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Abstract

Type systems of modern languages such as Rust provide guarantees of memory safety and memory
leak freedom by tracking resources. However, for existing software, porting the entire program to a
new language is not always feasible. Instead, it is beneficial to add such resource tracking to existing
languages, such as Linear Haskell for Haskell or CN for C.

These languages add resource tracking using linear logic to ensure that resources are used exactly
once. A limitation of linear logic is that it is unable to represent functions where the function
arguments and captured context share resources. O’Hearn and Pym’s Logic of Bunched Implications
(BI) addresses this by introducing a second type of implication. Prior research on type systems based
on BI use a tree-shaped context called bunches, which complicates adding bunched implications on
top of an existing simply typed language.

We present λ∗ a resource-aware language with bunched functions and monadic heap operations.
Programs in λ∗ erase down to a resource-unaware simply typed language λloc with untyped references.
Using a denotational semantics of λloc, we show that the resource tracking of λ∗ provides additional
guarantees of memory safety and memory leak freedom for erased programs. A key component to
permitting the erasure from λ∗ to simply typed λloc is the use of assumption labeling instead of the
tree-shaped bunches used in prior type systems with bunched implications.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

In modern concurrent software, it is essential that programs are safe and robust, lacking memory errors
such as data races, use-after-free and memory leaks. The interest in languages such as Rust, which
provide strong type systems that guarantee memory safety, indicate the importance of these guarantees.
Rather than designing entirely new languages, which would require rewriting existing software, it would
be beneficial to extend existing languages with such guarantees.

Separation Logic. The first approach would be to prove such guarantees for specific programs, namely,
defining a program logic for the language and then using its proof rules to verify programs. One such
program logic is separation logic [Reynolds 2002], an extension of Hoare logic that allows reasoning about
programs with shared mutable state.

In separation logic, the language of assertions is extended with a separating conjunction ∗, which
allows for reasoning about disjoint parts of the heap, and a pointsto proposition l 7→ v which gives
exclusive ownership of the value l containing value v. As an example, consider the following program
which frees a reference r1 and then loads the value of reference r2:

prog1 r1 r2
def
= free r1;

load r2

In separation logic, a possible Hoare triple for prog1 would be:

{r1 7→ v1 ∗ r2 7→ v2} prog1 r1 r2 {v. v = v2 ∗ r2 7→ v2}

This triple states that given exclusive access to two different location r1 and r2 containing values v1 and
v2 respectively, after executing prog1 we get back a return value v equal to v2 and exclusive access to
only r2 containing v2. The separating conjunction ∗ is necessary to ensure that r1 and r2 are different
locations and hence that prog1 does not fail with a use-after-free error.

Separation logic consists of several inference rules which can be used to prove such Hoare-triple
specifications of programs. The proof of such a triple also proves that the program is memory safe. For
instance, VST-Floyd [Cao et al. 2018] is a separation logic for verifying C programs in the proof assistant
Coq. Similarly, OCaml [Mével et al. 2020] and WebAssembly [Rao et al. 2023] have in Iris [Jung et al.
2018] a separation logic framework in Coq, that can be used to verify programs in these languages.

VeriFast [Jacobs et al. 2011] similarly defines a separation logic for C, but integrates the logic by adding
the pre- and post-conditions as comment annotations to the code itself, and providing an automated tool
to verify these annotations.

Type Refinement. Another approach would be to enrich the types in the existing language with
information about ownership. This creates a second layer of types for programs, which is known as
refinement typing [Zeilberger 2016]. The key property of refinement typing is that programs that are
well-typed in the refined type system are also well-typed in the original type system. This allows for the
gradual introduction of ownership tracking into existing programs by refining types of more parts of the
program.

For instance, Bernardy et al. [2017] use refinement typing to add linear functions (functions which
use their argument exactly once) to Haskell. Using this linearity, the authors simplify the interface of
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mutable arrays in Haskell containing a linear function to freeze the same array, which requires linearity
to ensure the array is not modified after freezing. Similar type refinements to add resource tracking are
RichWasm [Fitzgibbons et al. 2024] for WebAssembly and CN [Pulte et al. 2023] and RefinedC [Sammler
et al. 2021] for C. These systems use a concept of linear capabilities introduced by Morrisett et al. [2005].
These capabilities are types describing the ability to use a shared resource such as a pointer (similar to a
pointsto in separation logic), and is separate from the type of the resource itself. The capability itself can
only be used linearly, whereas the shared resource itself can be duplicated freely.

Linear Typing. These refinement type systems crucially depend on linear type theory, based on Girard’s
Linear Logic [Girard 1995], to ensure that resources such as references or capabilities are used exactly
once. The linearity ensures both memory safety as each reference can only by one part of the program,
and memory leak freedom as each reference must be used exactly once, and therefore freed at some point.
As an example, consider the following program with monadic heap operations:

prog1 : T Z
def
= let! r : RefZ = ref 0 in

let f : T Z = (let!x : Z = free r in returnx+ 1) in
let g : T (Z × RefString) = (let! (y, r′) = replace r ”Hello” in return (y + 1, r′)) in
leth = (λp. let (x, y) = p inx) in
returnh (f, g)

The program first allocates a new location r on the heap, containing the integer value 0 (of type Z).
The let!x = e1 in e2 binding is a monadic bind operation, which executes e1 before continuing with e2.
After allocating r, the program defines two operations f and g, which are not immediately executed. The
operation f first frees the reference r which returns the previously stored integer, followed by returning its
successor. The operation g instead replaces the integer stored in r with a string ”Hello”, and returns the
successor of the previously stored value and a new reference for the stored string. Finally, the program
defines a function h which takes a pair and returns the first element, and applies it to the pair (f, g),
resulting in the computation f being returned.

In the example, both f and g use the reference r, so in a linear type system, only one of g and f can be
executed. To describe this, linear type systems have two types of conjunction, multiplicative A ∗B, which
states that A and B describe different resources – and therefore can both be used independently – and
additive A∧B, which states that A and B describe the same resources, and therefore only one can be used.
In the example, the type of g : T (Z ∗ RefString) uses multiplicative conjunction, as the returned integer
and pointer can both be used independently. On the other hand, the type of (f, g) : T Z∧T (Z∗RefString),
and hence the input type of h, uses the additive conjunction as both f and g capture the same reference
r, so at most one of them can be executed. In linear type systems, all arguments and captured variables
must be used exactly once, which is denoted by the multiplicative function type A −∗ B (also commonly
denoted A⊸ B). For instance, the type of h would be (T Z ∧ T (Z ∗ RefString)) −∗ T Z.

Now consider a slight modification of the program, where the last two lines are replaced by:

leth′ = (λx. λy.x) in
returnh′ f g

The behavior of this adjusted program is the same as the initial program, where the computation f is
returned. However, as arguments of functions in linear type systems must be used exactly once, the
function h′, and therefore also the program, are no longer typeable in linear type systems, as h′ does not
use the argument y. Additionally, f and g both capture the same reference r and therefore cannot be
passed as two separate arguments to a linear function.

To give a type to h′, we move to the logic of Bunched Implications (BI) [O’Hearn and Pym 1999], an
extension of linear logic which adds not only the additive conjunction, but also an additive implication A⇒
B. The additive implication can be interpreted as functions where the captured variables and arguments
share the same resources. In this logic, the function h′ has the type T Z ⇒ T (Z ∗ RefString)⇒ T Z, as
the second argument y of h′ describes the same resources as the captured variable x. More generally, in
the logic of BI the formulas P ∧Q⇒ R and P ⇒ Q⇒ R are equivalent.

There has been limited prior research into creating type systems with bunched implications. First,
there is the αλ calculus by O’Hearn [1999], introduced as a direct Curry-Howard correspondence of the
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CHAPTER 1. INTRODUCTION

logic of Bunched Implications. Like the logic, the typing rules in the αλ-calculus use a concept called
’bunches’, a tree-like rather than list-like context, to represent the sharing and separation of resources.
The calculus was extended with polymorphism by Collinson et al. [2008] and dependent types by Ishtiaq
and Pym [1999]. Additionally, Berdine and O’Hearn [2006] and Collinson and Pym [2006] both define
type systems for BI with heap operations, both using a continuation passing style for heap operations, and
limit the heap to storing only integer and unit types. Finally, there is the recent πBI calculus by Frumin
et al. [2022], a process calculus where message-passing processes are typed with bunched implications.

Crucially, none of these prior type systems with bunched implications are defined as refinement type
systems of languages without resource tracking. In this thesis, we define such a language λ∗ with bunched
implications and monadic heap operations in the style of Moggi [1989] that is a refinement type system of
our simply-typed λloc language. The thesis consists of two main parts.

Part 1: Simply typed language λloc. The first is defining the simply-typed language λloc, For
the language, we define the syntax and typing rules. We give an interpretation to programs by defining
a denotational semantics on well-typed programs, in which the monadic type is interpreted as partial
functions from heaps to return values and heaps.

We also define an equational theory of βη-equivalences to prove that certain programs are equivalent.
The β-equivalences state that abstracting a term with a variable and then applying it to an argument is
equivalent to substitution, whereas the η-equivalences state that abstracting over a variable and then
immediately applying the variable is the same as not abstracting. In the case of functions, the β- and
η-equivalences are:

(λx : A. e1) e2 ≡β [x 7→ e2]e1 (λx : A. e x) ≡η e

Here [x 7→ e2]e1 corresponds to substituting all occurrences of x in e1 with e2. An alternative for defining
β-equivalences is to define β reductions, which are transitions between expressions, and can be interpreted
as computation steps [Pierce 2002]. For instance, the β-reduction for functions is:

(λx : A. e1) e2 →β [x 7→ e2]e1

We opt for equivalences rather than the reduction for λloc as equivalences are generally defined only on
well-typed programs, whereas reductions are generally defined on all expressions. As the last step for
λloc, we prove that equivalent programs have the same denotational semantics.

Part 2: Bunched functions language λ∗. In the second part we extend λloc with bunched impli-
cations to create λ∗. The types and expressions of λloc are extended to both additive variants which
describe shared resources, and multiplicative variants which describe distinct resources.

The typing rules of λ∗ use labels to track which expressions and variables contain which resources.
Such labeling approaches have previously been used in sequent calculi, such as by Hóu et al. [2015] for
Boolean BI – a classical variant of BI – but to the author’s knowledge have not previously been used in
type systems for BI. Unlike bunches, the labeling approach maintains a list-shaped context, meaning that
the tracking of resources in λ∗ can be erased, resulting in the simply typed λloc. Despite removing the
tracking when erasing to λloc, we can prove using an additional logical predicate defined on types in λ∗
that well-typed programs in λ∗ have an interpretation in the denotational semantics of λloc that is safe.
Namely, the interpretation does not encounter memory errors such as use-after-free or memory leaks.

In addition to the β-equivalences for λ∗, we define a β-reduction for the pure (non heap-changing)
parts of the language. For this β-reduction we prove the preservation property, which states that if e is
well-typed in λ∗ and e→β e′ then e′ is well-typed and additionally e ≡β e′.

1.1 Outline

We start with a brief introduction to linear logic and bunched implications (Chapter 2). After this, we
define the simply typed λloc without resource tracking (Chapter 3), as a base language on which to
add resource tracking. We interpret this language using a denotational semantics (§ 3.4), where the
monadic type is interpreted as a partial function from heaps to heaps, to account for possibly unsafe
heap operations. We then define the full resource-tracked λ∗ language based on Bunched Implications
(Chapter 4) using labeled assumptions to track resources. The typing rules consist not only of logical

6



1.2. CONTRIBUTIONS

rules, corresponding to the form of expressions, but also structural rules to reason about labels. We
show that well-typed programs in λ∗ erase to well-typed programs in λloc (4.4). By defining a logical
predicate on the interpretation of λ∗ types to state which values in the erased system are valid for which
resources, we prove that well-typed programs are safe, and that well-typed programs that return values
with no resources are also memory-leak free (§ 4.4). Finally, we show that the λ∗ type system enjoys the
preservation property for β-reduction in the pure (non heap-changing) parts of the language. Finally, we
conclude with discussions on related work (Chapter 6) and future work (Chapter 7).

1.2 Contributions

We present λ∗, a typed language with bunched implications and monadic heap operations that has an
explicit erasure to our simply typed language λloc without resource tracking. The complete list of
contributions are as follows:

• We define λ∗, a typed language with bunched functions and monadic heap operation. The type
system of λ∗ uses labeled assumptions used in sequent calculi such as by Hóu et al. [2015], rather
than bunched contexts used in prior work on BI type systems for λ-calculi [Collinson et al. 2008;
O’Hearn 1999].

• We present a simply typed language λloc with untyped references and possibly unsafe monadic
heap operations with a denotational semantics. We show that λ∗ is a refinement type system of
λloc by defining an erasure from types, expressions and typing derivations from λ∗ to λloc. As
the latter does not track resources, this erasure removes all worlds and constraints.

• Using a logical predicate, we show that well-typed programs in λ∗ erase to programs in λloc
whose denotational semantics are safe (i.e. heap operations do not fail), and memory leak free (i.e.
programs that return non-resource carrying values free all allocated references).

• We define β-reduction for the pure (non heap changing) parts of λ∗, for which we prove the
preservation property. For the proof, we introduce a concept of context strengthening to combine
multiple structural rules and create a new layered type system to restrict where structural rules can
be applied.
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CHAPTER 2. BACKGROUND

Chapter 2

Background

In this section, we briefly introduce the logics related to describing shared resources in type systems. In
§ 2.1 we discuss linear logic, a variant of logic in which assumptions must be used exactly once. In § 2.2
we further introduce the logic of bunched implications, an extension of linear logic with resource-sharing
implication. In § 2.3 we discuss the propositional variant of separation logic, a program logic to reason
about shared data.

2.1 Linear Logic

Whereas intuitionistic logic allows assumptions to be dropped or used multiple times, linear logic
introduced by Girard [1995], requires that each assumption is used exactly once. This restriction is useful
for reasoning about resources such as references, as it ensures that references are distinct, and that all
references have to be freed.

The rules of linear logic with only linear implication are as follows:

assum

A ⊢ A

I⊸
Γ, A ⊢ B

Γ ⊢ A⊸ B

E⊸
Γ ⊢ A⊸ B ∆ ⊢ A

Γ,∆ ⊢ B

The assumption rule assum of linear logic is stronger than that of intuitionistic logic, as it requires
that the context contains only the conclusion A. The I⊸ rule is the same as that for intuitionistic logic,
but the application rule is different. Unlike in intuitionistic logic where both the implication and premise
of the implication are derived from the same context, the application rule of linear logic requires that the
context is split into two disjoint contexts, one for the implication and one for the argument. This ensures
that each assumption is used exactly once. An example typing derivation in linear logic is:

A⊸ A ⊢ A⊸ A
assum

A ⊢ A
assum

A,A⊸ A ⊢ A
E⊸

A ⊢ (A⊸ A)⊸ A
I⊸

⊢ A⊸ (A⊸ A)⊸ A
I⊸

In this derivation, the E⊸ rule specifically splits the context Σ,∆ = A,A⊸ A into Σ = A⊸ A and
∆ = A. As each assumption has to be used exactly once, there is no derivation of ⊢ A⊸ (A⊸ A)⊸ A
which applies the first premise and ignores the second.

This linear logic can be extended with two types of conjunction describing both shared ∧ and disjoint
⊗ propositions. They have the following proof rules:

Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧B

Γ ⊢ A1 ∧A2

Γ ⊢ Ai

(i = 1, 2)
Γ ⊢ A ∆ ⊢ B

Γ,∆ ⊢ A⊗B

Γ ⊢ A⊗B ∆, A,B ⊢ C

Γ,∆ ⊢ C

The first conjunction A ∧ B has the same rules as for intuitionistic logic. However, as the context
is linear, only A or B can be used, not both. As such, there is no proof of A ∧B⊸ C ⊢ A⊸ B⊸ C,
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as the former gives access to either A and B to prove C, whereas the latter gives access to both A and
B to prove C. For this reason, there is also the multiplicative conjunction A⊗B, in which both sides
are derived from different parts of the context. Indeed, eliminating A⊗B gives access to both A and B
in order to prove C. Hence, there is a correspondence between the multiplicative ⊸ and ⊗ of the form
A⊗B⊸ C ⊣⊢ A⊸ B⊸ C, but no such correspondence exists between the additive conjunction ∧ and
another connective.

As assumptions in linear logic must be used exactly once, they lend themselves to type systems with
resources such as references, to ensure that for instance a reference cannot be used after it has been freed.
Such a type system is employed by the L3 language [Morrisett et al. 2005], which uses linear types to
describe the capability to use a reference, ensuring that the type stored at the reference and the type of
the capability stay in sync.

2.2 Bunched Implications

The logic of Bunched Implications (BI) [O’Hearn and Pym 1999] extends linear logic with such an extra
connective ⇒, called the additive implication, which represents an implication where the assumption
and conclusion share the same context. The additive conjunction and implication share the same
correspondence as the multiplicative conjunction and implication:

A ∧B ⇒ C ⊣⊢ A⇒ B ⇒ C

In the proof rules of bunched implications, contexts are not merely lists of assumptions, but form a
tree structure called bunches. To illustrate, the proof rules for the two implications are as follows:

Γ;A ⊢ B

Γ ⊢ A⇒ B

Γ ⊢ A⇒ B Γ ⊢ A

Γ ⊢ B

Γ, A ⊢ B

Γ ⊢ A −∗ B
Γ ⊢ A −∗ B ∆ ⊢ A

Γ,∆ ⊢ B

The proof rules for BI have two operators for combining contexts, the first is the additive ‘;’, which
can be interpreted as intuitionistic contexts, as they allow assumptions to be ignored (weakening) or used
multiple times (contraction). The second operator is the multiplicative ‘,’, and can be interpreted as linear
contexts, as they require that both sides are used exactly once. In BI, the multiplicative conjunction
and implication are denoted by ∗ and −∗ respectively, instead of the ⊗ and⊸ used in linear logic. The
products ∗ and ⊗ have units 1m and 1a respectively.

As the above rules can be combined, the contexts in BI form not a linear context, but a tree structure
called a bunch. These bunches are defined by the following grammar:

Γ ::= {}m | {}a | A | Γ,Γ | Γ; Γ

As bunches describe both intuitionistic and linear contexts, there are also two kinds of empty contexts,
the intuitionistic empty context {}a which appears by weakening a single assumption and is the unit of
‘;’, and {}m, the unit of ‘,’, which describes the empty context as in linear logic.

2.3 Propositional Separation Logic

A well known example of a BI-logic is (propositional) separation logic [Calcagno et al. 2005; Reynolds
2002], which extends the assumption and conclusion propositions in Hoare logic to reason about programs
with heaps. In propositional separation logic, intuitionistic propositional logic is extended with a pointsto
connective l 7→ v which corresponds to heap location l containing the value v, and a separating conjunction
P ∗Q, which corresponds to the propositions P and Q holding on disjoint parts of the heap. As such,
formulas in separation logic are defined as:

P ::= ⊤ | P ∧Q | P ⇒ Q | emp | P ∗Q | P −∗ Q | l 7→ v

Here ⊤ corresponds to the additive unit in BI and ⊤ in intuitionistic logic. It therefore holds in any
partial heap. The P ∧ Q connective corresponds to ∧ in intuitionistic logic, and therefore holds for
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CHAPTER 2. BACKGROUND

heaps in which both P and Q hold. The P ⇒ Q connective corresponds to the implication connective in
intuitionistic logic, and therefore holds for the heaps in which if P holds, then Q holds.

Separation logic also provides multiplicative connectives, notably emp which only holds in the empty
heap (corresponding to 1m in BI), and P ∗Q which holds for heaps which can be split into two disjoint
heaps in which P and Q hold respectively. The proposition l 7→ v holds only for the partial heap only
containing the location l with value v. Hence, in the separation logic proposition l 7→ v ∗ l′ 7→ v′, the
locations l and l′ must be distinct.

The separating conjunction P ∗Q corresponds to the multiplicative conjunction ∗ in BI, and holds for
the heaps which can be split into two disjoint heaps in which P and Q hold respectively. Finally, the
separating implication P −∗ Q corresponds to the multiplicative implication⊸ in BI, and holds for the
heaps which when combined with a disjoint heap in which P holds, holds for Q.

The heaps in which a given separation logic proposition hold are specified by the resource semantics.
For separation logic, these resource semantics [Pym et al. 2019] are given by a heap satisfiability relation
h |= P , stating that heap h satisfies separation logic proposition P :

h |= ⊤ def
= True

h |= P ∧Q
def
= h |= P ∧ h |= Q

h |= P ⇒ Q
def
= h |= P =⇒ h |= Q

h |= emp
def
= domh = ∅

h |= l 7→ v
def
= domh = {l} ∧ h l = v

h |= P ∗Q def
= ∃h1, h2. h = h1 ⊎ h2 ∧ h1 |= P ∧ h2 |= Q

h |= P −∗ Q def
= ∀h2. h# h1 ∧ h1 |= P =⇒ h ⊎ h2 |= Q

The notation h1# h2 states that h1 and h2 are disjoint and is defined as domh1 ∩ domh2 = ∅. The
notation h1 ⊎ h2 is the disjoint union of two heaps, and is only defined when h1# h2. We will return to
this relation in § 4.4 to describe when values of types are valid for a given heap.

In separation logic, these propositions are used as a Hoare logic, consisting of Hoare triples of the
form {P} e {Q} [Reynolds 2002], where P and Q are separation logic formulas and e is a program (which
may alter the heap). The triple {P} e {Q} states that if P holds for a part h of a heap, denoted h |= P ,
then after e executes, the updated part h′ satisfies Q, denoted h′ |= Q, and the part of the heap not
specified by P remains unchanged. Generally, this execution is defined as an operational semantics, but
the specific details are not relevant to this work.

An important property of Hoare triples in separation logic is that of framing, which states that
resources not specified in the pre- and post-conditions are unaffected The rule is defined as:

frame
{P} e {Q}

{P ∗R} e {Q ∗R}

According to the frame rule, any resources R disjoint from P are unaffected by the execution of e, and
therefore still hold in the post-condition.

Rather than defining Hoare triples directly, they may instead be specified in terms of the weakest
precondition of a program e with respect to a post-conditionQ, denoted wp e {Q}. The weakest precondition
wp e {Q} is the weakest separation logic formula P such that {P} e {Q} holds. Hence the definition of
Hoare triples in terms of weakest preconditions is: {P} e {Q} = P −∗ wp e {Q} 1. Whether a given heap
satisfies such a weakest precondition can be informally defined as:

h |= wp e {Q} def
= ∀hf# h.Executing e in heap h ⊎ hf results in a heap h′ ⊎ hf s.t. h′ |= Q

The universal quantification of the frame heap hf ensures that the frame rule holds for both the weakest
precondition and corresponding Hoare triple. A formal definition of weakest precondition is generally
given in terms of an operational semantics, which is out of scope for this thesis. Even so, the informal
description above is useful, as it corresponds to the heap satisfiability of the monad type T A in § 4.4.

1To ensure that Hoare triples can be used multiple times, the definition in terms of wp also requires that no (non-persistent)
resources are captured by −∗. In Iris [Jung et al. 2018, §6] this is done using a persistence modality.
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Chapter 3

STLC with products and locations

In this section, we introduce λloc, a simply typed λ-calculus with locations and monadic heap operations.
The calculus does not track any resources, and serves as the base language upon which the resource aware
λ∗ is built (Chapter 4). In § 3.1 we present the syntax of the language, consisting of the simple types and
expressions. In § 3.2 we define the type system for λloc as an extension of those for the Simply Typed
Lambda Calculus (STLC). Next, we define β- and η equivalences in the style of Gunter [1993] (§ 3.3)
using the simultaneous substitution.

In § 3.4 we give a denotational semantics of λloc, in which heap operations are modeled as partial
functions which are undefined when a heap operation fails. In the style of Gunter [1993], we conclude
this section with a proof of soundness of the denotational semantics (Theorem 3.4.13), ensuring that β-
and η-equivalent terms have the same interpretation in the denotational semantics. In the next section
(Chapter 4), we extend λloc with a more complex type system (λ∗) to track resources, and show that
programs with heap operations typeable in λ∗ do not get stuck (Corollary 4.4.27).

3.1 Syntax

In the base language, we consider the simply typed lambda calculus (STLC) as in for instance Angiuli
and Gratzer [2024], and extend it with locations and monadic heap operations.

Definition 3.1.1 (Types):

A ∈ Type ::= 1 | A×A | A→ A | loc | T A

The function type constructor A→ B corresponds to the function type in STLC. We extend this with
the unit type 1 and product types of the form A×B.

To support heaps, we add the location type loc, representing a single location on the heap. The loc
type does not carry any information about the type of the value stored on the heap (similar to a void∗
pointer in C [Free Software Foundation 2024]). We also introduce the monadic type constructor T A
in the style of Moggi [1989], representing a computation that performs heap operations and returns a
value of type A. Such monadic types are common in functional programming languages, such as the IO
monad in Haskell [Jones 2003]. Consequently, the language supports 2 kinds of functions, those without
any heap operations (i.e. pure functions) of type A→ B, and those that perform heap operations (i.e.
stateful functions) of type A→ T B.

Definition 3.1.2 (Expressions): The expression formation rules are defined as follows:

e ∈ Expr ::= () | (e1, e2) | let (x, y) = e1 in e2 | λx : A. e | e1 e2 (pure operations)

| return e | let!x = e1 in e2 (monadic operations)

| refA e | replaceA,B e1 e2 | freeA e (heap operation)

Where x, y ∈ Var are variables in the countably infinite set of variables Var and A,B ∈ Type .

Additionally, letx = e1 in e2 is defined as (λx : A. e2) e1 (when e1 has type A).

12
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Pure Operations. The expression former () creates the single element of the unit type 1. Product
types A × B can be introduced with (e1, e2). They are eliminated with let (x, y) = e1 in e2, rather
than projection functions π1, π2. In later systems (Chapter 4) and other substructural type systems,
such as linear type theory [Wadler 1993] in which variables have to be used exactly once, the projection
functions π1, π2 do not exist, as they ignore the other element of the pair. For consistency, we therefore
opt to use let-style elimination in this system. The λx : A. e and e1 e2 expression formers correspond to
λ-abstraction and application as in STLC respectively.

Monadic Operations. To support the monadic type T A, the expression formers include return e cor-
responding to the monadic return operation (return in Haskell), and let!x : A = e1 in e2 corresponding
to the monadic bind operation (x← e1; e2 in Haskell do notation).

Remark: The let bindings without ! corresponds to assigning a variable, whereas the let! binding
with ! corresponds to the monadic bind, and first ‘unwraps’ the value of the monadic type.

Heap Operations. The ref, replace and free operations modify the heap. The refA e operation
allocates a new location on the heap containing the value e of type A. The replaceA,B e1 e2 operation
replaces the value of type A at location e1 with the expression e2 of type B, returning the old value.
The freeA e operation deallocates the location e, returning the value of type A previously stored at
that location. We opt for a replace operation (a type-changing variant of replace in Rust [replace in
std::mem - Rust 2024]), rather than separate load and store operations to match the substructural type
systems later in this thesis, similar to eliminating pairs with let. As the replace operation can change
the type of a location, and variables in the language can be used multiple times, we use the loc type,
rather than a reference type like RefA.

Remark: The ref, replace and free are all indexed by the type of the value stored at the location.
When the type of the value in the heap is not the same as the type specified by the operation, the
operation gets stuck. This ensures that for any program that does not get stuck, the values stored at
locations were consistent with the types specified by the heap operations.

Remark: We assume the Barendregt Convention [Barendregt 1985] for α-equivalence, meaning that all
variables that occur in any definition or proof are considered to be unique. This avoids having to rename
variables in definitions and proofs, improving the presentation of the system.

Definition 3.1.3: In a lambda abstraction of the form λx : A. e or let-binding such as letx = e′ in e,
we say that the variable x is bound in e. The variables that occur in an expression e that are not
bound by such a λ-abstraction or let or let! binding are called free in e. The set of free variables
in an expression e is denoted fv e.

The two common styles of λ terms are Church style and Curry style [Hindley and Seldin 2008], where
the former fixes the type of the argument (λx : A. e), whereas the latter does not (λx. e). We apply the
Church style to our system, as it results in unique typing derivations (Theorem 3.2.5) which simplifies
the proof of soundness of the denotational semantics with respect to η-equivalences (§ 3.3). Though we
use Curry style, we omit type annotations in this thesis for brevity when they can be inferred from the
context, or explicitly add type annotations not specified in the grammar of expressions for clarity.

As an example program in λloc, consider the following which swaps the two elements of a pair:

Example 3.1.4 (Swap Pair):

swap_pair
def
= λp : A×B. let (x : A, y : B) = p in (y, x)

This program consists of a λ abstraction binding a variable p of type A×B, followed by deconstructing
the pair into x of type A and y of type B, and finally constructing a pair with the elements swapped.
For clarity, we adjust the notation of such programs slightly in the remainder of this thesis, by moving
the λ-abstractions to the left of the definition, adding an output type annotation, and removing type
annotations which are clear from context. In this notation, the swap_pair program is written as:

swap_pair (p : A×B) : B ×A
def
= let (x, y) = p in (y, x)

13
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As λloc supports weakening (leaving variables unused), the projection functions π1, π2 can be defined,
and the swap_pair function can also be written as:

Example 3.1.5 (Swap Pair Projections):

π1 (z : A×B) : A
def
= let (x, y) = z inx

π2 (z : A×B) : B
def
= let (x, y) = z in y

swap_pair_2 (z : A×B) : B ×A
def
= (π2 z, π1 z)

Here the π1 and π2 functions project the first and second elements of the pair respectively, and
the swap_pair_2 function takes a pair and constructs a new pair with the elements swapped using the
projection functions.

Heap Operations. The heap operations are monadic, returning values of type T A, and can be sequenced
using the bind operation. For instance, the following program swaps the values at two locations:

Example 3.1.6 (Swap Location):

swap_loc_AxB (p : loc× loc) : T 1
def
= let (l1, l2) = p in

let!x = replaceA,1 l1 () in
let! y = replaceB,A l2 x in
replace1,B l1 y

In this program, the input p describes a pair of locations which is deconstructed into locations l1 and
l2. The program then performs 3 replace operations: 1) it replaces the value of type A stored at l1 with
a temporary unit value, 2) it replaces the value of type B stored at l2 with the value previously stored at
l1, and 3) it replaces the unit value currently stored at l1 with the value previously stored at l2. Due
to the added monadic type constructor T A, the heap operations describe heap computations, which
have to be sequenced (the reader may interpret this as executed) by the let! (bind) operation. A heap
computation T A can be used multiple times, similar to Haskell’s IO monad.

Modeling Recursion. Despite the lack of a recursion operation in the base language, recursion can still
be modeled in the untyped expression language using Landin’s Knot [Landin 1964].

Example 3.1.7 (Landin’s Knot):

landin (f : (A→ T B)→ A→ T B) : A→ T B
def
= λx : A.

let! l : loc = ref1 () in
let rec : A→ T B = f (λx : A. let! rec = load l in rec x) in
let! v : 1 = replace1,A→T B l rec in
rec x

load(l : loc) : T (A→ T B)
def
=

let! f : A→ T B = replaceA→T B,1 l () in
let! v = replace1,A→T B l f in
return f

In this example, the load program takes a location, replaces the value of type A→ T B stored at the
location l with a unit assigning f to be the old value, followed by replacing the unit with the originally
stored value f , and then returning f .

The landin program takes a function f : (A → T B) → (A → T B) and supplies as argument a
function which recursively calls f applied to itself. To do this, it first allocates a location l in which to
store the recursive function as a location containing a unit value. In ref, it applies f to a function that
attempts to load a value of type A→ T B from l, and applies that function to the argument. The rec
function itself is then stored at the location l, meaning that calls to the argument of f recursively call the
function f . As the program requires monadic heap operations to set up the recursive function rec, the
program first takes an input x (of type A) and executes rec on that specific input at the end.
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To simplify the denotational model of the system (§ 3.4) we do not consider recursive functions. As
such, we limit the values that can be stored on the heap through the type system, ensuring that programs
such as landin are not typeable. Specifically, we do not allow values of types containing the monadic
type constructor T A to be placed on the heap. In the case of landin, this means that the function
rec : A→ T A cannot be placed on the heap. A function of type A→ B would not be sufficient to create
Landin’s knot, as it could not use heap operations to load itself from the heap.

Stuck Programs. Programs accessing the heap can get stuck when the shape of the heap does not
match with the next operation, for instance when the type of the value currently stored at a location
does not match the type specified by a heap operation, or when a location is used after it has been freed.
As a slightly more complex example, consider the following two programs safe and unsafe, which both
free a pair of locations:

Example 3.1.8 (Double Free):

duplicate (l : loc) : loc×loc
def
= (l, l) free_pair (p : loc×loc) : T (1× 1)

def
= let (l1, l2) = p in

let!x = free1 l1 in
let! y = free1 l2 in
return (x, y)

safe ()
def
= let! l1 = ref1 () in

let! l2 = ref1 () in
let! r = free_pair (l1, l2) in
return ()

unsafe ()
def
= let! l = ref1 () in

let lpair = duplicate l in
let! r = free_pair lpair in
return ()

In this example, the safe operation allocates two different new locations l1 and l2, followed by using
free_pair to free both locations. On the other hand, the unsafe operation allocates a single new location
l, which it duplicates into a pair using duplicate, and then frees both locations using free_pair. As
the unsafe operation attempts to free the same location twice, it gets stuck on the second free operation,
as the location is no longer allocated. The safe operation on the other hand does not get stuck, as it
frees two different locations.

In the example, we extract the duplicate and free_pair functions from the safe and unsafe

programs to highlight that types in this system do not prevent programs from getting stuck. Specifically,
the duplicate function uses the location variable twice (corresponding to contraction), and the type of
free_pair does not enforce that both locations are distinct. The types will be compared to those of the
resource tracking λ∗ in Chapter 4.

3.2 Type System

To ensure that programs are not recursive, the type system creates a distinction between the types that do
not contain heap operations (pure types), and those that do (stateful types). By ensuring only pure types
can be stored on the heap, we prevent recursion through Landin’s Knot. This distinction is captured by
a kind rule of types:

Definition 3.2.1 (Kinds and well-kinded types): For the kinds k ::= Pure | Stateful, the well-kinded
types are defined as follows:

⊢ A : k

⊢ 1 : k ⊢ loc : k
⊢ A : k ⊢ B : k

⊢ A×B : k

⊢ A : k ⊢ B : k

⊢ A→ B : k

⊢ A : k

⊢ T A : Stateful

In this definition, the types A ∈ Type for which ⊢ A : Pure is derivable are the pure types, which
do not contain the heap constructor T A and therefore can be placed on the heap. The location type
loc describes only the location on a heap (similar to how pointers in assembly are integers), they can be
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placed on the heap. Furthermore, as the only rule fixing a kind is for T A, all pure types can also be used
as stateful types.

Lemma 3.2.2: For type A ∈ Type , if ⊢ A : Pure then ⊢ A : Stateful.

Proof. A straightforward induction on the derivation of ⊢ A : Pure.

The typing contexts and typing rules of λloc are defined as follows:

Definition 3.2.3 (Context):

Γ ∈ Ctx ::= · | Γ, x : A

Where x ∈ Var and A ∈ Type .

Definition 3.2.4 (Typing Rules): The typing judgment Γ ⊢ e : A denotes that an expression e ∈ Expr

has type A ∈ Type in typing context Γ ∈ Ctx. The judgment is derived by the following rules:

stlc-var
x : A ∈ Γ

Γ ⊢ x : A

stlc-fun-i
Γ, x : A ⊢ e : B

Γ ⊢ λx : A. e : A→ B

stlc-fun-e
Γ ⊢ e1 : A→ B Γ ⊢ e2 : A

Γ ⊢ e1 e2 : B

stlc-unit-i

Γ ⊢ () : 1

stlc-pair-i
Γ ⊢ e1 : A Γ ⊢ e2 : B

Γ ⊢ (e1, e2) : A×B

stlc-pair-e
Γ ⊢ e1 : A×B Γ, x : A, y : B ⊢ e2 : C

Γ ⊢ let (x, y) = e1 in e2 : C

stlc-ret
Γ ⊢ e : A

Γ ⊢ return e : T A

stlc-bind
Γ ⊢ e1 : T A Γ, x : A ⊢ e2 : T B

Γ ⊢ let!x : A = e1 in e2 : T B

stlc-ref
Γ ⊢ e : A ⊢ A : Pure

Γ ⊢ refA e : T loc

stlc-free
Γ ⊢ e : loc ⊢ A : Pure

Γ ⊢ freeA e : T A

stlc-replace
Γ ⊢ e1 : loc Γ ⊢ e2 : B ⊢ A : Pure ⊢ B : Pure

Γ ⊢ replaceA,B e1 e2 : T A

The stlc-var, stlc-fun-i and stlc-fun-e rules correspond to the variable rule, abstraction rule
and application rule of STLC [Pierce 2002].

The stlc-unit-i rule is the introduction rule for the unit type and corresponds to the unit type
extension of STLC. The unit type does not have an elimination rule.

The product type A × B is introduced by the stlc-pair-i rule, but eliminated by a let binding
rather than projection functions. This corresponds to the elimination rule of product types in linear type
systems [Wadler 1990].

The stlc-ret and stlc-bind rules correspond to the return and bind operations of monads. As such,
return lifts an expression e ∈ Expr of type A ∈ Type to an expression return e of type T A. Similarly,
stlc-bind consists of first executing an expression e1 of type T A, then sequencing the resulting x of
type A in the second computation e2 of type T B. The typing rules correspond to the [ ]T and let rules
of the Simple Metalanguage by Moggi [1991].

The stlc-ref rule allocates a new location on the heap containing the value e ∈ Expr of type
A ∈ Type and therefore results in a monad computation containing the allocated location T loc. As only
pure values can be stored on the heap, the typing rule also requires that A is a Pure type. Similarly, the
stlc-free rule deallocates a location e ∈ Expr of type loc, returning the previously stored value of Pure
type A. The stlc-replace rule replaces the value at a location e1 : loc of pure type A ∈ Type with the
value of expression e2 : B of pure type B ∈ Type , returning the old value as a heap computation T A.

Remark: The typing rules stlc-replace and stlc-free do not guarantee that the operations do not
get stuck, as the location type loc neither guarantees that a location is still allocated nor that it contains
a value of a certain type.

Due to annotating the expressions – including types of heap operations – in Church style, the typing
derivations Γ ⊢ e : A are unique:
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Theorem 3.2.5 (Uniqueness of Derivations): For any context Γ, expression e ∈ Expr and types A,B ∈
Type . If there are derivations da of Γ ⊢ e : A and db of Γ ⊢ e : B then A = B and da and db are the
same derivation.

Proof. By induction on e, using the property that each expression constructor corresponds to exactly one
typing rule.

Using the typing system, we can derive typing judgment of the example programs, such as · ⊢
swap_pair : A×B → B × A and · ⊢ free_pair : loc× loc→ T (1× 1). We say that an expression e
has a type A when · ⊢ e : A is derivable in the system. In particular, both safe and unsafe are typable
with type 1→ T 1, despite the latter getting stuck. This will be resolved in the type system in Chapter 4.

An important property of type systems is that of thinning (a multiple variable weakening), which
states that if an expression e has type A in a given context Γ, then e also has type A in any larger context
Γ′ ⊇ Γ. Formally, thinnings and the thinning theorem are defined as:

Definition 3.2.6 (Thinning):

stlc-thinning-emp

· ⊇ ·

stlc-thinning-take
Γ ⊇ Γ′

Γ, x : A ⊇ Γ′, x : A

stlc-thinning-skip
Γ ⊇ Γ′

Γ, x : A ⊇ Γ′

Theorem 3.2.7 (Thinning): Given two contexts Γ′,Γ, an expression e ∈ Expr and a type A ∈ Type , if
Γ′ ⊇ Γ and Γ ⊢ e : A then Γ′ ⊢ e : A.

Though derivations are unique by Theorem 3.2.5, the specific derivation from this theorem is
denoted as Γ′ ⊇ Γ; Γ ⊢ e : A to be consistent with λ∗ (Chapter 4).

By the thinning lemma, we can reuse typing derivation of expressions in larger contexts. For instance,
we can reuse the typing derivation for Γ ⊢ swap_pair : 1× 1→ 1× 1 (taking A,B = 1) to find a typing
derivation of · ⊢ λx : 1. swap pair (x, x). The use of the thinning lemma is marked in blue in the
derivation:

· ⊢ swap_pair : 1× 1→ 1× 1

x : 1 ⊢ swap_pair : 1× 1→ 1× 1
Theorem 3.2.7

x : 1 ∈ x : 1

x : 1 ⊢ x : 1
stlc-var . . .

x : 1 ⊢ (x, x) : 1× 1
stlc-pair-i

x : 1 ⊢ swap_pair (x, x) : 1× 1
stlc-fun-e

· ⊢ λx : 1. swap pair (x, x) : 1→ 1
stlc-fun-i

3.3 Substitution

In an operational semantics of STLC, the execution of terms is modeled using β-reductions of the form
(λx : A. e1)e2 →β [x 7→ e2]e1, where [x 7→ e2]e1 corresponds to replacing occurrences of x in e1 with e2. In
such a reduction, the combination of introduction rule λx : A. e1 and elimination rule e2 is called a β-redex.
Terms which reduce to the same term through 0 or more β-reductions are considered β-equivalent.

Though we opt for a denotational semantics in this work (i.e. giving a mathematical model of typed
expressions), rather than an operational semantics, we still want the property that β (and η) equivalent
programs have the same interpretation. To reason about these equalities, we first consider simultaneous
substitutions of multiple variables, followed by defining well typed substitutions, which only substitute
expressions of the correct type, and therefore do not for instance substitute a unit () for a variable of a
function type 1→ 1.

Definition 3.3.1 (Syntactic Substitution): A syntactic substitution δ : Var fin−⇀ Expr is a map from a
finite subset of variables to expressions.

The domain dom δ of a substitution is the finite set of variables V ⊆ Var on which δ is defined. The
following are the main notations for defining and updating substitutions:
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Notation:
1. The empty substitution ∅ is the substitution which is undefined for all variables:

∅x = ⊥

2. The identity substitution IV is the substitution which maps each variable in a finite subset V ⊆ Var

to itself, and is undefined for all other variables:

IV x
def
=

{
x if x ∈ V

⊥ otherwise

The specific subset V of the identity substitution I is generally left implicit.
3. The update substitution δ⟨x 7→ e⟩ is the substitution which maps all variables according to δ, but

additionally maps x to e. By the Barendregt convention we assume x /∈ dom δ:

δ⟨x 7→ e⟩ y def
=

{
e if y = x

δ y otherwise

Syntactic substitutions can be applied to expressions to substitute the free variables of e with those
defined by the substitution:

Definition 3.3.2 (Substitution on Expressions): For an expression e ∈ Expr and substitution δ such that
fv e ⊆ dom δ, the substitution of e by δ, denoted [δ]e, is defined as:

[δ]x
def
= δ x [δ]()

def
= ()

[δ](e1, e2)
def
= ([δ]e1, [δ]e2) [δ](λx : A. e)

def
= λx : A. [δ ⟨x 7→ x⟩]e

[δ](let (x, y) = e1 in e2)
def
= let (x, y) = [δ]e1 in [δ ⟨x 7→ x, y 7→ y⟩]e2

[δ](e1 e2)
def
= ([δ]e1) [δ]e2 [δ](return e)

def
= return [δ]e

[δ](let!x = e1 in e2)
def
= let!x = [δ]e1 in [δ ⟨x 7→ x⟩]e2 [δ](refA e)

def
= refA [δ]e

[δ](replaceA,B e1 e2)
def
= replaceA,B [δ]e1 [δ]e2 [δ](freeA e)

def
= freeA [δ]e

A key difference between our syntactic substitution and single variable substitution is the condition
that all free variables in the expression must be in the domain of the substitution. As such, the bound
variables in lambda abstractions and let-bindings are added to the substitution when substituting their
subexpressions. By the Barendregt convention, we assume that the newly bound variables are not in the
domain of the substitution.

The definition of syntactic substitution merely ensures that all free variables in the expression are
substituted, but does not ensure that the resulting expression is well-typed. For instance, e = x y can be
typed as x : 1 7→ 1, y : 1 ⊢ e : 1, and ∅ ⟨x 7→ (), y 7→ ()⟩ substitutes all free variables in e, but the resulting
expression [δ]e = () () cannot be typed.

As substitutions replace all free variables in the expression, they can be used to change the context in
which an expression is typed as a general case of thinning. Substitutions can be seen as an n-valued tuple
containing an expression ei for each variable xi of type Ai. As such, type preserving substitutions are
defined as:

Definition 3.3.3 (Type Preserving Substitution): A type preserving substitution Γ′ ⊢ δ : Γ is a syntactic
substitution δ defined on the variables defined in Γ, such that each variable xi : Ai ∈ Γ is mapped
to an expression ei of the same type in Γ′, denoted by the judgment Γ′ ⊢ ei : Ai. Inductively, type
preserving substitutions are defined by the following rules:

Γ′ ⊢ δ : Γ

stlc-subst-nil

Γ′ ⊢ ∅ : ·

stlc-subst-cons
Γ′ ⊢ δ : Γ Γ′ ⊢ e : A

Γ′ ⊢ δ ⟨x 7→ e⟩ : Γ, x : A
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Remark: At first glance, the order of Γ and Γ′ in the notation Γ′ ⊢ δ : Γ in this definition seems
backwards, as the substitution sends variables and expressions in Γ to expressions in Γ′. We adopt this
notation by Angiuli and Gratzer [2024] for reasons discussed in § 3.4.

As indicated by the name, type preserving substitutions preserve typeability of terms under the
substitution. This is captured by the following conjecture:

Theorem 3.3.4 (Substitution of Derivation): If Γ′ ⊢ δ : Γ and Γ ⊢ e : A then Γ′ ⊢ [δ]e : A.

The specific derivation is denoted Γ′ ⊢ δ : Γ; Γ ⊢ e : A.

We will prove this theorem by induction on the typing derivation Γ ⊢ e : A. As the λ, let and let!

cases extend the substitution, the proof requires extending the substitution with new variables mapped to
themselves. This is captured by the following lemmas, which thin the substitution with the new variable,
followed by adding the new variable respectively.

Lemma 3.3.5 (Thinning Substitution): If Γ1 ⊇ Γ′ and Γ′ ⊢ δ : Γ then Γ1 ⊢ δ : Γ.

Proof. By induction on the derivation of Γ′ ⊢ δ : Γ and applying Theorem 3.2.7.

Corollary 3.3.6 (Substitution Abstraction): If Γ1 ⊢ δ : Γ2 then Γ1, x : A ⊢ δ ⟨x 7→ x⟩ : Γ2, x : A.

Proof. By Lemma 3.3.5 and Theorem 3.2.7.

Proof of Theorem 3.3.4. By induction on the typing derivation Γ ⊢ e : A. In the stlc-fun-i, stlc-pair-e
and stlc-bind cases, we apply Corollary 3.3.6 to extend the substitution with newly bound variables.

Equivalences

In this system, the heap operations replaceA,B and freeA are annotated with types, rather than using

either typed references [Pierce 2002], or capabilities as in L3 [Morrisett et al. 2005]. As such, typeable
programs such as unsafe still get stuck. We give a denotational semantics in § 3.4, which utilizes partiality
to encode getting stuck. This partiality is then removed by refinement using the labeled type system in
Chapter 4. We want to ensure that the interpretations of β- and η-equivalent programs in the pure part
of the language are equal. Hence, we define a typed equivalence judgment:

Definition 3.3.7 (Equivalences): The equivalence judgment Γ ⊢ e1 ≡ e2 : A states that e1 and e2 are
equivalent typeable expressions of type A in a context Γ.

Γ ⊢ e1 ≡ e2 : A

stlc-eq-refl

Γ ⊢ e : A

Γ ⊢ e ≡ e : A

stlc-eq-sym

Γ ⊢ e1 ≡ e2 : A

Γ ⊢ e2 ≡ e1 : A

stlc-eq-trans

Γ ⊢ e1 ≡ e2 : A Γ ⊢ e2 ≡ e3 : A

Γ ⊢ e1 ≡ e3 : A

stlc-eq-fun-beta

Γ, x : A ⊢ e1 : B Γ ⊢ e2 : A

Γ ⊢ (λx : A. e1) e2 ≡ [I ⟨x 7→ e2⟩]e1 : B

stlc-eq-pair-beta

Γ ⊢ e1 : A Γ ⊢ e2 : B Γ, x : A, y : B ⊢ e3 : C

Γ ⊢ (let (x, y) = (e1, e2) in e3) ≡ [I ⟨x 7→ e1, y 7→ e2⟩]e3 : C

stlc-eq-fun-eta

Γ ⊢ e : A→ B x /∈ fv e

Γ ⊢ (λx : A. e x) ≡ e : A→ B

stlc-eq-pair-eta

Γ ⊢ e : A×B x, y /∈ fv e

Γ ⊢ (let (x, y) = e in (x, y)) ≡ e : A×B

stlc-eq-bind-beta

Γ ⊢ e1 : A Γ, x : A ⊢ e2 : T B

Γ ⊢ (let!x = (return e1) in e2) ≡ [I ⟨x 7→ e1⟩]e2 : T B

stlc-eq-bind-eta

Γ ⊢ e1 : T A

Γ ⊢ (let!x = e1 in returnx) ≡ e1 : T A
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stlc-eq-bind-bind

Γ ⊢ e1 : T A Γ, x : A ⊢ e2 : T B Γ, y : B ⊢ e3 : T C

Γ ⊢ (let! y = (let!x = e1 in e2) in e3) ≡ (let!x = e1 in (let! y = e2 in e3)) : T C

As well as congruence rules for each of the typing rules in Definition 3.2.4. For example, the
congruence rules for stlc-fun-e and stlc-pair-e are:

stlc-congr-fun-e
Γ ⊢ e1 ≡ e′1 : A→ B Γ ⊢ e2 ≡ e′2 : A

Γ ⊢ e1 e2 ≡ e′1 e
′
2 : B

stlc-congr-pair-e
Γ ⊢ e1 ≡ e′1 : A×B Γ, x : A, y : B ⊢ e2 ≡ e′2 : C

Γ ⊢ (let (x, y) = e1 in e2) ≡ (let (x, y) = e′1 in e
′
2) : C

The stlc-eq-refl, stlc-eq-sym and stlc-eq-trans rules establish that Γ ⊢ ≡ : A is an
equivalence relation for all expressions e ∈ Expr for which Γ ⊢ e : A.

The stlc-eq-fun-beta, stlc-eq-pair-beta, stlc-eq-fun-eta and stlc-eq-pair-eta rules are the
β and η equivalences for STLC with unit and products.

The stlc-eq-bind-beta, stlc-eq-bind-eta and stlc-eq-bind-bind rules correspond to the 3
monad laws and do not depend on the interpretation of heap operations. The form of these rules is the
same as those of the Simple Metalanguage by Moggi [1991]. The assumption Γ, y : B ⊢ e3 : T C of the
stlc-eq-bind-bind rule ensures (by the Barendregt convention) that x is not a free variable in e3.

These equivalences are sufficient to prove properties about the pure (not heap) part of the language,
such as proving that swapping a pair twice is equivalent to not swapping it at all (contexts and types are
omitted for brevity):

Example 3.3.8 (Swap swap):

swap_pair (swap_pair (x, y)) ≡ swap_pair ([I ⟨x1 7→ x, y1 7→ y⟩](y1, x1))

≡ swap_pair (y, x)

≡ [I ⟨x2 7→ y, y2 7→ x⟩](y2, x2)

≡ (x, y)

In the example, the given equality can be derived for a given context Γ (such as x : A, y : B), and
type A×B, but the context and type have been omitted for brevity. The derivation of the equality is not
shown, but can be derived using the equivalences in Definition 3.3.7. The shape of the equivalence rules
in Definition 3.3.7 is very similar to the typing rules in Definition 3.2.4, as typing such an equivalence is
sufficient to typing both expressions.

Theorem 3.3.9 (Equivalence Typeability): If Γ ⊢ e1 ≡ e2 : A then Γ ⊢ e1 : A and Γ ⊢ e2 : A.

Proof. By induction on the derivation of Γ ⊢ e1 ≡ e2 : A. The proof for each of the β- and η-equivalences
rules are similar. For instance, the derivations for the left and right expressions of stlc-eq-fun-beta
are given by:

Γ, x : A ⊢ e1 : B

Γ ⊢ (λx : A. e1) : A→ B
stlc-fun-i Γ ⊢ e2 : A

Γ ⊢ (λx : A. e1) e2 : B
stlc-fun-e

and
Γ ⊢ I : Γ Γ ⊢ e2 : A

Γ ⊢ I ⟨x 7→ e2⟩ : Γ, x : A
Γ, x : A ⊢ e1 : B

Γ ⊢ [I ⟨x 7→ e2⟩]e1 : B
Theorem 3.3.4

The η-rules are similar, but apply thinning rather than substitution. The congruence rules are proven
by induction and applying the corresponding typing rule for each side.

3.4 Denotational Semantics

We give a denotational semantics for λloc using a set interpretation of types. By proving that the
semantic substitution and syntactic substitution commute, we can show that the denotational semantics
is sound with respect to the β and η equivalences of λloc.
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Definition 3.4.1 (Denotation of Types):

JAK ∈ Set

J1K def
= {⋆} JA×BK def

= JAK× JBK JA→ BK def
= {f : JAK→ JBK} JlocK def

= L

JT AK def
= {f : Heap ⇀ JAK× Heap}

where:

Heap
def
= L fin−⇀

∑
⊢A:Pure

JAK

L is a countably infinite set of heap locations

The denotations of each type are defined as sets of elements as follows. The unit type is interpreted
as the set of a single unit element, the pair type as a cartesian product and the function type as a set of
total functions. This corresponds to the set interpretation of STLC with units and products [Pierce 2002].

The location type is interpreted as a countably infinite set of location values L such as the natural
numbers. The monadic type T A is interpreted as the set of partial functions from heaps to a return value
of type A and a resulting heap. The partiality in the interpretation is used to interpret heap operations
which may get stuck (such as freeing a location twice), rather than for recursion as in Fiore et al. [2022].

The set of heaps Heap is interpreted as a finite map from locations to a pure type A and a value in
the interpretation of that type. The heap is specifically restricted to Pure types, as these types do not
reference the Heap itself. Attempting to store a non-pure type (such as T 1) in the heap would require a
definition of Heap including at least:

Heap
def
= L fin−⇀ (Heap ⇀ 1× Heap) + . . .

= L fin−⇀ ((L fin−⇀ (Heap ⇀ 1× Heap) + . . .) ⇀ . . .) + . . .

This is not a valid definition as this definition of Heap uses a non-strictly positive occurrence of Heap,
i.e. on the left side of a function arrow, which prevents a straightforward inductive definition. Hence,
allowing the storing of the monadic type on the heap would require a more complex definition of Heap,
potentially involving constructs such as step indexing and guarded recursion [Appel and McAllester 2001;
Nakano 2000]. These methods are not used in this work, as the focus is on the labeled type system in
Chapter 4. Moreover, the restriction to Pure types ensures that the interpretations of programs with
heap operations are terminating: they either succeed or get stuck.

Note that only the monad type provides access to the heap, and can therefore be used for heap
operations, whereas the other types do not. Alternatively, each type could have been defined using the
monad (i.e. A represents T A), but that would require defining an implicit execution order for each
operation and complicates the denotational semantics. It is still possible to derive such a system by
redefining each expression constructor using the monadic bind and return, for instance: let (x, y) = e1 in e2
becomes let!xy = e1 in let (x, y) = xy in e2 and replaceA,B e1 e2 becomes let! l = e1 in let! v =
e2 in replaceA,B l v. We opt for a separate monadic type to simplify the denotational semantics of the
pure part of the language for both this system and the labeled system in Chapter 4 which takes advantage
of the lack of execution order.

The denotational semantics of expressions are defined only for typeable expressions, by defining the
denotation of typing derivations Γ ⊢ e : A instead of directly on expressions e ∈ Expr. They are defined
as functions from the denotation of the context JΓK to the denotation of the type JAK, where the context
JΓK are represented as functions from the variables in the context to the values in the denotations of the
types of those variables in the context.

Definition 3.4.2 (Denotation of Contexts):

JΓK ∈ Set

J·K def
= {[]} JΓ, x : AK def

= {γ ⟨x 7→ v⟩ | γ ∈ JΓK ∧ x ∈ JAK}
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We opt for a denotation of contexts similar to that of Fiore et al. [2022], rather than using cartesian
products, as it simplifies finding the denotation of a specific variable.

Using these contexts, we define the denotation of derivations inductively as functions from the
denotation of the context to the denotation of the type of the expressions:

Definition 3.4.3 (Denotation of Derivations):

JΓ ⊢ e : AK : JΓK→ JAK

t
x : A ∈ Γ

Γ ⊢ x : A

|

γ

def
= γ x

q
Γ ⊢ () : 1

y
γ

def
= ()

t
Γ, x : A ⊢ e : B

Γ ⊢ λx : A. e : A→ B

|

γ

def
= v ∈ JAK 7→ JΓ, x : A ⊢ e : BKγ⟨x 7→v⟩

t
Γ ⊢ e1 : A→ B Γ ⊢ e2 : A

Γ ⊢ e1 e2 : B

|

γ

def
= JΓ ⊢ e1 : A→ BKγ (JΓ ⊢ e2 : AKγ)

t
Γ ⊢ e1 : A Γ ⊢ e2 : B

Γ ⊢ (e1, e2) : A×B

|

γ

def
= (JΓ ⊢ e1 : AKγ , JΓ ⊢ e2 : BKγ)

t
Γ ⊢ e1 : A×B Γ, x : A, y : B ⊢ e2 : C

Γ ⊢ let (x, y) = e1 in e2 : C

|

γ

def
= JΓ, x : A, y : B ⊢ e2 : CKγ⟨(x,y) 7→JΓ⊢e1:A×BKγ⟩

t
Γ ⊢ e : A

Γ ⊢ return e : T A

|

γ

def
= h 7→ (JΓ ⊢ e : AKγ , h)

t
Γ ⊢ e1 : T A Γ, x : A ⊢ e2 : T B

Γ ⊢ let!x : A = e1 in e2 : T B

|

γ

def
= h 7→ let (x, h1) = JΓ ⊢ e1 : T AKγ h in

JΓ, x : A ⊢ e2 : T BKγ⟨x 7→x⟩ h1

t
Γ ⊢ e : A ⊢ A : Pure

Γ ⊢ refA e : T loc

|

γ

def
= h 7→ let l = newloch in

(l, h ⊎ {l 7→ (A, JΓ ⊢ e : AKγ)})
t
Γ ⊢ e : loc ⊢ A : Pure

Γ ⊢ freeA e : T A

|

γ

def
= h 7→ let l = JΓ ⊢ e : locKγin{

(π2(h l), h \ {l}) if π1(h l) = A

⊥ otherwise

u

ww
v

Γ ⊢ e1 : loc Γ ⊢ e2 : B
⊢ A : Pure ⊢ B : Pure

Γ ⊢ replaceA,B e1 e2 : T A

}

��
~

γ

def
= h 7→ let l = JΓ ⊢ e1 : locKγ in

let v = JΓ ⊢ e2 : BKγ in{
(π2 (h l), h ⟨l 7→ (B, v)⟩) if π1(h l) = A

⊥ otherwise

The interpretation of the variable rule corresponds to taking the value of the variable in the context.

The unit is always interpreted as the single unit element.

The interpretations of function abstraction and function application are the same as for STLC, and
the interpretation of pair introduction is the same as for STLC with products. The product elimination
finds the interpretation of the first expression e1 in JAK× JBK, assigns x to the value in JAK and y to the
value in JBK in an extended context, and then interprets the second expression e2 in the extended context.
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The return operation is interpreted as a total function from heaps to the interpretation of the inner
expression and the unaltered heap. Similarly, the let! operation is similar to the let operation for pairs,
but additionally threads the heap through the interpretations of the two expressions. For brevity, the
partiality of interpreting the two expressions is left implicit.

The ref operation is also interpreted as a total function from heaps to locations and an updated heap.
It first determines an unused location using the mathematical newloc function, which deterministically
returns a location not in the heap. The specific implementation of the newloc operation is not relevant,
as long as it is deterministic and the returned value is not in the heap. The new location is returned and
the interpretation of the expression is added to the heap. By the assumption ⊢ A : Pure in the derivation,
the interpretation JΓ ⊢ e : AK in the context can be placed in the heap along with type A.

The free operation is interpreted as a partial function which does the opposite to ref. It first
interprets the expression to a location l, then checks that the type of the value at that location is A. If it
is, the value is returned and the location is removed from the returned heap. Otherwise the operation
gets stuck and returns ⊥.

The interpretation of the replace operation is a combination of free and ref. It first interprets the
expression to a location l, then checks that the type of the value at that location is A. If it is, the value
is returned and the location is updated with the new value and type B. Otherwise the operation gets
stuck and returns ⊥.

The denotational semantics of a typing derivation describe the mathematical behavior of the program.
For instance, the denotational semantics of the swap_pair function corresponds to a mathematical
function that swaps two elements in a pair:

Example 3.4.4 (Denotation of swap_pair):

JΓ ⊢ swap_pair : A×B → B ×AKγ
= v ∈ JA×BK 7→ JΓ, e : A×B ⊢ swap_pair e : B ×AKγ⟨e7→v⟩

= (va, vb) ∈ JAK× JBK 7→ JΓ, e : A×B, x : A, y : B ⊢ (y, x) : B ×AKγ⟨(x,y)7→(va,vb)⟩

= (va, vb) ∈ JAK× JBK 7→ (vb, va)

The denotations of programs such as safe and unsafe, which use the monadic type T A, return
partial functions from heaps to a return value and new heap:

Example 3.4.5:
JΓ ⊢ duplicate : loc→ loc× locKγ = v ∈ L 7→ (v, v)

JΓ ⊢ free_pair : loc× loc→ T (1× 1)Kγ = (l1, l2) 7→ h 7→


(π2 (h l1), π2 (h l2)) if π1(h l1) = 1

and π1(h l2) = 1

and l1 ̸= l2

⊥ otherwise

JΓ ⊢ safe : 1→ T 1Kγ = ⋆ 7→ h 7→ (⋆, h)

JΓ ⊢ unsafe : 1→ T 1Kγ = ⋆ 7→ h 7→ ⊥

The denotation of duplicate is similar to swap_pair and is a function from a location to a pair of
the same location. The denotation of free_pair is a function taking a pair of locations and a heap, and
removing the locations from the heap if they contain a unit. As only allocated locations can be freed, the
denotation is not defined when the locations are the same or if one of the locations does not contain a
unit.

Using this denotation, the denotations for safe and unsafe are defined as functions that return the
same heap and get stuck (⊥ for any heap) respectively, as safe allocates and frees 2 new locations,
whereas unsafe only allocates one location and attempts to free it twice. As unsafe is still typeable, the
type system does not prevent memory errors such as double free. In Chapter 4 we refine the type system
to exclude such programs by making them untypeable.

As typing derivations in λloc are unique (Theorem 3.2.5), the denotational semantics of two typing
derivations are equal as well.
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Theorem 3.4.6 (Derivation Irrelevance): If d, e are two derivations of Γ ⊢ e : A then JdK = JeK.

Proof. By Theorem 3.2.5.

As the denotational semantics of a typing judgment does not depend on the specific derivation, it is
sufficient to write JΓ ⊢ e : AK instead of JdK for a specific derivation d of Γ ⊢ e : A. Furthermore, it is
an important property to ensure that the denotational interpretation of a program typed in the empty
context ⊢ e : A depends only on the expression e ∈ Expr and its type A ∈ Type , specified in the syntax,
rather than choices made by a type-checker in finding a derivation.

Semantic Equivalence

In Example 3.3.8 we showed that applying swap_pair twice is equivalent to not applying it at all. Indeed,
the denotational semantics of swap_pair(swap_pair(x, y)) is defined as:

JΓ ⊢ swap_pair (swap_pair (x, y)) : A×BKγ
= (((va, vb) 7→ (vb, va)) ◦ ((va, vb) 7→ (vb, va))) JΓ ⊢ (x, y) : A×BKγ
= JΓ ⊢ (x, y) : A×BKγ

In a more general sense, we want to show that the denotational semantics is sound with respect to the
equivalence relation (Definition 3.3.7), meaning that any β or η equivalent programs have the same
denotational semantics. This is not straightforward to prove, as the equivalence rules use substitution.
For instance, consider the stlc-eq-fun-beta rule:

JΓ ⊢ (λx : A. e1) e2 : BKγ = JΓ ⊢ (λx : A. e1) : A→ BKγ JΓ ⊢ e2 : AKγ
= λv ∈ JAK . JΓ, x : A ⊢ e1 : BKγ⟨x 7→v⟩ JΓ ⊢ e2 : AKγ
= JΓ, x : A ⊢ e1 : BKγ⟨x 7→JΓ⊢e2:AKγ⟩

=
(
JΓ, x : A ⊢ e1 : BK ◦

(
γ 7→ γ

〈
x 7→ JΓ ⊢ e2 : BKγ

〉))
γ

Here the type of γ 7→ γ
〈
x 7→ JΓ ⊢ e2 : BKγ

〉
is JΓK → JΓ, x : AK. What remains is to prove that this

substitution of γ followed by the denotation is the same as the denotation of the substitution. This
property is captured by the right hand side of the diagram below, namely, taking the denotation after
syntactic substitution is the same as first taking the denotation and then applying semantic substitution.

e Γ ⊢ e:A JΓ ⊢ e:AK

[δ]e ∆ ⊢ [δ]e:A J∆ ⊢ [δ]e:AK

δ

untyped

J·K

∆⊢δ:Γ J∆⊢δ:ΓK

untyped

J·K

Both semantic thinning and semantic substitution can be represented as functions between interpreta-
tions of contexts as follows:

Definition 3.4.7 (Denotation of Thinning):

JΓ ⊇ Γ′K : JΓK→ JΓ′K

q
· ⊇ ·

y
[] = []

t
Γ ⊇ Γ′

Γ, x : A ⊇ Γ′, x : A

|

(γ ⟨x 7→ v⟩) = (JΓ ⊇ Γ′K γ) ⟨x 7→ v⟩

t
Γ ⊇ Γ′

Γ, x : A ⊇ Γ′

|

(γ ⟨x 7→ v⟩) = JΓ ⊇ Γ′K γ
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Definition 3.4.8 (Denotation of Substitution):

JΓ ⊢ δ : Γ′K : JΓK→ JΓ′K

JΓ ⊢ ∅ : ·K [] def
= []

t
Γ ⊢ δ : Γ′ Γ ⊢ e : A

Γ ⊢ δ ⟨x 7→ e⟩ : Γ′, x : A

|

γ
def
= (JΓ ⊢ δ : Γ′K γ) ⟨x 7→ JΓ ⊢ e : AK γ⟩

The denotational semantics of substitutions is defined inductively using the empty substitution ∅ and
the update of a substitution with a single new variable. The order of the notation for Γ ⊢ δ : Γ′ is chosen
to match the order of the denotational semantics, as JΓ ⊢ δ : Γ′K ∈ JΓK→ JΓ′K has the same order as for
typing derivations: JΓ ⊢ e : AK ∈ JΓK→ JAK.

Remark: The notation γ ⟨x 7→ v⟩ in these definitions correspond to deconstructing a context γ′ ∈
JΓ, x : AK into γ ∈ JΓK and v ∈ JAK where v = γ′ x and γ is γ′ but with x undefined.

In the case of stlc-eq-fun-beta, the denotation of the substitution corresponds to the required
function between context interpretations:

JΓ ⊢ I ⟨x 7→2⟩ : Γ, x : AK = γ 7→ γ
〈
x 7→ JΓ ⊢ e2 : AKγ

〉
Using this interpretation, and the commutativity of the diagram above, we can prove that the denotational
semantics is sound with respect to stlc-eq-fun-beta.

Proving the commutativity of the diagrams takes a similar approach to the proof that type preserving
substitution preserves typeability of an expression in a context (Theorem 3.3.4). First, we show the
same property for thinning: that thinning a context and then taking the interpretation commutes with
taking the interpretation and then applying the interpretation of the thinning (Lemma 3.4.9). Next,
we expand this thinning property from typing judgments to typed substitutions (Lemma 3.4.10), and
then show that extending a substitution with a single variable and taking the interpretation commute
(Lemma 3.4.11). Finally, we use these lemmas to prove that typed syntactic substitution and semantic
substitution commute (Theorem 3.4.12).

Lemma 3.4.9 (Semantic Thinning): JΓ′ ⊇ Γ; Γ ⊢ e : AK = JΓ′ ⊇ ΓK ; JΓ ⊢ e : AK

Proof. By induction on the typing derivation Γ ⊢ e : A generalized over all Γ′.

Lemma 3.4.10 (Denotation of Substitution Thinning): If Γ1 ⊇ Γ′ and Γ′ ⊢ δ : Γ then JΓ1 ⊇ Γ′; Γ′ ⊢ δ : ΓK =
JΓ1 ⊑ Γ′K ; JΓ′ ⊢ δ : ΓK

Proof. By induction on the typing derivation Γ′ ⊢ δ : Γ using Lemma 3.4.9 in the stlc-subst-cons
case.

Lemma 3.4.11 (Denotation of Substitution Abstraction): If Γ ⊢ δ : Γ′, γ ∈ JΓK and v ∈ JAK then:

JΓ, x : A ⊢ δ ⟨x 7→ x⟩ : Γ′, x : AK (γ ⟨x 7→ v⟩) = (JΓ ⊢ δ : Γ′K γ) ⟨x 7→ v⟩

Proof. By the definition of JΓ, x : A ⊢ δ ⟨x 7→ x⟩ : Γ′, x : AK and applying Lemma 3.4.10.

Theorem 3.4.12 (Semantic Substitution): JΓ′ ⊢ δ : Γ; Γ ⊢ e : AK = JΓ′ ⊢ δ : ΓK ; JΓ ⊢ e : AK

Proof. By induction on the typing derivation Γ ⊢ e : A using Lemma 3.4.11 in the stlc-fun-i, stlc-pair-e
and stlc-bind cases.

The final property for this system is to show that the denotational semantics is sound with respect to
the equivalences in § 3.3.

Theorem 3.4.13 (Soundness w.r.t. Equivalences): If Γ ⊢ e1 ≡ e2 : A then JΓ ⊢ e1 : AK = JΓ ⊢ e2 : AK.
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Proof. By induction on the derivation of Γ ⊢ e1 ≡ e2. The β-rules are proven using the semantic
substitution theorem (Theorem 3.4.12), the η-rules by derivation irrelevance (Theorem 3.4.6) and the
congruence rules by induction. For instance, the proof for stlc-eq-fun-eta is as follows:

JΓ ⊢ (λx : A.e) : A→ BKγ
= v ∈ JAK 7→ JΓ, x : A ⊢ e x : BKγ⟨x 7→v⟩

= v ∈ JAK 7→ JΓ, x : A ⊢ e : A→ BKγ⟨x 7→v⟩

(
JΓ, x : A ⊢ x : AKγ⟨x7→v⟩

)
= v ∈ JAK 7→ JΓ, x : A ⊇ Γ; Γ ⊢ e : A→ BKγ⟨x 7→v⟩ (v) (By Theorem 3.4.6)

= v ∈ JAK 7→ JΓ ⊢ e : A→ BKγ (v) (By Lemma 3.4.9)

= JΓ ⊢ e : A→ BKγ
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Chapter 4

Labeled Lambda Calculus

In the previous section we described a system and type theory for a simply types lambda calculus with
locations λloc. This system permitted both weakening (leaving variables unused) and contraction (using
variables more than once), and therefore could not rule out the possibility of memory errors such as
use-after-free. In this section, we extend the types of λloc with resource tracking, such that well-typed
programs in the extended language λ∗ do not get stuck.

Specifically, we prove a semantic safety theorem for the extended language corresponding to the
semantic soundness theorem by Milner [1978], which states that the interpretation of well-typed terms is
valid. In λloc, the only denotations which can be ‘wrong’ in this sense are those of heap operations T A,
as their interpretation is undefined when heap operations get stuck. Hence, the goal of λ∗ is to ensure
that well-typed programs of type T A correspond to total, rather than partial functions from heaps to a
result value and updated heap, which we prove at the end of this section (Corollary 4.4.27).

The type system of λ∗ is based on the logic of bunched implications (§ 2.2), rather than linear logic,
meaning that it can represent functions which share resources between their arguments and captured
variables. The language uses both additive (∧, ⇒) and multiplicative (∗,−∗) products and functions
which describe shared and disjoint resources respectively.

Previous works on incorporating bunched implications in type theories have been made using a tree
structure of contexts, called bunches, such as in the work by Pym et al. [O’Hearn and Pym 1999]. The
denotational interpretation of such bunches consists of forming a tree of ∗ and ∧ connectives. We instead
build our type theory of bunched implications using a resource labeling of types, inspired by the labeled
sequent calculus of BBI by Hóu et al. [2015] for a classical version of BI. In this approach, each type is
annotated with a label, representing the resources held by the value of that type. In our case, these labels
represent the partial heaps and each type is annotated with a partial heap in which the type is valid.
Intuitively, the types represent separation logic propositions, whereas the labeling of a type represents
the proposition holding for the specific heap corresponding to the label. The labeling of types prevents
the need for the tree structure of bunches, and therefore supports simple validity conditions for both
types and contexts in terms of the denotation of λloc (Definitions 4.4.19 and 4.4.22).

Rather than defining λ∗ as a language with separate denotational semantics, we take an approach
similar to that of type-preserving compilation [Morrisett et al. 1999] and erasure of refinement types [Gha-
layini and Krishnaswami 2023]. For the labeled system λ∗, we define types and expressions (§ 4.1) which
erase (compile) to the unlabeled system λloc (§ 4.4) while preserving well-typedness (Theorem 4.4.5).
The denotational semantics of the labeled system is then defined as the denotation of the erased system
(§ 4.4). The additional guarantees of the labeled system are finally proven with respect to the denotation
of the erased system in a separate regularity theorem (Theorem 4.4.26), from which we conclude semantic
safety (Corollary 4.4.27) corresponding to the statement ‘well-typed programs don’t go wrong’.

4.1 Syntax

The syntax of the labeled calculus λ∗ extends that of the λloc by defining both an additive and
multiplicative version of functions, products and units. The labeled system similarly has the monadic
type for heap operations, but uses typed linear references RefA instead of the untyped locations loc of
λloc. The types and expressions of λ∗ are defined as follows:
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Definition 4.1.1 (Types):

A ∈ Type ::= 1a | A ∧B | A⇒ B (Additive)

| 1m | A ∗B | A −∗ B (Multiplicative)

| T A | RefA (References)

Definition 4.1.2 (Expressions):

e ∈ Expr ::= x | ⟨⟩ | let ⟨⟩ = e1 in e2 | ⟨e1, e2⟩ | let ⟨x, y⟩ = e1 in e2 | λ∗x : A. e | e∗1 e2 (Multiplicative)

| [] | [e1, e2] | let [x, y] = e1 in e2 | λx : A. e | e1 e2 (Additive)

| return e | let!x = e1 in e2 (Monadic Operations)

| refA e | replaceA,B e1 e2 | freeA e

Unit Types. In λ∗ there are two types of units. The first is the additive unit 1a, which can hold any
resources and corresponds to ⊤ in separation logic. It is constructed using the [] expression, and like
the unit 1 in λloc, does not have an elimination form. The second type of unit is the multiplicative
unit 1m, which holds no resources – similar to emp in separation logic – and is constructed using ⟨⟩. The
multiplicative unit can be eliminated using the let ⟨⟩ = e1 in e2 expression, which is used to witness that
the expression e1 describes no resources.

Product Types. There are also both additive and multiplicative products. The additive product A ∧B
is constructed using the [e1, e2] expression, and describes pairs in which both elements describe the
same resources. The elimination form let [x, y] = e1 in e2 is used to access the components of the pair
simultaneously, after which x and y both hold the same resources as e1. The multiplicative product
A ∗B, constructed using ⟨e1, e2⟩, instead describes pairs in which the resources described by A and B
are disjoint. The elimination form let ⟨x, y⟩ = e1 in e2 is used to access the components of the pair
separately, after which x and y together describe the same resources as e1.

Function Types. λ∗ also has two function types, corresponding to the additive and multiplicative
implications in BI respectively. The additive function type A ⇒ B is constructed using the λx : A. e
expression, and is used to describe functions where the function and argument may share the same
resources. The additive function type can be eliminated using e1 e2, where the resources described by the
function e1, the argument e2 and the result are all the same.

The multiplicative function type A −∗ B, corresponding to −∗ in separation logic and ⊸ in BI, is
constructed using the λ∗x : A. e expression, and is used to describe functions where the function and
argument describe disjoint resources. The multiplicative function type can be eliminated using e∗1 e2,
where the resources described by the function and argument must be disjoint, and the resources described
by the result are the union of both the function and argument.

The additive function type can be used in combination with additive pairs, whereas the multiplicative
function can be used in combination with multiplicative pairs. For instance, the following function which
ignores the argument can only be written using the additive function pair:

let [x, y] = e1 in (λx : A. y)x

The same program with the multiplicative pair and function type is incorrect, as the resources of the
result (those of y) are not the union of those of the function (those of y) and the argument (x):

let ⟨x, y⟩ = e1 in (λ
∗x : A. y)∗ x

Monadic Type. λ∗ also supports monadic types, which are used to encapsulate heap computations
that produce values of a certain type. The monadic type T A represents a heap computation that, when
executed, yields a value of type A. The resources of the monadic type are the partial heap necessary
to execute the computation, and the resources of the resulting type A are the partial heap after the
computation has been executed. As such, the monadic type T A closely resembles the weakest precondition
in separation logic.
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As the monadic type is a monad, it supports the return operation which creates a heap computation
that results in the same expression and does not change the heap, and a monadic bind operation
let!x : A = e1 in e2 which sequences two heap computations e1 of type T A and e2 of type T B.

Reference Types. The reference type RefA represents a reference to a memory location that stores a
value of type A. The resources of the reference type are both the location itself, and the resources of
the value of type A stored at that location. The reference type RefA is constructed using the refA e
expression, which allocates a new memory location and initializes it with the value e of type A. As
creating a reference is a heap operation, the resulting type T (RefA) is wrapped in the monadic type.

References can be updated using the replaceA,B e1 e2 operation (similar to replace in Rust), which
updates the value stored at the memory location referenced by e1 with the new value e2 of type B. As
the replace operation performs strong updates (i.e. updates that change the type of the reference), and
the resources of the value stored at the location change, the operation returns not only the previous value,
but also a new reference of the updated type B. The operation swaps the resources of the previous value
on the heap out of the reference type, and the resources of the new value into the reference type. This
differs from the λloc, where the replace operation only returns the previous value, as the location type
loc does not contain information about the type stored at that location.

Finally, linear references can be freed by giving up the reference of type RefA, resulting in the value
of type A previously stored at that location. This deallocates the resources corresponding to the location
itself, and returns the resources of the A previously stored at that location.

4.2 Typing

Similar to the simply typed system, λ∗ makes a distinction between the types which can be stored on
the heap, and those which cannot. More specifically, any type involving heap computations T A cannot
be stored on the heap to ensure that all programs are terminating. Allowing T A to be stored on the
heap would allow for unbounded recursion through Landin’s knot [Landin 1964]. As in λloc, each type is
assigned a kind, either Stateful for types containing heap computations, or Pure for types that do not,
and can therefore be stored on the heap.

Definition 4.2.1 (Type Kinds):

⊢ A : k

⊢ 1a : k
⊢ A : k ⊢ B : k

⊢ (A ∧B) : k

⊢ A : k ⊢ B : k

⊢ (A⇒ B) : k
⊢ 1m : k

⊢ A : k ⊢ B : k

⊢ (A ∗B) : k

⊢ A : k ⊢ B : k

⊢ (A −∗ B) : k

⊢ A : k

⊢ T A : Stateful

⊢ A : Pure

⊢ (RefA) : k

The main difference in the definition of ⊢ A : k between λ∗ and λloc is the addition of the RefA type
constructor instead of the untyped loc type. The RefA type also describes the type of the value stored
at the location, and therefore requires that A is pure, to ensure it can be stored in the heap. Unlike the
monadic type T A, the reference type RefA is not restricted to the Stateful type kind, as it represents
a location, which itself can be stored on the heap. Even though the reference type RefA describes part
of the heap, its denotational semantics does not. The specifics of this will be discussed in § 4.4.

The discussion on type constructors in the syntax section discussed the concept of resources informally.
In the λ∗, we take the approach of Hóu et al. [2015] and Ghari [2017] to include include the resources in
the judgment rules in the form of labels and worlds.

Labels and Worlds. Similar to how variables in the λ-calculus can be interpreted as placeholders for
values or expressions, labels in the labeled calculus can be interpreted as placeholders for resources.

30



4.2. TYPING

Definition 4.2.2 (Worlds):

a, b, c : Label

w ∈ World ::= ϵ | a

Where Label is a countably infinite set of labels.

Whereas the expression language (Expr) is relatively large, the only possible worlds are the labels,
and a special world ϵ, which represents no resources. In the concept of separation logic, the labels can be
thought of as representing any partial heap, whereas the empty world ϵ specifically represents the empty
heap.

Each type in the labeled system A ∈ Type is labeled with a world w ∈ World, denoted A@w and
called a labeled type. This allows the type system to track which resources are held by values or expressions
of a given type and ensure that resources are managed correctly. The intuitive definition of A@w with
respect to separation logic, is that the labeled type A@w for a given heap h representing world w
represents the values of type A which satisfy h. If A were a proposition this would correspond to h |= A.

In the partial heap model of separation logic, disjoint partial heaps h1# h2 can be combined into
a single larger heap h1 ⊎ h2. Similarly, two worlds can be merged into a single larger world. However,
as labels are variables, it is not possible to decide whether two labels represent disjoint partial heaps.
Instead, the labeled system takes a top-down approach, and adds constraints which represent the fact
that a world can be split into two disjoint worlds.

Definition 4.2.3 (Constraints): A constraint is a triple of worlds w1, w2, w3 ∈ World such that world w3

can be split into worlds w1 and w2, denoted (w1, w2 ▷ w3).

In the partial heap interpretation of worlds, as in the model of separation logic, the constraint
(w1, w2 ▷ w3) is interpreted as w1 and w2 being disjoint heaps h1 and h2 which can be combined into a
larger heap h3. Hence, the (w1, w2 ▷ w3) corresponds to the equality h1 ⊎ h2 = h3.

The type system for the labeled system tracks not only the types of variables, but also the defined
labels and constraints on worlds. As such, the context is defined in 3 parts as follows:

Definition 4.2.4 (Contexts):

Σ ::= · | Σ, l (Where l ∈ Label)

Θ ::= · | Θ, (w1, w2 ▷ w3) (Where w1, w2, w3 ∈ World)

Γ ::= · | Γ, x : A@w (Where A ∈ Type , w ∈ World)

The labeled system adds 2 additional contexts. The first is the Σ context. It is similar to the Γ context
in STLC, but contains only variables of a special Label type, which is interpreted as partial heaps.

The second context is the Θ context, which is used to track the constraints between labels, describing
the ways in which the corresponding partial heaps can be split and merged.

Finally, there is the variable context Γ, which is similar to that of STLC and λloc, but additionally
labels each type A with a world w. The labeled type A@w can be interpreted as representing the values
of type A which are valid for the partial heap described by world w.

Notation: The notation Ω := Σ;Θ; Γ represents the contexts Σ, Θ and Γ. Additionally, we use the
notations ‘Ω, a’, ‘Ω, (w1, w2 ▷ w3)’ and ‘Ω, x : A@w’ to add labels, constraints and assumptions to Σ,
Θ and Γ respectively. The notations Ω.Σ, Ω.Θ and Ω.Γ are used to refer to the Σ, Θ and Γ contexts
of Ω respectively.

Notation: The set of worlds which are defined by a given label context Σ consists of the labels defined by

Σ and the empty world and is denoted Σϵ
def
= Σ ∪ {ϵ}

Similar to how typing an expression e ∈ Expr in STLC is only possible in contexts Γ which give types
to all the free variables in e, the typing judgment in the labeled system is only valid for contexts in which
all the labels in both the constraint Θ and assumption Γ contexts are defined in the label context Σ. This
condition is the well-formedness condition of contexts and is formally specified as follows:
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Definition 4.2.5 (Constraint Context Well-formedness):

Σ ⊢ Θ wf

stlc-sep-theta-emp-wf

Σ ⊢ · wf

stlc-sep-theta-constr-wf
Σ ⊢ Θ wf w1, w2, w3 ∈ Σϵ

Σ ⊢ Θ, (w1, w2 ▷ w3) wf

Definition 4.2.6 (Assumption Context Well-formedness):

Σ ⊢ Γ wf

stlc-sep-gamma-emp-wf

Σ ⊢ · wf

stlc-sep-gamma-assumption-wf
Σ ⊢ Γ wf w ∈ Σϵ ⊢ A : Stateful

Σ ⊢ Γ, x : A@w wf

The additional assumption ⊢ A : Stateful ensures that all references RefA in the context contain
only pure types A which may be stored on the heap.

Definition 4.2.7 (Context Well-formedness):

Σ;Θ; Γ wf

stlc-sep-ctx-wf
Σ ⊢ Θ wf Σ ⊢ Γ wf

Σ;Θ; Γ wf

Using these three contexts, we define the typing judgment Ω ⊢ e : A@w as that the expression
e ∈ Expr has type A ∈ Type in context Ω and is valid in world w ∈ World by the following rules:

Definition 4.2.8 (Typing Rules):

Ω ⊢ e : A@w

Logical Rules:

stlc-sep-var
x : A@w ∈ Ω.Γ

Ω ⊢ x : A@w

stlc-sep-a-unit-i
w ∈ Ω.Σϵ

Ω ⊢ [] : 1a @w

stlc-sep-a-fun-i
w ∈ Ω.Σϵ ⊢ A : Stateful Ω, x : A@w ⊢ e : B@w

Ω ⊢ λx : A. e : A⇒ B@w

stlc-sep-a-fun-e
Ω ⊢ e1 : A⇒ B@w Ω ⊢ e2 : A@w

Ω ⊢ e1 e2 : B@w

stlc-sep-a-pair-i
Ω ⊢ e1 : A@w Ω ⊢ e2 : B@w

Ω ⊢ [e1, e2] : A ∧B@w

stlc-sep-a-pair-e
Ω ⊢ e1 : A ∧B@w Ω, x : A@w, y : B@w ⊢ e2 : C @w′

Ω ⊢ let [x, y] = e1 in e2 : C @w′

stlc-sep-m-unit-i

Ω ⊢ ⟨⟩ : 1m @ ϵ

stlc-sep-m-unit-e
Ω ⊢ e1 : 1m @w′ Ω, (ϵ, ϵ ▷ w′) ⊢ e2 : C @w

Ω ⊢ let ⟨⟩ = e1 in e2 : C @w

stlc-sep-m-fun-i
w ∈ Ω.Σϵ ⊢ A : Stateful Ω, a, c, (w, a ▷ c) , x : A@ a ⊢ e : B@ c

Ω ⊢ λ∗x : A. e : A −∗ B@w

stlc-sep-m-fun-e
(w1, w2 ▷ w) ∈ Ω.Θ Ω ⊢ e1 : A −∗ B@w1 Ω ⊢ e2 : A@w2

Ω ⊢ e∗1 e2 : B@w
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stlc-sep-m-pair-i
(w1, w2 ▷ w) ∈ Ω.Θ Ω ⊢ e1 : A@w1 Ω ⊢ e2 : B@w2

Ω ⊢ ⟨e1, e2⟩ : A ∗B@w

stlc-sep-m-pair-e
w′ ∈ Ω.Σϵ Ω ⊢ e1 : A ∗B@w

Ω, a, b, x : A@ a, y : B@ b, (a, b ▷ w) ⊢ e2 : C @w′

Ω ⊢ let ⟨x, y⟩ = e1 in e2 : C @w′

stlc-sep-return
Ω ⊢ e : A@w

Ω ⊢ return e : T A@w

stlc-sep-bind
(w1, w2 ▷ w) ∈ Ω.Θ Ω ⊢ e1 : T A@w1 Ω, a, c, (w2, a ▷ c) , x : A@ a ⊢ e2 : T B@ c

Ω ⊢ let!x = e1 in e2 : T B@w

stlc-sep-newref
Ω ⊢ e : A@w ⊢ A : Pure

Ω ⊢ refA e : T (RefA)@w

stlc-sep-replace
(w1, w2 ▷ w) ∈ Ω.Θ Ω ⊢ e1 : RefA@w1 Ω ⊢ e2 : B@w2 ⊢ B : Pure

Ω ⊢ replaceA,B e1 e2 : T (A ∗ RefB)@w

stlc-sep-free
Ω ⊢ e : RefA@w

Ω ⊢ freeA e : T A@w

Structural Rules:

stlc-sep-sym
(w1, w2 ▷ w3) ∈ Ω.Θ Ω, (w2, w1 ▷ w3) ⊢ e : A@w

Ω ⊢ e : A@w

stlc-sep-unit-1
w1 ∈ Ω.Σϵ Ω, (w1, ϵ ▷ w1) ⊢ e : A@w

Ω ⊢ e : A@w

stlc-sep-unit-2
(w1, ϵ ▷ w2) ∈ Ω.Θ Ω, (w2, ϵ ▷ w1) ⊢ e : A@w

Ω ⊢ e : A@w

stlc-sep-cast
(w, ϵ ▷ w′) ∈ Ω.Θ Ω ⊢ e : A@w

Ω ⊢ e : A@w′

stlc-sep-assoc
w ∈ Ω.Σϵ (w1, w2 ▷ w12) ∈ Ω.Θ

(w12, w3 ▷ w123) ∈ Ω.Θ Ω, k, (w2, w3 ▷ k) , (w1, k ▷ w123) ⊢ e : A@w

Ω ⊢ e : A@w

stlc-sep-assoc-unit-1
(w1, ϵ ▷ w

′
1) ∈ Ω (w′

1, w2 ▷ w3) ∈ Ω.Θ Ω, (w1, w2 ▷ w3) ⊢ e : A@w

Ω ⊢ e : A@w

stlc-sep-assoc-unit-2
(w3, ϵ ▷ w

′
3) ∈ Ω.Θ (w1, w2 ▷ w3) ∈ Ω.Θ Ω, (w1, w2 ▷ w

′
3) ⊢ e : A@w

Ω ⊢ e : A@w

The labeled system has 2 types of typing rules: the logical rules which are dependent on the structure
of the expression, and structural rules which reason about worlds without changing the expression.

Logical Rules. In the labeled system, assumptions are annotated with worlds, and the variable rule
stlc-sep-var can only be applied when the world of the assumption and conclusion are the same.

The introduction and elimination rules for the additive connectives 1a, ⇒ and ∧ match those of
the intuitionistic typing rules in Definition 3.2.4, except that they use the same world w for all added
assumptions and conclusions. The only difference is the conclusion of stlc-sep-a-pair-e, in which the
conclusion can be of any labeled type C @w′ in a world that is not necessarily w, for the same reason as
that the type of the conclusion can be any type C, possibly unrelated to A or B in λloc.
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The stlc-sep-m-unit-i rule ensures that any multiplicative unit is in the empty world ϵ. This
corresponds to how the only heap that satisfies emp in separation logic is the empty heap. The stlc-sep-
m-unit-e rule uses the property that any multiplicative unit is in the empty world to add the constraint
(ϵ, ϵ ▷ w′), which corresponds to the equation ∅⊎ ∅ = h and is equivalent to h = ∅. By the structural rules,
this means that types of world w′ and ϵ can be used interchangeably.

The stlc-sep-m-fun-i rule can similarly be interpreted using the partial heap model of separation
logic. It states that an abstraction is a multiplicative function A −∗ B valid in a world w (represented by
heap hw) when both w is a valid world, for any two heaps ha and hc such that hw ⊎ ha = hc, and ha is a
valid heap for x : A, then hc is a valid heap for expression e : B. This corresponds to the partial heap
model h |= A−∗ B for separation logic. Both this rule and the stlc-sep-a-fun-i rule require that the
type A is stateful to ensure that all references in A, and therefore also the extended context, contain only
pure types that can be stored on the heap.

The stlc-sep-m-fun-e rule does the opposite, as it splits the world w into two worlds w1 and w2,
where w1 is valid for the multiplicative function, and w2 is valid for the argument to conclude that the
application is valid in w. This interpretation follows from reading the heap condition for h |= A −∗ B
backwards, namely where w represents the heap h ⊎ h2, w1 represents h and w2 represents h2.

The stlc-sep-m-pair-i and stlc-sep-m-pair-e rules similarly follow from the heap interpretation of
separation logic.

As the return operation does not change the heap, the world w in the assumption and the conclusion
of the stlc-sep-return rule are the same.

The stlc-sep-bind rule is the only rule which ‘executes’ heap operations and therefore changes the
heap. It is a combination of the stlc-sep-m-fun-e and stlc-sep-m-fun-i rules, where the world w
is split into two worlds w1 and w2 for the monadic value and the continuation respectively. The main
difference is that the monadic value T A@w1 is executed, resulting in a value A@ a, where the heap
represented by world a is the heap after executing heap operations and is therefore not necessarily the
same as w1. In the continuation, we have access to the updated part of the heap a, and the unused part
of the heap w2.

The worlds w for the stlc-sep-newref, stlc-sep-replace and stlc-sep-free rules represent the
part of the heap which is updated by the operation (before the operation). From the stlc-sep-newref
rule, it follows that the Ref A type describes not only the new location, but also the resources owned by
the value A@w at that location. As in λloc, the types stored on the heap must be pure. The types of
the references RefA and RefB are additionally forced to be the same types as specified by the operations.
This ensures that the types of the values in the heap match up, and the operations do not get stuck,
unlike in λloc. Unlike in the base language, replace not only returns the value previously stored at
the location, but also the location itself, updated with the newly stored type. This is because reference
types are linear. As all types in well-formed contexts are stateful, reference types contain only pure
types, meaning that only the types to be stored have to be checked as pure in the stlc-sep-newref and
stlc-sep-replace rules.

Structural Rules. In addition to the logical rules, the labeled system has structural rules, which are used
to reason about worlds, rather than the expressions themselves. The stlc-sep-sym and stlc-sep-assoc
rules reflect that disjoint union is both commutative and associative. The stlc-sep-assoc-unit-1 and
stlc-sep-assoc-unit-2 rules are special cases of the stlc-sep-assoc rule in which one of the worlds is
the empty world ϵ and hence we can use the existing label w2 instead of k.

The stlc-sep-unit-1 and stlc-sep-unit-2 rules reflect that the empty heap (represented by world ϵ)
is a unit of the disjoint union. Finally, the stlc-sep-cast rule uses the property that the empty heap is
a unit of the disjoint union operation to allow the worlds w and w′ to be used interchangeably by casting
types from world w to world w′.

The main difference between the structural rules by Hóu et al. [2015] and our labeled system is
the choice of rules for equal worlds represented by the constraint (w1, ϵ ▷ w2). Whereas their system
uses a substitution rule for labels to handle multiple conclusions, we opt for a casting approach similar
to the subsumption rule for subtyping [Pierce 2002]. Additionally we add special cases of the stlc-
sep-assoc rule to model the substitution in constraints. This simplifies the proof that well-typed
substitutions preserve well-typedness, as substitution of a specific label does not commute with general
label substitution.
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Example 4.2.9 (Associativity): A simple example program which uses the structural rules is the function
which associates a multiplicative triple from the right to the left. As the resources of the argument
and result are the same, we use an additive function instead of a multiplicative function.

assoc
def
= λxyz : (A ∗ (B ∗ C)).let ⟨x, yz⟩ = xyz in (1)

let ⟨y, z⟩ = yz in (2)

⟨⟨x, y⟩, z⟩ (3)

As typing derivations in the labeled system are large due to the size of the context, will instead
describe the steps of the derivation a ⊢ assoc : (A ∗ (B ∗ C))⇒ (A ∗B) ∗ C @ a rather than giving the
derivation itself. The additional label a ensures that assoc is typeable in any world. The steps of the
derivation are as follows:

1. First the rule stlc-sep-a-fun-i is applied, which adds xyz : A ∗ (B ∗ C)@ a to the context.
2. Next the rule stlc-sep-m-pair-e is used to eliminate the let binding on line 1. We use w = a and

w′ = a. This results in two new labels b, c, the constraint (b, c ▷ a) and the assumptions x : A@ b
and yz : B ∗ C @ c.

3. The stlc-sep-m-pair-e rule is used again to eliminate the let binding on line 2. We use w = c and
w′ = a. This results in two new labels d, e, the constraint (d, e ▷ c) and the assumptions y : B@ d
and z : C @ e.

4. The stlc-sep-m-pair-i rule cannot immediately be applied, as there is no constraint which splits
the world a into e and another world. Instead we apply stlc-sep-assoc which creates a new label
f , and constraints (b, d ▷ f) and (f, e ▷ a).

5. The rule stlc-sep-m-pair-i is applied using the constraint (f, e ▷ a), and the right hand side is
typed using the stlc-sep-var rule.

6. Finally we must type ⟨x, y⟩ : A ∗ B@ f , which is done using the stlc-sep-m-pair-i rule and
(b, d ▷ f) constraint.

These steps for deriving a ⊢ assoc : (A ∗ (B ∗ C))⇒ (A ∗B) ∗ C @ a are more succinctly denoted in
the following table:

Typed Expression Rule Added to Context
λxyz : A ∗ (B ∗ C). . . . : (A ∗B) ∗ C @ a stlc-sep-a-fun-i xyz : A ∗ (B ∗ C)@ a
let ⟨x, yz⟩ = xyz in . . .: (A ∗B) ∗ C @ a stlc-sep-m-pair-e b, cd, (b, cd ▷ a) , x : A@ b, yz : B ∗ C @ c
– xyz : A ∗ (B ∗ C)@ a stlc-sep-var
let ⟨y, z⟩ = yz in . . . : (A ∗B) ∗ C @ a stlc-sep-m-pair-e d, e, (d, e ▷ c) , y : B@ d, z : C @ e
– yz : B ∗ C @ c stlc-sep-var

stlc-sep-assoc f, (b, d ▷ f) , (f, e ▷ a)
⟨⟨x, y⟩, z⟩ : (A ∗B) ∗ C @ a stlc-sep-m-pair-i
– ⟨x, y⟩ : A ∗B@ f stlc-sep-m-pair-i
– – x : A@ b stlc-sep-var
– – y : B@ d stlc-sep-var
– z : C @ e stlc-sep-var

In the table, the first column represents the expression and the labeled type with which it should be
typed. The second column states the applied rule for the expression, and the third column the labels,
constraints and assumptions added to the context during the typing of this part of the expression. As
examples may be several lines long, the table is split into sections, one for each line of the program,
with . . . representing the remaining lines. The typing of subexpressions is denoted by an indent ‘–’. The
application of structural rules is denoted by a line with no expression.

Next we consider the function duplicate from simply typed λloc, written both using a multiplicative
and additive pair:

Example 4.2.10 (Duplicate):

duplicate_a
def
= λx : Ref 1m. [x, x] (Additive)

duplicate_m
def
= λx : Ref 1m. ⟨x, x⟩ (Multiplicative)
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In the labeled typing system, the additive version can be typed a ⊢ duplicate_a : Ref 1m ⇒
Ref 1m ∧ Ref 1m, but the multiplicative version cannot. The additive version is typed as follows:

Typed Expression Rule Added to Context
λx : Ref 1m. [x, x]: Ref 1m ⇒ Ref 1m ∧ Ref 1m@ a stlc-sep-a-fun-i x : Ref 1m@ a
– [x, x] : Ref 1m ∧ Ref 1m@ a stlc-sep-a-pair-i
– – x : Ref 1m@ a stlc-sep-var
– – x : Ref 1m@ a stlc-sep-var

Attempting to type the multiplicative version duplicate_m results in the following table corresponding
to the typing derivation:

Typed Expression Rule Added to Context
λx : Ref 1m. ⟨x, x⟩: Ref 1m ⇒ Ref 1m ∗ Ref 1m@ a stlc-sep-a-fun-i x : Ref 1m@ a

‘no rule exists’ (a, a ▷ a)
– ⟨x, x⟩ : Ref 1m ∗ Ref 1m@ a stlc-sep-m-pair-i
– – x : Ref 1m@ a stlc-sep-var
– – x : Ref 1m@ a stlc-sep-var

Unlike in the additive case, the stlc-sep-m-pair-i rule has an additional assumption (a, a ▷ a). Hence,
we would need a combination of structural rules at the placeholder ‘no rule exists’ to add such a constraint
to the context, however, no such combination is possible. In the partial heap model, such a rule would
imply that for any heap h, h ⊎ h = h, which only holds for the empty heap ∅, and therefore not for any
heap describing a reference.

Similarly, the free_pair function can only be typed when using a multiplicative pair as follows:

free_pair
def
= λp : Ref 1m ∗ Ref 1m. let ⟨l1, l2⟩ = p in

let!x = free1m l1 in

let! y = free1m l2 in

return ⟨x, y⟩

When attempting to type check the let! binding, the resources of the first expression are used up, and
replaced by the resources of the return value. As such, a reference with the same resources (such as the
same location), cannot be used multiple times. This is enforced in the stlc-sep-bind rule by splitting
the world into two resources w1 and w2, and ensuring that the only way to create the result world is to
only use the resources not used by the first expression w2 and the resources of the result a. In the case of
free_pair, this means that the world for l1 cannot be reused for l2. A typing derivation for free_pair
can be constructed as follows:

Typed Expression Rule Added to Context
λp : Ref 1m ∗ Ref 1m. . . . : Ref 1m ∗ Ref 1m ⇒ T (1m ∗ 1m)@ a stlc-sep-a-fun-i p : Ref 1m ∗ Ref 1m@ a
let ⟨l1, l2⟩ = p in . . . : T (1m ∗ 1m)@ a stlc-sep-m-pair-e b, c, (b, c ▷ a) , l1 : Ref 1m@ b, l2 : Ref 1m@ c
– p : Ref 1m ∗ Ref 1m@ a stlc-sep-var
let!x = free1m l1 in . . . : T (1m ∗ 1m)@ a stlc-sep-bind d, a′, (d, c ▷ a′) , x : 1m@ d
– free1m l1 : T 1m@ b stlc-sep-free
– – l1 : Ref 1m@ b stlc-sep-var

stlc-sep-sym (c, d ▷ a′)
let! y = free1m l2 in . . . : T (1m ∗ 1m)@ a′ stlc-sep-bind e, a′′, (e, d ▷ a′′) , y : 1m@ e
– free1m l2 : T 1m@ c stlc-sep-free
– – l2 : Ref 1m@ c stlc-sep-var

stlc-sep-sym (d, e ▷ a′′)
return ⟨x, y⟩ : T (1m ∗ 1m)@ a′′ stlc-sep-return
– ⟨x, y⟩ : 1m ∗ 1m@ a′′ stlc-sep-m-pair-i
– – x : 1m@ d stlc-sep-var
– – y : 1m@ e stlc-sep-var

As duplicate can only create an additive pair, whereas free_pair requires a multiplicative pair, the
unsafe program typeable in λloc cannot be typed in λ∗. The safe program which uses the multiplicative
pair can however be typed in both λloc and λ∗. A typeable definition of the safe program in λ∗ is as
follows:
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safe
def
= λu : 1m. let ⟨⟩ = u in

let! l1 = ref1m ⟨⟩ in
let! l2 = ref1m ⟨⟩ in
let! r = free_pair ⟨l1, l2⟩ in
let ⟨x, y⟩ = r in
let ⟨⟩ = x in
let ⟨⟩ = y in
return ()

The definition of safe is similar to that for λloc, but requires the additional lines in blue to prove
that u and r do not describe any resources. The typing derivation for safe is depicted by the following
table:

Typed Expression Rule Added to Context
λu : 1m. . . . : 1m ⇒ T 1m@ a stlc-sep-a-fun-i u : 1m@ a
let ⟨⟩ = u in . . . : T 1m@ a stlc-sep-m-unit-e (ϵ, ϵ ▷ a)
– u : 1m@ a stlc-sep-var
let! l1 = ref1m ⟨⟩ in . . . : T 1m@ ϵ stlc-sep-bind b, a′, (b, ϵ ▷ a′) , l1 : Ref 1m@ b
– ref1m ⟨⟩ : Ref 1m@ ϵ stlc-sep-newref
– – ⟨⟩ : 1m@ ϵ stlc-sep-m-unit-i

stlc-sep-sym (ϵ, b ▷ a′)
let! l2 = ref1m ⟨⟩ in . . . : T 1m@ a′ stlc-sep-bind c, a′′, (c, b ▷ a′′) , l2 : Ref 1m@ c
– ref1m ⟨⟩ : Ref 1m@ ϵ stlc-sep-newref
– – ⟨⟩ : 1m@ ϵ stlc-sep-m-unit-i

stlc-sep-unit-1 (a′′, ϵ ▷ a′′)
stlc-sep-sym (b, c ▷ a′′)

let! r = free_pair ⟨l1, l2⟩ in . . . : T 1m@ a′′ stlc-sep-bind d, a′′′, (d, ϵ ▷ a′′′) , r : 1m ∗ 1m@ d
– free_pair ⟨l1, l2⟩ : T (1m ∗ 1m)@ a′′ stlc-sep-var
– – free_pair : Ref 1m ∗ Ref 1m ⇒ T (1m ∗ 1m)@ a′′ By derivation above
– – ⟨l1, l2⟩ : Ref 1m ∗ Ref 1m@ a′′ stlc-sep-var
– – – l1 : Ref 1m@ b stlc-sep-var
– – – l2 : Ref 1m@ c stlc-sep-var

stlc-sep-cast using (d, ϵ ▷ a′′′)
let ⟨x, y⟩ = r in . . . : T 1m@ d stlc-sep-m-pair-e e, f, (e, f ▷ d) , x : 1m@ e, y : 1m@ f
– r : 1m ∗ 1m@ d stlc-sep-var
let ⟨⟩ = x in . . . : T 1m@ d stlc-sep-m-unit-e (ϵ, ϵ ▷ e)
– x : 1m@ e stlc-sep-var
let ⟨⟩ = y in . . . : T 1m@ d stlc-sep-m-unit-e (ϵ, ϵ ▷ f)
– y : 1m@ f stlc-sep-var

stlc-sep-assoc-unit-1 (ϵ, f ▷ d), (ϵ, ϵ ▷ d)
stlc-sep-cast using (ϵ, ϵ ▷ d)

return ⟨⟩ : T 1m@ ϵ stlc-sep-return
– ⟨⟩ : 1m@ ϵ stlc-sep-m-unit-i

In the derivation above, we type free_pair in the world a′′, whereas in the earlier derivation of
free_pair, we assumed a general world a. One method for resolving this is to redo the derivation of
free_pair using the world a′′ and the current context instead of a. Another method would be to use
thinning to remove all but the label a′′ from the context, and then use substitution to substitute a′′ for a
in the derivation of free_pair, similar to applying thinning and substitution for variables in the simply
typed λloc. The specific definitions and lemmas associated with thinning and substitution of λ∗ are
given in the next section (§ 4.3).

An important result which follows immediately from the typing rules is that when typing in a
well-formed context, the result world is always present in the context, and the result type is stateful:

Lemma 4.2.11 (Result Type and World Exist): If Ω wf and Ω ⊢ e : A@w then w ∈ Ω.Σϵ and
⊢ A : Stateful.

Proof. By induction on the typing derivation. In the inductive cases, we ensure that the contexts in the
assumptions are also well-formed.

For instance, in stlc-sep-a-fun-i and stlc-sep-m-fun-i the assumptions w ∈ Ω.Σϵ and ⊢ A :
Stateful are used to ensure that Ω, x : A@w ⊢ e : B@w wf and Ω, a, c, (w, a ▷ c) , x : A@ a ⊢ e : B wf
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hold respectively using the stlc-sep-gamma-assumption-wf rule and stlc-sep-theta-constr-wf in
the case of stlc-sep-m-fun-i.

In rules such as stlc-sep-newref, the assumption ⊢ A : Pure ensures that the result type T (RefA)
is stateful.

In rules such as stlc-sep-m-pair-i the result world w exists as Ω.Σ wfΩ.Θ and w is in a constraint
(w1, w2 ▷ w) ∈ Ω.Θ.

Remark: From this point on we assume that typing is always done in a well-formed context. More
specifically, any derivation of the form Ω ⊢ e : A@w assumes that Ω wf.

4.3 Substitution and Equivalences

As in the λloc, the β-equivalences in λ∗ require a definition of substitution which preserves well-typedness.
The thinning and substitutions are defined as judgments between contexts, rather than as weakening
(single variable thinning) and single-variable substitution. In the case of the λ∗, using a simultaneous
substitution is especially important, as the multiplicative abstraction rule stlc-sep-m-fun-i introduces
not only a new variable, but also two new labels and a constraint. Hence, for defining the β-equivalence
for multiplicative functions, not only the variable, but also the labels and constraints must be substituted
simultaneously.

By the remark above, we only consider derivations in well-typed contexts, and therefore also only
define thinning and substitutions in terms of well-typed contexts. The thinning judgment for the labeled
calculus has the same form as that of the unlabeled calculus, but additionally allows for adding new
labels and constraints.

Definition 4.3.1 (Thinning):

thinning-emp

· ⊇ ·

thinning-sigma-take
Ω ⊇ Ω′

Ω, a ⊇ Ω′, a

thinning-sigma-drop
Ω ⊇ Ω′

Ω, a ⊇ Ω′

thinning-theta-take
Ω ⊇ Ω′ w1, w2, w3 ∈ Ω′.Θ

Ω, (w1, w2 ▷ w3) ⊇ Ω′, (w1, w2 ▷ w3)

thinning-theta-drop
Ω ⊇ Ω′ w1, w2, w3 ∈ Ω.Θ

Ω, (w1, w2 ▷ w3) ⊇ Ω′

thinning-gamma-take
Ω ⊇ Ω′ w ∈ Ω′.Σϵ ⊢ A : Stateful

Ω, x : A@w ⊇ Ω′, x : A@w

thinning-gamma-drop
Ω ⊇ Ω′ w ∈ Ω.Σϵ ⊢ A : Stateful

Ω, x : A@w ⊇ Ω′

In λloc there was only a single context Γ, which could be extended with variables. In λ∗, thinnings
can be extended with labels (thinning-sigma-take, thinning-sigma-drop), constraints (thinning-
theta-take, thinning-theta-drop) and labeled assumptions (thinning-gamma-take, thinning-
gamma-drop). The additional assumptions for thinning-theta-take and thinning-gamma-take
ensure that the stronger context Ω′ remains well-formed, whereas the thinning-theta-drop and
thinning-gamma-drop assumptions ensure that the larger context Ω is well-formed.

Lemma 4.3.2 (Thinning well-formed): If Ω ⊇ Ω′ then Ω wf and Ω′ wf.

Proof. By induction on the derivation of Ω ⊇ Ω′.

The most common thinning is the identity thinning, which does not add any labels, constraints or
variables. Due to the additional constraints, the identity thinning does not immediately follow from the
definition of the context, as thinnings are only defined for well-formed contexts. Instead, the identity
thinning follows from the definition of well-formed contexts.

Lemma 4.3.3 (Identity Thinning): If Ω wf then Ω ⊇ Ω.

Proof. By induction on the derivation of Ω wf.
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As in the simply typed λloc, thinning a context preserves well-typedness of expressions.

Lemma 4.3.4 (Thinning Lemma): If Ω ⊢ e : A@w and Ω′ ⊇ Ω then Ω′ ⊢ e : A@w (denoted
Ω′ ⊇ Ω;Ω ⊢ e : A@w).

Proof. By induction on the derivation of Ω ⊢ e : A@w. The proof uses the following 3 sub-lemmas, each
proven by induction on the thinning:
(i) If a : Label ∈ Ω′.Σ and Ω ⊇ Ω′ then a ∈ Ω.Σ
(ii) If (w1, w2 ▷ w3) ∈ Ω′.Θ and Ω ⊇ Ω′ then (w1, w2 ▷ w3) ∈ Ω.Θ
(iii) If x : A@w ∈ Ω′.Γ and Ω ⊇ Ω′ then x : A@w ∈ Ω.Γ

Remark: By the last remark of the previous section, the thinning lemma also includes the assumption
Ω wf and has the conclusion Ω′ wf. In this specific case, both are well-formed due to the assumption Ω′ ⊇ Ω.

In the labeled system, not only variables, but also labels can be substituted, which is reflected in the
syntactic substitution:

Definition 4.3.5 (Syntactic Substitution): Define δ ::= δv, δl where δv : Var fin−⇀ Expr and
δl : Label

fin−⇀ World.

The syntactic substitution consists of a substitution on variables δv, similar to the unlabeled calculus,
and a substitution on labels δl, which maps labels in one context to worlds in another context.

Remark: For both the syntactic variable and label substitution, the empty substitution ∅, identity
substitution I and update substitution δv ⟨x 7→ e⟩ and δl ⟨a 7→ w⟩ are defined the same as for λloc.

The substitution of variables can be applied to expressions:

Definition 4.3.6 (Expression Substitution):

[δv]x
def
= δv x [δv][]

def
= []

[δv]⟨⟩
def
= ⟨⟩ [δv](let ⟨⟩ = e1 in e2)

def
= let ⟨⟩ = [δv]e1 in [δv]e2

[δv](λx : A. e)
def
= λx : A. [δv ⟨x 7→ x⟩]e [δv](λ

∗x : A. e)
def
= λ∗x : A. [δv ⟨x 7→ x⟩]e

[δv](e1 e2)
def
= ([δv]e1) ([δv]e2) [δv](e

∗
1 e2)

def
= ([δv]e1)

∗ ([δv]e2)

[δv]([e1, e2])
def
= [[δv]e1, [δv]e2] [δv]⟨e1, e2⟩

def
= ⟨[δv]e1, [δv]e2⟩

[δv](let [x, y] = e1 in e2)
def
= (let [x, y] = [δv]e1 in [δv ⟨x 7→ x, y 7→ y⟩]e2)

[δv](let ⟨x, y⟩ = e1 in e2)
def
= (let ⟨x, y⟩ = [δv]e1 in [δv ⟨x 7→ x, y 7→ y⟩]e2)

Similar to how the substitution of variables is extended to substituting expressions, the substitution
of labels is extended to substituting worlds.

Definition 4.3.7 (World Substitution):

[δl]ϵ
def
= ϵ [δl]a

def
= δl a

When substituting a world, the substitution maps labels to worlds according to the substitution, but
maps the empty world ϵ to the empty world. This is because the empty world ϵ corresponds to the
constant empty heap ∅ and therefore should not be substituted. Intuitively, the world ϵ can be thought
of as similar to the constructor ⟨⟩ for a unit, which under substitution also remains unchanged.

With these definitions of syntactic variable (δv) and labels (δl) substitutions, the substitution judgment
is defined as:
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Definition 4.3.8 (Typed Substitutions):

subst-nil
Ω′ wf

Ω′ ⊢ ∅, ∅ : ·

subst-sigma
Ω′ ⊢ δv, δl : Ω w ∈ Ω′.Σϵ

Ω′ ⊢ δv, δl ⟨a 7→ w⟩ : Ω, a

subst-theta
Ω′ ⊢ δv, δl : Ω w1, w2, w3 ∈ Ω.Σϵ ([δl]w1, [δl]w2 ▷ [δl]w3) ∈ Ω′.Θ

Ω′ ⊢ δv, δl : Ω, (w1, w2 ▷ w3)

subst-gamma
Ω′ ⊢ δv, δl : Ω w ∈ Ω.Σϵ Ω′ ⊢ [δv]e : A@ [δl]w

Ω′ ⊢ δv ⟨x 7→ e⟩ , δl : Ω, x : A@w

The substitution judgment is slightly different from that of λloc. The first difference is that the empty
substitution requires the context to be well-formed. This ensures that applying the empty substitution to
a typing derivation results in a well-formed derivation, as per the last remark of the previous section. In
λloc, any context that can be constructed from the grammar is well-formed, so the well-formed context
assumption is always true. The second difference is that labels can be added to the substitution with
subst-sigma, which requires that the world w is a valid world in the context Ω′. This assumption is also
required for the subst-gamma rule, but follows from the other assumptions and Lemma 4.2.11. The last
difference is the addition of the subst-theta rule, which ensures that any constraint in the right context
also holds in the left context after substituting. As a result, the derivation rules using constraints are still
valid after substituting labels.

The approach to proving that substitutions preserve typing derivations is similar to λloc. We first
prove that substitutions can be weakened, then use this to show how substitutions can be extended with
new variables, labels and constraints, and finally prove the substitution theorem itself.

Lemma 4.3.9 (Thinning Substitution): If Ω1 ⊇ Ω′ and Ω′ ⊢ δv, δl : Ω then Ω1 ⊢ δv, δl : Ω (denoted
Ω1 ⊇ Ω′; Ω′ ⊢ δv, δl : Ω).

Proof. By induction on the derivation of Ω′ ⊢ δv, δl : Ω followed by applying the thinning lemma
(Lemma 4.3.4) and applicable sub-lemmas in each case.

Lemma 4.3.10 (Substitution Abstractions): If Ω′ ⊢ δv, δl : Ω then:
1. Ω′, a ⊢ δv, δl ⟨a 7→ a⟩ : Ω, a
2. Ω′, ([δl]w1, [δl]w2 ▷ [δl]w3) ⊢ δv, δl : Ω, (w1, w2 ▷ w3) for all w1, w2, w3 ∈ Σϵ

3. Ω′, x : A@ [δl]w ⊢ δv ⟨x 7→ x⟩ , δl : Ω, x : A@w for all w ∈ Σϵ

Proof. The proofs of all 3 theorems consist of applying Lemma 4.3.9 followed by applying the corresponding
derivation rule in Definition 4.3.8.

Theorem 4.3.11 (Derivation Substitution): If Ω′ ⊢ δv, δl : Ω and Ω ⊢ e : A@w then Ω′ ⊢ [δv]e : A@ [δl]w
(denoted Ω′ ⊢ δv, δl : Ω;Ω ⊢ e : A@w).

Proof. By induction on the derivation of Ω ⊢ e : A@w and applying the abstraction lemmas Lemma 4.3.10
in cases that introduce new variables, labels or constraints.

The combination of the thinning and substitution lemmas allow for reusing typing derivations in
different contexts. For instance, in the case of safe, we can first use thinning to remove all but the label a′′

from the context, and then use the substitution δv, δl = [], [a 7→ a′′] to turn the derivation a ⊢ free_pair :
Ref 1m ∗ Ref 1m ⇒ T (1m ∗ 1m)@ a into a′′ ⊢ free_pair : Ref 1m ∗ Ref 1m ⇒ T (1m ∗ 1m)@ a′′, which
can then be used in the derivation of safe.

As the substitution judgments allow for substituting variables, labels and constraints simultaneously,
they can be used to define the β equivalences for the labeled system, for instance by substituting w2 for
a, w3 for c and e2 for x in the case of stlc-sep-m-fun-i followed by stlc-sep-m-fun-e. The β and η
equivalence rules for the labeled system are as follows:
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Definition 4.3.12 (Equivalences): For a well formed context Ω wf, the equivalence judgment
Ω ⊢ e1 ≡ e2 : A@w states that e2 and e2 are equivalent expressions of type A at world w in context
Ω. The β and η equivalence rules are as follows:

Ω ⊢ e1 ≡ e2 : A@w

stlc-sep-eq-a-fun-beta

Ω, x : A@w ⊢ e1 : B Ω ⊢ e2 : A@w

Ω ⊢ (λx : A. e1) e2 ≡ [I ⟨x 7→ e2⟩]e1 : B@w

stlc-sep-eq-a-fun-eta

Ω ⊢ e : A⇒ B@w x /∈ fv e

Ω ⊢ (λx : A. e x) ≡ e : A⇒ B@w

stlc-sep-eq-a-pair-beta

Ω ⊢ e1 : A@w Ω ⊢ e2 : B@w Ω, x : A@w, y : B@w ⊢ e3 : C @w′

Ω ⊢ (let [x, y] = [e1, e2] in e3) ≡ [I ⟨x 7→ e1, y 7→ e2⟩]e3 : C @w′

stlc-sep-eq-a-pair-eta

Ω ⊢ e : A ∧B@w x, y /∈ fv e

Ω ⊢ (let [x, y] = e in [x, y]) ≡ e : A ∧B@w

stlc-sep-eq-m-unit-beta

Ω ⊢ ⟨⟩ : 1m@ ϵ Ω ⊢ e : A@w′

Ω ⊢ (let ⟨⟩ = ⟨⟩ in e) ≡ e : A@w′

stlc-sep-eq-m-unit-eta

Ω ⊢ e : 1m@w

Ω ⊢ (let ⟨⟩ = e in ⟨⟩) ≡ e : 1m@w

stlc-sep-eq-m-fun-beta

(w1, w2 ▷ w) ∈ Ω.Θ Ω, a, c, (w1, a ▷ c) , x : A@ a ⊢ e1 : B@ c Ω ⊢ e2 : A@w2

Ω ⊢ (λ∗x : A. e1)
∗ e2 ≡ [I ⟨x 7→ e2⟩]e1 : B@w

stlc-sep-eq-m-fun-eta

Ω ⊢ e : A −∗ B@w x /∈ fv e

Ω ⊢ (λ∗x : A. e∗ x) ≡ e : A −∗ B@w

stlc-sep-eq-m-pair-beta

(w1, w2 ▷ w) ∈ Ω.Σ Ω ⊢ e1 : A@w1 Ω ⊢ e2 : B@w2

Ω, a, b, (a, b ▷ w) , x : A@ a, y : B@ b ⊢ e3 : C @w

Ω ⊢ (let ⟨x, y⟩ = ⟨e1, e2⟩ in e3) ≡ [I ⟨x 7→ e1, y 7→ e2⟩]e3 : C @w

stlc-sep-eq-m-pair-eta

Ω ⊢ e : A ∗B@w x, y /∈ fv e

Ω ⊢ (let ⟨x, y⟩ = e in ⟨x, y⟩) ≡ e : A ∗B@w

stlc-sep-eq-bind-beta

(w1, w2 ▷ w) ∈ Ω.Θ Ω ⊢ e1 : A@w1 Ω, a, c, (w2, a ▷ c) , x : A@ a ⊢ e2 : T B@ c

Ω ⊢ (let!x = return e1 in e2) ≡ [I ⟨x 7→ e1⟩]e2 : T B@w

stlc-sep-eq-bind-eta

Ω ⊢ e : T A@w x /∈ fv e

Ω ⊢ (let!x = e in returnx) ≡ e : T A@w

stlc-sep-eq-bind-bind

(w1, w2 ▷ w12) ∈ Ω.Θ (w12, w3 ▷ w) ∈ Ω.Θ Ω ⊢ e1 : T A@w1

Ω, a, c, (w2, a ▷ c) , x : A@ a ⊢ e2 : T B@ c Ω, a, c, (w3, a ▷ c) , x : B@ c ⊢ e3 : T C @w

Ω ⊢ (let!x = (let! y = e1 in e2) in e3) ≡ (let! y = e1 in let!x = e2 in e3) : T C @w

Additionally, the equivalence judgment forms an equivalence relation:

stlc-sep-eq-refl

Ω ⊢ e : A@w

Ω ⊢ e ≡ e : A@w

stlc-sep-eq-sym

Ω ⊢ e1 ≡ e2 : A@w

Ω ⊢ e2 ≡ e1 : A@w

stlc-sep-eq-trans

Ω ⊢ e1 ≡ e2 : A@w Ω ⊢ e2 ≡ e3 : A@w

Ω ⊢ e1 ≡ e3 : A@w
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Finally, each of the typing rules – both logical and structural – induces a congruence rule for
the equivalence relation. The congruence rule has the same assumptions as the typing rule, but
replaces typing judgments Ω ⊢ e : A@w with equivalence judgments Ω ⊢ e ≡ e′ : A@w. For instance,
stlc-sep-m-fun-e induces the congruence rule:

stlc-sep-eq-m-fun-e-congr

(w1, w2 ▷ w) ∈ Ω.Θ Ω ⊢ e1 ≡ e′1 : A −∗ B@w1 Ω ⊢ e2 ≡ e′2 : A@w2

Ω ⊢ e∗1 e2 ≡ e′∗1 e′2 : B@w

The β- and η-equivalences for the additive connectives are the same as those for λloc. For the
multiplicative connectives however, the β and η equivalences are more complex, as they must also take
into account the labels and constraints. Additionally, not only the logical rules, but also the structural
rules have congruence rules for the equivalence relation. The first derivable property of the equivalence
judgment is that both sides are well-typed:

Theorem 4.3.13 (Soundness w.r.t. Equivalence): If Ω wf and Ω ⊢ e1 ≡ e2 : A@w then Ω ⊢ e1 : A@w
and Ω ⊢ e2 : A@w.

Proof. By induction on the derivation of Ω ⊢ e1 ≡ e2 : A@w. The proof takes the same approach as that
of the base language (3.4.13).

For instance, consider stlc-sep-eq-m-fun-beta. The derivation of the left side is given by:

(w1, w2 ▷ w) ∈ Ω.Θ
w1 ∈ Ω.Σϵ ⊢ A : Stateful Ω, a, c, (w1, a ▷ c) , x : A@ a ⊢ e1 : B@ c

Ω ⊢ λ∗x : A. e1 : A −∗ B@w1

Ω ⊢ e2 : A@w2

Ω ⊢ (λ∗x : A. e1)
∗ e2 : B@w

The assumption w1 ∈ Ω.Σϵ follows from Ω wf and the assumption (w1, w2 ▷ w) ∈ Ω.Θ. The assumption
⊢ A : Stateful follows from Ω ⊢ e2 : A@w2 and Lemma 4.2.11.

Similar to the base language, the derivation of the right hand side follows from the substitution
theorem (Theorem 4.3.11) and has the following form:

Ω ⊢ I ⟨x 7→ e2⟩ , I ⟨a 7→ w2, c 7→ w⟩ : Ω, a, c, (w1, a ▷ c) , x : A@ a Ω, a, c, (w1, a ▷ c) , x : A@ a ⊢ e1 : B@ c

Ω ⊢ [I ⟨x 7→ e2⟩]e1 : B@w

In this derivation, the substitution Ω ⊢ I ⟨x 7→ e2⟩ , I ⟨a 7→ w2, c 7→ w⟩ : Ω, a, c, (w1, a ▷ c) , x : A@ a is
derived by the rules in 4.3.8, using the remaining assumptions of stlc-sep-eq-m-fun-beta.

The β-equivalence rules in Definition 4.3.12 have the same shape as those for the λloc. However, due
to the structural rules, the assumptions of the equivalence do not immediately follow from the derivation
of the β-redex (e.g. Ω ⊢ (λx : A. e1) e2 : B@w), as in the simply typed λloc. An example snippet of
such a derivation is the following:

(w, ϵ ▷ w′) ∈ Ω

. . .

Ω, x : A@w′ ⊢ e1 : B@w′

Ω ⊢ λx : A. e1 : A⇒ B@w′

Ω ⊢ λx : A. e1 : A⇒ B@w

. . .

Ω ⊢ e2 : A@w

Ω ⊢ (λx : A. e1) e2 : B@w

In this derivation snippet, the stlc-sep-eq-a-fun-beta rule cannot be applied, as the assumption
Ω, x : A@w ⊢ e1 : B@w is not in any part of the derivation. The β-equivalence rules therefore seem
overly restrictive, as they require the typing derivation of the β-redex to contain no structural rules. In
Chapter 5 we return to this problem and show that β-equivalence rules requiring only the typeability of
the left side are admissible rules by defining β-reductions. For instance, the following alternative β rule
for A⇒ B is admissible:

Ω ⊢ (λx : A. e1) e2 : B@w

Ω ⊢ (λx : A. e1) e2 ≡ [I ⟨x 7→ e2⟩]e1 : B@w

The form of these admissible rules corresponds to the preservation theorem for β-reduction (Theorem 5.4.3).
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4.4 Denotational Semantics

Similar to λloc, the denotational semantics of the labeled calculus could be defined directly on the
labeled system λ∗.

Instead, we observe that the distinction between additive and multiplicative connectives is not relevant
to the execution of a program. Therefore, we adopt a refinement type approach, where the labeled types
of the λ∗ are erased to the types in λloc. Similarly, the expressions and derivations can be erased,
and the denotational semantics of λ∗ are defined as the denotational semantics of λloc for the erased
derivations.

Next, we demonstrate that well-typed expressions in λ∗ offer stronger guarantees than those in the
simply typed λloc by proving an additional regularity lemma, which asserts that well-typed programs do
not get stuck. Our approach is inspired by Ghalayini and Krishnaswami [2023], who use erasure to show
that explicit refinement types can be erased to a simply typed lambda calculus without refinements.

The approach consists of three steps. First, we define an erasure operation from types and expressions
of the λ∗ to λloc. Next, we show that this erasure preserves typing derivations and substitutions. Finally,
we define a logical predicate that relates types in λ∗ to interpretations of types in λloc, and use this to
show that well-typed expressions in λ∗ do not get stuck.

Erasure

The erasure of types in the labeled λ∗ collapses the additive and multiplicative connectives into the
corresponding connectives of λloc as follows:

Definition 4.4.1 (Type Erasure):

|1a|
def
= 1 |1m|

def
= 1 |A⇒ B| def= |A| → |B| |A −∗ B| def= |A| → |B| |A ∧B| def= |A| × |B|

|A ∗B| def= |A| × |B| |T A| def= T |A| |RefA| def= loc

Both additive and multiplicative units are erased to the unit type 1, the additive and multiplicative
functions are erased to the function type, and the additive and multiplicative products are erased to the
product type. The monadic type is similarly erased to the monadic type. The main difference is the
reference type, which is erased to the location type loc (similar to erasing a pointer A∗ to a void pointer
void∗ in C). The erasure of types is compositional, meaning that the erasure of a type is defined in terms
of the erasure of the components of the type. To ensure that erased types of Pure types are can still be
placed in the heap, the erasure of a type respects its kind:

Lemma 4.4.2: If A ∈ Type and ⊢ A : k for some kind k, then ⊢ |A| : k.

Proof. By induction on the derivation of ⊢ A : k and the definition of erasure for types.

Definition 4.4.3 (Expression Erasure):

|x| def= x |[]| def= () |λx : A. e| def= λx. |e| |e1 e2|
def
= |e1| |e2| |[e1, e2]|

def
= (|e1| , |e2|)

|let [x, y] = e1 in e2|
def
= let (x, y) = |e1| in |e2| |⟨⟩| def= () |let ⟨⟩ = e1 in e2|

def
= |e2|

|λ∗x : A. e| def= λx. |e| |e∗1 e2|
def
= |e1| |e2| |⟨e1, e2⟩|

def
= (|e1| , |e2|)

|let ⟨x, y⟩ = e1 in e2|
def
= let (x, y) = |e1| in |e2| |return e| def= return |e|

|let! e1 = x in e2|
def
= let! |e1| = x in |e2| |refA e| def= ref|A| |e|∣∣replaceA,B e1 e2

∣∣ def
= let l = |e1| in let! v = (replace|A|,|B| l |e2|) in (v, l) |freeA e| def= free|A| |e|

The erasure of expressions is also compositional, and follows from the erasure of types. The operations
with both additive and multiplicative versions in the λ∗, such as function abstraction and application, are
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both erased to the same corresponding operation in λloc. The return, let!, ref and free operations
are all similarly erased to the corresponding operations. As mutable operations are described by the
monadic type, the expression e1 in the let ⟨⟩ = e1 in e2 expression does not have any side effects. As
such, the erasure simply ignores the first expression e1 and returns the erasure of the second expression
e2. Finally, the replace operation is the only operation not directly erased, as the type of the replace
operation in λ∗ (RefA ∗B ⇒ T (A ∗ RefB)) does not match the type of the corresponding operation in
λloc (loc×B → T A) after erasure. As such, we erase replace to an expression which first executes
replace in the λloc, followed by pairing the result with a copy of the location l.

The erasure of types can be extended to contexts in the intuitive way, by erasing the types of each of
the variables in the context and ignoring labels and constraints entirely:

Definition 4.4.4 (Context Erasure): Erasure on assumption contexts Γ is defined as:

|·| def= · |Γ, x : A@w| def= |Γ| , x : |A|

Erasure on contexts Ω is defined as:
|Ω| def= |Ω.Γ|

After defining erasure of contexts, expressions and types, we can state the first important property of
erasure: that erasure preserves typing derivations. This ensures that the denotation of erased derivations
can be used as the denotation of the derivations of the labeled system.

Theorem 4.4.5 (Erasure preserves typing): If Ω ⊢ e : A@w then there exists a derivation |Ω| ⊢ |e| : |A|
written |Ω ⊢ e : A@w|.

Proof. By induction on the derivation of Ω ⊢ e : A@w and erasure of expressions and types.

This notion of erasure corresponds to the erasure functor for type refinement systems [Zeilberger
2016]. These systems use a categorical perspective of typing, where contexts and types are considered as
objects, and typing derivations are considered as morphisms (arrows between objects). In this perspective,
both the refined (labeled) and unrefined (unlabeled) type systems can be seen as categories. The erasure
operation acts as a functor between these categories. This means it maps each context and type in the
refined system (objects in the category) to a corresponding context and type in the unrefined system.
Similarly, it maps each derivation in the refined system (morphisms in the category) to corresponding
derivations in the unrefined system.

Erasure of Substitution and Equivalences

In addition to typing judgments Ω ⊢ e : A@w, the judgments for thinning, typed substitutions and
equivalences are also defined in both λ∗ and λloc. In this subsection, we show that the erasure operation
can be extended to these judgments, and that erasure commutes with thinning and substitution. The
subsection concludes with the erasure theorem for equality judgments, which can be combined with
Theorem 3.4.13 to also prove soundness w.r.t. equivalences for λ∗. The below figure depicts the
commutative properties of erasure and substitution. The down direction represents erasure to λloc, the
back direction erasure of derivations to only expressions, and the right direction applying substitutions.

e [δ]e

Ω ⊢ e:A@w Ω′ ⊢ [δ]e:A@ [δ]w

|e| [|δ|] |e|

|Γ| ⊢ |e| : |A| |Γ′| ⊢ [|δ|] |e| : |A|

δ

|·| |·|

Ω′⊢δ:Ω

|·| |δ|

|Γ′|⊢|δ|:|Γ|

|·|
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The proofs of the substitution theorems for both λ∗ (Theorem 4.3.11) and λloc (Theorem 3.3.4) use a
corresponding lemma for thinning. As such, the commutativity proof of erasure (down) and substitution
(right) also uses a corresponding lemma for thinning. This commutativity proof can be depicted in a
similar diagram to the figure above, but replacing substitutions Ω′ ⊢ δ : Ω with thinnings Ω′ ⊇ Ω, resulting
in the figure below. As thinning does not change the expression e, the back direction has been omitted.

Ω ⊢ e:A@w Ω′ ⊢ e:A@w

|Γ| ⊢ |e| : |A| |Γ′| ⊢ |e| : |A|

Ω′⊇Ω

|·| |·|

|Γ′|⊇|Γ|

The commutativity of the above diagram is proven in the following two lemmas, which show that
|Γ′| ⊇ |Γ| exists and prove the commutativity respectively.

Lemma 4.4.6 (Erasure of Thinning): Let Ω ⊇ Ω′ be a thinning, then there is a corresponding thinning
in the erased system |Ω| ⊇ |Ω′| denoted |Ω ⊇ Ω′|.

Proof. By induction on the derivation of Ω ⊇ Ω′ and applying the erasure rules for contexts.

Lemma 4.4.7 (Commutativity of Thinning and Erasure): Let Ω ⊇ Ω′ be a thinning and Ω ⊢ e : A@w be
a typing derivation then: |Ω′ ⊇ Ω;Ω ⊢ e : A@w| = |Ω′ ⊇ Ω| ; |Ω ⊢ e : A@w|

Proof. By induction on the derivation of Ω ⊢ e : A@w.

Next, the commutativity of the back face of the cube e to [|δ|] |e| is proven. It consists of first defining
the erasure of syntactic substitution, followed by proving the commutativity of syntactic substitution and
erasure.

Definition 4.4.8 (Erasure of Syntactic Substitution): |δv|
def
= {x 7→ |e| | x 7→ e ∈ δv}

Lemma 4.4.9 (Commutativity of Expression Substitution and Erasure): |[δv]e| = [|δv|] |e|

Proof. By induction on e.

The last face of the cube is the front face, which consists of defining the erasure of typed substitutions,
and proving commutativity of typed substitution and erasure. The front face of the cube requires that
syntactic erasure and substitution commute, as substitution followed by erasure (right then down) results
in a derivation of the form |Γ| ⊢ |[δ]e| : |A|, whereas first erasure and then substitution results in a
derivation of the form |Γ| ⊢ [|δ|] |e| : |A|. By commutativity of the back face however, these are derivations
of the same judgment. The following 3 lemmas define the erasure of typed substitutions and prove the
commutativity of typed substitution and erasure.

Lemma 4.4.10 (Erasure of Substitution): If Ω′ ⊢ δv, δl : Ω then |Ω′| ⊢ |δv| : |Ω| denoted |Ω′ ⊢ δv, δl : Ω|.

Proof. By induction on Ω′ ⊢ δv, δl : Ω.

Lemma 4.4.11 (Commutativity of Substitution Thinning and Erasure): |Ω1 ⊇ Ω′; Ω′ ⊢ δv, δl : Ω| =
|Ω1 ⊇ Ω′| ; |Ω′ ⊢ δv, δl : Ω|.

Proof. By induction on Ω′ ⊢ δv, δl : Ω. The proof has the same structure as the proof of Lemma 4.4.7, but
uses the commutativity lemma for thinning Lemma 4.4.7 instead of the thinning lemma for substitution
Lemma 4.3.9.

Lemma 4.4.12 (Commutativity of Substitution and Erasure):

|Ω′ ⊢ δv, δl : Ω;Ω ⊢ e : A@w| = |Ω′ ⊢ δv, δl : Ω| ; |Ω ⊢ e : A@w|
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Proof. By induction on the derivation of Ω ⊢ e : A@w, using Lemma 4.4.11 in the cases that introduce
new variables, labels or constraints.

The last theorem for erasure relates equivalences in λ∗ to those in λloc. The theorem ensures that
the soundness w.r.t. equivalences of the denotational semantics of λloc can be lifted to the labeled λ∗,
thereby ensuring that equivalent expressions in the λ∗ have the same denotation.

Theorem 4.4.13 (Erasure of Equivalence): If Ω ⊢ e1 ≡ e2 : A@w then |Ω| ⊢ |e1| ≡ |e2| : |A|.

Proof. By induction on the derivation of Ω ⊢ e1 ≡ e2 : A@w, applying Lemma 4.4.9 in the cases that
involve substitution of variables.

Denotations

Similar to the denotational semantics of λloc, the denotational semantics of λ∗ gives a mathematical
interpretation to types, contexts and typing derivations. Rather than defining the denotational semantics
directly on typing derivations, they are instead defined in terms of the erasure to λloc. Notably, as
the denotational semantics of λloc does not take into account resources, the denotational semantics of
λ∗ does not directly guarantee that programs are safe (i.e. do not get stuck). To show this, we will
define a heap validity condition, which asserts the resource ownership of labeled types, and show that this
condition is preserved between the context Ω and the value of labeled type A ∈ w of typing derivations.

Definition 4.4.14 (Denotations of λ∗): The denotations of λ∗ are defined in terms of erasure as follows:

1. For A ∈ Type define JAK def
= J|A|K

2. For Ω ∈ Ctx define J|Ω|K
3. For Ω ⊢ e : A@w define JΩ ⊢ e : A@wK def

= J|Ω ⊢ e : A@w|K

As a consequence of defining the denotational semantics in terms of λloc, the properties of the
denotational semantics of λloc also apply to λ∗:

Theorem 4.4.15 (Derivation Irrelevance): If d, e are derivations of Ω ⊢ e : A@w then JdK = JeK.

Proof. By Theorem 3.4.6.

Theorem 4.4.16 (Semantic Thinning): If Ω′ ⊇ Ω and Ω ⊢ e : A@w then JΩ′ ⊇ Ω;Ω ⊢ e : A@wK =
JΩ′ ⊇ ΩK ; JΩ ⊢ e : W @wK.

Proof. By Lemma 4.4.7 and Lemma 3.4.9.

Theorem 4.4.17 (Semantic Substitution): If Ω′ ⊢ δv, δl : Ω and Ω ⊢ e : A@w, Then

JΩ′ ⊢ δv, δl : Ω;Ω ⊢ e : A@wK = JΩ′ ⊢ δv, δl : ΩK ; JΩ ⊢ e : A@wK

Proof. By Lemma 4.4.12 and Theorem 3.4.12.

Similar to the soundness w.r.t. equivalence for the λloc, the typeable β- and η-equivalent expressions
in the labeled λ∗ have the same denotation.

Theorem 4.4.18 (Soundness w.r.t. Equivalences): If Ω ⊢ e1 ≡ e2 : A@w then JΩ ⊢ e1 : A@wK =
JΩ ⊢ e2 : A@wK.

Proof. By Lemma 4.4.12 and Theorem 3.4.13.

Regularity

The above definition of denotational semantics for the labeled system is weak, as it does not take into
account any of the labels or constraints. More specifically, this denotational semantics is not sufficient to
show that well-typed programs in the labeled system do not get stuck.
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To show this, we define an additional property of the refined types based on the resource semantics of
separation logic (§ 2.3). The property additionally states that heap operations do not get stuck for any
heap containing the required resources for the computation. By extending this property as a validity
property of both contexts and labeled types, we can show that well-typed programs maintain the validity
of resources, and therefore that well-typed heap computations T A do not get stuck. This property is
called regularity and resembles a similar property in the work of Ghalayini and Krishnaswami [2023] to
prove that type refinements are preserved through erasure.

The additional property is defined as a logical predicate h, a |= A for heap h and value a in the
interpretation of type A. The relation asserts that the proposition corresponding to type A is true for
partial heap h and value a in the interpretation of type A.

Definition 4.4.19 (Heap Validity of Types): Given a heap h ∈ Heap, type A ∈ Type s.t. ⊢ A : Stateful
and value a ∈ JAK, we define the forcing relation h, v |= A as:

h, v |= 1a
def
= True

h, () |= 1m
def
= h = ∅

h, (x, y) |= A ∧B
def
= (h, x |= A) ∧ (h, y |= B)

h, (x, y) |= A ∗B def
= ∃h1, h2. h = h1 ⊎ h2 ∧ (h1, x |= A) ∧ (h2, y |= B)

h, f |= A⇒ B
def
= ∀x ∈ XA. (h, x |= A) =⇒ (h, f x |= B)

h, f |= A −∗ B def
= ∀h1, x. (h1, x |= A) =⇒ ((h ⊎ h1), f x |= B)

h, p |= T A
def
= ∀hf . hf# h =⇒ ∃h′, a. p(h ⊎ hf ) = (a, h′ ⊎ hf ) ∧ (h′, a |= A)

h, l |= RefA
def
= ∃h′, v. h = {l 7→ (|A| , v)} ⊎ h′ ∧ (h′, v |= A)

The relation h, v |= A closely resembles that of separation logic (§ 2.3), but includes an additional
value v. The two main differences are the monadic type T A and the reference type RefA.

The relation for the reference type RefA corresponds to the pointsto connective l 7→ v in separation
logic, but the location l is given as the value, rather than fixed. Similarly, the value v which is fixed in
separation logic, is generalized to a value of type A in the labeled calculus. As such, the reference type
RefA describes not only the resources of the location (the singleton heap {l 7→ (|A| , v)}), but also those
of the value of type A stored at that location (h′, v |= A). As only pure types can be stored in the heap,
the logical predicate is only defined for stateful types.

The monadic type T A corresponds to the weakest precondition wp e {A} in separation logic, but where
the expression e is modeled by the value p : Heap ⇀ JAK× Heap which describes the heap operations, and
includes a totality condition p(h ⊎ hf ) = (a, h′ ⊎ hf ) which asserts that the heap computation p does not
get stuck for any heap containing at least the resources h, and that the heap computation does not alter
the resources in the frame heap hf .

The addition of the frame heap hf in the definition of the forcing relation for h, f |= T A ensures
that the frame rule of separation logic holds for the relation. Namely, if h, (f, b) |= T A ∗ B then
h, f ′ |= T (A ∗B), where f ′ is the heap operation that executes f and then pairs the result with b, and is
defined as f ′ : h 7→ let (a, h′) = f h in ((a, b), h′).

The heap validity condition is then extended to contexts by giving denotations of well-formed label
contexts, constraint contexts and variable contexts that respect the heap validity condition. Similar to
how the assumption context Γ in the unlabeled system is interpreted as any map from the variables
defined in Γ to values in the interpretation of the corresponding type, the label context Σ is interpreted
as any map from the labels defined in Σ to partial heaps.

Definition 4.4.20 (Denotation of Labels):

JΣK : Set

J·K def
= {[]} JΣ, aK def

= {σ ⟨a 7→ h⟩ | σ ∈ JΣK ∧ h : Heap}

Substitutions σ : Σ→ Heap on labels are implicitly extended to σ : Σϵ → Heap by taking σ ϵ
def
= ∅.
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The second context Θ describes the constraints between worlds, and hence the corresponding partial
heaps in the interpretation. The well-formed constraint context Σ ⊢ Θ wf is therefore the subset of
maps from labels to partial heaps that satisfy the constraints in Θ, where each constraint (w1, w2 ▷ w) is
interpreted as an equality σ w1 ⊎ σ w2 = σ w3 on partial heaps.

Definition 4.4.21 (Denotation of Constraint Well-formedness):

JΣ ⊢ Θ wfK : Set

JΣ ⊢ · wfK def
= JΣK JΣ ⊢ Θ, (w1, w2 ▷ w) wfK def

= {σ ∈ JΣ ⊢ Θ wfK | σ w1 ⊎ σ w2 = σ w}

The denotation of a well-formed constraint context describes the subset of the denotation of label
contexts that satisfy the constraints in the constraint context. As such, any label substitution σ valid for
Σ ⊢ Θ wf is also valid for Σ. Hence, the denotation of the constraint context forms a subset of the label
context: JΣ ⊢ Θ wfK ⊆ JΣK.

The labeled assumption context Γ describes not only the variables and their types, but also the world
in which each variable is valid. For a given labeled assumption x : A@w this corresponds to the heap
validity condition (σ w), (γ x) |= A. The denotation of a well-formed labeled assumption context Σ ⊢ Γ wf

is then the set of mappings from variables to values that satisfy the heap validity condition for each
variable.

Definition 4.4.22 (Denotation of Assumption Well-formedness):

JΣ ⊢ Γ wfK : JΣK→ Set

JΣ ⊢ · wfKσ
def
= {[]} JΣ ⊢ Γ, x : A@w wfKσ

def
= {γ ⟨x 7→ v⟩ | γ ∈ JΣ ⊢ Γ wfKσ ∧ v ∈ JAK ∧ σ w, h |= A}

As the heap validity condition of an assumption (marked in blue) depends on the heap corresponding
the world w of the assumption, the denotation of well-formed labeled assumption contexts is dependent
on the denotation of the label context Σ, which maps worlds to partial heaps.

Similar to how the well-formedness of contexts is defined as the well-formedness of the constraint
context and the assumption context, the denotations of well-formed contexts can be defined as a dependent
pair of a valid mapping σ from labels to heaps respecting the constraints, and a valid mapping γ from
variables to values w.r.t. those heaps.

Definition 4.4.23 (Denotation of Context Well-formedness): The denotation of a well-formed context
Ω wf is defined as:

JΩ wfK def
= (σ : JΩ.Σ ⊢ Ω.Θ wfK)× JΩ.Σ ⊢ Ω.Γ wfKσ

Similar to how the denotations of constraint contexts are subsets of the denotations of label contexts,
the denotations of well-formed assumption contexts in λ∗ are subsets of the denotations of assumption
contexts in λloc. This is formalized in the following lemma:

Lemma 4.4.24 (Erasure of Assumption Context Denotation): For all σ ∈ JΣK it holds that JΣ ⊢ ΓKσ ⊆
J|Γ|K.

Proof. By induction on the derivation of Σ ⊢ Γ wf.

Corollary 4.4.25: If Ω wf and (σ, γ) ∈ JΩ wfK then γ ∈ J|Ω|K

The corollary ensures that valid mappings from variables to values γ in the denotation of the labeled
context Ω can be used as the argument to the denotation of an erased derivation. The final theorem
states that in a valid context, the heap validity condition is preserved by typing derivations in the labeled
system.
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Theorem 4.4.26 (Regularity): Let Ω wf, (σ, γ) ∈ JΩ wfK and Ω ⊢ e : A@w be given. Then:

σ w, J|Ω ⊢ e : A@w|Kγ |= A

Proof. By induction on the derivation of Ω ⊢ e : A@w. As the cases are similar, we show the cases for
stlc-sep-m-fun-i, stlc-sep-m-fun-e and stlc-sep-free as examples:

( stlc-sep-m-fun-i). We have to prove: σ w, J|Ω ⊢ λ∗x : A. e : A −∗ B@w|Kγ |= A −∗ B.
The denotation can be expanded as:

J|Ω ⊢ λ∗x : A. e : A −∗ B@w|Kγ = J|Ω| ⊢ λx : |A| . |e| : |A| → |B|Kγ
= v ∈ J|A|K 7→ J|Ω| , x : |A| ⊢ |e| : |B|Kγ ⟨x 7→ v⟩
= v ∈ J|A|K 7→ J|Ω, a, c, (a,w ▷ c) , x : A@ a ⊢ e : B@ c|Kγ⟨x 7→v⟩

Additionally, the conclusion σ w, J|Ω ⊢ λ∗x : A. e : A −∗ B@w|Kγ |= A −∗ B can be expanded to:

∀hv ∈ Heap, v ∈ J|A|K . hv, v |= A =⇒ (h ⊎ hv), (J|Ω, a, c, (a,w ▷ c) , x : A@ a ⊢ e : B@ c|Kγ⟨x 7→v⟩) |= B

Let hv and v s.t. hv, v |= A be given. Choose σ′ ::= σ ⟨a 7→ hv, c 7→ (σ w ⊎ hv)⟩.
Then σ′ ∈ JΩ.Σ, a, c ⊢ Ω.Θ, (w, a ▷ c)K. Moreover, as hv, v |= A it holds that:
γ ⟨x 7→ v⟩ ∈ JΩ.Σ, a, c ⊢ Ω.Γ, x : A@ aKσ′ and hence σ′, γ ⟨x 7→ v⟩ ∈ JΩ, a, c, (w, a ▷ c) , x : A@ a wfK.

By the induction hypothesis it follows that σ′ c, J|Ω, a, c, (a,w ▷ c) , x : A@ a ⊢ e : B@ c|Kγ ⟨x 7→v⟩ |= B,

and the conclusion follows by σ′ c = h ⊎ hv.

( stlc-sep-m-fun-e). We have to prove: σ w, J|Ω ⊢ e1 e2 : B@w|Kγ |= B. By σ, γ ∈ JΩ wfK and
(w1, w2 ▷ w) ∈ Ω.Θ it holds that σ w1 ⊎ σ w2 = σ w. By the induction hypothesis it holds that:
σ w1, J|Ω ⊢ e1 : A −∗ B@w1|Kγ |= A −∗ B and σ w2, J|Ω ⊢ e2 : A@w2|Kγ |= A. The conclusion follows
from Definition 4.4.19, the definition of J|Ω ⊢ e1 e2 : B@w|K and σ w1 ⊎ σ w2 = σ w.

( stlc-sep-free) We have to prove: 1σ w, J|Ω ⊢ freeA e : T A@w|Kγ |= T A. First unfold the defi-
nition of J|Ω ⊢ freeA e : T A@w|K as follows:

J|Ω ⊢ freeA e : T A@w|Kγ =
q
|Ω| ⊢ free|A| |e| : T |A|

y
γ

= h 7→ let l = J|Ω| ⊢ |e| : locKγ in

{
(π2(h l), h \ {l}) if π1(h l) = A

⊥ otherwise

= h 7→ let l = J|Ω ⊢ e : RefA@w|Kγ in

{
(π2(h l), h \ {l}) if π1(h l) = A

⊥ otherwise

Similarly unfold the definition of σ w, J|Ω ⊢ freeA e : T A@w|Kγ |= T A as:

T A
def
= ∀hf . hf# σ w =⇒ ∃h′, a. J|Ω ⊢ freeA e : T A@w|Kγ (σ w ⊎ hf ) = (a, h′ ⊎ hf ) ∧ (h′, a |= A)

Let hf be given such that hf # σ w and let l = J|Ω ⊢ e : RefA|Kγ . By the induction hypothesis:
σ w, l |= RefA and hence there is a v ∈ J|A|K s.t. σ w l = (|A| , v) and (σ w\{l}), v |= A. Choose a = v and
h′ = σ w \ {l}. Then the conclusion follows by the definition of J|Ω ⊢ freeA e : T A@w|Kγ (σ w⊎hf ).

Considering only top-level heap computations T A (i.e. those that do not require any resources), the
regularity theorem ensures that such computations do not get stuck in any heap. This is formalized as
the semantic safety property of λ∗:

Corollary 4.4.27 (Semantic Safety): If · ⊢ e : T A@ ϵ then for p = J· ⊢ e : T A@ ϵK∅ it holds that:

∀h ∈ Heap. p h ̸= ⊥

Namely, p is a total rather than partial function on heaps.

Additionally, if A = B ∧ 1m for some B ∈ Type then:

∀h. π2 (p h) = h and ∅, π1 (p h) |= B
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The safety condition of the labeled system consists of two parts. The first is a weaker condition of
safety, which states that heap computations that require no external resources do not get stuck. It ensures
the absence of memory issues such as use-after-free and reading the wrong type of value from a location.

The second part of the safety condition is a stronger condition of safety, which states that when the
result type holds no resources, the heap before and after the computation are the same. As such, the
condition ensures the absence of memory leaks. Namely, all allocated references in the computation p
have also been freed. Reading the second part ∅, v |= B as a predicate ϕ v as a predicate on only the
return value v, the second safety condition resembles the adequacy theorem in separation logic framework
such as Iris [Jung et al. 2018].

In separation logic based program logics, where the safety/adequacy theorem is used in a left-to-
right direction to prove that single programs are safe. In type theories such as for λ∗ however, the
safety/adequacy theorem is best used in a right-to-left direction, stating that programs that get stuck
cannot be typed in the labeled system:

Corollary 4.4.28 (Semantic Safety of λ∗): Let e ∈ Expr and A ∈ Type in λloc such that · ⊢ e : T A.
Let p = J· ⊢ e : T AK∅ : Heap ⇀ (A× Heap) be the heap computation corresponding to e.

If there is a heap h ∈ Heap s.t. p h = ⊥, then:

∀A∗ ∈ Type , e∗ ∈ Expr. |e∗| = e =⇒ · ̸⊢ e∗ : T (A∗)@ ϵ

For instance, the corollary states that the unsafe program typeable in the unlabeled system is not
typeable in the labeled system, as the corresponding heap computation gets stuck.
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Chapter 5

Preservation

In the previous section, we used a denotational approach for proving safety, namely, the interpretation of
well-typed programs does not get stuck. This corresponds to the semantic approach of type soundness
described by Milner [1978]. Another approach is to use an operational semantics, which defines the
steps (also called reductions) that a program takes during evaluation. The approach was introduced by
Wright and Felleisen [1994] as a method for proving type soundness syntactically, rather than using a
mathematical interpretation (as with denotational semantics).

They define reductions of the form e→ e′, which describe that taking a step in the evaluation of e
results in e′, and introduce an additional state wrong, which represents evaluations that fail, such as
trying to add a function to a number. The syntactic approach to type soundness states that if a program
e is well-typed, then there is no evaluation of e which results in the state wrong. This corresponds
to the notion that “well-typed programs don’t go wrong” introduced by Milner [1978]. The syntactic
approach to type soundness is commonly proven using two lemmas: preservation, which states that if e is
well-typed and e→ e′, then e′ is also well-typed with the same type, and progress, which states that if e
is well-typed, then either e is a value (i.e. cannot take any further steps and is not wrong) or there is an
e′ such that e→ e′.

The first property, preservation, is generally proven using an inversion lemma, which given a well-typed
expression, describes that sub-expressions are also well-typed (See for example Pierce [2002]). For a
simply typed lambda calculus with units, this inversion lemma would have the form:

Lemma 5.0.1 (Inversion of STLC):
1. If Γ ⊢ x : A then x : A ∈ Γ.
2. If Γ ⊢ () : A then A = 1.
3. If Γ ⊢ λx : A. e : R then R = A→ B for some A,B ∈ Type and Γ, x : A ⊢ e : B.
4. If Γ ⊢ e1 e2 : B then there is an A ∈ Type such that Γ ⊢ e1 : A→ B and Γ ⊢ e2 : A.

The proof of this inversion lemma relies on the fact that each type of expression can only be typed
according to a single rule, and hence inversion follows by a case analysis of the expression.

Such an inversion lemma can easily be extended to single structural rules such as subtyping (Pierce
[2002, Ch 15]), as each case only needs to consider their corresponding logical rule and a single additional
structural rule.

The labeled system λ∗ on the other hand contains 7 different structural rules, each of which extend the
context or change the world. As such, a direct approach to proving an inversion lemma for an operational
semantics of the labeled system is infeasible.

As an example, consider expressions of the form e∗1 e2, which applies a multiplicative function e1 with
argument e2. The corresponding logical rule is stlc-sep-m-fun-e:

(w1, w2 ▷ w) ∈ Ω.Θ Ω ⊢ e1 : A −∗ B@w1 Ω ⊢ e2 : A@w2

Ω ⊢ e∗1 e2 : B@w

As such, the preferred inversion lemma for this form of expression would be:

Ω ⊢ e∗1 e2 : B@w =⇒ ∃ (w1, w2 ▷ w) ∈ Ω. Ω ⊢ e1 : A −∗ B@w1 ∧ Ω ⊢ e2 : A@w2
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However, taking into account stlc-sep-assoc rule, the worlds w1 or w2 may be a newly introduced label
k, and therefore (w1, w2 ▷ w) ∈ Ω.Θ may not necessarily hold. As such, an inversion lemma would need
to consider newly introduced labels and constraints by each of the structural rules.

In this section, we discuss an approach for proving preservation for possible operational semantics
λ∗. Rather than defining an operational semantics for heaps and heap operations, we limit ourselves to
evaluating the pure (non-heap changing) fragment of the labeled system, by only considering β-reductions.
The approach consists of translating derivations in the λ∗ system to a layered system, which restricts the
points at which structural rules can be applied, and therefore allows for a form of inversion lemma (for the
most restrictive layer). Using this layered system, we prove the preservation property for β-reductions.

The section first introduces the β-reductions for λ∗ (§ 5.1). Next we reduce the number of structural
rules in λ∗ by introducing a concept of context strengthening (§ 5.2), which we use to define the layered
type system (§ 5.3). We show that derivations in the λ∗ type system can be translated to those in the
layered system using an approach based on the localization of structural rules in the labeled sequent
calculus [Hóu et al. 2015]. Finally, we prove the preservation property for β-reductions by translating
derivations into the layered type system (§ 5.4).

5.1 β-reductions

In this section, we define the β-reductions for the labeled system λ∗. The β-reductions describe the
evaluation steps for function applications and let-bindings. We consider both additive and multiplicative
function applications, as well as pairings and unit values. As β-reductions can be applied in any part of
the expression, we define the reduction in two steps: (1) the head reduction e→hd

β e′, where the reduction
from e to e′ is at the topmost expression, and e→β e′ where the reduction is possibly in a sub-expression
of e.

Definition 5.1.1 (β head reduction): For e, e′ ∈ Expr, the head reduction e→hd
β e′ is defined as:

e→hd
β e′

λx : A. e1 e2 →hd
β [I ⟨x 7→ e2⟩]e1 λ∗x : A. e1 e2 →hd

β [I ⟨x 7→ e2⟩]e1

let [x, y] = [e1, e2] in e3 →hd
β [I ⟨x 7→ e1, y 7→ e2⟩]e3

let ⟨x, y⟩ = ⟨e1, e2⟩ in e3 →hd
β [I ⟨x 7→ e1, y 7→ e2⟩]e3 let ⟨⟩ = ⟨⟩ in e→hd

β e

let!x = return e1 in e2 →hd
β [I ⟨x 7→ e1⟩]e2

Definition 5.1.2 (β-reductions): The β-reductions e 7→ e′ for λ∗ are the reductions where a single head
reduction is applied at any sub-expression of e. As there are many expression constructors, we only
show the first few. The β-reductions for the other expression constructors are defined similarly.

e→β e′

e→hd
β e′

e→β e′
e1 →β e′1

let ⟨⟩ = e1 in e2 →β let ⟨⟩ = e′1 in e2

e2 →β e′2
let ⟨⟩ = e1 in e2 →β let ⟨⟩ = e1 in e

′
2

e1 →β e′1
[e1, e2]→β [e′1, e2]

e2 →β e′2
[e1, e2]→β [e1, e

′
2]

e1 →β e′1
let [x, y] = e1 in e2 →β let [x, y] = e′1 in e2

e2 →β e′2
let [x, y] = e1 in e2 →β let [x, y] = e1 in e

′
2

e→β e′

λx : A. e→β λx : A. e′
e1 →β e′1

e1 e2 →β e′1 e2

e2 →β e′2
e1 e2 →β e1 e

′
2

. . .
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The β-reduction rules for both the additive λ-abstraction λx : A. e and multiplicative λ-abstraction
λ∗x : A. e correspond to the β-reductions of the simply typed lambda calculus. In the β-reductions, the
only reduction concerning monadic operations is for let! returnx = e1 in e2, which is added because
returnx does not perform any heap operations.

Example 5.1.3 (Swap Twice): Let swap : A ∗A⇒ A ∗A be the program defined as:

swap
def
= λp : A ∗A. let ⟨x, y⟩ = p in ⟨y, x⟩

Then the program that applies swap to a pair twice can be β-reduced as:

swap (swap ⟨x, y⟩)
→β swap (let ⟨x′, y′⟩ = ⟨x, y⟩ in ⟨y′, x′⟩)
→β swap ⟨y, x⟩
→β let ⟨x′, y′⟩ = ⟨y, x⟩ in ⟨y′, x′⟩
→β ⟨x, y⟩

With respect to this example, the preservation property at the end of this section can be used to prove
both: if Ω ⊢ swap (swap ⟨x, y⟩) : A ∗ A@w then Ω ⊢ ⟨x, y⟩ : A@w, and additionally that β-reduction
preserves denotations: JΩ ⊢ swap (swap ⟨x, y⟩) : A ∗A@wK = JΩ ⊢ ⟨x, y⟩ : A@wK.

Remark: As the β-reductions do not reduce the heap operations ref, replace and free, they do not
form a complete operational semantics for λ∗. A possible approach to extending β-reductions to a full
operational semantics would be to add a second parameter σ to the reduction, resulting in reductions of
the form (e, σ)→ (e′, σ′), where σ, σ′ describe the state of the heap before and after the step. This is the
approach taken by for instance L3 [Morrisett et al. 2005].

5.2 Strengthening

The first step towards proving the preservation property is to reduce the number of structural rules that
have to be considered, by combining the structural rules into more general structural rules. For this
purpose, the structural rules are divided into two groups:

1. The structural rules which change only the context but not the result type and world.
2. The structural rules which do not change the context, but do change the result type and world.

Of the structural rules in the labeled calculus, only the stlc-sep-cast rule falls into the second category,
whereas the remaining fall into the former. In fact, all structural rules that fall into the first category
also do not change the assumption context Γ, and therefore describe only how labels and constraints
can be added to the label and constraint contexts Σ and Θ. This property is captured by the concept
of strengthening, which describes how each structural rule in the first category changes the label and
constraint contexts.

Definition 5.2.1 (Constraint Strengthening): Given well-formed constraint contexts Σ ⊢ Θ wf and
Σ′ ⊢ Θ′ wf, we say that Σ;Θ is a strengthening of Σ′; Θ′, denoted Σ;Θ⇝ Σ′; Θ′ if it is derivable by
the following rules:

Σ′; Θ′ ⇝ Σ;Θ

str-id
Σ ⊢ Θ wf

Σ;Θ⇝ Σ;Θ

str-sym
Σ′; Θ′ ⇝ Σ;Θ (w1, w2 ▷ w3) ∈ Θ

Σ′; Θ′ ⇝ Σ;Θ, (w2, w1 ▷ w3)

str-unit-1
Σ′; Θ′ ⇝ Σ;Θ w1 ∈ Σϵ

Σ;Θ⇝ Σ′; Θ′, (w1, ϵ ▷ w1)

str-unit-2
Σ′; Θ′ ⇝ Σ;Θ (w1, ϵ ▷ w2) ∈ Θ

Σ′; Θ′ ⇝ Σ;Θ, (w2, ϵ ▷ w1)
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str-assoc
Σ′; Θ′ ⇝ Σ;Θ w ∈ Σϵ (w1, w2 ▷ w12) ∈ Θ (w12, w3 ▷ w) ∈ Θ

Σ′; Θ′ ⇝ Σ, k; Θ, (w2, w3 ▷ k) , (w1, k ▷ w)

str-assoc-unit-1
Σ′; Θ′ ⇝ Σ;Θ w ∈ Σϵ (w1, ϵ ▷ w

′
1) ∈ Θ (w′

1, w2 ▷ w3) ∈ Θ

Σ′; Θ′ ⇝ Σ;Θ, (w1, w2 ▷ w3)

str-assoc-unit-2
Σ′; Θ′ ⇝ Σ;Θ w ∈ Σϵ (w3, ϵ ▷ w

′
3) ∈ Θ (w1, w2 ▷ w3) ∈ Θ

Σ′; Θ′ ⇝ Σ;Θ, (w1, w2 ▷ w
′
3)

The strengthening relation Σ′; Θ′ ⇝ Σ;Θ consists of a reflexivity rule str-id, as well as a single rule
for each of the structural rules other than cast. The shape of the strengthening rule is derived from the
shape of each structural rule. For instance, the stlc-sep-sym rule:

(w1, w2 ▷ w3) ∈ Θ Σ;Θ, (w2, w1 ▷ w3) ; Γ ⊢ e : A@w′

Σ;Θ; Γ ⊢ e : A@w′

This rule states that for any constraint (w1, w2 ▷ w3), the symmetrical constraint (w2, w1 ▷ w3) can also
be added to the context, which is similarly captured by the str-sym rule. The other strengthening rules
are structured in a similar manner.

The main property of the strengthening relation is that it can be used instead of individual structural
rules in typing derivations. Indeed, the following typing rule which applies a strengthening is admissible:

Lemma 5.2.2 (Strengthening Lemma): The following rule is admissible for λ∗:

apply-str
Σ′; Θ′ ⇝ Σ;Θ Σ′ ⊢ Γ′ wf w ∈ Σ′

ϵ Σ;Θ; Γ′ ⊢ e : A@w

Σ′; Θ′; Γ′ ⊢ e : A@w

Proof. By induction on the derivation of Σ′; Θ′ ⇝ Σ;Θ, applying the corresponding structural rule in
each case.

Remark: As mentioned in a prior remark after Lemma 4.2.11, any typing derivation Σ;Θ; Γ ⊢ e : A@w
assumes that Σ;Θ; Γ wf. Due to this convention, the assumption Σ′ ⊢ Γ′ wf in the lemma above can be
omitted.

Similar to how derivations with the strengthening rule can be replaced by standard structural rules,
derivations in well typed contexts can be rewritten to use the strengthening rule instead of (non-cast)
structural rules. For instance, the rule stlc-sep-sym corresponds to applying apply-str using str-sym
as follows:

(w1, w2 ▷ w3) ∈ Θ
Σ;Θ⇝ Σ;Θ

Σ;Θ⇝ Σ;Θ, (w2, w1 ▷ w3)
w ∈ Σϵ Σ;Θ, (w2, w1 ▷ w3) ; Γ ⊢ e : A@w′

Σ;Θ; Γ ⊢ e : A@w

Here the assumptions marked in blue correspond exactly to the premises of the stlc-sep-sym rule (and
well-formedness of the context). The remaining structural rules other than cast can also be rewritten in a
similar manner, as captured by the following corollary:

Corollary 5.2.3: Every application of a structural rule in a derivation Ω ⊢ e : A@w (given Ω wf) can be
rewritten using only the following two structural rules:

apply-str
Σ′; Θ′ ⇝ Σ;Θ w ∈ Σ′

ϵ Σ;Θ; Γ′ ⊢ e : A@w

Σ′; Θ′; Γ′ ⊢ e : A@w

cast
(w, ϵ ▷ w′) ∈ Θ Σ;Θ; Γ ⊢ e : A@w

Σ;Θ; Γ ⊢ e : A@w′
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The introduction of the strengthening relation reduces the number of structural rules for λ∗ from 7 to
2, but does not solve the problem of introducing new labels and constraints which complicate the inversion
lemma. Before solving this issue, we first discuss and prove several properties of the strengthening relation.

Lemma 5.2.4 (Strengthening is Transitive): If Σ1; Θ1 ⇝ Σ2; Θ2 and Σ2; Θ2 ⇝ Σ3; Θ3 then Σ1; Θ1 ⇝
Σ3; Θ3.

Proof. By induction on the derivation of Σ2; Θ2 ⇝ Σ3; Θ3.

The first additional property of the strengthening relation is the transitivity of strengthening, which
can be used to combine multiple applications of apply-str into a single application, a consequence of
transitivity which is discussed in § 5.3.

It was previously indicated that the strengthening relation can be considered similar to a thinning
as, reading down the derivation tree, thinning adds extra labels and constraints, whereas strengthening
removes specific labels and constraints. In fact, the labels and constraints removed by a strengthening
can be added again by a thinning.

Lemma 5.2.5 (Inversion of Strengthening): If Σ′; Θ′ ⇝ Σ;Θ and Σ′ ⊢ Γ′ wf then Σ;Θ; Γ′ ⊇ Σ′; Θ′; Γ′.

Proof. By induction on the derivation of Σ′; Θ′ ⇝ Σ;Θ.

The inversion property of strengthening on its own does not appear particularly useful at first glance,
as it merely adds back in the labels and constraints removed by the strengthening. However, the property
is essential for restricting the places that context-changing structural rules can be applied in § 5.3.

The final property describes how strengthening interacts with thinning. Specifically, it states that
strengthening and thinning commute, meaning that the thinning lemma (Lemma 4.3.4) also applies to
apply-str.

Lemma 5.2.6 (Strengthening Thinning): If Σ1; Θ1; Γ1 ⊇ Σ2; Θ2; Γ2 and Σ2; Θ2 ⇝ Σ3; Θ3 then there exist
Σ4 and Θ4 s.t.

Σ1; Θ1 ⇝ Σ4; Θ4 and Σ4; Θ4; Γ1 ⊇ Σ3; Θ3; Γ2

Proof. By induction on the derivation of Σ2; Θ2 ⇝ Σ3; Θ3. As all the cases are similar, we only give the
base case str-id and one of the inductive cases str-sym:

(str-id) We have Σ1; Θ1; Γ1 ⊇ Σ2; Θ2; Γ2 and Σ2 ⊢ Θ2 wf.
It is necessary to prove that there are Σ4; Θ4 s.t. Σ1; Θ1 ⇝ Σ4; Θ4 and Σ4; Θ4; Γ1 ⊇ Σ2; Θ2; Γ2.
Take Σ4 = Σ1 and Θ4 = Θ1, then the result follows from Lemma 4.3.3 and str-id.

(str-sym) We have Σ1; Θ1; Γ1 ⊇ Σ2; Θ2; Γ2 and Σ2; Θ2 ⇝ Σ3; Θ3 and (w1, w2 ▷ w3) ∈ Θ3.
It is necessary to prove that there are Σ4,Θ4 s.t. Σ1; Θ1 ⇝ Σ4; Θ4 and Σ4; Θ4; Γ1 ⊇ Σ3; Θ3, (w2, w1 ▷ w3) ; Γ2

By induction we have that there are Σ′
4,Θ

′
4 s.t. (1) Σ1; Θ1 ⇝ Σ′

4; Θ
′
4 and (2) Σ′

4; Θ
′
4; Γ1 ⊇

Σ3; Θ3; Γ2.
By (2) we have that (w1, w2 ▷ w3) ∈ Θ′

4. Pick Σ4 = Σ′
4 and Θ4 = Θ′

4, then the conclusions follow
from str-sym and thinning-theta-take.

The remaining cases have the same structure as str-sym and are therefore omitted.

5.3 Layering

Having reduced the number of structural rules from 7 to merely 2 by introducing strengthenings, we
move to decreasing the number of points at which these structural rules can be applied, and therefore the
points at which inversion is tedious.

The specific approach is to layer the typing rules into 3 different judgments: those where the last
applied rule is a logical rule ⊢L, those where it is a casting rule ⊢C and those where it is an application
of the strengthening rule ⊢S .
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Definition 5.3.1 (Layered Typing Rules): The layered typing system of λ∗ contains 3 types of typing
judgments: Ω ⊢L e : A@w for the logical rules, Ω ⊢C e : A@w for the casting rules and Ω ⊢S e :
A@w for the structural rules. Each of the typing judgments has the additional assumption Ω wf.

Ω ⊢L e : A@w

layer-var
x : A@w ∈ Ω.Γ

Ω ⊢L x : A@w

layer-a-unit-i
w ∈ Ω.Σϵ

Ω ⊢L [] : 1a @w

layer-a-fun-i
w ∈ Ω.Σϵ ⊢ A : Stateful Ω, x : A@w ⊢C e : B@w

Ω ⊢L λx : A. e : A⇒ B@w

layer-a-fun-e
Ω ⊢C e1 : A⇒ B@w Ω ⊢C e2 : A@w

Ω ⊢L e1 e2 : B@w

layer-a-pair-i
Ω ⊢C e1 : A@w Ω ⊢C e2 : B@w

Ω ⊢L [e1, e2] : A ∧B@w

layer-a-pair-e
Ω ⊢C e1 : A ∧B@w Ω, x : A@w, y : B@w ⊢C e2 : C @w′

Ω ⊢L let [x, y] = e1 in e2 : C @w′

layer-m-unit-i

Ω ⊢L ⟨⟩ : 1m @ ϵ

layer-m-unit-e
Ω ⊢C e1 : 1m @w′ Ω, (ϵ, ϵ ▷ w′) ⊢S e2 : C @w

Ω ⊢L let ⟨⟩ = e1 in e2 : C @w

layer-m-fun-i
w ∈ Ω.Σϵ ⊢ A : Stateful Ω, a, c, (w, a ▷ c) , x : A@ a ⊢S e : B@ c

Ω ⊢L λ∗x : A. e : A −∗ B@w

layer-m-fun-e
(w1, w2 ▷ w) ∈ Ω.Θ Ω ⊢C e1 : A −∗ B@w1 Ω ⊢C e2 : A@w2

Ω ⊢L e∗1 e2 : B@w

layer-m-pair-i
(w1, w2 ▷ w) ∈ Ω.Θ Ω ⊢C e1 : A@w1 Ω ⊢C e2 : B@w2

Ω ⊢L ⟨e1, e2⟩ : A ∗B@w

layer-m-pair-e
w′ ∈ Ω.Σϵ Ω ⊢C e1 : A ∗B@w

Ω, a, b, x : A@ a, y : B@ b, (a, b ▷ w) ⊢S e2 : C @w′

Ω ⊢L let ⟨x, y⟩ = e1 in e2 : C @w′

layer-return
Ω ⊢C e : A@w

Ω ⊢L return e : T A@w

layer-bind
(w1, w2 ▷ w) ∈ Ω.Θ Ω ⊢C e1 : T A@w1 Ω, a, c, (w2, a ▷ c) , x : A@ a ⊢S e2 : T B@ c

Ω ⊢L let!x = e1 in e2 : T B@w

layer-newref
Ω ⊢C e : A@w ⊢ A : Pure

Ω ⊢L refA e : T (RefA)@w

layer-replace
(w1, w2 ▷ w) ∈ Ω.Θ Ω ⊢C e1 : RefA@w1 Ω ⊢C e2 : B@w2 ⊢ B : Pure

Ω ⊢L replaceA,B e1 e2 : T (A ∗ RefB)@w

layer-free
Ω ⊢C e : RefA@w

Ω ⊢L freeA e : T A@w
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Ω ⊢C e : A@w

layer-cast
(w, ϵ ▷ w′) ∈ Ω Ω ⊢L e : A@w

Ω ⊢C e : A@w′

Ω ⊢S e : A@w

layer-str-apply
Σ;Θ⇝ Σ′; Θ′ w ∈ Σϵ Σ′; Θ′; Γ ⊢C e : A@w

Σ;Θ; Γ ⊢S e : A@w

In the layered typing system, each logical rule is followed by a single casting rule, and possibly an
application of the strengthening rule. For the logical rules, the assumptions only allow for strengthening
rules when new labels or constraints are introduced. This limited application of strengthening relies on
the fact that strengthening can be moved down derivations. For instance, consider an application of the
layer-a-pair-i rule where strengthening is applied to the left element:

Σ;Θ⇝ Σ′; Θ′ Σ′; Θ′; Γ ⊢ e1 : A@w

Σ;Θ; Γ ⊢ e1 : A@w
Σ;Θ; Γ ⊢ e2 : B@w

Σ;Θ; Γ ⊢ [e1, e2] : A ∧B@w

The strengthening Σ;Θ⇝ Σ′; Θ′ results in a thinning Σ′; Θ′ ⊇ Σ;Θ which can be applied to the right
element. Therefore the application of strengthening can be moved down, resulting in the following
derivation:

Σ;Θ⇝ Σ′; Θ′
Σ;Θ; Γ ⊢ e1 : A@w

Σ;Θ⇝ Σ′; Θ′

Σ′; Θ′ ⊇ Σ;Θ
Σ;Θ; Γ ⊢ e2 : B@w

Σ′; Θ′; Γ ⊢ e2 : B@w

Σ′; Θ′; Γ ⊢ [e1, e2] : A ∧B@w

Σ;Θ; Γ ⊢ [e1, e2] : A ∧B@w

The same step can then be used for the second element, in the case that it also uses a strengthening rule.
The resulting derivation of the example above uses an application of thinning. The thinning lemma

(Lemma 4.3.4) ensures that the thinned derivation exists in the non-layered typing system, but does not
guarantee that no additional strengthening rules are introduced. If it were to introduce such strengthening
rules, then the rewriting above would merely shift the strengthening between the two elements rather
than only moving it down. In practice, the proof of the thinning lemma does not change the applied
rules, and neither does the corresponding lemma for the layered typing system.

Lemma 5.3.2 (Thinning Preserves Layers): If Ω′ ⊇ Ω and:
1. If Ω ⊢L e : A@w then Ω′ ⊢L e : A@w.
2. If Ω ⊢C e : A@w then Ω′ ⊢C e : A@w.
3. If Ω ⊢S e : A@w then Ω′ ⊢S e : A@w.

Proof. By mutual induction on the typing derivations using the same structure as Lemma 4.3.4. The
case for ⊢S applies Lemma 5.2.6.

In the non-layered typing system, structural rules can be applied at any point. As such, the strongest
translation from any derivation in the non-layered system is to a derivation in the strengthening layer
(⊢S). As such, we first prove an auxiliary lemma which converts derivations in the logical layer (⊢L) to
derivations in the strengthening layer (⊢S).

Lemma 5.3.3: If Σ;Θ; Γ ⊢L e : A@w then Σ;Θ; Γ ⊢S e : A@w.
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Proof. Let D be the derivation Ω ⊢L e : A@w, then a derivation of Ω ⊢S e : A@w is given by:

w ∈ Σϵ
Σ;Θ⇝ Σ;Θ

Σ;Θ⇝ Σ;Θ, (w, ϵ ▷ w)
w ∈ Σϵ

(w, ϵ ▷ w) ∈ Θ, (w, ϵ ▷ w)

D

Σ;Θ; Γ ⊢L e : A@w

Σ;Θ, (w, ϵ ▷ w) ; Γ ⊢L e : A@w

Σ;Θ, (w, ϵ ▷ w) ; Γ ⊢C e : A@w

Σ;Θ; Γ ⊢S e : A@w

where w ∈ Σϵ follows from Lemma 4.2.11.

The main result of the layered type system, is that any typing judgment that holds in the non-layered
system, also holds for the strengthening layer of the layered system. This ensures that the properties
for judgments in the strengthening layer of the layered system, also apply to judgments in the original
non-layered system. Specifically, the inversion theorem for β-redexes in § 5.4.

Theorem 5.3.4 (Derivation Layering): If Ω ⊢ e : A@w then Ω ⊢S e : A@w.

The translation from the non-layered system to the layered system is algorithmic, and consists of
applying several rules to rewrite derivations to a form that matches the layering structure. Before starting
the proof itself, it is useful to give 3 commonly used rewritings.

The first rewriting combines adjacent applications of strengthening rules, which is used for the case of
applying apply-str. The translation uses Corollary 5.2.3 to reduce the number of structural rules in
derivations from 7 to 2.

Rewriting 1: A derivation of the form:

Σ1; Θ1 ⇝ Σ2; Θ2 w ∈ Σ1ϵ

Σ2; Θ2 ⇝ Σ3; Θ3

w ∈ Σ2ϵ Σ3; Θ3; Γ ⊢ e : A@w

Σ2; Θ2; Γ ⊢ e : A@w
apply-str

Σ1; Θ1; Γ ⊢ e : A@w
apply-str

is rewritten to:

Σ1; Θ1 ⇝ Σ2; Θ2 Σ2; Θ2 ⇝ Σ3; Θ3

Σ1; Θ1 ⇝ Σ3; Θ3

Lemma 5.2.4 w ∈ Σ1ϵ Σ3; Θ3; Γ ⊢ e : A@w

Σ1; Θ1; Γ ⊢ e : A@w
apply-str

The second rewriting swaps the order of a cast and non-cast structural rules, which is used in the case
of the stlc-sep-cast rule as well as in later proofs.

Rewriting 2: A derivation of the form:

(w, ϵ ▷ w′) ∈ Θ′ Σ′; Θ′ ⇝ Σ;Θ w ∈ Σ′
ϵ Σ;Θ; Γ ⊢ e : A@w

Σ′; Θ′; Γ ⊢ e : A@w
apply-str

Σ′; Θ′; Γ ⊢ e : A@w′ cast

is rewritten to:

Σ′; Θ′ ⇝ Σ;Θ w ∈ Σ′
ϵ

(w, ϵ ▷ w′) ∈ Θ Σ;Θ; Γ ⊢ e : A@w

Σ;Θ; Γ ⊢ e : A@w′ cast

Σ′; Θ′; Γ ⊢ e : A@w′ apply-str

The condition (w, ϵ ▷ w′) ∈ Θ holds by the fact that Σ′; Θ′ ⇝ Σ;Θ induces a weakening Σ;Θ; Γ′ ⊇
Σ′; Θ′; Γ′ for any well-formed Γ′ s.t. Σ′ ⊢ Γ′ wf (Lemma 5.2.5).

The final common rewriting combines two casts, which is also used in the stlc-sep-cast rule, as well
as proofs of later theorems.
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Rewriting 3 (Combining Casts): A derivation of the form:

(w2, ϵ ▷ w3) ∈ Θ
(w1, ϵ ▷ w2) ∈ Θ Σ;Θ; Γ ⊢ e : A@w1

Σ;Θ; Γ ⊢ e : A@w2

cast

Σ;Θ; Γ ⊢ e : A@w3

cast

is rewritten to:

Σ;Θ⇝ Σ;Θ
(w1, ϵ ▷ w2) ∈ Θ (w2, ϵ ▷ w3) ∈ Θ

Σ;Θ⇝ Σ;Θ; (w1, ϵ ▷ w3)

Σ;Θ; Γ ⊢ e : A@w1

Σ;Θ; Γ, (w1, ϵ ▷ w3) ⊢ e : A@w1

cast

Σ;Θ; Γ ⊢ e : A@w3

apply-str

Proof (Theorem 5.3.4). By induction on the typing derivation of Ω ⊢ e : A@w. As the structure of the
proof is similar for most logical rules, we only show several cases.

( stlc-sep-cast). After induction on the derivation of the inner expression, the derivation is rewritten
with Rewriting 2 followed by Rewriting 3 and finally Rewriting 1.

(apply-str). Assume that the structural rule is written in the form of apply-str. Apply the in-
duction hypothesis followed by Rewriting 1 to get the desired form.

( stlc-sep-var). Use layer-var to get a derivation of Ω ⊢L x : A@w, followed by applying Lemma 5.3.3.

( stlc-sep-a-fun-i). Apply the induction hypothesis to get a derivation of Ω, x : A@w ⊢S e : B@w and
decompose it into (1) Σ;Θ⇝ Σ′; Θ′ and (2) Σ′; Θ′; Γ, x : A@w ⊢C e : B@w. By (1) we also have w ∈ Σ′

ϵ

so apply layer-a-fun-i to get Σ′; Θ′; Γ ⊢L λx : A. e : A ⇒ B@w, followed by applying Lemma 5.3.3
and Rewriting 1 to get Ω ⊢S λx : A. e : A⇒ B@w.

( stlc-sep-m-pair-i). Apply the induction hypothesis to get derivations of the form (1a) Σ;Θ; Γ ⊢S
e1 : A@w1 and (1b) Σ;Θ; Γ ⊢S e2 : B@w2. Decompose (1a) into (2a) Σ;Θ ⇝ Σ′; Θ′ and (2b)
Σ′; Θ′; Γ ⊢C e1 : A@w1. Apply Lemma 5.3.2 to (1b) using (2a) to find Σ′; Θ′; Γ ⊢S e2 : A@w2,
which is then decomposed into (3a) Σ′; Θ′ ⇝ Σ′′; Θ′′ and (3b) Σ′′; Θ′′; Γ ⊢C e2 : B@w2. Similarly
apply Lemma 5.3.2 to (2b) using (3a) to get Σ′′; Θ′′; Γ ⊢S e1 : A@w1. Apply layer-m-pair-i to get
Σ′′; Θ′′; Γ ⊢L ⟨e1, e2⟩ : A ∗B@w and then apply Lemma 5.3.3 followed by Rewriting 1 twice using (3a)
and (2a) respectively.

( stlc-sep-bind). Apply the induction hypothesis to get a derivation of Σ;Θ; Γ ⊢S e1 : T A@w1

and decompose it into (1a) Σ;Θ ⇝ Σ′; Θ′ and (1b) Σ′; Θ′; Γ ⊢C e1 : T A@w1. Similarly apply the
induction hypothesis to get a derivation of (2) Σ;Θ; Γ, a, c, (w1, a ▷ c) , x : A@ a ⊢S e2 : T B@ c. (1a)
results in a thinning Σ′; Θ′; Γ ⊇ Σ;Θ; Γ, which can be extended to Σ′, a, c; Θ′, (w2, a ▷ c) ; Γ, x : A@ a ⊇
Σ′, a, c; Θ′, (w2, a ▷ c) ; Γ, x : A@ a and applied to (2), resulting in (3) Σ′, a, c; Θ′, (w1, a ▷ c) ; Γ, x : A@ a ⊢S
e2 : T B@ c. Apply layer-bind to get Σ′; Θ′; Γ ⊢L let!x = e1 in e2 : T B@w followed by Lemma 5.3.3
and finally by Rewriting 1 using (1a).

The remaining cases are similar and therefore omitted.

As all typing rules in the layered system are also typing rules in the original non-layered system (or
admissible in the case of layer-str-apply), valid typing judgments in the layered system are also valid
judgments in the original system:

Corollary 5.3.5 (Unlayering): If Σ;Θ; Γ ⊢k e : A@w for some k ∈ {L,C, S} then Σ;Θ; Γ ⊢ e : A@w

Proof. By induction on Σ;Θ; Γ ⊢k e : A@w and applying Lemma 5.2.2 for layer-str-apply.
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5.4 Preservation

The most important property of the layered system is that for any expression e, there is at most 1 logical
rule which applies for a judgment in the logical layer Ω ⊢L e : A@w. As such, a standard inversion
theorem can be given for the logical layer.

Theorem 5.4.1 (Logical Layer Inversion Theorem): If Σ;Θ; Γ ⊢L e : R@w then:

1. If e = x then x : R@w ∈ Γ.
2. If e = [] then R = 1a and w ∈ Σϵ

3. If e = λx : A. e1 there is a B ∈ Type s.t. R = A ⇒ B and w ∈ Σϵ and Σ;Θ; Γ, x : A@w ⊢C e1 :
B@w

4. If e = e1 e2 then there is an A ∈ Type s.t. Σ;Θ; Γ ⊢C e1 : A⇒ R@w and Σ;Θ; Γ ⊢C e2 : A@w.
5. If e = [e1, e2] then there are A,B ∈ Type s.t. R = A ∧ B and Σ;Θ; Γ ⊢C e1 : A@w and

Σ;Θ; Γ ⊢C e2 : B@w.
6. If e = let [x, y] = e1 in e2 then there are A,B ∈ Type and w′ ∈ Σϵ s.t. Σ;Θ; Γ ⊢C e1 : A ∧B@w′

and Σ;Θ; Γ, x : A@w, y : B@w ⊢C e2 : R@w.
7. If e = ⟨⟩ then R = 1a and w = ϵ.
8. If e = let ⟨⟩ = e1 in e2 then there is a w′ ∈ Σϵ s.t. Σ;Θ; Γ ⊢C e1 : 1a@w′ and Σ;Θ, (ϵ, ϵ ▷ w′) ; Γ ⊢S

e2 : R@w.
9. If e = λ∗x : A. e1 then there is aB ∈ Type s.t. R = A −∗ B and w ∈ Σϵ and Σ, a, c; Θ, (w, a ▷ c) ; Γ, x :

A@ a ⊢S e1 : B@ c.
10. If e = e∗1 e2 then there is an A ∈ Type and (w1, w2 ▷ w) ∈ Θ s.t. Σ;Θ; Γ ⊢C e1 : A −∗ R@w1 and

Σ;Θ; Γ ⊢C e2 : A@w2.
11. If e = ⟨e1, e2⟩ then there are A,B ∈ Type and (w1, w2 ▷ w) ∈ Θ s.t. R = A ∗ B, Σ;Θ; Γ ⊢C e1 :

A@w1 and Σ;Θ; Γ ⊢C e2 : B@w2.
12. If e = let ⟨x, y⟩ = e1 in e2 then there are A,B ∈ Type and w′ ∈ Σϵ s.t. Σ;Θ; Γ ⊢C e1 : A ∗B@w′

and Σ, a, b; Θ, (a, b ▷ w′) ; Γ, x : A@ a, y : B@ b ⊢S e2 : R@w.
13. If e = return e1 then there is a A ∈ Type s.t. R = RA and Σ;Θ; Γ ⊢C e1 : A@w.
14. If e = let!x = e1 in e2 then there are A,B ∈ Type and (w1, w2 ▷ w) ∈ Θ s.t. R = T B,

Σ;Θ; Γ ⊢C e1 : T A@w1 and Σ, a, c; Θ, (w2, a ▷ c) ; Γ, x : A@ a ⊢S e2 : T B@ c.
15. If e = refA e1 then there is an A ∈ Type s.t. R = T (RefA), ⊢ A : Pure and Σ;Θ; Γ ⊢C e1 : A@w′.
16. If e = replaceA,B e1 e2 then there are A,B ∈ Type and (w1, w2 ▷ w) ∈ Θ s.t. R = T (A ∗ RefB),
⊢ B : Pure, Σ;Θ; Γ ⊢C e1 : RefA@w1 and Σ;Θ; Γ ⊢C e2 : B@w2.

17. If e = freeA e1 then there is an A ∈ Type s.t. R = T A and Σ;Θ; Γ ⊢C e1 : RefA@w.

Proof. By definition of the typing rules in the logical layer.

The inversion lemma for the logical layer cannot be directly applied to prove a preservation theorem,
as there can still be casts and strengthenings between the two elements of a reduction. For instance, for
Ω ⊢L (λx : A. e1) e2 : B@w, the inversion lemma gives only that Ω ⊢C λx : A. e1 : A⇒ B@w in the cast
layer, rather than the logical layer necessary to apply the inversion lemma again.

The next approach would be to extend the inversion lemma to the cast layer, which would allow us to
apply it to both (λx : A. e1) e2 and λx : A. e1. However, for instance in the stlc-sep-eq-m-pair-beta
rule, the world of the two elements of the pair combined is also used in typing the body of the let
expression. As such, an inversion lemma for the cast layer would also not be sufficient for proving a
preservation theorem.

Instead, we fall back to proving an inversion lemma for each of the β-redexes in the strengthening
layer. This allows for removing the cast between the β-redex rules in the derivation. This possibly adds
more strengthening rules, which can be moved down as in the proof of Theorem 5.3.4. At this point,
standard inversion can be applied to get the required conclusions for each redex.

Theorem 5.4.2 (Head reduction preservation): If Ω ⊢L e : A@w and e→hd
β e′ then Ω ⊢ e ≡ e′ : A@w.

Proof. By case analysis on e →hd
β e′ as follows. As the cases are similar, we only show the cases for

e = (λ∗x : B. e1)
∗ e2. We also split Ω into Σ;Θ; Γ.
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Case e = (λ∗x : A. e1)
∗ e2. First apply Theorem 5.4.1 to Σ;Θ; Γ ⊢ (λ∗x : B. e1)

∗ e2 : B@w to find an
(1a) (w1, w2 ▷ w) ∈ Θ s.t. (1b) Σ;Θ; Γ ⊢C λ∗x : B. e1 : B −∗ A@w1 and (1c) Σ;Θ; Γ ⊢C e2 : B@w2.
Next by case analysis on Σ;Θ; Γ ⊢C λ∗x : B. e1 : B −∗ A@w1 we find (2a) (w′

1, ϵ ▷ w1) ∈ Θ and (2b)
Σ;Θ; Γ ⊢ λ∗x : B. e1 : B −∗ A@w′

1.
Apply Theorem 5.4.1 to (2b) to find (3a) w′

1 ∈ Σϵ and (3b) Σ, a, c; Θ, (w′
1, a ▷ c) ; Γ, x : B@ a ⊢C e1 : A@ c.

Apply thinning to (3b) and (1b) to find (4a) Σ, a, c; Θ, (w′
1, w2 ▷ w) , (w

′
1, a ▷ c) ; Γ, x : B@ a ⊢C e1 : A@ c

and (4b) Σ;Θ, (w′
1, w2 ▷ w) ; Γ ⊢C e2 : B@w2.

Apply stlc-sep-eq-m-fun-beta to (4a) and (4b) to find Σ;Θ, , (w′
1, w2 ▷ w) ; Γ ⊢ (λ∗x : B. e1)

∗ e2 ≡
[I ⟨x 7→ e2⟩]e1 : A@w.
Finally apply the congruence rule corresponding to the stlc-sep-assoc-unit-1 rule using (2a) to find
Σ;Θ; Γ ⊢ (λ∗x : B. e1)

∗ e2 ≡ [I ⟨x 7→ e2⟩]e1 : A@w.
The remaining cases are similar.

The conclusions for each β-redex in the theorem above correspond to a β-equivalence rule in Defini-
tion 4.3.12 for Σ′; Θ′; Γ ⊢ e : A@w′. As such, by applying the corresponding congruence rules for casting
back to w and those corresponding to the strengthening Σ;Θ⇝ Σ′; Θ′, we finally prove the necessary
preservation properties:

Theorem 5.4.3 (Preservation): If Ω ⊢ e : A@w and e→β e′ then Ω ⊢ e ≡ e′ : A@w.

Proof. The proof follows from Theorem 5.3.4 and Lemma 5.4.4 below.

By applying Theorem 4.3.13 and Theorem 4.4.18 to the result of the preservation theorem, we derive
both the standard preservation property as in for instance Harper [2016], and that β-reduction preserves
the denotational semantics of the program.

Even though Theorem 5.4.3 considers general derivations in λ∗, the proof depends on the layered
structure of typing derivations, as specified in the following lemma.

Lemma 5.4.4 (Layered Preservation):
1. If Ω ⊢L e : A@w and e→β e′ then Ω ⊢ e ≡ e′ : A@w.
2. If Ω ⊢C e : A@w and e→β e′ then Ω ⊢ e ≡ e′ : A@w.
3. If Ω ⊢S e : A@w and e→β e′ then Ω ⊢ e ≡ e′ : A@w.

Proof. The proof consists of mutual induction on the derivation of Ω ⊢j e : A@w for j ∈ {L,C, S}. The
proof for these layers have the following structure:

(Ω ⊢L e : A@w) If e→β e′ is e→hd
β e′, then apply Theorem 5.4.2. Otherwise, apply induction and the

congruence rule corresponding to the logical rule.

(Ω ⊢C e : A@w) Apply induction, followed by the congruence rule for stlc-sep-cast.

(Ω ⊢S e : A@w) By case analysis on the derivation, we find Σ′,Θ′ s.t. Ω.Σ;Ω.Θ⇝ Σ′; Θ′ and
Σ′; Θ′; Ω.Γ ⊢C e : A@w. Using induction we find Σ′; Θ′; Ω.Γ ⊢ e ≡ e′ : A@w. The
case concludes by induction on Ω.Σ;Ω.Θ⇝ Σ′; Θ′, applying the congruence rule of the
structural rule corresponding to the case of the strengthening.
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Chapter 6

Related Work

Bunched Implications. The logic of bunched implications was introduced by O’Hearn and Pym [1999]
as a logic containing both additive and multiplicative versions of implication, as complements to additive
and multiplicative conjunction in linear logic [Girard 1995] respectively. They introduce the concept of
bunched contexts, where contexts can be combined using either additively ‘;’ or multiplicatively ‘,’. This
results in the following two proof rules:

Γ;A ⊢ B

Γ ⊢ A→ B

Γ, A ⊢ B

Γ ⊢ A⊸ B

Where→ and⊸ are the additive and multiplicative implication respectively. As bunches can be combined
in two ways, they form a tree-like structure. In later work, Pym [2002] presents the αλ-calculus in direct
Curry-Howard correspondence with their logic of bunched implications. O’Hearn [1999] separately
discusses the resource sharing interpretations of αλ and a related affine variant which admits weakening
of both additive and multiplicative bunches.

To the author’s knowledge, the most recent works on bunched implications as type theory for λ-calculi
are Berdine and O’Hearn [2006], Collinson and Pym [2006], and Collinson et al. [2008]. In Berdine
and O’Hearn [2006], the authors present a language with bunched implications and linear references.
Their heap operations are modeled in a continuation passing style, rather than the monadic style used
in our work. Additionally, they restrict the values on the heap to integers and a true value that do not
carry specific resources, whereas we restrict the values on the heap to those that do not access the heap,
including other references. Finally, they present a denotational model directly on the bunched calculus.

In Collinson et al. [2008], the authors extend the αλ calculus with polymorphism similar to λ2 for the
λ-calculus. They discuss two types of polymorphism, one where the type variables are intuitionistic as in
λP , and one where the type variables themselves form a bunched context. For the case of bunched type
variables, they present a categorical semantics, and prove preservation (subject-reduction) and strong
normalization of βηζ-reductions, where ζ reductions lift let bindings out of subexpressions. Collinson
and Pym [2006] similarly describe a form of polymorphism, but on variables representing memory regions
rather than types. Similar to Berdine and O’Hearn [2006], they add heap operations in a continuation
passing style, and give a denotational semantics for their language. Unlike our work, none of these
languages erase to a language without BI-based types, but rather define a denotational semantics directly
on the BI-based language and bunched contexts.

Labeled Calculi. Labeled sequent calculi are sequent calculi where each assumption or conclusion
is additionally assigned a label. They can be applied to describe both more restrictive logics, such as
intuitionistic and substructural logics [Balat and Galmiche 2000], and modal logics [Baldoni 2000; Ghari
2017]. Combing commonalities between these labeled systems, Viganò [2000] described a general labeled
sequent calculus framework for describing non-classical logics. The semantics of their framework is based
on a general Kripke semantics of possible worlds [Kripke 1963], where the labels in the calculus represent
possible worlds in the Kripke semantics.

In the original paper introducing bunched implications [O’Hearn and Pym 1999], published before
the framework, the authors present such a Kripke resource semantics of BI. Hóu et al. [2015] develop a
labeled sequent calculus for BBI – a classical variant of BI – based on this Kripke semantics and inspired
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by labeled sequent calculi in modal logic. They prove that the labeled calculus is equivalent to the Hilbert
system for BBI [Galmiche and Larchey-Wendling 2006].

Galmiche et al. [2019] similarly describe a labeled sequent calculus for BI based on the Kripke resource
semantics, and study the relation between the labeled and bunched sequent calculi for BI. They show
that the labeled sequent calculus is sound w.r.t. the bunched calculus but were only able to prove that
proofs in the bunched calculus of a certain form – namely satisfying a tree property – could be converted
to proofs in the labeled calculus.

In this work, we defined a labeled intuitionistic logic based on the labeled sequent calculi in these
prior works. Unlike these works, we used this logic to define a λ-calculus similar to αλ, but without
bunches, for which we give and verify a denotational semantics. Hence, whereas prior works on BI focuses
on the logic side of the Curry-Howard correspondence of BI, our work focuses on the computational side.

Separation Logic. Reynolds [2002] introduced separation logic as an extension of Hoare logic for better
reasoning about programs with shared state, such as low level programs with shared pointers. It introduces
the separating conjunction ∗, which allows reasoning about disjoint parts of the heap. Realizing that
separation logic is an instance of Bunched Implications, they also introduced the −∗ connective.

In separation logic, programs are verified by proving Hoare triples of the form {P}e{Q}, which states
that if P holds for a certain heap before executing e, then Q holds for the updated heap after executing
e. This ‘executing’ behavior of the program e is formally specified by the operational semantics of the
programming language. An important rule in separation logic is the frame rule, which states that the
parts of the heap not mentioned in the pre- and post-condition are not affected by the execution of the
program. Based on this property, O’Hearn [2007] extended separation logic with a parallel rule to reason
about concurrent programs.

The logic of concurrent separation logic has been formalized in theorem provers, such as VST-Floyd [Cao
et al. 2018] and Iris [Jung et al. 2018] for verifying separation logic Hoare triples for programs.

In such separation logic frameworks, there is a clear distinction between the language of programs,
CLight – a subset of C – for VST-Floyd and for instance HeapLang for Iris, and the verification of these
programs using separation logic. This allows for a clear separation between the programs themselves and
the verification of these programs, which can for instance be used to prove multiple properties for the
same program, for instance for different inputs or different levels of abstraction [Somers and Krebbers
2024].

Our system on the other hand specifies the separation logic in the type system of the language,
rather than as a separate logic, allowing for a more direct correspondence between the programs and
their verification. This is similar to the approach taken by for instance Morrisett et al. [2005] in the L3
language, where the type system is extended with linear types to describe resource ownership.

Resource Ownership Type Systems. There are two main approaches to adding resource ownership
to type systems themselves. The first approach is to add specific resource types to the type system,
such as capability types in L3 [Morrisett et al. 2005]. The second approach is to add resources as type
refinements to the language, as is the case in CN [Pulte et al. 2023] and RefinedC [Sammler et al. 2021].

L3 introduces first-class resource types called capabilities to the type system, to track the permission
to access memory locations separately from the pointers themselves. They use a linear type system
to ensure that capabilities are not duplicated or discarded, and employ a specific type constructor to
describe types such as pointers which can be explicitly duplicated and discarded. Due to the linear type
system, the language only contains the linear function type.

RefinedC [Sammler et al. 2021] is a type refinement system for a subset of the C language. In
RefinedC, types in this subset of C (called Cesium) are annotated with refinements, which describe not
only restrictions on values, but also ownership of values. Type checking in RefinedC is done by semantic
typing, namely by defining refinement types and typing judgments in terms of Iris’ separation logic, where
typing rules are proven as lemmas. The typing rules are defined in terms of a fragment of separation
logic, and type checking corresponds to finding a proof in this fragment. The specific separation logic
fragment used to permit proof search without backtracking does not include the additive implication.
Hence, their approach to typing uses neither bunches as in αλ nor labels as in our work, but rather a
proof procedure for a fragment of separation logic.
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Another refinement type system for C with resources is CN [Pulte et al. 2023]. It is based on
Cesium [Memarian et al. 2016], a description of a large part of the ISO C standard by translation into a
smaller Core calculus. Rather than defining refinements on the C language itself, it defines these typing
refinements with respect to this Core calculus. CN internally uses SMT solving as part of their type
checking by translating their separation logic formulas into SMT formulas. Their type refinements consists
of a combination of first-class linear resource ownership types (as in L3) combined by separation logic
connectives ∗ and −∗ , and refinements in the form of boolean predicates. They restrict the use of the
additive implication and conjunction to only boolean predicates, rather than the general additive BI
connectives considered in our work.
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Chapter 7

Conclusion and Future Work

In this thesis, we introduced λ∗, a λ-calculus with bunched implications, extended with linear references
that support strong updates via a monadic type. λ∗ includes two types of functions and products: those
that share resources, as in intuitionistic logic, and those that do not, as in linear logic. Rather than
describing the typing system using the tree-shaped bunched contexts used in the original BI logic and
associated αλ-calculus [Pym 2002], we employ a labeling approach commonly used in sequent calculi
for modal logics [Baldoni 2000; Ghari 2017; Viganò 2000], resulting in a type system that admits both
weakening and contraction.

The types and expressions in λ∗ erase to those in a simply typed λloc with monadic heap operations
and non-typed references that do not track resources. A denotational semantics for λloc was provided in
which the monadic type was interpreted as partial functions from heaps to a result and an updated heap.
Such a function is undefined when a heap operation fails and therefore gets stuck. We defined β- and
η-equivalences on simply typed terms as an equivalence judgment, ensuring that typeable β, η-equivalent
programs have the same interpretation in the denotational semantics. Additionally, we proved an analog
to the preservation property (also known as subject-reduction) of operational semantics for the equivalence
judgment by demonstrating that the typeability of the β-redex is sufficient to prove typeable β-equivalence.
This proof follows from a standard inversion lemma on the form of expressions [Pierce 2002].

Subsequently, we demonstrated that λ∗ can be interpreted as a refinement type system of λloc. This
type refinement preserves both typing judgments and equivalence judgments, allowing us to reuse the
denotational semantics of λloc for λ∗. By defining a logical predicate on labeled types in λ∗, we further
showed that well-typed programs are semantically safe, meaning that no heap operations fail in the
denotational semantics.

Finally, for the pure (non heap changing) part of λ∗, we defined β-reductions and proved the
preservation property by adding layering to the typing rules of λ∗, restricting the places at which
structural rules can be applied. The preservation theorem for the pure fragment provides a strong initial
step towards proving the syntactic soundness of the bunched implication calculus with respect to a
potential operational semantics. We conclude the thesis with a discussion of this and other possible future
work.

Future Work

Operational Semantics. In our work we focused on a denotational semantics of typing judgments.
By proving regularity, we showed that the denotational interpretation of well-typed expressions in the
labeled system do not get stuck. An alternative semantics is an operational semantics, in which the
execution steps of untyped expressions are defined in the form of reductions, where stuck operations
such as attempting to free a non-existent location would have no further reductions. In an operational
semantics, the safety property states that well-typed programs do not get stuck. Safety is commonly
proven using a combination of preservation, which states that reductions maintain well-typedness, and
progress, which states that well-typed programs are either values, or can take another step [Harper 2016;
Pierce 2002]. We have proven the former property for the reductions that do not change the heap (i.e.
β-reductions) but not for the heap-changing operations. Defining an operational semantics, proving safety
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w.r.t. the operational semantics and relating the operational and denotational semantics are possibilities
for future work.

Higher-Order Store and Recursion. To ensure that the interpretations of programs in λ∗ are
terminating, and to simplify the denotational model of heaps, we excluded the monadic type T A from
being stored on the heap, excluding higher-order store.

As including higher-order store would permit general recursion due to Landin’s Knot [Landin 1964],
extending λ∗ would require a more complex denotational semantics to account for both non-terminating
programs and programs that get stuck. A possible approach to account for general recursion would be to
use step indexing and guarded recursion using a later modality [Appel and McAllester 2001; Appel et al.
2007].

This approach can be used to model general recursion in both operational semantics [Appel et al.
2007] and denotational semantics [Møgelberg and Paviotti 2019]. The approach for operational semantics
has been mechanized by Iris [Jung et al. 2018]. Recently, Frumin et al. [2022] similarly mechanized an
approach for denotational semantics, building on the Iris framework. It would be interesting to study
how the labeling approach for resources in our work would interact with step indexing to support higher
order store.

Dependent Types. Another direction for future work would be to extend the calculus with dependent
products and dependent functions to correspond with predicate, rather than propositional BI. In such a
dependent type system, the linear references RefA could instead be replaced by locations loc as in λloc,
and linear capabilities l 7→ A corresponding to location l containing a value of type A.

This resembles the pointers and capabilities in the L3 language [Morrisett et al. 2005]. In L3, references
consist of two parts: the location of the heap itself Ptr ρ and a linear capability to access the location
Cap ρA, where the name ρ relates pointers and capabilities of the same location. These could be modeled
by loc and l 7→ A in a dependent version of our system respectively.

Similarly, the pointsto connective of separation logic l 7→A v – describing that a location contains a
specific value v of type A – could be modeled as a capability with type. In a dependent system with
equalities, the dependent pair (Σv′ : A)× (v = v′) consists of a value v′ of type A and a proof that v is
equal to v′. Hence, the pointsto connective for a specific value could be modeled as:

l 7→A v
def
= l 7→ (Σv′ : A)× (v = v′).

A key challenge in extending λ∗ with dependent types is finding a suitable notion of equality. For
instance, the capability l 7→ A and the equality v = v′ have influence on the computation, and hence
should be possible to erase. A naive approach would be to erase both to unit values, and to erase all
dependent pairs and products to standard pairs and products. However, this approach would result in a
significant number of irrelevant units. A more sophisticated approach would be that of Ghalayini and
Krishnaswami [2023], who describe a dependently typed calculus with clear separation between types and
propositions, that allows propositions and type dependencies to be erased similar to how we erase resource
tracking through labels. By combining our approaches, future work could create a separation logic style
calculus where both resource tracking (including capabilities and equalities) and type dependency can be
erased without introducing unnecessary units.

Type Checking and Label Inference. In our work, we defined a type system for the λ∗, a λ-calculus
with bunched function types. In this type theory, typing derivations are not unique due to the addition of
structural rules. Whereas the next logical rule to apply during type checking is driven by the form of the
expression, where to apply structural rules and which worlds and constraints to use for each rule are not.

As such, creating a type checker for the labeled system would require a mechanism to infer both when
to apply structural rules, and which worlds to assign to expressions. As this approach is closely related to
proof search in logics – but fixing the order in which logical rules are applied – we believe that approaches
used for proof search in such logics could be adapted to type checking, and possibly type inference, for λ∗.

Most closely related are the approaches for proof search in sequent calculi for bunched implications.
Specifically, Hóu et al. [2015] describe a labeled sequent calculus for Boolean BI (BBI), a classical variant
of BI. They describe an approach to proof search in which their labeled sequent calculus is converted to a
system without structural rules, by generating constraints when applying logical rules. These constraints
are then solved and checked at the end of the proof search. This approach resembles that of constraint-
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based type inference used by for instance ML [Pottier and Rémy. 2004] and Haskell [Peyton Jones 2019].
Future work could combine these approaches to provide both type inference and the world and constraint
inference necessary to type check programs in λ∗.
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a propositions-as-sessions interpretation of bunched implications in channel-based concurrency.”
Proceedings of the ACM on Programming Languages, 6, OOPSLA2, 841–869. doi: 10.1145/3563318.

Didier Galmiche and Dominique Larchey-Wendling. 2006. “Expressivity Properties of Boolean BI Through
Relational Models.” In: FSTTCS 2006: Foundations of Software Technology and Theoretical Computer
Science. Springer Berlin Heidelberg, Berlin, Heidelberg, 357–368. isbn: 978-3-540-49995-4. doi: 10.10
07/11944836_33.
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