕ(x), σ2
ϕ(x)I)

p(z) = N (z, 0, I)

The reconstruction loss can be approximated by using a Monte Carlo es-

timate (randomly selecting a few samples from the set of observations, and

doing the calculations with that). Ordinarily, this would lead to issues, since

latent z ∼ N (z; µϕ(x), σ2
ϕ(x)I) is stochastically generated, which is gener-

ally non-differentiable (meaning it won’t be possible to update parameters ϕ

by doing back-propagation). To overcome this difficulty, the reparameteriza-

tion trick is employed. In this trick, samples from an arbitrary normal distri-

15



Mathematical Background

bution x ∼ N (x; µ, σ2) with mean µ and standard deviation σ are rewritten

as:

x = µ + σϵ with ϵ ∼ N (ϵ; 0, I)

That is, arbitrary Gaussian distributions are simply standard Gaussians

that have their mean shifted by µ, and their variance stretched by σ2. Es-

sentially, we can now rewrite a random variable as a deterministic function

of an external noise variable ϵ. After applying this trick, it is possible to de-

termine gradients of the ELBO with respect to parameters ϕ, optimizing µϕ

and σϕ as desired. Therefore, we can optimize the ELBO jointly over ϕ and

θ by utilizing the reparameterization trick.

After training a VAE, it becomes possible to easily generate new data

by sampling from the latent distribution p(z) and running it through the

optimized decoder pθ(x|z). Usually, VAEs are employed with a latent space

that is smaller than the observation space, as we then learn compact, useful

representations of otherwise bulky data. Additionally, when we also learn a

semantically meaningful latent space, latent vectors can be carefully crafted

to include or exclude certain aspects of the generated data [34].

3.4 Hierarchical Variational Autoencoders

Now, let us generalize the concept of a VAE. A Hierarchical Variational Au-

toencoder introduces hierarchies for latent variables [35]. In essence, this

captures the idea that latent variables themselves can be generated by more

abstract, higher-level latent variables. Intuitively, if we regard our three-

dimensional objects as objects generated by a higher-level latent, then the

shadows the imprisoned people see can be interpreted as generated by a

latent hierarchy of degree two (or more).

In general, in HVAEs, each latent is allowed to depend on all latents of

higher levels. However, for diffusion models, it is only required to consider

a special type of HVAE, namely a Markovian HVAE (MHVAE). In this case,
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3.4 Hierarchical Variational Autoencoders

all latents are only allowed to condition on the latent exactly one level up,

making the generative process a Markov Chain. That is to say, decoding

latent zt only conditions on latent zt+1, not on zt+2 or others. Intuitively,

this boils down to simply stacking VAEs on top of eachother, see Figure 3.2.

Mathematically, we first need to introduce some new notation to represent

the joint distribution p(x, z1:T and posterior qϕ(z1:T|x):

p(x, z1:T) = p(zT)
T

∏
t=2

pθ(zt−1|zt) (3.5)

qϕ(z1:T|x) = qϕ(z1|x)
T

∏
t=2

qϕ(zt|zt−1) (3.6)

Here, we simply continuously roll out the term into its components, all

with the appropriate conditioning information that makes it Markovian.

Next, we can extend the ELBO as follows, this time using equation Equa-

tion (3.1) for brevity:

log p(x) = log
∫

p(x, z1:T)dz1:T (Apply equation Equation (3.1))

= log
∫ p(x, z1:T)qϕ(z1:T|x)

qϕ(z1:T|x)
dz1:T (Multiply by 1 =

qϕ(z1:T|x)
qϕ(z1:T|x)

= log Eqϕ(z1:T |x)

[
p(x, z1:T)

qϕ(z1:T|x)

]
(Definition of Expectation)

≥ Eqϕ(z1:T |x)

[
log

p(x, z1:T)

qϕ(z1:T|x)

]
(Apply Jensen’s Inequality)

Note the similarity between this extended ELBO and Equation (3.3): The

only difference is that we no longer talk about a single z, instead writing z1:T

for the latents at the different levels. Later on, we will decompose this term

further into interpretable parts.
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x z1 z2 . . . zT

p(x|z1)

q(z1|x) q(z2|z1)

p(z1|z2)

q(zT|zt−1)

p(zt−1|zT)

Figure 3.2: A graphical representation of a Markovian Hierarchical Variational
Autoencoder with T hierarchical levels. Note that all decoding steps p are con-
ditioned only on the previous latent.

3.5 Diffusion Models

Now, we are ready to formally define our concept of a Diffusion Model

(DM), also known as a Variational Diffusion Model (VDM). It is simply a

Markovian HVAE with a couple of extra restrictions:

• The dimensionality of all latents zt is the same as the dimensionality

of the data x.

• The structure of the latent encoders qϕ(z1|x) and qϕ(zt|zt−1) is not

learned. Instead, it is predefined as a Gaussian distribution centered

around the output of the previous timestep.

• The parameters of the encoding Gaussians vary in such a way that the

final latent zT is distributed as the standard Gaussian, N (zT, 0, I).

In our context of image generation, this simply means that we start with a

completely noise-free image x, and progressively add noise to the image in

T steps, so that the final image zT is indistinguishable from pure noise. Note

also that all latents zt remain in the dimension of the original image x, for

example 256 × 256 pixels.

Because zt has the same dimension as x, and is simply a noisier version

of it, we can abuse notation and write xt for both true data and latent sam-

ples. x0 represents true data samples (i.e., unnoised) and xt with t ∈ [1, T] a

latent in hierarchy t. Using this notation and the fact we no longer learn the
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encoders, the equation for the posterior (Equation (3.6)) simplifies:

q(x1:T|x0) =
T

∏
t=1

q(xt|xt−1) (3.7)

Note the absence of parameter ϕ in the above equation.

From the second restriction, we know the latent encoders are centered

around its previous latent. In fact, in our models, we will also fix the vari-

ance of the encoders, meaning they are completely determined before the

model is trained. This is standard for many VDMs [20], although variants

where the variance is also learned have been explored as well [36]. We set

up our Gaussian encoders with µt(xt) =
√

αtxt−1, Σt(xt) = (1− αt)I, where

αt are hyperparameters set beforehand. These hyperparameters determine

how fast the images are turned into noise. Mathematically, this means we

characterize the encoders as

q(xt|xt−1) = N (xt;
√

αtxt−1, (1 − αt)I)

The final restriction places an assumption on the final latent distribution

p(xT), namely that it is a standard Gaussian. This updates the joint distri-

bution to become

p(x0:T) = p(xT)
T

∏
t=1

pθ(xt−1|xt)

where p(xT) = N (xT; 0, I).

Together, these three assumptions lead to a process that can be described

as progressively adding noise to a picture until it is pure noise. See Fig-

ure 3.3 for the process visualised.
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x0 . . . xt−1 xt xt+1 . . . xT

q(x1|x0) q(xt|xt−1) q(xt+1|xt) q(xT|xT−1)

p(x0|x1) p(xt−1|xt) p(xt|xt+1) p(xT−1|xT)

Figure 3.3: Variational Diffusion Model: x0 is a noise-free image. Latents xt are
progressively more noisy, with xT being complete Gaussian noise. q(xt|xt−1)
are Gaussians centered around the previous output mean.

Since we no longer have parameters ϕ in the encoders q, the only param-

eters left to train are the parameters θ defining the approximate denoising

transition pθ(xt−1|xt). Once trained, these can be used to generate new data

by simply sampling pure noise from p(xT), and running it through each of

the denoising transitions.

Training the VDM is done by maximizing the ELBO, the derivation of

which can be found in Derivation A.1

log p(x) = log
∫

p(x0:T)dx0:T

= . . .

= Eq(x1|x0) [log pθ(x0|x1)]︸ ︷︷ ︸
reconstruction term

−Eq(xT−1|x0) [DKL(q(xT|xT−1)∥p(xT))]︸ ︷︷ ︸
prior matching term

−
T−1

∑
t=1

Eq(xt−1,xt+1|x0) [DKL(q(xt|xt−1)∥pθ(xt|xt+1))]︸ ︷︷ ︸
consistency term

(3.8)

In this form we can seperate the ELBO into three distinct parts:

• First, the reconstruction term Eq(x1|x0) [log pθ(x0|x1)]. This can be in-

terpreted as the log probability of having the original data sample x0

given the first latent x1. This term also appears in the optimization of
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vanilla VAEs.

• The prior matching term Eq(xT−1|x0) [DKL(q(xT|xT−1)∥p(xT))]: This term

is subtracted, which means maximizing the ELBO requires this term to

me minimal. It is minimized when q(xT|xt−1) exactly matches p(xT)

(so, a standard Gaussian). Fortunately, this depends on our choice of

α, allowing us to ensure this condition is met. Furthermore, this term

has no parameters and can thus not be optimized during the training

process.

• The consistency terms Eq(xt−1,xt+1|x0) [DKL(q(xt|xt−1)∥pθ(xt|xt+1))]. Like

the prior matching term, this is made up from a KL Divergence term,

this time between encoders q and decoders pθ. Its purpose is to make

the distribution at xt consistent, no matter if you arrive there by adding

noise to (q(xt|xt−1)) or removing noise from (pθ(xt|xt+1)) a neighbor-

ing image.

Optimizing the ELBO mainly boils down to optimizing the consistency

terms, since there are so many of them.

In our derivation, all terms are expressed as expected values, which

makes it perfect to optimize by once again using Monte Carlo estimates.

However, note that the consistency term depends on two random variables:

xt−1 and xt+1. This has the effect that it might exhibit quite high variance,

leading to poorer optimization speeds. Instead, it is possible to derive a

form of the ELBO in which each term only depends on a single random vari-

able. The key to this derivation is the following insight: Instead of adding a

bit of noise to an image xt−1, we can equivalently remove a bit of noise from

xt+1, if we know what the denoised image x0 looks like. Mathematically

speaking, we simply add x0 as an extra conditioning term to q(xt|xt−1): it

then becomes q(xt|xt−1, x0). Then, using Bayes rule, we can do the follow-

ing rewriting:

q(xt|xt−1, x0) =
q(xt−1|xt, x0)q(xt|x0)

q(xt−1|x0)

Making use of this equation, the dissection of the ELBO then results in the
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following (Full derivation found in Derivation A.2)

log p(x) ≥ . . .

= Eq(x1|x0) [log pθ(x0|x1)]︸ ︷︷ ︸
reconstruction term

− DKL(q(xT|x0) ∥ p(xT))︸ ︷︷ ︸
prior matching term

−
T

∑
t=2

Eq(xt|x0) [DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))]︸ ︷︷ ︸
denoising matching term

(3.9)

• Here, the reconstruction term remains the same as in Equation (3.8).

• The prior matching term features updated conditioning for the encod-

ing function q. But, as previously discussed, it has no trainable param-

eters and is set to zero under our restrictions.

• The consistency term does meaningfully change here however: It be-

comes a denoising matching term. Note that in the KL Divergence term,

the encoder is now written as q(xt−1|xt, x0), accomplishing the de-

sired effect of removing a slight bit of noise from xt to arrive at xt−1.

In this sense, it acts as a ground truth denoising function, one which

pθ(xt−1|xt) is trying to learn. Crucially, it now conditions on the same

random variable xt that our approximate denoising step pθ(xt−1|xt)

conditions on. q also conditions on x0, but that is not a random vari-

able, so it does not increase the variance of our Monte Carlo estimates

of the ELBO. An overview of this process can be found in Figure 3.4,

where the goal is to tune parameters θ such that the red arrow matches

the teal one.

Optimizing this derivation of the ELBO mainly comes down to optimiz-

ing the denoising matching terms, since they are so numerous, especially

since models typically have large T. For example, in our models, we use

T = 1000 timesteps.

In order to make calculation of the KL Divergence term tractable, we can
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x0 . . . xt−1 xt xt+1 . . . xT

q(x1|x0) q(xt|xt−1) q(xt+1|xt) q(xT|xT−1)

pθ(x0|x1) pθ(xt−1|xt) pθ(xt|xt+1) pθ(xT−1|xT)

q(xt−1|xt, x0)

Figure 3.4: In order to train a VDM with lower variance, we compute a
ground-truth denoising step in the form of q(xt−1|xt, x0) using Bayes rule. We
use KL Divergence to minimise the difference between it and our approximate
denoising step pθ(xt−1|xt).

do some rewriting. Bayes rule gives us the following:

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)
(3.10)

Paired with the fact that (by restriction)

q(xt|xt−1, x0) = q(xt|xt−1) = N (xt;
√

αtxt−1, (1 − αt)I), we must only de-

rive tractable forms for q(xt|x0) and q(xt−1|x0). However, the knowledge

that the encoder transitions are linear Gaussians helps us here: Recall the

reparameterization trick, and apply it to xt ∼ q(xt|x0). It can be rewritten in

terms of xt−1 as

xt =
√

αtxt−1 +
√

1 − αtϵ with ϵ ∼ N (ϵ; 0, I)

Similarly, xt−1 can be rewritten in terms of xt−2 as

xt−1 =
√

αt−1xt−2 +
√

1 − αt−1ϵ with ϵ ∼ N (ϵ; 0, I)
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which can be substituted in the formula for xt. Continuing this way, it is

possible to write q(xt|x0) neatly through continuous application of the repa-

rameterization trick. In fact, we can can rewrite (Full derivation available in

Derivation A.3) a sample xt ∼ q(xt|x0) as:

xt = . . .

=
√

ᾱtx0 +
√

1 − ᾱtϵ0 ∼ N (xt;
√

ᾱt) (3.11)

where ᾱt is defined as the product of all α’s before it: ᾱt =
t

∏
i=1

αi.

In a similar way, we derive the equation describing q(xt−1|x0). Armed

with these equations, we can derive a formula for q(xt−1|xt, x0), continuing

from Equation (3.10):

q(xt−1|xt, x0) =
q(xt−1|xt, x0)q(xt|x0)

q(xt−1|x0)

=
N (xt;

√
αtxt−1, (1 − αt)I)N (xt−1;

√
ᾱt−1x0, (1 − ᾱt−1)I)

N (xt;
√

ᾱtx0, (1 − ᾱt)I)

= . . .

∝ N (xt−1;
√

αt(1 − ᾱt−1)xt +
√

ᾱt−1(1 − αt)x0

1 − ᾱt︸ ︷︷ ︸
µq(xt,x0)

,
(1 − αt)(1 − ᾱt−1)

1 − ᾱt
I︸ ︷︷ ︸

Σq(t)

)

(3.12)

Most crucially, with this derivation we have shown that for any timestep

t, xt−1 is normally distributed with mean µq(xt, x0) (thus dependent on x0)

and variance Σq(t) (dependent only on time t and hyperparameters α). The

coefficients α are fixed beforehand, allowing us easy calculation of the vari-

ances at each timestep.

Recall that our goal is to learn a model pθ(xt−1|xt) to match the ground

truth denoising step q(xt−1|xt, x0) as closely as possible. Therefore, it makes
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sense to model pθ as a Gaussian, reflecting the ground truth. Furthermore,

we have fixed all coefficients α beforehand, meaning we can calculate the

appropriate variance of our predicted Gaussian, and can focus on predicting

the mean of each transition. We denote it by µθ(xt, t). Note how µθ parame-

terizes only on xt and t, and not on x0, since pθ(xt−1|xt) does not condition

on x0. For brevity, we will simply write µq for the mean of q(xt−1|xt, x0) and

µθ for the mean of pθ(xt−1|xt).

Mathematically, optimizing the function to match as closely as possible

is done with the KL Divergence. In an equation, we want to find the θ that

minimizes their divergence:

arg min
θ

DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt)) (3.13)

= arg min
θ

DKL(N (xt−1; µq, Σq(t) ∥ N (xt−1; µθ, Σq(t)) (3.14)

Since the variances of the two distributions match exactly, the KL Di-

vergence should be optimized precisely when the means µq and µθ match.

In fact, if we write Σq(t) = σ2
q (t)I, we can write out the definition of KL

Divergence. Doing so leads us to the following equation (Derivation A.4):

arg min
θ

DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))

= . . .

= arg min
θ

1
2σ2

q (t)

[∥∥µθ − µq
∥∥2

2

]

This makes precise our intuition of having to match the means of the two
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distributions. Recall from Equation (3.12) the definition of µq:

µq(xt, x0) =

√
αt(1 − ᾱt−1)xt +

√
ᾱt−1(1 − αt)x0

1 − ᾱt

As for µθ, only the x0 term is unknown to it. Thus, if we parameterize a

neural network to predict it from xt and t, we can match it closely to µq by

setting

µθ(xt, t) =
√

αt(1 − ᾱt−1)xt +
√

ᾱt−1(1 − αt)x̂θ(xt, t)
1 − ᾱt

where x̂θ(xt, t) is the neural networks prediction of x0. Plugging these repre-

sentations for µq and µθ into Equation (3.14) and rewriting (Derivation A.5),

the problem simplifies to:

arg min
θ

DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))

= . . .

= arg min
θ

1
2σ2

q (t)
ᾱt−1(1 − αt)2)

(1 − ᾱt)2

[
∥x̂θ(xt, t)− x0∥2

2

]

The constants in front of the norm are not dependent on θ and thus do not

influence the optimal choice of θ. Therefore, optimizing the diffusion model

boils down to an elegant essence: train a neural network to predict origi-

nal, noise-free images from arbitrarily noised versions of it. Doing this well

allows us to effectively learn how to perform a single denoising step xt to

xt−1, as we will be able to accurately predict the normal distribution de-

termining xt−1. In order to decrease all the denoising matching terms from

Equation (3.9), we must train our network for all t ∈ {1, . . . , T} equally. This

is achieved by randomly sampling t uniformly during training.

So, to recap the whole learning process: We have a dataset of data (im-

ages) from which we would like to sample more, similar data. To do this,
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we use a diffusion model. In this model, we add noise to our data in many

(in our case 1000) controlled steps, creating intermediate data distributions.

By carefully controlling the manner in which the noise is added, we ensure

the distributions are all Gaussian. Additionally, after all noising steps are

completed, we are left with pure Gaussian noise, which is easy to sample

from.

We then train a model to reverse this process: In the trained model,

we start with pure Gaussian noise (xT), and repeatedly remove noise from

the image by calculating the means of the intermediate distributions (µT−1,

µT−2, . . .) which are then used to sample intermediate results from (xT−1,

xT−2, . . .). This must be done sequentially: In order to calculate µT−2, we

need access to sample xT−1, which can only be obtained using µT−1, and

so on. After going through all denoising steps, we arrive at x0, which is a

noise-free generated datapoint, hopefully similar to true data.

Obviously, the more accurate the intermediate distributions are, the bet-

ter our generated data. The variances are fixed through hyperparameters

α, and the means µt are approximated. This is done by having a neural

network predict x0 from xt, denoted x̂θ(xt, t) which is used to calculate an

approximate mean µθ.

Optimization of the process is captured by optimizing the ELBO. In prac-

tice, this is done by randomly choosing a time t and a datapoint x0. Noisy

xt is calculated using ᾱt, which is a fixed hyperparameter. Then, the model

predicts x̂θ, which is compared to x0, updating parameters θ in the process.

3.5.1 Predicting ground truth noise

In our previous approach, we train a neural network to predict x0, the noise-

free image. However, in practice, it turns out that predicting the noise that

was added to x0 works better [20][37]. Let us derive this alternative yet equiv-

alent interpretation.

Recall that xt =
√

ᾱtx0 +
√

1 − ᾱtϵ0 in Equation (3.11). We can rewrite
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this equation to obtain a formula for x0 in terms of xt and ϵ0:

x0 =
xt −

√
1 − ᾱtϵ0√
ᾱt

Using this equation in our formula for the mean µq(xt, x0) we arrive (Deriva-

tion A.6) at the following equation:

µq(xt, x0) = . . .

=
1√
αt

xt −
(1 − αt)√
1 − ᾱt

√
αt

ϵ0

Therefore, we can calculate our approximate mean µθ(xt, x0) by:

µθ(xt, x0) =
1√
αt

xt −
(1 − αt)√
1 − ᾱt

√
αt

ϵ̂θ(xt, t)

Then, Equation (3.14) becomes

arg min
θ

DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))

= . . .

= arg min
θ

1
2σ2

q (t)
(1 − αt)2

(1 − ᾱt)αt

[
∥ϵ0 − ϵ̂θ(xt, t)∥2

2

]
(3.15)

In this equation, ϵ̂θ(xt, t) is the output of a neural network with parameters

θ. Once again, we are not interested in the constants in front of the norm.

Thus, the neural net can be optimized in the same way as the network for

x̂θ(xt, t), i.e. via Monte Carlo optimization.
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3.5.2 Guided Diffusion

So far, we have outlined a method of generating samples that look like they

belong to a distribution dataset of observations x. However, for many appli-

cations, it is valuable to have more control over the generated data by using

conditioning information y. For example, y can be a class label or a descrip-

tion of the generated data, as used in popular available diffusion models

such as DALLE-2 [38] and Imagen [37].

The easiest way to turn a DM into a conditional DM is to simply add

the conditioning information y to the denoising conditioning information:

Instead of trying to learn pθ(xt−1|xt), we learn a transition pθ(xt−1|xt, y).

This translates into learning a neural network to predict or x̂θ(xt, t, y) ≈
x0 or ϵ̂θ(xt, t, y) ≈ ϵ0. In a sense, time t can be viewed as conditioning

information just as y, only t is less complex. In our case, we are trying to

generate images, and the conditioning information is an embedding of a

textual description of the images content.

Furthermore, we make use of a technique called Classifier Free Guidance

[39]. In this strategy, we run the model twice when sampling: once with

conditioning information, once without. A parameter γ, called the guid-

ance scale, controls the importance of the conditioning. If γ = 0, the model

completely ignores the output of the conditional model call, and the model

behaves like a unconditional diffusion model. If γ = 1, the unconditional

output is ignored. Furthermore, γ values greater than 1 are possible. In

this situation, the model not only prioritizes the conditional output, it even

moves away from the unconditional output, in the direction of the condi-

tional output. Basically, it decreases the probability of creating output that

ignores the conditioning information. We make use of this technique when

sampling to make sure the conditioning information is taken into account.

3.5.3 Latent Diffusion Model

We now have a conceptual understanding of how diffusion models work

mathematically. In practice, they turn out to be quite cumbersome and

heavy to train, particularly for large images. This leads us to consider train-
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ing a diffusion model in a smaller, more compressed latent space of a pre-

trained autoencoder. This enables training using limited resources while

retaining high perceptual quality, and it has been used to deliver state-of-

the-art image synthesis tools [8].

Training a diffusion model in a latent space requires the use of an en-

coder/decoder pair, known as the autoencoder. It can be trained seperately

using conventional methods [40], resulting in an encoder E and decoder D.

Essentially, we have a dataset x of images for which we want to create more

synthetic samples. In order to do so, we train our diffusion model on im-

ages in the latent space of the autoencoder. That means to obtain training

data for the DM, we pass real, pixel-space images through the encoder E to

obtain training samples in the latent space. Subsequently, they are used to

train the DM (Figure 3.6), which is carried out as explained in the section

before.

When obtaining new samples, we sample noise in the latent space, run

it through the diffusion model, and pass the resulting image through the

decoder D (Figure 3.7).

x E D x̂z

Figure 3.5: Functioning of the autoencoder. Data x is passed through encoder
E to obtain a compressed, lower-dimensional representation z. Then, this z is
passed through decoder D in order to reconstruct x̂, which should approxi-
mate x.

x E Diffusion Modelz

Figure 3.6: Training the diffusion model. Images in pixel space are compressed
by the pretrained encoder, and the latent representation z is used as training
input for the diffusion model.

Summarising, we have defined Variatonal Diffusion Models as a special

case of a Hierarchical Autoencoder using three key restrictions. With these

restrictions, optimization becomes tractable and scalable, in a surprisingly

elegant way. Then, we extended our definition to be able to handle outside
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xDiffusion Model z Dnoise

Figure 3.7: Sampling from the diffusion model. A latent sample z is generated
by the diffusion model from latent noise. Since output z is in latent space, we
must decode it with decoder D to obtain a regular sample in full pixel space.

conditioning information such as class labels or textual descriptions. Lastly,

we explained how to improve computational performance by deploying the

diffusion model in a latent space of a pretrained autoencoder.
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In this chapter, we will outline how we developed our Latent Diffusion

Model, as well as list several different methods of evaluating the perfor-

mance of it. The results of the tests will be detailed in Chapter 5.

4.1 Model Development

We built our model using the infrastructure used by PathLDM [28], which in

turn builds on a code-base built by Rombach et al. at Computer Vision and

Learning LMU Munich, called latent-diffusion [8]. Their code is available

on GitHub 1, as are PathLDMs version 2 and our fork 3.

4.1.1 Autoencoder

When developing a Latent Diffusion Model, the choice of autoencoder is

crucial because it is an integral component of the overall model. Autoen-

coders typically reduce the dimensionality of their input by a fixed amount.

In this process, we need to balance the trade-off between the autoencoder’s

ability to accurately reconstruct the input and the computational efficiency

of the diffusion model, which operates on the latent space data. Since histopatho-

logical images contain fine details and structures that must be preserved,

we should be careful when reducing their dimensionality. To this end, we

employ the pretrained VAE used by PathLDM4, which uses 3 output chan-

nels and a downsampling factor of 4. That is to say, input images are scaled

down by 4 when passing through the encoder, meaning we are left with 1
16

th

of the pixels after encoding. The authors found that this downsampling fac-

1https://github.com/CompVis/latent-diffusion
2https://github.com/cvlab-stonybrook/PathLDM
3https://github.com/MeesMeuwissen/generationLDM
4https://drive.google.com/drive/folders/1_urgkNKIMmFoATiRtDwgjGuwjEt_fdvG
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tor manages to preserve image detail, while not needlessly slowing down

training of the LDM. The VAE is obtained by finetuning VQ-f4 from Rom-

bach et al. on breast tissue samples from the well-studied Cancer Genome

Atlas Breast Invasive Carcinoma (TCGA-BRCA) dataset [41] [42]. In our

thesis, we treat the encoder and decoder as black-box components of the

model and do not further train them. The functioning of the VAE is illus-

trated in Figure 4.1, where we can see what an image in the latent space of

the VAE looks like. In Figure 4.1b, the image looks quite noisy to the naked

eye, but this is a result of the compression by encoder E , and contains all the

relevant information to reconstruct the image, as can be seen by comparing

the reconstructed image with the input.

(a) Unaltered input image x. (b) Encoded image E(x). (c) Reconstructed image
D(E(x)) ≈ x.

Figure 4.1: Functioning of the Variational Autoencoder. Note that the encoded
image is 64 × 64 pixels, while the other two are 256 × 256 pixels, highlighting
the compressive function of the encoder.

4.1.2 Denoising Unet

As the backbone of the DM, we use a Unet denoiser designed by Rombach

et al., which is a Unet [43] with some additional structure to incorporate

a method to guide the diffusion process. This is achieved by integrating

a cross-attention mechanism [44] in all layers of the Unet, ensuring proper

guidance. See Figure 4.2 for an overview. In our primary training run, we

do not train the Unet from scratch. Instead, we take as a starting point the

trained Unet from PathLDM5 which is capable of producing high-quality

breast tissue images. This has several advantages: First, it speeds up train-

ing time since the model is already proficient in removing noise from images

5https://drive.google.com/drive/folders/1_urgkNKIMmFoATiRtDwgjGuwjEt_fdvG
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and does not have to learn this. Second, the model will already be capable

of dealing with the fine detail found in histopathology imageres, as opposed

to a Unet pretrained on the data from Imagenet, which is one of the mod-

els provided by Rombach et al.. However, experiments have shown that

starting at that model checkpoint yields comparative results, at least to the

naked eye, as can be seen in Figure 4.3. In the image, samples from a par-

tially trained model are shown, and no discernable difference can be easily

spotted. Nevertheless, because of the theoretical performance increase out-

lined earlier, we conduct all our experiments using a model initialized with

the PathLDM Unet, capable of producing high-quality images of tissue right

of the bat.

Figure 4.2: Structure of our Latent Diffusion Model. Source: [8].

4.1.3 Data

We trained our Latent Diffusion model using an internal custom dataset

consisting of 100 000 patches, each measuring 256x256 pixels. This dataset

was derived from a whole slide image (WSI) of rat kidney tissue. The deci-

sion to use rat kidney resections rather than human kidney biopsies stems

from the availability of WSIs at Aiosyn: Resections provide a significant

advantage due to their larger size, ensuring nearly all patches are entirely

filled with tissue with hardly any patches of edges between tissue and back-

ground, as well as providing a lot more data. In contrast, human kidney

biopsies are thin tissue strands extracted with a hollow needle, resulting

in many patches being situated on the boundary between tissue and non-

tissue. We refer to Figure 4.4 for a visual comparison of biopsies and resec-
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(a) ImageNet starting point.

(b) TCGA-BRCA starting point.

Figure 4.3: Two selections of samples of synthetic images produces by the
models after 1 hour of training. Above, the denoising Unet was initialized
with a checkpoint trained to create data found in ImageNet. Below, the start-
ing checkpoint was trained to produce breast tissue from the TCGA-BRCA
dataset. By eye, no clear difference can be seen between the two selections.
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tions.

(a) A biopt of human kidney tissue. (b) A resection of rat kidney tissue.

Figure 4.4: Comparison between a biopt and a resection of kidney tissue. Intu-
itively, patch datasets constructed from a resection contain fewer patches with
the border between tissue and background. Note the large difference in size
between the two images.

One downside of using rat WSIs is that they are unannotated, i.e. no

ground truth layer segmenting the tissue is available. Thus, we artificially

created such annotations using Aiosyns segmentation model. This is an AI

tool which analyzes the entire WSI and segments it into 8 distinct classes

such as Arteries, Glomeruli or Tubuli. It also discriminates between scle-

rotic (scarred) and non-sclerotic (healthy) glomeruli. After running the un-

labelled data through the segmentation model, we make a patch dataset out

of it, using the models prediction as a ground truth. With every patch of

kidney tissue comes a mask, detailing which parts of the image are which

tissue type. This mask will be used to create a textual description of the con-

tents of the image, so absolute accuracy is not important as only the broad

structure of the image dictates the descriptions. The patch-mask pairs will

serve as our training data.

4.1.4 Guidance

In principle, any medium can be used as conditioning with our model setup.

All that is required is a powerful enough encoding component to compute

meaningful embeddings of the conditioning data. We opted to use PLIP

[45] to compute our embeddings, which is a pathology specific language

encoder. It was trained using over 200 000 pathology images paired with
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natural language descriptions of those images. It works by computing two

embedding vectors, one for the image and one for the description. Embed-

ding computations were tuned so embeddings would match for pairs, and

be dissimilar for non-pairs using contrastive learning, pioneered by CLIP

[46].

Contrary to the method proposed by Rombach et al., we do not train

the guidance mechanism while optimizing the diffusion model. Instead, we

simply treat PLIP as part of the fixed dataloader and use it as a black box

tool.

To leverage the powerful PLIP encoder, we need a suitable textual de-

scription for each image in our training dataset. This process involves ana-

lyzing the mask associated with each image. For each of the 8 classes poten-

tially present in the mask, we determine the proportion of pixels belonging

to that class. Drawing inspiration from methods detailed in [28], we catego-

rize these proportions into one of three classes: classes with less than 20%

prevalence are labeled as low, those between 20% and 40% as medium, and

anything above 40% as high. Subsequently, a descriptive sentence is gener-

ated for each class present in the mask, indicating both the class identity and

its prevalence level (low, medium, or high). Additionally, an introductory

sentence is appended to the beginning of each caption, irrespective of the

mask contents. This approach results in captions structured as follows:

This image showcases various types of tissue structures found in renal tissue.

The prevalence of Tubuli is medium.

There is a lot of Glomeruli visible in the image.

and

This image showcases various types of tissue structures found in renal tissue.

The image shows a low amount of Atrophic Tubuli.

There is a lot of Tubuli visible in the image.

The image shows a low amount of Sclerotic Glomeruli.

The prevalence of other kidney tissue is medium.

Classes which do not occur anywhere in the patch are omitted from the de-

scription. The caption is then run through PLIP to encode the information in

an embedding, which is used as guidance during the diffusion process. Ul-
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timately, when trained, we will use descriptions like these to sample images

from the model with predetermined contents.

4.1.5 Model Configuration

To train the model, we use Pytorch and the standard training loop from Py-

torch Lightning6 version 1.9.5. As optimizer, we used AdamW [47], which

is standard Adam [48] with added weight decay. We employ a learning rate

of 2.5 × 10−5, with 1 000 warmup steps. The loss function is, in accordance

with Equation (3.15), MSELoss. To perform sampling, we make use of a

technique called DDIM [49] with 50 steps, with classifier free guidance scale

of γ = 1.5. Unconditional model calls are simulated by simply setting the

caption to the empty string. DDIM can be viewed as an extension of DDPM

focussed on the sampling process specifically: It builds on the trained diffu-

sion model to significantly speed up sampling speeds.

When preprocessing the input data, we normalize the images to [−1, 1],

as well as stochastically flipping the images horizontally or vertically, both

with probability 0.5.

When training, it proved crucial to perform all operations in float32

precision, and not in float16. Initial training runs utilized the autocast-

ing capabilities of torch’s Automatic Mixed Precision7 package, and seem-

ingly training occurs without error. However, during early experiments,

we noticed some weights remained stagnant. We ultimately found it to be

caused by their gradients being smaller than the minimum positive value

supported by half precision floats. Therefore, the gradients were rounded

down to zero, meaning their corresponding weights do not update during

training. This has the effect that only part of the model gets trained, which

means our model output changes, but without using the entire potential

of the model. Thus, the images created will look like a strange mix be-

tween breast tissue and kidney tissue, see Figure 4.5. Training the model

in float32 ensures all weights get updated appropriately, and learning can

6https://lightning.ai/docs/pytorch/stable/
7https://pytorch.org/docs/stable/amp.html
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Figure 4.5: Mix between breast tissue and kidney tissue, as created when train-
ing with 16-bit precision.

occur.

4.2 Model Analysis

In this section, we outline how we evaluate our trained diffusion model, ex-

ploring its effectiveness and limitations through three distinct testing method-

ologies. These methodologies offer both a quantitative and a qualitative

perspective, allowing us to evaluate the model’s performance from multi-

ple angles and gain insights into its behavior. They also allow us to identify

potential weaknesses and areas of improvement for possible future work.

4.2.1 Caption Accuracy

We want to be able to use our trained diffusion model to create images of

specific renal structures. As written in Section 4.1.4, training was guided

by a PLIP-embedding of text. Consequently, we can steer the synthesis of

images using a similar natural language caption. To test if we can succeed

in guiding the model towards specific structures, we will segment synthetic

images using Aiosyns segmentation model and compare the segmentation

against the generating caption.

We limited ourselves to analysing the prevalence of Glomeruli in syn-

thetic images, as they are an example of a scarce and interesting renal struc-
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ture. The choice to focus on Glomeruli is motivated by our further experi-

ments, as we will be detailed in Section 4.2.3. There, we will use a dataset

of synthetically generated Glomeruli to train a segmentation model. There-

fore it makes sense to analyse the capability of the model to generate this

specific structure. To enable analysis, we first need a representative dataset.

Thus, we created a dataset of 400 256 × 256 pixel samples all with the same

caption:

This image showcases various types of tissue structures found in renal tissue.

The prevalence of Tubuli is medium.

There is a lot of Glomeruli visible in the image.

This caption will be referred to as the generating caption. Captions such as

this were present during training, which means the model should have an

understanding of the image that it is supposed to create.

Next, we analyze the synthetic images using a segmentaion model. For

the image-mask pairs in the training dataset, the caption information is

based on the entirety of the mask of the patch (256 × 256 pixels), which

means that the entirety of the image should be taking into account when

trying to compare caption accuracy. In other words, if we sample an im-

age with a low amount of a specific structure, it is entirely possible that

that tissue occurs somewhere along the edges. However, Aiosyns segmen-

tation model is a convolutional model, trained using valid padding (i.e.,

no padding). This means that, given an input of W × H pixels, only the

centremost (W − 184)× (H − 184) pixels will be segmented. This poses an

issue for us, as we need to segment the entire image to give a fair assessment

of the caption accuracy.

There are several solutions to circumvent this issue, and we opted for

a simple solution where we mirror the image at the edges to stretch it out

by 92 pixels on each border. Then, if we run the padded image through

the segmentation model, those outer edges will be convolved off, and we

are left with a segmentation of the original image. The process is shown in

Figure 4.6, starting with a synthetic image in Figure 4.6a, the mirror-padded

image in Figure 4.6b and finally the generated segmentation of the image in

Figure 4.6c.
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Unfortunately, due to internal workings of the segmentation model, it

is not possible to feed it an image of 440 × 440 pixels. This is due to the

fact that the U-net makes use of skip-connections where it stores and later

concatenates some of the encoder outputs. When using valid padding, we

must ensure even dimensions throughout all pooling steps to ensure the

dimensions of the skip-connections match up. Otherwise, the shape of the

encoder output does not exactly match that of the decoder output, therefore

they cannot be concatenated. We decided to resolve this by padding with 86

pixels instead of 92, which is the largest padding value lower than 92 that

still allows the Unet model to function. Using 86 padding means we feed the

Unet an image of shape 428× 428 pixels, and the result is a segmented image

of shape 244 × 244 pixels. Consequently, we do not segment a boundary of

12 pixels. We deem this loss of accuracy acceptable as large structures are

highly unlikely to be present only in this boundary.

(a) Unmirrored syn-
thetic image that must
be segmented.

(b) Mirrored image
used as input for the
segmentation model.

(c) Segmented image.

Figure 4.6: Segmentation process.

Next, the segmented image is processed in the same way that is done

for training: The probability that a random pixel belongs to a specific class

is computed by counting how many pixels are of that class, and dividing

by the total number of pixels. Next, we iterate over each class probability

and categorizes the prevalence of each tissue structure into ’low’, ‘medium’

or ‘high’, based on the thresholds 0.2 and 0.4. With these categorizations, a

human-readable caption is created like explained in Section 4.1.4, contain-

ing all information per class (non-present classes are omitted from the cap-

tion). This caption will be referred to as the predicted caption of a synthetic

image.
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Finally, all we need to do is compare the generating caption with the

predicted caption to see how well the model was guided toward the caption.

We will be testing for Glomerulus presence, as well as how much of it is

present.

4.2.2 Human Perception

One of the goals of the generative model is to be able to generate realistic-

looking images. In order to test whether or not our model is capable of

this, we created a survey containing both real and synthetic images, and

asked participants to classify images as real or synthetic. More specifically,

we randomly selected 20 images of 256 × 256 pixels images from the rat-

tissue dataset. The selected images were verified to contain different types

of tissue, including glomeruli, tubuli and other structures. Additionally, we

selected 20 synthetic images by hand. These images were selected from a

larger synthetic dataset by Thomas de Bel, an AI engineer at Aiosyn with

a lot of experience with renal images. Selection was done to filter out the

images that are dead-giveaway synthetic, as that is not the purpose of this

test. However, it is worth noting that the majority of generated images pass

this pre-selection, and that seriously wrong images are rare. Testing the

model’s best images provides the most accurate assessment of its ability to

generate realistic images.

The (in total 40) images were randomly shuffled, and participants were

asked to classify the images as Real or Synthetic. They were not given

a time-limit to do so. Additionally, respondents were asked to rate their

own experience with renal histopathology on a scale of 1 to 5, with 1 be-

ing ‘Barely any experience’, and 5 being ‘Pathologist’. As a final question,

participants had the option to disclose if they noticed any patterns or had a

strategy to decide between real and synthetic.

The survey was sent to employees of Aiosyn as well as a few patholo-

gists. The results are analysed using Cohen’s Kappa, which is a statistical

measure of inter-rater agreement [50]. It takes a value κ ∈ [−1, 1], where 1

means complete agreement, −1 complete disagreement and 0 chance agree-
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Figure 4.7: Example question from the survey. Correct answer: Synthetic.

ment (i.e., the agreement one would expect if the raters are completely un-

correlated). In our analysis, the ground-truth answers will be considered

one rater and the respondent the other.

4.2.3 Use in Model Training

Real-life datasets can suffer from limited data availability. By supplement-

ing datasets with synthetic images, we could potentially reduce chance of

overfitting and allow for more robust training. Moreover, generated images

can be tailored to include rare or underrepresented pathological features to

increase performance across a range of different situations.

With the aim of trying to test whether there is any merit to using our gen-

erated images for training, we set up the following experiment: We trained

6 models to segment glomeruli in real-world tissue patches, using various

ratios of real/synthetic training data, ranging from solely real data to solely

synthetic data. In all training runs except one, the total number of train-

ing samples remains the same. In that one exceptional case, the real dataset

is supplemented (not replaced) by the synthetic dataset, effectively doubling
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the size of the training data. The datasplits can be found in Table 4.1. See

Figure 4.8 for an illustration of the segmentation task.

Table 4.1: Experiment Setup

Experiment Name Real Share Synthetic Share Training Patches (#)

100_0 1.00 0.00 198
75_25 0.75 0.25 198
50_50 0.50 0.50 198
25_75 0.25 0.75 198
0_100 0.00 1.00 198

100_100 1.00 1.00 396

(a) Real image to be segmented. (b) Correct segmentation.

Figure 4.8: Training image-mask pair.

We created the training patch dataset of synthetic data in the following

way:

• To start, we sampled 1600 patches of 512× 512 pixels, all with the same

caption (the generating caption used in Section 4.2.1) guiding the im-

ages to contain a large amount of Glomeruli, with medium prevalence

of Tubuli. This took around 10 hours in total on Amazon Web Services’

servers.

• The patches were stitched together, side to side, to form one large

’synthetic whole slide’ .tif file, containing 40 by 40 patches. See Fig-

ure 4.9.
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• Part of the stitched .tif file was then annotated, creating 740 annota-

tions of glomeruli. Note that these annotations were done by an unex-

perienced annotator, so their quality and accuracy is not guaranteed.

• A dataset of 512 × 512 pixel patches was created from the annotated

.tif file, containing 198 patch-mask pairs to indicate what part of the

tissue is glomeruli and what part is not. This dataset will be referred

to as the Synthetic Training (ST) dataset.

Figure 4.9: Small part of the stitched synthetic whole slide. Note the visible
borders between two patches of 512 × 512 pixels are clearly visible.

To be able to directly compare the ST dataset with real data, we curated

a dataset of equal size from real data, referred to as the Real Training (RT)

dataset. The RT dataset was annotated by Aiosyn’s annotators, and only the

annotations pertaining to glomeruli were taken into account. All other parts

of the image were considered as background.

For all experiments, the validation (dubbed the Real Validation (RV)

dataset) dataset exists solely of real patches of annotated rat tissue, from

the same source as the RT dataset, but without overlap. This means that

experiment 100_0 can be considered a baseline test, where we expect great

performance on this relatively simple tasks.

It is important to note that the source of the RT and RV datasets is the

same source that was used to train the diffusion model, which means that

the ST dataset should theoretically be as similar as possible to the RV set.

Model performance on the RV set is measured using a combination of Cate-

gorical Cross Entropy (which, in our simplified case, becomes Binary Cross
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Entropy loss) as well as Dice Score Coefficient (DSC). DSC can be used to

measure how well a segmentation models performs [51]. It ranges between

0 and 1, where 1 is ideal performance, meaning all pixels are classified cor-

rectly.

Aside from the training data, all training loops are identical, with identi-

cal seeding as well. No data augmentations were made aside from stochas-

tically flipping horizontally and vertically, as well as randomly cropping.

This provides us with the optimal situation to directly compare the impact

of swapping the training data from real to synthetic. All training runs were

allowed to continue until stopped by the EarlyStopping callback, which was

configured to monitor the validation loss.
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In this chapter, we will present the outcomes of the experiments defined in

Chapter 4.

5.1 Caption Accuracy

As explained in Section 4.2.1, we created 400 256 × 256 pixel images using

the generating caption

This image showcases various types of tissue structures found in renal tissue.

The prevalence of Tubuli is medium.

There is a lot of Glomeruli visible in the image.

We tested the predicted caption of the synthetic image, and in 91.3% of all

generated images, there is mention of Glomeruli (sclerotic or non-sclerotic)

in the image (See Table 5.1. This means that the model succeeded in gener-

ating renal tissue that contains glomerulus reliably. However, in only 4.2%

of those images were the glomeruli deemed not sclerotic. It seems that the

model is able to capture the general look and structure of glomeruli, but

fails to generate it cleanly. Small errors introduced can quickly make the

generated glomerulus look unhealthy, i.e. sclerotic. It is worth noting that

the data used to train the diffusion model comes from a mix of healthy and

unhealthy rat tissue, so perhaps the training data for healthy glomeruli was

somewhat lacking.

One other takeaway from Table 5.1 is that the model is not great at cre-

ating large patches of glomeruli. Even when we combine sclerotic and non-

sclerotic glomeruli, they only cross the ’High’ threshold (40% of the image)

in less than 5% of cases. It is much more common to create a Medium

amount of combined sclerotic and non-sclerotic glomeruli, at 28.02%. But in

most cases, a Low amount is produced, at just below 60% (See Table 5.1c).

In only 3.86% of images glomeruli were present, but no sclerotic glomeruli.
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Amount %

None 12.34
Low 77.38
Medium 9.77
High 0.50

Total 100.00

(a) Glomeruli (non-
sclerotic).

Amount %

None 12.60
Low 78.92
Medium 7.46
High 1.03

Total 100.00

(b) Sclerotic Glomeruli.

Amount %

None 8.74
Low 58.35
Medium 28.02
High 4.88

Total 100.00

(c) Sclerotic Glomeruli and
Glomeruli combined.

Table 5.1: Occurence of Glomeruli in the synthetic dataset.

Conversely, 3.60% of images contained only sclerotic glomeruli, but no healthy

glomeruli. Therefore we can say that the model tends to generate a mix of

sclerotic and healthy glomeruli, as far as the segmentation model can tell.

This might be indicative of a lack of clear differentiation between the two

structures by the model, but we cannot say this for certain without more

research.

In conclusion, the model demonstrates reliable capability in generat-

ing images of glomeruli. However, it faces challenges in producing im-

ages where a large portion is comprised of glomeruli. Furthermore, we

observe limited control over the glomeruli’s state, with both healthy and

sclerotic conditions occurring at comparable rates despite only guiding to-

wards healthy tissue.

5.2 Human Perception

Recall that to test how realistic synthetically generated images look, we

conducted a survey containing 40 images, of which 20 were real and 20

were synthetic. Participants were asked to determine whether each image

was real or synthetic. The survey was sent out to employees of Aiosyn,

as well as to some people working actively in the field of pathology. We

received 13 responses from people with varying levels of experience with

renal histopathology.

Here, we analyse the results using Cohen’s Kappa, ranging from −1

(complete disagreement) to 1 (complete agreement). κ = 0 means chance
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agreement, the agreement one would expect if the raters are completely un-

correlated. If respondents are unable to tell synthetic from real, a κ value of

0 would be expected.

Interestingly, mean κ achieved was −0.08, indicating that participants

actually performed slightly worse than would be expected of someone ran-

domly guessing. In fact, the maximum κ a participant got was 0.30, (which

corresponds to 25 correct, 15 incorrect answers) and the minimum was −0.40

(12 correct, 28 incorrect). These results indicate that, generally, people can-

not tell the difference between real and synthetic images.

Additionally, there seems to be no correlation between experience level

and performance on the survey. Participants with an experience of 1 or 2

scored −0.09 on average, while respondents with experience of at least 3

had an average κ = −0.18.

On average, people had 18.5 answers correct. The majority vote also did

not lead to convincing results, being correct in a mere 17 out of 40 questions.

Some images were identified correctly more often than others: Question

9 shows a synthetic image, but was incorrectly identified as real in 11 out of

13 instances, see Figure 5.1a. Question 15 also had only 2 correct answers,

see Figure 5.1b. For an overview of all answers, see Appendix B, which con-

tains all responses for each question, as well as the ground truth answers.

(a) Synthetic image most often clas-
sified as real.

(b) Real image most often classified
as synthetic.

Figure 5.1: Images most often classified incorrectly.

An example of a poor synthetic image is given in Figure 5.2a. This image
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was identified as synthetic by 11 out of 13 participants. The real image with

the most correct answers is shown next to it, with 10 right answers. On

average, questions were answered correctly by 6 people.

Exactly why certain images have profoundly different rates of correct

answers is unclear. One respondent reported looking at the white areas, ex-

plaining that (in their opinion) they looked slightly too big in some images,

while another looked at smaller details, such as incorrectly stained nuclei.

Neither strategy produced significantly better results, forcing us to ques-

tion the validity of their claims. It seems likely that the variance observed is

simply due to a relatively low amount of respondents.

(a) Synthetic image most often clas-
sified as synthetic.

(b) Real image most often classified
as real.

Figure 5.2: Images most often classified correctly.

In summary, it is clear the model is capable of producing synthetic im-

ages that are indistinguishable from real, thereby opening the door to its use

in renal histopathological training.

5.3 Use in Model Training

Remember that experiment 100_0 uses solely real training data, and serves

as a baseline to compare other experiments against. Since the validation set

remains consistent throughout all experiments, it is valuable to analyze the

validation loss. In Figure 5.3a, the validation loss of each of the training

runs is shown (smoothed, with a window size of 10). Some experiments
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trained for longer than others, this is down to the EarlyStopping callback

breaking off training after validation loss stagnated. From Section 5.3, a few

things stand out. First of all, all models learn, and the validation loss drops

to a value close to 0. However, training solely with synthetic data did the

worst out of our experiments, obtaining a loss of roughly double the best

score, which was achieved by using an even split of real and synthetic data

(50_50).

Recall that DSC is a measure ranging from 0 to 1, where 1 means every

pixel is correctly classified. Table 5.2 shows per experiment what the final

validation loss and DSC was. Keep in mind these are the scores achieved

at the end of training, not the highest achieved during training. Still, from

these results it is clear that having a mix of real and synthethic data during

training can outperform only using real data.

Furthermore, 50_50 even got a better final DSC than 100_100, despite

having a training dataset half the size. Generally speaking, we expect 100_100

to perform the best since it simply has more available training data. This is

clearly visible when analyzing the validation loss, but the advantage slims

when we look at the graph for DSC (Figure 5.3b).

(a) Smoothed validation loss curves for
the experiments.

(b) DSC curves for the experiments.

Another aspect to notice is training speed: 100_100 understandably achieves

its low validation loss and DSC score in fewer epochs, since it has more data.

As for the other experiments, they seem to be on par with eachother.

If we compare experiments 100_0 and 100_100, we can draw conclusions

as to the effects of supplementing an existing dataset with synthetic data. On

first glance, a DSC score increase from 0.956 to 0.971 might seem insignif-

icant, but it is not. In fact, this reduces the area of incorrectly segmented
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Table 5.2: Achieved Validation Loss and DSC at end of training.

Experiment Name Validation Loss (lower is better) DSC (higher is better)

100_0 0.094 0.956
75_25 0.064 0.970
50_50 0.060 0.972
25_75 0.068 0.965
0_100 0.137 0.927

100_100 0.055 0.971

tissue by more than 34%.

The curves in Figure 5.4a and Figure 5.4b are particularly insightful:

They show explicitly the difference in performance between the different

experiments. Evidently, there is an optimal balance to be found between

real and synthetic data, since using a combination of the two is scoring con-

siderably better than using only real or only synthetic data. The 50_50 mix

of real and synthetic performs best in both our metrics, and even rivals ex-

periment 100_100, which contains twice as much data.

(a) Validation loss achieved at end of
training.

(b) DSC achieved at end of training.

Exactly why a mix performs so well is yet to be determined conclusively,

but we hypothesise that it might be a result of increased variety in the train-

ing samples. This trains the model to deal with more diverse validation

samples by forcing the model to develop a quite general understanding of

glomeruli. Ordinarily, training data variety can be achieved simply by in-

creasing the size of the training dataset or performing various data augmen-

tations, which are well-known to increase performance. It is possible that

the synthetic dataset allows the model to learn a much broader notion of a
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glomerulus, which translates well to performance on the validation set.
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6. Discussion

In this chapter we will discuss several shortcomings, opportunities and im-

plications of the research conducted. There are several interesting avenues

to be explored that we did not have the time for. In this section, we want to

highlight a few of them.

6.1 Guidance

In Section 4.1.4, we discuss our method of generating a caption. To gen-

erate a caption for a given image, we perform some analysis on the corre-

sponding mask to determine the prevalence of certain renal structures. Us-

ing these prevalences, static sentences are chained together to create a short

paragraph broadly describing the contents of the image. This basic strategy

admits only a small amount of different captions, and many different im-

ages are described using the exact same caption. Furthermore, we use sim-

ple language without any domain-specific jargon, which means we might

not use PLIPs full capabilities. It would therefore be interesting to tune

the captions more finely to investigate if it improves model performance,

specifically performance of the guidance mechanism. It is clear from our

tests that the trained model is capable of producing realistic-looking images

at the drop of a hat. However, generating specific images is not as simple: It

requires some tuning of the caption to generate exactly what is asked. As

the results in Section 5.1 show, the model tends to fill up the image with

tissue types that were not present in the caption. Potentially, increasing the

specificity of textual descriptions can alleviate some of this struggle.

Another way to enhance the guidance system is by moving away from

textual guidance altogether. Instead, we could use an embedding of the

mask directly. Unlike the pretrained PLIP, this encoder would need to be

trained concurrently with the denoising diffusion model, as outlined in [8].
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Alternatively, one could pretrain an encoder for masks, simplifying the train-

ing process for the diffusion model. Conditioning your model on a mask

offers the added benefit of having a ground-truth mask readily available

for generated images. In our current setup with captions, synthetic data re-

quires manual annotation before being used in downstream tasks such as

model training. With mask-based guidance, sampling would be simplified

to providing a mask and synthesizing an accompanying image, meaning

synthetic data could be used in down-stream tasks without requiring hu-

man intervention. However, we want to highlight the advantage of man-

ually annotating as well. If the masks were to be generated concurrently

the images, there would be no outside injection of information; training a

segmentation model with fully synthetic data is more like transferring the

understanding of renal tissue from one model (the generative model) to an-

other (for example, a segmentation model), known as Transfer Learning [52].

With manually annotated images, there is some expert knowledge added to

the synthetic data, reducing cyclicity and possibly making data more effec-

tive for learning downstream tasks.

6.2 Synthesizing WSIs

Additionally, one compelling direction for further exploration is the chal-

lenge of creating large, coherent images. When generating the synthetic

patch dataset, we initially stitched together 1600 images side by side, form-

ing a patchwork blanket of renal tissue images. However, creating a patch

dataset from this mosaic is complicated by the necessity to avoid borders

between synthetic images within each patch. This constraint imposes limi-

tations on the types of patch datasets that can be created, as well as on the

overall quality and consistency of the patches.

There are multiple ways one could try to solve this issue. Our trained

model is a convolutional Unet. Consequently, samples of arbitrary size can

be generated. However, we quickly run into hardware limitations: creating

512 × 512 images could only be done in batch size of 4 on an AWS EC2 in-

stance. Potentially, we could reduce the batch size to increase the sampling
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image size, but we will not be able to generate images of substantial size,

simply due to limited memory of current GPUs.

In [27], the authors successfully generate whole slide images (WSIs) at

resolutions up to 65 536 × 65 536 pixels by gradually increasing the resolu-

tion of the generated image. Initially, they use a diffusion model to sample a

low-resolution image of 512× 512 pixels of a WSI. This image is then refined

sequentially in multiple steps, with each step producing a higher-resolution

image guided by the previous lower-resolution image to ensure consistency

in high-level features and coarse structures. This approach enables the gen-

eration of realistic WSIs of breast tissue using the TCGA-BRCA dataset [42].

The authors avoid stitching artifacts through a technique called grid-shift,

achieving results where pathologists could not reliably distinguish between

real and synthetic WSIs. Employing such methods to generate a consistent

WSI could make annotating synthetic data easier.

6.3 Annotation quality

Another potential limiting factor of our developed model is the input data:

We use unannotated rat tissue to train our model. The way we obtain condi-

tioning information is by using a trained segmentation model, which might

be less accurate than manual annotation by trained professionals. Addition-

ally, this creates a highly circular training structure (segmentation model is

needed to train the diffusion model, which is used to train a segmentation

model), which may lead to deterioration of performance, although we did

not observe this in our tests.

6.4 Finetune VAE on renal tissue

Additional performance improvements might be achieved by finetuning the

VAE on histopathology images of renal tissue (see Section 3.5.3 for details).

Our studies utilized a VAE trained on the TCGA-BRCA dataset of breast

tissue, which demonstrated strong potential in encoding renal tissue. How-

ever, finetuning on a renal tissue dataset could further enhance its perfor-
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mance. Due to time constraints, this was not pursued in this thesis.

6.5 Use in Model Training

In Section 5.3, we observe that training a segmentation model with a syn-

thetic dataset can yield better performance than using a real dataset of the

same size. However, this comparison might be considered unfair. The syn-

thetic dataset benefits from the extensive data used to train the diffusion

model, indirectly enhancing its quality. It’s plausible that using the vast

amounts of data directly to train the segmentation model could lead to even

better results. This is something to be explored in more detail in later works.

Furthermore, in our setup, we train a segmentation model to differenti-

ate between glomeruli and other tissue, which is an almost trivial task for

powerful segmentation models. It would be compelling to research if the

found results translate to more complex segmentation tasks involving more

than two classes, or other downstream tasks in general.
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7. Conclusion

In this work, we showed how to develop a latent diffusion model capable

of synthesizing high quality images of kidney tissue. We queried industry

professionals to tell real from synthetic images, but found nobody could do

so reliably, proving our models synthetic images are highly realistic, paving

the way for use in renal histopathological training. Furthermore, our model

is text-conditional, allowing for us to sample specific structures on com-

mand. We explored the efficacy of our guidance system and found its accu-

racy to be fair, but with room for improvement. Finally, we used our model

to sample 1600 images and created a synthetic training-dataset out of it by

manually annotating a portion of the images. With this dataset, we trained a

toy segmentation model. We then compared the performance of this model

against models trained with different ratios of real to synthetic data. Our

findings indicate that models trained with synthetic data can match or even

outperform those trained solely with real data.

7.1 Future Research

As explained in Chapter 6, there are a lot of parameters to finetune during

the model training process. It would be interesting to compare outputs of

two differently trained LDMs to see where we can maximize performance.

Additionally, we showed synthetic data can be used to increase training

performance on a simple task. Investigating whether similar results can be

achieved on more complex tasks would be an interesting endeavor.

58



7.1 Future Research

Appendices
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A. Appendix: Mathematical Derivations

In this Appendix, we include several derivations of formulas that are omit-

ted from Chapter 3 for brevity.
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A.1 Derivation of ELBO for VDMs

Derivation of the ELBO:

log p(x) = log
∫

p(x0:T)dx1:T (A.1)

= log
∫ p(x0:T)q(x1:T|x0)

q(x1:T|x0)
dx1:T (A.2)

= log Eq(x1:T |x0)

[
p(x0:T)

q(x1:T|x0)

]
(A.3)

≥ Eq(x1:T |x0)

[
log

p(x0:T)

q(x1:T|x0)

]
(A.4)

= Eq(x1:T |x0)

[
log

p(xT)∏T
t=1 pθ(xt−1|xt)

∏T
t=1 q(xt|xt−1)

]
(A.5)

= Eq(x1:T |x0)

[
log

p(xT)pθ(x0|x1)∏T
t=2 pθ(xt−1|xt)

q(xT|xT−1)∏T−1
t=1 q(xt|xt−1)

]
(A.6)

= Eq(x1:T |x0)

[
log

p(xT)pθ(x0|x1)∏T−1
t=1 pθ(xt|xt+1)

q(xT|xT−1)∏T−1
t=1 q(xt|xt−1)

]
(A.7)

= Eq(x1:T |x0)

[
log

p(xT)pθ(x0|x1)

q(xT|xT−1)

]
(A.8)

+ Eq(x1:T |x0)

[
log

T−1

∏
t=1

pθ(xt|xt+1)

q(xt|xt−1)

]
(A.9)

= Eq(x1:T |x0)[log pθ(x0|x1)] (A.10)

+ Eq(x1:T |x0)

[
log

p(xT)

q(xT|xT−1)

]
+ Eq(x1:T |x0)

[
T−1

∑
t=1

log
pθ(xt|xt+1)

q(xt|xt−1)

]
(A.11)

= Eq(x1:T |x0)[log pθ(x0|x1)] (A.12)

+ Eq(x1:T |x0)

[
log

p(xT)

q(xT|xT−1)

]
+

T−1

∑
t=1

Eq(x1:T |x0)

[
log

pθ(xt|xt+1)

q(xt|xt−1)

]
(A.13)

= Eq(x1:T |x0)[log pθ(x0|x1)] (A.14)

+ Eq(x1:T |x0)

[
log

p(xT)

q(xT|xT−1)

]
+

T−1

∑
t=1

Eq(xt−1,xt,xt+1|x0)

[
log

pθ(xt|xt+1)

q(xt|xt−1)

]
(A.15)

= Eq(x1|x0) [log pθ(x0|x1)]︸ ︷︷ ︸
reconstruction term

−Eq(xT−1|x0) [DKL(q(xT|xT−1)∥p(xT))]︸ ︷︷ ︸
prior matching term

(A.16)

−
T−1

∑
t=1

Eq(xt−1,xt+1|x0) [DKL(q(xt|xt−1)∥pθ(xt|xt+1))]︸ ︷︷ ︸
consistency term

(A.17)
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A.2 Derivation of ELBO using Bayes rule

We continue the derivation at Equation (A.4) of the previous derivation,

applying log rules and telescoping series along the way.

log p(x) ≥ Eq(x1:T |x0)

[
log

p(x0:T)

q(x1:t|x0)

]
(A.18)

= Eq(x1:T |x0)

[
log

p(xT)∏T
t=1 pθ(xt−1|xt)

∏T
t=1 q(xt|xt−1)

]
(A.19)

= Eq(x1:T |x0)

[
log

p(xT)pθ(x0|x1)∏T
t=2 pθ(xt−1|xt)

q(x1|x0)∏T
t=2 q(xt|xt−1)

]
(A.20)

= Eq(x1:T |x0)

[
log

p(xT)pθ(x0|x1)∏T
t=2 pθ(xt−1|xt)

q(x1|x0)∏T
t=2 q(xt|xt−1, x0)

]
(A.21)

= Eq(x1:T |x0)

log
pθ(xT)pθ(x0|x1)

q(x1|x0)
+ log

T

∏
t=2

pθ(xt−1|xt)
q(xt−1|xt,x0)q(xt|x0)

q(xt−1|x0)

 (A.22)

= Eq(x1:T |x0)

log
pθ(xT)pθ(x0|x1)

q(x1|x0)
+ log

T

∏
t=2

pθ(xt−1|xt)
q(xt−1|xt,x0)����q(xt|x0)

����q(xt−1|x0)

 (A.23)

= Eq(x1:T |x0)

[
log

pθ(xT)pθ(x0|x1)

�����q(x1|x0)
+ log �����q(x1|x0)

q(xT|x0)
+ log

T

∏
t=2

pθ(xt−1|xt)

q(xt−1|xt, x0)

]
(A.24)

= Eq(x1:T |x0)

[
log

pθ(xT)pθ(x0|x1)

q(xT|x0)
+

T

∑
t=2

log
pθ(xt−1|xt)

q(xt−1|xt, x0)

]
(A.25)

= Eq(x1:T |x0) [log pθ(x0|x1)] + Eq(x1:T |x0)

[
log

p(xT)

q(xT|x0)

]
(A.26)

+
T

∑
t=2

Eq(x1:T |x0)

[
log

pθ(xt−1|xt)

q(xt−1|xt, x0)

]
= Eq(x1|x0) [log pθ(x0|x1)] + Eq(xT |x0)

[
log

p(xT)

q(xT|x0)

]
(A.27)

+
T

∑
t=2

Eq(xt,xt−1|x0)

[
log

pθ(xt−1|xt)

q(xt−1|xt, x0)

]
= Eq(x1|x0) [log pθ(x0|x1)]︸ ︷︷ ︸

reconstruction term

− DKL(q(xT|x0) ∥ p(xT))︸ ︷︷ ︸
prior matching term

(A.28)

−
T

∑
t=2

Eq(xt|x0) [DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))]︸ ︷︷ ︸
denoising matching term

(A.29)

where in Equation (A.23), we make use of the telescoping nature of the

product wrapped in a logarithm.
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A.3 Derivation of tractable formula for xt ∼ q(xt|x0)

Suppose we have a set of 2T noise variables {ϵ∗t , ϵt} ∼iid N (ϵ; 0, 1). Then,

we can rewrite xt ∼ q(xt|x0) as follows:

xt =
√

αtxt−1 +
√

1 − αtϵ
∗
t−1 (A.30)

=
√

αt(
√

αt−1xt−2 +
√

1 − αt−1ϵ∗t−2) +
√

1 − αtϵ
∗
t−1 (A.31)

=
√

αtαt−1xt−2 +
√

αt − αtαt−1ϵ∗t−2 +
√

1 − αtϵ
∗
t−1 (A.32)

=
√

αtαt−1xt−2 +

√√
αt − αtαt−1

2
+

√
1 − αt

2
ϵt−2 (A.33)

=
√

αtαt−1xt−2 +
√

1 − αtαt−1ϵt−2 (A.34)

= . . . (A.35)

=

√√√√ t

∏
i=1

αix0 +

√√√√1 −
t

∏
i=1

αiϵ0 (A.36)

=
√

ᾱtx0 +
√

1 − ᾱtϵ0 (A.37)

∼ N (xt;
√

ᾱt) (A.38)

In step A.32, we summed two Gaussians. The resulting distribution has

as mean the sum of the two means, an variance the sum of the two vari-

ances. When written using the reparameterization trick, we can consider
√

1 − αtϵ
∗
t−1 as a sample from N (0, (1 − αt)I) and

√
αt − αtαt−1ϵ∗t−2 as a

sample from N (0, (αt − αtαt−1)I). Then, we can consider their sum as a

sample from N (0, (1 − αt + αt − αtαt−1)I) = N (0, (1 − αtαt−1I)). Writing

this sample using the reparameterization trick once more gives us the ex-

pression
√

1 − αtαt−1ϵ∗t−2, as seen in Equation (A.34). Furthermore, ᾱt is

shorthand notation for ᾱt = ∏t
i=1 αi.
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A.4 Derivation of optimisation using µθ(xt, t)

arg min
θ

DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))

= arg min
θ

DKL(N (xt−1; µq, Σq(t)) ∥ N (xt−1; µθ, Σq(t)))

= arg min
θ

1
2

[
log

|Σq(t)|
|Σq(t)|

− d + tr(Σq(t)−1Σq(t)) + (µθ − µq)
TΣq(t)−1(µθ − µq)

]
= arg min

θ

1
2

[
log 1 − d + d + (µθ − µq)

TΣq(t)−1(µθ − µq)
]

= arg min
θ

1
2

[
(µθ − µq)

TΣq(t)−1(µθ − µq)
]

= arg min
θ

1
2

[
(µθ − µq)

T(σ2
q (t)I)

−1(µθ − µq)
]

= arg min
θ

1
2σ2

q (t)

[∥∥µθ − µq
∥∥2

2

]

In this derivation, we write µq for µq(xt, x0) and µθ for µθ(xt, t). In the sec-

ond step, we make use of the standard formula for the KL Divergence be-

tween two Gaussian distributions.

A.5 Derivation of optimisation using x̂θ(xt, t)

arg min
θ

DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))

= arg min
θ

DKL(N (xt−1; µq, Σq(t)) ∥ N (xt−1; µθ , Σq(t)))

= arg min
θ

1
2σ2

q (t)

[∥∥∥∥√αt(1 − αt−1)xt +
√

ᾱt−1(1 − αt)x̂θ(xt, t)
1 − ᾱt

−
√

αt(1 − αt−1)xt +
√

ᾱt−1(1 − αt)x0

1 − ᾱt

∥∥∥∥2

2

]

= arg min
θ

1
2σ2

q (t)

[∥∥∥∥√ᾱt−1(1 − αt)x̂θ(xt, t)
1 − ᾱt

−
√

ᾱt−1(1 − αt)x0

1 − ᾱt

∥∥∥∥2

2

]

= arg min
θ

1
2σ2

q (t)

[∥∥∥∥√ᾱt−1(1 − αt)

1 − ᾱt
(x̂θ(xt, t)− x0)

∥∥∥∥2

2

]

= arg min
θ

1
2σ2

q (t)
ᾱt−1(1 − αt)2)

(1 − ᾱt)2

[
∥x̂θ(xt, t)− x0∥2

2

]
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A.6 Derivation of µq(xt, x0) in terms of xt and ϵ0.

µq(xt, x0) =

√
αt(1 − ᾱt−1)xt +

√
ᾱt−1(1 − αt)x0

1 − ᾱt
(A.39)

=

√
αt(1 − ᾱt−1)xt +

√
ᾱt−1(1 − αt)

xt−
√

1−ᾱtϵ0√
ᾱt

1 − ᾱt
(A.40)

=

√
αt(1 − ᾱt−1)xt + (1 − αt)

xt−
√

1−ᾱtϵ0√
αt

1 − ᾱt
(A.41)

=

√
αt(1 − ᾱt−1)xt

1 − ᾱt
+

(1 − αt)xt

(1 − ᾱt)
√

αt
− (1 − αt)

√
1 − ᾱtϵ0

(1 − ᾱt)
√

αt
(A.42)

=

(√
αt(1 − ᾱt−1)

1 − ᾱt
+

(1 − αt)

(1 − ᾱt)
√

αt

)
xt −

(1 − αt)
√

1 − ᾱtϵ0

(1 − ᾱt)
√

αt

(A.43)

=

(
αt(1 − ᾱt−1)

(1 − ᾱt)
√

αt
+

(1 − αt)

(1 − ᾱt)
√

αt

)
xt −

(1 − αt)√
1 − ᾱt

√
αt

ϵ0 (A.44)

=
αt − ᾱt + 1 − αt

(1 − αt)
√

αt
xt −

(1 − αt)√
1 − ᾱt

√
αt

ϵ0 (A.45)

=
1 − ᾱt

(1 − αt)
√

αt
xt −

(1 − αt)√
1 − ᾱt

√
αt

ϵ0 (A.46)

=
1√
αt

xt −
(1 − αt)√
1 − ᾱt

√
αt

ϵ0 (A.47)

Note that in Equation (A.40), some terms ᾱt lose their overline, which

might be easy to miss.
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Figure B.1: All responses to the survey. Participants are shown in columns, experience level is on top. Green means correct answer, red
means incorrect. Left-most column shows question number and ground truth.
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