MASTER THESIS
COMPUTING SCIENCE

h

£ %
9 E
- O
1, &
Mine

RADBOUD UNIVERSITY

k- A-Complete Conformance Testing of Mealy
Machines with Timers

Author: First supervisor/assessor:
Bram Pellen prof. dr. Frits Vaandrager
s1047349 f.vaandrager@cs.ru.nl

Second assessor:
dr. Jurriaan Rot
j.rot@cs.ru.nl

April 23, 2025

2 Bram Pellen

This document is my final report for the master thesis that I completed as a part of the requirements for
the degree of Master of Science.

Abstract

We present the first formal black-box conformance testing method for Mealy machines with timers (MMTs).
We first develop our testing method for Mealy machines with a single timer (MM1Ts), as a stepping stone
towards our method for MMTs. We prove that both of our testing procedures are k-A-complete. The use
of our MM1T method strengthens the correctness guarantee provided by the active MM1T learning method
of Vaandrager et al. [2023]. Our conformance testing procedure for MMTs supports specifications that are
provided as generalized MMTs (gMMTs), as defined by Bruyere et al. [2024], rather than as MMTs. This
makes it more flexible in use, since MMTs can easily be converted into gMMTs. We create an additional
algorithm, due to which our MMT testing procedure can nearly be used to strengthen the correctness
guarantee provided by Bruyere et al. [2024]’s learning procedure for MMTs.

Contents

1 Introduction 5
2 MMI1T Testing Preliminaries 8
2.1 Notation o o o e 8
2.1.1 Functions e e 8

2.1.2 SeqUENCESo e e e 8

2.2 Mealy Machines o . L e 9
2.3 Conformance Testing for Mealy Machines 11
2.4 k-Complete Test Suites for Mealy Machines 11
2.4.1 The W-Method e e 12

2.4.2 The H-method e 12

2.5 k-A-Complete Test Suites for Mealy Machines 12
2.6 Mealy Machines With a Single Timer (MMITS)« . v i 13
2.6.1 Untimed Semantics 15

2.6.2 Timed Semantics L 15

3 k-A-Complete MM1T Conformance Testing 18
3.1 Requirements for the Specification 18
3.2 The Test Data Captured by our Procedure 18
3.3 The Testing Procedure e 24
3.3.1 Determining Whether a Transition has Conflicts Between the Specification and the SUT 27

3.3.2 Extending the Observation Tree With a Single Transition 27

3.3.3 Extending the Observation Tree With a Sequence of Transitions 28

3.3.4 Terminationo e 29

3.3.5 k-A-Complete Test Suites for MM1Ts, 29

3.3.6 k-A-Completeness of the Procedure 30

3.3.7 Comparison With the H-Method 31

3.3.8 The Order in Which the Rules are Applied 32

4 MMT Testing Preliminaries 33
4.1 Mealy Machines With Multiple Timers 33
4.2 Untimed Semanticso 35
4.3 Timed Semantics 35
4.4 Symbolic Words and Symbolic Equivalence 0. 37
4.5 Race Conditions and Race Avoidance L 37
4.6 Auxiliary Functions That Describe Timer Behavior 38

5 k-A-Complete Conformance Testing of MMTs 40
5.1 ¢-Observable (g)MMTs 40
5.2 Making s-Learnable MMTs ¢-Observable o 41
5.2.1 Why not all s-Learnable MMTs are t-Observable 45

5.3 Observation Trees and Functional Simulations 45
5.4 Explored Stateso 48

k-A-Complete Conformance Testing of Mealy Machines with Timers

5.5 Timer Matchings and Apartness e
55.1 Reading Runs e
5.5.2 Apartness of States.

5.6 Stratification L e

5.7 Requirements for the Specification o
5.7.1 Requirements L L e e e
5.7.2 Why gMMTs Should be Easier to Minimize Than MMTs

5.8 The Testing Procedure L
5.8.1 k-A-Complete Test Suites for MMTs
5.8.2 The SUT’s Maximum Size ot e
5.8.3 Making an Observation Tree State Enabled Explored
5.8.4 Extending the Observation Tree With a Single Transition
5.8.5 Extending the Observation Tree With a Sequence of Transitions
5.8.6 Making Observation Tree States Active Explored
5.8.7 Making Two Observation Tree States Apart
5.8.8 Termination L e e e
5.8.9 k-A-Completeness of the Procedure

6 Conclusions and Future Work
Bibliography

A MMI1T Material from the Literature

A.1 Expressing MM1Ts and Mealy Machines in Terms of One Another
A.2 Bisimulations Between MM1Ts

Proofs Related to MM1Ts
B.1 Properties and Proofs Related to the k-A-Completeness of the MM1T Testing Procedure . . .

B.1.1 The proof of Theorem 3.3.1
B.1.2 Proof of Lemma 3.3.2
B.2 Proof of Lemma 3.1.1 e
B.2.1 Proof of Lemma B.2.2
B.2.2 Proof of Lemma B.2.3
B.2.3 Proof of Lemma B.2.4
Definitions, Properties and Proofs Related to (g)MMTs
C.1 Proofs Related to Functional Simulations
C.1.1 Proof of Lemma 5.3.1 e e
C.1.2 Proof of Lemma 5.3.2 e e
C.1.3 Proof of Lemma 5.3.3 e e
C.1.4 Proof of Lemma 5.3.4 e
C.2 Properties and Proofs Related to Observation Tree Runs
C.3 Properties and Proofs Related to Apartness
C.3.1 Proof of Lemma C.3.1 e
C.3.2 Proof of Lemma C.3.2 e
C.4 Properties and Proofs for the Algorithm for Making MMTs ¢-Observable
C.4.1 Proof of Lemma C.4.3 e
C.4.2 Proof of Lemma C.4.4 e e
C.4.3 Proof of Lemma C.4.6 e e
C.4.4 Proof of Lemma C.4.8 e
C.4.5 Proof of Theorem 5.2.1 e
C.4.6 Proof of Theorem 5.2.3 e
C.4.7 Proof of Theorem 5.2.4 e
C.4.8 Proof of Theorem 5.2.5 e

C.5 (g)MMT Bisimulations

C.6

C.7
C.8

C.9

Bram Pellen

C.5.1 Proof of Lemma C.5.1 115
C.5.2 Proof of Lemma C.5.2 117
Properties and Proofs Related to the k-A-Completeness of the MMT Testing Procedure . . . 118
C.6.1 The proof of Theorem 5.8.1 122
C.6.2 Proof of Lemma 5.8.17 125
Auxiliary Properties Concerning Observation Tree MMTs and Functional (g)MMT Simulations125
Proof of Lemma 5.8.15 L 129
C.8.1 The proof of Lemma 5.8.15 130
Proofs Related to the MMT Conformance Testing Procedure 134
C.9.1 Proof of Lemma 5.8.2 134
C.9.2 Proof of Lemma 5.8.9 135
C.9.3 Proof of Lemma 5.8.10 136
C.94 Proof of Lemma 5.8 11 137

C.9.5 Proof of Lemma 5.8.16 e e 138

Chapter 1

Introduction

In this thesis, we address the problem of black-box conformance testing for timed systems. Black box
conformance testing is the activity of determining whether a black-box system under test (SUT) conforms
to a given specification. We start from a simple setting in which both the specification and the behavior of
the SUT can be described by state-based systems known as Mealy machines [Mealy, 1955]. Mealy machines
yield observable outputs in response to inputs from their environment. For every input, a Mealy machine
also performs a state transition that determines how it responds to subsequent inputs. In this setting, we
use finite-length input sequences to try to determine whether the Mealy machines M that describe the
behavior of the SUT behave equivalently to a specification given by a Mealy machine S. We call such
an input sequence o a test. Let M be a Mealy machine that describes the behavior of the SUT. We say
that the SUT passes test o iff M provides the same sequence of outputs in response to ¢ as S. The SUT
is said to fail o otherwise. We call a finite set of tests a test suite. We say that the SUT passes a test
suite 7.5 iff the SUT passes every test of TSS. Otherwise, we say that the SUT fails TSS. We would want
to generate test suites TS® that are complete, in the sense that the SUT passes T, S5 iff it is equivalent to
specification §. Unfortunately, complete test suites do not exist for arbitrary SUTs, since a finite number
of finite-length tests could never show that the specification and the SUT exhibit the same behavior for
all possible input sequences. An alternative to this completeness requirement is that of k-completeness.
For a specification § and a natural number k, a test suite TS}? is k-complete if any SUT with at most k
more states than S passes TS‘,? iff it is equivalent to §. The k-completeness requirement is used by various
Mealy machine conformance testing methods, such as the W-method [Chow, 1978, Vasilevskii, 1973], the
H-method [Dorofeeva et al., 2005], the Wp-method [Fujiwara et al., 1991] and the HSI-method [Luo et al.,
1995], among others [Dorofeeva et al., 2010a]. In Vaandrager et al. [2024], Vaandrager et al. introduced the
notion of k-A-complete test suites. They proved that for Mealy machines, k-A-completeness subsumes k-
completeness, and they provide a sufficient condition for k-A-complete test suites, under certain reasonable
assumptions for A. Fault domains provide a different way to characterize completeness criteria for test suites
and for conformance testing methods. A fault domain is a set U of Mealy machines. A test suite T5°
is U-complete if for each M € U, U only passes the test suite if it is equivalent to specification S. For
example, the fault domain for the k-completeness criterium is the set U, tx, where n is the number of states
of the specification.

Advances in conformance testing are relevant to the area of active model learning. In active model
learning, the goal is to learn a model of a system under learning (SUL) from information that is acquired
through interaction with the system. Many approaches to active model learning are based on the minimally
adequate teacher (MAT) framework that Angluin introduced in 1987. This framework describes the learning
process as an interaction between a learner that wishes to learn a model of the SUL, and a teacher that knows
the SUL’s inner workings. The learner cannot directly ask the teacher for a description of the SUL’s possible
behavior. Instead, the learner asks the teacher queries to try and learn about this behavior. The learner
can ask two types of queries. With membership queries (MQs), the learner asks the teacher for the output
sequence that the SUT returns in response to a given input sequence. With equivalence queries (EQs), the
learner asks whether a Mealy machine that it formulated from the data that it acquired up to this point is
equivalent to the SUL. To answer these equivalence queries, the teacher needs to have an equivalence oracle

6 Bram Pellen

start H‘(Z—/;)' t?g[j]Q/)o start — @

to[z]/o’ .: a/o O to[z1]/0'
¢

(I7 2) @ L (‘T?’? 3) 3 (Ilv 2)

(a) An MMT (b) An observation tree for the MMT on the left

Figure 1.1: An MMT, along with an observation tree for that MMT. The state colors indicate the corre-
spondence between the states of the two models

that it can ask whether a given hypothesis model is equivalent to the black-box SUL.

Black-box conformance testing methods provide a means to create approximations of equivalence oracles
with proven correctness guarantees. To construct an approximate equivalence oracle from a conformance
testing method, we can treat hypotheses models as specifications, and SULs as SUTs. If we can assume that
the SUL has at most k& more states than the hypotheses produced by the learning method, then the use of
a k-complete conformance testing method guarantees that the equivalence oracle judges any hypothesis to be
equivalent to the SUL iff it is truly equivalent to the SUL. More generally, a conformance testing method that
is proven to be correct under a specific fault domain I/ is also a valid equivalence oracle under the assumption
that the SUL is in /. Conformance testing methods can only provide approximations of equivalence oracles,
because they can never be complete. These approximate equivalence oracles are approximations in the sense
that they can never be guaranteed to work for arbitrary black-box SUTs. We already discussed the existence
of conformance testing methods for Mealy machines that can thus be used to approximate equivalence oracles
with proven correctness guarantees. However, not all model learning methods aim to learn Mealy machines.

The information that can be learned about a system’s behavior by analyzing learned models is ultimately
limited by the expressiveness of the models supported by the utilized model learning method. For instance,
standard Mealy machines lack the ability to encode the real-time behavior that is exhibited by many real-
world systems and protocols. Vaandrager et al. [2023] provided a method for learning Mealy machines with a
single timer (MM1Ts), and Bruyere et al. [2024] introduced a method for learning Mealy machines with any
finite number of timers (MMTs). MM1Ts generalize Mealy machines by extending the system with a single
timer that can trigger state transitions when it runs out of time. MMTs further generalize these MM1Ts by
having multiple independent timers that can be active simultaneously. Figure 1.1(a) shows an example of
an MMT. This example model has gy for its initial state. This means that if the input a is the very first
input that this model receives, then it transitions from the state gy to the state ¢; in a move that also yields
output o, and that starts timer x with value 2. A subsequent delay of 2 time units would automatically
trigger the timeout-transition with the special input to[x] that state ¢; has to itself.

The MM1T learning approach is based on Angluin’s MAT framework. It requires an MM1T teacher that it

can ask timed versions of the MAT membership and equivalence queries. It also introduces mappings between
Mealy machines and MM1Ts, which it uses to construct an MMI1T learner from a Mealy machine learning
method, such as the L}, [Shahbaz and Groz, 2009] method, the TTT [Isberner et al., 2014] method, or the
Suffix1byl [Irfan et al., 2010] method. The MMI1T learner uses an adapter that captures the information
that it learns on the SUL in an observation tree. Observation trees are tree-shaped models that capture
information that is observed about the behavior of other models.
The MMT learning method is based on L#, which is a method for learning Mealy machines that heavily
relies on the use of observation trees [Vaandrager et al., 2022]. As such, the MMT learning method relies on
observation trees as well. Figure 1.1(b) shows an observation tree 7 that the MMT learning method might
create for the MMT M of Fig. 1.1(a). The inputs, outputs and timer updates for the transition sequences
found in 7 aren’t exactly equal to those supported by M. Still, these sequences exhibit the same observable
behavior, because the names of timers and the presence of timer updates that do not lead to timeouts cannot
be ourwardly observed. Like the MMI1T learning method, the MMT method also relies on the ability to
evaluate timed versions of the MAT membership and equivalence queries.

k-A-Complete Conformance Testing of Mealy Machines with Timers 7

No equivalence oracles with proven correctness guarantees have so far been developed for the Mealy
machines with timers supported by the MM1T and MMT learning procedures. It could very well be possible
to approximate such oracles with random testing, but there are as of yet no publications that explore this
direction, and it would not come with any correctness guarantees. These two learning papers use distinct
techniques to circumvent this lack of a black-box equivalence oracle in their experimental evaluations. The
MMIT procedure does so through the use of conventional k-complete Mealy machine conformance testing
methods. They use these testing methods to determine whether the hypotheses are equivalent to the SUL
MM1Ts from their case studies when both are converted to Mealy machines. This approach cannot be used
for black-box SULs, since the conversion method from MM1Ts to Mealy machines cannot be used on black-
box MM1Ts. The MMI1T method circumvents the lack of a black-box equivalence oracle for MMTs with
a breadth-first-search-based algorithm that compares the learned hypotheses with modified versions of the
SUL MMTs from the case studies. This approach doesn’t work for black-box SULSs, since this modification
of the SULs cannot be used on black-box MMTs.

In this thesis, we develop k-A-complete conformance testing methods for MM1Ts and MMTs, in order to

provide the learning methods from Vaandrager et al. [2023] and Bruyere et al. [2024] with approximations of
equivalence oracles that have proven correctness guarantees. We first develop our testing method for MM1Ts
as a stepping stone towards our method for MMTs. Vaandrager [2024] introduced a sufficient condition for k-
complete test suites for Mealy machines. They proved that if an observation tree that is valid for both the
specification and the SUT can satisfy certain conditions, then the fact that such a tree exists proves that the
specification and the SUT are equivalent. Our testing methods attempt to construct such an observation
tree for our timed settings. We prove that both of our testing methods are k-A-complete.
The main concern of both of our testing methods is to construct an observation tree that is valid for both the
specification and the SUT. We keep expanding this observation tree until it either meets criteria for which
we prove that they are sufficient to conclude that the specification and the SUT are equivalent, or until
we find that one cannot construct an observation tree that is valid for both the specification and the SUT.
In the latter case, we may conclude that the specification and the SUT are inequivalent, and we return a
counterexample sequence for which the specification and the SUT exhibit different behavior. We also provide
a way to minimize the specifications used by the MM1T conformance testing method, in order to lift the
requirement for minimal specifications that this testing method inherits from Vaandrager [2024].

Our testing methods interact directly with the SUT. They terminate as soon as they can conclude that
the SUT does not conform to the specification. These properties set them apart from the conformance
testing methods that we discussed before, all of which generate test suites that then still need to be run on
the SUT.

The rest of this thesis is structured as follows. In Chapter 2, we explain the notation we use and
the preliminary notions that our conformance testing method for MM1Ts relies on. We introduce our
MMI1T testing method in Chapter 3. In Chapter 4, we discuss MMTs, generalized MMTs and other notions
from Bruyere et al. [2024] that our conformance testing method for MMTs relies on. We introduce our
conformance testing method for MMTs in Chapter 5. Chapter 6 contains our conclusions about our methods
and our suggestions for future work. The appendices contain proofs and other material that we omitted
from the main text to increase the document’s readability.

Chapter 2

MMI1T Testing Preliminaries

In this chapter, we introduce the notation, definitions and additional notions that our testing method for
MM1Ts relies on. We start by introducing the notation that we use in this report. Next, we define Mealy
machines, and we explain what it means to do conformance testing for Mealy machines. We discuss the
notions of k-complete and k-A-complete test suites for Mealy machines. We end our discussion with an
explanation of MM1Ts.

2.1 Notation

The cardinality of a set X is denoted by |X|. We use P(X) to denote the power set of X.

2.1.1 Functions

We write f: X — Y to denote that f is a partial function from domain X to codomain Y. Partial
function f is defined for z, denoted f(x){, if Jy: f(x) = y. We use f(z)1 to indicate that f is undefined
for x. We often treat partial functions f: X — Y as sets of pairs {(z,y) € X x Y | f(z) = y}.

Let f: X =Y and g: X — Y be partial functions. Then:

o f(z) = g(x) iff either f(x)1 and g(z)T, or if f(x)}, g(z)) and f(z) and g(x) yield the same value,
o f=ygiff f(x)=g(z) for all z € X, and
o fCygiff, for all x € X for which f(z)|, g(z) and g(z) = f(z).

A total function is a partial function for which, for all x € X : f(x)]. We write f: X — Y to denote that f
is a total function f: X — Y. We usually refer to a function as partial to specify that it may or may not be
total. Every function that we discuss in this thesis is total when we don’t specify otherwise.

Let f be a partial or total function with a domain X. We write f(A) to denote f’s image for the
subset A C X of X, defined as:

f(A) ={f(2) | v e A: f(x)l}

The function m1: X X Y — X is the first projection of pairs (z,y) € X x Y, defined as: m1((z,y)) = =.
The second projection, m: X x Y — Y, is similarly defined as: ma((x,y)) = y.

2.1.2 Sequences

We consider sequences of elements of sets. The symbol € denotes the empty sequence. We fix the set X =
{a, b} for the examples of this subsection. We use o-p to denote the concatenation of the sequences o and p.
We usually omit the concatenation operator when we append or prepend a single element to a sequence.
The concatenation of all sequences of two sets of sequences X and Y, denoted X - Y, is defined as:

X Y={zylzeXAyeY}

k-A-Complete Conformance Testing of Mealy Machines with Timers 9

When concatenating sets of sequences, we sometimes omit the brackets around sets that consist of a single
sequence of length 1. The notation X™ indicates the set of sequences over a set X that are n elements long,
i.e. the set:

XY = {e}
X7L+1 - X Xn

We can see that |X™| = (|X|)". We define the set X=" of sequences over X with length < n as:

xsr= |J x/.
0<j<n

We can similarly define the set X2 of sequences over X with length > n as:

x=r=Jx7.

jzn
The set of all sequences over X of any length is given by:
x*=Jxm
neN
We use |o] € N to indicate the length of sequence o. We can define |o| as:
el =0
|z o] =1+ |o|.
Let 0 € X* be a sequence over X. If |o| > 1, then:

o head(o) yields the first element of o:

if o = A XA X
head(o) = a Ho=aphac pE

undefined otherwise,

and

o tail(o) yields the elements that follow after head(o) in o:

) N fo=aphae X NApe X*
tail(o) =

undefined otherwise.

We can see that for all sequences o of length at least one, ¢ = head(o) tail(o). Let 0 = p- p’ be a sequence.
Then p is a prefix of o, and p’ is a suffix of o.

2.2 Mealy Machines

Mealy machines are a type of state-based system. A Mealy machine yields observable outputs in response
to the inputs that it receives from its environment. The state transitions that the Mealy machine performs
in response to these inputs determine how the machine responds to subsequent inputs [Mealy, 1955].

Definition 2.2.1 (Partial Mealy machine). A partial Mealy machine is a tuple M = (Q, ¢z, I, 0,9, \),
where:

e (@ is a finite set of states; ¢z € @ is the initial state,

10 Bram Pellen

e [is a finite set of inputs,
e O is a set of outputs,
e §:Q x I — Q@ is a partial transition function, and
e A: @Q x I — O is a partial output function, satisfying:
Mg, i) = 6(q,1)d,
(every transition has both an input and an output).

Mealy machine M is said to be input complete when its output and transition functions are total, since
this would imply that each of M’s state-input pairs has an associated transition.

Every Mealy machine that we discuss in this thesis is input complete, unless we specify otherwise.
Let M be an arbitrary (partial) Mealy machine with a set of states (). We generalize the transition
function to sequences of inputs, i.e. to elements of I*. We get, for all ¢ € @, all i € I and all o € I*:

6%(q,€) = q

6°(6(g,1),0) if (g, i)}

undefined otherwise.

6" (q,i o) =

We similarly generalize the output function to sequences of inputs. We get, for all ¢ € @, all i € I and
all o € I*:

A (g, e) =€
Ma,i) A" (0(q,1),0) if 6(q,9))

undefined otherwise.

A (g,i0) =

We sometimes use a superscript to specify which model we consider, e.g. Q™, ¢}*.

Definition 2.2.2 (Trace equivalence). Let M and N be two Mealy machines with the same set of
inputs, I. States ¢™ and ¢V are trace equivalent (equivalent), denoted ¢™ ~qce ¢V iff, for all input
sequences o € I*: MM*(gM,) = MW7 (¢V, 0).

Mealy machines M and N are considered to be trace equivalent (equivalent), denoted M ~.qce N,
1H qf/l Strace Qév

Note that two states of the same Mealy machine can also be trace (in)equivalent, as the above definition
does not require for M and A to be different Mealy machines.

Definition 2.2.3 (Connected Mealy machine). A Mealy machine M with a set of states) and an initial
state g7 is connected when, for all states ¢ € @Q there exists an input sequence o € I* such that 6*(qz,0) = ¢.

Definition 2.2.4 (Minimal Mealy machine). A Mealy machine is said to be minimal if no two of its
states are equivalent.

We rely on the notion of apartness to prove the validity of our method. Apartness is a form of inequality
that is constructive, in the sense that one can never simply assert that two values are apart from one another.
Instead, one always needs to provide an example that shows that the values are unequal [Troelstra and
Schwichtenberg, 2000, Geuvers and Jacobs, 2021].

Ezample 2.2.1. Vaandrager et al. [2022] applies the notion of apartness to Mealy machines. For a Mealy
machine M, they consider two states q,q¢' € Q to be apart, denoted q # ¢, iff there is some o € I* such
that A*(q,0)), A*(¢', o), and *(q,0) # A*(¢', o). Input sequence o is then called a witness of ¢ # ¢'.

Note that it is possible for two Mealy machines states ¢ and ¢’ to be neither trace equivalent nor apart,
since the apartness g # ¢’ could only be established if a witness of this apartness has been identified.

The term “apartness” is often applied to relations that are irreflexive, symmetric, and co-transitive [Geu-
vers and Jacobs, 2021]. Not all notions of apartness satisfy all three of these properties. The notion of
apartness for Mealy machines discussed in Example 2.2.1 satisfies all three of these properties for input-
complete Mealy machines.

k-A-Complete Conformance Testing of Mealy Machines with Timers 11

2.3 Conformance Testing for Mealy Machines

Conformance testing for Mealy machines is the activity of determining whether a system under test
(SUT) whose behavior can be described by an (unknown) Mealy machine M behaves equivalently to a
given specification Mealy machine S. We say that an SUT whose behavior can be described by a Mealy
machine M conforms to specification Mealy machine S iff M =q4ce S.

In general, conformance testing methods generate a finite collection of tests that can reveal whether
supposed implementations conform to the specification. Such a collection of tests is called a test suite. For
Mealy machines, a test suite TS for a specification Mealy machine S is a set of finite-length sequences over
the set of inputs IS of S, each of which is referred to as an individual test. The SUT passes test o € TSS
iff its behavior is described by a Mealy machine M, for which A" (¢z,0) = A5"(sz,0). The SUT passes a
test suite iff it passes all of its tests. The SUT can then be called an implementation of the specification.

2.4 k-Complete Test Suites for Mealy Machines

Let S be a specification Mealy machine. We would ideally want to compute complete test suites for S, which
we could then use to determine for any Mealy machine M that describes the SUT whether M ~qce S.
Mealy machine M would pass such a test suite iff M =qce S.

Unfortunately, complete test suites do not exist. The problem is that any test case is always finite in
length. Let k be the length of the longest test case of a test suite TSS for a specification S. Let M be
an SUT for which all states that can be reached from the initial state within k state transitions exhibit the
same output behavior as their corresponding states in S, and for which the states beyond that point exhibit
different behavior from their counterparts in S. SUT M would pass test suite T.S S, even though M #.q4ce S.

A typical approach to circumvent this issue is to put a limit on the number of states that the SUTs are
allowed to have. This approach leads to the notion of k-complete test suites:

Definition 2.4.1 (k-Complete test suites for Mealy machines). Let S be a Mealy machine, and
let k € N. Then test suite TS‘,? is k-complete for S if, for any SUT Mealy machine M with at most k extra
states with respect to S:

M passes TS‘,? <— M =pgee S.
Fault domains offer an alternative way to characterize completeness measures for test suites.

Definition 2.4.2 (Fault domains and U-completeness). Let S be a Mealy machine. A fault domain
is a set U of Mealy machines. A test suite TTS® for S is U-complete if, for each M € U, M passes T TS®
implies M ~¢pqce S.

Consider for example the following fault domain:
Definition 2.4.3. Let m € N>°. Then U,, is the set of all Mealy machines with at most m states.
We can use fault domain U,,, to express the k-completeness property:

Definition 2.4.4 (k-Complete test suites for Mealy machines in terms of fault domains). Let S
be a Mealy machine, and let k € N. Let m = |QS| + k. Then TSY is k-complete for S if, for any SUT
Mealy machine M € U,,:

M passes TSf — M Xirgee S.

There are various methods for deriving k-complete test suites for Mealy machines. This survey Dorofeeva
et al. [2010b] covers multiple well-known approaches, including the W-method [Chow, 1978, Vasilevskii, 1973],
the H-method [Dorofeeva et al., 2005], and several other approaches that improve upon the W-method.

We discuss the W- and the H-methods in the next two subsections. Both of these methods rely on the
notion of state covers:

12 Bram Pellen

Definition 2.4.5. Let M be a Mealy machine with a set of inputs I. A state cover [Dorofeeva et al., 2010Db]
for M is a set C C I* that contains for every state ¢ € Q a sequence o € C for which §*(qz,0) = ¢q. State
covers are also required to contain the empty sequence, €. A state cover is prefix closed if, for all 0 € C, all
prefixes p of o are also in C. A state cover is minimal if, for all o, p € C with o # p, §*(¢z,0) # 6" (qz, p)-

Informally, a state cover C is a set of input sequences of a Mealy machine M that contains for every
state ¢ € @ a finite-length input sequence that reaches ¢ from M’s initial state, ¢z.

2.4.1 The W-Method

The W-method [Chow, 1978, Vasilevskii, 1973] is a method for deriving k-complete test suites for input-
complete Mealy machines. Let M be a minimal connected Mealy machine, and let & € N. Use of the

W-method requires the computation of the following three sets of input sequences [Chow, 1978, Vasilevskii,
1973]:

o the state cover C' C I*,
o the set I<F+t1 C I* and

« the characterization set W C I* that contains for every pair of states ¢,q" € @Q for which ¢ # ¢’ an
input sequence o such that A*(q, o) # A*(¢’, o). Such an input sequence shows that ¢ Z¢race ¢

The full k-complete test suite TS7' C I* for M and k is given by Chow [1978] as:

TS = C - 15k W

2.4.2 The H-method

The H-method [Dorofeeva et al., 2005] is a method for deriving k-complete test suites for Mealy machines.
Let M be a minimal connected Mealy machine, let C be a prefix-closed state cover for M, and let k € N.
The H-method constructs a k-complete test suite for M in four steps:

1. TSM =C . 15++1,

2. For all o,0’ € C. Let q = 6*(qz,0), and let ¢ = 6*(qz,0’). If ¢ # ¢’ and there are no input
sequences o - w,0’ - w € TSkM for which *(¢,w) # A*(¢’,w), then find an input sequence w such
that A* (g, w) # A*(¢/,w) and add the input sequences o - w and o’ - w to TS,

3. Forall o € C and p € (C - ISk*+1)\ C for which ¢ = §*(qz,0), t = 6*(qz, p), and q # t; if there are no
input sequences o - w,p-w € TSQA for which A*(gq, w) # *(¢,w), then find an input sequence w such
that A*(g, w) # A*(t,w) and add the input sequences ¢ - w and p-w to TSy,

4. If k > 1, then for all o € (C - IS**1)\ C and p € I - I=F~1 such that - p € C - ISFFL ¢ = §%(¢z,0),
t' = 6*(t,p), and t # t'; if there are no input sequences o - w,o - p-w € TSy" for which *(t,w) #
A*(t',w), then find an input sequence w such that A*(¢,w) # A*(¢',w) and add the input sequences ¢-w
and o - p-w to TS

2.5 k-A-Complete Test Suites for Mealy Machines

Vaandrager et al. [2024] introduced a notion of test suite completeness that subsumes k-completeness. To
this end, they introduced the following fault domain:

Definition 2.5.1. Let k € N, and let A C I*. Then L{,’: is the set of all Mealy machines M for which every
state of M can be reached by an input sequence o - p, for some o € A and p € I=F,

k-A-Complete Conformance Testing of Mealy Machines with Timers 13

The idea is that a test suite computed for a Mealy machine M often consists of tests of which the
prefixes are input sequences from some set of input sequences A. This set is typically given by a state cover
for M, as is the case in the W- and H-methods. The tests generated by such testing methods often proceed
with between 0 and k inputs that, together with the prefixes from A, are meant to reach all states of the
SUT [Vaandrager et al., 2024]. The W- and H-methods both follow this principle.

Remember that the W- and H-methods are both k-complete, and that for k-completeness we have the
fault domain U,,, where m = |Q°| + k. Let k be a natural number, and let M be a Mealy machine in U,,.
Let A C I*. Tt is possible that even though M € U,,, M € U}. In particular, if M is minimal and A is a
minimal state cover for M, then it could not be the case that there exist o,p € A: 0 # p A8 (qz,0) Rirace
8" (gz, p)- This motivates the use of the additional fault domain:

Definition 2.5.2. Let A C I*. Then U” is the set of all Mealy machines M for which there are o,p € A
with o 7é P and 5*(QL 0') Strace 5*(612, P)

Let A C I* be a finite set of input sequences with € € A, and let k¥ and m be natural numbers with m =
|A| + k. Then U,, C UL UUA. The fault domain for k-A-completeness is given by UL UUA, to ensure
that k-A-completeness subsumes k-completeness.

Let S be a Mealy machine with a set of inputs I, and let £ € N. Then:

Definition 2.5.3 (k-A-complete test suites for Mealy machines). Let S be a Mealy machine with
a set of inputs I, let £ € N, and let A C I'*. Then test suite TSS is k-A-complete for S if, for any SUT
Mealy machine M € U UUA:

M passes TS — M Xirgee S.

2.6 Mealy Machines With a Single Timer (MM1Ts)

The Mealy machines with a single timer (MM1Ts) that we consider in this work were first introduced
by Vaandrager et al. as a generalization of Mealy machines [Vaandrager et al., 2023]. This section provides
an overview of their most important definitions, explanations and conclusions.

MM1Ts are Mealy machines that are extended with a single timer that can trigger a state transition
when it runs out of time. When that happens, a transition with a special timeout input is taken.

Definition 2.6.1 (Mealy machine with a single timer). A Mealy machine with a single timer
(MML1T) is a tuple M = (Q, ¢z, I,0,d,\, T), where:

e Q = Qo UQ,y is a finite set of states, partitioned into subsets where the timer is off and on,
respectively,

e gz € Qop is the initial state,
o [is a finite set of inputs that contains a special element timeout,
e O is a set of outputs,
e §: Q xI— (Q is a transition function, satisfying
0(q,9)t — g€ Qo AN i =timeout (2.1)
(inputs are always defined, except for timeout in states where the timer is off),
e A:@Q x I — O is an output function, satisfying
Mg, i) = (g, 1)) (2.2)

(every transition has both an input and an output), and

14 Bram Pellen

timeout/C, 10 a/A, L

E;) timeout/E, L

timeout/D, 1 b/B, L

a/A, L b/B, L

Figure 2.1: An MMIT with Qon = {¢1,¢2,¢3} and Q.5 = {qo0, ¢4}

e 7:Q x I —N>Yis a reset function, satisfying

(¢ = 6(q,i) € Qon (2.3)
1€ Qog N 0(q,0) EQon = 7(g, 0 (2.4)
0(q, timeout) € Qop = 7 (g, timeout). (2.5)

(when a transition (re)sets the timer, the timer is on in the target state; when it moves from a state
where the timer is off to a state where the timer is on, it sets the timer; if the timer stays on after
a timeout, it is reset).

We sometimes use this input-complete version of the reset function:

7(g,3) if 7(g, i)l

1L otherwise.

T (% 1) =

i/o, . . i/o,L . i .
Let 6(q,7) = ¢’ and A(¢,i) = 0. We write ¢ iom, q if 7(q,i) =n € N°° and ¢ Mok, q' or just q AN q if

7(q, 1)1

Ezample 2.6.1. Figure 2.1 show an example of an MM1T. The MM1T has five states, with Q ., = {q1,¢2,93}
and Qo = {qo,¢4}. The numerical constants displayed on some of the transitions update the timer to the
integer value that they specify. A timeout transition is traversed whenever the timer runs out of time. The
only way to transition from any of the states q1, g2 and g3 to a different state is by waiting for a timeout to
occur.

Definition 2.6.2 (Partial MM1T). A partial MM1T is an MMI1T for which the transition function
doesn’t have to satisfy the condition of Rule 2.1. It instead has to satisfy a weaker version of this rule, with
the implication in only one direction:

€ Qo AN ¢ =timeout = 0(q,9)T.

We sometimes refer to MM1Ts for which the transition function does satisfy the condition of Rule 2.1 as
complete MM1Ts.

We use the same method to generalize a (partial) MM1T’s transition and output functions to sequences
of inputs as we used to generalize those for (partial) Mealy machines. We get, for all ¢ € @, all ¢ € I and
allo € I™:

6%(q,€) = q

6% (6(q,4),0) if 6(q,i)d

undefined otherwise

6" (q,i 0) =

k-A-Complete Conformance Testing of Mealy Machines with Timers 15

and:
A (g, €)=

Mg, i) A" (d(g,1),0) if 6(q,i)L A A(g,9))

undefined otherwise.

A (g,i0) =

There are two semantics for MM1Ts, an untimed and a timed one.

2.6.1 Untimed Semantics

The untimed semantics is defined in terms of untimed words. An untimed word gathers the inputs, the
outputs, and the values to which the timer is set in every transition. Untimed words over inputs I and
outputs O are defined as sequences:

(i0,00,10) (i1,01,m1) ... (iK, 0K, Ni),

where, for each index 0 < j <k:4; € I, 0; € O, and n; € (NU{L}). Untimed words can start in any state
of an MMI1T.

Ezample 2.6.2. An example of an untimed word that starts in the initial state of the MM1T of Figure 2.1 is:
(a,A,1) (b, B, L) (timeout, C,10) (a, A, L) (timeout, E, 1) (a, A, L).

An untimed run of an MM1T M is a sequence:

i0/00,m0 i1/01,m1 ix /0K, nk
q0 q1 e qk+1

such that, for every j <k, g; ”/O—Jnj> gj+1 is a transition of M. Untimed runs can also start in any state

of an MM1T.
Example 2.6.3. Let w be the untimed word of Example 2.6.2, and let M be the MMI1T of Figure 2.1. The
untimed run from M'’s initial state over w is given by:

a/A,l b/B,L timeout/C,10 a/A, L timeout/E, L a/A, L
q0 Q1 q1 a3 a3 da q4.

Note that an MMI1T state always has at most one untimed run for every untimed word. We say that w
is an untimed word of M'’s state ¢ iff ¢ has an untimed run over w. We say that M has an untimed
word w iff w is an untimed word of M’s initial state.

We use the notion of untimed words to define the notion of untimed equivalence:

Definition 2.6.3 (Untimed equivalence). Let M and A be two MM1Ts with the same inputs. States ¢™, v
are untimed equivalent, denoted ¢™ ~yntimed qN , iff they have the same sets of untimed words.
MMI1Ts M and NV are untimed equivalent, denoted M ~yntimed N, iff G2 Runtimed @5 -

Note that two states of the same MMIT can also be untimed (in)equivalent, as the above definition does
not require for M and N to be different MM1Ts.

2.6.2 Timed Semantics

The timed semantics of an MM1T M describes its real-time behavior. It associates an infinite-state transition
system tsem(M) to M. Every state of tsem(M) combines an MM1T state with a timer value. We call these
states configurations. A configuration is thus a pair (g,t), where ¢ € Q is a state and ¢t € (RZ°U{c0}) is a
timer value. We require t = oo iff ¢ € Q. The initial configuration is given by (¢z,00). The transition
system describes all possible configurations and all transitions between them. We use four rules to define the

16 Bram Pellen

transition relation that describes how one configuration may evolve into another. For all ¢ € @, r € Q#,
5,8 €Qon,i€Il,0€0,teRZOU{x}, d € R2% and n € N>0:

d<t (2.6)
(Q7) d (Q7t_d)
i/o,n . .
q—— 8, i=timeout=1%t=0
/ (2.7)
(¢;t) — (s,n)
i/o . .
q— 1, 1=timeout=1%¢t=0
/ (2.8)
(g, 1) — (r,00)
s Lo s', 17 timeout (2.9)

(s,8) L% (s',1)

Rule 2.6 states that when the time advances by d time units, the timer decreases by d. The timer may
not go below 0. We use the convention that, for any d € RZ% oo — d = co. The time may thus advance
indefinitely when the timer is off. Rule 2.7 describes transitions that (re)set the timer; a timeout may only
occur if the timer has expired in the source state. Rule 2.8 describes transitions for which the timer is off
in the target state; again, a timeout may only occur if the timer has expired in the source state. Finally,
Rule 2.9 describes transitions for which the timer remains on and is not reset.

A timed word over inputs I and outputs O is a sequence:

w = (to,io,Oo) (tl,il,ol) (tk.,ik,ok),

where, for each index 0 < j < k: t; € RZY,i; € I, and 0; € O. A timed word w describes a possible behavior
that may be observed when interacting with an MMI1T: after a delay of ¢; time units, input ¢; is provided
and output o; is obtained in response. This process then repeats for index j 4 1. For a given timed word w,
a timed run of the MM1T M over w is a sequence:

a=Cp 2o oy L2 0y o B gy L o B 0y

ij/o;

t .
that begins with tsem(M)’s initial configuration Cy and where, for each j < k: C; = C and Cj = Cj1
are transitions of tsem(M). Since MM1Ts are deterministic, M has at most one timed run over each timed
word w. We say that w is a timed word of M iff M has a timed run over w.

Example 2.6.4. An example of a timed word for the MM1T of Figure 2.1 is:
(12,a,A) (0.2,b, B) (0.8,timeout, C) (1.1,a, A) (8.9, timeout, E) (17,a, A).
This timed word has the corresponding timed run:

timeout/C'
EE—

a/A
(40, 50) 22> (0,00) 5 (g1,1) 2 (41,0.8) 255 (41,0.8) % (1,0) (g3, 10)
A . ime E A
2L, (43,8.9) 22 (43,8.9) 22 (g5, 0) 222E, (g, 00) I (g4, 00) L (qa,).
We use the notion of timed words to define timed equivalence:

Definition 2.6.4 (Timed equivalence). Let M and A" be MM1Ts. Then, M and A are timed equiv-
alent, denoted M ~meq N, if and only if M and N have the same sets of timed words.

For any two MM1Ts M and NV, if M and N are untimed equivalent, then they are also timed equivalent.
The converse also holds. We thus know that:

Lemma 2.6.1. Let M and N be MM1Ts. Then, M =meq N if and only if M Xyniimed N-

k-A-Complete Conformance Testing of Mealy Machines with Timers 17

A timed input word is an alternating sequence of delays from RZ% and inputs from I\ {timeout}, such
that the first and last elements are delays. Timed input words are thus elements of R=0 ((I'\ {timeout}) R=%)*.
The e operation for concatenating two timed input words puts the timed input words in sequence, adding
the first delay of the second timed input word to the final delay of the first timed input word:

(ud)e(d u)=u(d+d) .

Timed words w can be reduced to timed input words tiw(w) by removing the outputs and the occurrences
of timeout, by replacing consecutive times with their sum, and by appending 0 to the end of the sequence in
certain cases:

tiw(e) =0
(4,1, 0) w) = t e tiw(w) if i = timeout
(t i 0)etiw(w) otherwise.
Ezxample 2.6.5. Let w be the timed word:
w = (12,a, A) (0.2,b, B) (0.8,timeout, C') (1.1,a, A) (8.9,timeout, F) (17,a, A).

Then, tiw(w) =126 0.201.9 a 25.9 a 0.

There are two possibilities whenever a timed input word performs a delay that precisely matches the
timer’s current value, followed by an input ¢ from I \ {timeout}. There is the possibility that the timeout is
processed first, followed by input ¢. There is also the possibility that the timeout is skipped entirely. This
difference can cause race conditions.

Ezxample 2.6.6. Let u =12 a 1 b be a timed input word. Then, there are two possible timed words for the
MMI1T of Figure 2.1:

(12,a, A) (1,timeout, C) (0,b, B)
and:

(12,a, A) (1,b, B).

Chapter 3

k-A-Complete MM1T Conformance
Testing

In this chapter, we introduce our k-A-complete conformance testing method for MM1Ts. We start by
specifying the requirements that our method imposes on the specification. Next, we specify what data our
test procedure captures. The final section introduces our conformance testing method for MM1Ts.

3.1 Requirements for the Specification

The W-method for Mealy machines requires that the specification Mealy machine is connected and minimal.
We do make the same assumptions for our specification MM1Ts. We proceed by defining these notions:

Definition 3.1.1 (Connected MM1T). An MM1T M is connected iff, for each state ¢ € @ there exists
an input sequence o € I* such that 6*(¢z,0) = ¢.

The definition of untimed equivalence of MM1T states gives rise to a notion of minimal MM1Ts:

Definition 3.1.2 (Minimal MM1T). An MMI1T M is minimal iff, for all pairs of states ¢1,¢2 € Q,
q1 Runtimed 42 iff q1 = Qg2.

Vaandrager et al. [2023] introduced both a mapping that expresses MM1Ts in terms of Mealy machines,
as well as a mapping that can express certain Mealy machines in terms of MM1Ts. We include these
two mappings in Appendix A.1. Using these mappings, we can prove that methods for minimizing Mealy
machines can be used to minimize MM1Ts:

Lemma 3.1.1. Let M be an MMI1T. Let M be a Mealy machine obtained by minimizing Mealy ma-
chine Mealy(M). Then, MM1T (M) is a valid MM1T, minimal and untimed equivalent to M.

The proof of Lemma 3.1.1 can be found in Appendix B.2. From this point onwards, we will assume that
the specification MM1T is minimal.

We also make the assumption that the specification and the SUT have a known shared upper bound A
on the value that the timer may be (re)set to in any transition. This assumption implies that waiting for
at least A time units in any given state would reveal whether the timer is on or off in that state, since a
timeout would occur within A time units if, and only if, the timer is on.

3.2 The Test Data Captured by our Procedure

Before we can introduce our MM1T testing procedure, we first need to introduce some concepts that our ap-
proach heavily relies on. These concepts are based on work from Vaandrager [2024], a paper that introduced
a certain sufficient condition for a Mealy machine test suite to be k-complete. In this paper, Vaandrager
captures information about the behavior that the specification & and the SUT M exhibit in response to the

18

k-A-Complete Conformance Testing of Mealy Machines with Timers 19

test suite in an observation tree that represents both & and M. The sufficient condition requires that the
observation tree contains access sequences for all states of the specification, that it contains successors for
these states for all inputs up to a depth of k+ 1, and that certain apartness relations hold between the states
of the observation tree.

Our testing procedure is inspired by this approach. We introduce this procedure in the next section, in
which it will become clear how we use a version of the sufficient condition to prove the validity of our testing
method. The method itself is based on versions of the dependencies of the condition that we adapt to an
MMIT setting.

We start by defining transition-preserving maps between the states of two (partial) MM1Ts:

Definition 3.2.1 (Functional simulation). Let 7 and M be two (partial) MM1Ts with the same set of
inputs I. A functional simulation f: 7 — M is a function f: Q7 — Q™ for which:

o fld])=a",
e flg)eQM =qeQ],, and

i/o,n ifo,n

e ¢——q = flqg) — f(d)

The intuition is that functional simulations preserve the transition structure with its outputs and timer
updates, the initial state, and the status of whether the timer is on or off.

Definition 3.2.2. Let M be an (partial) MMI1T. The partial function uWord, yields the untimed word
that starts from state ¢ € @ for given input sequences o € I*. We define this function as, for all ¢ € I and
all o € I'*:

uWordq(e) =€

(4, A (g,1), 7, (q,1)) uWord(;(q)i)(a) if 6(q,9)4 A uWord(;(q’i)(U)i

undefined otherwise.

uWord (i o) =

We can see from this definition that uWord,(o)| iff 6 (¢z,0){.

Lemma 3.2.1. Let 7 and M be MM1Ts with the same inputs, I. Let f: 7 — M be a functional simulation.
Then, for all ¢ € Q7 uWorqu - uWord%q).

Proof. We prove the property by showing that for all ¢ € I* for which uWordZ(a)L: uWord%q) (o))
and uWordZ—(a) = UWOT’d%q)(O'). We use an induction on o

o Base case: 0 = €. Then:
uWordZ—(e) =e= uWord%q)(e).
e Inductive step case: Let ¢ = p ¢ for some p € I" and i € I. We use the induction hypothesis:
uWordZ—(p)i = (uWord%q)(p)i/\ uWordg(p) = uWord%q)(p)) Let ¢, = 67 (q,p). We will

assume that uWorqu(p 1)}, because there are no restrictions on uWord%q) (p i) when uWorqu(p).

This assumption tells us that (57*(q,p i)J, per the definition of the uWord function. The fact that f
is a functional simulation tells us that the existence of the transition:

5T (g, p) L2 67" (g, p)

for some 0 € O7 and n € (N>° U {1}) implies the existence of the transition:

F67" (@) 5 £ (0,0)):
This tells us that:
uWordZ—(p i) = uWorqu(p) (4,0,n)
= uWord%q)(p) (i,0,n) (IH)
= uWord%q)(p i).

20 Bram Pellen

a/A b/C

a/4,3 start —

b/

timeout/A

a
(b) An observation tree for the MMIT on the left

(a) An MMI1T with Qon = {t5} and Qoﬁ = {to,t17t27t37t4, t(;}

Figure 3.1: An MM1T, along with an observation tree for that MM1T

Hence we have shown that, for all g € Q7 , uWordZ - uWord%q). O

During testing, we capture information about the inputs, outputs, timer updates and the timer’s on/off
status in a tree-shaped, partial MM1T that we refer to as an observation tree.

Definition 3.2.3 ((Observation) tree MM1T). A partial MMI1T 7T is a tree iff, for every state ¢ € Q
there is a unique input sequence access(q) € I* such that 6*(qz,access(q)) = q. A tree MM1T 7T is an
observation tree for an MM1T M iff there exists a functional simulation f: T — M.

Ezample 3.2.1. Figure 3.1(b) shows an observation tree for the MMI1T of Figure 3.1(a). We colored the
states to indicate the functional simulation.

Our testing procedure will try to construct a partial MM1T T for which there are functional simulations
between 7 and specification S, and between 7 and SUT M. If such a 7 cannot be constructed, then we
know that & and M do not describe the same behavior, which would imply that M %.,timed S-

Definition 3.2.4 (Apartness for (partial) MM1Ts). Let 7 be an (partial) MM1T. States ¢q1,¢2 € Q
are apart, denoted q; # ¢, iff there exists an input sequence o € I'* for which:

e 0°(q1,0)!, 0"(g2,0){, and uWord,, (o) # uWord,,(c); or

® 6*(Q170)\La 6*(q2a 0-)\L7 and (5*((]1, 0) S Qon = 5*(9270) S Qoﬁ-
We then call ¢ a witness of ¢ # ¢, which we denote by o F q1 # ¢o.

The first condition is used to tells states q; and go apart based on whether they have different outputs
or timer updates at the same index along their untimed runs for any input sequence o for which 6*(q1,0){
and 0%(g2,0)). This condition cannot be used to determine whether there is an input sequence o for
which 6*(q1,0) € Qon < 6" (q1,0) € Qop, since if 6™ (q1,0) € Qon A" (q1,0) € Qop, then §(q1, 0 timeout)]
and 07 (g2, 0 timeout)}. Furthermore, 6*(¢1,0) € Qon < 6*(q1,0) € Qop can hold even if 6 (g1,0)],
6" (q2,0)), and uWord,, (o) # uWord,, (o). We therefore include the second condition, which allows us to
directly conclude that gi # g2 when 6" (q1,0)l, 0" (g2,0)!, and §*(q1,0) € Qon < 07 (g2,0) € Qop-

Ezample 3.2.2. Let M be the MMIT of Figure 3.1(a), and let T be the observation tree MMIT for M
from Figure 3.1(b). These are some of the apartness relations between states of T

bl_tg#tg al_tz#tg €|_t3#t5 ba}_to#tQ bb"to#tg

States to and t3 are apart both because they have different output symbols for input b, and because they
have different timer resets for input a. States t3 and t5 are apart because the timer is off in the former, but
not in the latter. Finally, states ty and 5 are apart because for their b-transition, they reach the states ¢,
and t3, which are themselves apart for the two reasons we discussed.

k-A-Complete Conformance Testing of Mealy Machines with Timers 21

These apartness relations for states of 7 are matched by the following apartness relations between their
corresponding states of M:

bbEaqi # q2 abq # q ebq # g3 batq # q1 bbbk qo # q1.

These apartness relations hold for the same reasons for which their corresponding apartness relations in 7
hold.

Example 3.2.2 alludes to a second way to characterize apartness for (partial) MM1Ts:

Definition 3.2.5 (Deduction-based definition of apartness for (partial) MM1Ts). Let M be a
(partial) MM1T. States ¢q1,¢2 € Q are apart, denoted ¢q; # g2, iff any of the following conditions holds:

i/ol,nl / i/Oz,le

@1 € Qon ¢ € Qop @ q G ———qy (01 F# 02V ni#ny)
e q # g itq # g
0(qu,i)d d(qz,i)d ot 6(qu,d) # 6(qe,9)
ot q # g

where i € I, 0 € I*, 01,02 € O, and ny,ny € N>OU {L}.

Note that all three of the definitions of apartness that we have introduced so far in this chapter are
irreflexive and symmetric.

Lemma 3.2.2. Definition 3.2.4 and Definition 3.2.5 induce the same notion of apartness for (partial) MM1Ts.

Proof. Let #°¢ denote the apartness relation of Definition 3.2.4, and let #? denote the apartness relation
of Definition 3.2.5. Let M be a (partial) MM1T, and let g1, g2 € Q be two states of M.
We prove the that for all 0 € I*: 0 F q1 #€ q2 © o F q1 #? ¢o:

e We show that for all 0 € I": 0 q1 #° g2 = o+ ¢1 #° g2 We perform a case distinction on the two
conditions under which o F g1 #° g2:

= If §%(q1,0)), 0"(q2,0)!, and uWord, (o) # uWord,, (o), then there exists a maximum-length
prefix p of o such that §*(q1, p)l, d*(q2, p){, and uWord, (p) = uWord,,(p). Let p be this prefix
of o, and let i € I be the input such that p i is a prefix of 0. Let ¢} = 6*(q1, p) and ¢5 = 6™ (g2, p)-
We then know that:

()‘(qllaz) =01 #02 :)‘(q/QaZ)) N (TL((];,’L') =N #77‘2 :TL(qIQai))'
Let ¢f = 0(q},i) and ¢§ = (gh, 7). Definition 3.2.5 tells us that:

, t/o,mi , i/o2ma

G —— & @ ——4q5 (017#02Vm #ny)
it q # ’

which tells us that i - ¢} #¢ ¢5. Repeated use of Definition 3.2.5’s final rule would now reveal
that p i - q1 #% qo. This implies that o F q; #¢ g2, as required.

= 1If 6*(q170-)~l/a 5*(q270)¢5 and 6*(Q1a0-) € QOTL And 6*(q2a0) € Qoﬁ' Let qi = 6*(q170) and qé =
8" (q2,0). Definition 3.2.5 tells us that:

GE€Qm ©E€EQoy |\, ©EQm 0EQop
etaqy # 45 ebg#q
The fact that the apartness defined in Definition 3.2.5 is symmetric implies that in both cases,

e q) #¢ ¢,. Repeated use of Definition 3.2.5’s final rule would now reveal that o - q; #% g2, as
required.

We have thus shown that for all 0 € I*: o b q; #° g0 = 0 F q1 #9 qo.

22 Bram Pellen

« We show by induction on the length of input sequence o that for all 0 € I*: 0 F ¢ #% ¢ = o +
@ #° qo:

1. Base case 1: € F q #% ¢o. Then Definition 3.2.5 tells us that ¢ € Qo and qu € Qop-
Since 6" (q1,€)l, 0"(g2,€), 6" (q1,€) € Qon and 6*(g2,€) € Qop, the second condition of Defi-
nition 3.2.4 tells us that € F g1 #° g2, as required.

2. Base case 2: i F q; #% ¢ with i € I. Then Definition 3.2.5 tells us that:

7:/01,711 i/02,n2

a — ql1 A Q2 — CIé A (01 # 02V ny # na).

Since 6 (q1,)!, 0" (g2, 1)}, and uWord,, (i) # uWord,, (i), the second condition of Definition 3.2.4
tells us that i - g1 #° g9, as required.

3. Inductive step case: i p b q1 #% go with @ € I and p € I*. Then Definition 3.2.5 tells us
that 6(qu,4)), (q2,i)d and p F 0(q1,1) #¢ §(g2,1). We use the induction hypothesis:

pbp1 #4ps = pFpi #° pa.

Applying the induction hypothesis to p - §(q1,7) #? 6(qo,4) yields p - 6(q1,7) #¢ 6(qo,4). Defi-
nition 3.2.4 tells us that there are two conditions under which this apartness could hold:

- 5*(6(q1,i)7p)¢, 5*(5(QQ,Z'),/))\L, and uWO’f‘d(;(ql’i)(p) # uWOTd(;(q”-)(p). Then 5*(Q1vi p)iv
0" (g2, p)d, and uWord, (i p) # uWord,, (i p). This tells us that i p - g1 # go, as required.

- 6*(6(QI7Z>7p>\L7 6*(6(q27l)ap)~l’7 and 6*(5(QIJ>7P) € Qon = (5*(6<QQ,’L),p) S Qoﬁ- We then
know that 6" (g1,¢ p)d, 6% (2,7 p)d, and 6™ (q1,% p) € Qon < 37 (g2,i p) € Qop. This tells us
that @ p - q1 #° g2, as required.

We thus know that in all cases, i 0 - q; #¢ go with i € I and o € I* implies that i o - q1 #° ¢o.
We have thus shown that for all o € I*: o F g1 #% g2 = o F q1 #° ¢o.
We have shown that for all o € I*: o F q1 #¢ g2 < o F q1 #% qo. O

Lemma 3.2.2 tells us that both definitions of apartness for (partial) MM1T describe the same notion of
apartness. We can show that this notion of apartness satisfies a property known as weak co-transitivity:

Lemma 3.2.3 (Weak co-transitivity for observation tree MMI1T apartness). Let 7 be an obser-
vation tree MM1T. Then, for all 7,7/, q € Q, and all o € I*:

okr#r AN 5%(q,0)] = obq#r VvV obqg#r

Proof. The fact that 6" (g, o) tells us that uWord,(c)]. We perform a case distinction on the two possible
conditions under which o - r # r':

« in case apartness follows from uWord, (o) # uWord,. (o), we get:
uWord (o) # uWord, (o) \Y uWord (o) # uWord,. (o)
which tells us that:

oFq#r v obFq# .

« otherwise, the timer is either on in 6*(r,¢) and off in 6*(r/, o), or off in 6*(r,0) and on in 6* (1, o).
We thus know that whether the timer is on or off in §°*(q, o), the opposite is true for either §*(r, o)
or 6*(r',0). Therefore, c - q# ror ot q# r'.

We thus know that in any case, o 7 # v’ and 6*(q,0)| imply that c - g # rVo g # 7', forallr, v, q € Q,
and all o € I*. [

We can show that functional simulations can never map apart states to states that are untimed equivalent:

k-A-Complete Conformance Testing of Mealy Machines with Timers 23

Lemma 3.2.4. Let 7 be an observation tree MMI1T for MM1T M, and let f: T — M be a functional
simulation. Then, for all ¢, ¢ € Q7 :

q # q2 in T - f(Q1) "Wpuntimed f(qQ) in M.

Proof. The existence of the apartness ¢ # g2 implies that there exists an input sequence o € I* such
that o b q1 # g2. The definition of apartness for (partial) MM1Ts tells us that there could be two conditions
under which q; # g2. We perform a case distinction on these two conditions:

o if 67 (q1,0)l, 07 (g2, 0) and uWorle (o) # uWordZ; (), we know that uWordZ; (o)) and uWordZ; (o)d.
Lemma 3.2.1 now tells us that:

uWordZ;(U)i = uWord%ql)(UN A uWordZ;(U)i = uWord%qz)(U)i.

%{;lmmfa 3.2.1 also tells us that uWord%ql)(a) = uWorle (0), and that uWord%lp)(o) = uWordZ; (o).
erefore:

uWordf(q)(o) = uWordZ; (o) # uWordZ;()= uWordf(qz)(o).

Thus, uWordf);éuWordf(2)}

o otherwise, we know that either 6*(q1,0) € Q7 and 6*(gz,0) € Qoﬁ, or6*(qi,0) € QZ—ﬁ and 6" (q2,0) €
Q7. In the first case, we can conclude that since 6*(q1,0) € Q7 uWord,, (o timeout)]. Lemma 3.2.1
then tells us that UWOTdf(ql)(O' timeout)). On the other hand, the fact that §*(ge,0) € QT tells
us that uWordZ; (o timeout)?. We could show by an inductive argument that §*(g2,0) € Qoﬁ im-
plies that 6*(f(g2),0) € Q4% Thus, uWord% ,) (0 timeout)t. Therefore, in case §(q1,0) € Q7,
and 6" (q2,0) € Qoﬁ, uWordf a uWordf(qz)

We can make a similar argument to show that in case 6*(q1,0) € QT and 0*(g2,0) € Q7,, uWord%ql) +
’LLWOTd'J/c\Equ).

We thus know that since q1 # g, uWord%q D #* uWord%q ,)- Our notion of untimed MMIT state equivalence
tells us that therefore, f(q1) Zuntimed f(q2)- O

We also need the following auxiliary notion:

Definition 3.2.6 (Stratification). Let M be an MM1T with a set of inputs I, and let 7 be an observation
tree for M. Then I” = IM. Let A C I* be a nonempty, finite, prefix closed set of input sequences. Then A
induces a stratification of Q7 as follows:

1. A state ¢ of T is called a basis state iff access(q) € A. We write B to denote the set of basis
states: B = {q € Q7 | access(q) € A}. Note that, since A is nonempty and prefix closed, initial
state q%r is in the basis, and all states on the path leading to a basis state are basis states as well.

2. We write FO for the set of immediate successors of basis states that are not basis states them-
selves: FO:={q € Q" \B|3g€ B,icl:q =6"(qi)}. We refer to F° as the 0-level frontier.

3. For k > 0, the k-level frontier F* is the set of immediate successors of k— 1-level frontier states: F* =
{deqQ7 |IqgeF1icl:qd =0 (g1}

We often use F<* to denote the set FOU ---U F*~1 of the states in the first k frontiers, and F=* to denote
the set FOU---U F* of all states in the first k + 1 frontiers.
We say that basis B is complete if:

e for each o € A there is a state ¢ € B with 67 (¢F,0) = q, and if

o for each ¢ € B and each i € (I \ {timeout}) U {timeout | ¢ € Q7 .}, 7 (q,4){.

24 Bram Pellen

o H@ b/B @ b/B @ a/A,3

B
a/A a/A b/C Ay

O 0 © © .
b/B b/B b/B timeout/A | timeout/A | b/C

© O 0 0 O © -
a/A a/A a/A3 |a/A3 |bjC b/B

® ®© 6 0 & & -=r

Figure 3.2: A stratification of an observation tree for the MMI1T of Figure 3.1(a), induced by A =
{€,0,0b,b b a}

For k € N, the k-level frontier is complete if for each ¢ € F* and each i € (I'\{timeout})U{timeout | ¢ € Q7 .},
7 (g, i)

For each state ¢ € Q7 we define the candidate set C(q) as the set of basis states that are not apart
from ¢: C(q) == {¢' € B | ~(q # ¢')}. A state ¢ € Q7 is identified if its candidate set is singleton.

Ezample 3.2.3. Figure 3.2 shows a stratification of an observation tree for the MMI1T of Figure 3.1(a). We
colored the states to indicate the basis and the first three frontiers. The stratification’s basis is complete,
but its 0, 1 and 2-level frontiers are not.

We now have everything we need to be able to define our MM1T testing procedure.

3.3 The Testing Procedure

Our testing procedure is inspired by the apartness-based method for learning Mealy machines introduced
in Vaandrager et al. [2022], as well as by the apartness-based perspective on conformance testing of Mealy
machines that is provided in Vaandrager [2024]. The procedure also strongly resembles the H-method [Do-
rofeeva et al., 2005] for computing k-complete test suites for Mealy machines. We discuss the similarities
and differences between the H-method and our testing procedure in Section 3.3.7. In our method, we non-
deterministically expand a tree MM1T that functions as an observation tree for both the specification S and
the SUT M, until we can either conclude that M & 1imeq S, or we discover that M %ntimed S-

Our testing procedure returns a counterexample input sequence in case M %y ntimea S- We assume that
the specification MM1T S is minimal, connected and complete.

Algorithm 1 shows the main testing procedure.

k-A-Complete Conformance Testing of Mealy Machines with Timers

25

Algorithm 1: Procedure for testing MM1Ts

© 00 N oo A W N -

=
= O

fuy
N

13
14
15
16
17
18
19

20
21
22
23
24

T < a fresh, partial MM1T with an initial state ¢J ;
B+ {af};
for 0 € C do

end

I

—

end

c 4+ addTmnsitz’ons}s\,{ (qF,0);
if ¢ € I'* then return c;

B+ BU{" (¢f,0)};

for

while any of the rules can still be applied do

=(r # 1), for some r,r’" € B for which r # 1’ — > Rule (IdentifyBasisStates)
¢ + makeObs TreeStates Apart® (r,r');
if ¢ € I'** then return c;
67 (q,i)t and 657 (55, access(q))|, for some g€ BUF<* andie I — > Rule
(ExtendFrontiers)
¢ + addTransition?,(q,1);
if ¢ € I'* then return c;
r# ' A=(r #) A= #t), for somer,r’ € B andt € F¥ — > Rule (IdentifyFrontiers)
o < a witness of r # r’;
¢ « addTransitionss,(t,0);
if ¢ € I'* then return c;
r# A # YN #), for somer € B, t' € F¥ and t"" € F<F — > Rule
(ExtendCoTransitivity)
o < a witness of r # t/;
¢ < addTransitions (1", 0);
if ¢ € I'* then return c;

return yes;

26 Bram Pellen

Algorithm 2: Sub-procedure for making two observation tree states apart when their specification
counterparts are apart

Procedure makeObsTreeStatesApartS (¢, € QT):
if ¢ # ¢ then

‘ return;
end

1
2

3

a

5 | s+ 057 (s5,access(q));
6 | s« 657(s3,access(q));

7 0 < a witness of s # s;

8 ¢ + addTransitions3(q, 0);
9 if ¢ € I'* then return c;

10 ¢ « addTransitionsy,(q',0);
11 if ¢/ € I* then return ¢/;

We start the procedure by computing a prefix-closed state cover C for the specification. Such a state cover

could be computed via a simple breadth-first search [Zuse, 1972]. The procedure maintains an observation
tree T that is valid for both the specification, and the SUT. It tracks a stratification induced by C. The
observation tree initially contains only an initial state. This state is indeed in the basis, since C' being a
state cover implies that ¢ € C. The next step is to complete the basis by adding transitions for all input
sequences of C to T.
The procedure then proceeds to non-deterministically extend 7. It keeps adding transitions to 7, until the
basis and the first k£ + 1 frontiers of the stratification induced by C are complete, certain states are identified
and a certain apartness relations hold between its states. The testing procedure terminates and returns a
counterexample if it discovers a conflict between the specification and the SUT during its operation.

Whenever we extend the observation tree with one or more transitions, there is always the possibility that
we discover a conflict in the outputs, timer updates or the on/off status of the successor states between the
specification and the SUT’s counterparts what would be the new observation tree transition. We terminate
the testing procedure and yield a counterexample if we discover such a conflict. We explain the procedure
for adding one or more transitions to the observation tree in subsections 3.3.2 and 3.3.3, respectively.

The algorithm non-deterministically chooses between the following four rules, and it terminates once none
of these rules can be applied any longer:

Rule (IdentifyBasisStates) Let r,r’ € B be two distinct basis states that are not pairwise apart. We
know that since state cover C' is prefix closed, r and 7’ represent different states of the specification. Let s
be the specification state that corresponds to r, and let s’ be the specification state that corresponds to r’.
Then, since s # s, we know from the fact that S is minimal that uWord,(p) # uWord, (p), and thus
that p = s # s’ for some input sequence p € I*. We use the procedure from Algorithm 2 to make r and r’
apart in 7. This procedure first finds an input sequence o such that o - s # s, 5(s,0)] and 65" (s', o). It
does so by looking for an input sequence for which s and s’ either exhibit different output or timer update
behavior, or that terminate in specification states that would be immediately apart from one another. The
procedure then adds o from both r and 7’ to make o F r # 7.

Rule (ExtendFrontiers) Let ¢ € BU F<* be a state that can reach one of the first k + 1 frontiers in a
single transition step. If ¢ has no outgoing transition for an input i € IS for which 5™ (sz, access(q) i)/, i.e.
the corresponding state of the specification does have an outgoing transition for i, then we add a transition
for i to 7. In doing so, we extend the frontier that ¢’s new i-transition transitions into.

Rule (IdentifyFrontiers) When a state t € F* from the k + 1-level frontier is not identified, then there
are at least two distinct basis states r,7’ € B from which ¢ is not apart. If o - r # 7/, then we use weak
co-transitivity to make ¢ apart from r, from 7', or from both r and v, ie. ot # r V okt # 1.

k-A-Complete Conformance Testing of Mealy Machines with Timers 27

Rule (ExtendCoTransitivity) When a basis state 7 € B and a state ¢’ € F* from the k+ 1-level frontier
are apart, then we will make it so that any state ¢/ € F<* from the first k frontiers is apart from r, from #',
or from both r and #'.
If either r # " or t' # t” already holds, then there is nothing to be done.
Ifr # ¢/, —(r # ") and =(¢' # t”), then we simply use co-transitivity to make it so that r # t"/ v t' # ¢".
We do so by adding the transitions for a witness o of r # t' from ¢".

We will now discuss the various sub-procedures that we use in Algorithm 1.

3.3.1 Determining Whether a Transition has Conflicts Between the Specifica-
tion and the SUT

Vaandrager et al. [2023] introduced a method for extending an observation tree for a black-box MMI1T with
a single transition. This method works by composing a timed input word that it then submits to an MM1T
teacher following the MAT framework for active model learning. A careful choice of the final delay causes
the timed input word to reveal whether the timer is updated, with what constant it is then updated, and
whether the timer is on or off in the new state. We use the same approach not to extend observation tree T
directly, but to obtain for a given observation tree state ¢ € @7 and input i € I7 the triple:

obtain TheSUTOutputTimerUpdateAndTargetStateOnOﬁStatusé\—A (g,7) = (o,n,b),

where 0 = M (g™, i), n = TM(¢M, i), and b = yes < M (g™, 4) € QM with ¢M = §M7 (¢, access(q)).

Sub-procedure Algorithm 3 describes the way we use this triple to determine whether the specification
and SUT transitions that (would) correspond to the observation tree transition (g,¢) have a conflict in their
outputs, timer updates and/or the on/off status of their respective successor states.

Algorithm 3: Procedure that determines whether the specification and SUT transitions that
(would) correspond to this observation tree transition have a conflict in their outputs, timer updates
and/or the on/off status of their respective successor states

1 Procedure transitionHasConflicts(q € Q7 i € I9):

5+ 057 (55, access(q));

s« §5(s,1);

// Obtain the output, timer update and timer status of the SUT’s corresponding
transition

4 (0,n,b) obtainTheSUTOutput Timer Update And TargetState OnOffStatusy (g, 1);

// Determine whether this information conforms to that of the specification’s
corresponding transition

5 if 0 # \9(s,4) Vn # 75 (s,i) then
6 ‘ return yes;
7 end
8 if (b=yes & s’ ¢ Q3,) then
9 ‘ return yes;
10 end
11 return no;

The computation of these triples is the only place where our procedure touches on the timed MMI1T
semantics. The remainder of the procedure only deals with the untimed semantics.

3.3.2 Extending the Observation Tree With a Single Transition

Algorithm 4 describes our method for extending the observation tree with a new transition. The procedure
begins by checking whether the counterpart of the requested transition exists in the specification. If not, then
the procedure simply terminates, returning the input sequence access(q) i as the counterexample. In fact,
this input sequence always serves as the counterexample, since we yield a counterexample iff we encounter a

28 Bram Pellen

conflict in the outputs, timer updates or the on/off status of the successor state for the i-transition.

If the specification does have a counterpart for the i-transition, then we check whether there is a conflict
between the transition’s counterparts in the specification and the SUT. We add the new transition to the
observation tree if there is no such error. If there is, then we return the counterexample.

Algorithm 4: Sub-procedure for extending the observation tree with a single transition

1 Procedure addTmnsz’tion‘fM (qeQT,ieId):

2 | s 057 (55, access(q));

// Don’t add the transition from ¢ if the specification doesn’t have a
transition for ¢ from its corresponding state s

if 0°(s,i)1 then

| return access(q) i;

end

// Don’t add the transition if doing so would result in 7 no longer being an
observation tree for both the specification and the SUT

if transitionHasConflicts(q,i) = yes then

7 | return access(q) i;

end

/* Since there is no conflict between the transitions for the specification and
the SUT, we can simply read the output, timer update and timer status
information from the specification’s transition and then add that to 7. x/

// Create a fresh observation tree state

9 q' < a fresh MM1T state;

// Mark the new state as on iff §°(s,i) is on

10 if 5(s,i) € QS then

u || QL+ Ql,u{d)
12 end
13 else
14 ‘ QZ—ﬁ — QZ—ﬁ U{d'};
15 end

// Extend the input and output sets with those use in the specification’s
corresponding transition

16 I7 « 17 Ui}

17 | OT < OT U{\S(s,4)};

// Record the new state transition

18 67 (q,1) + ¢

// Use the output from the specification’s corresponding transition

19 M (q,1) < XS (s,i);

// Use the same timer update as the specification’s corresponding transition

20 if 75(s,4)] then

21 ‘ 77 (q,4) + 75(s,1);
22 end
23 return yes;

3.3.3 Extending the Observation Tree With a Sequence of Transitions

Algorithm 5 shows a sub-procedure that extends the observation tree with all transitions induced by a given
input sequence. The procedure stops in case it discovers a conflict in the outputs, timer updates or the
on/off status of the successor state. The procedure then terminates, returning a counterexample.

k-A-Complete Conformance Testing of Mealy Machines with Timers 29

Algorithm 5: Sub-procedure for extending the observation tree with multiple transitions

1 Procedure addTmnsz’tionsi,l (e Q7,0 cI*):
2 while ¢ # € do

3 i + head(o);

4 if 07 (¢,i)1 then

5 ¢ < addTransition?,(q,1);
6 if ¢ € I'** then return c;
7 end

8 q < 0(q,1);

9 o« tail(o);

10 end

11 return yes;

3.3.4 Termination

We can prove that the procedure of Algorithm 1 always terminates within a finite number of rule applications:
Lemma 3.3.1. The procedure of Algorithm 1 always terminates within a finite number of rule applications.

Proof. The IdentifyBasisStates rule can only be applied as many times are there are elements in state cover C.
Therefore, since S has a finite number of elements, C' is finite as well, and the IdentifyBasisStates rule can
only be applied a finite number of times. The size of the basis is therefore also finite.

The finite size of the basis also imposes a limit on the size that the O-frontier can reach through repeated
application of the ExtendFrontiers rule. The fact that the maximum size of the O-frontier is finite in turn
implies that the maximum size of the 1-level frontier is finite, and so on. The ExtendFrontiers rule can only
be applied a finite number of times, since the maximum sizes of the first k + 1 frontiers are all finite.

Every application of the IdentifyFrontiers rule makes a state from the k + 1-level frontier apart from at least
one basis state. This rule can only be applied a finite number of times, since the maximum size of any
frontier is always finite, which implies that the maximum sizes of the first k 4+ 1 frontiers are always finite.
Every application of the ExtendCoTransitivity rule makes a state from the first k frontiers apart from a
state from the k 4 1-level frontier. This rule can only be applied a finite number of times, since the number
of states in any frontier is always finite.

We may thus conclude that all four of Algorithm 1’s rules can only be applied a finite number of times. The
loop-condition of Line 8 will thus always be met after a finite number of loop iterations. The algorithm will
therefore always terminate within a finite number of rule applications. O

3.3.5 k-A-Complete Test Suites for MM1Ts

Fault domains are the same for MM1Ts as for Mealy machines, apart from the use of untimed equivalence
instead of trace equivalence. We thus get:

Definition 3.3.1 (Fault domains and U-completeness for MM1Ts). Let S be an MMIT. A fault
domain is a set U of MM1Ts. A test suite TS for S is U-complete if, for each M € U, M passes T TS
implies M = ntimed S-

We can define the relevant fault domains:

Definition 3.3.2. Let £ € N, and let A C I*. Then U,f‘ is the set of all MM1Ts M for which, for each
state ¢ € Q there are 0 € A and p € AS* such that §*(¢z,0 - p) = q.

Definition 3.3.3. Let A C I*. Then U* is the set of all MM1Ts M for which there are o, p € A with o # p
and 5*((117 U) untimed 6*((127 p)

We can now define the relevant notion of k-A-completeness:

30 Bram Pellen

Definition 3.3.4 (k-A-complete test suites for MM1Ts). Let S be an MM1T with a set of inputs I,
let k € N, and let A C I*. Then test suite 7.5° is k-A-complete for S if, for any SUT MM1T M € UL UUN:

M passes TS — M Xuntimed S-

3.3.6 k-A-Completeness of the Procedure

Our approach to proving the k-A-completeness of our procedure is inspired by Vaandrager et al. [2024]’s
sufficient condition for the k-A-completeness of test suites for Mealy machines. We will use the following
theorem to prove that for any natural number k& and any minimal and prefix-closed state cover C' of the
specification, Algorithm 1 is a valid and k-C-complete conformance testing procedure for MM1Ts:

Theorem 3.3.1. Let k¥ € N>, Let S be a minimal complete MM1T, and let C C I* be a minimal and
prefix-closed state cover for S. Let M be a complete MM1T from L{kc UUC that has the same set of inputs I
as S. Let 7 be an observation tree for both M and S, and let B, FO, F1 ... be the stratification of Q7
induced by C. Suppose that B and F<F are all complete, all states in B and F* are identified, and the
following condition holds:

vt' e F* ¢ e F<Fk. cty=ct’y v t #t. (3.1)
Then M Runtimed S.

The proof of Theorem 3.3.1 can be found in Appendix B.1.1.
Algorithm 1 does not directly guarantee that the condition of Equation (3.1) will hold. Its Extend-
CoTransitivity rule instead guarantees that once the procedure is done, the following condition will hold:

Vre B,t' e FF t" ¢ F<F. r#t = r# "Vt #1. (3.2)
We use the following property to prove that Equation (3.2) implies Equation (3.1):

Lemma 3.3.2. Let S be an MMI1T, and let 7 be an observation tree for S. Let B be the basis of a
stratification of Q7. Suppose that ¢,¢' € Q7 and q is identified. Then:

Cle)=C(d)Va#qd <= (NreB:ir#q=r#qdVa#q).

The proof of Lemma 3.3.2 can be found in Appendix B.1.2.
Let k£ be a natural number, and let A be a prefix-closed state cover of the specification. The validity
of Algorithm 1 as a k-A-complete testing procedure for MM1Ts is a corollary of Theorem 3.3.1:

Corollary 3.3.1. Let S be a complete, minimal MM1T. Let C' be a minimal and prefix-closed state cover
for §. Let k be a natural number, and let M be an MMI1T from Z/{kC UUC. The procedure of Algo-
rithm 1 returns yes iff M =y,ntimeq S, and it returns a counterexample in the form of an input sequence

iff M %untimEd S.

Proof. We know from Lemma 3.3.1 that Algorithm 1 always terminates within a finite number of rule
applications. We see on Line 24 that the algorithm returns yes once none of the rules can be applied
anymore. When that happens, we know from the IdentifyBasisStates rule that all basis states are identified,
from the ExtendFrontiers rule that B and F<F are all complete, from the IdentifyFrontiers rule that all
states in F* are identified, and from the ExtendCoTransitivity rule that Equation (3.2) holds. Therefore,
by Lemma 3.3.2:

vt' € FF " ¢ F<F. cithy=ct’y v t#.

Theorem 3.3.1 thus tells us that if Algorithm 1 terminates because none of its rules can be applied anymore,
then M Runtimed S.

The only circumstance under which Algorithm 1 terminates before all four rules are exhausted is if it finds a
conflict between the outputs, timer updates or the on/off status of the timer in the successor state between
corresponding transitions of M and &, in wich case the algorithm returns a counterexample input sequence.
The presence of such a conflict would then indeed imply that M %y ntimed S- O

k-A-Complete Conformance Testing of Mealy Machines with Timers 31

We can now prove that Algorithm 1 is k-C-complete, where k is an arbitrary natural number and C' is a
minimal and prefix-closed state cover for the specification:

Corollary 3.3.2. Let S be a complete, minimal MMI1T, and let C' be a minimal and prefix-closed state
cover for S. Let k be a natural number. Then Algorithm 1 is k-C-complete.

Proof. Let M be an MMIT in Z/lkc UU®. Then Corollary 3.3.1 tells us that Algorithm 1 returns yes
iff M ~untimed S, as required. O

3.3.7 Comparison With the H-Method

The rules used by the testing procedure of Algorithm 1 closely resemble the four steps of the H-method [Doro-
feeva et al., 2005] for computing k-complete test suites for Mealy machines. Both methods use a prefix-closed
state cover C for the minimal specification model to cover all specification states in what we call the basis.
They also both explore the first £+ 1 frontiers from all basis states, and they both ensure that certain states
can be told apart based on their behavior. The H-method ensures that certain states are trace inequivalent,
while Algorithm 1 ensures that states are apart according to the notion of apartness for observation tree
MM1Ts. The correspondence between the H-method and Algorithm 1 is as follows:

1. Step 1 of the H-method is to create an initial test suite TS',f = C - ISF+1 Algorithm 1 similarly starts
by adding every sequence of C' to observation tree 7. Repeatedly applying the ExtendFrontiers rule
until it can no longer be used would then complete the first k£ frontiers. Afterwards, the set of the
access sequences for all states of 7 is equal to C - I<F+1,

2. Step 2 of the H-method ensures that all distinct basis states 7,7’ are distinguishable by ensuring
that T:S3" contains input sequences access(r) - w and access(r’) - w, where AS™(r,w) # AS™(+/, w). The
IdentifyBasisStates rule achieves the same purpose for all MM1T basis states by doing essentially the
same thing: finding the specification states s and s’ that correspond to r and 7/, finding an input
sequence o for which s and s’ behave differently, and then testing the input sequences access(r - o)
and access(r’ - o). Step 2 is thus akin to repeatedly applying the IdentifyBasisStates rule until it can
no longer be used.

3. Step 3 of the H-method makes all basis states r distinguishable from all frontier states ¢ that do not
correspond to the same state of the Mealy machine as r. This is akin to making all frontier states
identified, which is what the IdentifyFrontiers rule does in Algorithm 1 for all states from the k+ 1-level
frontier. Step 3 thus resembles the act of repeatedly applying the IdentifyFrontiers rule until it can no
longer be used.

The two procedures do differ in their approach, since step 3 directly compares r and ¢, while the
IdentifyFrontiers rule takes two distinct basis states r» and 7/, and then uses weak co-transitivity to
find an input sequence o with which it can make at least one of the two apart from t.

This alternative to the IdentifyFrontiers rule more closely resembles step 3 of the H-method than the
version that we use in Algorithm 1:

Algorithm 6: Alternative to Rule (IdentifyFrontiers)

1] =(t# r)Ar#ry, for somet € F¥, rry € B, for which ry = basisStateFor‘(STyc) t) — > Rule
(IdentifyFrontiers)

2 ¢ < makeObs TreeStatesApartS(t, r);

3 if ¢ € I'* then return ¢;

This version relies on a the sub-procedure basz'sStateFor'(sT,C) that obtains for a given observation tree
state the basis state that corresponds to the same specification state:

We don’t use this version of the IdentifyFrontiers rule by default, since it is more complicated than the
version from Algorithm 1.

32 Bram Pellen

Algorithm 7: Sub-procedure for finding the basis state that corresponds to a given observation
tree state

1 Procedure basz’sStateForfT)C) (geQT):
2 | s 057 (s5,access(q));

3 o peC:35(s5,p) =s;

4 T<—5T*(q77;’0)3

5 return r;

4. Step 4 of the H-method ensures that all distinct states ¢,# from the first k& 4+ 1 frontiers are dis-
tinguishable, granted that there is an input sequence o such that ¢ = §*(¢,0). Algorithm 1’s final
rule ExtendCoTransitivity doesn’t resemble this procedure too closely, as it instead pursues the co-
transitivity property of Equation (3.2). Still, the two procedures do resemble each other in that they
make certain frontier states distinguishable from one another when this is required by their respective
testing methods. Step 4 is thus somewhat analogous to repeatedly applying the ExtendCoTransitivity
rule until it can no longer be used.

Another similarity between the H-method and Algorithm 1 is that while both methods make use of distin-
guishing sequences between states, neither method specifies how exactly these sequences are to be found.
Algorithm 1 makes heavy use of input sequences that witness the apartness between two states, but the
precise approach for finding these witnesses is left as an implementation detail. The H-method similarly
leaves the approach for finding the distinguishing sequences between distinct specification states as an im-
plementation detail.

Notice that in this comparison, we never once mentioned the fact that while Algorithm 1 performs its
rules, it always checks for conflicts between the outputs, timer updates, and the on/off status of the timer
in the successor state for all transitions of every sequence that it processes. Whereas the H-method only
computes a test suite that then still needs to be evaluated on the specification and the SUT, Algorithm 1
effectively evaluates every test as soon as it generates it. This means unlike the H-method, our method will
terminate as soon as it generates a test that can show a conflict between the behavior of the specification
and the SUT.

3.3.8 The Order in Which the Rules are Applied

Algorithm 1 applies its four rules non-deterministically. There are thus various possible orders in which the
rules can be applied. This non-determinism makes for an additional challenge when it comes to implementing
the procedure. We therefore identify fixed orders in which the rules can be applied.

There are rule application ordenings in which each rule can be applied repeatedly until it can never be
used again. Such ordenings are ideal, since they allow for the rules to be applied as four sequential steps.
These ordenings thus resemble the stepwise approach taken by the H-method. Any such ordening has to
account for the following restrictions:

e The IdentifyBasisStates and ExtendFrontiers rules have no restrictions on when they can be applied.

o The IdentifyFrontiers rule relies on basis states being identified (IdentifyBasisStates). It also relies on
the existence of states from the first k + 1 frontiers (ExtendFrontiers).

o The ExtendCoTransitivity rule relies on the existence of states from the first k£ + 1 frontiers (Extend-
Frontiers). It also relies on these states being identified (IdentifyFrontiers).

Any ordening in which the rules are exhausted one-by-one may thus start with either the IdentifyBasis-
States rule or the ExtendFrontiers rule, but has to end with the IdentifyFrontiers rule, followed by the
ExtendCoTransitivity rule.

Note that the ordening in which the IdentifyBasisStates rule is exhausted after the ExtendFrontiers rule,
but before the IdentifyFrontiers rule closely resembles the H-method. We refer to Section 3.3.7 for more
details.

Chapter 4

MMT Testing Preliminaries

In this chapter, we introduce the reader to the concept of the Mealy Machines with Multiple Timers (MMTs),
which were first introduced in Bruyere et al. [2024]. Almost everything in this chapter is taken directly
from Bruyere et al. [2024]. We include this material in this report for the reader’s convenience.

4.1 Mealy Machines With Multiple Timers

MMTs function as a generalization of MM1Ts. Instead of one timer, an MMT can have any finite number of
timers for which timeouts can occur. The set of timers associated with an MMT M is captured in the set X.
The timeout inputs that we use for MM1Ts are replaced with inputs to[z], where € X. We collectively
refer to inputs and timeouts as actions. We sometimes call inputs input actions, and timeouts timeout
actions. The set of all actions of M is given by A = JUTO(X), with TO(X) := {to[z] | z € X}. The MM1T’s
reset function is replaced with an update function that assigns an update from U = (X x N>%) U {1} to
each transition. We define MMTs as follows:

Definition 4.1.1 (Mealy machine with timers). A Mealy machine with timers (MMT) is a tu-
ple M =(Q,qz, X,I,0,X,5,\, 7), where:

e () is a finite set of states,

e g7 € Q is the initial state,

e X is a finite set of timers,

e [is a finite set of inputs,

e O is a set of outputs,

o X: @ — P(X) is a function that assigns a finite set of active timers to each state,
e §:Q x A— (Q is a transition function,

e A: Q@ xA— O is an output function, and

e 7: (@ x A— U is an update function.

Let d(q,i) = ¢’ and A(q,7) = o. We write ¢ Lf% q if 7(q,i) = L, and ¢ (Z/—D)> q" when 7(q,i) = (x,¢). An

MMT is valid if and only if its active timer, transition, output and update functions satisfy the following

33

34 Bram Pellen

rules, for all ¢,¢ € Q,i € A, 0€ O, z,y € X, and c € N>0:

X(gz) = 0 (4.1)
Mgl = (g, i)l (4.2)
ey = X)X (4.3)
g = aeX(d) A X@)\{x) X (4.4)
% = zeX(Q A zgX(]) (4.5)
% ¢ = zeX() A z=uy (4.6)

In this report, we always assume MMTs to be valid, unless we specify otherwise.

Missing symbols in ¢ 1/—O> ¢’ are quantified existentially.
u

Example 4.1.1. ¢ Z/—()) means that there exists a state ¢’ such that ¢ Z/—O> q.
u u

Ezxample 4.1.2. q %5 indicates that there exist an output o and an update u such that g Z/—0>
u

Bruyeére et al. [2024] also introduced generalized MMTs (gMMTs), which can rename timers along their
state transitions. This is the only difference between the two model types:

Definition 4.1.2 (Generalized Mealy machines with timers). A generalized Mealy machine with
timers (gMMT) is a tuple M = (Q,qz, X, I,0,X,5,\,7), where Q,qr,X,I,0,X,§ and A are the same
as for MMTs. The only difference is in the update function, which now has the signature: 7: Q@ x A —
(X — (X UN>9) that allows for individual transitions to assign values to multiple timers. Let d(q,4) = ¢/,

A(g,i) = o and v = 7(q,1). We write ¢ Z/—O> q’. A gMMT is valid if and only if its set of timers, active timer
T

function, transition function and update function satisfy the following rules, for all q,¢' € Q,i € A, xz € X,
and t: X — (X UN>0):

X NN>0 = 0 (4.7)
Xa) = 0 (48)
Mg, i)l = (g0l (4.9)
q—dq — tis injective A dom(t) = X(¢') A ran(r) C (X(¢) UNZY) A (4.10)

' there is at most one = € dom(t) with v(x) € N>°
q solel, q — reX(q) AN x¢&ran(r). (4.11)

T

As for MMTs, we always assume gMMTs to be valid, unless we specify otherwise. For MMTs, we say
that a transition ¢ — ¢’ starts (resp. restarts) timer z if u = (x,¢) and z is inactive (resp. active) in gq.
u

We similarly say for gMMTs that a transition ¢ — ¢/ starts (resp. restarts) timer z if v(z) € N>° and
T

is inactive (resp. active) in ¢. We say that a transition ¢ — ¢’ with i # to[z] stops timer x if x is inactive
in ¢

MMTs and gMMTs have in common that they can (re)start at most one timer in any given state transition.
The difference between the two is that while MMTs can only (re)start timers in their transitions, gMMTs can
also swap the values of active timers in their state transitions. This ability, which is called timer renaming,
enables gMMTs to express some models more succinctly than is possible with MMTs.

k-A-Complete Conformance Testing of Mealy Machines with Timers 35

Let M be an arbitrary (g) MMT with a set of states . We generalize the transition function to sequences
of actions, i.e. to elements of A*. We get, for all ¢ € Q, all i € A and all 0 € A*:

6" (q,€) = q

6°(6(g,1),0) if (g, i)}

undefined otherwise.

0"(q,i0) =
We similarly generalize the output function to sequences of actions. We get, for all ¢ € @, all i € A and
all o € A*:
A (g, e) =€

Mg, i) A*(0(q,1),0) if 6(q,i)L A A(g,9)d

undefined otherwise.

N(g,io)=

4.2 Untimed Semantics

Definition 4.2.1 (Run). A run of MMT M consists of either a single state g, or of a nonempty sequence
of transitions:

i1/01 iz2/02 in/0n
do0 Q1 e Qn-
Ul U Un

We use runs(M) to denote the set of all runs of M. Note that any run 7 is uniquely determined by its first
state go and input sequence, as (g)MMTs are deterministic.

Definition 4.2.2 (Spanning run for MMTs). A run g Dy ¢n is said to be x-spanning
U1 Un,

(with € X)) if it begins with a transition (re)starting z, ends with a to[x] transition, and no intermediate
transition restarts or stops z. That is, w1 = (z,c¢), i, = to[z], u; # (z,d) for all j € {2,...,n — 1}
and d € N70, and = € X(g;) for all j € {2,...,n— 1}.

Definition 4.2.3 (Spanning run for gMMTs). A run:

in

71 [
qQ —q — ... — (Qn
T 1)
and there exist timers x1,...,x, such that:
e ti(x1) = c for some ¢ € N>,
o vj(x;) =z, for every j € {2,...,n — 1} (this implies that z; € X(g;)), and

o ip =to[x,_1].

4.3 Timed Semantics

Let M be an (g)MMT. A valuation is a partial function xk: X — R>? that assigns nonnegative real
numbers to timers. For a set of timers Y C X, Val(Y) denotes the set of all valuations k£ with dom(x) =Y.
A configuration of M is a pair (¢,x) € @ x Val(Y'). The initial configuration of M is the pair (qz, %),
where k = () since X(qz) = 0.

If k € Val(Y) is a valuation in which Vz € Y: s(z) > d € R”Y, then d units of timer may elapse. We
write k —d € Val(Y) for the resulting valuation, which satisfies Vo € Y: (k —d)(x) = x(z) — d. If there exists
a timer z such that x(z) = 0, then z may time out. The transitions between configurations (q, k), (¢, ')
are defined as follows:

e (gq,kK) 4, (¢, k — d), with x(z) > d for every z € X(q) is a delay transition, and

36 Bram Pellen

a/o to[z]/o
/ / S
st @ 5@ 5@ B
tola] /o toly] /o’ t°[y]2/ ° tolz]/o’
$,3) (y72) ’ (1,72)

Figure 4.1: An MMT, with X(qy) = Xo(q0) = 0, X(q1) = Xo(q1) = {z}, and X(q2) = Xp(q2) = X(q3) =
Xo(gs) = {z,y}

i/o

e (q,k) — (¢',K), with ¢ AN q € runs(M), u = (z,¢) = '(z) = ¢, and:

vy e X(¢'): u# (y,d) = K(y)=ry),

is a discrete transition. Moreover, if i = to[z], then x(x) = 0 and the transition is called a timeout
transition. Otherwise, it is an input transition.

Missing symbols in (g, k) 4, (¢,k — d) and (¢, k) —ZLO—> (¢’, k') are quantified existentially.

Definition 4.3.1 (Timed run). A timed run is a sequence of configuration transitions, beginning and
ending with a delay transition.

Definition 4.3.2 (Untimed projection of a run). The untimed projection of a timed run p, de-
noted untimed(p), is the run obtained by removing p’s valuations and delay transitions.

Definition 4.3.3 (Feasible runs). A run = is said to be feasible if there exists a timed run p such
that untimed(p) = =.

Definition 4.3.4 (Enabled timers). We define the set Xy(q) of enabled timers of (g)MMT state ¢ as:

Xo(q) = {z € X(q) | 3(gz,0) = (¢,5): w(z) = O}.

Definition 4.3.5 (Complete (g)MMT). We say that an (g)MMT M is complete if each state ¢ € Q
has an outgoing transition for each of the actions that can be taken from that state. Formally:

VgeQ,icAiqgs € runs(M) — i€ ITUTO(Xy(q))-

Definition 4.3.6 (Connected (g)MMT). An (g)MMT M is connected iff, for each state ¢ € @ there
exists an action sequence o € A* such that gz = ¢ € runs(M).

Definition 4.3.7 (Partial MMT). A partial (g)MMT is an (g)MMT that may or may not be complete.

Definition 4.3.8 (s-learnable (g)MMT). An (g)MMT M is s-learnable if it is complete, and every
run of M is feasible.

Unlike Bruyere et al. [2024], we always require that (g)MMTs are valid. We therefore don’t need to
explicitly require that s-learnable models are valid (sound, in their terms).

Ezample 4.3.1. Figure 4.1 shows an example of a complete MMT with timers X = {z,y}. Timer z is active
in q1, g2 and g3, while timer y is only active in states ¢o and ¢3. A timer can only be active in a state if it
was first started in a preceding transition. The transition for input a from state gy to state ¢; starts timer x
with value 3. The MMT is not s-learnable, because its run a a to[z] to[z] is not feasible.

k-A-Complete Conformance Testing of Mealy Machines with Timers 37

ajo
ajo ajo to[z1**]/o
start —{(90 1 23D x? = a?,
1. a3 ._ 1 Z
Ty = 3 v Xy =7, 1,‘12‘3 =9
a2 . 2
to[z]]/o ? to[z5>"] /0’
r{ =3 o =P,
xgm =2

Figure 4.2: A gMMT that is symbolically equivalent to the MMT of Figure 4.1

4.4 Symbolic Words and Symbolic Equivalence

Definition 4.4.1 (Symbolic words). Let M be an MMT, and let w = i; ..., be a word over A that

is the label of a run m = ¢ = @1 —> ... ~ ¢, € runs(M). The symbolic word (sw) of w is the
U1 u2 Unp
word W = iy ...1i, over A such that, for every k € {1,...,n}:

e ip =iy ifip €1, and
o i =to[j], where j < k is the index of the last transition that (re)starts timer z if i, = to[z].

A given symbolic word w = iy ...1i, over A that can be converted into a word w over A if there is a
run gz — € runs(M). Appendix B of Bruyére et al. [2024] explains how such a run can be used to convert
the symbolic word into non-symbolic word w.

Let A C A* be a set of words over A. We define A = {w | w € A}.

We generalize the MMT and gMMT transition sequence functions to also work for symbolic words that
are run from the (g)MMT’s initial state. Since these symbolic words w are run from the initial state, we know
that if ¢z - is feasible in (2)MMT M, then for the non-symbolic word w such that @ = w, g7 — € runs(M).
We define, for all (g)MMTs M and all symbolic words w € (4)*:

§*(w) = 0" (gz,w) fw=wAgqz— Is feasible in M

undefined otherwise.

Bruyere et al. [2024] defined notions of symbolic equivalence between two MMTs, and between a
gMMT and an MMT. We write M ~y,,, N to denote that M and N are symbolically equivalent.

Example 4.4.1. Figure 4.2 shows an example of a gMMT that is symbolically equivalent to the MMT
of Figure 4.1.

4.5 Race Conditions and Race Avoidance

The MMT learning method accounts for the potential occurrence of race conditions when it runs timed
input words on the SUL. For MMT5, a race condition occurs in a timed run when either:

e two timers expire simultaneously (i.e. the sum of the delays between them is zero), or

o a timer x expires while another transition simultaneously (re)starts or stops x (i.e. timer x reaches
zero while the next transition (re)starts or stops).

In the first case, it cannot be observed which timer expired. In the second case, it is undefined whether a
timeout would occur for a timer x before it is either (re)started or stopped and the z-timeout is prevented.

Definition 4.5.1 (Race avoiding MMT). Let M be a sound MMT. We say that M is race avoiding if

any feasible run m = g7 2% q1 2> ... 2 ... 2 g, is the untimed projection of a timed run p = (¢z, 0) ,

d in dn
(q7,0) 2 (g1, 1) = oo 2 (G) ——= (qn, n — dny1), such that:

38 Bram Pellen

o all delays are non-zero: d; > 0 for any j € {1,...,n+ 1},

o timers always time out precisely when 7 wants to process their timeout: for any (k; — dj4+1) and = €
X(g;) with j € {1,...,n — 1}, we have (k; — djy1)(z) = 0 iff 4,41 = to[z], and

o 10 timer times out in Kk, — dpy1: (Kn — dny1)(x) # 0 for all x € X(gy).

4.6 Auxiliary Functions That Describe Timer Behavior

We define some auxiliary functions that will help us describe the way that (¢)MMT timers behave along
untimed runs.

For gMMTs, we start with a function that yields for a given timer the timer to which it renames along a
given run:

Definition 4.6.1. Let M be a gMMT with 7 = ¢ A, Qi SENN gn € runs(M) and zg € X(qo). Then:
Ty T2 Tn

renameTo .. (xg) = Tp,
qo—74n

iff x,, € X(g,) and there exist timers x1,...,2,-1 € X such that:
Vie{l,...,n}:v(x;) =xj-1.

Otherwise:

(z9) = L.

renameTo

i1..ip

q0 — qn

We also define a function that returns the timer that a given timer is renamed from along a given run:

Definition 4.6.2. Let M be a gMMT with m = qg o, 751 Ly Ly qn € runs(M) and x,, € X(q,). Then:
T1 T2

Tn

renamesTo , . (zn) = o,
iff xg € X(qo) and there exist timers x1,...,2,-1 € X such that:

VJ S {1, NN 771}2 tj(fﬂj) =Tj-1-
Otherwise:

renamesTo (zn) = L.

n
q0 >qn

We define a function that yields the index along a given MMT run at which a given timer was last started,
granted that this timer remains active in the remainder of the run:

Definition 4.6.3. Let M be an MMT with 7 = g9 - q1 -2 ... -2 g, € runs(M) and z € X(qyp)-
Ul u Un,
Let k£ € N. Then:

lastStartedAt (z) =k,

ig...in

g0 74n
iff there exists a £ € N such that:
e 7(qr_1,ix) = (z,c) for some ¢ € N>°,
e Vie{k+1,...,n}: z € X(q), and
e Vie{k+1,...,n}: (uy= 1)V (u € (X x N>O) A (7 () #)).

k-A-Complete Conformance Testing of Mealy Machines with Timers 39

Otherwise:

lastStartedAt (z) = L.

iQ..in

q0 ?qn

We also define a gMMT-version of the previous function:

Definition 4.6.4. Let M be a gMMT with © = ¢g N q1 SENSIN gn € runs(M) and = € X(q,,). Then:
T1 T2 Tp

lastStartedAt . .,

: (3;‘) =k,
Go——"qn

iff there exists a k € N such that:

e Jye X:tp(y) € N

o renamesTo ., ., (y) =z, and
Qk—>Qn
e Vie{k+1,...,n}: v(z) € N>° where z = renameTo et (y).
Gp—q
Otherwise:
lastStartedAt ., ., (x)= L.
QO—>qn

We define a function that yields the timer that is started in the final transition along the given MMT
run:

Definition 4.6.5. Let M be an MMT with 7 = ¢q LN q1 By oy Gn € runs(M). Then:
o if u = (z,c) with z € X(g,) and ¢ € N> then:

celn

timerStartedAt(qo Zl—>) =z,

and

e if u = 1, then:
timerStarted At (qo 2—@%) = 1.
Finally, we define a gMMT-version of the previous function:
Definition 4.6.6. Let M be a gMMT with © = qg L, ¢ LN zT> Gn € runs(M). Then:
o if v(z) € N> for some = € X(q,,), then:

timerStartedAt(qo u)) =z,

and

o if -3z € X(gn): t(x) € N> then:

timerStarted At (qo u)) = 1.

Chapter 5

k-A-Complete Conformance Testing of
MMTs

In this chapter, we introduce our conformance testing method for MMTs. This method follows the same
principle as our method for MM1Ts. We start by introducing the notions of timer-observable (¢t-observable)
MMTs and gMMTs, followed by an algorithm that can make s-learnableMMTs t-observable. Next, we define
observation trees and functional simulations for (g)MMTs. We then define the notion of explored states,
which we subsequently use to define the requisite notions of apartness. Our stratifications for observation
tree MMTs are the next topic, followed by the requirements that we impose on the specifications. The final
section introduces our conformance testing method for MMTs.

5.1 t-Observable (g)MMTs

We introduce the notion of timer-observable (t-observable) (g)MMTs. The idea is that the model doesn’t
perform any timer-related actions that cannot be outwardly observed. As such, every timer update performed
by a t-observable model starts a spanning run, and timers are only ever active in states that are traversed
by at least one spanning for that timer.

Definition 5.1.1 (t-Observable MMT). An MMT M is t-observable iff:
1. every run of M is feasible,
2. Vge Q,x € X:x € X(q) iff there is an z-spanning run that traverses ¢, and
3. VgeQ,z e X:xe Xq) iff 6(g,to[z])].
We define t-observability for gMMTs by adapting the second requirement to account for timer renamings:

Definition 5.1.2 (¢~-Observable gMMT). A gMMT M is t-observable iff it meets the first and third
requirements for t-observable MMTs, as well as the requirement:
Vg, € Q,xn € X: z, € X(g,) iff M has a spanning run that starts with the sub-run:

in

i1 i
mT=qo—>q1 — ... — (Qn
T1 T2 Tn
and there exist timers x1,...,z,_1 such that:
1. t1(z1) = c for some ¢ € N>0
2. 'Cj(Ij) =Tj-1 for all] S {2, . ,n}.
Let M be a t-observable (g)MMT. We require that every run is feasible, to ensure that the runs that

should make M'’s timer behavior observable can actually be traversed. The second requirement is there

40

k-A-Complete Conformance Testing of Mealy Machines with Timers 41

to[z]/o
srt @, 5 @ o B TDow
tofy] /o
to[z]/o
(x,2)

Figure 5.1: An MMT that is neither ¢-observable nor s-learnable, because §(ga,to[y])] while y € Xy(g2). In
this model, X'(qo) = Xo(q0) = X (g3) = Xo(gs) = 0, X(q1) = Xo(q1) = Xo(g2) = {=}, and X(q2) = {z,y}

afo
ajo ~ afo to[z]/o
start @ ©.2) @ .3) é @D afo
to[z]/o
(z,2)

Figure 5.2: An MMT that is s-learnable, but not t-observable because the timer update in the transition
from ¢; to g2 is not observable. In this model, X(qy) = Xo(q0) = X(g3) = Xo(g3) = 0, X(q1) = Xo(q1) =
Xo(g2) = {z}, and X(q2) = {z,y}

to prevent M from performing timer behavior that cannot be observed from any runs. This requirement
also implies that every timer update that starts a timer x starts an x-spanning run. The third and final
requirement ensures that if that if there is a timed run that terminates in a state ¢ for which x € X(q)
and z has the value 0, then this is made observable by the fact that §(q,to[z]). The third requirement also
ensures that timeouts for timers x can only be performed in states ¢ in which their value can be 0.

The first and third t-observability requirements always hold for s-learnable (g)MMTs: the first is a direct re-
quirement for s-learnability, and the third is implied by the completeness criterium imposed by s-learnability.
Symbolically-learnable (g)MMTs aren’t guaranteed to satisfy t-observability’s second requirement. In Sec-
tion 5.2, we introduce an algorithm that produces for any s-learnable MMT a symbolically equivalent MMT
that is also t-observable. It works by only adding the timer updates and active timers that can be observed,
ensuring satisfaction of the second requirement.

Example 5.1.1. Figure 5.1 shows an example of an MMT that is neither t-observable, nor s-learnable. This
model is not s-learnable, because 4 (go, to[y])J, while y & Xy(g2). This violates the completeness requirement.
It also violates the third requirement of ¢-observability. Figure 5.2 shows a copy of the MMT of Figure 5.1
without this to[y]-transition. Indeed, the updated model is s-learnable. It is still not t-observable however,
since timer y is started in the a-transition from ¢; to ¢o, and since y € X(g2). This violates the second
requirement for ¢t-observability, because none of this can be made observable by interacting with the MMT.
We explain in Section 5.2 how we would convert this MMT into a symbolically equivalent, t-observable
and s-learnable MMT.

5.2 Making s-Learnable MMTs ¢-Observable

Algorithm 8 describes our procedure for making s-learnable MMTs t-observable. Let M be an arbitrary s-
learnable MMT. The procedure generates an s-learnable, t-observable MMT A that is symbolically equivalent
to M.

42

Bram Pellen

Algorithm 8: Procedure for making an MMT t-observable

1 Procedure makeTObservable(M):

® N O oA W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

p%/ + a fresh MMT state;
PN e {p'};
XN p;
Vo M,
ON + oM,
AN — 03N — 00N 0, 7N 0
N (PN p [XN IV OV &N 6N N V),
// Copy M’s graph structure to N
Je A} an)} 5
forall ¢ € Q™ \ {¢z} do
p < a fresh MMT state;
PN« PN U {p};
f(p) < ¢
end
S« 0
forall p € PV do
forall i € I U {to[z] € TO(XM) | 6™ (f(p),to[z])}} do
N (p, i) < fHEM(F(p),1);
M (p, i) < MM (f(p),i);
if 3x: i = to[z] then
XN — XN U {2}
XN (p) XN (p) U {a};
S« Su{(p,z)};
end

end

end
/* Mark all timers z as active in all states that are covered by x-spannings
/* And add all the timer updates that start spanning runs
forall (p,z) € S do
R <+ a fresh first-in-first-out queue;
E«—{p};
R.enqueue(p);
while = R.isEmpty() do
p' < R.dequeue();
forall p” € PV do
q" < f");
forall i € TUTO(XN): &N (p”,i) =p' do
if 7™M(q",1) = (z,c) then
| V(i) (2 0);
end
else if p” ¢ EAxz € X(¢") then
if TM(q",i) = LV (t™(q",i) = (y,¢) ANy # x) then
X(p") « X(p") U {z};

E+~EU{p'};
R.enqueue(p”);
end
end
end
end
end

end
return N;

*/
*/

k-A-Complete Conformance Testing of Mealy Machines with Timers 43

Algorithm 8 starts by copying M’s underlying graph structure to a new MMT A. It first adds one
state p to N for every state ¢ € Q™. The correspondence between all states p and ¢ is captured in a
map f: PN — QM ie., f(p) = q for all ¢ € QM. The procedure next completes N’s graph structure by
adding for every pair of a state p € PV and an action i € I U {to[z] € TO(X™) | ™ (f(p),to[z])|} that can
be taken from f(p):

1. the successor state f~*(6M(f(p),1)),
2. the output symbol MM (f(p),4), and
3. if 3z: i = to[z], then:

(a) timer x is added to XV (if it wasn’t in X* already),
(b) z is added to XN (p), and
(¢) (p,z) is added to a set S, which is used in the final part of the procedure.

Algorithm 8 now uses S in its final step. For every (p,x) € S, it performs a backwards breadth-first
search[Zuse, 1972] to:

o mark x as active in all states that are covered by x-spanning runs that terminate with a timeout from p,
and to

e add all timer updates that start z-spanning runs that terminate with a timeout from p.

The result is a ¢-observable MMT N, such that N =y, M.

Ezample 5.2.1. Figure 5.3 shows how Algorithm 8’s state mapping f: PN — QM relates the states of
the s-learnable MMT M on the top with those of the s-learnable and t-observable MMT A on the bottom.
We stated in Example 5.1.1 that Algorithm 8 would return N (from Figure 5.1) if it were to be given M
(from Figure 5.2) as an input. It would produce N by first copying M’s states and its state transitions
with their inputs and outputs to a fresh MMT A (lines 2 through 26). While doing so, the algorithm also

composes the set S = {(p1,x), (p2,)}, where (p1,z) € S indicates that p; ol ¢ runs(N), and (p2,x) € S

indicates that po tolal, € runs(N'). The algorithm finishes by performing its backwards breadth-first-search
for both (p1,z) and (p2,x). For (pi1,x), this results in the addition of the timer update (x,2) to the a-
transition from pgy to pi, as well as in z becoming active in py. For (pe,x), it results in « becoming active
in po, and in the same additions as for (p1, z) if the loop of lines 27 through 49 processes (p2, x) before (p1, x).
Timer updates for M’s timer y are never added, and y isn’t made active in any state of N, because M has
no timeouts for y. The addition of any timer behavior for y would therefore violate the second requirement
of t-observability.

We can prove that:
Theorem 5.2.1. Algorithm 8 only returns valid MMTs when it is given valid MMTs.
The proof of Theorem 5.2.1 can be found in Appendix C.4.5.

Theorem 5.2.2. Let M be an s-learnable MMT. Let N be the MMT that Algorithm 8 returns when it is
called on M. Then N ~y,,, M.

Proof. Lemma C.4.4 tells us that, for all action sequences o € (AN)*, V" (pY,0)] <= M (qr,0)!.
Let o € (AN)* such that 6N*(p9[,a)¢ and 5M*(q1,a)¢. Let pr_1 = 5/\/*(73/1\/,0), and q,_1 = 6M*(qz,a)¢.
Lemma C.4.4 tells us that qx—1 = f(px—1). Lemma C.4.8 now tells us that:

ik Tht1---05

Dk—1 o Dk p; € runs(N) is z-spanning <=
x,c

ik

(z:¢)

f(pr-1) f (o) el f(p;) € runs(M) is z-spanning.

This implies that, for all symbolic words w = i1 ...1, over AV:

44 Bram Pellen

—
8
[\
—
S
~
Q

w0
-+
I
=
+
)
()
Q
~
Q
6)3
fiun
—~
< S
< ~
w | O
=
G)b
V]
+
o
B
~
Q
[l
S
~
Q

~

~ 7
— (R

~
_

S
~
Q

w0
—+
I
=
t+
§S]
(=}
B
N

—+
o,
=,

—~
8
Jfa?s\
S
\
&)

Figure 5.3: Two symbolically equivalent, s-learnable MMTs. The MMT on the bottom is t-observable, the
MMT on the top is not. Algorithm 8 would return the MMT on the bottom if it were given the MMT on
the top. The gray arrows and the state coloring indicate the correspondence of the states of these models
given by Algorithm 8’s state mapping f. In these MMTs, X({qo,¢3,P0,P3}) = Xo({q0,43,P0,p3}) = 0,

X({q1,p1,p2}) = X({q1, 1,92, p2}) = {x}, and X (q2) = {z,y}.

o Y i1/01 pL-... in/on pn is feasible in NV iff f(pd) % flp1)... % f(pn) is feasible in M, and

U1 Un uy

o ifpp_q N p; is spanning then uy = (z,¢) Auj, = (@',) Ne="¢.
Moreover, Lemma C.4.4 tells us that o; = of; for all j € {1,...,n}.
We can thus conclude that N =y, M.
O

Theorem 5.2.3. Let M be an MMT, and let A/ be the MMT that Algorithm 8 returns when it is called
on M. If M is connected, then N is connected as well.

The proof of Theorem 5.2.3 can be found in Appendix C.4.6. We can now prove that Algorithm 8 only
returns t-observable MMTs, granted that the provided MMT is s-learnable:

Theorem 5.2.4. Let M be an s-learnable MMT, and let A/ be the MMT that Algorithm 8 returns when
it is called on M. Then N is t-observable.

The proof of Theorem 5.2.4 can be found in Appendix C.4.7.
Theorem 5.2.4 now enabled us to prove that:

Theorem 5.2.5. Let M be an s-learnable MMT, and let N be the MMT that Algorithm 8 returns when
it is called on M. Then N is complete.

The proof of Theorem 5.2.5 can be found in Appendix C.4.8.
Finally, these properties let us conclude that Algorithm 8 preserves s-learnability.

Corollary 5.2.1. Let M be an s-learnable MMT, and let A/ be the MMT that Algorithm 8 returns when
it is called on M. Then N is s-learnable.

Proof. Since M is s-learnable, it is complete. Therefore, by Theorem 5.2.5, N is complete as well. Theo-
rem 5.2.4 tells us that since M is s-learnable, A is t-observable. This implies that every run of A is feasible
which, together with A’s completeness, means that N is s-learnable. O

k-A-Complete Conformance Testing of Mealy Machines with Timers 45

5.2.1 Why not all s-Learnable MMTs are t-Observable

We compared the property of t-observability with that of s-learnability in Section 5.1. Bruyere et al. [2024]
introduced a method that makes a complete MMT M s-learnable by computing what they call its zone
MMT, zone(M). Zone MMT zone(M) has for each of its states a pair (g, Z), with ¢ € Q™ a state of M,
and Z C Val(X(q)) a zone: a set of valuations over X(q). The set X*°"¢M)((q, Z)) of timers active in (¢, Z)
is simply defined as X2°"M)((¢, Z)) = XM(q), the set of timers active in g. Therefore, if M violates the
second t-observability requirement, then zone(M) might violate this requirement as well. This implies that
MMTs that are made s-learnable with Bruyere et al. [2024]’s method are not guaranteed to be t-observable.
We highlight that whereas Bruyere et al. [2024]’s process for making MMTs s-learnable can lead to an
increase in the model’s state space, our method for making s-learnable MMTs t-observable always returns
MMTs with the same number of states as the original model.

5.3 Observation Trees and Functional Simulations

Much like our conformance testing method for MM1Ts from Chapter 3, our method for MMTs relies on the
notions of observation trees and functional simulations. We again use an observation tree which simulates
both the specification, and the SUT. Our method uses MMTs for the SUTs, and gMMTs for the specifications.
We therefore define functional simulations for both of these model types. Tree-shaped, partial MMTs form
the basis of the observation trees for both MMTs and gMMTs.

Definition 5.3.1 (Tree MMT). A partial MMT 7T is a tree iff, for each state ¢ € @ there is a unique
action sequence access(q) € A*, such that §*(gz, access(q)) = q. Each tree state ¢ € Q has a unique parent

state parent(q) € @, such that parent(q) = ¢ € runs(7) and i € A.

We use Bruyere et al. [2024]’s observation trees:
Definition 5.3.2 (Observation tree MMT). An observation tree MMT 7T is a t-observable tree
MMT T =(Q,qz,X,I,0,X,0,\,7) such that:

« X ={zg|qeQ\{az}},

o Vg—— ¢ withiel:x=uy,

(,¢)

The use of our notion of t-observability allowed us to define observation trees a bit more succinctly than
in Bruyere et al. [2024].

We use Bruyere et al. [2024]’s functional simulations, which specify for observation tree MMTs how they
simulate s-learnable MMTs:

Definition 5.3.3 (Functional MMT simulation). Let 7 be an observation tree, and let M be an s-
learnable MMT with the same set of inputs I. A functional MMT simulation (f, f;, fu): T — M is a
triple of a map fo: Q7 — QM, a map f;: UgeqT XT(q) - XM, and amap f,: Q7 x AT — UM. We lift f;
to actions such that:

e fi(i) =i for every i € I, and
o fi(to[z]) = to[fi(x)] for every x € dom(f).
We require that (fs, ft, fu) preserves initial states, active timers, and transitions:
foaf) = az
Vg e Q7. Vo € X7 (q): fi(z) € XM(f:(q))
Yee QT Vr,y e XT(q): £y = filz) # fi(y)

i/o fi(3)/o
Vq w q: fs(q) m fs(d')

i/o fi(i)/o
Va5 q': fula) T 1) (FMS4)

46 Bram Pellen

We define f, as, for all ¢ € Q7 and all i € A7:
Fula,1) = T (fu(@), £1(2)).

We use condition (FMS3) to lift f, to timer updates. For all timer updates u € U7 :

(ft(m)’c) if u= ($7C)
1 ifu=_1.

fulu) =

We use conditions (FMS3) and (FMS4) to Lift (fs, fi, fu) to runs. Let m = qo L% qr... 2% 4. €
U1 Unp,
runs(T). Then:

(fss oo fu) () = [fs(q0)

fi(i1)/o ft(in)/on
(1)/, > folqr) ... % fs(qn) € runs(M).
fu(qoﬂl) f’u(Qn—lﬂn)

We use this lifting to add the following requirement for (fs, f¢, fu):
Vi € runs(T): (fs, ft, fu)(m) is y — spanning = Jx: 7 is — spanning A fi(z) = y. (FMS5)

We say that 7 is an observation tree for M if there exists a functional MMT simulation (fs, fi, fu): T —
M.

This definition is the exact same as the one Bruyere et al. [2024] provides for functional simulations
between observation trees and MMTs, apart from our addition and use of the lifting of the timer map f; to
timer updates.

Lemma 5.3.1. Let 7 be an observation tree, let M be an s-learnable MMT, and let (fs, fi, fu): T — M
be a functional MMT simulation. Then:

vV € runs(T): w is x-spanning = (fs, fi, fu)(7) is fi(x)-spanning.

The proof of Lemma 5.3.1 can be found in Appendix C.1.1.

Mind that Bruyere et al. [2024]’s Corollary 3.5 also applies to this notion of functional MMT simulations.

Functional gMMT simulations need to account for timer renaming, due to which a single timer of the
observation tree can correspond to multiple distinct timers of the gMMT. We extended the active timer
mapping with an argument for the “current” observation tree state, so that observation tree timers that
remain active across multiple consecutive state transitions can be mapped to the correct timers of the
¢gMMT.

Definition 5.3.4 (Functional gMMT simulations). Let 7 be an observation tree, and let M be an
s-learnable gMMT with the same set of inputs I. A functional gMMT simulation (fs, fi, fu): T — M
is a triple of a map fs: Q7 — QM, amap fi: Q7 X Uyeqr X7 (¢) - XM, and a map f,: Q7 x AT —
(XM - (XM UN>?)). We lift f; to actions such that, for every ¢ € Q7:

o fi(g,i) =i for every i € I, and
o filg, to[z]) = to[fi(q,)] for every z € X7 (q).

We require that (fs, f:, fu) preserves initial states, active timers, transitions, timer updates and timer re-
naming:

folal) = az (FGSO)
Vge QT . Vx € XT(q): filg,x) € XM (fs(q)) (FGS1)
Vge QT Va,ye XT(q):x#y = fi(¢.7) # fi(q,y) (FGS2)
Vg 5 ' () T fld) A il) = o) (FGS3)

Ay € (X7 () \{a}): e(feld) = fi(a,9))

Vg L s fula) U f(a) A (e € XT () w(fild) = fulg,) (FGS4)

k-A-Complete Conformance Testing of Mealy Machines with Timers 47

We define f, as, for all ¢ € Q7 and all i € A7:

Fula, 1) = T(fs(@), fo(0))-
We use condition (FGS3) to lift the timer map f; to timer updates. For all observation tree states ¢, ¢’ and

timer updates u € U7 such that 3i € (I7 UTO(Xy(q))): 6(q,i) = ¢’ A7(q,i) = u, we get:

{(fe(@y), fela.) | Vy € XT(¢)\{a}} U{(feld,2).)} if u= (x,0)
{(fe(d'), filg,2)) | Yo € X7 (¢)} ifu=.L.

We use conditions (FGS3) and (FGS4) to lift {fs, ft, fu) to runs. Let 7 = ¢ /o q ... in/on qn € runs(T).

ul Un
Then:

ft si1)/0 fe(gn—1,in)/0on
o foo Fu)(m) = Falgo) 2008, £ (gyy .. Jlanorindfon, ¢ 0y € runs(M).
fu(qo,i1) Fu(@n—1,in)

We use this lifting to add the following requirement for (fs, f¢, fu):

fulg,q' u) =

Y(m tolel, q) € runs(T): {fs, ft, fu) (7 tolzl, q) is spanning = (7 tolzl, q) is — spanning. (FGS5)
Functional MMT simulations (gs, g;, gu): T — N have the property that, if ¢,¢' € Q7 Ags(q) = gs(¢') Az €
X7 (q) Az € X7 ('), then x represents the same timer g;(x) in gs(¢') as in gs(q). The first five requirements
for functional gMMT simulations do not impose an analogous requirement, as f; takes both a timer and a
state of T for its arguments. We add the following rule to achieve an analogous effect in functional gMMT
simulations:

Va.q € QT Yz € X7 (q),Yy € XT(d): fs(q) = fs(d) Nz =y = fi(q,2) = fi(d,y). (FGS6)

We say that 7 is an observation tree for M if there exists a functional gMMT simulation (fs, fi, fu): T —
M.

Lemma 5.3.2. Let 7 be an observation tree, let M be an s-learnable gMMT, and let (fs, f¢, fu): T — M
be a functional gMMT simulation. Then:

Vi € runs(T): is spanning = (fs, fi, fu)(7) is spanning.
The proof of Lemma 5.3.2 can be found in Appendix C.1.2.
Lemma 5.3.3. Let 7 be an observation tree MMT, let M be a s-learnable gMMT, and let (fs, fi, fu): T —

i1/01 in/On

M be a functional gMMT simulation. Let m = qq

gn € runs(T). Then we have the

ul

run p = (fs, ft, fu)(m) € runs(M). Let 0 < k < j <n. If fi(qs,x) € }M(fs(qk)), then:

M
renameTo ftag igy1)---fe(aj—1.%5) (ft(Qk’x))‘I’
fs(qr) Js(a5)

=

M
rename To FeCaping) Feag—1i) (felar, x)) = filg;,z) | -
fs(Qk) fs(QJ')

The proof of Lemma 5.3.3 can be found in Appendix C.1.3.
Lemma 5.3.4. Let T be an observation tree MMT, let M be a s-learnable gMMT, and let (fs, fi, fu): T —

i1/01 in/On

M be a functional gMMT simulation. Let m = ¢q gn € runs(T). Then we have the

U1 Un

run p = {fs, fi, fu)(7) € runs(M). Let 0 < k < j <n. If fi(q;,x) € XM(fs(q;)), then:

M
renamesTo Fe(agsig41)--felaj—1.45) (ft(q]’x))
fs(ar) fs(aj)

=

M
renamesTo FeCarortie 1) Py —101)) (fe(gj,2)) = felaw, z) | -
fs(Qk) fs(QJ')

48 Bram Pellen

The proof of Lemma 5.3.4 can be found in Appendix C.1.4.

5.4 Explored States

Let T be an observation tree, let M be a (g)MMT, and let (fs, ft, fu): T — M be a functional simulation. We
sometimes track how much of a (g)MMT’s timer-related behavior is captured by the states of an observation
tree, because doing so can allow us to tell two observation tree states apart. We discuss the apartness of
states in Section 5.5. The first notion we rely on is that of the enabled explored observation tree state.
This notion was introduced in Bruyére et al. [2024], where such states are called “explored states”.

Definition 5.4.1 (Enabled explored states). Let 7 be an observation tree, let M be a (g)MMT, and
let (fs, fi, fu): T — M be a functional simulation. State ¢ is enabled explored if | X (q)| = |X(fs(q))|.
The set 57\:1 denotes the maximal set of enabled explored states of 7 that induces a subtree that contains q%— ,
ie.:

aF €&, A (Vq,q’EQT,ieAT:q'egf,l/\ng’ﬁqegﬂ).

We also rely on a similar notion of active explored states. The main idea is similar to the one for
enabled explored states: an observation tree state ¢ is active explored if each timer that is active in fs(q)
is represented by a timer that is active in q. We however add the requirement that all timer updates that
occurred before fs(q) is reached in M via (fs, f, fu)(access(q)) are represented by timer updates in 7. We
thus know for every active explored state not just what timers are active, but also what timer updates caused
these timers to be active.

Definition 5.4.2 (Active explored states). Let 7 be an observation tree, let M be a (g) MMT, and
let (fs, fe, fu): T — M be a functional simulation. State ¢, is active explored if:

1. ‘XT(qn” = |XM(fS(qTL))|7 and

2. for T’s unique run ¢ % qi ... ﬂ&# Gr, for access(gqy):
U1 Un,

o if M is an MMT:
Vie{l,...,n}: uj=1 <<= fulgj-1,%) = L.
o if M isa gMMT:
Vje{l,...,n}: uj =1 <= —3z: f,(g-1,1;)(z) € N°O

The set AL denotes the maximal set of active explored states of 7 that induces a subtree that contains q{ ,
ie.:

qF € Al A Vg, € QT,ie AT q'EAz/\qi}q'ﬁquL).

Let 7 be an observation tree for an MMT M, and let (fs, ft, fu): T — M be a functional MMT
simulation. We can quite easily see from the definitions of enabled and active explored states and of functional
MMT simulations that if all states along a run © € runs(7T) of T are both enabled and active explored with
respect to M, then 7 contains a matching timer update for all timer updates found along 7’s corresponding
run in M.

Proposition 5.4.1. Let 7 be an observation tree, let M be an s-learnable (¢)MMT, and let {fs, fi, fu): T —

M be a functional simulation. Let m = ¢q alor, | dnfon, qn € runs(T). If:
uy Up
Vie{0,...,n}: qiegj\:t A qie ALy,

then there is a run:

-/ / -/ ’
i1/0} i /0
P=Po—— ... =Py € runs(M),
Uy

Un,

such that:

k-A-Complete Conformance Testing of Mealy Machines with Timers 49

o Vie{0,...,n}: fs(qi) = ps, and
e If M is an:

= MMT:Vj € {1,...,n}: fi(i;) =i} A fulus) = uj.

- gMMT V] € {]-7 . .,TL}I ft(ijlvij) = Z; /\fu(qulaqjvuj) = ’U,;

5.5 Timer Matchings and Apartness

The notion of apartness for timers from Bruyere et al. [2024] applies to t-observable (g) MMTs. If two distinct
timers = and y are both active in the same state ¢ of a t-observable (g)MMT, then they must have been
started in different transitions of any run that traverses ¢q. For t-observable (g)MMTs, if z,y € X*(q), then
there are always z- and y-spanning runs that traverse ¢. It is thus possible to observe the fact that x and y
are active in q. The fact that « and y were last (re)started in different transitions implies that it is possible
to interact with the (g)MMT in a way that reveals z and y to be distinct timers.

Definition 5.5.1 (Apartness of timers of ¢t-observable (g)MMTSs). Let M be a t-observable (g)MMT,
and let z,y € X™. We say that z and y are apart for state ¢ € Q™, denoted = ‘#, vy, iff z,y € XM(q)
and z # y. We write z '# y iff 3¢’ € QM : 2 '#, y.

We, like Bruyere et al. [2024], rely on the concept of matchings to encode the equivalence of timers.

Definition 5.5.2 (Matching). Let S and T be two sets of (g)MMT states. A relation m C S x T is a
matching from S to T if it is an injective partial function. We write m: S <» T if m is a matching from S
to T. A matching m is maximal if it is total or surjective.

Let M be a t-observable (g)MMT with ¢, ¢’ € Q™ and let m: XM (q) +> X™(¢’) be a matching, denoted
by abuse of notation as m: ¢ <> ¢/. We say that m is valid if it never matches timers to timers from which
they are apart, i.e., Vo € dom(m): —(x '# m(zx)). Like Bruyere et al. [2024], we also lift matchings m to
actions:

m(i) =) ifiel
to[m(x)] if ¢ = to[z] with 2 € dom(m).

Let 7 =qo - q1 = ... % ¢, € runs(M) and 7' = ¢}, 4, a1 2 g€ runs(M) be two feasible runs
of M. If there is a valid matching m: ¢o <> ¢}, between gy and g, then we follow Bruyeére et al.’s example
in lifting m to the runs 7 and 7/, granted that 7 and 7’ are matching for m. The conditions under which =
and 7" are matching, and the way that m is lifted to m and 7’ depend on whether M is an observation tree,
an MMT, or a gMMT:

For observation tree MMTs For observation tree MMTs, we have the same conditions for when a
matching matches two runs, and the same lifting of matchings to runs as those used in Bruyere et al. [2024]:
For 7’ to match w, we require that for all j € {1,...,n}:
o Ifi; € I, then z; =1,
o If i; = to[z] for some x € X then there are two possibilities:
L. If z € X(qo), then 4} = to[m(z)]; and
2. If & = x4, for some 0 < k < j (x is started along the run), then ¢} = to[z,] with the same k.
In the first case, z; must use the “same” timer according to m. In the second case, @
“same” timer according to the updates along the runs.

/

 must use the

When m and 7’ match, we write m7, : m <> 7' with m7, == mU{(zg,,z4) | 0 <k < n} and ; = mZ,(i;) for
every j.

50 Bram Pellen

For t-observable MMTs For 7’ to match 7, we require that for all j € {1,...,n}:
L] Iflj € I, then Z; = Zj

o Ifi; = to[z] for some x € X then there are two possibilities related to k = lastStarted At iy (z):
q0 —>ij 1

L. If k =0, then 7 = to[m(z)] and lastStartedAt , ., (m(z)) = 0; and

i

11
G 5,

.0
2. If k>0, then ¢}, | —% q; is spanning.

In the first case, 7 must use the “same” timer according to m. The timer may not be (re)started

along 7', since it isn’t (re)started along 7. In the second case, z; must use the “same” timer according
to the spannings along the runs.

Assume that m7T,: m <> 7’. We again lift m to 7 and 7. We have to account for the fact that either of
these runs can traverse the same state multiple times. Our approach is to map timers that have timeouts
in 7 based on the indices of 7 at which these timeouts occur. If §(g;_1,to[z])] and = was last (re)started at
index k of w, then we know from the fact that 7 and 7’ are matching for m that there is a timer z’, such
that §(q}_;,to[z'])] and 2’ was last restarted at index k of 7’. We thus define m, such that in this scenario,
mi(z,j—1) =2

m(x) ifl=0VEk=0
mu (2, 0) =y (r(qh_y,h)) iEL>0Ak>0
undefined iftk=_1
where k = lastStartedAt ,, ,, (x) and 22 =mZ (i;,j — 1) for every j.
qgo——>qu

For t-observable gMMTs For 7’ to match 7, we require that for all j € {1,...,n}:
o Ifij € I, then Z; = ij.

o Ifi; = to[z] for some x € X then there are two possibilities related to k = lastStarted At iy (z):
qo—7¢qj-1

L. If k = 0, then 7 = to[2] and lastStartedAt it (2') = 0, where:
)
z' = renameTo , (m(renamesTo ., .. _, (2)));
ab vogory 4, Qo———7¢qj-1
and
il

2. If k> 0, then ¢}, =7 q; is spanning.
In the first case, z; must use the “same” timer according to m. We need to account for timer renamings
that may occur along the two runs. The timer may not be (re)started along 7', since it isn’t (re)started
along 7. In the second case, z; must use the “same” timer according to the spannings along the runs.
The notion of spanning gMMT runs implicitly accounts for timer renamings.

Assume that 7 and 7" are matching for m7, : 7 <> 7. We again lift m to = and #’. The idea behind our
approach is the same as in the one for t-observable MMTs. The only functional differences follow from the
need to account for timer renamings:

m(x) ifl=0
renameTo , ., (m(renamesTo . ., (v))) ifIl>0ANk=0
- q #)q’ Go——rq
mo(z,1) = 0 t g
renameTo ., . (timerStartedAt(qy ——=)) ifl>0Ak>0

, e
ki ”q

undefined ifk=_1

k-A-Complete Conformance Testing of Mealy Machines with Timers 51

where k = lastStartedAt .

(z), and i, = m7,(i;,7 — 1) for every j.
Qo——q

Lemma 5.5.1. Let M be a t-observable gMMT, and let 2 € X™ be a timer of M. If the runs 7 = ¢q RIS

gn € runs(M) and 7’ = ¢) = ¢/ € runs(M) are matching with m7,: 7 < 7’ and gz, ke =tolal) qj

-/

i, (i5=to[m7, (x,j—1)])

is a spanning sub-run of m, then ¢,_, q; is a spanning sub-run of 7.

Proof. Since qj_1 M) g¢; is a spanning sub-run of 7:

1. 7 has action i; = to[z] for the timer z € X, and

2. lastStartedAt (x) =k.

ieijq
Go——7¢qj-1

(it
The fact that gg_q .-y =tolel) g; is a spanning sub-run of 7 implies that & > 0, since it tells us that timer =
was started in one of 7’s transitions. Since 7 starts from qq, this implies that 1 < k < j — 1. The fact that =

it ... (i, =to[m™, (z,j—1)])
and 7" are matching thus directly tells us that ¢)_, ey rolmyy (7 1)

q; is a spanning sub-run of 7. [

5.5.1 Reading Runs

For a fixed run 7 € runs(M) and matching m, there is at most one run 7’ € runs(M) such that m?, : 7 <> 7'.
This is also the case in Bruyere et al. [2024]. We follow Bruyere et al. [2024]’s example in denoting this
unique run 7’ by read(qp) if it exists. Otherwise, read*(qp) is left undefined. We say that this function
“reads” 7 from ¢, using m to rename the timers.

5.5.2 Apartness of States

Similarly to how we have different notions of matchings for observation tree MMTs, for t-observable MMTs,
and for t-observable gMMTs, we also have corresponding notions of apartness for all three of these model
types. All three of these notions follow the same principle as the apartness of observation tree states
from Bruyere et al. [2024].

We also use Bruyere et al. [2024]’s distinction between structural and behavioral apartness:
Two states qo and ¢} are apart under a matching m, if we have runs 7 = gy — and ' = read™(q}) such
that:

e mand 7’ exhibit different behavior, in which case we say that the apartness is behavioral; or

o For observation tree 7, m7, is invalid in the sense that it matches two distinct observation tree
timers z,m7T, € X that are first started at different points along the same run in 7, and that can
therefore not represent the same timer of M. We then say that the apartness is structural. Formally,
we can say that there is a structural apartness when, for some timer z € dom(m?=,), z '# m7, (x).

For observation tree MMTs, we use apartness to constructively determine when two states must represent
distinct states of the model that is “observed” by the observation tree, based on the limited information in
the observation tree. For MMTs and gMMTs, we use apartness to denote when two states cannot be said
to exhibit the same observable behavior. We therefore only need structural apartness for the apartness of
observation tree MMT states, and not for the apartness of (g)MMT states.

The precise definition of apartness depends on the type of the model. We used the state apartness defined
in Bruyere et al. [2024] as a basis for our apartness for observation tree MMT states. We have:

Definition 5.5.3 (Apartness of observation tree MMT states). Let 7 be an observation tree MMT
for an s-learnable, t-observable (g)MMT M. Two states qo, g, € Q7 are m-apart with m: gy < q}, de-

b, i

.] in/0 .
noted qo #™ qj), if there are 7 = g —> ... —/> gn and ™ = q) — ... —— q, with m7,: 7 < «’,
u u

and:

o Structural apartness there exists z € dom(m7,), such that z *# mT,(z), or

52 Bram Pellen

e Behavioral apartness one of the following holds:
0# 0
u=(z,c)ANu' = (@',)Nc#
s @) € AU A (u= L& u #1)

(outputs)
(
(
Gn> @y € ATy N X (qn)] # | X(d)] (active sizes)
(
(

constants)

T, @y € EXq N | Xo(an)| # | Xo(),)]
Gnyq, € SL A Jz € dom(mZ,): (z € Xo(gn) & mL (z) & Xo(q,))

enabled sizes)

enabled)

The word 0 =4y ...4, € AT* is called a witness of gy #™ q}. We write qo # g, if g0 #™ ¢}, for all maximal
matchings m: qo < ¢{.

The difference between our notion of observation tree apartness and the one from Bruyere et al. [2024]
is our addition of the (updating) and (active sizes) conditions. Note that these rules rely on the notion of
active explored states, which wasn’t used in Bruyeére et al. [2024].

Our notion of apartness of t-observable MMT states is very similar to the one for observation trees, the
only difference being the omission of the sets of active and enabled explored states:

Definition 5.5.4 (Apartness of t-observable MMT states). Two states 4o, gy, are m-apart with m: gy <

qf, denoted qo #™ qf, if there are m = ¢q . L> gn and 7 = ¢ — 1 4) q), with m7Z,: 7 < 7/,
u

and:

o Behavioral apartness one of the following holds:

0#0 (outputs)
u=(z,c) AN = (2/,d)Nc# (constants)
u=_1leu £1 (updating)

X (g)] # | X ()] (active sizes)
|X0(qn)| # |X0(qr,)] (enabled sizes)
Jr € X:mI(z,n)} A (z € Xo(qn) & mL (z,n) & Xo(q,)) (enabled)

The word o = iy...i, € AT* is called a witness of gy #™ ¢}, which we denote by o I gy #™ ¢,. We
write qo # ¢ if go #™ g for all maximal matchings m: g <> ¢}.

Our notion of apartness of t-observable gMMT states is mostly the same as the one for t-observable MMT
states:

Definition 5.5.5 (Apartness of t-observable gMMT states). Two states qq, q0 are m-apart with m: qp <

qb, denoted go #™ g}, if there are m = qq NLTEN 1 /e
T

—— gp and 7’ = ¢} — —>qnw1thm,.7r<—>7r

and:

+ Behavioral apartness one of the following holds:

0o# o

(Fz € X(gn): t(z) = N>O) AEx' € X(q): V()= eN"O)Ac#
(Fz € X(gn): v(z) € N*°) & (-T2 € X(qp): V'(z) € N7°)

| ()| # 1% (q5)]

|Xo(qn)| # |X0(q;)\
Jz e X:m(z,n)l A (z € Xo(gn) & mi (z,n) & Xo(q),))

(outputs)
(constants)
(updating)
(active sizes)
(enabled sizes)
(enabled)

The word o = iy...i, € AT* is called a witness of gy #™ ¢}, which we denote by o I gy #™ ¢,. We
write qo # ¢ if go #™ g} for all maximal matchings m: qo <> ¢(.

k-A-Complete Conformance Testing of Mealy Machines with Timers 53

We sometimes rely on the notion of minimum-length witnesses of apartness:

Definition 5.5.6. Let M be a (g)MMT with ¢, ¢’ € Q. Let 0 € A* such that there exists a matching m: ¢ <>
q' for which o = g #™ ¢'. Then ¢ is a minimum-length witness of ¢ #™ ¢ iff o has no proper prefix p
such that p - q #™ ¢'.

There is an upper bound on the length of any minimum-length witnesses for the apartness of two states
of all three of these model types:

Lemma 5.5.2. Let M be a t-observable (observation tree) (g)MMT with |Q| = n, and let ¢,¢' € Q.
Let m: ¢ <+ ¢'. If ¢ #™ ¢/, then the maximum length that any minimum-length witness o € (A)* of o
q #™ ¢ may need to have is n.

Proof. We know from the notions of apartness of t-observable (observation tree) (g)MMT states that ¢ #™ ¢’
can be the result of either:

1. conditions on states that are reached from ¢ and ¢/, as is the case for the (active sizes), (enabled sizes)
and (enabled) conditions for apartness; or of

2. conditions on state transitions that are reached from ¢ and ¢, as is the case for the (outputs), (con-
stants) and (updating) conditions for apartness.

In the first case, the witness may need to be able to reach any of M’s n states. Since we already start in
one of M'’s states, we only need to be able to perform at most n — 1 state transitions to reach any of M'’s
remaining states. In the second case, the witness may need to be able to reach any of M’s states, from which
it needs to be able to take one more state transition. Across both cases, we only need the minimum-length
witness to be n — 1 + 1 = n actions in length. O

5.6 Stratification

In this short section, we explain how we adapt observation tree stratifications to the MMT setting.

Definition 5.6.1 (Stratification for MMTs). Let 7 be an observation tree MMT for an s-learnable
(g)MMT M. Then 7 and M have the same set of inputs, I. Let C' C I UTO(N>?) be a nonempty, finite,
prefix closed set of symbolic words. Then C induces a stratification of Q7 as follows:

1. A state ¢ of T is called a basis state iff access(q) € C. We write B to denote the set of basis
states: B = {q € Q7 | access(q) € C}. Note that, since C' is nonempty and prefix closed, initial
state qIT is in the basis, and all states on the path leading to a basis state are basis states as well.

2. We write FO for the set of immediate successors of basis states that are not basis states them-
selves: F0:={¢ € QT \ B |3q€ B,ic AT: ¢ =6(q,i)}. We refer to F° as the 0-level frontier.

3. For k > 0, the k-level frontier F* is the set of immediate successors of k— 1-level frontier states: F* =
{d Q7 |FqgeF1icAT: ¢ =06(q,9)}

We often use F<F to denote the set FOU---U FF~1 of the states in the first k frontiers, and F<F to denote
the set FOU--- U F* of all states in the first k + 1 frontiers.
We say that basis B is complete if:

o for each w € C there is a state ¢ € B with §*(w) = ¢, and if
e for each q € B:

— for each i € I: §(q,1)], and
- qe &y

For k € N, the k-level frontier is complete if for each ¢ € F*:

54 Bram Pellen

o foreach i€ I:6(q,i)l, and
e g€ 8/\7,1.

For every state ¢ € Q7 , we define the candidate set C(q) as the set of basis states for which there is at
least one matching for which they are not apart from ¢: C(q) == {¢’ € B | =(¢' # q)}. A state ¢ € Q7 is
identified if its candidate set is a singleton, and isolated if its candidate set is empty.

5.7 Requirements for the Specification

Our conformance testing procedure imposes several requirements on the specification. In this section, we
specify what properties we expect the specification to have. We also explain why we use gMMTs instead of
MMTs for the specifications.

5.7.1 Requirements

As with our k-A-complete conformance testing method for MM1Ts, our method for MMTs requires that the
specification model is connected, minimal, s-learnable, and t-observable.
We define minimality for gMMTs in terms of state apartness:

Definition 5.7.1 (Minimal (g)MMT). An (g)MMT M is minimal iff, for all pairs of states ¢,¢’ € Q,
~g#d)eq=4.

Our MMT conformance testing procedure requires the specification to be provided in the form of a
gMMT, rather than an MMT. This requirement actually makes our testing procedure more flexible, since
MMTs can easily be converted into symbolically equivalent gMMTs. Bruyéere et al. [2024] also provides a
way to convert gMMTs into symbolically equivalent MMTs, but this generally leads to a factorial blowup in
the size of the state space. Our main reason for supporting gMMT specifications is, however, the fact that
not all MMTs can easily be minimized. We explain the problem in Section 5.7.2.

5.7.2 Why gMMTs Should be Easier to Minimize Than MMTs

It is not generally possible to minimize an MMT M such that all of its states are pairwise apart under all
maximal matchings, since any two states g; and ¢go for which there exists a maximal matching m: g1 < ¢2
such that —(g1 #™ ¢2) would have to be represented by the same state g1 2 of the minimal MMT. All
transitions of the minimal MMT that represent transitions of M that enter ¢; and g2 would now have
to enter ¢1 2. This could lead to issues, since if there is a run m € runs(M) that traverses ¢; and that
requires ¢; to exhibit certain behavior for a timer x, and there is a run 7’ € runs(M) that traverses g, and
that requires ¢ to exhibit certain behavior for the same timer z, then the combined state ¢; » would have to
exhibit the same behavior for x as both ¢; and ¢». This would impose an additional requirement that might
not be met by any of the maximal matchings m: g1 <> g2 for which —(¢1 #™ ¢2).

Ezample 5.7.1. Let M be the MMT of Figure 5.4(a). States g2,q3 € Q™ would exhibit the exact same
behavior if we were to swap for them the behavior of timers z,y € X*. Formally, for the maximal
matching m = {(z,y), (y,2)}: =(g2 #™ q¢3). Therefore, =(ga # ¢3), which means that M is not minimal.
To minimize M, we would want to merge states g2 and ¢3. To do so, however, would require that we select
timers for the two timeout transitions of the new combined state g2 3. If we simply select timer z for either
transition, and y for the other, then ¢, 3 doesn’t exhibit the same symbolic behavior as both g2 and g3, which
means that the resulting MMT is not symbolically equivalent to M.

We might for instance produce the MMT M,, of Figure 5.4(b), which we obtained by removing state g3, and
by redirecting the transition from state g to state g3 into state g2, which we renamed to gz 3. MMT M,
is minimal, since all of its states are pairwise apart under all maximal matchings. However, M,, Zsym M,
since the symbolic word w = a @ to[1] to[2] would yield for M a run labelled with the output sequence o 0 o o,
and for M,, a run labelled with the output sequence o o0 0 o'. We could alternatively swap timers = and y
to make g2 3 resemble g3, but this would clearly result in an MMT that isn’t equivalent to M either. We
can thus see that not all MMTs can be minimized by replacing sets of equivalent states with one state that
is equivalent to all of them.

k-A-Complete Conformance Testing of Mealy Machines with Timers 55

to[z]/o

ajo (2,2)

a/o e a/o >
start @ (2.3) \Jt .2) q2 .@ a/o
tola] /o toly] /o’ t°[y]2/ ° tolz]/o’
x,3) (v2) 7 (z,2)
(a) An MMT, with X(qo) = Xo(qo) =0, X(q1) = Xo(q1) = {z}, and X(g2) = Xo(q2) = X(g3) = Xo(gs) = {z,y}

a/o

afo e~ ajo (i) tolvl/

T Y e (1:2)
to[z]/o to[x]/o
x,3) (z,2)

(b) A minimal MMT that is similar, but not symbolically equivalent to the MMT above it
Figure 5.4: Two MMTs that are similar, but not symbolically equivalent.

ajo

to[z¥*?*] /o

ajo ajo 1
start @ (ar) 123y D xP?° = 2d?,

1 . q2.3 _ 1
l}lzs _ 2
1 2 T q2,3 /
tof}] /o tofa:4*] /o
l‘% =3 x!ilz,s — $[112’3,
xgz,z —

Figure 5.5: A gMMT that is symbolically equivalent to the MMT of Figure 5.4(a)

This problem is not found in gMMTs, since one could rename any timer z in a transition that enters a
combined gMMT state ¢ 2 to the timer of ¢; 2 that represents the same behavior from g; » that = exhibits
from either of ¢; and go. Therefore, if there is a run 7 € runs(M) that traverses ¢; and that requires ¢; to
exhibit certain behavior for a timer x, and there is a run 7’ € runs(M) that traverses ¢, and that requires go
to exhibit certain behavior for the same timer x, then the combined state ¢; 2 of the minimal gMMT could
be made to exhibit the same behavior for a timer x; that x exhibits from ¢; in 7, while also exhibiting the
same behavior for a timer x5 that x exhibits from ¢o.

Example 5.7.2. Let M be the gMMT of Figure 5.5. This gMMT is minimal, since all of its states are pairwise
apart under all maximal matchings. The gMMT is symbolically equivalent to the MMT of Figure 5.4(a). In
particular, for the symbolic word a a to[1] to[2], they both have the outputs o o o o.

5.8 The Testing Procedure

This testing procedure is based on the one we defined in Section 3.3. We non-deterministically expand a
tree MMT that serves as an observation tree for both specification gMMT S and SUT MMT M, until we
can either conclude that M =, S, or we discover that M #,,,, S. We assume the specification to be
a connected, minimal, s-learnable, and t-observable gMMT. We assume that any MMT that describes the
behavior of the SUT is s-learnable, t-observable, and race-avoiding.

Algorithm 9 shows the main testing procedure.

56

Bram Pellen

Algorithm 9: Procedure for testing MMTs

1 T < a fresh, partial MMT with an initial state g7 ;
2 IT « IS,
3 B {¢F} €« {aFy; A {¢T}; A, < 0;
TJs 7 Js 7 J» D)
// Complete the basis induced by state cover C
4 for 0 € C do

5 ¢ < addTransitionsFromSpecSeqyy (o);
6 if c € (IUTO(N>Y))* then return c;
7 | B+ BU{6" (¢ ,7)};
8 end for
9 while any of the rules can still be applied do
10 | =(r # 1), for some r,r' € B for which r #r' — > Rule (IdentifyBasisStates)
11 ¢ < makeObs TreeStatesApart® (r,1');
12 if c € (IUTO(N>Y))* then return c;
13 167 (q,i)t for some g€ BUF<F andiecl — > Rule (ExtendFrontiersWithInputs)
14 c 4+ addTmnsitz’onﬁ/l(q, i);
15 if c € (IUTO(N>Y))* then return c;
16 g€ (BUF<M)\EANq 1 €E for someq 1 €QT,ic IUTO(Xo(q-1)), and q =467 (q_1,i) —
> Rule (ExtendEnabledExplored)
17 c 4+ makeEnabledExploredS(q);
18 if ce (/UTO(N>?))* then return c;
19 l g€ (A, UBUFSF)\ AAq_ € AN canBeMadeActiveExplored(q_1,i,q) for some q_1 € Q7
i€ TUTO(Xo(q-1)), ¢ =067 (q_1,i) — > Rule (ExtendActiveExplored)
20 if ¢ € A, then
21 | Ay A\ {qh:
22 end
23 A+~ AU {q};
24 l g€ (A, UBUFS*)\ AAq_1 € AA—~canBeMadeActiveExplored(q—1,i,q) AS7 (¢',i')1, for
some g1 € QT, i€ IUTO(Xy(q-1)), 7' €1, ¢ =07 (q-1,1),
and q' € Q7 : |access(q')| — |access(q)| < maxNumSUTStates — > Rule
(FindingInputActions)
25 ¢ « addTransitionS, (¢, 1');
26 if c€ (IUTO(N>?))* then return c;
27] g€ (A, UBUF=k)\ AN q_1 € AN -canBeMadeActiveExplored(q_1,i,q) A (¢’ & E), for
some q—1 € QT, i € IUTO(Xo(g-1)), ¢ =87 (q-1,1),
and ¢ € Q7 : |access(q')| — |access(q)| < maxNumSUTStates — > Rule
(FindingTimeoutActions)
28 ¢ + makeEnabledExplored® (¢');
29 if ce (IUTO(N>?))* then return c;
30 [=(t # r) Ar £y, for somet € FS* r v, € B, for which ry = basisStateFor‘(sTyc) (t) = > Rule
(IdentifyFrontiers)
31 ¢ < makeObs Tree,S’tatesu‘lparts(t7 r);
32 if ce (IUTO(N>?))* then return c;
33 Ir#t, ~(r#t"), =(t' #t"), and t" is identified, for somer € B, t' € F¥ and t" € F<F —
> Rule (ExtendCoTransitivity)
34 ¢ + makeObs TreeStatesApart® (t' t");
35 if ce (IUTO(N>?))* then return c;
36 end

37 return yes;

k-A-Complete Conformance Testing of Mealy Machines with Timers

o7

Algorithm 10: Sub-procedure for determining whether frontier states that should be reachable
from a given observation tree state are present in the observation tree

Procedure areAllStatesInNStepsPresentAndEnabledExplored (g € QT ,n € N):

1
2 if n =0 then
3 ‘ return yes;
4 end
5 if ¢ ¢ £ then
6 | return no;
7 end
8 forall i € I UTO(X] (¢q)) do
9 if 67 (¢,i)1 then
10 ‘ return no;
11 end
12 q 67 (q,1);
13 if —areAllStatesInNStepsPresentAndEnabledExplored(q’,n — 1) then
14 ‘ return no;
15 end
16 end
17 return yes;

Algorithm 11: Sub-procedure that states whether for a given triple of an observation tree parent
state, an action and a successor state, the successor state can be marked as active explored with
respect to both the specification and the SUT

1 Procedure canBeMadeActiveExplored(q_1 € Q7 ,ie IT,q e Q7):
2 return areAllStatesInNStepsPresentAndEnabledExplored(q, maxzNumSUTStates) V (17 (q_1,1) #
LA (Vo e X(g-1): x € X(q)));

Algorithm 12: Sub-procedure for finding the basis state that corresponds to a given observation
tree state

1 Procedure basisStateFor‘(sT’C) (qeQT):
2 | s 057 (55, access(q));

3 o peC: 55 (s3,p) =s;

4 T<—5T*(q%—,a);

5 return 7;

58 Bram Pellen

The procedure follows the exact same principle as our MM1T testing procedure from Section 3.3. It uses
four rules that are based on the four rules of Algorithm 1. Algorithm 9 also has four additional rules that
work towards making certain states of the observation tree enabled and active explored.

In this section, we use a fixed SUT, a fixed observation tree MMT 7T, and a fixed specification S. We also
fix the functional gMMT simulation {fs, f¢, fu): T — S, and the functional MMT simulation {(gs, g+, gu): T —
M.

We use the following two sets of enabled and active explored states:

Definition 5.8.1.
EC{qeQT | (qe&l)n(qgely}
Definition 5.8.2.

AC{geQ” | (a€ AL) N (g€ ALy}

5.8.1 k-A-Complete Test Suites for MMTs

The notion of fault domains for MMTs is similar to that of fault domains for Mealy machines and MM1Ts.
The only differences are that we use symbolic equivalence as our notion of equivalence, and that we distinguish
between MMTs and gMMTs.

Definition 5.8.3 (Fault domains and U-completeness). Let S be an (g)MMT. A fault domain is
a set U of MMTs. A test suite TTSS for S is U-complete if, for each M € U, M only passes TTSS
it M ~gym S.

We once again define the relevant fault domains:

Definition 5.8.4. Let kK € N, and let A C A*. Then L{? is the set of all MMTs M for which, for each
state ¢ € Q™ there are 0 € A and p € ASF such that §*(0) - p = ¢.

Definition 5.8.5. Let A C A*. Then U” is the set of all MMTs M for which there are o, p € A with o # p
and M () ~gym M (p).

We can now define the relevant notion of k-A-completeness:

Definition 5.8.6 (k-A-complete test suites for MMTs). Let S be a (g)MMT with a set of inputs I,
let k € N, and let A C I*. Then test suite 7'S° is k-A-complete for S if, for any SUT MMT M e I/{,/: UUA:

M passes TSS — M =yntimed S-

We rely on knowledge of this fault domain to define our procedure.

5.8.2 The SUT’s Maximum Size

Let k be a natural number, and C a minimal prefix-closed state cover for the specification. We will prove
our procedure to be k-C-complete in Section 5.8.9. For now, we just make the assumption that the SUT is
an MMT from the corresponding fault domain, L{kC UUC. This assumption allows us to determine an upper
bound on size of the SUT’s state space. We use the following property:

Lemma 5.8.1. Let S and M be MMTs, and let 7 be an observation tree for both & and M. Let C be a
prefix-closed state cover for S, and let B be the basis of a stratification of Q7 induced by C. Suppose that
all states of B are identified. Then M & Y.

Proof. Let {gs,g¢,9u): T — M. Suppose that o, p € C with o # p. Since B is the basis of a stratification
induced by C, ¢ = 67 "(¢) € B and ¢ = 67 "(p) € B. The fact that 7 is a tree thus implies that q # ¢’
Since all states of B are identified, they are all pairwise apart. We thus know that ¢ # ¢’. Lemma C.3.1
now tells us that g,(q) # ¢s(¢'). By Lemma C.6.5, g.(¢) = 6™ (o) and g.(¢') = 6™ (p). This implies

that 0M" (o) # 67 (p), which implies that M ¢ UC . O

k-A-Complete Conformance Testing of Mealy Machines with Timers 59

Therefore, by our assumption that the SUT is an MMT from Z/{,?Ul/l6 and by Lemma 5.8.1, the SUT is
an MMT from U{. The maximum number of states of the SUT is thus given by:

k—1
maxNumSUTStates = Z Ul (ml—n+1)+n,
§=0

where n = |A| with A a prefix-closed set A C A*, and [= |A|. This is the same upper bound that Vaandrager
et al. [2024] gives for the Mealy machine equivalent of U}
We will now discuss the various sub-procedures used by Algorithm 9.

5.8.3 Making an Observation Tree State Enabled Explored

Algorithm 13 describes our procedure for making a given observation tree state enabled explored. This pro-
cedure relies on the symbolic output (OQM) and waiting (WQM) queries that were introduced in Bruyere
et al. [2024]. These queries are defined as follows [Bruyére et al., 2024]:

Definition 5.8.7 (Symbolic queries). Let M be an MMT. Then we can use the following two symbolic
queries:

. oQM (w), with w a symbolic word such that ¢z — € runs(M), returns the outputs of gz —.

« WQM(w), with w a symbolic word such that ¢z = ... * ¢, € runs(M) with 7y ...4, = w, returns
. . ij...in tolx] | .
the set of all pairs (j,c) such that ¢g;_y ————— is -spanning.

Bruyere et al. explain how these symbolic queries can be implemented via concrete, timed input word-
based output queries in appendix E of Bruyeére et al. [2024]. When running these timed input words on the
SUT, it is possible for timeouts to occur that are unexpected based on the limited information in 7. To
account for this, Bruyere et al. construct the timed input words such that for any timeout that they observe,
they can determine which observation tree transition last started the timer, and with what constant. With
this information, they can identify the timer for which they observed the timeout. The occurrence of race
conditions could prevent the correct identification of newly discovered timers. Bruyere et al. therefore require
the SUT to be race-avoiding, and they compose the timed input words in a way that is guaranteed to prevent
races between any known timers. Whenever an unexpected timeout occurs, they identify the timer, the
transition that last (re)started it and the constant to which it was set; they add the corresponding spanning
run to the observation tree. They then repeat the symbolic query on this newly extended observation tree.
A timed run for a symbolic word with n transitions can have at most n distinct unexpected timeouts, since
each of its transitions can (re)start at most one timer. Both of the symbolic queries can therefore always be
completed with a finite number of timed runs.

We cannot simply use the approach from Bruyere et al. [2024] to add any unexpected timeouts to our
observation tree T, since we would also have to check whether there is a conflict between the specification
and the SUT’s behavior for the spanning induced by these unexpected timeouts. To account for this, a simple
solution would be make a copy T, of the observation tree 7 before we evaluate the first timed input word,
to only compute the timed input words based on 7, and to only add any unexpected timeouts to 7,. This
way, Bruyere et al. [2024)’s method for dealing with unexpected timeouts still functions. We can discard 7T,
when we are done with the symbolic query, but it would be more efficient to reuse the same observation tree
copy T, for all symbolic queries, and to add any information that is added to 7 during the testing process
to T,. This way, we retain any unexpected timeouts that are learnt during the testing process, so that they
never need to be rediscovered.

Either way, we can can effectively ignore the existence of unexpected timeouts when it comes to the
behavior and correctness of our testing method.

The use of these symbolic output and waiting queries is the most direct way in which our testing procedure
touches on the timed MMT semantics. The use of the timed semantics is in all cases abstracted behind the
use of either of these two queries.

Algorithm 13 starts by performing the waiting query WQ™ (access(q)). For each index-constant pair (j, ¢)
returned by the waiting query, the procedure immediately terminates with a counterexample in case either S

60 Bram Pellen

doesn’t (re)set a timer in its corresponding transition, or S (re)sets a timer to a constant other than ¢. The
procedure then retrieves the timer ; that was started in index j of access(g). It adds a timeout action for
from 7T in case one doesn’t exist yet. To this end, the procedure first performs a symbolic output query to
determine whether the output for the new transition is different from the one that the specification has for
the corresponding transition. In that case, the procedure terminates with a counterexample. Otherwise, it
adds the transition for z; to 7.

The procedure also adds the timer update in T if this is needed. It next marks a:; as active in all states
covered by the new z’-spanning.

The procedure finally records ¢ as being enabled explored in case M’s run for access(q) and S’s run
for access(q) (re)start timers at exactly the same indices. Otherwise, it concludes that there is conflict
between the timer updates of the specification and the SUT. It then returns a counterexample that would
reveal this conflict if it is used from both the specification, and the SUT.

Lemma 5.8.2. Calling makeEnabledExploredS(q) for a state ¢ € Q7 makes ¢ enabled explored and finds all
timeouts that correpond to timeouts of the SUT after makeEnabledExplored® terminates, if ¢ wasn’t enabled
explored already. The procedure yields a counterexample in case it finds a conflict between the specification
and the SUT. Otherwise, once the procedure is done, ¢ € £.

The proof of Lemma 5.8.2 can be found in Appendix C.9.1.

k-A-Complete Conformance Testing of Mealy Machines with Timers

61

Algorithm 13: Sub-procedure for making an observation tree state enabled explored

1
2
3
4
5
6
7
8

10

11
12
13
14

15
16

17
18
19
20
21
22
23
24
25
26

27
28
29
30
31

32
33

34
35
36
37

38
39

Procedure makeEnabledExplored‘s (geQT):

if ¢ = qg then return yes;

if ¢ € £ then
‘ return yes;

end

5+ 057 (53, access(q));

w +— WQ™M (access(q));

forall (j,¢) € w do

// Check for inconsistencies with the specification’s corresponding timer

update

uf + the timer update at index j along S’s run for access(q);

if u§ = LV my(uf) # ¢ then return access(q) to[j;

// Retrieve T’s corresponding action, timer, and source state

gj—1 < the state at index j — 1 along 7’s run for access(q);

ij < the action at index j along 7’s run for access(q);

qj 07 (4j-1,1;);

T L

if 3z: i; = to[r] then 2 + x:i; = to[z] ;

else 7 <z, ;

// Extend T with a timeout transition if needed

if 67 (¢,to[}])1 then

0 + the final element of OQ™ (access(q) to[s]);

if o #)\S*(s,to[m(uf)]) then return access(q) to[j];

q' < a fresh MMT state;

QT+ Q" u{d};

XT « XTu {l‘q/};

O7 «+ 07 U{o};

07 (g, tolz}]) + d';

)\T(q,to[x;-]) +— 0

end

// Record the timer update in 7 if needed

if there is no timer update at index j along T ’s run for access(q) then
| 7T (gj-1,15) < (2, ¢);

end

Mark x; as active in all states along the x; spanning run between g;_; and g.

end
// Determine whether the specification and SUT states have timeouts for
corresponding timers
et = {m((j,¢) | V(j;c) € w};
e® « {lastStartedAt®
sS

z

— (z) | Vo € X5: 65(s,to[x]) | };

if e? # e® then
J + an arbitrary element of (e2 U e®) \ (e? N e®);
return access(q) to[j];
end
// Mark the observation tree state as enabled explored
E+— EU{qk;

return yes;

62 Bram Pellen

5.8.4 Extending the Observation Tree With a Single Transition

Algorithm 14 describes our method for extending the observation tree with a new transition. The procedure
takes an observation tree state ¢ and an action ¢ that is to be added from ¢. The procedure immediately ter-
minates if 7~ already as an i-transition from ¢, but not before using Algorithm 13 to ensure that 67 (¢,) € &.
Otherwise, if 7 is a timeout, then it uses Algorithm 13 to make g enabled explored, thereby ensuring that af-
terwards, ¢ will indeed have an outgoing transition for timeout i. The procedure also makes the state 67 (¢,)
enabled explored, granted that there was no conflict.

The final case is the one in which ¢ is an input action for which 7 doesn’t yet have an outgoing transition
from 7. The procedure then uses an output query to find the SUT’s output for this transition. It adds the
transition to 7 in case there is no conflict between the specification’s and the SUT’s counterpart for this
transition. Finally, the procedure uses Algorithm 13 to make the new state 67 (¢, %) enabled explored.

The procedure would return a counterexample in case any conflicts between the specification and the SUT
are found during its operation.

Algorithm 14: Sub-procedure for extending the observation tree with a single transition

1 Procedure addTmnsz’tion‘f\A (qeQT,iec AT):
2 if 07 (¢,i)} then
3 ¢ =67 (q,9);
4 c 4+ makeEnabledExploredS(q');
5 if c € (IUTO(N>Y))* then return c;
6 return no;
7 end
8 | if Jz: i =to[z] then
9 ¢ + makeEnabledExplored® (q);
10 if ce (IUTO(N>?))* then return c;
11 T x:i=to[zx];
12 q 67 (g, to[z]);
13 ¢ + makeEnabledEzplored® (¢");
14 if ¢ € (1UTO(N>"))* then return ¢’;
15 return ¢’;
16 end
// Check the transition’s output symbol
17 5 ¢ 057 (53, access(q));

18 S« i;

19 05 « \5(s,i%);

20 0 the final element of OQ™ (access(q) i);
21 | if 0 # 0% then return access(q) i;

// Add the transition to T

22 q' + a fresh MMT state;

23 | QT < Q7T U{d};

24 | X7+ X7 U{ay};

25 07 «+ 07 U {o};

26 67 (q,1) + ¢';

27 A (q,4) + o

28 c 4+ makeEnabledExploredS(q');

29 | if c€ (IUTO(N>%))* then return c;
30 return yes;

k-A-Complete Conformance Testing of Mealy Machines with Timers 63

Lemma 5.8.3. Calling addTmnsz’tioanl (q,7) ensures that §7 (¢,7)) by the time that addTmnsz’tionf,t ter-
minates, granted that there is no conflict between the specification and the SUT. Otherwise, it would return
a counterexample.

Proof. We already argued that in all cases, 67 (q,4)] either already holds before addTmnsitz’oni,[(g,7) is
called, or it will hold afterwards, granted that there was no conflict. If there was, then the procedure would
return a counterexample. O

Lemma 5.8.4. Calling add Transition3(q,i) ensures that 67 (q,7) € € by the time that addTransition?,
terminates, granted that there is no conflict between the specification and the SUT. Otherwise, it would
return a counterexample.

Proof. In all cases, addTmnsz’tionj\gA calls makeEnabledExploredS on 67 (q,i). Therefore, by Lemma 5.8.2,
5T(q,i) € & once makeEnabledExploredS terminates. Since the call to makeEnabledE:cploreds terminates
before addTmnsz’tionit terminates, 5T(q,i) € £ will hold by the time that addTmnsz’tionf\,t terminates, as
required. addTmnsitz’oni‘ would return a counterexample if any conflict between the specification and the
SUT was found during its operation. O

5.8.5 Extending the Observation Tree With a Sequence of Transitions

Algorithm 15 shows a sub-procedure of Algorithm 9 which extends the observation tree with all transitions
induced by a given sequence of actions from the specification.

For each action, the procedure first determines which action from the observation tree it would correspond
to. It then adds the observation tree action, after which it processes the next specification action. The
procedure relies on the fact that it starts analyzing the given action sequence from the perspective of the
inital state, in which no timers are ever active. For input actions, it simply adds transitions for the inputs it
is given to the observation tree state. For timeout actions, it first determines which observation tree timer
the specified specification timer corresponds to. To do so, the sub-procedure uses a map 1°: X° — X7 that
yields for every timer of the specification that was encountered so far the last observation tree timer that
was started at the same index along the observation tree’s run. If the next action i7 that the sub-procedure
should add to the observation tree is an input action, then Algorithm 15 simply uses Algorithm 14 to add the
transition for i7 if it doesn’t already exist. If i7 is a timeout action, then we can’t use Algorithm 14 to add
the transition, because we don’t yet know whether the SUT actually has a corresponding timeout. If not,
then the fact that we would want to add this timeout to the observation tree would indicate a conflict between
the observable behavior of the specification and the SUT that would imply that the two are not symbolically
equivalent. Algorithm 15 therefore uses the sub-procedure Algorithm 13 to both add all timeouts that could
exist from the observation tree state, but also to find out whether either the specification or the SUT has
timeouts from their current states for which the other has no counterparts. If so, then Algorithm 13 returns
a counterexample, and then Algorithm 15 does so as well.

The procedure stops in case it discovers a conflict in the behavior of the specification and the SUT. The
procedure then terminates, returning a counterexample.

Lemma 5.8.5. Calling sub-procedure:
addTransitionsFromSpecSeq(o)

ensures that 7 will have a run for its counterpart of o if the specification and SUT have no coflicts along
this run. Otherwise, addTransitionsFromSpecSeq(c) would return a counterexample. Otherwise, it would
return a counterexample.

Proof. addTransitionsFromSpecSeq(o) calls addT 'ransz'tioni,t on all steps along 7’s run for its counterpart
of 0. Therefore, by Lemma 5.8.3, 7 has a run for 7’s counterpart to o once addTransitionsFromSpecSeq(o)
terminates, granted that there were no conflicts. O

Lemma 5.8.6. Calling addTransitionsFromSpecSeq(c) ensures that all states that are traversed for o are
enabled explored after the sub-procedure terminates, granted that not conflicts between the specification
and the SUT were found during its operation.

64 Bram Pellen

Algorithm 15: Sub-procedure for extending the observation tree with multiple transitions given
by a specification action sequence that starts in the specification’s initial state

1 Procedure add TransitionsFromSpecSeqS, (o € (AS)*):

2 5+ 825
3 | g+ df;
a | 18«0
5 j+1
6 z] 1
7 while ¢ # € do
// Retrieve the actions
8 i < head(0);
iT S
10 if 3z: i = to[z] then
// Ensure that the corresponding timer is enabled in ¢
11 ¢ + makeEnabledExplored® (q);
12 if c € (IUTO(N>Y))* then return c;
13 28 x: 0% = to[z];
14 27— 19(2S);
15 i7 <+ to[zT];
16 end
// Add the transition
17 c 4+ addTmnsitz’oniA(q, i);
18 if ce (IUTO(N>?))* then return c;
// Update timer mapping [
19 v+ 75(5,i%);
20 forall =’ € dom(r) do
21 if v(2') € N>0 then
22 if 7 = | then return access(q) to[j];
23 15(2") a7
24 end
25 else
26 x < v(a');
27 15(2") < 15(x);
28 end
29 end
// Prepare for the next iteration
30 5+ 65(s,1%);
51 g 07 (q,i7);
32 o < tail(o);
33 if 77(q,i7) # L then
34 | w17 (q,iT));
35 end
36 else
37 | 2l 1
38 end
39 j—i+1
40 end
41 return yes;

k-A-Complete Conformance Testing of Mealy Machines with Timers 65

Proof. addTransitionsFromSpecSeq(o) calls addTmnsz’tionf,t on all steps along 7’s run for its counterpart
of o. Therefore, by Lemma 5.8.4, all states along 7’s run for 7’s counterpart to o will be enabled explored
once addTransitionsFromSpecSeq(c) terminates, granted that not conflicts between the specification and the
SUT were found during its operation. O

5.8.6 Making Observation Tree States Active Explored

Algorithm 16 shows a version of Algorithm 15 that not only adds the transitions from a sequences of
specification actions to the observation tree, it also adds them to Algorithm 9’s set A, of states that should
be made active explored. The sub-procedure starts by using Algorithm 15. If there were no conflicts between

Algorithm 16: Sub-procedure for extending the observation tree with multiple transitions given
by a specification action sequence that starts in the specification’s initial state. The new states will
eventually be made active explored by Algorithm 9

1 Procedure addT mnsz’tionsFromSpecSqundMakeActiveE:z:plorede (o € (A%)"):

2 c 4+ addTmnsitionsFromSpecSeqi,l(U);
3 | if ce ({UTO(N>?))* then return c;

head(o ail(o
T+ {q,...,an}: aF ©) a - @ qn € runs(T);
A—{qeQT |VqeT: q¢ A};

Ap — Ap U A;
return yes;

I =R, SN

the behavior of the specification and the SUT, then it finishes by taking all states along the observation tree
run that corresponds to the specification action sequence, and adding each of them that is not in Algorithm 9’s
set of active explored states A to A,.

Lemma 5.8.7. Let g € Q7. If ¢ € A, then no more states will ever be made active in q.

Proof. We know from the definition of A that ¢ € A implies that ¢ € A% and g € AL. This in turn implies
that | X7 (q)] = [(f:(q)| and |X7 ()] = [(gs(q))]-
Therefore, (FGS1) and (FGS2) tells us that for all z € X°(fs(q)), there is exactly one y € X7 (q) such

that ft(q7y) =Z.
It similarly tells us that, per (FMS1) and (FMS2), all 2/ € X (g4(q)) have exactly one y € X7 (q) such

that g;(y) = 2’. This means that there will never be a reason to make any additional states active in ¢, as
required. O

The next lemma relies on the notion of ancestors of observation tree states.

Definition 5.8.8. Let 7 be an observation tree. The ancestors of a state ¢ € Q7 are the states of Q7
along 7’s unique path from its initial state to q. Formally:

ancestors(q) = {qa € Q7 | Jo € A2 N gy T q € runs(T)}.

Lemma 5.8.8. For all states in \A,, all ancestors are either in A, or in A.

Proof. This property follows from the way in which we add states to .A,: Only the sub-procedure:
add TransitionsFromSpecSeqAndMakeActive Explored

adds states to A,. When A, adds a state g to A, it also adds all of ¢’s ancestors to .4,. We thus know that
for all states in \A,, all ancestors are either in A, or in A. O

Lemma 5.8.9. Let ¢, € Q7,and let i € A7. If g€ AN (77 (q,i) # L A (X7 (q) C X7 (¢'))), then ¢’ € A.

The proof of Lemma 5.8.9 can be found in Appendix C.9.2.

66 Bram Pellen

Lemma 5.8.10. Let & be an MMT fault domain for the SUT, and let m = maxpey |Q|. Suppose
that m > |Q%|, and that M € U. Let ¢ € Q7, and let g_; be ¢’s parent state. If ¢_; € A, and:

areAllStatesInNStepsPresentAndEnabled Explored(q, m),

is called, then g € .AL and ¢ € AL will hold upon termination.

The proof of Lemma 5.8.10 can be found in Appendix C.9.3.
We use this lemma to prove that, for our fault domain Z/lkC uuc:

Corollary 5.8.1. Let k € N>% and let C' be a minimal and prefix-closed state cover for S. Suppose
that M € lec UUC. Let ¢ € Q7, and let ¢_; be ¢’s parent state. If ¢_; € A, and:

areAllStatesInNStepsPresentAndEnabled Explored(q, maxNumSUTStates),
is called, then g € AL and ¢ € AL will hold upon termination.
Proof. The property follows directly from Lemma 5.8.10, since:

max _ |QM| = maxNumSUTStates > |C| = |Q°],
Meuguuc

which implies that max MeUF T QM| > |Q°|, as required. O
Lemma 5.8.11. All states in A, UB U F=F are eventually added to A, granted that no conflicts between
the specification and the SUT arise before then.

The proof of Lemma 5.8.11 can be found in Appendix C.9.4.

Lemma 5.8.12. All states that are added to A, are eventually made both enabled and active explored, or
there will be a counterexample.

Proof. We only add states to A, in the sub-procedure:
add TransitionsFromSpecSeqAnd M akeActiveExplorediA .

This procedure uses addTmnsz’tionsmeSpecSequ which ensures by Lemma 5.8.6 that all of these states
will be enabled explored, granted that there were no conflicts.

Lemma 5.8.11 tells us that all of these states will eventually be enabled explored, granted that no conflicts
between the specification and the SUT will be found. O

Lemma 5.8.13. Calling sub-procedure:
addTransitionsFromSpecSeqAndMake ActiveExplored (o)
ensures that o will be a run in 7, or there will be a counterexample.
Proof. Sub-procedure addTransitionsFromSpecSeqAndMakeActiveExplored(o) calls:
addTransitionsFromSpecSeq(o).
Lemma 5.8.5 now tells us that therefore, o will have a run in 7. O
Lemma 5.8.14. All states traversed by sequences passed to:
add TransitionsFromSpecSqundMakeActiveExploredi,[

are eventually both enabled and active explored, or there is a counterexample.

Proof. Lemma 5.8.12 tells us that all states of 7 that are traversed when addTransitionsFromSpecSeqAnd-
MakeActiveExplored is called on ¢ are enabled explored once the sub-procedure terminates.

Sub-procedure addTransitionsFromSpecSeqAndMakeActiveExplored adds all states that are traversed by o
from 7’s initial state to A,. Lemma 5.8.12 now tells us that all states traversed by the sequence o passed
to addTransitionsFromSpecSeqAndMakeActiveExplored are eventually both enabled and active explored,
granted that no conflict is found. O

k-A-Complete Conformance Testing of Mealy Machines with Timers 67

5.8.7 Making Two Observation Tree States Apart

We show our sub-procedure for making two observation tree states apart in Algorithm 17.

Algorithm 17: Sub-procedure for making two observation tree states apart when their specification
counterparts are apart

Procedure makeObsTreeStatesAparts (¢,¢ € QT):
if ¢ # ¢ then

‘ return;

end

1
2
3
4
5 | s 05 (55, access(q));
6
7
8
9

' < 657 (53, access(q'));

0o p€C:85(s5,p) =5

ol —peC:65(s5,p) =5

forall mazimal matchings m: s ++ s’ do

10 0w + a minimal-length witness of s #™ s';

11 ol, < the action sequence for read:lo_%(s’);

12 c < add Tmnsitz’onsFromSpecSqundMakeActz’veExplored»Sr(oa COw);
13 if c € (IUTO(N>Y))* then return c;

14 c <+ addT mnsz’tionsFromSpecSqundMakeActiveEa}ploredas—(U; ~ol);
15 if ¢ € (IUTO(N>Y))* then return ¢;

16 end

17 return yes;

Let S be an s-learnable gMMT, and let 7 be an observation tree. Let (fs, ft, fu): T — S be a functional
gMMT simulation. Let ¢,¢' € Q7 be the two states of 7 that we want to make apart. Let s = f,(¢), and
let s = fs(q'). We require that s # s'.

Algorithm 17 first checks whether ¢ # ¢’ already holds. If so, then it simply terminates right away.
Otherwise, it proceeds by finding the specification states s and s’. For every maximal matching m: s <> s,
it finds a witness oy, of s #™ s'. It then reads o/, = read™,, (s'), and it uses:

S

Tw

add TransitionsFromSpecSeqAnd M akeActiveExplored?—

to add the corresponding input sequences from ¢ and ¢’, as well as to ensure that every observation tree
state encountered along these sequences are eventually both enabled and active explored. Let 7 € runs(T)
and 7" € runs(T) be the runs that this adds to 7. Proposition 5.4.1 tells us that once the states along 7

and 7' are all enabled and active explored, all timer updates along s 2% € runs(S) and s’ =% € runs(S)
will be represented in m and #’. The actions along 7 will then function as a witness for the apartness
between ¢ and ¢’ under a certain matching m’: ¢ <> ¢’ for the same reason for which o, functions as a
witness for the apartness between s and s’ under m. We prove that when we use minimum-length witnesses
for o, doing this for all maximal matchings m: s <+ s’ will ensure that once the states along m and 7’ are
enabled explored, q # ¢'.

Lemma 5.8.15. Let 7 be an observation tree, let S be an s-learnable gMMT, and let {fs, fi, fu): T — S be
a functional gMMT simulation. Let C' be a prefix-closed state cover for S. Let qq, g € Q7. Let s = f,(qo)
and s' = fo(q}). Let o, = c € C: 65 (s3,¢) = s, and let 0, = ¢ € C: 657 (s5,¢) = s'. Suppose that s # s’
and —=(qo # qf). If for all maximal matchings m: s <+ s’ there is at least one run p = s 2% € runs(S)

and p' = readm&)(s’) = ' 2% € runs(S) such that o/, =i} ...i,, € (A5)* and 0, = i1...i, € (A5)* is a
S

minimum-length witness of s #™ s, then calling:

add Tmnsitz’onsmeSpecSqundMakeActz’veExplored‘jS\,l (04 0w)

68 Bram Pellen

and:

addTmnsitz’onsFromSpecSqundMakeActz'veE:cploredf,l(U; col)

w

ensures that eventually, qo # ¢, granted that no conflict between the specification and the SUT is found
before then.

The proof of Lemma 5.8.15 can be found in Appendix C.8.
We prove the correctness of Algorithm 17 as a corollary of Lemma 5.8.15:

Corollary 5.8.2. Let 7 be an observation tree MMT, let S be an s-learnable gMMT, and let (fs, fi, fu): T —
S be a functional gMMT simulation. Let ¢,¢' € Q7.

If fs(q) # fs(¢'), then calling makeObsTreeStatesAparts(q, q') either returns a counterexample symbolic
word because it finds a conflict between the specification and the SUT, or it ensures that eventually, ¢ # ¢’
will hold, granted that no conflict between the specification and the SUT is found before then.

Proof. The procedure of Algorithm 17 immediately terminates if ¢ # ¢’ already holds at the beginning, since
nothing would need to be done. Otherwise, it makes ¢ and ¢ apart. It then starts by taking s = f(q)
and s’ = fs(¢). For all maximal matchings m: s > s’, the procedure takes a minimal-length witness o,

of s #™ s'. This implies that p = s 7% € runs(S), and that p' = readm_gl,_)(s’) = s 2% € runs(S).
S

Let C be a prefix-closed state cover for S. Let qo,q) € Q7. Let 0, = ¢ € C: (55*(8%0) = s, and
let o/, =ce C: 55 (s5,¢) = 5.
The procedure runs:

addTransitionsFromSpecSeqAndM akeActiveEmplorediA (04 0w)
and:
add Tmnsitz’onsFromSpecSqundMakeActz’veExplorede (o) -0l)

to try to extend 7 with the runs m and #’. If it succeeds, then Lemma 5.8.15 tells us that ¢ # ¢ will
eventually hold, granted that no conflict between the specification and the SUT is found before then. The
procedure would fail to add 7 and «’ to T if, and only if adding these runs to 7 reveals a conflict between
the specification § and the SUT. It would then return a counterexample. O

5.8.8 Termination
We can prove that the procedure of Algorithm 9 terminates within a finite number of rule applications:
Lemma 5.8.16. The procedure of Algorithm 9 always terminates within a finite number of rule applications.

The proof of Lemma 5.8.16 can be found in Appendix C.9.5.

5.8.9 k-A-Completeness of the Procedure

As with our method for MM1Ts from Chapter 3, our approach to proving the k-A-completeness of our
procedure is inspired by Vaandrager et al. [2024]’s sufficient condition for the k-A-completeness of test suites
for Mealy machines. We will use the following theorem to prove that for any natural number k& and any
minimal and prefix-closed state cover C for the specification, Algorithm 9 is a valid and k-C-complete
conformance testing procedure for MMTs:

Theorem 5.8.1. Let k € N. Let S be a minimal, s-learnable, t-observable gMMT, and let C C AS be a
minimal and prefix-closed state cover for S. Let M be an s-learnable, t-observable MMT from U¢ UU® that
has the same set of inputs I as S. Let T be an observation tree for both M and S, and let B, FO, F!, ...
be the stratification of Q7 induced by C. Suppose that B and F<* are complete, the states in B and F=F
are all identified, BU F<F C Ag, BUFSk C AL, and the following condition holds:

vt' e FE " e F<F. city=ct’y v t #t. (5.1)

Then M =gy, S.

k-A-Complete Conformance Testing of Mealy Machines with Timers 69

The proof of Theorem 5.8.1 can be found in Appendix C.6.1.

As in the MMIT setting from Chapter 3, Algorithm 9 does not directly guarantee that the condition
of Equation (5.1) will hold. Its ExtendCoTransitivity rule instead guarantees that once the procedure is
done, the following condition will hold:

Vr e B,t' € FF " ¢ F<F. r#t = r#tVvE H# (5.2)
We use the following property to prove that Equation (5.2) implies Equation (5.1):

Lemma 5.8.17. Let S be an s-learnable gMMT, and let 7 be an observation tree for S. Let B be the basis
of a stratification of Q7. Suppose that ¢,¢’ € Q7 and ¢ is identified. Then:

Cle)=Cd)Va#d <= (reB:r#q=r#¢Vaqg#4dq).

The proof of Lemma 5.8.17 can be found in Appendix C.6.2.
Let k£ be a natural number, and let A be a prefix-closed state cover of the specification. The validity
of Algorithm 9 as a k-A-complete testing procedure for MMTs is a corollary of Theorem 5.8.1:

Corollary 5.8.3. Let S be a minimal, s-learnable, t-observable gMMT. Let C be a minimal and prefix-
closed state cover for S. Let k be a natural number, and let M be an s-learnable MMT from Z/{kc uuc.
The procedure of Algorithm 9 returns yes iff M =y, S, and it returns a counterexample in the form of an
action sequence iff M %Z,,,, S.

Proof. We know from Lemma 5.8.16 that Algorithm 9 always terminates within a finite number of rule
applications. We see on line Line 37 that the algorithm returns yes once none of its rules can be applied
anymore. When that happens:

e Lemma C.6.8 tells us that fs is bijective when restricted to B. We thus know that for all dis-
tinct 7,7’ € B, fs(r) # fs(r’). The fact that S is minimal now implies that fs(r) # fs(r’'). Thus, since
the IdentifyBasisStates rule performs makeObsTreeStatesAparts(7‘, r’) without this yielding a coun-
terexample, Corollary 5.8.2 tells us that r # r’. Therefore, all distinct basis states are pairwise apart,
which means that all basis states are identified.

e Algorithm 1’s initial loop extends for each w € C' the observation tree 7" with a new state g = 67 (w)

that it then adds to B. It uses the ExtendActiveExplored rule to make every basis state enabled
explored, per Lemma 5.8.2. The ExtendFrontiersWithInputs rule adds outgoing transitions for all
inputs from I to all basis states. The basis is therefore complete.
The ExtendFrontiersWithInputs rule uses addTmnsz’tz’on‘jA to add from each state ¢ € F<F an outgoing
transition for each input from I. The ExtendActiveExplored rule makes every state that this adds
to T enabled explored, per Lemma 5.8.2. Making observation tree states enabled explored extends the
observation tree with new states. Each of these new states that falls within F<* is also made enabled
explored through the use of the ExtendActiveExplored rule. We thus know that all states from F<F
are complete.

e Let t € FS*. By Lemma C.6.9, there is a basis state r; € B for which 7, € C(t) and f,(r¢) = fs(t).
Let r € B be a basis state for which r # r;. Lemma C.6.8 tells us that since r # ry, fo(r) # fs(re),
which then implies that fs(r) # fs(¢). The fact that S is minimal now implies that fs(r) # fs(t).
Thus, since the IdentifyFrontiers rule performs makeObs TreeStatesApart® (t,r) without this yielding a
counterexample, Corollary 5.8.2 tells us that ¢ # r. Therefore, & C(t). This implies that C(¢) = {r:},
which means that ¢ is identified. We thus know that all states from F<* are identified.

e by Lemma 5.8.11, BU F'<F C A. This means that BU F<F C AL and BU F<F C A7, as required.

e Let r € B, t' € F¥ and t € F<*. We show that Equation (5.2) holds. If 7 # t" or ' # " holds, then
the condition from Equation (5.2) already holds as well. So suppose that —(r # t”) and —(t' # ¢").
We know from the previous item that ¢” is identified. Therefore, since —=(r # t”), C(t") = {r}. Thus,
by Lemma C.6.9, fs(t") = fs(r). By Lemma C.3.2, r # t' implies that fs(r) # fs(t'). Therefore,

70 Bram Pellen

fs(t") # fs(t'). The fact that S is minimal now implies that fs(t") # fs(¢'). Thus, since the Extend-
CoTransitivity rule performs makeObs TreeStatesApart® (t', ") without this yielding a counterexample,
Corollary 5.8.2 tells us that ¢ # t”. Equation (5.2) therefore holds. Since Equation (5.2) holds in all
cases, Lemma 5.8.17 tells us that the following condition holds in all cases:

vt' € Fk t" ¢ F<k. ciy=ci" v t #1".

Theorem 5.8.1 thus tells us that if Algorithm 9 terminates because none of its rules can be applied anymore,
then M ~gym S.

The only circumstance under which Algorithm 9 terminates before all eight of its rules are exhausted is if it
finds a conflict between the outputs, timer updates, number of active and/or enabled timers and the timers
that are enabled between M and S, in which case the algorithm returns a counterexample symbolic word.
The presence of such a conflict would then indeed imply that M ., S. O

We can now prove that Algorithm 9 is k-C-complete, where k is an arbitrary natural number, and C is
a minimal and prefix-closed state cover for the specification:

Corollary 5.8.4. Let S be a minimal, s-learnable, t-observable gMMT, and let C' be a minimal and prefix-
closed state cover for S. Let k be a natural number. Then Algorithm 1 is k-C-complete.

Proof. Let M be an MMT in U,?UUG Then Corollary 5.8.3 tells us that Algorithm 9 returns yes iff M ~,
S, as required. 0

Chapter 6

Conclusions and Future Work

In this thesis, we developed k-A-complete conformance testing procedures for both the MM1Ts of Vaan-
drager et al. [2023], and the MMTs of Bruyere et al. [2024]. We developed these procedures to provide the
basis for approximate equivalence oracles with proven correctness guarantees for the active MM1T learning
method from Vaandrager et al. [2023], and the active MMT learning method from Bruyeére et al. [2024].
We additionally provide a way to minimize MM1Ts, the existence of which ensures that any MM1T can be
used as a specification for our MMI1T testing procedure. The procedure also returns a counterexample input
sequence iff the specification and the SUT are not untimed equivalent, granted that the SUT is in U< UUY
(with k& a natural number and C' a minimal and prefix-closed state cover for the specification). Our work has
thus resulted in the first approximate MM1T equivalence oracle with proven correctness guarantees. The
MMI1T learning method can use our approximate oracle to inherit these correctness guarantees.

Our proofs for the validity and k-A-completeness of our MMT testing procedure rely on our notion
of t-observability. This notion allows us to distinguish observation tree states based on additional behavior,
compared to the MMT learning method’s apartness for MMT states. We provide an algorithm that makes
any s-learnable MMT t-observable. In doing so, we remove one of the two remaining barriers that could
make the hypotheses of the MMT learning procedure unsuitable as specifications for our testing procedure.
The sole remaining barrier is that of minimality: there is currently no proven method for minimizing MMTs,
and finding one would allow our MMT conformance testing procedure to function as the first approximation
of an MMT equivalence oracle with proven correctness guarantees. Our decision to use gMMTs, rather than
MMTs for the specifications makes our procedure more flexible in use, since MMTs can easily be converted
into symbolically equivalent gMMTs. Bruyere et al. [2024] also provides a way to convert gMMTs into
symbolically equivalent MMTs, but this generally leads to a factorial blowup in the size of the state space.
We also argue that minimal MMTs should be easier to obtain than minimal gMMTs.

Future Work Our first suggestion for future enhancements is to find an algorithm that can minimize
MMTs into symbolically equivalent and minimal (g)MMTs.

It would also be interesting to analyze the efficiency of our testing procedures. We would like to determine
an upper bound on the number of time units that it may take our two procedures to determine whether
a given specification and SUT are equivalent. We think it would also be worthwhile to implement these
procedures. Doing so would allow us to benchmark their efficiency.

We can further increase the efficiency of at least our MMT conformance testing procedure. For example,
our MMT testing procedure may at times make states of the observation tree active explored by extending
the observation tree, in order to ensure that two given observation tree states are apart. It even does so
when the condition for this apartness does not in any way rely on states being active explored, such as for
an apartness based on differences in output symbols. We can modify our MMT testing procedure such that
it will no longer extend the observation tree, just to make states active explored in situations in which we
know this not to be necessary.

Vaandrager et al. [2022] use adaptive distinguishing sequences (ADs) [Lee and Yannakakis, 1994] to op-
timize two of the non-deterministic rules of their active learning method. They note that although their
method’s asymptotic complexity is unaffected by this change, its running time on actual benchmarks re-

71

72 Bram Pellen

ceives “an effective boost”. It would be interesting to incorporate ADs into our testing procedures, and to
evaluate whether this leads to notable performance improvements.

Vaandrager et al. [2024] prove that for Mealy machines, k-A-completeness subsumes k-completeness,
which means that any testing method that is k-A-complete is also k-complete. A natural question to answer
is whether this is also the case for MM1Ts and MMTs which, if true, would prove that our testing procedures
are k-complete in addition to being k-A-complete.

Bibliography

D. Angluin. Learning regular sets from queries and counterexamples. Information and Computation, 75(2):
87-106, Nov. 1987. ISSN 08905401. URL https://doi.org/10.1016/0890-5401(87)90052-6.

V. Bruyere, B. Garhewal, G. A. Pérez, G. Staquet, and F. W. Vaandrager. Active Learning of Mealy Machines
with Timers. CoRR, abs/2403.02019, 2024. URL https://doi.org/10.48550/arXiv.2403.02019.

T. S. Chow. Testing Software Design Modeled by Finite-State Machines. IEEE Trans. Software Eng., 4(3):
178-187, 1978. URL https://doi.org/10.1109/TSE. 1978.231496.

R. Dorofeeva, K. El-Fakih, and N. Yevtushenko. An Improved Conformance Testing Method. In For-
mal Techniques for Networked and Distributed Systems - FORTE 2005, 25th IFIP WG 6.1 International
Conference, Taipei, Taiwan, October 2-5, 2005, Proceedings, volume 3731 of Lecture Notes in Computer
Science, pages 204—218. Springer, 2005. URL https://doi.org/10.1007/11562436_16.

R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, and N. Yevtushenko. FSM-based conformance testing
methods: A survey annotated with experimental evaluation. Information and Software Technology, 52
(12):1286-1297, Dec. 2010a. ISSN 0950-5849. URL https://doi.org/10.1016/j.infsof.2010.07.001.

R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, and N. Yevtushenko. FSM-based conformance testing
methods: A survey annotated with experimental evaluation. Information and Software Technology, 52
(12):1286-1297, 2010b. URL https://doi.org/10.1016/j.infsof.2010.07.001.

S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test Selection Based on Finite
State Models. IFEE Trans. Software Eng., 17(6):591-603, 1991. URL https://doi.org/10.1109/32.
87284.

H. Geuvers and B. Jacobs. Relating Apartness and Bisimulation. Logical Methods in Computer Science, 17,
2021. URL https://doi.org/10.46298/LMCS-17(3:15)2021.

M. N. Irfan, C. Oriat, and R. Groz. Angluin style finite state machine inference with non-optimal coun-
terexamples. In Proceedings of the first international workshop on model inference in testing, pages 11-19,
2010. URL https://doi.org/10.1145/1868044.1868046.

M. Isberner, F. Howar, and B. Steffen. The TTT Algorithm: A Redundancy-Free Approach to Active
Automata Learning. In B. Bonakdarpour and S. A. Smolka, editors, Runtime Verification, pages 307-322,
Cham, 2014. Springer International Publishing. ISBN 978-3-319-11164-3. doi: 10.1007/978-3-319-11164-3_
26.

D. Lee and M. Yannakakis. Testing finite-state machines: State identification and verification. IEEE
Transactions on computers, 43(3):306-320, 1994. URL https://doi.org/10.1109/12.272431.

G. Luo, A. Petrenko, and G. v. Bochmann. Selecting Test Sequences for Partially-Specified Nondeterministic
Finite State Machines. In T. Mizuno, T. Higashino, and N. Shiratori, editors, Protocol Test Systems: 7th
workshop 7th IFIP W@ 6.1 international workshop on protocol text systems, pages 95-110. Springer US,
Boston, MA, 1995. ISBN 978-0-387-34883-4. URL https://doi.org/10.1007/978-0-387-34883-4_6.

G. H. Mealy. A method for synthesizing sequential circuits. Bell System Technical Journal, 1955. URL
https://doi.org/10.1002/j.1538-7305.1955.tb03788. x.

73

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.48550/arXiv.2403.02019
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1007/11562436_16
https://doi.org/10.1016/j.infsof.2010.07.001
https://doi.org/10.1016/j.infsof.2010.07.001
https://doi.org/10.1109/32.87284
https://doi.org/10.1109/32.87284
https://doi.org/10.46298/LMCS-17(3:15)2021
https://doi.org/10.1145/1868044.1868046
https://doi.org/10.1109/12.272431
https://doi.org/10.1007/978-0-387-34883-4_6
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x

74 Bram Pellen

M. Shahbaz and R. Groz. Inferring Mealy Machines. In A. Cavalcanti and D. R. Dams, editors, FM
2009: Formal Methods, pages 207-222, Berlin, Heidelberg, 2009. Springer. ISBN 978-3-642-05089-3. URL
https://doi.org/10.1007/978-3-642-05089-3_14.

A. S. Troelstra and H. Schwichtenberg. Basic proof theory. Number 43 in Cambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, 2 edition, 2000. URL https://doi.org/10.1017/
CB09781139168717.

F. Vaandrager. A New Perspective on Conformance Testing Based on Apartness. In Logics and Type
Systems in Theory and Practice: Essays Dedicated to Herman Geuvers on The Occasion of His 60th
Birthday, volume 14560 of Lecture notes in computer science, pages 225-240. Springer, 2024. URL https:
//doi.org/10.1007/978-3-031-61716-4_15.

F. Vaandrager, M. Ebrahimi, and R. Bloem. Learning Mealy machines with one timer. Information and
Computation, 295:105013, 2023. ISSN 0890-5401. URL https://doi.org/10.1016/j.ic.2023.105013.
Special Issue: Selected papers of the 15th International Conference on Language and Automata Theory
and Applications, LATA 2021.

F. W. Vaandrager, B. Garhewal, J. Rot, and T. Wilmann. A New Approach for Active Automata
Learning Based on Apartness. In Tools and Algorithms for the Construction and Analysis of Sys-
tems - 28th International Conference, TACAS 2022, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings,
Part I, volume 13243 of Lecture Notes in Computer Science, pages 223-243. Springer, 2022. URL
https://doi.org/10.1007/978-3-030-99524-9_12.

F. W. Vaandrager, P. Fiterau-Brostean, and I. Melse. Completeness of FSM Test Suites Reconsidered.
CoRR, abs/2410.19405, 2024. URL https://doi.org/10.48550/arXiv.2410.19405.

M. P. Vasilevskii. Failure diagnosis of automata. Cybernetics, 9(4):653-665, 1973.

K. Zuse. Der Plankalkiil. Berichte der Gesellschaft fiir Mathematik und Datenverarbeitung, 63:235-285,
1972. URL http://zuse.zib.de/item/gHI1cNsUuQweHB6.

https://doi.org/10.1007/978-3-642-05089-3_14
https: //doi.org/10.1017/CBO9781139168717
https: //doi.org/10.1017/CBO9781139168717
https://doi.org/10.1007/978-3-031-61716-4_15
https://doi.org/10.1007/978-3-031-61716-4_15
https://doi.org/10.1016/j.ic.2023.105013
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.48550/arXiv.2410.19405
http://zuse.zib.de/item/gHI1cNsUuQweHB6

Appendix A

MMI1T Material from the Literature

This appendix provides some MM1T-related material from the literature that our results from Chapter 3
rely on. We included this material for the reader’s convenience. All of this material is taken from Vaandrager
et al. [2023].

A.1 Expressing MM1Ts and Mealy Machines in Terms of One
Another

There is a mapping that expresses MM1Ts in terms of Mealy machines, as well as a mapping that can express
certain Mealy machines in terms of MM1Ts. The first mapping takes an MM1T M and returns a Mealy
machine Mealy(M) that uses the same states, inputs and transitions as M. We add self-loop transitions to
all states in Q,p to make the Mealy machine input complete. We assign a special output nil to each of these
self-loops. The remaining transitions receive an output given by a pair of the output from M, together with
the timer update.

The inverse operation assigns a tuple MM1T(N) to every Mealy machine A for which the input and output
sets meet certain requirements. This tuple is not generally guaranteed to be a valid MM1T. For example,
N may have a timeout transition from its initial state, which would mean that MM1T(A) would have one
as well.

Definition A.1.1. Let M = (Q,qz,1,0,6,\,7) be an MMI1T. Then Mealy(M) is the Mealy machine
described by the tuple (Q, gz, I, 0,8, \’), where:

0 = (0 x (N> U {1})) U {nil}

6(q,i) if 6(q, 1)

&' (q,1) =
q otherwise

)\I(q,’l,) — ()‘(Q’Z)7Tl(q>7/)) lf A(QJN
nil otherwise

Conversely, suppose N = (P,pz, I, 0,4, \) is a Mealy machine with timeout € I and O C (Q x (N>°U{L}))u
{nil}, for some set Q. Then the above construction can be reversed to obtain the MM1T MM1T(N) =

75

76 Bram Pellen

(Pogg U Py, pz,1,0',8', N, 7), where:
O'={oeQ|IneN"20{L}: (o,n) € O}
Py ={p € P | A(p, timeout) = nil}
Pon =P \ Poﬁ
5 (p, i) = d(p, 1) if p € P,, Vi # timeout
undefined otherwise
mi(A(p,7)) if A(p,2) # nil

undefined otherwise

N(p,i) =

. ma(A(p,4)) if M(p,i) € O' x N>0
7(p,i) =
undefined otherwise

A.2 Bisimulations Between MM1Ts

Bisimulations for MM1Ts can be defined as follows:

Definition A.2.1. Let M; and My be MM1Ts with the same inputs, where M; = (Q;, q%, I,0;,05, A, 7j),
for j = 1,2. A bisimulation between M; and M, is a relation R C Q1 X Qo satisfying, for every

g1 €Q1,q2 € Qo and i € I:

ar R ¢;
@ Rag N di(qr, i)l - da(g2, i)l AN O1(qr,i) R 62(q2,7) A

A(q1,i) = Xa(q2,1) A Ti(q1, i) = T2(qe,)

@ R AN da(qe,9) = 01(qu, 1))
We write My ~ M, iff there is a bisimulation R between M7 and M.

The following property holds:

Lemma A.2.1. Let M and AN be two MM1Ts with the same inputs. Then M ~ N iff M ~yuntimed N -

Appendix B

Proofs Related to MM1Ts

This appendix contains some proofs related to MM1Ts that we omitted from the main text to increase the
documents’s readability.

B.1 Properties and Proofs Related to the k-A-Completeness of the
MMI1T Testing Procedure

The properties and proofs used in Vaandrager et al. [2024] to prove a sufficient condition for the k-A-
completeness of Mealy machine test suites form the basis of our proofs for the k-A-completeness of our MM1T
conformance testing procedure. We highlight the additions we made compared to the work from Vaandrager
et al. [2024] in green, and the remaining differences between our results and theirs in blue. We first provide
the auxiliary lemmas, before we conclude with our proofs of Theorem 3.3.1 and Lemma 3.3.2.

Lemma B.1.1. Let M and N be MM1Ts, and let f: M — A be a functional simulation. Let ¢,¢ € QM
and o € I*. Then:

a>d = fla> f(d).

Proof. Suppose that ¢ = ¢/. Then ¢’ = 0™"(¢q,0). We need to prove that &V (f(q), o) = f(¢'). We prove
the property by an induction on the length of o:

o Base case: 0 = €. Then ¢’ = q. We can see that:
N (f(a),0) = 5V (f(a),€) = fla) = f(d),
as required.
o Inductive step case: 0 = p-1¢ with p € I* and ¢ € I. We use the induction hypothesis:
g%d = flo>f(d)

The induction hypothesis tells us that & (f(q), p) = f(¢’). Let ¢ = 6™ (¢, 7). The definition of func-
tional MM1T simulations tells us that therefore, 0V (f(¢'),7) = f(q"). We thus know that & (f(q), p-
i) = f(¢"). We can also see that 6" (g, p-4) = ¢”. Therefore:

¢ e = fa) D),
as required.

O

The following auxiliary lemma is the only lemma in this appendix that we didn’t adapt from a lemma
from Vaandrager et al. [2024]:

7

78 Bram Pellen

Lemma B.1.2. Let M be an MMI1T, and let 7 be an observation tree for M. Let f: T — M be a
functional simulation. Let g, g, € Q7. Let 0 =41 ...4, € I*. Let m = gy — ¢,. Suppose that the basis of
a stratification of Q7 is complete, and that for all [€ {0,...,n}, if ¢, € F7, then F7 is complete. Then:

flao) S flan) = a0 2.

Proof. Suppose that f(qo) = f(gn). Then f(g,) = 6" (f(q0),). We need to prove that 67 (go,o)]. We
prove the property by an induction on the length of o:

o Base case: 0 = e¢. We trivially get that:
[eg €
do — = qo = = qo,
as required.

o Inductive step case: 0 = iy...i541 and kK + 1 < n, for some £k € N. Let p = i1...7,. We use the
induction hypothesis:

flao) & fla) = a0 .

The induction hypothesis tells us that gy 2. Let gz = (57—*(q0., p). We know from our final assumption
that whether g is in the basis or in a frontier, this basis or frontier is complete. This implies in either
case that:

— if 4341 = timeout, then we know that f(qz) € QA!. Then since f is a functional simulation,
qr € Q7. Thus, since g, is in a basis or frontier that is complete, g has an outgoing timeout

transition. This implies that gy, %, which implies that g, =, as required.

— if 4p41 # timeout, then since ¢ is in a basis or frontier that is complete, g L, This implies
that ¢, =, as required.

OJ

Lemma B.1.3. Let M be an MMI1T, and let 7 be an observation tree for M. Let f: T — M be a
functional simulation. Let B be the basis of a stratification of Q7. If all states of B are pairwise apart,
then f restricted to B is injective.

Proof. Let q,q’ be two distinct states of B. Since ¢ # ¢/, Lemma 3.2.4 tells us that f(q) Zuntimea f(¢)-
This implies that f(q) # f(¢'), which tells us that f restricted to B is injective when all of B’s states are
pairwise apart.]

Lemma B.1.4. Let M be an MMI1T, and let 7 be an observation tree for M. Let f: T — M be a
functional simulation. Let B be the basis of a stratification of Q7 , such that |B| = |Q|. If all states of B
are pairwise apart, then f restricted to B is a bijection.

Proof. Lemma B.1.3 tells us that f restricted to B is injective. Since |B| = |Q™|, we may conclude that f
is a bijection between B and QM. O

Lemma B.1.5. Let M be an MMI1T, and let 7 be an observation tree for M. Let f: T — M be a
functional simulation. Let B be the basis of a stratification of Q7 such that |B| = |@*|, and such that all
states of B are pairwise apart. Let ¢ € Q7. Then:

Ir € B: reClq N flq = f(r).

k-A-Complete Conformance Testing of Mealy Machines with Timers 79

Proof. Let f(q) = u. Lemma B.1.4 tells us that f restricted to B is a bijection. Let r € B be the unique
state with f(r) = u. Since f(q) = f(r), Lemma 3.2.4 implies that ¢ and r are not apart. Hence r € C(q). O

Lemma B.1.6. Let S and M be MM1Ts, and let 7 be an observation tree for both S and M. Let C be a
prefix-closed state cover for S, and let B be the basis of a stratification of Q7 induced by C. Suppose that
all states of B are identified. Then M & 1.

Proof. Let f: T — M. Suppose that o,p € C with ¢ # p. Since B is the basis of a stratification induced
by C, q=067" (¢f,0) € Band ¢’ = (57—*(qu7 p) € B. The fact that T is a tree thus implies that ¢ # ¢’. Since
all states of B are identified, they are all pairwise apart. We thus know that ¢ # ¢’. Lemma 3.2.4 now tells
us that f(q) %untimea f(¢'). By Lemma B.1.1, f(q) = 6M*(q%’l,a) and f(¢') = 6M*(qé\",p). This implies
that 5M*(q£/’7o) Zuntimed 5M*(q§4, p), which implies that M ¢ UC. O

B.1.1 The proof of Theorem 3.3.1

This proof of Theorem 3.3.1 is obtained by slightly modifying Vaandrager et al. [2024]’s proof for its Theorem
4.5. Every difference between the two proofs is needed to either account for the difference between the notions
of state equivalence that we use for Mealy machines and for MM1Ts, or between the differences in the
notions of bisimulation or stratification for these two model types. Remember that we use trace equivalence
for equivalences between Mealy machine states, and untimed equivalence for equivalences between MM1T
states. We use the standard notion of bisimulation for Mealy machines. For MM1Ts, we use the bisimulation
introduced in Vaandrager et al. [2023]. We also include this bisimulation in Appendix A.2.

We performed four small additions, and one further change to the proof for Theorem 4.5. The four
additions are all needed to account for differences between the notions of bisimulation, of stratification, and
of completeness of the model. The remaining difference is needed because unlike bisimulations for complete
Mealy machines, bisimulations for complete MM1Ts still have to account for transitions that are undefined.

Proof. Lemma B.1.6 tells us that M ¢ U®. Therefore, M € US. The fact that B is a basis induced by a
minimal prefix-closed state cover C' implies that access(B) = C. We thus know that since M € lec , there
are:

Vg € QM: Jo € (access(B) = C),3p € IZF: M7 (¢, 0 - p) = ¢. (B.1)
Let f: T — S and g: T — M be functional simulations. We define a relation R C Q° x QM as:
(s,q) € R = JGte BUF<F: f(t)=sAg(t) =q.
We claim that R is a bisimulation between & and M.

1. Since f is a functional simulation from 7 to S, f(q¢7) = s3, and since g is a functional simulation
from T to M, g(qF) = ¢'. Using ¢J € B, this implies that (s3,¢3') € R.

2. Suppose that (s,q) € Rand i € I. We need to show that if either A\°(s,4)] or A (g, 7)|, then: A9(s,i) =
M (q, i), 7°(s,1) = 7™ (q,4) and (0°(s,i),0M(q,7)) € R.
Since (s, q) € R, there exists a state t € BU F<* such that f(t) = s and g(t) = ¢. Since B, F<* are all
complete and T is an observation tree for both M and S, 65 (s,)| iff 7 (¢,4)] iff M (q,)].
We thus know that if either of §°(s,i) or 6*(g,i) is undefined, then so is the other. In that case,
there are no properties that need to hold for (s, ¢) and ¢ in order for R to be a bisimulation. We will
thus assume that d%(s,i) and 6 (g,i) are both defined in the remainder of item 2. Let s’ = §°(s,1)
and ¢' = oM(q,1).

e Since f and g are functional simulations, A7 (t,7) = A%(s,i) and A7 (¢,i) = A (q,). This tells us
that AS(s,i) = A (q,1), as required.

e Since f and g are functional simulations, 77 (t,i) = 75(s,4) and 77 (t,4) = 7™(q,i). This tells us
that 75(s,4) = 7™(q, 1), as required.

80 Bram Pellen

o Let t' =67 (t,4). Since f and g are functional simulations, f(t') = s’ and g(t') = ¢’. In order to
prove (s',¢") € R, we consider two cases:

(a) if ' € BU F<F, then, since f(t') = s’ and g(t') = ¢/, (s',¢') € R follows directly from the
definition of R.
(b) ¢ € F*. Equation (B.1) tells us that there are sequences ¢ € access(B) and p € I<F

such that 6" (¢}, - p) = ¢/. By the assumption that B, F<F are all complete, the
fact that 6™ (¢, o - p)] implies by Lemma B.1.2 that ¢’/ = 57*(q;,0 - p) is defined.
By Lemma B.1.1, g(t’) = ¢’. Then, by Lemma 3.2.4, ¢ and ¢’ are not apart. We claim

that ¢/ and t” have the same candidate set:

i. t” € B. Then since B is a basis and all basis states are identified, C(t") = {t"}.

Since —(¢' # t") and ¢’ is identified, C(¢') = {¢"}. Hence, C(¢') = C(t").

ii. ¢ € F<F. Then by Equation (3.1) and since —(t # t), C(t') = C(t").
Since t' is identified, C(¢') = {r}, for some r € B. By Lemma B.1.5, f(t') = f(r). Since C(¥') =
C(t"), C(t") = C(t') = {r}, which also implies that ¢" is identified. Applying Lemma B.1.5
now tells us that f(¢t”) = f(r). Hence f(¢") = f(t') = s’. This in turn implies that (s’,¢') € R,
which completes the proof that R is a bisimulation.

We have thus proven that S ~ M. The theorem now follows by application of Lemma A.2.1. O

B.1.2 Proof of Lemma 3.3.2

Proof. We prove both directions of the bi-implication:

o Assume that C(q) = C(q')Vq # ¢'. Suppose that r € B with r # q. We need to show that r # ¢'Vqg # ¢'.
If the ¢ # ¢ from the assumption holds, then we are already done. So suppose that —(q # ¢)
and C(q) = C(q’). Then, since r # q, r &€ C(q). Therefore, r ¢ C(q’). This implies that r # ¢, as
required.

o Assume that (Vr € B:r# q =1 # ¢'Vq# ¢'). Suppose that =(¢ # ¢'). We need to show that C(q) =
C(q’). Since ¢ is identified, all basis states except one are apart from ¢. Let 7 be the unique basis state
that is not apart from ¢. By our assumption, ¢’ is apart from all states in B\ {r}. Thus C(¢’) C {r}.
By Lemma B.1.5, C(¢’) contains at least one state. Therefore, we conclude that C(¢") = {r}. This
implies that C(q) = C(q’), as required.

O

B.2 Proof of Lemma 3.1.1

Lemma 3.1.1 imposes three conditions on MMIT MMI1T(M). We split this lemma into three properties
which we prove in the next three subsections.

Before we do so however, we first prove the auxiliary lemma that two MMI1T states cannot be untimed
equivalent if there is an input sequence for which one of them reaches a state in which the timer is on, and
the other reaches a state in which the timer is off:

Lemma B.2.1. Let ¢ and p be states of possibly two different MM1Ts with the same set of inputs I, and
let o € I* be an input sequence such that §*(g, o)} and §*(p,c)]. Let ¢ = §*(¢q,0) and p’ = 6*(p, o). If the
timer is either on in ¢’ and off in p’, or off in ¢’ and on in p’, then q¢ %untimed D-

Proof. We can see from the definition of the uWord function that uWord, (timeout)| iff the timer is on
in ¢". We can also see that uWord,, (timeout)] iff 6(¢’, timeout)|. Since ¢(¢’,timeout) = (¢, timeout),
we know that 6(q’,timeout)| iff §*(q,o timeout)]. We know from the definition of the uwWord function
that 0% (g, o timeout)| iff uWord (o timeout)|. Therefore, uWord, (o timeout)| iff the timer is on in ¢'.

We can use a similar argument to show that uWord, (o timeout)| iff the timer is on in p’. Therefore:

o if the timer is on in ¢’ and off in p’, then uWord, (o timeout)] and uWord,,(o timeout)?t, and

k-A-Complete Conformance Testing of Mealy Machines with Timers 81

o if the timer is off in ¢’ and on in p’, then uWord, (o timeout)t and uWord, (o timeout)].
In either case, uWord, # uWord,, which means that q %untimed p- O
The first of the three properties induced by Lemma 3.1.1 is:

Lemma B.2.2. Let M be an MMI1T. Let M be a Mealy machine obtained by minimizing Mealy ma-
chine Mealy(M). Then, MM1T (M) is a valid MMIT.

We prove Lemma B.2.2 in Appendix B.2.1.
The second property is:

Lemma B.2.3. Let M be an MMI1T. Let M be a Mealy machine obtained by minimizing Mealy ma-
chine Mealy(M). Then, MM1T (M) is minimal.

We prove Lemma B.2.3 in Appendix B.2.2.
The final property is:

Lemma B.2.4. Let M be an MMI1T. Let M be a Mealy machine obtained by minimizing Mealy ma-
chine Mealy(M). Then, MM1T(M) ~untimed M.

We prove Lemma B.2.4 in Appendix B.2.3.
The fact that Lemma 3.1.1 holds follows directly from the fact that lemmas B.2.2, B.2.3 and B.2.4 hold.

B.2.1 Proof of Lemma B.2.2

Proof. Methods for minimizing Mealy machines often partition the Mealy machine’s set of states into a set
of blocks, where all states in the same block are equivalent to one another. Each of the original Mealy
machines’s states occurs in exactly one of the partition’s blocks. The minimal Mealy machine obtained from
the method then represents each of these blocks with exactly one state, and the transitions between its states
are transitions that can exist between the states of the blocks represented by its states.

We prove that MM1T (M) is a valid MM1T:

1. The definition of MM1T(M) tells us that QYT and Q';AJ;MT(M) are disjoint.

2. The initial state of Mealy(M) is defined to be the initial state of M, which is gz. We thus know that
in M, gr is in a block By that is represented by a state ¢ for which AM (¢}, timeout) = nil. We thus
get:

since ¢z is an initial state)
Rule 2.1 applies to M)
& Mgz, timeout) T Rule 2.2 applies to M)

ar € Q) (
(
(
& AMeVM) (g7 timeout) = nil (by definition of AMealv(M))
(
(
(b

& 0M(gz, timeout) T

& Vb€ Byu: AMealy(M)(p timeout) = nil B_u is a partition’s block with gz € B, M)
0]

‘5

B, is a partition’s block for ¢}7)

o MM (g timeout) = nil g

QMMlT(M MMlT(M))

= gt y definition of Q)

3. Model MM1T (M) is defined to have the same set of inputs as M. Since M is a Mealy machine, it must
have a finite set of inputs, which thus implies that MM1T (M) has a finite set of inputs as well.
Since Mealy(M) is input complete, we know that Mealy(M) has for every state of M an outgoing
transition for each of M’s inputs, including timeout. Thus, since M is a minimal version of Mealy(M),
it must also have an outgoing transition for timeout for all of from all of its states. We thus know
that timeout € I™. Then, since IMMIT(M) .— M e know that timeout € IMMIT(M),

4. We can see from the definition of MM1T(M)’s transition function that MM1T (M) satisfies Rule 2.1.

82 Bram Pellen

5. We use the following auxiliary property in some of the next items:

Vb € By be QM

& Vb € By : MM (b, timeout)] (Rule 2.1 applies to M)

& Vb € Byn s \MYM)(timeout) # nil (by definition of AMealy(M))

= MM (M timeout) # nil (B, is a partition’s block for ¢™)
& ¢ e QMM (by definition of QZARMIT(M))

6. We use the following auxiliary property in some of the next items:

Vb € Byu: b€ Qlf

& Vb € By : MM (b, timeout)t (Rule 2.1 applies to M)

& Vb € Byu : MM (b, timeout) = il (by definition of AMeab (M)

o AM (M timeout) = nil (B, is a partition’s block for ¢*)
N = QZAJ;MT(M) (by definition of Qzﬂﬁl»\»MT(M))

7. The fact that Rule 2.2 holds for MM1T (M) follows from:
AMMIT(A) (M)1
= AM(gM i) # il (
& Vb € By : MM (p) £ nil (
& Wb € By s MM(b,i) (by definition of Mealy(M))
& Vbe Byu: (b ceQMvi+ timeout) (Rule 2.1 applies to M)
& (Vb€ Byu: be QM) Vi # timeout
& ¢M e QMMITIM) v/ oL timeout (by Ttem 5)
& SMMITAM) (oM 4y | (by definition of sMMIT (1))

by definition of MM1T(M))

Byu is a partition’s block for ™)

8. The fact that Rule 2.3 holds for MM1T (M) follows from:

MMLT (M) (@™,

& MM (g™, i) € OMMIT(M) 5 N>0 (by definition of MM1T (M)
& Vb € By : AV (5, 4) € QMMITAM) 5 >0 (B
by definition of
since AMeYM) (p 7) =L il
since A (b, 1) =

T (AMe M) ()

m is a partition’s block for ¢M)
)\Mealy(/\/l)

q

= Vb € Byu: \MeYM) (g) € OM x N>O

& Vb € By : TM(b,i)) (by definition of Mealy(M))
= Vb € By : 6M(b,i) € Q1 (Rule 2.3 applies to M)
& Vb € By : MMM (b, 1), timeout) ., (Rule 2.1 applies to M)
& Vb e Byu: AMealy(M) (M (p i) timeout) % nil (by definition of Mealy(M))

& Vb € Byar : AMYM) (gMealy(M) (3 43y timeout) # nil
! ((b.9))7 because 6™ (b, i) € QM = §M(b,)|

= MM (M (gM i), timeout) # nil (B

(by definition of Mealy(M), and >

4™ is a partition’s block for ™)

k-A-Complete Conformance Testing of Mealy Machines with Timers

‘We had established that:
Vb € Byar: 6M(b,i) € QM
This implies that:

Vb € By : M (b,i) € QM

= Vb € By : M (b,4))

& Vb€ Byu: (be Q) Vi # timeout) (Rule 2.1 applies to M)
& (VWeBp:be QM) v i # timeout

& ¢M e QMMITIM) v/ oL timeout (by Item 5)

We can now finish the proof for this rule:

MMM (¢M), timeout) # nil
=)‘M(‘sMMlT(M) (¢, i), timeout) # nil (since (¢™ € QMMIT(M)) V (i # timeout))

o SMMIT(M) (M 4y & QMMIT(M) (by definition of QMMlT(M))

9. For MM1T (M), Rule 2.4 starts from the position that:

M QMMlT M) A(SMMlT(M)(l(\)/lanT(M)

;i) €
N q c QMMlT(M A 6MM1T(M)(M Z)J, <6MM1T(M)(qM,i) c QMMIT(M))
& SMMITAD) (M timeout)t A SMMITAD (M 5y | (Rule 2.1 applies to MM1T(M))
& 4 # timeout

We discuss the right-hand-side of the conjunction of Rule 2.4’s initial position separately:

q
&)\M(dMMlT(M) (¢™,4), timeout) # nil (by definition of QMMlT(M))

(by definition of 5MM1T(M)>

5MM1T(M)(M i) € QMMIT(M)

e M (M (M 4), timeout) # nil
(07)) since SMMITOD (oM 4y |

& Vb e Byu : AMealy(M) (gMealy(M) (3,) timeout) # nil (B, is a partition’s block for ¢™)

& Vb € Bya s MM(MEYM(p,4), timeout) | (by definition of AMealy(M))
by definition of gMealy(M)
& Vb € By : MMM (b, 0), timeout)], rule 2.3 applies to M
1 # timeout
& Wb € Byu o 6M(0M (b, 1), timeout) . (Rule 2.2 applies to M)
& Vb € By : 6M(b,4) € Q1 (Rule 2.1 applies to M)

83

84 Bram Pellen

The fact that Rule 2.4 holds for MM1T (M

= QMMIT M) A SMMIT(M) (oM 4y ¢

MM1T (M)
on

&M e QUMTM A (b e Byt 6M(b,i) € Q)

(Vb € BqM :

& Vb€ Byu
= Vb€ Bym:
& Vbe Bym:

be QogpM) A (Vb€ By : 6M(b,1) € Q1)
: (b e Qi N M (b,i) € Q)
™M(b,4)|
/\Mealy(/\/l)(b i) c OM x N>0

e MMM i) e OM x N0

= \MM(gM

=T

10. For MM1T(M

SMMLT (M) (™

N A=
@VbEBqM:
@VbGBqM

5MM1T(M)(qM

e MMM (M

S Vb e BqM
& Vb € Bym

& Vbe Bym: A
& Vbe Bym: o
S Vbe Bym:d
= Vb € Bym
& Vb€ Bym:

MMlT(M)(qM

, timeout)
= gMMIT(M) (M

QMMIT(M)

, timeout)
e AM (GMMIT(M) (oM

72) c OMMIT(M) % N>O

Vi)

), Rule 2.5 starts from the position that:

e Qe

, timeout)|

c Qll\)/Ile\lllT(M)

, timeout), timeout) # nil

, timeout), timeout) # nil

: A\Mealy(M) (gMealy(M) (p, timeout), timeout) # nil

: /\Mealy(/\/l)((gj\/l(b7 timeout), timeout) # nil

MM (b, timeout), timeout) |,
M(§M (b, timeout), timeout) |
M (b, timeout) € QM
M (b, timeout) |
AMealy(M) (p timeout) € OM x N>0

=AM (M timeout) € OM x N>0

= AM (M

o MMlT(M)(

,timeout) € OMMIT(M) o N>0

, timeout)]

) follows from:

) now follows from:

(the previous discussion)

(by Item 6)

(Rule 2.4 applies to M)
(by definition of AMealy(M))
(By
by definition of AMMT(M)
M) # il
since \MMIT(M) (oM 1y —
m(AM (M)
(by definition of 7

v is a partition’s block for ¢*)

since AM (g

MMLT (1))

(SMMIT(M) (oM timeout) € QMMIT(M))
(Rule 2.1 applies to MM1T(M))

be QM (by Item 5)

: 6™ (b, timeout) | (

The fact that Rule 2.5 holds for MM1T (M

Rule 2.1 applies to M)

(by definition of QMMIT(M))

(by definition of sMMIT(M))

since 6MM1T(M)(qM, timeout)|

(B,
(by definition of 5Mealy(/vl)>

the previous discussion

v is a partition’s block for ¢™)

(by definition of AMealv(M))

(Rule 2.2 applies to M)

(Rule 2.1 applies to M)

(Rule 2.5 applies to M)

(by definition of AMealv(M))

(B, is a partition’s block for ¢™)
by definition of AMMT(M)
since MM (g™, timeout) # nil
since \MMITOM) (oM timeout) =

71 (MM (M timeout))

(by definition of 7MMIT(M))

k-A-Complete Conformance Testing of Mealy Machines with Timers 85
Model MM1T (M) thus meets every requirement for being a valid MMIT. O

B.2.2 Proof of Lemma B.2.3

Proof. MM1T MM1T(M) with set of states Q@ is minimal iff, for all ¢}, ¢! € QM for which ¢ # ¢,
@M Zyntimed @37 Let ¢ and ¢} be any two states of MM1T (M) for which ¢} # ¢37.

We know that Mealy machine M is minimal, and that M has the same set of states as MM1T(M). This
tells us that there exists an input sequence o € I'* for which:

A (M o) £ AT (g3 o).

We thus know that there is at least one input ¢ € I and one input sequence p € I'* such that o = p ¢, and:

M(q1,4) # MM (g5, 9), (B.2)

where ¢ = 6™ (¢M,p) and ¢4 = 6™ (g}, p). Since M is a minimized version of Mealy(M), M =irace
Mealy(M). This implies that we can compare the outputs of M and Mealy(M), which tells us that there is
a set {2 such that:

OM C (Q x (N*OuU{L}))u{nil}.
This tells us that the inequality from Equation (B.2) must be caused by one of the following cases:

1. Either AM (g}, i) = nil and A (gb,) # nil, or AM(q},4) # nil and AM (g}, 7) = nil.
If MM (q1,4) = nil and AM (¢b,4) # nil, then AMMIT(M) (g)1 per the definition of MM1T(M). Rule 2.1
tells us that ¢} € QMMlT(M) and i = timeout. The fact that AM (¢h,4) # nil tells us that AMMITM) (g 14|

Since ¢ = timeout, we know from Rule 2.1 that ¢4 € Q'(\)AT'L\MT(M). Lemma B.2.1 now tells us that,
. MM1T (M MM1T (M
simce qll = 5M (ql ap) - 6M (qé\/l7 p) Q1 S Q) and q S Q ()a q1 A’7"'(/11,1’L75imed qs.

We can use a similar argument to show that, if)\M (q7,7) # nil and AM (gh, 1) = nil, then ¢1 Zuntimed Go-
2. If MM (g}, i) # nil, AM(gh,4) # nil and 7 (MM (¢}, 7)) # m1(AM (gh,4)), then:
M (qy, i) # nil AMM (g, 6) # nil Ami (A (g,1)) # m(AM (g5, 1))

= AMMITA) (gl) £ AMMITCMD (g) (by definition of AMMIT(M))
= uWordMMlT(M (1) # uWordg/léMlT(M) (4) (by definition of uWord)
= uWordg/iMlT(M) (pi) # uWordg/;MlT(M) (p i) (by definition of ¢}, ¢5 and uWord)
= q1 Buntimed 42 (by definition of untimed equivalence)
3. If AM(g,i) # nil, AM(gh,4) # nil and mo(AM(q},4)) # ma(AM(gh,i)), then we get a second case
distinction:

o Either mo(A(g},4)) € N9 and 7r2()\M(qQ7) = L, or ma(AM(q},4)) = L and ma(AM(¢h, 1)) € N>0.
If mo(AM(g},4)) € N0 and ma(AM (g},4)) = L, then:

FMMITOM) (g1 7)) = o (MM (¢}, 7)), (by definition of 7MMIT(M))
and:
MMITCM) (¢!)1, (by definition of 7MMIT(M))
which implies that 7MMIT(M) (gr §) £ FMMIT(M) (g) We can now see that:
FMMITOM) (1 5y 4 ZMMITQ) (g1
= uWordMMlT M)() # uWo dMMlT(M)() (by definition of uWord)
= uWordnglT(M)(p i) # uWordMMlT()(p i) (by definition of ¢, ¢} and uWord)

= q1 Buntimed 42 (by definition of untimed equivalence)

86 Bram Pellen

We can use a similar argument to show that, if mo(A(q},4)) = L and ma(\(gh,4)) € N0,
then ¢ aéuntimed q2-

o If my(AM(qy,4)) € N>O mo(AM(gh,4)) € N0 and mo(AM (qf,4)) # ma(AY(gh, 7)), then:

ma (MM (q1,9)) # m2(AM (g3, 1))
= PMMITQM) (g1 3y 2 MMITOM) (1) (
= uWordZ/,lMlT(M)(i) # uWordg/'/MlT(M) (7) (
1 2
= uWordnglT(M)(p i) # uWordgngT(M)(p i) (by definition of ¢, ¢5 and uwWord)
(

= q '#’untimed q2

by definition of 7MMIT(M))

by definition of uWord)

by definition of untimed equivalence)

We thus see that in all cases, if AM(qf,i) # nil, AM(gh,4) # nil and (MM (q},1)) # m(AM (g, 1)),
then q1 %untimed q2.

4. M (qq,7) # nil, MW (gs,9) # nil, 11 (A (q1,9)) # m(AM (g3,9)) and 72(AM (g1, 4)) # ma(AM (¢3,)), then
the conditions of items 2 and 3 both hold. This then implies that 1 %untimed qo-

Therefore, MM1T (M) is minimal. O

B.2.3 Proof of Lemma B.2.4

Proof. We know from the definition of MM1T (M) that MM1T(M) has the same set of states QM as M,
that M and MM1T(M) have the same initial state ¢}, and that M and MM1T (M) have the same set of
inputs IM. We similarly see from the definition of Mealy(M) that Mealy(M) and M have the same set of
states QM the same initial state q%’t, and the same set of inputs IM.

We prove the lemma by showing by induction on the input sequence that for all input sequences o:

1. uWordZ)\DMT(M) (o) = UWOTdéZ\IA (o),

2. JMMIT(M)*(qy,U)i = 6M*(qéw,o) = 5MM1T(M)*(qéVI,U), and
3. M (gM, 0)] = MM (M 5y — gMT (M),
The inductive proof is as follows:

e Base case: For input sequence e:

1. uWordZAADMT(M)(e) =€= uWordé\gA (e), (by definition of uWord)
0

2. §M*(qé”,e) =g}l = 5'\’”\"”(1‘/[)*(qé”7 €), and (by definition of 6*)

3. 5Mea'y(M)*(q£A, €) = gt = M (g, e). (by definition of 6*)

« Inductive step case: Let o = p i for some p € I*M UMM and i € 1M UM, We use the induction
hypothesis (I H):

1. uWord“ T) (p) = uWordé\;\lA (p),

ap”
2. MMITAD™ (gl p)| = 6M" (g}, p) = SMMITAD™ (gl p), and
3. oM (g2, p)d = MRV (g2, p) = M7 (g2, p).

We perform a case distinction on whether uWord%?MT(M)(p i)V uWordé\;& (p i)

k-A-Complete Conformance Testing of Mealy Machines with Timers 87

—if uWordMMlT(M)(DAY, uWord;\;\‘A (p i)], then:

uWordMMlT(M (pi)dV uWord;Z\lA (p i)l

= uWorde\I}MT)(p)L \Y uWord%()4 (by definition of uWord)

= uWordMMlT M)(A uWordM (p)d (UH1= (uWordMMlT(M)(JIR= uWord;Z& (P)d)

N 5MM1T(M) (@, p)L A M (@, p)L (by definition of uWord)

Let ¢ = gMMITD™ (g p) 722 5V ()1), and let g™ = §M7 (g1, p) "E7 gMeab ™ (oM).
Minimization algorithms always yield minimal versions of their input models that are equlvalent
to the model that they were given. We may thus assume that M =s4.4c Mealy(M). For M
and Mealy(M) to be trace equivalent implies that:

N (T, p i) = AMeAlY DT (g2 i)
N)\M*(qé”,p) _)\Mealy(M)*(q%/l7p) A)\]V[(éM*(qé\/[7p),i) _)\Mealy(M)(dMeaIy(M) (qé\/ﬂp)w')
& M (g, p) = AMeNMT (M o) ANM (gM i) = AMel (M) (oM)

We now use AM (¢M i) = AMealy(M) (¢M 4} to show that AMMIT(M) (M 3y = \M (M j):
AMMLT(M) (oM)

AM M’ . if)\M 1\/[7 . il
= m(A(g™, 1) i (¢%,4) # ni (by definition of AMMIT(M))
undefined otherwise

= m(AMeV M (@M, 6)) i A (g™, d) # il (the previous discussion)

undefined otherwise

_ 7T1()\Mea|y(/\/l)(q/\/l77;)) if)\M(qMJ)\L (by definition of AMealy(M))

undefined otherwise

)\M M, : if)\M ./\/t7 :
- (@™d) i (@04 (by definition of AMealy(M))
undefined otherwise

= MM(gM, i)

Before we can show that 7MMIT(M) (oM

,i) = 7™M (g™, 1), we first need to show that:

)\M(CIM, Z) e OMMlT(M) % N>0 PN /\Mealy(./\/l)(q/\/l7i) c OM x N>0
We get the first direction of this biconditional from:

AM (g™ §) € OMMIT(M) 5 >0
PN /\Mealy(M)(qM7i) c OMMlT(M) X N>0 (since)\M(qM,i) _)\Mealy(/\/l)(q/\/[ﬂl.))
= ,\M(qM,i) c OMMIT(M) A Ti"‘ (qM,i) e N>0 (by definition of /\Mealy(M))

= MMM, i) € OM A MM, i) € N>O (WM is A’s output function)
(by definition of)\Mea'Y(M)>

PN /\Mealy(M) qM,i c O./Vl % N>O
() since MM (g™, 1))

88 Bram Pellen

We get the second direction of this biconditional from:

)\Mealy(M)(qM’ Z) c OM % N>0
& A (gM, i) € OM x N> (since AM (g, i) = AMeas(M) (gM i)

(by definition of 7r1>

e m (MM, i) e OM Am(MM (¢M 1)) e N0 .
by definition of o

by definiti £ \MMI1T(M)
o)\MMlT(AI)<qM’i) c OM /\’/TQ()\M((]M,Z)) c N>O < y dennition o

since AM (¢M i) # nil

= AMMITOD (g j) & QMMIT(N (XM (g) € N>0 (AMMITOV) i MMLT(M)’s output function)
by definition of AMMIT(M)

since AM (g™, i) # nil >

e MMM) e OMMIT(M) | >0 (by definition of 7r1>

<:>7_‘_1()\M(qM,Z-))eOMMIT(JVI)/\7_[_2()\M(qM7Z~)>€N>0 (

by definition of 75

We can now show that 7MMIT(M) (oM 4y — M (M).

TMMlT(M) (qlw’ Z)

To(AM (gM,3)) if AM(gM i) € OMMIT(M) 5 N>0

(by definition of 7MMIT(M))
undefined otherwise
AM (oM if)\Mealy(/\/l) M OM x N>0
= m2(AT(g0) (¢™,9) € 8 (the previous discussion)
undefined otherwise
/\Mealy(M) ; if)\Mealy(M) M OM x N>0
= m((¢*0) i (¢™,7) € % (an earlier discussion)
undefined otherwise
/\Mealy(/\/l) ; if +M /\/l7 ;
= ™ (@™, 9) g™l (by definition of \Mealy(M))
undefined otherwise
B ™M(gM, i) if TM(gM, i)l (by definition of)\Mea'Y(M)>
undefined otherwise since TM(QM7 i)
= 7M™, i)

We can now show that:

uWO'rdMMlT(M) (p i)

= uWord%’}MT(M)(p) (i, \MMIT(M) (M i),Tj_AMlT(M)(qM,i)) (by definition of uWord)
= uWordla(p) (i, MMTOD (g, i), 7YMITD (M i) (1H)

= uWord;Z\lA (p) (i, VM (g™, 3), 7™M (g™, 1)) (the previous discussions)
= uWord;\gA (p) (by definition of uWord)

k-A-Complete Conformance Testing of Mealy Machines with Timers 89

Since (5MM1T(M)*(qé”, p 1)}, we need to show that:

6MM1T(M) (Q(])V[,P ’L)
= MMIT(M) (MMITQM)™ (M) iy (by definition of SVMIT(M)™)
= GMMIT(M) (oM) (by definition of ¢M)

SM(gM 3) if ¢M € QMMITD /i £ timeout
(7.9 it @ i # timeou (by definition of SMMIT(M))
undefined otherwise

SMMIT(AM) (M

Rule 2.1 applies to MM1T (M)
=M (5™ (", p), 1) (by definition of ¢M)
=M (g p i) (by definition of 6™ ")

Since 5M*(q£/‘, p 1){, we need to show that:

M (g p i)

= M (5M*(Q£Aa p):1) (by definition of 6")

= (g™, 1) (by definition of ¢™)

_ 6Mea'y(M)(qM,) (by definition of 6Mea'y(M)>
M (M, i)l

— gMealy(M) (gMealy(M)™ (M)) (by definition of ¢™)

= 5MeaIY(M)*(Q%A» p i) (by definition of sMealy(M)™)

— if uWordzﬂle(M)(p)T A uWordéZ\ﬂ (p 9)1, then uWord

holds. Wegalso get that:

MM1T (M)
M
d0

(pi) = uWordé‘gA (p 1) trivially

uWordz/(l%le(M) (pi)t A uWordéZ\lA (p i)t

& 5MM1T(M)*(qé”,p DT A M (@, p i)t (by definition of uWord)

So we are done.

Appendix C

Definitions, Properties and Proofs
Related to (g)MMTs

This appendix contains a collection of definitions, properties and proofs that we cut from Chapter 5 because
we didn’t need them to explain the testing procedure. We included them here, because we use them to prove
the validity of our method.

C.1 Proofs Related to Functional Simulations

Proofs for (g)MMT properties related to functional simulations.

C.1.1 Proof of Lemma 5.3.1

Proof. Let m = qi_1 ey g =y ¢; be any x-spanning sub-run of any run p = qo LAELIN qn € runs(T).
uy,

Then:
1. i; = to[z], and

2. lastStarted At” toija (z) = k.
qo0 —>ij1
We can infer the following;:

o We know that since m is a-spanning, ix41...9;—1 are not to[z]. Therefore, we get from (FMS2)
that fi(igs1) ... fe(ij—1) are not to[fi(z)].

o We get from (FMS1) that since x is active in states gy . .. ¢j—1, fi(x) is active in states fs(g) - - - fs(gi—1)-

o We get from (FMS3) that since x is (re)started in uy, fi(z) is (re)started in fy,(gr—1,k)-

These three conditions tell us that lastStartedAt™ Fein) Feiy1) (fe(x)) = k. Since f(i;) =
fs(go) = fs(a5-1)
fi(to[a]) = to[fi(2)], we thus get that (f,, fi, fu)(r) is fi(z)-spanning. O

C.1.2 Proof of Lemma 5.3.2

Proof. Let m = qx—1 ey Qi RLEEEETN g; be any z-spanning sub-run of any run p = qo MAELLN Gn € runs(T).
Uk
Then:
1. i; = to[z], and
(x) = k.

2. lastStartedAt” iy
Q71

90

k-A-Complete Conformance Testing of Mealy Machines with Timers 91

We can infer the following:

o We know that since 7 is z-spanning, ix41 ...%;_1 are not to[z]. Therefore, we get from (FGS2):
Vie{k+1,...,5 —1}: (fl@—1,2t) # fe(@—1,to[z]) = to[fi(qi—1, 2)]).
o We get from (FGS1) that since z is active in states g ... gj—1:

Vie{k,....j—1}: (fila,z) € XM (fo(qr)).

o We get from (FGS3) that since z is (re)started in ug, fi(qr,x) is (re)started in fo,(qr—1, ix)-

These three conditions tell us that lastStartedAt;M(: F(a0ri) e (aj_gvig—1) ")(ft(qj,hx)) = k. Since:
s(q0 s(qj—1

fi(gj-1,15) = fi(gj—1,to[z]) = to[fi(gj—1,)],
we thus get that (fs, fi, fu) () is spanning. O

C.1.3 Proof of Lemma 5.3.3

Proof. We use a proof by induction on j:

e Base case: j =k, then:

M M
renameTo Fe(ap i) Feaj—1.5) (ft(Qkﬁx)) = TenameTOfs(‘Ik)(ft(qk7m))
fs(Qk) fs(‘]j)

= ft(%l’) = ft(qjvx)a

as required.

o Inductive step case: j > k. We use the induction hypothesis (IH):

renameTo™ o ey (fe(ar, ©)) = fi(a;, @)
fs(ar) fS(Qj)
We get:
M
renameTo ftlagigy1)---feaj.i541) (ft(Qk7 I))
fs(ax) fs(aj+1)
M M
= renameTo Fe(azi541) (renameTo Felag igy1)---fe(aj—1,15) (ft(anx)))
fs(gg) = fs(g5+1) fs(ar) fs(gq5)
M
= renameTo Felagigen) (fie(gj,x)) (IH)
fola;)—fs(qi+1)
(FGS3) A
= j+15T),
fe(gj41,2) ((FGS4)
as required.
O]

C.1.4 Proof of Lemma 5.3.4

Proof. We use a proof by induction on j:

e Base case: j = k, then:

M M
renamesTo Folapigqn)-Felaj_1.i)) (felgj, @) = TenamESTOfs(qj)(ft(QjaI))
fs(ar) fs(aj)

= fi(qj,x) = fi(ar,),

as required.

92 Bram Pellen

« Inductive step case: j > k. We use the induction hypothesis (IH):

M
renamesTo e @ring) Fe (2515 (fi(gj,) = filqr, x).
fs(ar) fs(a5)
We get:
M
renamesTo felag—1.ig)---felaj—1.i5) (ft(q]’x))
Fs(qr—1) fs(a5)
M M
= renamesTo e 1i) (renamesTo Fe(@oriogn) S (25— 15i5) (fi(gj,)))
folap—1)——fs(ar) fs(aw) fs(aj)
= renames To™ Fo(dh_1vin) (fe(qr, x)) (TH)

fs(gp—1)——————>fs(ax)

= ft(Qk—17$)7 (

as required.

C.2 Properties and Proofs Related to Observation Tree Runs

This section contains some of the lemmas and proofs concerning runs for the observation tree MMTs
from Chapter 5.

Lemma C.2.1. Let 7 be an observation tree MMT, and let x € X be a tlmer of 7. If the runs m =

qo MIEELN gn and 7' = q0 ~—+ g, of T are matching with mZ,: 7w <+ 7’ and gqx_1 RN g;j is an x-spanning

il

sub-run of 7, then ¢j,_, LN q; is an mJ,(r)-spanning sub-run of 7.

Proof. Since qr_1 RASEN g;j is an z-spanning sub-run of 7:
1. 7 has action i; = to[z] for the timer x € X, and

2. lastStarted At i () = k.
qo———7qj—1

The fact that 7 and 7’ are matching tells us that #; = to[m[,(z)]. For all actions within 7"’s sub-
run gj, Der1tyon, qJ 1> we know that:

o if they are input actions, then if they (re)start a timer y, the fact that T is an observation tree implies
that this is the first transition in which y was started.
We now show by contradiction that such a timer y cannot be the timer m7,(z). The timer z was either
already active in 7’s initial state, or it was started somewhere along w. We perform a case distinction:

— if x was already active in 7’s initial state, then m7, (x) = m(z) was active in 7’’s initial state. The
idea that y = m7,(z) would thus conflict with the fact that y is first started in this later action

A
within ¢}, ——% ¢j_1- Therefore, in the first case, y # mZ, (2).

— if first becomes active in action i; of 7, then we know from the fact that z is (re)started in iy
that [< k. We know from the fact that 7 is an observation tree that © = x,. The definition
of m7, now gives us that m7, (z) = m7,(xq,) = 4. Therefore, m7, (z) could not have first become
active due to any action other than ¢j. Since | < k, we know that m7,(z) could not have first

become active due to an input action within g}, i“—» ¢j_1- The idea that y = m7, (z) would

thus conflict with the fact that y is started within g, Bl qq-

case, y # m=, (x).

Therefore, in the second

k-A-Complete Conformance Testing of Mealy Machines with Timers 93

e if they are timeout actions, then:

— if they are for mT, (x), then m must have a timeout for = at the same index. This cannot be the

. .. c. Tht1---05+1 C. .
case, since this timeout for would be within ¢y ————— ¢;j11, and thus within an z-spanning
run.

— if they are timeout actions for a timer other than mZ, (z), then they cannot (re)start mZ,(x), since
MMT timeout actions can only restart the timer for which the timeout occurs.

Tyq el
We thus know that m7, (z) is not (re)started within ¢} ——— 2~ Qi1
We need to show that action ¢}, (re)starts mZ, (z). We know that ¢, must either be an input action, in which
case 7 being an observation tree implies that timer m7, () is first started in this action, or it is a timeout

for timer mT, (z). We perform a case distinction:

o In the first case, we know from the fact that m and 7’ are matching that 7, must be an input action
as well. Since 7 is an observation tree, this would imply that x = z,,. We then know from the fact
that 7 and 7' are matching that m7, (z) = mZ7,(2q,) = x4 . This then implies that m7, (z) has to be
started at index k of 7', as T is an observation tree and ¢}, is the target state of the transition for that
action.

o In the second case, the fact that 7 and 7’ are matching implies that i = to[z]. Therefore, if
timer m7,(x) isn’t started in action k of 7', then the fact that i), = to[mZ, (z)] implies that mT,(z)

AR
would have to be started at some point within g, BLAL N i 93'71- But since 7 is an observation
tree and m7, (z) first became active along w, that could only be done by actions that are timeouts
for m”,(x). The fact that m and 7’ are matching means that there would then have to be a timeout

action for x within g DeAteticl, gj—1, which cannot be the case as qr_1 RN g;j is x-spanning. We
thus know that in the second case, timer m7, (x) must be (re)started in index k of #'.

We already knew that i/, = to[m7, (z)], and we now also know that lastStartedAt , ., (mZ, (z)) = k.
el
46—]”1}71
A
The sub-run ¢} ;| — q; of 7' is therefore m7, (x)-spanning. O

Lemma C.2.2. Let 7 be an observation tree MMT, and let x € X be a timer of 7. If the runs 7 =
Q0 MIESLN gn and 7 = ¢}, M) q;, of T are matching with mZ, : m <> n’. Then:
Vje{l,...,n}: ij € TO(X) <= i;e€TO(X).
Proof. Let j € {1,...,n}. We cover both directions of the bi-implication:
o Ifi; € TO(X), then m[,: 7 <> 7' tells us that i, € TO(X), as required.

o If i € TO(X), then we use a proof by contradiction to show that i; € TO(X):
Suppose that i; ¢ TO(X). Then i; € I. The fact that mJ,: 7 <> ©’ then tells us that ¢; € I, which
contradicts i; € TO(X). Therefore, i; € TO(X), as required.

O

Lemma C.2.3 (Run matchings for (g)MMT observation trees are injective). Let 7 be an ob-
servation tree with states qo, ¢y € Q, and with a matching m: qo <+ ¢). Let 7 = go =" ¢, € runs(T)

and 7 = ¢}, = ¢/, € runs(T) be matching runs, with m™, : 7 <> 7. Then m7, is injective.
Proof. The run matching m7, is defined as:

mzp = mU{(2q,,xg) | 0 <k < n}.

T T

94 Bram Pellen

Let f = {(zg,2q) | 0 < k < n}. Then m7, = muU f. Clearly, dom(mf,) = dom(m) U dom(f),
where dom(m) C X(qo) and dom(f) = {zg, | 0 < k < n}. This implies that dom(m) Ndom(f) = 0.
Since timer matchings are always injective, m is injective. We can also see that:

Ve,y edom(f): xF#y = fl@)# fy),

which means that f is injective.
Finally, the fact that m: X (qo) — X(qj) implies that m(dom(m)) C X(q(), while f(dom(f)) = {z,

and y € dom(f), then m7, (z) # mZ, (y).
We have shown that m7, is injective, as required.

O

Lemma C.2.4. Let T be an observation tree MMT, and let € X be a timer of 7. If the runs 7 = ¢g LIRS

’

..., . . .0 . .
¢n and 7' = ¢} — ¢, of T are matching with m”,: 7 <> 7’ and ¢}, |, — q; is an m7, (z)-spanning

U --alj . .
sub-run of 7', then gy_; —— ¢, is an z-spanning sub-run of 7.

Proof. Let q;,_, RLAEN q; be an m7, (z)-spanning sub-run of 7', Lemma C.2.2 tells us that since i, € TO(X),
ij € TO(X). Let i¢; = to[y]. Since observation trees are MMTs, we know that a timeout for a timer y must
always terminate a y-spanning run. The fact that T is tree-shaped implies that for each timeout action

in 7, there is precisely one spanning terminated by that timeout. Let g _1 RN g; be the y-spanning
P
that terminates in our action i; of 7. Then Lemma C.2.1 tells us that since m=™,: 7 < 7/, ¢}, _; —— q;

is m7, (y)-spanning. Since mZ,(y) = i} = mJ,(x), m7,(y) = mJ,(v). Lemma C.2.3 now tells us that y = =,

which tells us that &’ = k. This implies that since qg/_1 RSN ¢; is y-spanning, qx_1 BESEN g; is x-spanning.

Furthermore, since ¢j,_, BLEN q; is a sub-run of 7', index k falls within 7’. Index k thus falls within =,

which implies that q;_1 RN g; is an z-spanning sub-run of 7, as required. O

C.3 Properties and Proofs Related to Apartness

This section contains some of the lemmas and proofs that are centered around the notions of apartness
that Chapter 5 introduced for (observation tree) (g)MMTs.
We also use the following two lemmas:

Lemma C.3.1. Let T be an observation tree MMT, let M be an s-learnable MMT, and let (fs, f, fu): T —
M be a functional MMT simulation. Let qo,q) € Q7. If qo, ¢} € A}, then qo # g = fs(q0) # fs(qp)-

The proof of Lemma C.3.1 can be found in Appendix C.3.1.

Lemma C.3.2. Let 7 be an observation tree MMT, let M be an s-learnable gMMT, and let (fs, f¢, fu): T —
M be a functional gMMT simulation. Let qo,qh € Q7. If qo, g} € AL, then qo # ¢, = fs(qo) # fs(qh)-

The proof of Lemma C.3.2 can be found in Appendix C.3.2.
We use these lemmas in our proof of Theorem 5.8.1, which can be found in Appendix C.6.1.
We use the following lemma in two proofs: one in the current appendix, and one in Appendix C.8.

Lemma C.3.3. Let 7 be an observation tree MMT, and let M be an s-learnable gMMT. Let qq, g, € Q7,
with go,q) € AL,. Let (fs, fi, fu): T — M be a functional gMMT simulation, for which |X™(fs(g0))| =

|XM(fo(qh))]- Let m = qo, = ¢, € runs(T) and 7 = ¢}, LN q,, € runs(T). Let p = (fs, ft, fu)(7),
' = s, ft, fu)(7'), and maximal matching m’: fs(qo) <> fs(q() with m'g,: p < p. Let:

m = {(z.y) € X7 (q0) x X7 (qp) | (fe(q0,), fi(ag,y)) € m'}.

k-A-Complete Conformance Testing of Mealy Machines with Timers 95

be a maximal matching m: o <+ ¢(, such that m7,: 7 <> 7’. Then:

filg,mZ(x)) ifk>0

m'h, (filq, x),1) =
undefined ifk=_1

with k = lastStarted At™ 2020551) - Fe (ag 1081 (felq,) = lastStarted At I ().
fs(qo) fslar) qo——aq

Proof. For all x € X7 (qp), condition (FGS1) implies that f;(qo, =) € X™(fs(g0)). Now, m’ being maxi-
mal implies that since XM (fs(q0))| = | XY™ (fs(gh))], there is a timer z € XM (fs(g))): m'(fi(qo, 7)) = 2.
Since z € XM (fs(q))), gh € AL, and (FGS1), we know that there is a timer y € X7 () such that f;(q),y) =
2 = m(fulao,). S0 1 (e (G0,2)) = Fo(dh,9) = filgh m(x)), for all z € X7 (qo).

Partial function m needs to be injective to be a valid matching. We get from (FGS2) that if © # 2,
then fi(qo,x) # fi(qo,x’). We know from the fact that m’ is a matching that m’ is injective, which
tells us that m’(f:(qo,x)) # m'(fi(qo,2")). This tells us that fi(g), m(z)) # fi(gh, m(z)), which tells us
that m(z) # m(z’). Partial function m is therefore injective, which makes it a valid matching,.

Since p and p’ are matching under m’, matching m’ is extended to p and p’ as:

' —
my(z,1) =
m'(z) ifl=0
renameTo Pl ol i (m/ (renamesTo Fe(@0ri1) e Fa a1 0i) (x))) #fl1>0Ak=0
Folah) 2 Sk fo(a) fs(q0) fs(a)
. iy f2(@0:80) Feldh—1,1k) .
renameTo Pl S]] (timerStartedAt(fs(qp)) ifI>0AE>0
fs(qy,) fs(q)
undefined ifk=1

where k = lastStartedAt™ Fe(d0rin) e Fa— 1ri) (x), and fi(gj—1,1;) = m/p’f(ft(qul, i;),j—1) for every j.
fs(qo) fs(a)
We simplify m;’f for timers that are explicitly obtained by applying the timer map f; to timers from X7 .

96 Bram Pellen

We can now show that:

m:)lj(ft(le 1‘), l) =

m/(fi(qo,)

renameTo Folaly) el) (m’ (renamesTo Fe(@0rin)en Fa a1 i) (fe(q,x))))
folah) fo(a) fs(q0) fs(a)

. ft(q/ »i,)"'ft(q,— 7""-,)

renameTo Felal il e el i) (timerStarted At (fs(qf) 0" SXORN
fa(aqy) fs(a))

undefined

m/(fe(qo,) ifl=0

renameTo Folaly i f2Ca] D) (m’(fe(qo, x))) ifl>0ANk=0
I () Is(ay) Lo

renameTo Felall e Fea] i) (fi(qy,, timerStarted At (g Q_ﬁg))) ifl>0NEkE>0
fs(ay,) fs(ay)

undefined ifk=_1

filgg, m(z)) ifl=0

renameTo Felal ity feCal i) (fe(gh,m(x))) ifl>0Nk=0
fs(ag) fs(ay) L

renameTo Fualily o)) (fi(qy,, timerStarted At (qf D)) i IS 0Ak >0
fs(ay,) fs(a))

undefined ifk=_1

fe(qh, m(x)) ifl=0

fe(al, m(z)) ifl>0Ak=0 ((FSS) /\>

fi(q], timerStarted At (g, u>)) ifl>0NEkE>0 (£54)

undefined if k=1

fe(gh, m(x)) ifl=0

filq), m(z)) ifl>0Nk=0 (The timer x was either already

fi(qy, mZ, (timerStarted At (qo LLELIN) ifl>0Nk>0 active in qo, or it was started in 7

undefined ifk=_1

fe(gh,m(x)) ifl=0

filg,m(z)) fI>0Ak=0 The timer x was either already

filgl,m™ () if1>0Ak>0 active in qqg, or it was started in w

undefined if k=1

filgl,m(z)) ifl=0VEk=0

filg,m~(x) ifl>0nk>0 (=0=k=0)

undefined ifk=1

/ 7\'[3 >
ft(ql’mﬂ' (1’)) lf]{i_O (mgm:/)
undefined ifk=1

ifl=0
ifl>0Nk=0
iflI>0ANEk>0
ifk=_1

(FS3) A
(FS4)

m/(ft(me))

fi(qp, m(x))

k-A-Complete Conformance Testing of Mealy Machines with Timers 97

where fi(gj—1,4;)" = m(fi(gj-1,4;),j — 1) for every j; and:

k = lastStarted At™ Fe(@0ri1)en Folal10i) (fe(q,x)) = lastStarted At (),
a

Fola) fola) e

per (FGS5). O

C.3.1 Proof of Lemma C.3.1

Proof. We can conclude that fs(qo) # fs(q)) if fs(qo) # fs(q0)- For fs(qo) # fs(q}) to be the case would mean
that for all maximal matchings m': fs(qo0) < fs(¢0): (fs(qo) #m' fs(g})). For all maximal m': fs(qo) «
fs(qh), there would have to exist an action sequence o’ € (AM)* such that o’ - f(go) #™ fs(gb). We will
show that qo # ¢q(implies that for all maximal m': f.(qo) <> fs(q(), there either exists an action sequence that
shows that fs(qo) #m' f (gp), or that fs(qo) # fs(qf) follows directly from a structural apartness between go
and ¢j.

The apartness qp # ¢(, may hold as a consequence of either of the following two cases:

o (active sizes): then qo,q) € AL, and |X7 (q0)| # |X7 (gf)|. Then qo € A}, implies that |X7 (qo)| =
|XM(f5(q0))|, and ¢fy € AL, implies that |X7 (g)| = | XM (fs(g)))|- Therefore:

XM (fo(g0))] = 127 (q0)] # [X7 (g0)] = [X™(fs (D).
This then means that fs(qo) # fs(q0)-

o (enabled sizes): then qo,q) € £{, and |X] (q0)| # | Xy (¢5)]- Then qo € £, implies that |XJ (go)| =
| X8 (fs(q0))|, and qf € €], implies that [X7 (q0)] = | X" (f:(qh))|- Therefore:

X5 (fs(90))] = |XT (90)] # X5 (q0)] = X" (fs(0))].
This then means that fs(qo) # fs(q0)-

For the remainder of this proof, we will assume that neither of these conditions for apartness holds, since
otherwise there would be nothing more for us to show.
We know from qo, ¢ € A%, that, since gy # ¢} is not a consequence of (active sizes): | X7 (qo)| = | X7 (¢})|.
Since qo,) € AL, we know that |XM (£, (qo))] = [T (0)] = [X7 ()] = XM (1. (g)))]

Let m': fs(qo) <> fs(q)) be an arbitrary maximal matching between f,(qo) and fs(q)). We define the
matching m: go < q:

m = {(z,y) € X7 (q0) x X7 (a0) | (fe(2), fuly)) € m'}.

For all 2 € X7 (q), condition (FMS1) implies that f;(x) € XM (fs(q
since |XM(fs(q0))| = |XM(fs(qh))|, there is a timer z € XM (fs(q))
gy € AL, and (FMS1), we know that there is a timer y € A7
So ! (f(x)) = fuly) = fi(m(x)), for all = € X7 (qo).
Partial function m needs to be injective to be a valid matching. We get from (FMS2) that if z # 2/,
then fi(x) # fi(a’). We know from the fact that m’ is a matching that m’ is injective, which tells us
that m/(fi(x)) # m/(fi(2’)). This tells us that fi(m(z)) # fi(m(z')), which tells us that m(x) # m(a’).
Partial function m is therefore injective, which makes it a valid matching.

The apartness gy # ¢q(implies that there exists an action sequence o = 4y...4, that is a witness
of go #™ g}y. Lemma 5.5.2 tells us that n never needs to exceed |Q™|. We therefore assume that n < |Q™|.
We get the runs:

0)). Now, m’ being maximal implies that
): m(fi(z)) = 2. Since z € XM (f(qh)),
(¢) such that fi(y) = z = m/(fi(2)).

WZQOE%...ELO—)(]HETUHS(T)
u

and:

i i /o'
' =q, ... ¢, €runs(T)

w'

98

Bram Pellen

with mZT,: 7w <> n’. We use f; to lift o to M, which yields the action sequence ¢’ = fi(i1)... fi(in). This
gives us the runs:

ft % ft 7;n o
p=folgo) 2 Lon b 0y € runs(M),

fe(u)
and:
fe(ih) fe(in) /o
ph=fslao) — ... fslap) € runs(M).
fe(u’)
The runs p and p’ are matching under m/, since for all j € {1,...,n}:

If fi(ij) € I, then f;(i;) = i; € I. We then know from the definition of m7, that ¢, = mZ,(i;) = i; € I.
Therefore:

fuliy) =i =iy = fi(iy),
as required.

If fi(i;) = fi(to[z]) = to[fi(x)] for some fi(z) € XM, then i; = to[z]. There are two possibilities
related to k = lastStarted At™ ey FeGiy_1) (fe(z)):
Jolgo)) > fs(g5-1)
1. If k =0, then fi(x) € X (fs(qo)). Therefore, since |X7 (qo)| = | XM (fs(q0))|, we know that Jy €
X7 (qo): fi(y) = fi(x). Condition (FMS2) tells us that y = =, which thus implies that z € X7 (o).
The fact that 7 and 7' are matching for m now tells us that ; = to[m(z)]. Therefore:

fi(@5) = fr(to[m(x)]) = to[fe(m())] = to[m’(fi(x))].

Let k' = lastStarted At £ (m/(fe(x))). The fact that k' = 0 follows by
fola)— " ()
contradiction:

Suppose that & > 0. Then fs(q},_,) Jolb)- el = (m(@)

fs(qg-) is a spanning run. Then

(FMS5) tells us that since 7’ € runs(T), ¢ _, MAEN q; is m(z)-spanning. We therefore know

from Lemma C.2.4 that qg/_1 RLAIEN g; is x-spanning. Lemma 5.3.1 now tells us that:

fe(igr)-Je(i5)
Fslaw—1) = fu(a))
is spanning, where i; = to[z] tells us that f;(z) € X (fs(gj—1)). Therefore:
k = lastStarted At™ FeG) Ty 1) (fi(z)) =K >0.
falgo)) > fa(g;-1)

This contradicts & = 0. Hence, k' = 0, as required.

2. It k > 0, then f(qp_y) Slodelia),

then tells us that qr_1 RSN gj is an x-spanning sub-run of 7. We know from Lemma C.2.1

[s(gj) is an f(z)-spanning sub-run of p. Condition (FMS5)

[
: ’ : T / ka1 L : /
that since 7 and 7’ are matching under m7,, ¢, _; — ¢} is an mJ, (z)-spanning sub-run of 7.

Fe(35) . fe (3%
Lemma 5.3.1 tells us that therefore, fs(q,_;) Sl JeE),

required.

fs(q}) is a spanning sub-run of p’, as

Since p and p’ are matching under m’, we can extend matching m’ to p and p’:

m/(x) ifl=0vk=0
mig (@, 0) = § w (rM(foldhy). fol@x)) 1> 0Nk >0
undefined ifk=_1

k-A-Complete Conformance Testing of Mealy Machines with Timers 99

where k = lastStarted At™ oGy Fo (i) (x) and f,(i;) = m;‘f(ft(z'j),j— 1) for every j. We simplify m;f
fs(qo)—————fs(a)
for timers that are explicitly obtained by applying the timer map f; to timers from X7. The resulting

equation will help us in the proof’s final stage. We get:

m/(fi(z)) ifil=0vVk=0
m (fo(@),0) = § m (7M(folghy), fi(in)) iE1>0Ak >0
undefined ifk=_1
fe(m(x)) ifl=0vVEk=0
B S . m'(fi(z)) = fe(m(z))
- ft(’frl(T (qk—17lk‘>)) lfl>0/\]€>0 /\(FMS?))
undefined iftk=_1
m(x ifl=0VvVk=0
B Fr(m()) . The timer x was either already
=\ felmz(2)) iE1>0Ak>0 active in qq, or it was started in 7
undefined if k= L

fitmZ (x)) ifkeN

= (m CmZ)
undefined if k= L
where f;(i;) = m;f,(ft(ij),j — 1) for every j; and:
k = lastStarted At™ FeGin)eeFe (i) (fe(z)) = lastStartedAt” oy (@),
fs(go)———————fs(a1) qQo——q

per (FMS5).

We now look into the conditions(s) that make o F ¢ #™ ¢q). We show that either ¢’ is a witness
of fo(q) #™ f.(q'), or that m7, is invalid and can therefore not be relied upon to say that f.(go) and fs(g})
may be the same state of M:

o The apartness is structural, then we know that m?7, is invalid in the sense that it matches observation
tree timers x and m7, that are started in different points along the same run, and that can therefore
not represent the same timer of M. Matching m is therefore not a candidate for a matching for which
its existence shows that fs(go) and fs(qj) may be the same state of M.

o (outputs): then o # o’. Then (FMS3) and (FMS4) tell us that:

fe(in)/o'

ft(in)/o
) = A fsldpy) ——

fs(anl
Since 0 # o/, we have that o’ F fs(q0) #™ fs(q)).

o (constants): then u = (x,¢), v/ = (2/,¢) and ¢ # ¢/. Then (FMS3) tells us that fi(u) = (f:(z),¢)
and fi(u') = (fi(2'),). Since ¢ # ¢, we have that o/ - f(qo) #™ fs(qb).

o (updating): then g,,q, € AL and u = 1 < u' # 1. We perform a case distinction:

L. u=LAu = (2/,c), then (FMS3) tells us that f,(u') = (fi(2"),¢') # L. The fact that ¢, € A,
tells us that w = L implies that f;(u) = L.

2. u = (z,¢) ANu' = L, then (FMS3) tells us that fi(u) = (fi(z),c) # L. The fact that ¢/, € A},
tells us that ' = L implies that fi(u') = L.

In both cases, o’ F fs(qo) #m fs(qp)-

100 Bram Pellen

o (active sizes): then g, q, € AL, and |X7 (¢,,)| # |X7 (¢,)|- Then g, € A%, implies that |X7 (g,)| =
|XM(f5(gn))|, and ¢}, € A}, implies that |X7 (¢,,)| = |XM(fs(q,))|. Therefore:

XM (fslaa)] = 137 ()] # 127 (a)] = XM (fs(a)]-
This then means that o F fy(qo) #™ fs(qh).

o (enabled sizes): then q,,q, € £], and |X] (¢,)| # |XJ (¢,)|. Then g, €], implies that |X (g,)| =
| XM (f5(gn))|, and ¢}, € E], implies that [X] (¢,)| = |X (fs(q,))|- Therefore:

X (folan))] = 127 (an)] # 12 (7)) = 1% (fo(an)].
This then means that o’ b fy(qo) #™ 1s(q0)-

o (enabled): then, g,,q, € £, and Jz € dom(m™,): (z € Xo(gn) & mT () € Xo(q,)). We thus know
that for such a timer z, either:

Lz € X] (gn) AmT,(z) & Xo(gy,), or
2. mZ(x) € Xo(q)) A & X (gn)

We perform a case distinction:

1. in the first case, (FMS3) and (FMS4) give us that z € X (¢,) implies that fi(z) € XM (fs(qn))-
Conditions (FMS3) and (FMS4) also imply that, since ¢, € E1,, m%(z) ¢ Xo(q,) implies
that fi(mT, (z)) & Xo(fs(q,,)). Thus, since f;(m7, (z)) = m;’f(ft(m),n), we get that m;ff(ft(a:),n) g
Xo(fs(q,)). This then implies that m;p,(ft(x),n)i. We may thus conclude that in the first case,
3fe(@) € XM (mf (fe(z),)b A (felw) € XM (fs(an)) Amiy(fe(e),n) & Xo(fs(an)))-

2. in the second case, z & X (gn) implies that fi(z) & XM(fs(gn)) due to g, € E1;, (FMS3) and
(FMS4). We have that mT, (x) € Xy(q),) implies that f,(mZT, (x)) € Xo(fs(q),)), per (FMS3) and
(FMS4). Therefore, since f;(m= (x)) = m;f,(ft(x),n), we get that m'p’f(ft(x),n) € Xo(fs(q)))-
This then implies that mlp‘f (fi(x),n)). We may thus conclude that in the second case, 3f;(x) €
XM (g (fo(@),n)d A (folx) & XM (Fs(an)) Amig (fe(x),n) € Xo(fi(gn)))-

Therefore, in all cases, 3f;(z) € X™M: (m;ﬁ(ft(x),nN A (fi(z) € XM (fo(an)) & m’p’f(ft(x),n) &
Xo(fs(g,)))), which tells us that o’ fs(q0) #™ fs(qb).

We may thus conclude that for all maximal matchings m': fs(qo) < fs(a(), fs(qo) # fs(q}) either follows
directly, or £u(qo) #™ f,(qh). Therefore, f,(qo) # f.(qb), as required. O

C.3.2 Proof of Lemma C.3.2

Proof. We can conclude that fs(qo) # fs(q0) if fs(qo) # fs(q0)- For fs(qo) # fs(q}) to be the case would mean
that for all maximal matchings m’: fs(qo) < fs(qh): (fs(q0) #™ fs(qh)). For all maximal m’: fi(qo) ¢
fs(gh), there would have to exist an action sequence o’ € (AM)* such that o’ - f.(go) #™ fs(qh). We will
show that qg # ¢(, implies that for all maximal m': fs(qo) <> fs(q(), there either exists an action sequence that
shows that fs(qo) #™ fs(qh), or that fy(qo) # fs(qh) follows directly from a structural apartness between go
and ¢f.

The apartness qp # ¢(, may hold as a consequence of either of the following two cases:

o (active sizes): then qo,q) € A}, and | X7 (q0)| # |X7 ())|. Then qo € A, implies that |X7 (qo)| =
|XM(fs(q0))|, and gf € AT, implies that |X7 (¢))| = [XM (fs(gp))|. Therefore:

XM (fo(a0))] = 127 (q0)] # 1X7 (ag)] = |X™ (fs(g0))]-

This then means that fs(qo) # fs (Q6)~

k-A-Complete Conformance Testing of Mealy Machines with Timers 101

o (enabled sizes): then qo,q) € £{, and |X] (q0)| # | Xy (¢5)|. Then qo € £, implies that | X (g0)| =
| X3 (fs(q0))|, and qf € €] implies that [X7 (q0)] = |X5" (f:(qh))|- Therefore:

1AM (Fo(ao))| = 12T (q0)| # 14 (a0)| = 1 X" (s (a0))]-
This then means that fs(qo) # fs(q0)-

For the remainder of this proof, we will assume that neither of these conditions for apartness holds, since
otherwise there would be nothing more for us to show.
We know from qo, g, € A}, that, since go # ¢} is not a consequence of (active sizes): | X7 (qo)| = | X7 (¢))|.
Since qo, g € A, we know that |XM(£,(g0))| = |27 (g0)] = |X7 (ah)] = XM (£ (gh))]-

Let m’: fs(qo) < fs(qp) be an arbitrary maximal matching between fs(qo) and fs(q}). We define the
matching: m: qo ¢ ¢{:

m={(z,y) € X7 (q0) x X7 (q}) | (fi(q0,), fi(dhy)) € m'}.

For all z € X7 (qq), condition (FGS1) implies that f;(qo,z) € XM (fs(q0)). Now, m’ being maximal implies
that since |X™M(fs(q0))] = [X™M(fs(qh))|, there is a timer z € XM (f.(q})): m'(fi(qo,x)) = 2. Since z €
XM (fs(qb)), g € A%, and (FGS1), we know that there is a timer y € X7 () such that fi(g),y) = z =
! (fuldo,)). So ' (Fulao, @) = fuldy) = fuldy, m(x)), for all = € X7 (o).
Partial function m needs to be injective to be a valid matching. We get from (FGS2) that if x # 2/,
then fi(qo,x) # fi(qo,2’). We know from the fact that m’ is a matching that m’ is injective, which
tells us that m/(fi(qo,x)) # m'(ft(go,2’)). This tells us that fi(q), m(x)) # fi(qh, m(z’)), which tells us
that m(x) # m(x’). Partial function m is therefore injective, which makes it a valid matching.

The apartness qo # ¢} implies that there exists an action sequence ¢ = i; ...i, € (A7)* that is a witness
of go #™ ¢}. Lemma 5.5.2 tells us that n never needs to exceed |Q™|. We therefore assume that n < |Q™|.
We get the runs:

w:qoi—1>...M>qn€runs(T)
u

and:
-/ -/ /
/ AT iy, /o0 ’
™ =dqy —> .- T> q, € TunS(T),

with mZ,: m <> 7n’. We use f; to lift o to M, which yields the action sequence o’ = fi(qo,%1) - - - fi(qn—1,%n)-
This gives us the runs:

ft(goyi1) ft(@n—1,in)/o0
T fe(@n1san)

P = fS(QQ) fs(Qn) € ’I“u’fLS(./\/l),

and:
fe(a6,1) felan_1:17)/0
Pl = Fulay) L T f(g,) € runs(M).
felay, _yan,u')
The runs p and p’ are matching under m/, since for all j € {1,...,n}:

o If fi(gj—1,%;) € I, then fi(qgj—1,i;) = i; € I. We then know from the definition of mJ, that z; =
mZ,(i;) = i; € I. Therefore:

fildj—1:15) =75 =iy = filgj-1,45),
as required.

o If fi(gj—1,1;) = fi(gj—1,to[z]) = to[fi(gj—1,z)] for some f;(gj_1,2) € X, then i; = to[x]. There are
two possibilities related to k = lastStarted At™™ Fe@0ri) e (ay_grig—1) (fe(gj—1,)):
fs(q()) fs(Qj—l)

102 Bram Pellen

1. If k = 0, then renamesTo™ F(a0.i1) - F1 (0 3vij 1) (fi(gj—1,7)) € X" (fs(q0)). Therefore,
fs(qo0) fs(gj-1)
since |X7 (qo)| = |XM(fs(q0))|, we know that:
Jy € X7 (q0): filao,y) = renamesTo™ Ly (fi(gj—1,2)) € XM(fs(q0)).
fs(qo) fs(gj-1)

Condition (FGS2) tells us that y = x, which thus implies that 2 € X7 (¢o). The fact that 7 and 7’
are matching for m now tells us that i, = to[m(x)]. Therefore:

ft(q;—lvi;‘) = ft(Q;—lato[m(x”)
= to[fi(qj 1, m())]

M
= to[renameTo Feah i) te a8 (fi(qh, m(x)))] (Lemma 5.3.3)
fs(Q6) fs(QE',l)
m’ ,x)) =
= to[rename To™ Pty Fe (i) (m’(f:(qo,)))] (]/‘}(qo)
bty fulahym(@)
fs(Q()) fs(qj',l)
— M
= to[renameTo Fea i} Fetay) (...
fo(dy) Fold)
. m/(renames To™ Fe(0rit) e Fe(a;—2ri5—1) (fi(gj=1,2))))]. (Lemma 5.3.4)
fs(qo) fs(gj-1)
Let k' = lastStartedAt™ Fea e,y (m'(fe(qj_1,7))). The fact that k' = 0

fs(ag) fsaj_y)
follows by contradiction:
ft(//_ 7il/)~--(ft(,/-, 7i/'):ft(/_7 7m(1)))
Suppose that &' > 0. Then f(q},_;) Ty 1 by b fs(q}) is a spanning

run. Then (FGS5) tells us that since ©" € runs(T), ¢ _; SAEN q; is m(x)-spanning. We
therefore know from Lemma C.2.4 that gz 1 SEEEN gj is x-spanning. Lemma 5.3.2 now tells us

that f, (g _y) L) filas1)
M (fé (Qj—l)). Therefore:

fs(g;) is spanning, where i; = to[z] tells us that fi(g;—1,2) €

k = lastStarted At™ F(20.i1) - F (0 —3rif 1) (fi(gj—1,2)) =K >0.
fs(qo0) fS(qul)

This contradicts k = 0. Hence, k' = 0, as required.

2. If k > 0, then fi(qr—1) L NRS G) fs(gj) is a spanning sub-run of p. Condition (FGS5)

then tells us that qr_1 RSN gj is an z-spanning sub-run of 7. We know from Lemma C.2.1

. .
Zk...’Lj

that since 7 and 7’ are matching under m7,, ¢, _; —— ¢} is an mJ, (z)-spanning sub-run of 7.

Fe(35) .o fe (3%
Lemma 5.3.2 tells us that therefore, fs(q,_;) Sl JeE),

required.

fs(q}) is a spanning sub-run of p’, as

Since p and p’ are matching under m’, we can extend matching m’ to p and p':

P —
my(z,1) =

m'(z) ifl=0

renameTo Pl ol i (m/ (renamesTo Fe(@0ri1)en Fa a1 0i) (x))) #fl1>0Ak=0
folah) 2 Sk fo(a) fs(q0) fs(a)

. iy f2(@0:80) Feldh_11k) .

renameTo Pl S]] (timerStartedAt(fs(qp)) ifI>0AE>0
fs(qy,) fs(q)

undefined ifk=1

k-A-Complete Conformance Testing of Mealy Machines with Timers 103

where k = lastStarted At™ 1201 T (€ 10i0) (x), and fi(gj—1,%;) = m;ff(ft(qj_l, i;),j—1) for every j.
fs(q0) fslar)

We simplify m;)p, for timers that are explicitly obtained by applying the timer map f; to timers from X7 .

The resulting equation will help us in the proof’s final stage. We get from Lemma C.3.3 that since | fs(qo)| =

|fs(q0)!:

filgy, m7%(z)) if k>0

m:)lj(ft(Ql7$)7l) =
undefined ifk=_1
where fi(gj—1,%;) = m;f,(ft(qj,l,ij),j — 1) for every j; and:

k = lastStarted At™ Fo(20vi1)ee F1 (@) —10i0) (fela,z)) = lastStartedAt” iy (2),
fs(qo) fs(ar) Qo ——a

per (FGS5).

We now look into the conditions(s) that make o F ¢o #™ ¢). We show that either ¢’ is a witness
of fs(q) #m fs(¢'), or that mT, is invalid and can therefore not be relied upon to say that fs(qo) and fs(qp)
may be the same state of M:

o The apartness is structural, then we know that m7, is invalid in the sense that it matches observation
tree timers x and m7, that are started in different points along the same run, and that can therefore
not represent the same timer of M. Matching m is therefore not a candidate for a matching for which
its existence shows that fs(go) and f4(g)) may be the same state of M.

o (outputs): then o # o’. Then (FGS3) and (FGS4) tell us that:

ft(qn-1,in)/0 Telan_1in)/0
mm o _—

fs(Qn—l) A fs(q’;b—l)
Since o # o', we have that o’ - fs(qo) #m' fs(dh)-

o (constants): then u = (z,¢), v’ = (¢/,¢) and ¢ # ¢/. Then (FGS3) implies f¢(gn—1,qn, w)(fe(gn,2)) = ¢
and fi(q,_1,q5,u) (fi(q,,2")) = . Since ¢ # ¢, we have that o' F fs(qo) #™ fs(q})-

o (updating): then g, ¢, € A/TVI and u = 1 < u' # 1. We perform a case distinction:

1. u= 1L Au = (2/,¢), then (FGS3) tells us that fi(q,_1,q,, v)(fi(¢,,z")) = ¢ € N> The fact
that g, € A7, tells us that u = L implies that =32 € X (¢,): fi(gn-1,@n, w)(fi(gn, 7)) € N>O.

i
2. u = (z,e) AN/ = L, then (FGS3) tells us that fi(gn_1,qn,u)(fi(qn,r)) = ¢ € N> The fact
that ¢}, € A7, tells us that ' = L implies that 32" € XM(q},): fi(q,_1, dh, ') (fi(q),,2")) € N>O.

In both cases, o’ F fy(qo) #™ fs(q0)-

o (active sizes): then g,,q), € AL, and |X7 (¢,,)| # |X7 (¢},)|- Then g, € A}, implies that |X7 (g,)| =
XM (fs(qn))|, and ¢/, € .AI,, implies that |X7 (¢/,)| = |XM(fs(¢,))|. Therefore:

XM (folaa)] = 137 ()] # 127 (a)] = XM (fo(a)]-
This then means that o F fy(qo) #™ fs(q}).

o (enabled sizes): then q,,q, € E], and |X] (¢,)| # |XJ (¢,,)|.- Then g, €], implies that | X7 (g,)| =
| XM (f(gn))|, and g], € E], implies that [X] (¢))| = |Xg(fs(q),))|- Therefore:

X (fs ()] = 127 (an)] # 12 (a)] = 138 (fs(a)]-
This then means that o = fy(qo) #™ fs(qh).

o (enabled) then g,,q), € £J, and Iz € dom(mT,): (z € Xo(gn) & M5 (x) € Xo(q,)). We thus know
that for such a timer z, either:

104 Bram Pellen

L.z € X (qu) Am& (z) & Xo(q,), or
2. m”,(x) € Xo(d) Nz & XJ (qn)
We perform a case distinction:

1. in the first case, (FGS3) and (FGS4) give us that x € X (¢,) implies that f;(gn,) € XM (fs(qn))-
Conditions (FGS3) and (FGS4) also imply that, since ¢, € £J;, m™(z) € Xo(q,) implies
that fi(q),, mT (x)) € Xo(fs(q),)). Therefore, since fi(q),mx (z)) = m;p, filgn,x),n), we get
that 771;’),(]%((1m x),n) & Xo(fs(q,)). This then implies that m/pp, (ft(gn,x),n)}. We may thus con-
Ch/lde that in the first case, 3f;(qn,r) € XM: (m/pp,(ft(qn,x),n)i A (fe(gn,z) € XM (Fs(qn)) A
mpp’(ft(qnv 1’), n) € Xo(fs(%))))

2. in the second case, x ¢ X (g,) implies that fi(gn,z) & XM (fs(gn)) due to g, € E]4, (FGS3) and
(FGS4). We have that mT,(z) € Xy(q),) implies that f;(q,,mI. (z)) € X(fs(q,)), per (FGS3)
and (FGS4). Therefore, since f;(g),, mI.(z)) = m’pp,(ft(qn,x),n), we get that m;ﬁ(ft(qn,x),n) €
Xo(fs(q,)). This then implies that m;’f(ft(qn,x),n)i. We may thus conclude that in the sec-

ond case, Ify(qn, x) € XM (M) (folgn, @),)L A (Felgn, w) & X5 (fs(gn)) Ay (filgn, 7),m) €
Xo(fs(qn))))-

Therefore, in all cases:

3fi(gn, x) € XM (m(filgn,),)N (fi(ans2) € XM (fs(an)) € ml(filgn,), n) & Xo(f5(a1)));

which tells us that o’ b+ fy(qo) #™ fs(q0)-

We may thus conclude that for all maximal matchings m’: f(q0) < fs(q}), fs(qo) # fs(q}) either follows
directly, or fs(qo) #™ fs(q})- Therefore, fs(qo) # fs(q}), as required. O

C.4 Properties and Proofs for the Algorithm for Making MMTs
t-Observable

This appendix contains many of the properties and proofs for the properties of Section 5.2.
We use the following auxiliary lemmas:

Lemma C.4.1. Algorithm 8’s state map f: PN — QM is bijective.

Proof. On Line 9, Algorithm 8 maps N’s initial state p'%/ to M'’s initial state gz. On lines 10 through 14, every
state ¢ € Q™ is mapped to by a fresh state p that is added to N’s state set PN The state sets Q™ and PV
remain untouched after Line 14. State map f is therefore a bijection between Q™ and PV, from Line 14
onwards. O

We can also see that state map f preserves initial states:
Lemma C.4.2. Let M be an MMT. Then Algorithm 8 yields for M an MMT N such that, for its state
map f: QM — PN:
f (péf> =4z
Proof. This follows directly from Line 9 of Algorithm 8. O

Figure C.1 shows a diagram that illustrates the correspondence between the transitions of the MMTs
that are passed to Algorithm 8, and those from the MMTs that are returned by Algorithm 8 (apart from
the timer updates). We can prove that this diagram commutes:

Lemma C.4.3. The diagram of Figure C.1 is commutative. Formally, this means that for any MMT M,
Algorithm 8 yields an MMT A such that, for its state map f: PN — QM:

vp,pl e PN ie AN oe OV pioép' — f(p)i%f(p/).

k-A-Complete Conformance Testing of Mealy Machines with Timers 105

Figure C.1: A commutative diagram for the state map f: PV — Q™ used by Algorithm 8. See Lemma C.4.3
for a proof of commutativity.

The proof of Lemma C.4.3 can be found in Appendix C.4.1. Intuitively, f preserves the transition
structure. Since f also preserves the initial states per Lemma C.4.2, we can prove that the MMTs passed
to and returned by Algorithm 8 accept the exact same action sequences. We also prove that, for all action
sequences, both MMTs yield the same outputs and their states are always matched by f:

Lemma C.4.4. Let M be an MMT. Then Algorithm 8 yields for M an MMT N such that, for its state
map f: QM — PV
Vo e (AN)*:
N o)k & 5 (gz,0)) A
WY o) = X (az,0) A
(0 o)l = 1V (07, 0)) = M (a2, 0)).-
The proof of Lemma C.4.4 can be found in Appendix C.4.2.
Lemma C.4.5. Let M be an MMT. Then Algorithm 8 yields for M an MMT A such that, for its state
map f: QM — PV
vpe PNz e xVN: zeXNp) = zeXM(f(p)).
Proof. There are two locations in which Algorithm 8 marks timers z as active in states p of -

o In the first, it adds timer x to X (p) iff f(p) has a timeout for z. Therefore, Rule 4.5 and Rule 4.6
imply that = € XM (f(p)).

o In the second, it performs a backwards breadth-first-search on N, in which it only marks timers = as
active in states p when z € XM (f(p)).

The property therefore holds. O

Lemma C.4.6. Let M be an MMT, and let S be the set of state-timer pairs used in Algorithm 8. If (p,z) €
S, then for all z-spanning runs p = f(p,) Z—"l> f(pn_1)... 2 flp) & f(p') € runs(M), the loop of lines 27

through 49 ensures that = = p, Iy Pp_1-.. BN P SN p’ € runs(N) is x-spanning as well.
Uy

Un

The proof of Lemma C.4.6 can be found in Appendix C.4.3.

Lemma C.4.7. Let M be an MMT. The loop of lines 27 through 49 of Algorithm 8 only marks x as active
in state p € PN if there is an z-spanning run 7 € runs(N') that traverses p.

Proof. The loop of lines 27 through 49 only marks timers z as active in states py € PV on Line 41. To
reach Line 41 for x and pg, there must be a (p,,z) € S with the same timer x. The loop performs a

backwards breadth-first-search through A’s transition structure. It would only reach p with a run © = p -
uy

G € runs(N) if:

Un

Vie{l,...,n}: w #(@c) A zeXMF(q)),

106 Bram Pellen

and x € XM(f(q)). The procedure then also marks x as active in all states along m. Let 7’ = f(p) 4,
fp1)... 2 f(pn) € runs(M). Timer x being active in f(q;) implies that there is a run p € runs(M)
that (re)starts z, and which terminates in f(q;). Therefore, p - 7’ € runs(M) is an z-spanning run. Thus,
Lemma C.4.6 tells us that the run in 7 for which mapping all states with f results in the run p - 7’ is -
spanning. This run traverses p, as required.

O
Lemma C.4.8. Let M be a complete MMT. Then Algorithm 8 makes it so that:
Vee XN ke{l,...,n—1},je{2,n}:
Pr—1 (:C) qk terly pj is x-spanning <= f(pr-1) % (ax) i'Hlmg f(p;) is z-spanning.

The proof of Lemma C.4.8 can be found in Appendix C.4.4.

Lemma C.4.9. Let M be a complete MMT. Then Algorithm 8 makes it so that:
vpe PNz e xVN: reXN(p) = (3reruns(N): mis a-spanning A 7 traverses p).

Proof. Let p € PN and z € XV. Suppose that z € XN(p). There are two locations in which Algorithm 8
could have made x active in p:

1. In the first location, on Line 22, Algorithm 8 would add z to X (p) iff it previously added a timeout

transition for z from p on Line 18. The algorithm would only do so if f(p) M € runs(M). Therefore,
we know that there is an z-spanning run f(qr—1) hotid f(p) tole] f(p;) € runs(M). Lemma C.4.8
now tells us that g;_1 Hetitdy D % p; € runs(N) is an z-spanning run as well. This means that
in the first case, there is indeed a run m € runs(N) that is both z-spanning, and that traverses p as
required.

2. The second location is the loop of lines 27 through 49. Lemma C.4.7 tells us that here, timers z are
only ever marked as active in states p € PN if A has an x-spanning run that traverses p, as required.

O

C.4.1 Proof of Lemma C.4.3

Proof. We know from Lemma C.4.1 that f is a bijection between PV and QM. We know from lines 16
through 26 that, for all p € PV and all i € I U {to[z] € TO(X™M) | 6™ (f(p), to[z])}}:

. p/ = 6N(p7z) = f_l(dM(f(p),Z)), and
o 0= (p,i) = MM (f(p). 1)
This implies that:
Vp,p € PN ie AN o OV f(P)i/—o>f(Pl) — Ly

Since lines 16 through 26 is the only place where Algorithm 8 adds transitions to N, we know that:

vp,p' € PN ie AV, oc OV: p Ly = f(p) i/—o>f(p’)~
Therefore:
vpp e PN ie AN o0 pLy = 1) L 1),

as required. O

k-A-Complete Conformance Testing of Mealy Machines with Timers 107

C.4.2 Proof of Lemma C.4.4

Proof. We use an induction on o € (AN)* to obtain the property:

« Base case: if ¢ = ¢, then &V~ pN pN and 6M qI, o) = qz. Therefore:
- N (Y,)WEHSM (QL o)l
- W}, 0) = M (qz,), and

— Since &V° pN o) = p’\/ and 0M"(¢z,0) = gz, Lemma C.4.2 tells us that:

f(aN* 9[)):f(pl):qI:(sM*(ql—vo—)v

/\

as required.

e Inductive step case: if o = p i for some p € (AN)* and i € AN. We use the induction hypothesis:

N Y p)d & M (gz, p)d A
MY, p) = M (az.p) A
@Y. o)l = FV WY,) = M (a2, p)).

We perform a case distinction on whether 6V *(p%/ ,)

—If 6N*(p%/, p)4, then the induction hypothesis tells us that JM*(qI, p)d. Let p= 6N*(pé/, p) and
let ¢ = ™" (¢z,p). The induction hypothesis tells us that f(p) = ¢. Lemma C.4.3 tells us that
therefore:

N WY pill = Nl = M@)o,
as required.

—If &V *(ij\[,p)T, then the induction hypothesis tells us that 6 (gz, p)t. Undefined transition
sequences cannot become defined when they are extended with additional transitions. We thus
know that:

N Y ot = N, i,
and that:
Mgz,)t = M (gz,p)T

We see that 5N*(pfz\f,p i)} <= M (qr,p i)|, as required. If 6N*(pjzv,p i)t and 0M"(qz,p)1,
then there is nothing more for us to show for this inductive step case. We will therefore assume
that 5N*(p/1\/’ p i)} and 6M*(q1, p 1){ in the remainder of the step case. The induction hypothesis tells
us that therefore, f(&V"(pY, p)) = M (qz, p). Let p = V" (py, p), and let ¢ = M (qz, p). We thus
know that f(p) = ¢. Therefore, we know from Lemma C.4.3 that:

— the outputs are equal:
Wi, pi) =3 (p,i)
= MM(f(p),i) (Lemma C.4.3)
= MM(q,i) = M7 (g, p i),
as required.
— the f-mapping is preserved:
P @ p i) = 16N (p.1)
= dM(f(p),i) (Lemma C.4.3)
= 6™(q,4) = M (az, p 1),

as required.

108 Bram Pellen

We thus see that:

Ny p i)l & M (az,p i) A
MY p i) = XM (az,p i) A
WY o i) = VWY, p i) = M (az, p 7).

as required.

We have thus shown by induction on the input sequence that the property indeed holds. O

C.4.3 Proof of Lemma C.4.6

Proof. For each (p,x) € S, lines 27 through 49 perform a backwards breadth-first-search through A’s
transition structure that starts from p. Let p = f(pn) = f(Pn_1) ... — f(p) = f(p') € runs(M) be an -
u

spanning run, and let ¢ = 47 ...7; be the inverse of a suffix of the action sequence i, ...4; that labels the
transitions of p. Set F is initialized as {p}. We perform an induction on the content of the first-in-first-out
queue R, which is initialized as R = [p]:

+ Base case: R = [p]. The search performs certain checks for all p, € P, i, € I UTO(XV) for
which (5N(pa,ia) = p. This includes the case in which p, = p; and ¢, = 41, which is the only rel-
evant case for this proof. So suppose that i, = i; and p, = p;. Since p is z-spanning, 7™ (f(p;),i1) =
(y,c¢) = y # x. Since p is z-spanning and p traverses f(p1), * € X (f(p1)). Since E = {p}, p1 € E.
Therefore, x is marked as active in py, p; is appended to R, and p; is added to E. Timer update u;
wasn’t changed from 1, as required.

o Inductive step case: py+1 = R.dequeue() with k € {1,...,n — 1}. We use the induction hypothesis:

- Vie{l,... k}: e XN(p) Ax e XM(f(p)),

- Vie{l,...,k}: u=(y,c) = y#x,and

-vie{l,... k}: p € E.

- Vied{l,..., k}: meE — zeXNp)rzeXM(f(p))Au = (y,¢) =y #x.
- Vvied{l,...,k}: p € RVp €E.

Then the search performs certain checks for all p, € P, i, € I UTO(XY) for which 0V (p,,ia) = pi-
Since py, is a state along m, this includes the case in which p, = px4+1 and i, = i1, which is the only
relevant case for this proof. So suppose that i, = ix+1 and p, = pg+1. Then:

— if K+ 1 = n, then since p is z-spanning, 7 (f(prs1),ix+1) = (z,¢), for some ¢ € N>9. The
procedure then marks « = 7™ (p,,i,) = (,c), which then makes 7 an z-spanning run per the
induction hypothesis.

— if k+1 < n, then since p is z-spanning, 7" (f(pr+1),ixs1) = (y,¢) = y # x. Since p is z-spanning
and p traverses f(pri1), * € XY™ (f(prr1)). Therefore:
x if pr11 € F, then z is marked as active in px41. State pr41 is appended to R, and added
to E. Timer update upy; wasn’t changed from L, as required.

% if pry1 € F, then the induction hypothesis tells us that 2 € X7 (pry1), urs1 = (y,¢) = y #
and pry1 € F, as required.

We have shown by induction on R that u = (z,¢), and that VI € {1,...,n} : 2 € X7 (p;). The fact that 7
is z-spanning now follows from the facts that i = to[z], and that since (p,z) € S, z was added to X7 (p)
on Line 22. O

k-A-Complete Conformance Testing of Mealy Machines with Timers 109

C.4.4 Proof of Lemma C.4.8

Proof. We know from Lemma C.4.3 that p;_; ol o runs(N) iff f(p;—1) ol e runs(M). Therefore, if
either:

¢ T=Pk-1 LQ% p; € runs(N) is an z-spanning run, or:
o 7= flpro1) = f(pj) is an z-spanning run,
to[z] to[x]
then we know that p;_1 —— € runs(N) and f(pj—1) — € runs(M), and that:

Vie{k,....;—2}:pm tolzl, Z runs(N) A f(pr) tolel, & runs(M).
Algorithm 8 only adds timeout actions to N on Line 18. The fact that p;_; % € runs(N) therefore
implies that this timeout was added on Line 18, which implies that (p;_1,) was added to S on Line 23.
In order to prove the lemma, we will show that if either m or 7’ is z-spanning, then:

Dk—1 (—i’“—)%pk, f(pr—1) (—““—7 f(pr),

and:
Vie{k,....j—1}: 2zexN¥q) A zeXM(f(q),

which would mean that 7 and 7’ are both z-spanning. We use the following case distinction:

o Ifm=pr_4 LN Qi RASEEN p; is an z-spanning run, then the update u = (z, ¢) that starts this spanning
u

must have been added on Line 37, as that is the only place where Algorithm 8 adds timer updates
to N. Algorithm 8 only adds timer updates when they also exist in the corresponding transitions

of M. We thus know that f(pr_1) (;—kc)> flqr) € runs(M).

The fact that 7 is an z-spanning run implies that:
Vie{k,....j—1}: zea¥N(q).

Lemma C.4.5 now tells us that:

Vie{k,...,i—1}: 2 XM(f(q)).
We thus know that f(pr—1) LIS f(p;) is an a-spanning run, as required.

o In the second case, 7’ = f(pr—1) LN flar) NAZIEER f(p;) is an z-spanning run. We already established
u

that (pj—1,2) € S. The loop of lines 27 through 49 is therefore run for (p;_1,z) € S. Lemma C.4.6
now tells us that since #’ is an z-spanning run of M, the loop of lines 27 through 49 will ensure

U 1ee-0j . . .
that px_1 — gx — 5 p; is x-spanning as well, as required.
u

The property therefore holds. O

C.4.5 Proof of Theorem 5.2.1

Proof. Algorithm 8 always returns a tuple with the structure of an MMT. It remains for us to show that
these MMTs are always valid. We discuss each of the six rules for valid MMTs:

« We use a proof by contradiction to show that Rule 4.1 holds for A: Assume that XV (p)) # §. This
then implies that 3z € XV: 2 € XN (p)). Lemma C.4.5 tells us that therefore, z € XM (f(p})).
Lemma C.4.2 now tells us that * € X (gz). Since M is valid, * € X (qz) contradicts Rule 4.1.
Therefore, AN (p%/) = 0, as required.

110

Bram Pellen

o Rule 4.2 holds for A, since in the only location in which outputs and transitions for states of A" and

actions are set, they are both set for the same states and actions.

Suppose that p f p’. Rule 4.3 then holds for A/, since Lemma C.4.9 tells us that a timer z is only

active in a state p if A has an x-spanning run that traverses p. This implies that for z to be active
in p’, but not in p could only happen if the i-transition starts z. So in this case, in which no timers are
started in the transition, timer z is never active in p’ if it is not active in p, and so the property holds.

Suppose that p ﬁ p’. Rule 4.4 then holds for NV, since the only location at which Algorithm 8 adds
xz,c

timer updates for timers z to transitions is in the final loop of lines 27 through 49, in which it performs
a backwards breadth-first-search that marks x as active in all states that it encounters, until it finds a
previous transition that (re)starts z. We thus know that x is active in p’.

Lemma C.4.9 tells us that timers y are only active in p’ if N has a y-spanning run that traverses p’.
The i-transition cannot (re)start timer y, since it already (re)starts z. Therefore, y can only be active
in p’ if the y-spanning traverses p as well, and y € X (p). Therefore, XN (p') \ {z} € AN (p), as
required.

to[]

o Suppose that p —— p/. The:

1

— left-hand-side of the conjunction of Rule 4.5 holds, because in the first location in which Algo-
rithm 8 makes timers active, it makes timers x active in states p iff it adds a timeout transition
for x from p.

— right-hand-side of the conjunction of Rule 4.5 follows from an argument by contradiction: Assume
that € XN (p'). There are two locations in which Algorithm 8 could have marked z as active
in p':

* In the first, it would only mark x as active in p’ if it also adds a timeout transition for x

from p’. The algorithm only adds such a transition if f(p’) % € runs(M). Since M is

valid, f(p') ol o runs(M) would only hold if x € XM (f(p')), per Rule 4.5 and Rule 4.6.
Lemma C.4.3 tells us that f(p) % f("). Therefore, Rule 4.5 and Rule 4.6 tell us that
to[z]

since z € XM(f(p)), f(p) — f(p'). Algorithm 8 would add a timer update for x to

(w,c)
tolz] to[z]
the p —— p’-transition. This leads to a contradiction, since p T> p.
* In the second, it would mark x as active in p’ iff M has an z-spanning run that traverses f(p’).

Since M is valid, we know from Rule 4.5 and Rule 4.6 that this is only the case if the

transition’s counterpart in M starts timer z, i.e. if f(p) :oﬂ> f(p'). Algorithm 8 would add
z,c
a timer update for = to the p Lo[f]» p’-transition. This leads to a contradiction, since p LOF]» p'.

We can thus conclude that x ¢ XV (p'), as required.

We can thus conclude that Rule 4.5 holds for NV.

to[z]

o Suppose that p —— p’. The:

(y,¢)

— left-hand-side of the conjunction of Rule 4.6 holds, because in the first location in which Algo-
rithm 8 makes timers active, it makes timers x active in states p iff it adds a timeout transition
for x from p.

— right-hand-side of the conjunction of Rule 4.6 holds, because Algorithm 8 only adds a timer update

. . . cie s . to[x] Nk .
for a timer y in this to[x]-transition if its counterpart transition f(p) —— f(p’) in N has a timer

(z,y)
update for y as well. Since M is valid, we know from Rule 4.6 that y = x, as required.

k-A-Complete Conformance Testing of Mealy Machines with Timers 111

We can thus conclude that Rule 4.6 holds for V.

We can thus conclude that Algorithm 8 always returns valid MMTs when it is given valid MMTs. O

C.4.6 Proof of Theorem 5.2.3
The proof of Theorem 5.2.3 relies on the following auxiliary lemmas:

Lemma C.4.10. Let M be an MMT, and let ' be the MMT that Algorithm 8 returns when it is called
on M. Then:

AN = {ie AM | 3ge QM: ¢ 5 € runs(M)}.
Proof. We can see on Line 5 of Algorithm 8 that I = ™. All that remains for us to prove is that:

to[z]

Ve e XM: (3g: ¢ =5 € runs(M)) = ze XV, (C.1)

The loop of lines 16 through 26 iterates over each of M'’s state-action pairs. For each of them, it checks
whether the action is a timeout, upon which it adds the timeout’s timer to X on Line 21. The condition
of Equation (C.1) therefore holds. O

Lemma C.4.11. Let M be an MMT, and let ' be the MMT that Algorithm 8 returns when it is called
on M. Then:

Vg e QM o e (AM)*: ¢ eruns(M) = oe(AV)

Proof. Let g € QM, and let 0 =iy ..., € (AM)*. Suppose ¢ = € runs(M). Then Lemma C.4.10 implies
that:

{iv, ... in} C AN,
This implies that o € (AV)*, as required. O
The proof of Theorem 5.2.3 is given by:
Proof. Since M is connected:
Vg € QM: 3o € (AM)*: g1 5 g € runs(M).
Thus, by Lemma C.4.11:
Vg € QM: Jo € (AN : g1 S g € runs(M).
Since f is bijective per Lemma C.4.1:
vp e PV JeQM: flp)=qA(oeA): gz D qeruns(M)).
By Lemma C.4.4:
Vp € PN
(C.2)
JeQ™: fp)=qr@oe @) gD qeruns(M)A G pY 5o € runs(N))).

In Equation (C.2), ¢z < € runs(M) implies that 6" (¢z,o)|. Thus, by Lemma C.4.4, f(p') = q. Since f
is injective per Lemma C.4.1, p’ = p. We get:

vp e PN eQM: flp)=qnr@oe @) gD qeruns(M) ApY S p e runs(N)).
Therefore:
vp e PN Jo e (AN : p¥ S p e runs(N),

as required. O

112

Bram Pellen

C.4.7 Proof of Theorem 5.2.4
Proof. We prove that each of the three conditions holds:

1. The fact that M is s-learnable implies that all runs of M are feasible. Theorem 5.2.2 tells us

that N &gy M. Bruyere et al. [2024] has proven that therefore, N and M satisfy their notion
of timed equivalence. What exactly it means for A" and M to be timed equivalent is irrelevant to this
proof. What does matter is that since N' and M are timed equivalent, they accept the exact same
timed input words, which implies that thus that the same runs are feasible in both of them. Since N/
has the same transition structure as M, including all timer updates that start spanning runs, this
implies that since all runs of M are feasible, all runs of N are feasible as well.

Lemma C.4.9 tells us that:
vz e XN, pe PV: ze€XN(p) <= thereis an z-spanning run that traverses p,
as required.

Let p € PV, and let © € XV. By Theorem 5.2.3, there exists an action sequence o € (AN)*, such
that 0N (p4,0) = p. Lemma C.4.4 tells us that 6™ (qz,0)l, and that 6M(qr,0) = fF(ON " (p),0)).
Let ¢ = 0™ (qz,0). We can see that f(p) = q. Lemma C.4.3 tells us that therefore:

vz e XV N(prolz])l = (g, to[z])].

Since M is s-learnable, it is complete, which implies that:

Vg e QM z e XM: reXMq) <= Mg to[z])l.
We thus know that:
vpe PNz e xVN: zeXMq) <= N(p toz])l. (C.3)

Lemma C.4.8 tells us that in the runs 7 = p¥ % p € runs(N) and @ = ¢z = ¢ € runs(M), ©
has timer update (z,¢) at index i iff ' has timer update (z,c) at index i. Since both runs also have
identical timeouts at the same indices, we know that:

Vge QM,z e XM: ngXOM(q) == :z:gZXév(p),
and that:
v € XM(q): cexNp) = zeaxMNp).

We can also see that:
Vg e QM z € XM: x e XM(q)
— (g, tofa])}
= M (p,tol])!
— zeXN(p). (Rule 4.5 and Rule 4.6)

Therefore:

Vg e QM z e XM xeé’(({w(q) = zeXbN(p),
We can thus conclude that:

Vg e QM z e XM: reXMq) — xeXé\/(p).
Equation (C.3) now tells us that:

vpe PN ze xVN: zeXNp) = & (p tolz])l,

as required.

Since all three conditions hold, N is t-observable. O

k-A-Complete Conformance Testing of Mealy Machines with Timers

C.4.8 Proof of Theorem 5.2.5
The proof of Theorem 5.2.5 is given by:

Proof. Theorem 5.2.4 tells us that since M is s-learnable, A is t-observable. This implies that:

vpe PNz e xVN: reXM(p) = (p tolz])l.
All that remains for us to prove is that:

vpe PN ieV: p 5 € runs(N).
Since M is s-learnable, it is complete. Therefore:

Vg e QM,ie IM: qgeruns(M).
Therefore, since f is bijective per Lemma C.4.1:

vpe PN ie ™. HqEQM:qgeruns(M)/\f(p):q.
This implies that:

vpe PN ieIM: f(p)i> € runs(M).
By Lemma C.4.10:

vpe PN ieV: f(p)@éruns(/\/l).
Lemma C.4.3 now tells us that:

vpe PN ie V. p5 € runs(N).

This was the property from Equation (C.4) that we needed to prove. So we are done.

C.5 (g)MMT Bisimulations

113

(C.4)

In this appendix, we introduce bisimulations between t-observablegMMTs and t-observable MMTs. We use
these bisimulations to prove the correctness of the MMT testing procedure that we introduce in Chapter 5.
The current section provides lemmas that we use for this proof, which can be found in Appendix C.6.1.
Let M be a t-observable gMMT, and let A/ be a t-observable MMT. This notion of bisimulation matches
states ¢ € QM with states p € PV, along with a timer mapping j: (XM(q) — XN(p)) that relates g and p’s

active timers based on the points along the runs at which they were last (re)started.

Definition C.5.1 (Bisimulations between t-observable gMMTs and t-observable MMTs). Let M
be a t-observable gMMT, and let N be a t-observable MMT. A bisimulation between M and N is a

relation R C {(g,p, p) | Vg € QM,p € PN, p: (AM(q) — XN (p))}.

Let R be a bisimulation. We usually denote elements (g,p, 1) € R by ¢ R* p. We lift the timer map p to

actions such that:
o (i) =i for every i € I, and
o p(to[z]) = to[u(z)] for every x € dom(pu).

We use the following two functions to update the timer map for a given timer update:

updateMapy? ¥'(d', ') = {(y',y) € XM (¢) x 2V () | y = ple(y))}

updateMapy' Y (@ 0") ={(y) € XM() x XN W) |y # 2 Ay = pe(y)} U {(z,2))}

)

114 Bram Pellen

We require that R satisfies the following conditions:

gz R® py
gR'p = VYayeXM(q): (@ #y= @) # uy)
¢R'p = V' exN(p): Gz eXM(): plx) =)
GR pAG LS AT e XM @) N = p Sy (B3a)
No=d (B3b)
A q/ RupdateMapﬁ/’l"‘_“(q',p’) p/ (B3C)
qR“p/\qi/—o>q’/\(t(x):c€N>O) — % ! (B4a)
T x’,c!
ANo=0o (B4b)
Ne=c (B4c)
A RpupdateMap Zl (") J (Bdd)
’ —1 ’
qRFpApP M . q M)

. 711,
qR”p/\p? - qu—()>q’/\(ﬁ3m€XM(q’):t(x)EN>O)

T
m i R ON: Moy, >0
qg R p/\p(~—~)+ - qg—> ¢ Nz e XM(): t(x) e N7Y)
x’,c’ T
We write M ~ N iff there is a bisimulation R between M and N.
The following partial function combines the two update functions:

updateMapxl”t”(q’,p’) if =3x: v(z) € N>0
updateMapFrom,/\\Af”iﬂ (¢,p) = updateMapj/:/A’r‘_‘(m (@ p) ifr(z) € N> Ay e {2/} x N>O

undefined otherwise.

where v = 7M(qg,4), u = ™V (p, (i), ¢ = (g, 1), and p’ = 6V (p, (7).

Assume that a bisimulation relates M and N. If a transition from ¢ (re)starts a timer x € XM, then we
know that the matching transition for p (re)starts a timer y € X*. The bisimulation renames x’s timers as
needed in the timer mapping u, so that if M has a timeout for the timer that started as x and that has been
renamed to z’, then y must have a timeout for p(z’) = y. This ensures that both models only have matching
timeouts for timers that were started at the same points along their runs. Two models can therefore only be
bisimilar if they accept the same symbolic words.

We use the following lemma to prove certain properties about these bisimulations:

Lemma C.5.1. Let M be a t-observable gMMT, and let N be a t-observable MMT such that M ~ N.

i1/o1 in/on . . . i1/0] in /0!, . .
Ifr=qr —5q... =% g, is a feasible run in M and 7’ = p§’ 5 p1... —% p, is a feasible run
o t uf un,

in AV, then, for every j € {0,...,n}:
1. Huj: qj RHi DPj,
2. Moreover:

(a) Vx € XM(qj): lastStarted AtM I (z) = lastStarted At o, (i), and

J
a4 pY ——p;

(b) if j < m, then p;(ij1+1) = 4}, where gz L AENgS runs(M) is the run of M for which 7 =

’ -/ -/
. . o'=i7...05 41 . . — . .
i1...1;41 and p'%/ ———— € runs(N) is the run of N for which o/ =i;...1,41.

k-A-Complete Conformance Testing of Mealy Machines with Timers 115

The proof of Lemma C.5.1 can be found in Appendix C.5.1.

Bruyeére et al. [2024] provided a version of symbolic equivalence that expresses when a gMMT exhibits
the same symbolic behavior as an MMT. We use Lemma C.5.1 to prove that when a t-observable gMMT is
bisimilar to a t-observable MMT, then they are also symbolically equivalent:

Lemma C.5.2. Let M be a t-observable gMMT, and let A/ be a t-observable MMT with the same actions,
A. Then M ~ N = M =g, N.

The proof of Lemma C.5.2 can be found in Appendix C.5.2.

C.5.1 Proof of Lemma C.5.1

Proof. Suppose that m = ¢z % qi-.. % gn is a feasible run in M and 7’ = ijv 11//01 p1--- M/,on n
1 n u u

1 n

is a feasible run in N. Then, for every j € {0,...,n}:
e Base case: j = 0. We have that:

1. Lemma item 1 follows from (B0), as this gives us: gz R’ p%[
2. Moreover:
(a) Lemma item 2a vacuously holds, since initial (g)MMT states never have active timers.
(b) Lemma item 2b follows from the fact that since XM (qz) = &N (py) = 0, (iy = i}) € I, which
implies that j1;(ij41) = ij41 =} 1.
o Inductive step case: 0 < j < n. We use the induction hypothesis (IH):

1. E|,U,j2 q; R Yz
2. Moreover:

(a) Yz € XM(qj): lastStarted At™ I (z) = lastStarted At I (1j(x)), and
e Rm—t p ——p;

(b) pj(ij41) = @y, where p = qz TR ¢ puns(M) s the run of M for which &
i1...i541 and p/ :p/I\/ T, runs(N) is the run of N for which o’ =1y ...ij41.

Let ¢ = M (qz,i1...15) = M (qz,i1...4;), and p = N (p¥ i1 ... i) = N () 4 .).
For the next step, 5 + 1, we get:

1. We perform a case distinction on i;41:

— if ij+1 S I, then ij+1 = 7:;-+1 = ij+1. Let qj+1 = 5M(q,ij+1), and let Pi+1 = 5N(p, Z;Jrl) ‘We
know from ¢; R* p; (IH item 1) that ¢;41 R**' p;y1, where:

M
Hjt1 = updateMapN)t’;L(qu,ij).

— if 1,4, = to[k] for some k < j, then let & = timerStartedAt™ (qz ”—2“») be the timer started
at index k of p, and let o’ = timerStarted At (py %) be the the timer started at index k
of p’. Let ij41 = to[z], and let 7}, = to[z]. IH item 2b tells us that p;(ij4+1) = 7.
Let gj+1 = 0™(q,ij41), and let p; 11 = N (p, i§+1). We know from ¢; R* p; (IH item 1)
. Mo
that gj4+1 R*9+' pjyq1, where pjq = updateMapN’::rly(m_’z,)(qj+1,pj+1).
2. Moreover, having acquired g;4; R**+! p;y1 from Item 1:
(a) For all y € XM(gj11), either:
— tj41(y) = ¢ € N”%. Then ¢; R* p; (IH item 1) tells us that 3y': v, = (¥/,¢/) Ac =
d ANpjp1(y) =y'. Then:
lastStarted AtN N (11j+1(y)) = j + 1 = lastStarted At™ N (y),
pY ————pj11 gz —7qj+1

as required; or

116 Bram Pellen

— tj41(y) = x for some x € X (g). This implies that:
* if 321 vj41(2) € N70, then ¢; R* p; (IH item 1) tells us that u}, , = L.

* if 32: vj11(2) € N0, then g; R p; (TH item 1) tells us that uf, € {p;41(2)} x N>
The fact that z # y implies that j;11(2) # pj41(y), which tells us that uj,;, ¢
{11 ()} x N=0.

We thus see that in both cases, u;,; & {pj1(y)} x N”%, which implies that:

i1 (y) = pi(tir1(y)) (by definition of updateMap)
= (). (tj41(y) = 2)

Therefore:

lastStartedAtAi[i1eijyg (1j+1(y))
Py T 7Dj+1

= lastStarted At .y (@) (e () = p ()
PT —pj

= lastStarted At™ - (x) (TH item 2a)
qr—¢q;

= lastStarted AtM g (y) (tjr1(y) = 2)
(II—>qJ'+1
as required.
(b) If j + 1 < n, then we perform a case distinction on i;o:

— if ij+2 S I, then ij_,.g = i;+2 = ij+2. Then Uj+1(ij+2) = ij+2 = ’L';+2,

— if ij1o = to[z] for a timer x € XM (¢’) and i o = to[z'] for a timer 2’ € AN (p'), then we
know that x and 2’ must have been last started at the same indices of their respective
runs:

lastStarted AN iy (z') = lastStarted At™ iy (). (C.5)
Py ——pj11 qz—7qj+1

We can combine this information with that of Item 2a to see that:

lastStartedAtAif 41 etyp (1j+1(2))
Py — i

= lastStarted AtM 1ot
L T ES]

= lastStartedAt™ .. (x)
Jj+1
gz —qj+1

= lastStarted At o (x) (Equation (C.5))
pjl\'/4>pj+l

= lastStartedAtN . .. (2')
11541
pY ———pj 1

(2) (Ttem 2a)

We thus know that p;41(z) and ' were last started at the same index of the same run.
Since at most one timer can be started in a single transition step, we know that p;1(z) =
x’. Therefore:

tj+1(ij42) = pjra(tofz]) = tofuj41(x)] = to[z'] = i},

as required.

k-A-Complete Conformance Testing of Mealy Machines with Timers 117

C.5.2 Proof of Lemma C.5.2
Proof. We use a proof by induction on the lengths of the symbolic words to show that M ~ N = M =, N:

« Base case: w = . We get the runs g7 = = ¢z and pJI\/ 5= p/I\/ for M and NV, respectively. Such “empty”
runs are feasible for any (g)MMT. The base case holds, since there are no outputs for w and w can’t
start any spannings.

o Inductive step case: Let w = 1;7...1i,41 be a symbolic word over A. We use the induction hypothesis
(IH):

1. m=gqg /o qi - - adhie: qn is a feasible run in M iff 7' = p¥ /o D1 1"//0” Dp 95 a

T Tn u u
feasible Trun in N.
2. If 7 is feasible for M and 7' is feasible for N, then the following conditions also hold:
(a) 0j = o} forall j € {1,...,n},

(b) qr—1 qu is spanning and j <n = Jz: v (z) =cAuf, = (2/,)ANe="C.

n

We assume that the runs for iy ...i, (IH item 1) are indeed feasible, as otherwise the runs for w
wouldn’t be feasible and there would be nothing for us to show in this step case. Lemma C.5.1 tells us

that therefore, ¢, R* p,. Let p = ¢z i LN runs(M) be the run of M for which @ = i;...1,,
and let p’ = pYY ZZ0 M ¢ puns(N) be the run of N for which o/ = i;...i,. We are to determine

i1/o1 ing1/0nt1 i1/0}
.. ———"= gn41 is a feasible run in M iff 7/, = pJI\[Lo
131 Tl u

Pri1 is a feasible run in N. We perform a case distinction on i,41:

. /
1n+1/0n+1

whether 7 = gz
Unt1

1. if i,y €I, then let 4,41 =i/, | = inq1. We can see that my is indeed feasible for M and 7/_ is
indeed feasible for V, since the actions are input actions. Therefore, p(in41) = ing1 = i)-

2. if 1,41 = to[k] for some 0 < k < n, then let

timerStarted At (qz M)) if timerStarted At™ (qz i1k)

ry =
L otherwise,
and let:
L = timerStartedAtN(pr\/ il”%) if timerStartedAtN(p/I\/ RSN)
=
€L otherwise.

We know from Lemma C.5.1 that Ipk—1: ge—1 R**~* pr_1, which implies that z; = L < 2/, = L.
This means that 7 (re)sets a timer at index k iff 7’ (re)sets a timer at index k. Therefore, if 7
is infeasible in M because x, = L, then 2/, = 1, making 7/, infeasible for A/. The converse also
holds. There is nothing more for us to show in case 7, or 7/, is infeasible, so we will assume
that 2, € XM (q) and 2/, € XN (pg) for the remainder of this item.

Let © = renameTo (z1), and let 2’ = 2/,. Even though z, € XAM(q), it is still

ifg1---in
qx—7qn

possible for 7, to be infeasible for M if 6" (gn,to[z])T. Likewise, 6" (pn,to[2’])1 would mean

that 7/ is not feasible for N, even though 2/, € XN(pk). We now show that 6™ (g,,to[z])T <

N (pn, to[z]) 1

— We first show by contradiction that if (g, to[z])1, then 6V (p,,, to[z'])1:

Assume 6M(q,,, to[z])t. If &V (p,,to[z’])], then ¢, R* p, implies that there exists a timer
obtained from §*(gq,,to[y])} such that u(y) = 2’. We know from Lemma C.5.1 that y must
then have last been (re)started at the same index k of p at which ' was last (re)started in p'.
But since (g)MMTs can (re)start at most one timer in a single transition, this implies that y =
x. The contradiction now follows from the fact that 6 (g,,to[y])), while 6™ (g, to[z])?.
Hence, 0™ (gy, to[z])T = & (pn, to[z]) 1.

118 Bram Pellen

— We use a similar argument to show that 6 (p,,, to[z'])T = 6™ (qy, to[z])1:

Assume 5N(pn,to[a:’])T. If 6™ (gn, to[x])], then g, R* p, implies that 6N(pn,to[,u(x)])¢. We
know from Lemma C.5.1 that p(x) must then have last been (re)started at the same index k
of p’ at which x was last (re)started in p. Since (g)MMTs can (re)start at most one timer in
a single transition, this implies that p(x) = 2’. The contradiction now follows from the fact
that 0V (py, to[u(x)])4, while &V (p,, to[z'])T. Hence, " (pn, to[z']))T = 6 (gn, to[z])1.

Therefore, we know that 7, is a feasible run in M iff 7/ is a feasible run in NV.

If 7, is feasible for M and 7/, is feasible for A, then let 4,41 = to[z] and i/, ; = to[z'].

Then g, R* p,, implies that (i, 41) = 4;,,,, per Lemma C.5.1.

We can see that regardless of i,41’s value, run 7 is feasible for M iff run 7/, is feasible for A/. This
tells us that TH item 1 holds for the next step.

From this point on, we assume that run 7 is feasible for M and that run 7/, is feasible for NV, since
otherwise there is nothing more for us to show for this step.

We use the fact that ¢, R* p, to show that the conditions of the induction hypothesis also hold for
the next step:

— qn R* p, tells us that A (g, in41) =)\N(pmu(inﬂ)). Therefore:

=)\N(pm pint1)) =)‘N(pn’i;VH) = 0;1+1?

Op41 =)\M (Qna in+1)
as required (IH item 2a),
— Regarding the transition for i, 1, there are some relevant cases with regard to spannings:

1. If the n + 1th transition for M’s run 7, potentially starts a spanning by (re)starting a
timer x € XM (g,41) to a constant ¢ € N>° i.e. 3z: t,41(7) = c € N>0, then ¢, R* p, tells
us that:

' € AN (py1): (W = (@) Ae =),
as required.

2. If gy —"5 41 is spanning, then 3z: ti(z) = ¢ € N>°. Lemma C.5.1 tells us that
since 74 is a feasible run in M and wg_ is a feasible run in N, Jug_1: qr_1 R**~* pp_1. This
tells us that:

3z’ € XN (pr): (uf = (2,) Ae=¢),
as required.
(IH item 2b).

We thus know that the conditions of the induction hypothesis also hold for the next step.
We have thus shown by an induction on the lengths of the symbolic words that M ~ N = M ~g,,, N. O

C.6 Properties and Proofs Related to the k-A-Completeness of the
MMT Testing Procedure

The properties and proofs used in Vaandrager et al. [2024] to prove a sufficient condition for the k-A-
completeness of Mealy machine test suites form the basis of our proofs for the k-A-completeness of our MMT
conformance testing procedure. We highlight the additions we made compared to the work from Vaandrager
et al. [2024] in green, and the remaining differences between our results and theirs in blue. We first provide
the auxiliary lemmas, before we conclude with our proofs of Theorem 5.8.1 and Lemma 5.8.17.

Lemma C.6.1. Let 7 be an observation tree, let M be an s-learnable MMT, and let (fs, fi, fu): T = M
be a functional MMT simulation. Let qg, ¢, € Q7. Let 0 =iy ..., € (AT)*, and let ¢’ = f;(i1) ... fi(in) €
(AM)*. Then:

qo 1) dn - fs(QO) U_l> fs(Qn)'

k-A-Complete Conformance Testing of Mealy Machines with Timers 119
Proof. Suppose that gy = ¢, € runs(T). Then g, = (57*(q0,0). We need to prove that (SM*(fS(qO)7 o) =
fs(gn). We prove the property by an induction on the length of o:

e Base case: 0 = €. Then ¢, = qg and ¢’ = . We can see that:

5M*(fs(QO)7JI) = 5M*(fs(Qn)a€) = fs(Qn)v

as required.
o Inductive step case: 0 = i1 ...in11 € (AT)*. Let p =iy ...in, and let p' = fi(i1) ... fi(in) € (AM)*.
We use the induction hypothesis:
q0 £>(]n - fs(QO) p_>fs(qn)

The induction hypothesis tells us that 6™ (fs(qo),p’) = fs(qn). Let gni1 = 0™ (gn,ins1). The
definition of functional MMT simulations tells us that therefore, 3™ (fs(qn), fi(ini1)) = fs(qni1). We
thus know that 5M*(fs(q0),p/ ft(ing1)) = fs(gn+1). We can also see that 5M*(q0,p A1) = Gntl-
Therefore:

print1

Pl'f (in)
G — a1 == fs(q) s [

s (Qn—i- 1))
as required.
O

Lemma C.6.2. Let 7 be an observation tree, let M be an s-learnable gMMT, and let (fs, fi, fu): T —
M be a functional gMMT simulation. Let qo,q, € Q7. Let ¢ = i1...i, € (A7)*, and let o/ =

fi(q0,i1) - fe(qn—1,1n) € (AM)*. Then:
0 =g = fs(q) LA fs(qn)-

Proof. Suppose that gy 2 ¢,. Then ¢, = 6 (go,0). We need to prove that 6" (fs(qo),0") = fs(qn). We
prove the property by an induction on the length of o:

o Base case: 0 = €. Then ¢, = qo and ¢’ = ¢. We can see that:

M (fo(90), o) = M (folan), €) = fo(an),

as required.

o Inductive step case: 0 =iy ...49,41 € (AT)*. Let p =iy ...in, and let p' = fi(qo,i1) - .- fi(qn_1,in) €
(AM)*. We use the induction hypothesis:

q0 £>Qn — fs(q0) p_l>fs(Qn)

The induction hypothesis tells us that 6™ (fs(qo),p’) = fs(qn). Let gni1 = 0™ (gn,ins1). The
definition of functional gMMT simulations tells us that therefore, ™ (fs(qn), fi(nsint1)) = fs(qni1)-
We thus know that (5"’1*(]”5((10)7 P ft(ins1)) = fs(gnr1). We can also see that 5M*(q0, P lnt1) = Qnti-
Therefore:

p/'ft(qn;in)
) = fl

p'in
qo —H> qn+1 — fs(qo Qn-l—l)a

as required.

120 Bram Pellen

Lemma C.6.3. Let 7 be an observation tree MMT with a state ¢ € Q7 , let M be an s-learnable MMT,
and let (fs, ft, fu): T — M be a functional MMT simulation. Then:

qeé‘x—/l/\quT —
(Vo € XM(fs(q): Ay € X7 (q): fily) =2 A (fs(q)

Proof. We know from ¢ € A}, that |X7 (q)| = |XM(fs(q))|. Taken with (FMS1) and (FMS2), this tells
us that Vo € XAM(f,(q)), there is a unique y € X7 (¢): fi(y) = . Let y € X7 (q), and let z = f,(y) €

XM(fs(q)). We know from (FMS3) and (FMS4) that if ¢ ol ¢ runs(T), then fs(q) RlUACINgS runs(M),

as required. Therefore, since M is s-learnable and thus complete, ¢ A e runs(T) = fs(q) M €

runs(M) = fi(y) € X (fs(q)). Since T is an observation tree, ¢ o, ¢ runs(T) < y € XJ (q). We thus
know that y € XJ (¢) = fi(y) € XM (fs(q)).
The fact that ¢ € £], implies that | X (q)] = |XM(fs(q))|. Taken with y € X7 (q) :> fi(y) € XM (fs(q))

and (FMS2), this implies that y € XJ (q) < fi(y) € XM(f<(q)). Suppose fs(q) —— Slfewll, runs(M).
Then fi(y) € XM(fs(q)), as we showed earlier. Then y € X (q) < fi(y) € XM(fs(q)) implies that y €
XJ (q). Since T is an observation tree and thus t-observable, y € X7 (¢) = ¢ % € runs(T). Therefore,

to[f¢(y)] to[y]

cruns(M) < qg—— €runs(T)))).

fs(q) Polfewll, runs(M) implies ¢ ol ¢ runs(T), as required.

We have thus shown that fs(q) Plfewll, runs(M) < ¢ ol ¢ runs(T), as required. O

Lemma C.6.4. Let 7 be an observation tree, let M be an s-learnable MMT, and let (fs, fi, fu): T — M
be a functional MMT simulation. Let qo,q, € Q7. Let 0 =iy ...1,, € (AT)*, and let ¢’ = f;(i1) ... fi(in) €
(AMY* Let 1 =qo = ¢, € runs(T). Suppose that the basis of a stratification of Q7 is complete, and that
for all I € {0,...,n}:

o q €Al and
e if ¢y € F7, then F7 is complete.
Then:
fs(q0) 5 fo(qn) = qo = €runs(T).
Proof. Suppose that fs(qo) L fs(gn) € runs(M). Then fo(g,) = 6™ (fs(qo),0’). We need to prove
that 57*(q(), o). We prove the property by an induction on the length of o’:
o Base case: 0/ = €. Then o = e¢. We trivially get that:
Qo = = qo = = qo € runs(T),
as required.

o Inductive step case: o/ = fi(i1)... fi(ixs1) € (AM)* and k 4+ 1 < n, for some k € N. Let p/ =
fe(i1) ... fi(in) € (AM)*. Condition (FMS2) tells us that action sequence p = iy ...7, € (A7)* is
unique. We use the induction hypothesis:

fs(q0) LN fslgr) = qo 2 €runs(T).

The induction hypothesis tells us that go 2 € runs(T). Let g =67 (qo, p). We know from our final
assumption that whether ¢; is in the basis or in a frontier, this basis or frontier is complete. This
implies in either case that g € 5];1, and that:

— if fi(igs+1) € I, then igrq € I. The fact that gk is in a complete basis or frontier now implies

that g MENge runs(T). Therefore, gy —* € runs(T), as required.

k-A-Complete Conformance Testing of Mealy Machines with Timers 121

—if fi(irt1) € TOXM(fo(qr))), then let fi(ixy1) = to[z]. Since ¢p € Ef and ¢ € Ay,

Lemma C.6.3 tells us that Jy: fi(y) = = A g ol ¢ runs(7T). This tells us that i, = toly],

and that ¢, — € runs(T). Therefore, gy ——% € runs(T), as required.

OJ

Lemma C.6.5. Let 7 be an observation tree, let M be an s-learnable MMT, and let (fs, f¢, fu): T — M
be a functional MMT simulation. Let ¢z,¢, € Q7. Let w=1i;...1i, € IUTO(N>?). Then:

QILQn - fs(qI)ifs(Qn)'

Proof. Let o = iy ...i, such that @ = w, and let ¢’ = f,(i1)... fi(in) € (AM)*. Suppose qr — ¢,. This
implies that g7 — is feasible in 7. We thus know that 7 = gz = ¢, € runs(T). Thus, by Lemma C.6.1,
7 = filqzr) T folqn) € runs(M). We know from Lemma 5.3.1 that any spanning sub-runs of 7 are
matched in 7/, and from (FMS5) that any spanning sub-runs of 7’ are matched in w. Therefore, since 7
and 7’ are runs from the initial states qg and f (q%r) = qz of respectively T and M, fi(qz) = fs(qn). O

Lemma C.6.6. Let 7 be an observation tree, let M be an s-learnable gMMT, and let (fs, fi, fu): T — M
be a functional gMMT simulation. Let q7,q, € Q7. Let w=1;...i,, € [UTO(N>?). Then:

QILQn - fs(QI)gfs(Qn)-

Proof. Let 0 =iy .. .1, such that @ = w, and let o’ = f;(qo,i1) ... fi(gn_1,in) € (AM)*. Suppose gr = q.
This implies that gz — is feasible in 7. We thus know that 7 = gz =+ ¢, € runs(T). Thus, by Lemma C.6.2,
7' = fi(q¢z) =5 fs(qn) € runs(M). We know from Lemma 5.3.2 that any spanning sub-runs of 7 are matched
in 7/, and from (FGS5) that any spanning sub-runs of 7’ are matched in 7. Therefore, since m and 7" are
runs from the initial states ¢7 and f(¢J) = gz of respectively T and M, fs(qz) = fs(gn). O

Lemma C.6.7. Let 7 be an observation tree, let M be an s-learnable gMMT, and let (fs, fi, fu): T — M
be a functional gMMT simulation. Let C' be a prefix-closed state cover for M, and let B be the basis of a
stratification of Q7 induced by C. Then f, restricted to B is injective.

Proof. Let r,1’" € B, such that r # r’. Let o = access(r) and p = access(r’). Then by r # 1/, o # p.
Since o,p € access(B), 7,p € C. The fact that C is a minimal prefix-closed state cover for M implies
that since 7 # 7, 0M 7 (7) # 0M"(p). Thus, by Lemma C.6.6, f.(r) = f.(67 (7)) = ™" (@) and f,(r') =
f(67"(p)) = 6M”(p). Therefore, since 6M™(7) # 6M™(p), f+(r) # fo(r'), as required. O

Lemma C.6.8. Let T be an observation tree, let M be a minimal s-learnable gMMT, and let {fs, fi, fu): T —
M be a functional gMMT simulation. Let C' be a minimal and prefix-closed state cover for M, and let B
be the basis of a stratification of Q7 induced by C. Then f, restricted to B is a bijection.

Proof. Lemma C.6.7 tells us that f, restricted to B is injective. Since C' is minimal, |B| = |Q™|. We may
thus conclude that f is a bijection between B and Q™. O

Lemma C.6.9. Let T be an observation tree, let M be an s-learnable gMMT, and let (fs, f;, fu): T — M
be a functional gMMT simulation. Let C' be a minimal and prefix-closed state cover for M, and let B be
the basis of a stratification of Q7 induced by C. Let ¢ € Q7. Then:

Ir € B: reClg) N fslg) = fs(r).

122 Bram Pellen

Proof. Let fs(q) = u. Lemma C.6.8 tells us that fs restricted to B is a bijection. Let r € B be the unique
state with fs(r) = w. Since fs(¢) = fs(r), Lemma C.3.2 implies that ¢ and r are not apart for all maximal
matchings. Hence r € C(q). O

C.6.1 The proof of Theorem 5.8.1

Proof. Lemma 5.8.1 tells us that M & uc. Therefore, M € U,?. The fact that B is a basis induced by a

minimal prefix-closed state cover C' implies that access(B) = C. We thus know that since M € le,?, there
are:

Vg € QM: Jw € (access(B) = C), 3o € (AM)=F: M (w) - 0. (C.6)

Let (fs, ft, fu): T — S be a functional gMMT simulation, and let (gs, g¢,gu): T — M be a functional
MMT simulation. We define a relation R C {(s,q, 1) | Vs € Q%,q € Q™ ju: (X (s) — XM(q))}:

(s,q,p) € R 3t € BUFF: fi(t) = s Ags(t) = g,

where i = {(z,2') € X5(s) x XM(q) | Fy € X7 (8): filt,y) =2 A gi(y) = 2').
We claim that R is a bisimulation between S and M.

1. Condition (FGS0) tells us that f.(¢}) = s3, and condition (FMS0) tells us that gs(¢7) = ¢}
Since ¢J € B, this implies that s5 R’ ¢2* (B0), as required.

2. Suppose that s R* q. Then there exists a state t € B U F<F such that f,(t) = s and g,(t)

= q.

o Let 2,y € X5(s): x #y. Then t € Ag implies that there exist timers zo,yo € X7 (¢): fi(t, z0) =
A fi(t,yo) = y. The fact that x # y now implies that z¢ # yo, which implies that g¢(zo) # g:(vo)
per (FMS2). The definition of u tells us that since u(x) = g+(xo) and p(y) = g:(yo), p(x) # n(y)
(B1).

o Let 2/ € XM(g). Then t € A}, tells us that 3y € X7 (¢): g:(y) = 2’. Condition (FGS1) tells us
that f;(t,y) € X°(s). The definition of x tells us that therefore, u(f:(t,vy)) = g:(y) = =’ (B2).

o Let i € TUTO(X] (1)), let i = f;(t,i), and let i™M = g,(i). Let t' = 67 (t,4), let 8’ = §5(s,iS)
when 0% (s,i%){, and let ¢’ = 6™ (q,i™) when §M(q,iM)].

— Since t € BU F<* and the first k frontiers are complete, we know that ¢ € Eg and t € 57\:,.
This implies that |Xg (s)| = |X] (t)| = | (q)].
For all timers z € X5(s), t € AL and conditions (FGS1) and (FGS2) tell us that there
exists exactly one timer y € X7 (t): fi(t,y) = x. The fact that S and T are t-observable
therefore implies that, if §° (s, to[x])], then (FGS2), (FGS3), (FGS4) and | XS (s)| = | X (1)]
additionally tell us that 67 (¢,to[y])). Conditions (FMS3) and (FMS4) now tell us that
since 07 (¢, to[y])), 6 (g, to[g:(y)]). We thus know that 65 (s,i)| = M (q,iM)].
For all timers z € XM(q), t € A, and conditions (FMS1) and (FMS2) tells us that there
exists exactly one timer y € X7 (¢): g;(y) = x. The fact that M and 7T are t-observable there-
fore implies that, if 6 (g, to[z])), then (FMS2), (FMS3), (FMS4) and |XM(q)| = |XJ (1)]
additionally tell us that 67 (¢,to[y])|. Conditions (FGS3) and (FGS4) now tell us that
since 07 (¢, to[y])), 65 (s, to[f:(t,y)])). We thus know that 6™ (q,i™)| = §5(s,i5)|.
Therefore, 6°(s,i%)] < M (q,i™)| (B5), as required.

— Then u(i®) = ™, since:

 if i € I, then f;(t,i) =i and g;(i) = i. Then i® = f,(t,4) =i € I. Since i® € I:

* if i € TO(X] (t)), then i = to[z] for some timer x € X7 (t). We get:

i = fi(t,i) = fi(t, to[z]) = to[fi(t, x)],

k-A-Complete Conformance Testing of Mealy Machines with Timers 123

and:

Therefore:
pu(i®) = pltolfi(t, z)]) = to[u(fi(t, x))] = to[g:(x)] = ™.

— Conditions (FGS3) and (FGS4) tell us that A7 (¢,4) = A9(s,i°), and conditions (FMS3) and
(FMS4) tell us that A7 (t,i) = AM(q,i™). Therefore:

)‘S(S’ is) =)\T(t,i) =M (Q7iM) = \M (q7ﬂ(i8))v

as required for (B3b) and (B4b).

— We know from the fact that t € BU F<* that t' € AL and ¢’ € AJ,. We know from ¢’ € A%
that ¢ (re)sets a timer x for action 4 iff s (re)sets the timer f;(#',z) for action . Similarly,
we know from the fact that ¢’ € A7, that ¢ (re)sets a timer = for action i iff ¢ (re)sets the
timer g;(z) for action i™. We thus know that s (re)sets the timer f;(t',) for i iff ¢ (re)sets
the timer g;(z) for i ((B3a), (B4a), (B6) and (B7)), as required.

— We know from the previous item that s (re)sets the timer fi(¢',x) for i iff ¢ (re)sets the
timer x for i iff ¢ (re)sets the timer g;(z) for . Condition (FGS3) specifies that if ¢
(re)sets x to c for i, then s (re)sets f;(t',z) to ¢ for 5. Similarly, condition (FMS3) tells
us that when t (re)sets = to ¢ for 4, then g (re)sets g:(z) to c for i™. We thus know that s
(re)sets fi(t',z) to c for i° iff ¢ (re)sets g:(z) to ¢ for i (B4c), as required.

— Conditions (FGS3) and (FGS4) tell us that:

Fs(t') = 85 (fs(8), folt,) = 65(s,%) = &,
and conditions (FMS3) and (FMS4) tell us that:

gs(t') = 0M(gs(t), ge (1)) = M (q,iM) = ¢

In order to prove that there is a mapping p’ such that s’ RW q', we first show that there
exists a state t; € B U F<F such that fs(t1) = s’ and g,(t1) = ¢/, as required. We consider
two cases:

(a) if ¥’ € BU F<F, then we already know that f(¢') = s’ and gs(¥) = ¢
(b) ' € F*. Equation (C.6) tells us that there are w € access(B) and o € (AM)Sk
such that 0M*(6M"(w),0) = ¢. Since 6M"(w)}, ¢t % is feasible in M, which im-
plies that sym WordToAcSeq™ (w)|. Let p = i1...i, € (AT)* be the unique action se-
quence of T for which g;(i1)...¢g:(in) = symWordToAcSeqM(w) - 0. By the assumption
that B, F<* are all complete and B U F<F C A7, Lemma C.6.4 tells us that ¢’ =
67 (¢, p) is defined. By Lemma C.6.1, g4(t") = ¢’. Then, by Lemma C.3.1, #' and t”
are not apart. We claim that ¢’ and ¢ have the same candidate set:
i. t” € B. Then since B is a basis and all basis states are identified, C(t") = {¢"}.
Since (¢’ # t”) and ¢’ is identified, C(t') = {t"}. Hence, C(t') = C(t").
ii. ¢’ € F<F. Then by Equation (5.1) and since —(t' # "), C(t') = C(t").
Since t' is identified, C(¢t') = {r}, for some r € B. By Lemma C.6.9, fs(t') = fs(r).
Since C(t') = C(t"), C(t") = C(¥') = {r}. Applying Lemma C.6.9 now tells us that f(t") =
f(r). Hence f(t") = f(¢') = 5.
In both cases, we know that there exists a state t; € BU F<F such that f(t1) = s’ = fs(t')
and gs(t1) = ¢ = gs(t').
For all x € X7 (t'), (FMS1) tells us that g:(z) € XM (gs(t')). We know from g(t1) = gs(t')
that XYM (gs(t1)) = XM(gs(')). Since t1 € A%, we know that |X7 (t1)| = |X™(gs(t1))|. This
implies that Yy’ € XM (gs(t1)): Iy € X7 (t1): g:(y) = ', per (FMS1) and (FMS2). Condition
(FMS2) further adds that for all y' € XM (gs(t1)), there is exactly one timer y € X(t;) such

124 Bram Pellen

that g;(y) = v'. Since XM (g,(t1)) = XM (gs(t')), we know that g;(z) € X (gs(t1)). This
thus implies that there exists a timer y € X7 (¢;) such that g,(y) = g;(x). Condition (FMS2)
tells us that y = x, which implies that = € X7 (t;). We thus know that X7 (#') C X7 (¢;).
This property also holds in the other direction, since t’ € AL. We therefore know that X7 (t1) C
X7 (t"). These two facts combine to tell us that:

X7 () =xT(t). (C.7)
Equation (C.7), (FGS6) and fs(t1) = fs(t') tell us that:
Ve e XT(t'): fi(ty,x) = fi(t',). (C.8)

We already established that s (re)starts a timer for i iff ¢ (re)starts a timer for i™. We
now perform a case distinction on whether timers are (re)started in these transitions, in order
to show that in both cases, the timer map ' = updateMapFromM s (8,q) is a timer map for
which (¢',¢', /') € R:

* If no timers are (re)started in the transitions for ¢ and i, then:

/

I
= updateMapM (s q) € (XS(s) x AM()) (since no timers are started)

={(W,y) € (X3(s") x XM(¢)) | y = n(x(¥))} (by definition of updateMap)
={(,y) | 32 € XT(1): fi(t,2) =(y) A gi(2) =y} (by definition of 1)

Since dom(t) = XS(fs(t')) per Rule 4.10 and f(t;) = f.(¥'), we know that dom(t) =
XS(fs(t1)). We thus get from (FGS4) and Equation (C.8) that Vz € X7 (¢'): fi(t,2) =
t(fe(t', 2)) = t(fe(t1, z)). We thus know that:

{(,y) | Iz € XT(1): fit,2) =x(¥) A ge(2) = y}
={(W,y) | Iz € XT(t): fit,2) =x(y) =(fi(t1.2)) A ge(2) = y}.

Rule 4.10 requires that v is injective, which tells us that in the above, y' = fi(t1,2). The
fact that v(f;(t1,2))) implies that fi(t1,2) € XS(fs(t1)). The facts that t; € AZ and
(FGS1) now imply that 32’ € X7 (t1): fi(t1,2") = fi(t1,2). If z # 2/, then (FGS2) tells
us that f;(t1,2") # fi(t1,2). Therefore, 2’ = z, which implies that z € X7 (¢;). This fact,
together with the fact that y' = fi(t1, z), implies that:

{(,y) | Iz € XT(1): fi(t,2) =(¥) = x(fi(t1,2)) A ge(2) =y}
={(W,y) € X5(s) x XM(¢) | 3z € X7 (t1): filtr,2) =o' N ge(2) =y}

Since fi(t1) = ¢’ and g,(t1) = ¢/, we know that (s, ¢/, ;) € R. This means that s’ R* ¢/,
as required for (B3c).

* If s (re)sets the timer fi(#',z) for i® and q (re)sets the timer g;(z) for i, then:

/

n

= updateMapf/’l’ft,(ft(t,@%gt(w))(s’ q) € (X5(s") x xM(¢))

={W\) 1y # filth o) Ny = p(e()} U{(fe(t, 2), 9:(2))}

={() 32 € X(t): v # Lt 2) A filt,2) = x(y) A gu(2) =
{(fe(,), ge(2))}-

k-A-Complete Conformance Testing of Mealy Machines with Timers 125

The first steps are the same as the ones in the case in which no timers were (re)set:

{(W'\y) | 3z € X(1): ' # filth) A felt, 2) = e(y) Age(2) =y} U
{(fe(t',2), 9¢(2))}
y)

(

={W,y) 32 X(t): ¢y # fi(t,2) A fe(t,2) = v(y) = e(fi(t1,2)) A ge(2) =y} U

{(fe(t',2),g:(x))}

={(W,y) | 32 € XT(t): oy # fit,2) A felt1,2)) =y Age(2)) =y} U
{(fe(',2), ge(2))}-

We now integrate {(f¢(¢',), g.(x))} into the rest of the expression:

{W,y) 13" € XT(t): ' # [t 2) A fults, o) =y Agu(2) =y} U
{(fe(t',2), g:(2))}

)
(

={(\) | 3 € XT(t1): v # Lt 2) A fe(tr,2)) =y Age(2') =y} U
(

Y)

{Wy) | £t 2) =y Agilx) =y}

={(,y) | 3 € XT(t1): y # filtr,x) A fet1,2') =y Age(?)) =y} U (Equation (C.8))
{',:)\ft(th) =y Agi(x) =y}

={(y) | 3 € (XT(¢) \ {a}): filtr, 2) =y Ag(z) =y} U
{(v'1 \32 € {z} A filts,2) = (') =y}

Nge(2') =
{(u,u)e?ﬁs(s)xXM()3 ex (h) feltr,2)) =y AN ge(2') = y}.

Since fo(t1) = &' and g4(t1) = ¢/, we know that (s, ¢/, /') € R. This means that s’ R* ¢/,
as required for (B4d).

We have thus proven that S ~ M. The theorem now follows by application of Lemma C.5.2. O

C.6.2 Proof of Lemma 5.8.17

Proof. We prove both directions of the bi-implication:

o Assume that C(q) = C(¢')Vq # ¢'. Suppose that r € B with r # g. We need to show that r # ¢'Vq # ¢'.
If the ¢ # ¢’ from the assumption holds, then we are already done. So suppose that —(q # ¢')
and C(¢q) = C(¢'). Then, since r # ¢q, r & C(q). Therefore, r ¢ C(q¢’). This implies that r # ¢, as
required.

o Assume that (Vr € B: r# g =1 # ¢'Vq # ¢'). Suppose that —(q # ¢’'). We need to show that C(q) =
C(q"). Since q is identified, all basis states except one are apart from ¢. Let r be the unique basis state
that is not apart from ¢. By our assumption, ¢’ is apart from all states in B\ {r}. Thus C(¢") C {r}.
By Lemma C.6.9, C(¢') contains at least one state. Therefore, we conclude that C(¢') = {r}. This
implies that C(q) = C(q’), as required.

O

C.7 Auxiliary Properties Concerning Observation Tree MMTs and
Functional (g)MMT Simulations

The fact that observation tree MMTs are trees implies that:

Proposition C.7.1. Let T be an observation tree MMT with a run 7 € runs(T). Then 7 can traverse any
state of () at most once.

126 Bram Pellen

Proposition C.7.2. Let M be a (partial) MMT with a run 7 = g Detng 0 € runs(M). Let = € X(qn)
for some = € X, and let | = firstStartedAt,(z). Then:

Vie{l,...,l—1}:x & X(gj).

Lemma C.7.1. Let M be a (partial) MMT with a run = = ¢q Adng gn € runs(M). Let z € X(g,) for
some z € X, and let [= firstStartedAt, (x). Then:

>0 = 14 €l

Proof. Proof by contradiction: If i; = to[y] for some timer y € X, then Rule 4.6 tells us that y = . Rule 4.5
and Rule 4.6 then tell us that z € X(g;—1). Proposition C.7.2 tells us that therefore, firstStartedAt (z) # 1,
which contradicts firstStartedAt, (x) = I. Therefore, i; € I. O

Lemma C.7.2. Let 7 be an observation tree MMT with a state ¢, € Q. Let m = q%r LI qi .- - N qn €
Ul Unp,
runs(T). Then:

Vie{l,...,n}:i; € IAu; = (x,¢c) = M e{l,....,n}:1#j= (i € [Ny = (2,d)N2' =1x)).

Proof. Leti; € I suchthat u; = (z,c). Then the fact that 7 is an observation tree MMT implies that = z; .
For all I € {1,...,n}: 1 # j, we know from the fact that 7 is an observation tree MMT that if 4, € T
and w; = (2',¢'), then 2’ = x,,. Since [# j, Proposition C.7.1 tells us that ¢, # g;. Therefore, 4, # x;.
This means that =’ # x, as required. O

Lemma C.7.3. Let 7 be an observation tree MMT with a state ¢, € Q. Let m = ¢q % q; € runs(T).
If timer z € X(g;), then:

firstStartedAt () =IAN1>0 = x=u1,.

Proof. If firstStartedAt,(z) = 1 and | > 0, then Lemma C.7.1 tells us that 4; € I. The fact that 7 is an

observation tree then implies that ¢;_1 (1—L)> q € runs(T) with z = z,,, as required. O
x,c

Lemma C.7.4. Let T be an observation tree MMT. Let 7 = qo M g; € runs(T). Then:
Vo e X(q;),le{l,....j}:a &€ X(@) Ne =2, = firstStartedAt (z) =1.

Proof. Let © € X(q;) and | € {1,...,j} such that ¢ X(qo) and © = x4. Let k = firstStartedAt (z).
Then z ¢ X(qo) implies that 0 < k& < n. Lemma C.7.1 tells us that iy, € I. We therefore know

that gr—1 (1—’“)) qr € runs(T). The fact that 7 is an observation tree implies that z, = x4 . Every
Tqy,C
distinct state of an observation tree MMT is associated with a distinct timer. This fact and Proposi-

tion C.7.1 together tells us that since x,, = x4, , g = ¢ and k = [. This implies that firstStartedAt, (z) =1,
as required. O

Definition C.7.1. Let 7 be an observation tree MMT with a state ¢ € Q™. The descendants of ¢ are
the states:

DT (q)={d €Q” |3oe(AT)>': ¢ 5 ¢ € runs(T)}.
Lemma C.7.5. Let 7 be an observation tree MMT with states ¢, g, € @. Then:

VeeX(q):x=12, = q¢.¢D"(q).

Proof. Let ¢,q, € Q, let x = x4, € X(q), and let n = |access(g)|. Let ¢ = access(q) = i1...4,. Then

there are states ¢1...q, € @ such that = = qIT Lo 2 g, € runs(T). This implies that ¢, = ¢, and
that ¢, = ¢ for some [€ {1,...,n}. Since ¢, = qi, T4, = ©4. Lemma C.7.4 and Rule 4.1 therefore tell us
that firstStartedAt (xq,) = |. We thus know that g, = ¢; is traversed by m. Proposition C.7.1 now tells us
that ¢, ¢ D7 (q), as required. O

k-A-Complete Conformance Testing of Mealy Machines with Timers 127

Lemma C.7.6. Let 7 be an observation tree MMT with a run g - g, € runs(T). Then:

Ve e X:
reX(gp) N reX(g) = je{l,...,n}:xzeX(g)A(T(gj-1,%5) = (x,¢) = i; = to[z])).
Proof. Let x € X such that € X(qo) and = € X(g,). For all j € {1,...,n}:

1. We prove that € X(g;) by a contradiction. Suppose that = ¢ X(g;). Then « € X(gy,) implies that =
must be activated somewhere along p = g; Lititn, qn- Let I = firstStartedAt,, (). Then Lemma C.7.1
tells us that since [> 0, ¢, € I. We thus know that ¢;_1 T”—)% qi € runs(T). The fact that T is an

observation tree then tells us that x = z,.
Lemma C.7.5 tells us that since = x4, and x € X7 (qo), ¢ € D7 (¢o). This contradicts the fact that g
is encountered in 7 after go. Therefore, x € X(q;).

2. If 7(gj—1,4;) = (z,c), then we prove by contradiction that i; = to[z]. Suppose that i; # to[z]. Then
there are two possibilities:

o If i; € I, then we know from the fact that 7 is an observation tree that ¢;_; (—ZJ—)% g; € runs(T)
z,c

with = z,,. Item 1 and z € X/(qo) thus tell us that for all h € {0,...,n}: x4, € X(qn).
Therefore, z,, € X(gj—1). Lemma C.7.5 tells us that ¢; ¢ D7 (g;—1). This contradicts the fact
that g;_1 has a state transition to g;.

o If i; = to[z'] with 2’ # x, then Rule 4.6 states that since 7(gj_1,7;) # L, 7(g;-1,%;) = (&', ¢).
This contradicts with 7(g;_1,%;) = (, ¢), since it would require that 2’ = z.

We see that all cases in which i; # to[x] lead to a contradiction. Therefore, i; = to[x], as required.

O

Lemma C.7.7. Let T be an observation tree MMT, and let M be a gMMT. Let (fs, ft, fu): T — M be a
functional gMMT simulation. Let m’: fs(qo) <> fs(q(). Let:

o T=gqo 2t g, € runs(T) and 7" = ¢, M q), € runs(T).
o p={fs, ft, fu)(m) € runs(M) and p' = (fs, ft, fu) (') € runs(M), such that m’: p < p'.
Then:
Vie{l,...,n}: ijel” = el

Proof. Leti; € AT. Ifi; € IT, then f,(qj—1,q;) € I™. Now, since m’: p <+ o/, fi(qj_1,15) € IM. Therefore,
il € IT. A similar argument would reveal that il € I" = i; € I”. Therefore, i; € I7 <= il € I7 as
required. O

Lemma C.7.8. Let T be an observation tree MMT, and let M be a gMMT. Let (fs, fi, fu): T — M be a
functional gMMT simulation. Let m’: fs(qo) <> fs(qp). Let:

o T=qo 2 g, € runs(T) and 7' = ¢, Gdng q,, € runs(T).
o p={fs, ft, fu)(m) € runs(M) and p’ = (fs, fi, fu)(7') € Tuns(M), such that m’: p < p'.

Then:

Vke{l,....n—1},5 € {2,n}: Qo1 ¢; is spanning = ¢, RN qj is spanning.

128 Bram Pellen

Proof. Let qp_1 ——2s g; be a spanning sub-run of 7. Then Lemma 5.3.2 implies that p’s sub-run:

Fe(ar—1,ik)- fe(aj—1,35)
R A1)

is spanning as well. The fact that m’: p <> p’ now implies that since k > 0:

ff,(QL,I,iL)~--ft(q;,17i;-)

fs(qh—1)

fs(d})

is also spanning. Condition (FGS5) now implies that ¢j,_, BT q; is a spanning sub-run of 7', as required.
O

Lemma C.7.9. Let T be an observation tree MMT, and let M be a gMMT. Let (fs, fi, fu): T — M be a
functional gMMT simulation. Let qo,q) € Q7. Let m: qo <> ¢ and m': fs(qo) <> fs(gh). Let:

o T=qo 2 g, € runs(T) and 7’ = ¢, RELN q,, € runs(T).
e 0= (o o fu) () € runs(M) and = {fo. fr. fu) (') € runs(M), such that m': p 5 4.
Then:

ve,y,y € XT ke {l,...,n},je{k,...,n}:
i, = to[z] Ai; = to[z] A = to[y] = i), = to[y].
Proof. The fact that i, € TO(X7) implies per Lemma C.7.7 that 3y’ € X7 : i} = to[y’]. The remaining

question is whether 3’ = y. Rule 4.6 implies that since i, = tolx], * = X(gx—1) and since i; = to[z],
x € X(gj—1). Lemma C.7.6 therefore tells us that:

1.Vied{k,....j—1}: z € X(q), and

2. Vle{k,...,5—1}: 77 (q—1,%) = (z,¢) = i = to[x].
We perform a case distinction on k:

o If k = j, then i} = i’ = to[y], as required.

o Otherwise, we know that k < j. Item 2 tells us that between i;, and 7;, x can only be reset by timeout
actions for x, and not by input actions or by timeouts for other timers. Let ip,i; = to[x] be two
consecutive timeouts for x in 7, where k < h < [< j. Lemma C.7.7 tells us that since i, € TO(X7),
i, € TO(XT).

The fact that i, and ¢; are consecutive timeouts for z in 7 implies that, since z is active in all
intermediate states per Item 1, gn_1 ——% ¢, is an 2-spanning sub-run of 7. Lemma C.7.8 tells us
that therefore, ¢}, RN ¢ is a spanning sub-run of 7.

We prove the property by an induction on I:

— Base case: If [= j, then we know that ¢}, _, Iy q; is a spanning sub-run of 7’. Rule 4.6 thus
implies that, since i, = to[y| and 7, € TO(XT), i, = to[y].

— Inductive step case: If | < 7, then we use the following induction hypothesis:
IH: i} = to[y].
The induction hypothesis tells us that the spanning sub-run ¢}, M) q] is y-spanning. Rule 4.6
thus implies that since i} € TO(X7), i} = to[y].

We thus know that, for all [< j with k¥ < h <[< j and with 45, and 4; being consecutive timeouts
for x, 4}, = toly|. Since this is the case for all h > k, i}, = to[y], as required.

We thus know that in all cases, i, = to[y], as required. O

k-A-Complete Conformance Testing of Mealy Machines with Timers 129

Lemma C.7.10. Let T be an observation tree MMT, and let M be a (g)MMT. Let (fs, ft, fu): T — M
be a functional simulation. Let qo,q) € Q7. Let m: qo <> ¢, and m': fi(qo) < fs(qh). Let:

o T=gqp 2 g, € runs(T) and 7" = ¢ RELN q,, € runs(T).
e 9= o for fu(m) € runs(M) and o/ = (fs, fur fu) (=) € runs(M), such that m’: p > /.
Then:

Vk, k' € {1,n—1},5 € {2,n}:

(o1 ¢; is z-spanning A ¢ _, MAEN q; is ’-spanning A x ¢ dom(m)) =
(Bhe{l,....k}: z=uz4 N2 :xq;L).

Proof. Lemma C.7.8 tells us that since qx_1 AN g; is a spanning sub-run of 7, q;,_, BN q} is a spanning
sub-run of #’. This implies that k&’ = k. We perform a case distinction on i:

o Ifi; € IT then Lemma C.7.7 tells us that ¢}, € I7. The fact that T is an observation tree MMT then

implies that qp_1 ﬁ Tk Qh1q ﬁ q;. € runs(T), and that z = x4, and 2’ = =y, as required.

o If 3y € X7 : iy = toy], then the fact that the transition starts an z-spanning run and Rule 4.6 together
imply that i = to[z]. Since i, € TO(XT), Lemma C.7.7 tells us that i}, € TO(X”). The fact that
the transition starts an z’-spanning run and Rule 4.6 now imply that i}, = to[z’].

Let | = firstStartedAt” iy (). Since x ¢ dom(m), we know that 0 < ! < k. Lemma C.7.3 now
Qo 7qk
tells us that = z,,, and Lemma C.7.1 tells us that i, € 17"

Since © € X7 (¢q;) and x € X7 (gx_1), Lemma C.7.6 us that Vh € {I +1,....k —1}: x € X7 (qs) A
(77 (qn-1,in) = (z,¢) = i, = to[x]). Therefore, since i; starts z and i;, = to[x], there is a sequence
of x-spanning runs in m, the first of which is started by 4; and the last of which is ended by iy.
Lemma C.7.8 therefore tells us that within 7’ there is a sequence of spannings runs, the first of which
is started by i) and the last of which is ended by #},. Therefore, there exists a timer y € X T such
that 4] starts y and i), = to[y]. Since ¢}, starts an z’-spanning run, y = z’. Lemma C 7.7 tells us that
since iy € I, i) € I”. Therefore, since T is an observation tree MMT, ¢, —>(o q;, € runs(T)
with 2’/ = zq. We thus know that 3h € {1,...,k}: =24 and 2’ = T4, as required.

C.8 Proof of Lemma 5.8.15

The proof of Lemma 5.8.15 relies on the following auxiliary lemma:

Lemma C.8.1. Let 7 be an observation tree MMT with a state ¢ € Q7 , let M be an s-learnable gMMT,
and let (fs, ft, fu): T — M be a functional gMMT simulation. Then:

qESL/\qEAT e
(Ve € XM(fo(9): 3y € XT(q): filg,y) =2 A (filg,y) € XM (fo(q)) <= y <€A (1))

Proof. We know from g € A%, that |X7 (¢)| = |X¥™(fs(g))|. Taken with (FGS1) and (FGS2), this tells us
that Yz € XM (f5(9)): Gy € X7(q): fi(g,y) = x). Let y € X7 (g), and let & = fi(q,y) € XM (fs(g)). The
fact that M is s-learnable implies that M is complete, which implies that fs(q) M € runs(M) &
filg,y) € XM(fs(q)). We know from (FGS3) and (FGS4) that ¢ ol ¢ runs(T) = fs(q) lfelanll, o

runs(M). Therefore, since M is s-learnable and thus complete, g o, ¢ runs(T) = fs(q) wla s W,

130 Bram Pellen

runs(M) = fi(q,y) € XM(fs(¢q)). Since T is an observation tree, ¢ o, ¢ runs(T) & y € &J (). We

thus know that y € XOT(q) = filq,y) € X()M(fs(‘I))~
The fact that ¢ € £, implies that |X] ()] = |45"(f(q))]. Taken with y € X](q) = fi(a,y) €
XM(fs(q)) and (FGS2), this implies that y € XJ (q) < fi(q,y) € XM (fs(q)), as required. O

C.8.1 The proof of Lemma 5.8.15

Proof. For any maximal matching m: s <+ s’, we know from s # s’ that there exists an action sequence o, €
(AS)* such that o, s #™ s'. Let 0, be a minimum-length witness of s #™ s'. Let p = s 7% € runs(S)

and p/ = readmﬁ(s') = ¢ 2% ¢ runs(S), such that ol € (A°)* and o, € (AS)* is a minimum-length

S
witness of s #™ s’. The fact that o, F s #™ s’ also implies that m: p <+ p’.

Let:
i1/01 in/On
™ =do w R w ” qn,
1 n

be the run that lets us define p as:

p = (s, fts fu)(m) € runs(S).

Let:
-/ U -/ ’
r_ i/0} in/0h
T =q) = ... =y,
uy uy,

be the run that lets us define p’ as:

o' = fs, fe, fu)(7') € runs(S).
Lemma 5.8.13 tells us that calling:

. addTmnsitz’onsFTOmSpecSqundMakeActiveExplorediA(aa - 0yw) and

o addTransitionsFromSpecSeqAndMakeActiveExplored$ (o', - o)

w

would make it so that = € runs(T) and 7" € runs(7T). Lemma 5.8.14 tells us that these procedure calls will
ensure that eventually:

Vie{0,...,n}: {ai,qi} € AN {qi, g} CE. (C.9)
Proposition 5.4.1 tells us that once that is the case:

fe(qo,i1)/01 fe(gn-1,in)/0n
Fu(@0,q1,u1) FulGn1,Gn,tn)

P = fs(qo) fs(Qn) = <fsa ftvfu)(ﬂ-) € TU,TLS(S)

and:

p/:fs(q6) ft(q()yia)/oi ft(q;Lfl,i,/”)/OiL

Fu(ab,q7 1) fuldl,_1:95,u})

fs(q'tl) = <fs,ft,fu>(71',) € TUTLS(S),

which means that 7 and 7’ will contain all timer updates present in both the specification, and the SUT.
We get from Equation (C.9) that qo,q € AZ and qo, ¢y € EL. The apartness gy # qf) might therefore hold
as a consequence of either of the following two cases:

e since qy € Ag implies that | X7 (go)| = | XS (fs(q0))|, and q € Ag implies that |XT(q6)| = |X‘S(fs(q6))
we know that if |XS(fs(q0))| # |XS(fs(gh))|, then:

X7 (q0)| = X5 (fs(a0))] # 12 (fs(a0)] = [X7 (a5)].

This would then mean that go # ¢ per (active sizes).

b

k-A-Complete Conformance Testing of Mealy Machines with Timers 131

e since qg € Sg— implies that |XOT(qO)\ = X5 (fs(q0))], and ¢}, € SST implies that |X(;r(q6)| = X5 (fs(qb))
we know thit if |4 (f,(qo) | 7 |4 (fa(a}))]. then:

X0 (a0)] = |45 (fs(a0))] # |25 (fs(g0))] = 1 (a5)].

b

This would then mean that ¢y # ¢, per (enabled sizes).

For the remainder of this proof, we will assume that neither of these conditions for apartness holds, since
otherwise there would be nothing more for us to show. We therefore know from ¢y, ¢, € Ag and qo, g, € SST
that:

X7 (g0)| = 12 (fs(g0))| = 1X° (fs(a0))| = 1X7 (gp)]

and:

X (90)] = |45 (fo(g0))] = |45 (fo(g0))| = 14 (a0)I-
We define the mapping m’: X7 (go) — X7 (¢}) as:

m' ={(z,y) € X7 (q0) x X7 (a}) | (f:(qo,), fe(ah,y)) € m}.

The fact that the (active sizes) condition for apartness doesn’t hold implies that | X7 (qo)| = |XS(fs(q0))| =
|XS (fs(g0)| = |X7 (gh)]. We know from (FGS2) that for a fixed state ¢ € Q7, f; is injective with respect
to the timers of X7 (¢). We know from (FGS1), (FGS2) and |X7 (q0)| = |X°(fs(q0))| = |XS(fs(qh))| =
|X7 (g})| that for ¢ € {qo,qh}, f+ is surjective for the timers of X7 (¢). Timer map f; is thus bijective
with respect to the timers of X7 (¢) when q € {qo,¢,}. This implies that mapping m’ is different for every
distinct maximal matching m’: s > s’. The fact that |X7 (go0)| = |XS(fs(q0))| = |XS(fs(q)))| = |X7 (g})]
implies that there are exactly as many unique maximal matchings between gy and ¢} as there are unique
maximal matchings m: s <> s’. Therefore, if we can show for any m that m’ is a valid maximal matching
with qg #m' qf, then go and ¢, are apart for all maximal matchings that exist between go and ¢jj. This would
mean that go # ¢(, as required.

For all 2 € X7 (qy), condition (FGS1) implies that f;(qo,z) € XS(fs(qo)). Now, m being maximal implies
that since |X°(fs(q0))| = |X°(fs(qh))|, there is a timer z € X°(fs(qh)): m/(fi(qo,x)) = z. Since z €
XS(fs(qh), a6 € AL and (FGS1), we know that there is a timer y € X7 (g}) such that fi(gh,y) = 2z =
m'(ft(qo,x)). So:

vz € X7 (x0): m(fi(go, x)) = fe(qb,y) = felgp,m’(2)). (C.10)

Partial function m’ needs to be injective to be a valid matching. We get from (FGS2) that if z # 2/,
then fi(qo,x) # fi(go,2’). We know from the fact that m is a matching that m is injective, which tells us
that m(fi(qgo,x)) # m(fi(qo,«")). This tells us that fi(q), m'(x)) # fi(qh, m'(2")), which tells us that m’(x) #
m’(z"). Partial function m/’ is therefore injective, which makes it a valid matching.

We know from Lemma 5.5.2 that any witnesses of apartness between s and s’ need to be at most |Q°|
elements long. Since we specify that o,, is minimum-length, we know that it falls within that range, so n =
0wl < 105,

The runs 7 and 7’ are matching under m’, since for all j € {1,...,n}:

o Ifi; €I, then fi(qj—1,%;) =i; € I. We then know from the definition of mg, that:

!/

felgj_1,15) = mb, (filgj-1,15)) = mb, (i5) = i € I.
Therefore:
Z; = ft(Q}_ui}) = 1ij,

as required.

132 Bram Pellen

o Ifi; = to[z] for some x € X7, then fi(q;_1,4;) = fi(qj_1,to[z]) = to[fi(qj_1,z)] for some fi(g;_1,7) €

XS. Let k = lastStartedAt® FeCa0rin) o Fe(aj—2vij—1) (fi(gj—1,)). Then:
fs(q0) fs(‘]g—l)

fe(an—1,ik)... fe(qj—1,1;
fs(qr—1) (ot d) S8) fs(gj) € runs(S)

is a spanning sub-run of p. Condition (FGS5) therefore tells us that when 7 € runs(T), qp_1 —— q;
is an z-spanning run. If:

— k=0, then m: p <> p’ implies that:

. S
fe(qj_1,7;) = to[renameTo Felal)t eyt) (e
fs((I6) fs(QE',l)
S
. m(renamesTo Ft(a0,i1) - fe(aj—2.i5-1) (ft(quhér))))]'
fs((I(J) fs(QJ'—l)

We perform a case distinction on z:

* In one of two cases, © € X7 (¢p). Since k = 0, we know that:

3(E/ € Xs(fs(qo)): renameToS Ft(ao,i1) - fe(aj—2.ij-1) (.T/) = ft(qj*hx)'
fs(q0) falai—1)
This implies that fi(qj_q,7;) = to[renameTo® PR RO (m(z"))], and
0’1/ j—2""j—1
felap) > fu(d)_y)

that 2’ = fi(qo,x) per Lemma 5.3.3. We established with Equation (C.10) that m(f:(qo,z)) =
fi(qh, m'(x)). Since ' = fi(qo, x), this implies that m(z’) = fi(q}, m'(z)). Therefore:

. S
fid) 1,) = tolrenameTo® oy (m(@)]

fs(ag) fs(aj_y)
s
= to[renameTo Fela i) fu (] _yil_) (fi(go, m/ (2)))]
fs(Q(/)) fS(Q},l)
= to[fi(qj_1,m'(2))] (Lemma 5.3.3)

Condition (FGS2) now tells us that i, = to[m’(z)], as required.

x Otherwise, z & X7 (go). Then z = z,, with 0 < [< j. We know from firstStartedAt] (x,,) =
that k& > [, and thus that £ > [> 0. This contradicts our knowledge that k& = 0. Therefore,
it cannot be the case that z = x4, with 0 <[< 7, so this case is done.

Feldl il fr ()1)

— k > 0, then m: p + p' implies that f(q;_,) fs(q}) is spanning. This
fact and (FGS5) together tell us that when 7' € runs(T), there is a timer 2/ € X7 such

P =150k). Jt(qi—1,5
that ¢, | —2» q; is z'-spanning. We know that fs(qr—1) Folann) folas -1 i) fs(

q;) is span-
ning. Together with (FGS5) and i; = to[z], this implies that once 7w € runs(7T), qr—1 RLESEN q;
is x-spanning.

We perform a case distinction on whether z € X7 (go):

* In the first case, z € X7 (qo). Since i; = to[z], * € X7 (gj_1) per Rule 4.5 and Rule 4.6.
Therefore, since © € X7 (qo), Lemma C.7.6 tells us that VI € {1,...,5 —1}: 2z € X7 (q)
and 77 (¢;_1,4;) = (z,¢) = i; = to[z]. This implies that since 4 starts an z-spanning run,
ix = to[z]. Lemma C.7.7 tells us that since i, € TO(XT), i} € TO(XT). Therefore, since i},
starts an z’-spanning run, i, = to[z’]. There must be a first timeout i, = to[z] in 7, for

some h € {1,...,k}. Since lastStartedAt” i1 (z) = 0, we see that if:
qo—7qn-1

h =1, then:
mp (fi(gn-1,2),h — 1) = m(fi(gn-1,2)) = m(fi(q0, 7))
= fi(g, m'(x)) (Equation (C.10))
= fi(gh_1,m(2)).

k-A-Complete Conformance Testing of Mealy Machines with Timers

h > 1, then:
mﬁ/ (ft(qh—la .T), h — 1)
_ s
= renameTo Fela it el) (...
fs(ag) fs(ap,_q)
s
. m(renamesTo Fe(20si1) - Fi (@ —1sin—1) (fe(gn—1,7)))).
fs(q0) fs(an-1)
Now, per Lemma 5.3.3:
s
renamesTo ft(agsi1)---frlap—1,ip—1) (ft(thl,fE)) = ft((Jo,ZU)-
fs(q0) fs(gn-1)
Therefore:
mg’ (ft(thh .’L'), h — 1)
_ s
= renameTo Felaoil) el it) (...
fs(qp) fs(ap_y)
s
. m(renamesTo Fo(20ri1) - F (@ —1vin—1) (fi(gn-1,7))))
fs(QO) fs(q}t—l)
s
= renameTo Felah i) dtal i) (m(f(q0,7)))
fs(Q(l)) fs(Q;L,l)
s
= renamelo Felal i) ol i) (fe(qp,m'(x)))
fs(ag) fs(ap,_q)

= fil@p—1,m(2)).

We thus see that in both cases, fi(q},_;, zh) = to[m/,(
Condition (FGS2) tells us that therefore, i}, = to[m/(x)
ip = to[z], ¢}, = to[m/(z)] and i), = to[z'], 2’ = m/(z
ends with 7 = to[z'], i, = to[m’(z)], as required.

* Otherwise, z = for some 0 < [< j. Since z & X7 (o), x ¢ dom(m

4/ il

133

(Equation (C.10))

(Lemma 5.3.3)

filgn-1,2), h—1)] = to[fi (g} _y, m'(x))].
]. Lemma C.7.9 tells us that since i, =
). Since i), starts a spanning run that

). Lemma C.7.8 tells

us that since q;—1 e, ¢; is spanning, qj,_, SLEHEN qj is spanmng Lemma C.7.10 therefore
tells us that since i; = to[z], = x4, and x ¢ dom(m’), i; = to[z]. Therefore, i; = to[z,]

and ¢ = to[zy/] for some 0 <1 < j, as required.
We now extend m’ to 7 and 7’ in the usual way:
m'", =mU {(zgprq) | 0 <k <},

and 7 = m’;, (ij).for every j. . .
Let 0 =iy ...1p, such that fi(qo,%1) ... ft(¢n-1,in) = Ow.

We now show that o F qo #™ q,- We do so by looking at each of the conditions for apartness for oy, -
fs(qo) #™ fs(q) other than (active sizes) and (enabled sizes), because we already know that neither of those

conditions hold:
o (outputs): then o # o’. Then (FGS3) and (FGS4) tell us that:

Q-1 infon, eruns(T) AN ¢, L> € runs(T).

Since o # o', we get that o F g #m a5

o (constants): then:

(31' € XS(fs(Qn)): (fu(Qn—17Qnaun) = fu(Qn—la(JH))(x =cc N>O) A

(3" € X°(fo(@): (fuldly1s dhrun) = fuld_1,a0)) (") = ¢ € N7O) A

c#c

134 Bram Pellen

Then Equation (C.9) implies that Jy,y' € X7 : u, = (y,¢) Aul, = (y/,c). Since ¢ # ¢/, we have
that o - qgo #™ q.

o (updating): then:

(Hl‘ € XS(fs(Qn)): (fu(Qn—laQnaun) = fu(Qn—LQn))(x) € N>O) <~
(—|E|£ZZ/ € Xs(fs(q;)): (fu(Q:L—DQZwu/n) - fu(q;—laq;))(xl) € N>0)

Then Equation (C.9) implies that w,, # L < u!, = 1, which tells us that o F g = q5-

o (enabled): then:
S0 € XS ml (e,)L A (x € X (fulan) & mP(xm) & X5 (fu(dl)). (c.11)

We know from m?’, (z,n)| that x € XS (fs(qn)) and mb, (z,n) € X5(fs(q),)). Equation (C.9) tells us
that eventually, gy, ¢, € AL. Once this is the case, there must be timers y € X7 (¢,) and v’ € X7 (¢,)
such that fs(¢n,y) = @ and fi(qy,y) = mp/(z,n) = m),(fi(gn,y),n), per (FGS1) and (FGS2).

Since m/, (z,n), k = lastStartedAt‘s(x) € N. Lemma C.3.3 therefore tells us that m/, (fi(qn,y),n)
felan,m'2 (). Since, fi(q,,y') = mp, (filan,y),n) = filgn, m'7(y)), (FGS2) tells us that y'

m'7(y).
We know from Equation (C.11) that for a timer x € X that satisfies Equation (C.11), either:

L. @ € X3 (fs(gn)) Ay (w,n) & X§ (fs(qp)), or
2. mp(z,n) € X5 (fs(q,) N w & XS (fs(qn))-

We perform a case distinction:

1. In the first case, Lemma C.8.1 tells us that y € X7 (¢,) and y' = m'7, (y) & XJ (¢.,). Therefore,
Ty € dom(m'%): (y € X (gn) A7 (y) & AT (a7))-
2. In the second case, Lemma C.8.1 tells us that y & X7 (¢,,) and ¢/ = m/'%, (y) € XJ (¢,). Therefore,
Jy € dom(m'): (y & & (gn) A7 (y) € AT (a7))-
Therefore, in all cases, 3y € dom(m'%, (y)): (y & XJ (gn) & m'% (y) € XJ (¢,,)), which tells us that o -
q #™ 40

Therefore, gy # qf, will eventually hold. O

C.9 Proofs Related to the MMT Conformance Testing Procedure

Proofs for the MMT conformance testing procedure from Chapter 5.

C.9.1 Proof of Lemma 5.8.2
Proof. We perform a case distinction on the state ¢ that is passed to makeEnabledExploredS:

e If ¢ = qg . Then Algorithm 13 terminates immediately, since per Rule 4.1, initial states of obser-
vation tree MMTs never have active timers (and therefore never have enabled timers). Therefore,
calling Algorithm 13 on ¢ ensures that ¢ € £, as required.

o If ¢ # ¢F, then Algorithm 13 performs the waiting query WQM(access(q)). This yields a value w C
(N>O % N>0).
Now, for all (j,¢) € w, Algorithm 13 finds the timer updates for S at index j of (gs, g, gu) (access(q))
and returns with a counterexample if S has no corresponding timer update at j with constant ¢. The
algorithm identifies the observation tree timer z/; for which the timeout action should be (or already
is) there from g, and then adds the timeout action for m; from q if it isn’t already there. It also records

k-A-Complete Conformance Testing of Mealy Machines with Timers 135

the timer update that started x; (if needed), and it marks z; as spanning in the states between the z’;
timeout and the update that last started x; before the timeout, in order to finish the spanning for m;,
the one timer that corresponds to (4, ¢) € w. Algorithm 13 does this for all elements of w, which contains
an element for all timers that can have a timeout in ¢q. Therefore, calling makeEnabledExplored on ¢
makes g enabled explored with respect to the SUT, i.e. g € 5;(/[.

Algorithm 13 yields a counterexample if the total number of timeouts and the positions along the
access sequence at which they were started for q is different from the specification counterparts of q
and of q’s access sequence. This ensures that if | X5 (f.(q))] # |X3"(gs(q))| or the symbolic words that
terminate with timeouts from f,(q) are different from those from g¢,(g), then ¢ is not added to £ and
that Algorithm 13 returns a counterexample symbolic word that is feasible in either S or in M, but
not in both.

Otherwise, we know that g € EL and ¢ € Sg, and that the spannings that terminate with timeouts
from ¢ (and therefore those for the SUT) are symbolically the same as those for the specification. This
then implies that there are no conflicts between the specification and the SUT with regard to timeouts
from ¢ and its specification and SUT counterparts.

Finally, the sub-procedure adds ¢ to £.

We thus know by induction on the state ¢ € Q7 passed to Algorithm 13 that once the algorithm terminates,
q € &, unless it found a conflict between the specification and the SUT. O

C.9.2 Proof of Lemma 5.8.9

Proof. Let 77 (q,i) = (z,¢) € X7 (¢') x N>° and let v = 75(f,(q), f¢(¢,1)). In general, (FGS1) tells us that:
XS (fo(d))] = 1X7 (¢,

and (FMS1) tells us that:
XM (gs(a)] = X7 (d)].

We could thus conclude that ¢’ € A if we can show that | X7 (¢')| > |XS(fs(¢'))| and |X7 (¢")| > |XM(g5(q"))|-
We label our assumption that all states that are active in g are also active in ¢’:

X7 (q) € X7(q). (C.12)
« For the specification: By (FGS3):
W(fild) =c A Vye XT(d)\{z}: e(fildy) = fila,y).
This implies that, per Rule 4.10:
(X°(f5(q")) = dom(x)) S {fild o)y U{fidy) | Yy e XT(¢)\ {=}}.
Condition (FGS2) tells us that:
{fi(d s 2)y U{fuld y) | Yy € XT(¢)\ {z}} = 1X7 ()],

So [X3(fs(d)] < [X7(q")]. Therefore, since |XS(fs(¢))] = [X7 ()], [X°(fs(d)] = [X7(¢)], as
required.

e For the SUT: We perform a case distinction on = € X7 (¢q):
— x € X7 (q). We know from = € X7 (g), Rule 4.4 and Equation (C.12) that:
X7 () = X7 (q),
By (FMS3):

™ (95(0), 9:(1)) = (gu(), ¢).

136 Bram Pellen

Since x € X7 (q) = X7 (¢'), we know from (FGS1) that:

gr(x) € XM (g4(q)).

Rule 4.4 now tells us that:

XM (g5(q")) € XM (gs(q)).

Therefore:
XM (g5 (q")] < 1XM(gs(q))]
= X7 (q)| (g€ A
=1X7(q)]. (X7(q') = X7 (q))

So [X¥M(gs(a))] < |X7(¢)|. Therefore, since |XM(gs(q')] = |X7 ()], |X¥M(g5(a)] = X7 ()],
as required.

— ¢ X7 (q). Rule 4.4 and Equation (C.12) tell us that:
X7(q') = X7 (q) U{z}.
Therefore, since z & X7 (q):
X7 (¢ =1X7(g)] + 1. (C.13)

Condition (FMS3) tells us that since 77 (g,4) = (z,¢), 7™ (9s(q),9:(1)) = (g¢(2),c). Thus,
by Rule 4.4:

XM(g5(0)) \ {ge(2)} € XM (95(a))-

Therefore:

XM (g5 (d))] = 1 < XM (g5())]
= [xX7(q)| (g€ A)
=1x7(¢)) - 1. (Equation (C.13))

So [X¥M(gs(a))] < |X7(¢)|. Therefore, since |[X(gs(q")] = |X7 ()], |X¥M(g5(a)] = X7 ()],
as required.

Since in all cases, | XS (fs(¢")| = |X7 (¢)] = |XM(gs(q"))], ¢’ € A, as required. O

C.9.3 Proof of Lemma 5.8.10

Proof. Let M € U. Suppose that areAllStatesInNStepsPresentAndEnabledExplored(q, m) has run. Since
any state ¢ € Q7 always corresponds to one state of M, it could take at most |Q*| — 1 transition steps
to reach from ¢ a state that represents any particular state of Q™. Therefore, it could take at most m — 1
transition steps to reach from ¢ a state that represents any particular state of any MMT M € U. Thus,
from ¢, it could take at most m transition steps to reach a transition in 7 that represents any transi-
tion, and therefore any timeout transition of the SUT that can be reached via gs(¢q). We thus know that
since areAllStatesInNStepsPresentAndEnabledExplored(q, m) has run, there is for each timeout action that
can be reached in M from g¢4(q) a corresponding timeout action in 7 that can be reached from gq.

Every timeout action of an MMT always terminates at least one spanning run. Let p € runs(M) be a y-
spanning run that traverses gs(¢). Then for the run « for which (gs, g+, g)(7) = p, we know from the fact
that areAllStatesInNStepsPresentAndEnabledExplored(q,m) has run that # € runs(T), and from (FMS5)
that 7 is a-spanning, where g;(z) = y. Since p traverses g(q), y € X (gs(¢)), and since 7 traverses q,
x € X7 (g). The fact that M is t-observable implies that for all y € X (g4(g)), there exists a y-spanning run

k-A-Complete Conformance Testing of Mealy Machines with Timers 137

that traverses gs(¢q). We have thus shown that when areAllStatesInNStepsPresentAndEnabled Explored(q, m),
there is, for each y € XM (gs(q)) an x € X7 (q) for which g;(2) = y. Thus, by (FMS2):

areAllStatesInNStepsPresent AndEnabled Explored(q, m) = X7 (q)] > |x™M(g4(q))|.
Conditions (FMS1) and (FMS2) imply that in general, |X7 (¢)| < |X™(gs(q))|. Therefore:

areAllStatesInNStepsPresentAndEnabled Explored(q, m) = X7 ()] = |&M(g5(q))]. (C.14)
We can similarly show that since |Q°| < m and S is t-observable:

areAllStatesInNStepsPresentAndEnabled Explored(q, m) = X7 ()| = |X5(fs(q))]. (C.15)

Let qF ;—11> q ... ;—”> q € runs(T). All that remains for us to prove is that:

Vie{l,...,n}: gu(gj-1,i;) = L& u;j = L & 3z fu(g-1,i;)(z) € N7°. (C.16)
We get:
Vie{l,...,n—1}: gulgj—1,i;) = L & u; = L & Jo: fu(gj_1,i;)(z) € N°

from g_; € A. We showed that if p € runs(M) is a spanning run that traverses gs(q), then there is a spanning
run m € runs(7T) that traverses ¢, where (gs,gt, gu)(m) = p. Therefore, gy(qgn-1,in) # L = u, # L.
Lemma 5.3.1 conversely tells us that uw, # L = ¢y(qn—1,%n) # L. Therefore, u, = L < g, (qn—1,1,) = L.
We can similarly use Lemma 5.3.2 to show that u, = L < Jz: f,(gj—1,%;)(z) € N>, Equation (C.16)
therefore holds.

Since Equation (C.16), Equation (C.14) and Equation (C.15) all hold:

areAllStatesInNStepsPresentAndEnabled Explored(q, m) = qge Al Nge AL,

as required.

C.9.4 Proof of Lemma 5.8.11

Proof. Let ¢ € A, UBUF=<F and let ¢_; € Q7 be the observation tree state such that ¢ = 67 (¢_1,1) for
some i € I. For g to be added to A by the ExtendActiveExplored rule requires that ¢_; € A. We know
that Band F<* are prefix-closed, and we know from Lemma 5.8.8 that A, is prefix-closed. Therefore, if
the ExtendActiveExplored rule would add ¢ € B U F=* to A, then it would also try to do so for all of ¢'’s
ancestors, apart from q{ . We perform an induction on ¢:

e Base case: If ¢ = q%— , then we cannot use the ExtendActiveExplored rule on ¢ since q%— has no parent
state. However, Algorithm 9 has already added ¢ to A because a partial MMT’s initial state can never
have active timers. Therefore, g € A, as required.

e Inductive step case: If g # qg , then ¢ has a parent state ¢g_;. We use the induction hypothesis:
IH : q—1 S A
We use the induction hypothesis to start from the position where ¢g_; € A. If:

1. areAllStatesInNStepsPresentAndEnabled Explored(q, maxzNumSUTStates), then by Corollary 5.8.1,
q € A}, and g € AL. This then implies that |XS(fs(q))| = |X7 (q)| = |¥™(gs(g))|- The Exten-
dActiveExplored rule would eventually be called on ¢, upon which it would rightfully add ¢ to A,
as required.

2. (17 (q_1,i) # LA(Vz € X(q_1): = € X(q))). Lemma 5.8.9 now tells us that since ¢_1 € A, q € A.
The ExtendActiveExplored rule would eventually be called on ¢, upon which it would rightfully
add ¢ to A, as required.

138 Bram Pellen

3. neither of the first two conditions hold, then we know that there is at least one state ¢’ that is
reached within mazNumSUTStates transition steps from ¢ for which at least one of the following
two conditions holds:

— There is an input i € I, for which §7 (¢’,7)1. Then the conditions for the FindingInputActions
rule are met, and the procedure from Algorithm 9 will eventually use the rule to add an input
transition for ¢ from ¢'.

— ¢ ¢ &. Then the conditions for the FindingTimeoutActions rule are met, and the procedure
from Algorithm 9 will eventually use the rule to make ¢’ enabled explored.

This third condition will hold for g for as long as neither of the first two conditions hold. The
procedure from Algorithm 9 will therefore keep using the FindingInputActions and FindingTime-
outActions rules until one of the first two conditions holds for ¢, where the first condition is
always guaranteed to hold eventually. Once either of the first two conditions holds, Algorithm 9
will eventually use the ExtendActiveExplored rule to add ¢ to A, granted that no conflicts arise
before then.

We thus know that for all ¢ € A, U BU F=F g is either already in A, or it will eventually be added to A,
granted that no conflicts arise before then. O

C.9.5 Proof of Lemma 5.8.16

Proof. The IdentifyBasisStates rule can only be applied as many times are there are elements in state cover C.
Therefore, since S has a finite number of elements, C is finite as well, and the IdentifyBasisStates rule can
only be applied a finite number of times. The size of the basis is therefore also finite.

The finite size of the basis also imposes a limit on the size that the 0-frontier can reach through repeated
application of the ExtendFrontiersWithInputs rule. The fact that the maximum size of the O-frontier is finite
in turn implies that the maximum size of the 1-level frontier is finite, and so on. The ExtendFrontiersWith-
Inputs rule can only be applied a finite number of times, since the maximum size of any frontier is always
finite, which implies that the maximum sizes of the first £ + 1 frontiers are always finite.

The ExtendEnabledExplored rule can only be applied as many times as there are elements in the finite set
of states B U F=F, since once it runs for one of these states, the state becomes enabled explored, and the
rule can never be applied to this state again.

The ExtendActiveExplored rule can only be applied once to any given state ¢ € Q7 , since it adds ¢ to A,
after which it can never be run on ¢ again. The total number of states ¢ € (A, U B U F=F) on which
the rule will be run is finite, since the number of states in B U F<F is finite, and since only the sub-
procedure addTransitionsFromSpecSeqAndMakeActiveEzplored adds states to A,. This sub-procedure is
only used in makeEnabledExploredS to extend Q7 and A,. Sub-procedure makeEnabledExploredS is only
used to make states from the basis and the first k£ + 1 frontiers apart from other states. Since there are only
ever finitely many states in the basis and the first £ + 1 frontiers, only a finite number of states may be
added to A,.

We argued in the proof of Lemma 5.8.11 that whenever the FindingInputActions rule or the FindingTime-
outActions rule is applied to an observation tree state T, this observation tree state will be added to A. These
two rules can then never be applied on ¢ again. We already argued that the size of the set (A, UBU F=k)
of the states on which these two rules can be applied is always finite. Therefore, the FindingInputActions
and FindingTimeoutActions rules can only be applied a finite number of times.

Every application of the IdentifyFrontiers rule makes a state from the k + 1-level frontier apart from at
least one basis state. This rule can only be applied a finite number of times, since the number of states in
the k + 1-level frontier and the number of basis states are both finite.

Every application of the ExtendCoTransitivity rule makes a state from the first k frontiers apart from a
state from the k 4 1-level frontier. This rule can only be applied a finite number of times, since the number
of states in any frontier is always finite.

We may thus conclude that all eight of Algorithm 9’s rules can only be applied a finite number of times.
The loop-condition of Line 9 will thus always be met after a finite number of loop iterations. The algorithm
will therefore always terminate within a finite number of rule applications. O

	Introduction
	MM1T Testing Preliminaries
	Notation
	Functions
	Sequences

	Mealy Machines
	Conformance Testing for Mealy Machines
	k-Complete Test Suites for Mealy Machines
	The W-Method
	The H-method

	k-A-Complete Test Suites for Mealy Machines
	Mealy Machines With a Single Timer (MM1Ts)
	Untimed Semantics
	Timed Semantics

	k-A-Complete MM1T Conformance Testing
	Requirements for the Specification
	The Test Data Captured by our Procedure
	The Testing Procedure
	Determining Whether a Transition has Conflicts Between the Specification and the SUT
	Extending the Observation Tree With a Single Transition
	Extending the Observation Tree With a Sequence of Transitions
	Termination
	k-A-Complete Test Suites for MM1Ts
	k-A-Completeness of the Procedure
	Comparison With the H-Method
	The Order in Which the Rules are Applied

	MMT Testing Preliminaries
	Mealy Machines With Multiple Timers
	Untimed Semantics
	Timed Semantics
	Symbolic Words and Symbolic Equivalence
	Race Conditions and Race Avoidance
	Auxiliary Functions That Describe Timer Behavior

	k-A-Complete Conformance Testing of MMTs
	t-Observable (g)MMTs
	Making s-Learnable MMTs t-Observable
	Why not all s-Learnable MMTs are t-Observable

	Observation Trees and Functional Simulations
	Explored States
	Timer Matchings and Apartness
	Reading Runs
	Apartness of States

	Stratification
	Requirements for the Specification
	Requirements
	Why gMMTs Should be Easier to Minimize Than MMTs

	The Testing Procedure
	k-A-Complete Test Suites for MMTs
	The SUT's Maximum Size
	Making an Observation Tree State Enabled Explored
	Extending the Observation Tree With a Single Transition
	Extending the Observation Tree With a Sequence of Transitions
	Making Observation Tree States Active Explored
	Making Two Observation Tree States Apart
	Termination
	k-A-Completeness of the Procedure

	Conclusions and Future Work
	Bibliography
	MM1T Material from the Literature
	Expressing MM1Ts and Mealy Machines in Terms of One Another
	Bisimulations Between MM1Ts

	Proofs Related to MM1Ts
	Properties and Proofs Related to the k-A-Completeness of the MM1T Testing Procedure
	The proof of thm:MMOneTEquivalenceFromKACompletenessCondition
	Proof of thm:MMOneTKACompletenessConditionIsEquivalentToTheLCompletenessCondition

	Proof of thm:minimizingMMOneTMealyAbstractionsYieldsMealyMachinesForWhichTheMMOneTsAreValidMinimalAndUntimedEquivalent
	Proof of thm:minimizingMMOneTMealyAbstractionsYieldsMealyMachinesForWhichTheMMOneTsAreValid
	Proof of thm:minimizingMMOneTMealyAbstractionsYieldsMealyMachinesForWhichTheMMOneTsAreMinimal
	Proof of thm:minimizingMMOneTMealyAbstractionsYieldsMealyMachinesForWhichTheMMOneTsAreEquivalentToTheOriginal

	Definitions, Properties and Proofs Related to (g)MMTs
	Proofs Related to Functional Simulations
	Proof of thm:MMTToMMTFunSymMapsSpanningRunsToSpanningRuns
	Proof of thm:MMTToGMMTFunSymMapsSpanningRunsToSpanningRuns
	Proof of thm:renamingTimersForASimulatedGMMTByNStepsYieldsTheSameTimerAsSkippingTheMappedTimerStateNSteps
	Proof of thm:renamingTimersFromASimulatedGMMTByNStepsYieldsTheSameTimerAsReverseSkippingTheMappedTimerStateNSteps

	Properties and Proofs Related to Observation Tree Runs
	Properties and Proofs Related to Apartness
	Proof of thm:statesThatAreApartForAllMatchingsAreMappedToInequivalentStatesByFunctionalSimulations
	Proof of thm:statesThatAreApartForAllMatchingsAreMappedToInequivalentStatesByFunctionalSimulationsToGMMTs

	Properties and Proofs for the Algorithm for Making MMTs t-Observable
	Proof of thm:theStatesMapOfTheProcedureForMakingMMTsTObservablePreservesOutputsTimerUpdatesAndSuccessorStates
	Proof of thm:theProcedureForMakingMMTsTObservableEnsuresThatTheResultModelHasMatchingSpanningRuns
	Proof of thm:theProcedureForMakingMMTsTObservableAddsAllXSpanningsThatTerminateFromAStatePForWhichPXIsInSAndThatAreMatchedInTheInputModelAndXIsNotMarkedAsActiveInPIfThereIsNoXSpanningThatTraversesP
	Proof of thm:theProcedureForMakingMMTsTObservableYieldsAnMMTWithMatchingSpanningRuns
	Proof of thm:theProcedureForMakingMMTsTObservableAlwaysYieldsSoundMMTs
	Proof of thm:makingMMTsTObservableOnlyReturnsConnectedMMTsWhenGivenConnectedMMTs
	Proof of thm:makingMMTsTObservableOnlyReturnsTObservableMMTsWhenGivenSLearnableMMTs
	Proof of thm:theProcedureForMakingMMTsTObservableAlwaysYieldsCompleteMMTsWhenGivenCompleteMMTs

	(g)MMT Bisimulations
	Proof of thm:bisimilarTObservableGMMTsAndMMTsWithTwoMatchingSymbolicRunsHaveBisimMatchingStatesAlongAllIndicesAlongTheRunsAndTheMatchingTimersAreStartedAtTheSameIndicesAndTheRunActionsMatch
	Proof of thm:bisimilarActiveTimerFullyObservableGMMTsAndMMTsAreSymbolicEquivalent

	Properties and Proofs Related to the k-A-Completeness of the MMT Testing Procedure
	The proof of thm:MMTEquivalenceFromKACompletenessCondition
	Proof of thm:MMTKACompletenessConditionIsEquivalentToTheLCompletenessCondition

	Auxiliary Properties Concerning Observation Tree MMTs and Functional (g)MMT Simulations
	Proof of thm:ifTwoObsTreeStatesThatCAnBeMadeApartAreNotApartButTheirSpecCounterpartsAreApartForAllMaximalMatchingsThenAddingTheInverseMappingsOfTheWitnessesMakesThemApart
	The proof of thm:ifTwoObsTreeStatesThatCAnBeMadeApartAreNotApartButTheirSpecCounterpartsAreApartForAllMaximalMatchingsThenAddingTheInverseMappingsOfTheWitnessesMakesThemApart

	Proofs Related to the MMT Conformance Testing Procedure
	Proof of thm:MMTTestingProcedureCallingMakeEnabledExploredOnAnObsTreeStateMakesItEnabledExplored
	Proof of thm:ifAnObsTreeStateIsActiveExploredForBothSpecAndImplAndAnOutgoingTransitionHasATimerUpdateAndAllStatesAreActiveInTheSuccessorThenTheSuccessorIsActiveExploredAsWell
	Proof of thm:MMTTestingProcedureIfForObsTreeStateQAllStepsWithinMaxNumStatesInFaultDomainArePresentAndEnabledExploredThenQIsActiveExplored
	Proof of thm:MMTTestingProcedureAllStatesThatAreToBeMadeActiveExploredAreEventuallyMadeActiveExplored
	Proof of thm:MMTTestingProcedureTheMainProcedureAlwaysTerminatesWithinAFiniteNumberOfRuleApplications

