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Abstract

In the last decade, Microsoft has introduced several technologies in Windows to
harden the Windows kernel (‘NT Kernel’) against exploitation. These technologies
leverage hardware virtualization to introduce new security boundaries between the
NT Kernel and the ‘Secure Kernel’. With these new security boundaries enabled,
even when the NT Kernel is exploited by an attacker, the impact of exploitation
is limited. The Secure Kernel is a Windows operating system component that
runs with higher privileges than the NT Kernel and manages the NT Kernel.
Communication between the Secure Kernel and NT Kernel uses ‘Hypercalls’, which
are similar to the concept of syscalls. The Secure Kernel therefore becomes a target
for attackers aiming to fully compromise the Windows operating system, even when
the new security boundaries are enabled.

In this master thesis, we analyze bugs in the Secure Kernel for which a patch
is already available. The patched bugs, as well as the functionality where the bugs
reside, are almost always undocumented. The goal of this analysis is to hopefully
gain new knowledge about these undocumented functionalities and bugs to better
comprehend the Secure Kernel. This new knowledge is useful for other security
researchers who want to discover new security bugs in the Secure Kernel.

Debugging the Secure Kernel is non-trivial, as it runs outside the context of
regular Windows debugging capabilities and there is a lack of public Secure Ker-
nel debugging documentation. We have created and documented our own Secure
Kernel setup, which we use for dynamic code analysis when finding an interesting
Secure Kernel n-day security bug. From developing the Secure Kernel debugging
setup, we strongly recommend using VMWare as the virtualization software for a
Secure Kernel debugging setup.

The first step in analyzing a bug in the Secure Kernel is to discover the location
of the bug by comparing vulnerable and patched binaries to find changed code
related to the bug. The second step is to try to trigger the bug in our Secure
Kernel debugging setup. In the third step, if triggering the bug succeeds, we
determine if the bug can be used to compromise the Secure Kernel. If that is the
case, we try to build a proof-of-concept exploit for the bug to compromise the
Secure Kernel. However, in the third step, we encounter various difficulties due to
hardening done by Microsoft to the Secure Kernel, which makes it impossible to
exploit the Secure Kernel without additional primitives.

As expected, debugging, interacting with, and understanding the Secure Ker-
nel is difficult. We document a Secure Kernel debugging setup, which we use to
successfully locate and write a proof-of-concept to trigger the security bug. By us-
ing the vulnerable code pattern of the n-day security bug, we also find a zero-day
security bug in the Secure Kernel.
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Glossary

Child Partition ‘Partition that hosts a guest operating system - All access to physical
memory and devices by a child partition is provided via the Virtual Machine Bus
(VMBus) or the hypervisor’ [16].

Enclave When Virtualization Based Security (VBS) is enabled, Enclaves provide a
software-based Trusted Execution Environment available for developer to securely
store sensitive data.

EPT Extended Page-Table: Implementation of Intel of Second Level Address Transla-
tion. See Section 2.1.3.

EPTP Extended Page Table Pointer: a pointer stored in the Virtual-Machine Con-
trol Structure (VMCS) which points to the first table for EPT PML4 address
translation.

GPA Guest Physical Address: physical addresses seen by the operating system of the
Guest software.

Guest software ‘Each virtual machine (VM) is a guest software environment that
supports a stack consisting of operating system (OS) and application software’ [9].

GVA Guest Virtual Address: virtual addresses used by processes in the Guest software
operating system.

HVCI Hypervisor-Enforced Code Integrity: also referred to as ‘memory integrity’ or
‘hypervisor enforced code integrity’. HVCI protects against modifications of the
Control Flow Guard bitmap for kernel drivers, as well as code integrity in the NT
Kernel by protecting the code that is responsible for validating certificates related
to loaded kernel drivers. HVCI was originally released as part of ‘Device Guard’,
but Device Guard is no longer used.

Hypercall ‘Interface for communication with the hypervisor - The Hypercall interface
accommodates access to the optimizations provided by the hypervisor’ [16].

IUM Isolated User Mode: A new mode of execution in user-mode in VTL1 which is
used by Trustlets.

KASLR Kernel Address Space Layout Randomization.

KB Knowledge Base: used as the term to refer to an article published by Microsoft for
a specific Windows operating system update.

KVM Kernel-based Virtual Machine: a virtualization module in the Linux kernel that
allows the kernel to function as a hypervisor.

LSASS Local Security Authority: ‘manages the local system policy, user authentica-
tion, and auditing while handling sensitive security data such as password hashes
and Kerberos keys’ [19].

Partition ‘Hyper-V supports isolation in terms of a partition. A partition is a logical
unit of isolation, supported by the hypervisor, in which operating systems execute’
[18].
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PDP Page Directory Pointer.

PDT Page Directory Table.

PML4 Page Map Level 4.

PT Page Table.

PTE Page Table Entry.

Root Partition ‘Sometimes called parent partition. Manages machine-level functions
such as device drivers, power management, and device hot addition/removal. The
root (or parent) partition is the only partition that has direct access to physical
memory and devices’ [16].

RVI Rapid Virtualization Indexing: Implementation of AMD of Second Level Address
Translation. See Section 2.1.3.

Secure Kernel Another kernel that runs in parallel with the normal NT Kernel. Due
to the lack of loading any third-party modules and separation due to VTL, the
secure kernel is considered more secure. The Secure Kernel runs in VTL1.

SKPG Secure Kernel Patch Guard: somtimes also referred to as ‘HyperGuard’. Secure
Kernel system that periodicly checks if the NT Kernel is not changed unauthorized
with malicious code..

SLAT Second Level Address Translation: a hardware virtualization feature that allows
to virtualize physical memory of a guest machine. Also known as ‘nested-paging’.
See Section 2.1.3.

SPA System Physical Address: physical addresses which point to physical memory in
the hardware.

SSCN Secure System Call Number: the number used for the Hypercall to the Secure
Kernel.

SVA System Virtual Address: virtual addresses seen by the hypervisor process.

TOCTOU Time-Of-Check Time-Of-Use.

Trustlet Trustlets (also known as trusted processes, secure processes, or IUM pro-
cesses) are programs running as IUM processes in VSM.

VBS Virtualization Based Security: By using hardware virtualization technologies im-
plemented in the CPU, new security contexts are introduced to extend the kernel
rings security models with Virtual Trust Levels.

VM Virtual Machine.

VMCS Virtual-Machine Control Structure: VMX transitions and VMX non-root op-
erations are stored in a data structure called a Virtual-Machine Control Structure
[9]. See Section 2.1.2.

VMM Virtual-Machine Monitor: ‘A VMM acts as a host and has full control of the
processor(s) and other platform hardware’ [9].

VMX Virtual Mode Extensions: VMX defines processor-level support for Virtual Ma-
chines. See Section 2.1.1.
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VSM Virtual Secure Mode: A set of hypervisor capabilities that leverages hardware
virtualization of the CPU to introduce new memory security features in the NT
Kernel [24].

VTL Virtual Trust Level: A hardware virtualization segregation to define boundaries
between memory regions used to define the ‘normal’ world and the ‘secure’ world.

When this PDF is viewed digitally, it is possible to click in the text on words described
in the glossary to jump to the explanation in the glossary.
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1 Introduction

This thesis takes a look at patched security vulnerabilities in the Secure Kernel. We
started this research without any prior knowledge about Windows, the Windows Kernel
or the Secure Kernel. The steps in our research are described below.

1. The first step is to document the existing knowledge about the Secure Kernel.
This will give insight in how the Secure Kernel operates and can be used for more
vulnerability research.

2. We explain how we use patch diffing to rediscover n-day vulnerabilities in the
Secure Kernel.

3. We create and document a Secure Kernel debugging setup as well as a setup to
interact with the Secure Kernel. This setup is useful for dynamic code analysis
during the Exploitability Assessment and to create a proof of concept exploit
during Exploitation.

4. We will do an Exploitability Assessment on certain CVEs that are already patched
in the Secure Kernel (see Section 5).

With this we hope to give insights in exploitability of certain (type of) bugs,
by going beyond Microsoft Security Response Center’s own assessment given (for
example ‘Exploitation Less Likely’). For example, can a heap overflow bug be suf-
ficient for exploitation or does it need to be chained with a bug that gives another
primitive in order to perform exploitation? This step also helps understanding
which parts of the Secure Kernel were vulnerable and thus where vulnerability
research already has been done. Furthermore, the practical explanation of per-
forming Secure Kernel exploitation helps other vulnerability researchers starting
vulnerability research on the Secure Kernel.

5. If we conclude that we can trigger the bug and gives a useful primitive to control
the Secure Kernel, we will write a proof of concept exploit for it (see Section 6).

For the first step, we do a literature study in Section 2 in order to learn more about the
Secure Kernel. The literature study starts with the foundation of hardware virtualization
(see Section 2.1) and further explains how Hyper-V uses hardware virtualization (see
Section 2.2). We then explain in Section 2.3 how the technology of Hyper-V makes the
Secure Kernel possible.

The second step is to explain how we rediscover n-day vulnerabilities based on the
very limited available information online, which is discussed in Section 3. Most of the
time, this information is a security update identifier and a single sentence stating the
vulnerability class, for example ‘buffer overflow’ or ‘heap overflow’. Since it is an n-day
with an already available fix for it, we should be able to do ‘patchdiffing’ (comparing
assembly between an old and an updated binary to find the differences, see Section
3.1.1) on the DLLs and EXEs of the Secure Kernel and audit only the changed code.
This should greatly limit the scope of the security audit. This bindiffing methodology
is also portable to other n-day analyses of Windows updates and therefore valuable to
document.

In the third step, we create and document a debugging setup as well as an setup to in-
teract with the Secure Kernel so we can trigger bugs and troubleshoot bugs dynamically.
In Section 4 we discuss the debugging setup. We explain the setup and corresponding
problems we encountered while developing this setup. In Section 4.2.2 we give a practical
explanation of a QEMU/KVM Secure Kernel debugging setup used during our research,
including the required configurations that need to be done in order to reproduce this
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setup. Some alternative setups are also discussed in Section 4.3. We conclude this step
with an explanation of the setup we use to interact with the Secure Kernel, which is
discussed in Section 4.4.

For step four, in Section 5 we explore the possibilities of exploiting the uncovered bugs
found in step two using the setup explained in step three. Not every is exploitable
since sometimes you need another bug to create an extra primitive for exploitability
(for example, a Secure Kernel address leak to defeat Kernel Address Space Layout
Randomization (KASLR)). Understanding the necessary primitives in order to perform
exploitation is key to judging exploitability of a certain bug, which we will explore in
step four.

If a security bug appears to be exploitable, we will then proceed to step five. In step five
(see Section 6), we discuss the Exploitation attack scenario of the exploitable security
bug(s). We implement a proof of concept exploit script to attack the Secure Kernel using
the security bug(s), giving a practical overview of performing Secure Kernel exploitation
based on the knowledge gained in previous steps. This step helps other researchers
understanding the implementation of Secure Kernel bugs for which they can use this
knowledge to do more vulnerability research and exploitation on other components of
the Secure Kernel.

We give suggestions for future research in Section 7 and we then conclude our research
in Section 8.

For the list of references, it is important to note that [3] is the only ‘official’ literature
found, which is a master thesis about the “Live forensics of the Windows 10 secure
kernel”. Other sources are personal blogs or corporate blogs, as well as Microsoft Learn
pages. The lack of scientific literature is because there has been no research done on the
Secure Kernel by scientific researchers. Therefore, we have to rely on unofficial literature
such as blog posts, GitHub repositories, and documentation done by other researchers.

For readers that have no prior knowledge about hardware virtualization, Hyper-V, or
the Secure Kernel, Section 2 is the starting point. For readers that do have prior
knowledge about hardware virtualization, Hyper-V, and the Secure Kernel, Section 5 will
explain the Exploitability Assessment done in this master thesis, which is the practical
application of the theory described in Section 2, Section 3, and Section 4.
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2 Background

In this chapter, we discuss the background information required for understanding the
research done in this thesis. In Section 2.1, we discuss the underlying technologies and
concepts used for hardware virtualization. Hardware virtualization is used by Hyper-V
to introduce a security boundary between the ‘normal world’ (where the NT Kernel is
executed) and the ‘secure world’ (where the Secure Kernel is executed). We proceed
to discuss Hyper-V in Section 2.2, which explains the concepts ‘Partitions’ and ‘Virtual
Trust Levels (VTLs)’ used by Hyper-V. We discuess the Secure Kernel in Section 2.3.
Furthermore, we explain how the Secure Kernel works together with the NT Kernel (see
Section 2.3.1) and how communication is done through Hypercalls between the Secure
Kernel and the NT Kernel (see Section 2.3.2). We explain in Section 2.3.3 how the
Secure Kernel monitors the NT Kernel for unauthorized modifications of executable
code, which is one of the main purposes of the Secure Kernel.

We use the term ‘Windows Kernel’ to refer to the Windows operating system, which
includes the ‘NT Kernel’ and the ‘Secure Kernel’. The NT Kernel is the kernel code
that is executed in VTL0 ring 0 (see Section 2.2.2). The Secure Kernel is the kernel
code that is executed in VTL1 ring 0. See Figure 4 for a visual overview of the VTL
and ring levels.

2.1 Hardware Virtualization

The Windows Kernel utilizes hardware virtualization to strengthen the operating sys-
tem’s security. Starting from Windows 10 and Windows Server 2016, Microsoft intro-
duced Virtual Secure Mode (VSM) which uses hardware virtualization to allow new
security boundaries within the operating system software [24]. The purpose of VSM is
to limit the impact of malware or exploits even when the NT Kernel is exploited by
an attacker since the NT Kernel itself is excluded from the chain of trust. Therefore,
hardware virtualization forms the foundation on which new security guarantees are built.

In this section, we explain how hardware virtualization works and is utilized to introduce
new security boundaries within the Windows Kernel, which seperates the ‘normal world’
(where the NT Kernel is executed) and the ‘secure world’ (where the Secure Kernel is
executed). In Section 2.2 we will then further look at how Hyper-V uses hardware
virtualization to introduce Partitions and Virtual Trust Levels (VTLs).

2.1.1 Virtual Mode Extensions

Hardware virtualization relies on the CPU supporting Virtual Mode Extensions (VMX),
which was introduced by Intel in 2005. VMX defines processor-level support for virtual
machines on IA-32 processors. This VMX set is used to control entering and leaving
virtualization mode, which establishes a security boundary between the virtual machines
and the host system. The operating system can register a Virtual-Machine Monitor
(VMM), which is responsible for managing the virtual machines. In Windows, the
VMM is named the hypervisor, and for Linux, it is named Kernel-based Virtual Machine
(KVM). Each Virtual Machine (VM) that is managed by the VMM is named ‘Guest
software’. A Guest software supports a stack consisting of an operating system and
application software. Guest software is the term used by Intel to refer to a VM, Microsoft
refers to a VM as a ‘Partition’. The VMM runs at a higher privilege level than the Guest
software, which results in the VMM having more control over the system and direct
access to the hardware. Each VM operates independently of other VMs and shares the
hardware resources (processor(s), memory, storage, I/O, etc.) with other VMs. A VM
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is executed with reduced privileges so that the VMM can retain control of the platform
resources [9].

Similar to the concept of ‘rings’ in an operating system, which represent different levels
of privileges between programs and the kernel, VMX operations are used to distinguish
between the levels of privileges within hardware virtualization. There are two modes of
operation (privilege levels):

1. VMX root operation: this is where the VMM will run.

2. VMX non-root operation: this is where the Guest software will run.

User Mode (Ring 3)

Kernel Mode (Ring 0)

VSM Normal
Mode (VTL0)

VSM Secure
Mode (VTL1)

Guest Software / Partition

Hypervisor / VM Monitor

non-root
operation

root
operation

VM Entry
VM Exit VM Exit

VM Entry

Figure 1: Guest software and Virtual-Machine Monitor overview

Transitioning from root operation to non-root operation is done by ‘VM entries’, while
transitioning from non-root operation to root operation is done by ‘VM exits’. These
transitions are visualized in Figure 1. Note that the concepts of VSM and VTL are
explained in Section 2.2.2. VMX transitions rely on a data structure named “Virtual-
Machine Control Structure (VMCS)”, which is explained in Section 2.1.2.

The VMM is in control of the processor resources and therefore the VMX non-root
operation is restricted in resources and execution. Certain operations and events can
cause the VM to exit to the VMM. There is also an explicit instruction set that will
always cause a VM exit, known as the ‘VMX instructions’. These VMX instructions are
used by the Windows Kernel to perform calls to the VMM.
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2.1.2 Virtual-Machine Control Structure

Transitions into and out of Virtual Mode Extensions (VMX) non-root operation (VM
entries and VM exits, see Figure 1), as well as processor behavior in VMX non-root op-
eration are managed using Virtual-Machine Control Structure (VMCS) data structures
[9]. The VMCS serves as an important data structure that manages the processor state
during transitions between VMX root and non-root operations. It is used to preserve
and to restore the hypervisor’s state correctly during these transitions. This state is
saved or restored depending on performing a VM Entry or VM Exit. A VMM can use
a different VMCS for each virtual processor per VM [9] since it contains the processor
state when the VM Exit is executed.

The data of the VMCS is divided into six groups [9]:

1. Guest-state area: on a VM exit the processor state (of the guest) is saved into the
guest-state area and loaded again on a VM entry.

2. Host-state area: on a VM exit the processor state (of the host) is loaded from the
host-state area and stored again on a VM entry.

3. VM-execution control fields: the VM-execution control fields define the rules and
restrictions for processor behavior during VMX non-root operation. These fields
also influence the conditions that trigger a VM exit, allowing the VMM to enforce
specific policies on the guest’s execution.

4. VM-exit control fields: fields related to controlling VM exits.

5. VM-entry control fields: fields related to controlling VM entries.

6. VM-exit information fields: fields that receive the cause and the nature of a VM
exit when a VM exit is triggered. The VMM uses this information to determine
what should be done after a VM exit has been executed.

2.1.3 Address Translation & Second Level Address Translation

Second Level Address Translation (SLAT) is a hardware-assisted technology that enables
efficient mapping of virtualized memory used by Guest software to the physical memory
of the host system. To understand how SLAT works, it is helpful to first review the
concept of address translation in Windows, as SLAT builds upon similar principles.

2.1.3.1 Address Translation

In Windows, each process operates within its own virtual memory space, allowing pro-
cesses to use the same virtual addresses without conflict. Address translation is the
mechanism that maps these virtual addresses to unique physical memory addresses,
ensuring isolation and efficient memory management. Address translation relies on a
hierarchical structure of page tables to map virtual addresses to physical addresses. In
a 64-bit Windows system, this process involves the following four types of page tables:

1. Page Map Level 4 (PML4) table

2. Page Directory Pointer (PDP) table

3. Page Directory Table (PDT)

4. Page Table (PT)

Every 64-bit virtual address consists of four times 9 bits of offset in the four correspond-
ing page tables and the lower 12 bits are used for the page offset. The upper 16 bits
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are always zero. 4-Level Paging starts the page walk at the PML4 table, for which the
address is stored in the CR3 CPU register of the process that performs the access. A
visual overview of resolving a virtual address to a physical address using the four page
tables can be found in Figure 2.

Figure 2: “4 Level Page Mode Overview” from [59]

2.1.3.2 Second Level Address Translation

SLAT can be enabled through the VM-execution control fields (see Section 2.1.2), which
introduces an extra layer of paging mechanism. The implementation of SLAT developed
by Intel is called Extended Page-Table (EPT). The implementation of SLAT developed
by AMD is called Rapid Virtualization Indexing (RVI). On ARM processors, this imple-
mentation is known as ‘Stage-2 page-tables’. Since the hardware we use for our research
contains an Intel CPU, we only consider EPT.

The idea of address translation is also implemented at the level of hardware virtual-
ization. For hardware virtualization, the virtual addresses correspond to the memory
addresses of the Guest software and the physical addresses correspond to the physical
memory of the hardware. As a result, the ‘physical memory’ of the Guest software is
still virtualized due to SLAT.

The EPT translation mechanism can be either a 4-level EPT or a 5-level EPT [10].
The difference between 4-level and 5-level EPT is that 4-level EPT can use 48-bit guest
physical addresses while 5-level EPT can use up to 57 bits, and 4-level EPT has a page-
walk length of 4 while 5-level EPT has a page-walk length of 5. Since a 5-level EPT is
rarely used, we focus on the 4-level EPT translation mechanism.

The 4-level EPT mechanism has four different address spaces:

1. Guest Virtual Address (GVA): virtual addresses used by processes within the
Guest software operating system.

2. Guest Physical Address (GPA): physical addresses seen by the operating system
of the Guest software.

3. System Virtual Address (SVA): virtual addresses seen by the hypervisor.

4. System Physical Address (SPA): physical addresses which correspond to the actual
physical memory of the hardware.

These address spaces work together to ensure that the hypervisor can manage memory
access while maintaining isolation between the guest and host systems.
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Figure 3: Address Translation from GVA to SPA, from [47]

The SVA is the virtual memory address space as seen by the hypervisor (the VMM
running in VMX root mode) which directly runs on the hardware. Therefore SLAT is
not used for SVA to SPA and instead a normal page-table walk is used starting from
the PML4 table found in the CR3 CPU register. Translation from a GPA to a SPA
uses the same mechanism as normal address translation except that the tables used in
the address translation are different. The translation from GPA to SPA begins with
the EPT PML4 table. Unlike traditional address translation, which uses the CR3 CPU
register to reference the page table, EPT relies on a special pointer called the ‘Extended
Page Table Pointer (EPTP)’. This pointer is stored in the VMCS structure of the virtual
processor (see Section 2.1.2) and enables the hypervisor to manage memory translation
for virtual machines. Resolving a GVA to a SPA therefore consists of walking 2 levels
of page-tables, which is summarized in Figure 3.

Due to the separation of these address spaces, the hypervisor is able to define access
rights for each SPA page. This means that the hypervisor is allowed to overrule the
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defined memory privileges as defined by the Guest software. For instance, the hypervisor
may map a memory page as read-write. If an attacker exploits the NT Kernel to change
the page’s privileges to read-write-execute, the hypervisor will detect this unauthorized
change. When the attacker attempts to execute code on the page, the hypervisor will
block the operation, triggering a VM exit and preventing the exploit from succeeding.
Furthermore, the EPT is used to ensure that the NT Kernel cannot access restricted
pages which belong to the Secure Kernel.

2.2 Hyper-V

Hyper-V is a bare-metal hypervisor developed by Microsoft for the Windows operating
system. Hyper-V leverages hardware virtualization technologies (see Section 2.1) to cre-
ate isolated environments for running virtual machines and improving system security.
Hyper-V uses the Virtual-Machine Monitor (VMM) (see Section 1), the Virtual-Machine
Control Structure (VMCS) data structures (see Section 2.1.2) as well as Second Level
Address Translation (SLAT) (see Section 2.1.3) to create isolated ‘Partitions’ (see Sec-
tion 2.2.1). Hyper-V can be used for traditional Virtual Machines (VMs) to run Linux
or another Windows OS. In addition to running virtual machines, Hyper-V provides
security features within the Windows OS through Virtualization Based Security (VBS).
For instance, without VBS, malware with administrative privileges can dump the mem-
ory of the lsass.exe process to steal sensitive credentials. When VBS is enabled,
Hyper-V protects critical processes like lsass.exe by moving sensitive information from
lsass.exe to LSAISO.exe (which is a Trustlet running in Virtual Trust Level (VTL)1),
preventing unauthorized access and protecting user credentials. To understand how
Hyper-V achieves isolation, we explore its core architectural components, starting with
the concept of ‘Partitions’ (Section 2.2.1) and afterwards the concept of VTLs (Section
2.2.2).

2.2.1 Partitions

In Hyper-V, isolation is achieved through ‘Partitions’, which are logical units created
and managed by the hypervisor. Each Partition represents an isolated environment
where operating systems can execute independently [20]. Partitions can be seen as
the terminology Microsoft uses for Virtual Machines (VMs), which Intel calls Guest
software. Partitions do not have direct access to the physical processor or physical
memory. Instead, they run in an isolated environment where they have a virtual view
of the processors and their memory is virtualized and private for each guest partition.
This is made possible due to Virtual Mode Extensions (VMX) (see Section 2.1.1) and
Second Level Address Translation (SLAT) (see Section 2.1.3).

Hyper-V defines two types of Partitions:

1. Root Partition (also called ‘Parent Partition’): This is the primary partition that
manages machine-level functions such as device drivers, power management, and
device hot addition/removal. It is the only partition with direct access to physical
memory and devices [16].

2. Child Partitions: These are secondary partitions that host guest operating sys-
tems. Unlike the Root Partition, Child Partitions do not have direct access to
physical memory or devices. Instead, they rely on the Virtual Machine Bus (VM-
Bus) or the hypervisor to access these resources [16].

The Root Partition is responsible for creating and managing Child Partitions, which host
operating systems such as Linux or Windows. The Root Partition runs the Windows
OS, which can be considered the ‘host’ OS which manages Hyper-V. The Root Partition
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uses Hypercalls (see Section 2.3.2) to create and manage Child Partitions. These Child
Partitions operate with lower privileges compared to the Root Partition and rely on
the hypervisor to mediate access to physical resources such as memory and devices. By
isolating resources and managing access through the hypervisor, Partitions form the
foundation of Hyper-V’s ability to securely run several operating systems on the same
hardware. In the next section, we explore how Hyper-V leverages these partitions to
implement security features.

2.2.2 Virtual Trust Levels

Virtual Secure Mode (VSM) is a set of hypervisor capabilities offered to the Root Parti-
tion and Child Partitions that leverages hardware virtualization of the CPU (see Section
2.1) which enables the creation and management of new security boundaries within op-
erating system software [24]. VSM is used to introduce a security boundary within a
Partition. Windows security features such as Device Guard, Credential Guard, virtual
TPMs and ‘shielded’ VMs are facilitated through VSM. VSM allows operating systems
in the Root Partition and Child Partitions to create isolated memory regions for storage
and processing of system security assets. This is possible since the hypervisor runs at a
higher privilege level than the Partitions. Therefore, the hypervisor has control over the
hardware resources and permissions of memory regions, which are used to introduce a
new security boundary. Even code running in the highest privileges of the Partition, for
example code running in “Ring 0” of the NT Kernel, is unable to access isolated mem-
ory regions. This new security boundary, provided by ‘Virtual Trust Levels (VTLs)’,
enables the hypervisor to enforce strict isolation between different privilege levels within
a Partition. This ensures that even highly privileged code running in lower levels, such
as the NT Kernel in VTL0, cannot access memory or resources allocated to higher levels
like VTL1.

VSM achieves isolation by leveraging VTLs, which are managed on both a per-virtual
processor and per-partition basis [24]. VTLs are organized hierarchically, with higher
levels having more privileges than lower levels. For example, VTL0 is the least priv-
ileged level, while VTL1 has greater privileges and can enforce restrictions on VTL0.
Although up to 16 levels are supported, VSM uses only two levels: VTL0 and VTL1.
The hypervisor enforces memory access protections for each VTL, ensuring that memory
regions allocated to higher VTLs cannot be accessed or modified by lower VTLs. These
protections are stored in the physical address space of the partition and are managed
exclusively by the hypervisor. This mechanism allows secrets to be securely stored in
higher VTLs. For example, if a secret is stored in VTL1 and VTL0 is later compromised,
the secret remains protected because VTL0 cannot access memory allocated to VTL1.

To enforce isolation provided by VTLs, the hypervisor uses several mechanisms [24]:

1. Memory Access Protections: Each VTL has its own Guest Physical Address (GPA)
access protections. Software running in a VTL can only access memory within the
VTL itself and follows the configured memory access protections.

2. Virtual Processor State: The processors are virtualized to the VTL and maintained
per-VTL-state. Virtual Processor States of lower VTLs cannot access the Virtual
Processor State of higher VTLs, but higher VTLs can access the Virtual Processor
State of lower VTLs.

3. Interrupts: The interrupt subsystem is also separated, similar to the Virtual Pro-
cessor State. Lower VTLs can therefore not interfere with processing interrupts
of higher VTLs, but higher VTLs can interfere with processing interrupts of lower
VTLs.
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4. Overlay Pages: For each VTL there is a special ‘overlay page’ which is used for
Hypercalls (see Section 2.3.2) [24].

By leveraging VTLs, Hyper-V introduces a new security boundary that isolates crit-
ical components of the operating system. One such component is the Secure Kernel,
which operates in the higher-privileged VTL1 environment. The Secure Kernel will be
discussed in Section 2.3.

2.3 The Secure Kernel

In Virtual Trust Level (VTL) environments, the normal NT Kernel of the Windows op-
erating system runs in the low-privileged VTL0. The Secure Kernel runs in an isolated
environment named ‘VTL1’ which has higher privileges than VTL0 [71]. The Secure
Kernel lacks several components such as the I/O manager and the power manager [3],
which minimizes its attack surface and improves security by limiting potential vulner-
abilities. Therefore, the Secure Kernel cannot function independently and needs the
lower-privileged NT Kernel in order to operate. An overview of the NT Kernel, the
Secure Kernel and the corresponding privilege levels can be found in Figure 4.
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Figure 4: Isolated User Mode (IUM) Architecture

The Secure Kernel consists of the securekernel.exe binary which can be found in
the Windows operating system at C:\Windows\System32\securekernel.exe. The NT
Kernel consists of the ntoskrnl.exe binary which can be found in the Windows oper-
ating system at C:\Windows\System32\ntoskrnl.exe. Symbols for the Secure Kernel
and NT Kernel binaries can be downloaded from the Microsoft Public Symbol Server.
The securekernel.exe binary uses a consistent naming convention for its functions and
global variables, making it easier to identify their purpose. Table 1 provides an overview
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of the most important function prefixes and their corresponding functionalities.

Prefix Description

Skps Process support functions.
Skob Object manager functionality.
Skmm Memory manager functionality.
Sk, Ski, Skp, Ske Secure kernel functionality.
Ium, Iump Isolated user mode functionality.
Nk Alternate prefix for functionality imported from the normal kernel.
Skpg Secure Kernel Patch Guard (SKPG) functionality (see Section 2.3.3)

Table 1: “Kernel Function Prefixes and Their Descriptions” from [3]

In addition to its kernel-level functionality, the Secure Kernel also supports specialized
user-mode processes called ‘Trustlets’, which operate within the VTL1 environment to
improve security. Trustlets are discussed in Section 2.3.1.

2.3.1 Trustlets

Like the low-privileged NT Kernel, the Secure Kernel is also able to run processes.
These processes are executed in User Mode (ring 3) of VTL1 and are called ‘Trustlets’.
Trustlets are responsible for completing system calls by marshalling them over to the
NT Kernel in VTL0 ring 0. At the time of writing, there is no way to create or load
third-party Trustlets. Therefore, there are a fixed number of available Trustlets [30]:

1. LSALSO.exe: the Trustlet responsible for credential and key guard

2. vmsp.exe: the Trustlet responsible for the vTPM

3. Unknown: the Trustlet responsible for vTPM key enrollment

4. Biolso.exe: the Trustlet responsible for secure biometrics

5. Fslso.exe: the Trustlet responsible for secure frame server

As an example, we will look into the LSALSO.exe Trustlet. When Virtual Secure Mode
(VSM) is enabled, the Local Security Authority (LSASS) process runs together with
a Trustlet ‘LSAISO.exe’. The LSASS process manages the local system policy, user
authentication, and auditing while handling sensitive security data such as password
hashes and Kerberos keys [19]. A well-known technique for credential stealers such as
Mimikatz [29] is to dump the memory of LSASS in order to exfiltrate sensitive data.
Leveraging VSM, the secrets are not stored anymore in the LSASS.exe process but
instead in a LSAISO.exe (LSA Isolated) Trustlet running in VTL1 ring 3. LSAISO.exe
communicates with LSASS.exe running in VTL0 through an RPC channel. In Figure
5 a visual overview can be found of the processes and privilege levels of LSASS. This
protection mechanism, where sensitive data is isolated in VTL1 using VSM, is known
as ‘Credential Guard’. Credential Guard is only available when hardware supports
VBS and when the Windows operating system is configured with a certain Windows
Enterprise or Windows Education license [12].

2.3.2 Hyper-V Hypercalls

The Secure Kernel relies on the NT Kernel for certain functionalities it lacks by design.
To enable this dependency, a communication channel is required between VTL0 (where
the NT Kernel operates) and VTL1 (where the Secure Kernel operates). Communication
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between VTL0 and VTL1 is done using ‘Hypercalls’ by making use of the VM Entry and
VM Exit instructions, as well as the Virtual-Machine Control Structure (VMCS) data
structures. Communication to higher privileged VTLs is only allowed from the most
privileged guest processor mode (which is ring 0, kernel privileges). Hypercalls function
as a communication mechanism, similar to system calls, allowing the NT Kernel in
VTL0 to interact with the Secure Kernel in VTL1. Since Hypercalls switch between
VTL privileges, it must be performed using Virtual Mode Extensions (VMX) operation
instructions (see Section 2.1.1). Specifically, the VMCALL instruction is used with the
corresponding Hypercall number in register RCX [7]. The VMCALL instructions are stored
on a special ‘Hypercall page’, which is mapped by VTL1 into the memory space of
VTL0. This page acts as a trampoline, enabling transitions to higher-privileged VTLs.
Hypercalls use different calling conventions based on the value of the ‘Fast’ flag and the
specific Hypercall being invoked.

When the Fast flag is set to zero, the register mapping is used as described in Table 2.
When the Fast flag is set to one, the register mapping is used as described in Table 3.
When the Fast flag is set to one, the register contains the direct input parameter value,
otherwise a pointer is expected pointing to a buffer storing the input value.

To ensure secure communication, several checks are performed on the supplied Guest
Physical Address (GPA) parameters:

1. The GPA pointers must be 8-byte aligned.

2. The input and output parameter list cannot overlap or cross page boundaries.

3. The input and output pages are expected to be GPA pages and not “overlay”
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pages, otherwise the input parameter list is undefined.

4. The supplied input GPA is mapped and readable by the calling partition.

5. The supplied output GPA is mapped and writable by the calling partition.

x64 x86 Contents

RCX EDX:EAX Hypercall Input Value
RDX EBX:ECX Input Parameters GPA
R8 EDI:ESI Output Parameter GPA

Table 2: “Register mapping for Hypercall inputs when the Fast flag is set to zero” from
[70]

x64 x86 Contents

RCX EDX:EAX Hypercall Input Value
RDX EBX:ECX Input Parameters
R8 EDI:ESI Output Parameter

Table 3: “Register mapping for Hypercall inputs when the Fast flag is set to one” from
[70]

Field Bits Information Provided

Call Code 15-0 Specifies which Hypercall is requested.

Fast 16 Specifies whether the Hypercall uses the register-
based calling convention: 0 = memory-based, 1 =
register-based.

Variable header size 26-17 The size of a variable header, in QWORDS.

RsvdZ 30-27 Must be zero.

Is Nested 31 Specifies the Hypercall should be handled by the L0
hypervisor in a nested environment.

Rep Count 43-32 Total number of reps (for rep call, must be zero oth-
erwise).

RsvdZ 47-44 Must be zero.

Rep Start Index 59-48 Starting index (for rep call, must be zero otherwise).

RsvdZ 63-60 Must be zero.

Table 4: Hypercall Fields and Their Meaning from [17]

For Hypercalls with call codes above 0x8000, the ‘Extended Hypercall Interface’ is used
[17]. This interface allows larger input parameters (up to 122 bytes) by utilizing 6 XMM
registers [48].

Each Hypercall is associated with a ‘Secure System Call Number (SSCN)’ in the Secure
Kernel. The SSCN acts as an identifier for specific functionalities, which are executed
through a switch statement in the Secure Kernel. However, the Hypercall Input Value
is not simply an ID for the SSCN, but it encodes more information using several flags.
There are two different ways of calling a Hypercall:
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1. Simple: perform a single operation with a fixed-size set of input and output pa-
rameters

2. Rep (repeat): perform multiple operations at once, with a list of fixed-size input
and/or output elements [70].

The meaning of all Hypercall fields can be found in Table 4. It is also possible for a
Hypercall to have a variable amount of input header data. In such a case, the Hypercall
has a fixed-size input header and additional header input that is of variable size.

The SSCN for each Hypercalls is handled by the securekernel.exe binary in the
IumInvokeSecureService function. There are a total of 134 different SSCNs imple-
mented in the IumInvokeSecureService function. A detailed list of SSCN values and
their corresponding executed functions can be found in Appendix A.

2.3.3 Secure Kernel Patch Guard

As mentioned in Section 2.1, Virtual Secure Mode (VSM) is introduced to limit the
impact of malware or exploits even when the NT Kernel is exploited by an attacker. Due
to the new security boundaries introduced with Virtual Trust Level (VTL), the Secure
Kernel running in VTL1 can manage the NT Kernel running in VTL0, while the NT
Kernel cannot manage the Secure Kernel due to the VTLs. Secure Kernel Patch Guard
(SKPG), also known as ‘HyperGuard’, is the practical implementation of monitoring the
NT Kernel for unauthorized changes in certain parts of the Windows operating system
(for example, executable code). A similar system to this is ‘PatchGuard’, which is a
similar anti-tampering system for the NT Kernel but runs in VTL0 and is thus less
effective since it can also be tampered with by attackers exploiting the NT Kernel. The
main difference between SKPG and PatchGuard is that SKPG cannot be tampered with
by attackers targeting the NT Kernel, since it is running in VTL1, while PatchGuard
can be tampered with since it is running in VTL0, which is also where the exploitation
by attackers is happening [64].

SKPG is implemented in the Secure Kernel, and functions related to SKPG start with
the prefix Skpg. During boot initialization, SkpgInitSystem, SkpgAllocateContext,
and SkpgConnect together allocate a SKPG context structure in the Secure Kernel ring
0 memory and store information related to the verification procedure of SKPG in the
SKPG context structure. The SKPG context structure is an undocumented structure,
and thus the purpose of the fields in the SKPG context structure has been discovered
through reverse engineering [65]. Important properties of the SKPG context structure
are the following [64]:

1. SkpgPatchGuardCallback: a callback pointer pointing to the Secure Kernel func-
tion SkpgPatchGuardCallbackRoutine, called each time SKPG performs check-
ing.

2. SkpgPatchGuardTimer: A timer object which will invoke the SkpgPatchGuard

TimerRoutine callback at random intervals to perform the SKPG checks.

3. Intercept function pointers which will be called if SKPG detects certain operations
done by the hypervisor.

4. TimerRoutine (offset 0x250): A function pointer which points to the function
SkpgHyperguardTimerRoutine, which will call the function pointer stored in Runtime
CheckRoutine.

5. RuntimeCheckRoutine (offset 0x268): A function pointer which points to the
function SkpgHyperguardRuntime, which verifies the SKPG context structure.
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Since SKPG is a system that detects and prevents unauthorized changes to certain parts
of the Windows operating system, it is important that SKPG itself is also protected from
unauthorized changes. For example, if the SkpgPatchGuardCallback pointer is modified
in memory and updated to point to a function that does nothing, then the SKPG check-
ing mechanism is effectively disabled. The SKPG context structure tries to protect its
own integrity by using the fields TimerRoutine and RuntimeCheckRoutine. A timer is
set with a randomized interval to execute the function pointer stored at TimerRoutine,
which will invoke the Secure Kernel function SkpgHyperguardTimerRoutine. This Se-
cure Kernel function will trigger the Secure Kernel function SkpgHyperguardRuntime,
which performs the actual SKPG context structure verification. The function Skpg

HyperguardRuntime will also set a new timer with a randomized interval for the next
verification check.

The SKPG context structure stores much more information for various SKPG-related
functionalities. Most of this information is out of scope for this master thesis. More
information about SKPG can be found in [64], [65], and [66].
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3 Re-discovering N-day vulnerabilities

In Section 2 we focussed on the background information related to virtualization, Hyper-
V and the Secure Kernel. In this section we will focus on the background information
related to rediscovering n-day vulnerabilities. The background information in this sec-
tion is applied in Section 5.

For this master thesis, we will perform analysis on n-day vulnerabilities in the Secure
Kernel. These n-day vulnerabilities will be found using a specialized version of ‘binary
diffing’, namely ‘patch diffing’, which will be discussed in Section 3.1. N-day vulnera-
bilities are security issues that are already reported and fixed, and for which a patch is
available. Most of the time, there is a description online that clarifies the security issue
and its impact. In the case of the Windows operating system, this is handled by the
Microsoft Security Response Center. A security issue is assigned a CVE and receives a
scoring for several categories of impact, such as the ‘Attack Complexity’ or impact on
confidentiality, integrity, or availability. It is also common for the Microsoft Security
Response Center to add a ‘Weakness’ to the CVE, which states if it is a buffer overflow,
heap overflow, double free, or other type of memory corruption. Using this informa-
tion and the patches included in Windows update files, it is possible to re-discover the
vulnerability.

Section 3.2 describes how Windows updates can be analyzed for patch diffing.

3.1 Binary Diffing & Patch Diffing

The term ‘binary diffing’ (or short ‘bindiffing’) refers to the process of discovering differ-
ences between two binary files. The two binary files are usually referred to as primary
and secondary. For binary files, it is important that the two binaries use common arti-
facts to find similarities between them. For example, the two binary files should have
strings or functions in common to compute the similarity between them. Furthermore,
if a different compiler (version) is used between the primary and secondary binary, then
it may be the case that the order of functions or data is changed. The tooling used
for computing the difference between the binary should take such differences into ac-
count. Therefore, binary diffing is commonly performed on the function level rather
than the whole binary. Differences can be computed between the disassembly of two
similar functions, but also between the pseudocode retrieved from the decompilation
of two functions. The pseudocode is often retrieved from decompiler tools such as IDA
Pro, Ghidra, or Binary Ninja. Besides differences between the assembly and pseudocode
of functions, there can also be differences between the call graph or cross-references of
functions [57].

For binary diffing, there are three tools commonly used:

1. The binary exporter

2. The binary diffing tool

3. The decompiler tool

These three tools are used in each step of the binary diffing tool. Binary diffing is
commonly done in three steps:

1. The information about the two binaries is exported to a format that can be pro-
cessed by the diffing tool. This tool is called the ‘Binary Exporter’.

2. The ‘binary diffing tool’ takes the result of the binary exporter for two binaries
and computes the similarity between the two binaries using the given exported
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information.

3. When the difference is found by the binary diffing tool, the binary diffing tool
may use an external decompiler tool to generate pseudocode of the functions that
have changed and show the difference between the old function and the updated
function.

Note that the binary diffing tool can also be integrated into a decompiler tool (as a
plugin to the decompiler as opposed to an external invocation to the decompiler), for
which the binary diffing tool directly reads out the information of the decompiler to
compute the differences between two binaries.

Two examples of binary exporters are:

1. BinExport [35]

2. Quokka [58]

The output of BinExport can be read by BinDiff [34]. Quokka is able to export to a file
format which can be read again by the Python library integrated into Quokka.

Two examples of tools that are integrated into the decompiler are:

1. Ghidriff: Ghidra Binary Diffing Engine [8]

2. Diaphora: IDA Pro plugin for binary diffing [39]

For the Exploitability Assessment in Section 5, we will make use of Diaphora. The
reason for this is that it makes use of the decompilation of IDA Pro which is the reverse
engineering software used in this master thesis to decompile the assembly.

3.1.1 Patch Diffing

‘Patch diffing’ is binary diffing applied to security patches. The goal of patch diffing
is to find the patched code which should fix a security bug. By finding this code, it is
trivial to compare the code before the patch and after the patch and therefore deduce
the security bug.

In order to perform patch diffing, it is best to have the binary just before the patch
and just after the patch available. This minimizes the changes between the two binaries
and therefore makes it less challenging to compare the binaries. The best case for patch
diffing is that the only changed code between the two binaries is related to the security
bug and all other code has a 100% similarity. The worst case is when obfuscation is
applied to the updated files, which drastically modifies the code between each update
making it challenging to perform binary diffing.

For this master thesis, we used patch diffing to security updates of the Secure Kernel.
Most of the Secure Kernel code is implemented in a single binary, the securekernel.exe
binary (see Section 2.3). Microsoft is known for publishing security fixes on ‘Patch Tues-
day’, the second Tuesday of each month. This gives a great opportunity for performing
patch diffing, since there is a dedicated update only addressing security bugs.

3.2 Extracting Windows Updates

For each security update that Microsoft publishes, a Knowledge Base (KB) article is
created. This article contains information about the update, including the files that are
updated and the vulnerabilities that are fixed. The KB article also contains a link to
download the update package.
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The update package that is downloaded is usually in an MSU (Microsoft Standalone
Update) format, which is an archival format. This MSU archive contains multiple CAB
(Cabinet) files, which is again an archival format that contains some files such as the
manifest, security catalogs, and the new binary updates [46]. For patch diffing, we are
interested in the new binary files. However, the bundled binary files are not correctly
formatted executables. Instead, they serve as a delta update file for which a special
MSDELTA format is used to store updates in. There are three types of delta files,
depending on which folder they are stored inside the CAB file [76]:

1. Forward differentials (f): brings the base binary (.1) up to that particular patch
level.

2. Reverse differentials (r): reverts the applied patch back to the base binary (.1).

3. Null differentials (n): a completely new file, only compressed; apply to an empty
buffer to get the full file.

Using the MSDELTA API, it is possible to read out these delta update files and apply
them in the correct order to get a valid executable. This process is in detail described
in [76].

However, there is an easier way to obtain a valid updated executable from a Windows
update. The Microsoft Symbol Server not only stores symbols for portable executable
files, but also the executables themselves. It is possible to retrieve this executable
from the Microsoft Symbol Server by having knowledge of the following three pieces of
information [28]:

1. The file name

2. The link timestamp / reproducible build identifier

3. The image size

By reading the manifest file from the CAB archives inside the MSU files, and taking
advantage of the VirusTotal API [74], it is possible to compute these three pieces of
information [42] and therefore create a download link to the executable. This data has
been conveniently displayed in the form of a website called ‘Winbindex’ [43]. Winbindex
lists download links to the Microsoft Symbol Server for all the executables for each
version inside the Windows operating system. This website is updated automatically to
take new updates into account.

24



4 Debugging Setup

In order to better understand the Secure Kernel and the bugs we found using patch
diffing (see Section 3.1.1), we need to use a debugger attached to the Secure Kernel. We
explain the steps taken to create our Secure Kernel debugging environment, including
the challenges encountered and the modifications made to our setup to overcome these
challenges.

First, a setup is described that uses physical hardware (a Windows 11 laptop) to debug
the NT Kernel, which is described in 4.1. The second step is to debug the Secure
Kernel, which we first attempted by extending the physical debugging setup of Section
4.1 to also include Secure Kernel debugging through the hypervisor, which is described
in Section 4.2.1. However, we then concluded in Section 4.2.1 that this setup seems to
be impossible in order to correctly debug the Secure Kernel due to physical memory
restrictions and we moved to a QEMU/KVM virtualized setup which is described in
Section 4.2.2. As an addition to the setup, a small GDB plugin has been developed to
perform virtual to physical address translation (as described in Section 2.1.3) which is
described in Section 4.2.4.

Section 4.3 shortly mentions alternative setups which are not used in this research,
but can be considered in case different hardware or software is available. For example,
Section 4.3.1 discusses LiveCloudKd which is a debugging setup that can be used when
the host operating system is Windows.

4.1 NT Kernel Debugging Setup

This section describes the physical setup used for NT Kernel debugging. The purpose
of this section is to make it easier to reproduce this research or perform future research
on the NT Kernel. The setup is visualized in Figure 6. The initial setup time without
prior experience of attaching a debugger to a bare-metal Windows laptop was about
five hours including troubleshooting. The Windows laptop is the debuggee, the machine
that is being debugged.
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Figure 6: Visualization of the NT Kernel Debugging Setup

The outcome of this section is to have a debugger running on a machine attached
to another laptop in order to debug the NT Kernel on the other laptop (the laptop
is the target for debugging, the ‘debuggee’). Each NT Kernel can be configured to
support debugging capabilities through the Windows debugger ‘WinDBG’. This is useful
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for the development of kernel modules, troubleshooting of bugs and inspecting certain
undocumented components of the NT Kernel.

The following hardware is used for the kernel debugging setup:

1. A Linux laptop with Ubuntu 22.04 LTS installed

2. 12th Gen Intel(R) Core(TM) i7-12700H CPU

3. Two ethernet cables

4. USB-to-ethernet adapter

5. A Windows laptop with Windows 11 Version 22H2 for x64-based Systems installed

Note that there are special hardware requirements for the ethernet port used by the de-
buggee. The debugger can be used over serial or ethernet, but ethernet has significantly
better performance than serial. Therefore, we used debugging over an ethernet network
cable. For this to work, the target device must have a supported network interface
card (NIC). The supported NICs for Windows 11 can be found at the corresponding
support page of Microsoft1. The supported NICs for Windows 10 can be found at the
corresponding support page of Microsoft2. Note that generally this means that a device
should have a hardware ethernet port. We do not know if a USB-to-ethernet adapter
is also supported during debugging since the debuggee laptop already has a physical
ethernet port which is supported and therefore we recommend to use a debuggee laptop
with a physical ethernet port.

We use bare-metal hardware instead of a virtual machine for the debuggee since the
Secure Kernel uses hardware virtualization which we prefer not to virtualize. Further-
more, nested virtualization should be done in case of virtualization which may introduce
new issues. For the debugger we use a VM with Windows 11 installed. The debugger
VM can also be a bare-metal Windows 11 device, but since the kernel debugging setup
was already installed on the Windows 11 virtual machine we used that instead.

Using QEMU/KVM, we configured a USB-passthrough to allow the USB-to-ethernet
adapter to be passed through to the debugger VM since we need to have an ethernet
adapter available within the debugger VM and our Linux laptop does not have an
extra physical ethernet port. Both the ethernet cable from the USB-to-ethernet adapter
as well as the Windows debuggee laptop are connected to a router which performs
DHCP. Then, we perform the steps for setting up ‘KDNET’ (Windows Kernel netwerk
debugging) automatically3. It is important that the debugger is already listening for an
incoming connection before the debuggee is rebooted.

We were unable to configure a direct ethernet connection between the debugger and
debuggee. It appears that when booting with kernel debugging activated, the static IP
assignment used for direct ethernet connection (without DHCP) is not well supported.
The Windows Kernel debugger explicitly expects DHCP instead of a static IP assign-
ment. Note that there is an option to turn off DHCP for the debugger, but it is unclear
which IP will then be used. Therefore, we decided to make use of DHCP so it is clear
which IP addresses will be used.

1https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/

supported-ethernet-nics-for-network-kernel-debugging-in-windows-11
2https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/

supported-ethernet-nics-for-network-kernel-debugging-in-windows-10
3https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/

setting-up-a-network-debugging-connection-automatically
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4.2 Secure Kernel Debugging Setup

After we have enabled Windows Kernel debugging following the steps from Section 4.1,
we want to extend the debugging capabilities to the Secure Kernel. Therefore, in this
section we are going to extend the setup to also include Secure Kernel debugging next
to Windows Kernel debugging. In Section 4.2.1 we describe an attempt at setting up
Secure Kernel debugging using physical hardware. However, at the end of this section,
we conclude that it is not possible given the (non-specialized) hardware used. In Section
4.2.2 we describe the process of setting up Secure Kernel debugging using a virtualized
setup with QEMU/KVM. The total research time into setting up a working Secure
Kernel debugging environment (including time spent on failed research) was about 1.5
weeks.

4.2.1 Physical Setup for Secure Kernel Debugging

This section describes an attempt at setting up Secure Kernel debugging using physical
hardware as the debuggee. At the end of this section, we conclude that given the
hardware used it is not possible to configure Secure Kernel debugging. Therefore, the
setup described in Section 4.2.2 contains information about the QEMU/KVM setup
used in this research for Secure Kernel debugging. When referring to WinDBG in this
section, if not mentioned explicitly, we refer to the modern UI variant of WinDBG.

Before configuring the debugger to attach to the Secure Kernel, it is important to verify
that Virtualization Based Security (VBS) is enabled. We suggest to consult the Mi-
crosoft documentation on how to verify that VBS is correctly configured with ‘memory
integrity’ enabled4.

If you have a working Windows Kernel debugging setup, it is trivial to extend this to
the Secure Kernel. On the debuggee the following command can be executed with the
-hk parameter to both debug the Windows Kernel as well as the Secure Kernel:

C:\kdnet >.\ kdnet.exe 192.168.88.113 50000 -hk

Enabling network debugging on Intel(R) Ethernet Connection

(13) I219 -LM.

To debug the hypervisor , run the following command on your

debugger host machine.

windbg -k net:port =50001 , key=2 dkau18n5sifv .2 bu5rgzwhbodh.

f42r22gp42vi .36 riwnl4lk2z5

To debug this machine , run the following command on your

debugger host machine.

windbg -k net:port =50000 , key=1 j8spslp8z1cw .2 rbwea1rwodzr.

t6k42u0r38ur .35 acc5uvglsm3

Then reboot this machine by running shutdown -r -t 0 from

this command prompt.

Before rebooting the debuggee, it is important to have two WinDBG sessions active at
the debugger so that both a connection for the hypervisor debugger as well as the kernel
debugger can be created. See Figure 7 for a visualization of this setup.

4https://learn.microsoft.com/en-us/windows/security/hardware-security/

enable-virtualization-based-protection-of-code-integrity?tabs=security
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Figure 7: Visualization of the Kernel and Hypervisor Debugging Setup

Using this setup it is possible to both debug the hypervisor binary hvix64.exe as well as
the NT Kernel. However, the goal for this master thesis is to debug the securekernel
.exe. According to a blog post written by Quarkslab [56], it is possible to retrieve the
securekernel.exe base address within VTL1 by setting a breakpoint in the hypervisor
at HvCallVtlReturn and reading the corresponding VMCS structure (see Section 2.1.2)
to extract an address within securekernel.exe. This address can then be converted
from a virtual address to a physical address (see Section 2.1.3) and by backward scanning
the memory for a PE executable header, the securekernel.exe base address can be
found.

The Virtual-Machine Control Structure (VMCS) structure is located through a vmptrld
instruction, which belongs to the VMX instruction set (see Section 2.1.1). Since the
hvix64.exe binary does not include symbols, reverse engineering is required in order to
locate the HvCallVtlReturn function. The example assembly shown in the Quarkslab
blog post can be found in Figure 8. The Windows version that is used on the debuggee
laptop during our research is different from the Windows version used by Quarkslab
and therefore the offsets have been changed. By configuring IDA to use ‘text view’ for
the assembly and performing a full-text search on the instruction ‘vmptrld’, converting
back to the ‘graph view’ and pattern matching the surrounding code for each vmptrld
instruction, we have identified the HvCallVtlReturn function. In Figure 9 the assembly
can be found that is used by the hvix64.exe binary used by the Windows version
installed on the debuggee laptop.

Using the command ?hv in the WinDBG port 50001 session (the hypervisor debugger),
the base address of the hypervisor can be read. After setting and reaching a breakpoint
on the vmptrld [rcx+188h] instruction, the physical address of the VMCS struct can
be read. However, now we encounter a problem: there is no way through both WinDBG
sessions to read memory through a physical address. The hypervisor debugger is using
the isolation of VTL1 and the kernel debugger is using the isolation of VTL0 and both
VTL contexts are using their own virtual address space. And since the debuggers
are debugging inside the VTL context, the physical memory is not reachable to both
debuggers. Theoretically, the Secure Kernel should be somewhere in the memory space
of the hypervisor, but the corresponding virtual address is unknown and difficult to
extract. From this, we conclude that (without specialized hardware, see Section 4.3) it
is not possible to use physical hardware as the debuggee for Secure Kernel debugging
(see also Section 8.2).
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Figure 8: Start of the HvCallVtlReturn function in the hvix64.exe binary used by
Quarkslab, from [56]

Figure 9: Start of the HvCallVtlReturn function in the hvix64.exe binary used by the
debuggee laptop
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4.2.2 QEMU/KVM Virtualized Setup for Secure Kernel Debugging

As concluded in Section 4.2.1, we require a debugging setup where it is possible to
read/write physical memory and insert breakpoints on physical addresses. Therefore,
we decided to switch to a virtualized setup since a virtualized setup allows us to read
the physical memory of a Virtual Machine (VM).

By comparing setups used by other researchers, the common difficulty that is encoun-
tered is retrieving the virtual address of the Secure Kernel. Quarkslab solved this by
analyzing the VMCS struct (see Section 2.1.2) in the VTL1 context by examining con-
text switches in the hvix64.exe binary [56]. This approach is challenging and prone to
errors since the hvix64.exe binary does not have downloadable symbols and therefore
may include different offsets and/or instructions for each Windows installation. Camille
Mougey proposes different solutions for retrieving the virtual address of the Secure Ker-
nel [49]:

1. The first option is to inspect the memory and looking for VMCS structures.

2. The second option is to inspect the memory and looking for the Secure Kernel,
then by using the pagination tables the associated address can be rebuild.

3. The third option is to break early during the boot sequence, in the function
hvloader the Secure Kernel will report back its address.

4. The fourth option is to break in Hyper-V and looking for the VTL transition.

Camille Mougey then continues and implements a fifth option: scanning physical mem-
ory directly for the securekernel.exe binary, patching the IumInvokeSecureService
function to an infinite loop, continuing execution flow and manually breaking after a few
seconds and examining if the infinite loop is reached. If the infinite loop is reached, then
through the information from the registers it is possible to retrieve the virtual address
of the Secure Kernel. Yarden Shafir also mentions the complexity of the setup used
by Quarkslab and shows a Windows-based setup using ‘LiveCloudKd’ [69] to perform
Secure Kernel debugging [67] (see also Section 4.3).

We propose a different solution to solve the problem of retrieving the Secure Kernel
virtual (and physical) address. Adrien Chevalier mentions during the boot process of
Windows the EFI Windows loader ‘winload.efi’ will load the Secure Kernel and NT
Kernel into memory [6]. Therefore, during the execution of winload.efi the physical
and/or virtual address of the Secure Kernel must be known. The entry point address
of the Secure Kernel is stored in the OslpVsmSystemStartup symbol in winload.efi.
Examining the usage of this symbol in winload.efi reveals interesting behavior:

.text :0000000001 D099BC loc 1D099BC: ; CODE XREF:

OslpVsmLoadModulesAndCrashDumpKeys +197

.text :0000000001 D099BC mov rdx , [rbp+40h+arg 8]

.text :0000000001 D099C0 lea rcx , aSecurekernelVi ; "

SecureKernel virtual image base = 0x%p "...

.text :0000000001 D099C7 mov r9, cs:OslpVsmSystemStartup

.text :0000000001 D099CE mov r8d , [rdx+40h]

.text :0000000001 D099D2 mov rdx , [rdx+30h]

.text :0000000001 D099D6 call BlStatusPrint

.text :0000000001 D099DB lea r8,

OslVsmHvCrashDumpEncryptionKey

Decompilation in IDA does not provide code for this functionality and therefore can only
be viewed through the disassembly. The EFI Windows loader implements functionality
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to print the virtual image base of the Secure Kernel to a connected debugger console.
We therefore use this interesting behavior to retrieve the virtual address of the Secure
Kernel rather than the VMCS structure as is done by Quarkslab [56]. The corresponding
physical address can be retrieved by performing a page table walk of the Secure Kernel
virtual address (see Section 2.1.3). However, through the use of hardware-assisted break-
points by using the hbreak command in GDB, it is possible to insert breakpoints into
the Secure Kernel without the usage of physical addresses. Physical addresses are still
useful for performing read or write operations on the Secure Kernel loaded in memory.
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Figure 10: Visualization of the Virtualized EFI Bootloader, EFI Windows loader, Kernel
and Hypervisor Debugging Setup

While attaching a debugger only to the EFI Windows loader and having a GDB session
through QEMU/KVM is sufficient to perform Secure Kernel debugging, the setup that
is described in this section will also include boot manager, hypervisor, and NT Kernel
debugging capabilities to allow flexibility for debugging other parts of the Windows
operating system. An overview of the setup used can be found in Figure 10. Since this
research is performed on a machine with a host operating system of Ubuntu 22.04 LTS,
the virtualization will be provided through QEMU/KVM. There is also an alternative
setup possible in case the host operating system is not Linux but Windows, see Section
4.3. Virt-Manager [44] is used as a frontend for configuring QEMU/KVM since it allows
for easier configuration of VMs. Virt-Manager uses a graphical frontend to manage an
XML configuration for each VM.

The setup we use will consists of two VMs:

1. A Windows debugger VM running two WinDBG sessions

2. A Windows debuggee VM (the target VM we will debug)

The two VMs are configured to be within the same virtual network. This allows com-
munication from the debugger VM to the debuggee VM. This can be configured in
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Virt-Manager through the virtual networks configuration within the connection details
popup.

The debuggee VM needs to be configured in a specific way to allow kernel debugging
through WinDBG as well as GDB debugging through QEMU/KVM. First, the de-
buggee VM needs to have Virtualization Based Security (VBS) enabled since otherwise
the Secure Kernel is not loaded. Since we now use a virtualized setup, this requires
nested virtualization. The following Virt-Manager CPU configuration allows for nested
virtualization within QEMU/KVM:

<cpu mode=" custom" match=" exact" check=" partial">

<model fallback =" allow">Skylake -Client -noTSX -IBRS </model >

<feature policy =" disable" name=" hypervisor "/>

<feature policy =" require" name="vmx"/>

<feature policy =" disable" name="mpx"/>

</cpu >

When the debuggee VM successfully boots into Windows, the ‘memory integrity’ option
can be enabled through Windows Defender to enable VBS (which requires a reboot to
activate).

Second, we need to allow for WinDBG debugging (kernel, hypervisor, EFI boot loader,
and EFI Windows loader) in the debuggee VM. As mentioned in Section 4.1, in order
to allow for debugging the machine needs to support specific network interface cards
(NICs). However, now that we have a virtualized setup, a NIC cannot be chosen any-
more. By default, Virt-Manager allows configuring an ‘e1000e’ or ‘virtio’ NIC for the
VM. In our case, we will make use of the ‘e1000e’ NIC, but this is not sufficient with-
out extra configuration. The following features need to be configured for the VM in
Virt-Manager to allow debugging capabilities with WinDBG, where special attention is
required for the <vendor id state="on" value="KVMKVMKVM"/> value [75]:

<features >

<acpi/>

<apic/>

<hyperv mode=" custom">

<relaxed state="on"/>

<vapic state="on"/>

<spinlocks state="on" retries ="8191"/ >

<vendor id state="on" value=" KVMKVMKVM"/>

</hyperv >

<kvm >

<hidden state="on"/>

</kvm >

<vmport state="off"/>

<smm state="on"/>

<ioapic driver ="kvm"/>

</features >

Using this configuration, it is possible to configure debugging through kdnet.exe with
the following command where -bhkw enables kernel, hypervisor, EFI boot loader, and
EFI Windows loader debugging (‘192.168.122.224’ is the IP of the debugger VM):

C:\kdnet >.\ kdnet.exe 192.168.122.224 50000 -bhkw

Enabling network debugging on Intel(R) Ethernet Connection

(13) I219 -LM.
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To debug the hypervisor , run the following command on your

debugger host machine.

windbg -k net:port =50001 , key=2 bh3bggmptiqs .2 vs6a8tvtgh9r .1

gabysttkv5pv .1 eexgc247jajw

To debug this machine , run the following command on your

debugger host machine.

windbg -k net:port =50000 , key =37420 v9g7zd6g.hiyg5wx3cfuz .3

jir69zr7wx2l .3 u4tnuf6bgpau

Then reboot this machine by running shutdown -r -t 0 from

this command prompt.

Using the instructions given by the output of the kdnet.exe command, it is possible to
configure the twoWinDBG sessions in the debugger VM. It is important to enable ‘Break
on connection’ in WinDBG to allow debugging capabilities during boot. Note that in
case no connection is received in the WinDBG sessions after rebooting the debuggee
VM, there may be an error in the network configuration that blocks the two VMs from
communicating with each other.

Third, special configuration is required to enable the GDB stub provided by QE-
MU/KVM to enable GDB debugging capabilities for the debuggee VM. For QEMU,
the command line flag to enable the GDB stub is -s which allows GDB to connect to
127.0.0.1:1234 on the host machine. However, configuration is done through Virt-
Manager and therefore the XML configuration needs to be modified in the following
way. The first line of the XML configuration needs to be updated to:

<domain xmlns:qemu="http :// libvirt.org/schemas/domain/qemu

/1.0" type="kvm">

This is necessary since otherwise the schema does not accept the XML configuring the
command line flag for enabling the GDB stub. To enable the GDB stub, inside the
<domain>...</domain> the following configuration needs to be added:

<qemu:commandline >

<qemu:arg value="-s"/>

</qemu:commandline >

Note that this configuration may be automatically moved to the bottom of the XML
configuration by Virt-Manager. This configuration directly adds the required -s to the
QEMU process which enables the GDB stub on 127.0.0.1:1234. When the debuggee
VM is now booted, it is possible to connect at any time with the QEMU/KVM GDB
stub. In this research, pwndbg [54] is used as an extension on GDB to allow rich output
and ease of debugging. In order to inspect physical memory in QEMU/KVM through
the GDB stub, it is important to run the following command to enable physical memory
mode: maintenance packet Qqemu.PhyMemMode:1. Disabling this mode is necessary
as soon as a virtual address needs to be resolved, which can be done using maintenance

packet Qqemu.PhyMemMode:0 [55].

Fourth, it is preferred to configure the debuggee VM to run on a single vCPU. This im-
proves stability during debugging through QEMU/KVM since context switches between
vCPUs are not performed anymore. This will solve problems where memory appears to
be unreadable while a hardware-assisted breakpoint is still reached.
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4.2.2.1 QEMU/KVM Secure Kernel debugging workflow

Below the workflow for the QEMU/KVM debugging setup is described, assuming that
the configuration steps in Section 4.2.2 are successfully performed.

1. Boot the debugger VM and enable the two WinDBG sessions according to the
output of kdnet.exe on the debuggee VM. Note that ‘Break on connection’ needs
to be enabled.

2. Boot the debuggee VM.

3. Connect from the host to the QEMU/KVM GDB stub using target remote

127.0.0.1:1234 in GDB, then continue execution with c.

4. The WinDBG session on port 50000 will receive a connection for the EFI boot
loader (bootmgfw), which can be continued using g.

5. The boot loader will close and a new connection on the WinDBG session on port
50000 will be received for the EFI Windows loader (winload). Add a breakpoint
after the instruction that calls BlStatusPrint to print the Secure Kernel virtual
image base. The address for this breakpoint can be computed using the ‘Primary
image base’ as printed by WinDBG when the connection is received from the EFI
Windows loader plus the offset to the instruction after the call to BlStatusPrint.
In our case this is the following WinDBG command: bp 0000000001D099DB. Note
that this address is persistent across reboots.

6. Continue execution with the command g. In the output console, the Secure Kernel
virtual image base will be printed and the breakpoint will be hit. In this example,
the Secure Kernel virtual image base that is printed is 0xFFFFF8055F27E000.

7. Compute the virtual address of the location where a breakpoint in the Secure
Kernel needs to be set. In this example, we will insert a breakpoint at the start of
the function IumInvokeSecureService which is in the securekernel.exe binary
of our debuggee VM at location 0xFFFFF8046A598600.

8. Press ctrl+c in the GDB terminal on the host to start debugging through QE-
MU/KVM. We want to insert a hardware-assisted breakpoint at the location
of IumInvokeSecureService which can be done with the following command:
hbreak *(0xFFFFF8055F288600).

9. Continue execution in GDB with the command c.

10. Continue execution in the WinDBG port 50000 session with the command g.

11. A new connection will be received in the WinDBG port 50000 session which is
from the EFI Windows loader again (winload), which can be skipped with the
command g.

12. A connection is now received in the WinDBG port 50001 session from the hyper-
visor, which can be skipped with the command g.

13. Enter the command g again to skip over an extra interrupt breakpoint to continue
the execution flow of the hypervisor.

14. At this point, the breakpoint for IumInvokeSecureService is hit and execution is
paused in the GDB session. In order to continue execution, the breakpoint can be
temporarily disabled using disable 1 where ‘1’ is the breakpoint number. Then
execution can be continued with the command c.
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15. A connection is now received in the WinDBG port 50000 session for the NT Kernel,
which can be skipped twice with the command g.

16. The debuggee VM now fully boots into Windows. At this point, it is possible to
debug the hypervisor, NT Kernel or enable the hardware-assisted breakpoint in
GDB again using ctrl+c and the command enable 1. An example of successful
output can be found in Figure 11.

Figure 11: Example output of successfully reaching a breakpoint in the
IumInvokeSecureService function of the Secure Kernel

Using this workflow, it is possible to debug the following components:

� Hypervisor (WinDBG)

� NT Kernel (WinDBG)

� EFI boot loader (WinDBG)

� EFI Windows loader (WinDBG)

� Secure Kernel (GDB)

The GDB debugger can always be used for debugging since it allows debugging all
code running inside the VM, but preference should be given to WinDBG when possible
since it better integrates into the Windows ecosystem by for example being able to
automatically use the Microsoft Public Symbol Server.

See Appendix B for the complete Virt-Manager XML configuration of the debuggee VM.
Note, however, that the relevant parts of the XML configuration are described in this
section and Appendix B should only be used for troubleshooting purposes.
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4.2.3 Stability & Performance of the QEMU/KVM Virtualized Setup for
Secure Kernel Debugging

The QEMU/KVM setup described in Section 4.2.2 is usable for debugging the Secure
Kernel, as well as the NT Kernel, hypervisor, EFI boot loader, and EFI Windows loader.
This makes it a diverse setup to use for all sorts of research into the Windows operating
system. However, the setup is not perfect. Like with alternative setups (which we will
discuss in Section 4.3), this setup also suffers from its own stability and performance
problems. We noticed these problems during the setup of QEMU/KVM (Section 4.2.2)
as well as during the Exploitability Assessment (Section 5). While stability improved
by only assigning one vCPU core to the debuggee VM, some problems remain. There
are two specific problems related to stability:

1. Stepping through the instructions does not work.

2. Some hardware breakpoints are incompatible with each other.

The first problem is about reaching a breakpoint and wanting to step through the
instructions one by one. This would normally be done with commands like ni and si.
These commands do not work in our setup, however. When executing such single-step
commands, code execution will change to a completely different context. Then, even
after executing the ‘continue’ command, the debuggee VM is frozen and needs a hard
reboot. This problem is, however, trivial to bypass, since we can just insert a lot of
hardware breakpoints to stop execution at several places where we want to inspect the
context. Since reaching a breakpoint is working as expected, we can use that as a
replacement for single-stepping.

However, we encountered a second unexpected issue: some hardware breakpoints are
‘incompatible’ with each other. With ‘incompatible’, we mean that first defining a
breakpoint on some location and then defining a second breakpoint on a different location
would break the first breakpoint and block the continuation of code execution. This is
a very mysterious bug for which we were unable to pinpoint the problem. We also
discussed this with our supervisor and got the feedback that debuggers are more like
‘hit or miss’: it sometimes works and sometimes it does not. Probably this problem is
due to a bug somewhere in the GDB stub of QEMU/KVM. Debugging a debugger is
not something we want to invest time in, so we just tried to bypass the problem. GDB
does report an error for the broken breakpoint, so we delete this breakpoint in order to
continue execution. In case it is not preferable to delete a breakpoint, then it is possible
to:

1. Delete the second breakpoint so the first breakpoint will start working again,

2. continue execution until the first breakpoint,

3. delete the first breakpoint,

4. insert the second breakpoint, and

5. continue execution until the second breakpoint.

This method is cumbersome, but it will allow the usage of any breakpoint location.

Furthermore, there are also some performance problems with the QEMU/KVM setup
described in Section 4.2.2. Since we have to make use of Virtualization Based Security
(VBS) in order to load the Secure Kernel, it is required to allow nested virtualization
through Virtual Mode Extensions (VMX). QEMU/KVM only allows this when the CPU
is configured to ‘Skylake-Client-noTSX-IBRS’ during our testing. This, however, results
in poor performance of the whole debuggee VM. The Windows UI is slow to respond,
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and it takes about ten seconds to copy a file of only a few kilobytes. Furthermore, a
reboot cycle takes about five minutes during our testing. While this performance is still
in a barely usable state, it makes the Exploitability Assessment of Section 5, as well as
the development of the setup to interact with the Secure Kernel as described in Section
4.4, take more time than necessary.

It is unfortunate that our QEMU/KVM setup described in Section 4.2.2 also has sta-
bility and performance issues. It may be the case that a more up-to-date version of
QEMU/KVM would resolve one or more problems. The QEMU/KVM version used
in this research is ‘6.2.0 (Debian 1:6.2+dfsg-2ubuntu6.25)’, which is quite old due to
Ubuntu 22.04 LTS, since the latest QEMU/KVM version is 9.2 at the time of writing.

4.2.4 GDB plugin for resolving virtual addresses to physical addresses

As mentioned in Section 4.2.2, it may be useful to be able to resolve virtual addresses to
physical addresses to perform read/write operations on the memory without depending
on any process context. For example, when entering in GDB ctrl+c at any time during
post-boot execution of the debuggee VM, the execution context is different from the
Secure Kernel execution context and therefore the virtual addresses of the Secure Kernel
cannot be resolved anymore. This can be resolved by either hitting a breakpoint in the
Secure Kernel so the execution context is correctly loaded again, or using a physical
address. We have developed a GDB plugin5 to resolve virtual addresses to physical
addresses by implementing the page table walk as described in Section 2.1.3. When the
script is loaded into GDB with the source command, the command ptwalk can be used
to resolve a virtual address to a physical address. Note that during resolving the virtual
address, the execution context must be correct for the virtual address which means that
when examining the virtual address, the output should be successfully returned. An
example output for the ptwalk command can be found below:

pwndbg > ptwalk 0xfffff8055f288600

sending: Qqemu.PhyMemMode :1

received: "OK"

CR3 = 0x4400000

Virtual Address = 0xfffff8055f288600

PML4 index = 0x1f0

PDPT index = 0x15

PD index = 0xf9

PT index = 0x88

Page offset = 0x600

PML4 Entry @ 0x4400f80 = 0x4403063

PDPT Entry @ 0x44030a8 = 0x4402063

PD Entry @ 0x44027c8 = 0x4401063

PT Entry @ 0x4401440 = 0x1669021

Physical Address = 0x1669600

sending: Qqemu.PhyMemMode :0

received: "OK"

pwndbg >

Note that the resulting physical address 0x1669600 can only be read when enabling
physical memory mode in the GDB stub of QEMU/KVM. The GDB plugin automat-
ically enables and disables physical memory mode in order to not interfere with the

5https://github.com/JJ-8/ptwalk
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debugging session. Physical memory mode can be enabled using maintenance packet

Qqemu.PhyMemMode:1 and disabled with maintenance packet Qqemu.PhyMemMode:0

[55].

4.2.5 VMWare Virtualized Setup for Secure Kernel Debugging

As mentioned in Section 4.2.3, the stability and performance of the Secure Kernel de-
bugging setup using QEMU/KVM as a virtualization backend is not perfect. During
our research in Section 5.1, we made use of the Secure Kernel debugging setup with
QEMU/KVM to evaluate the Exploitability Assessment of CVE-2024-43528. Since
CVE-2024-43528 was difficult to understand using manual code analysis, we heavily
relied on dynamic code analysis. During the dynamic code analysis, we had to insert a
lot of hardware breakpoints to debug the Secure Kernel as well as frequently rebooting
the Virtual Machine (VM) to reload the custom kernel module we developed in Section
4.4.2. This is a slow process, since a reboot cycle takes about five minutes when using
QEMU/KVM as the virtualization backend. Furthermore, we were unable to speed up
this process since snapshots are not possible with our QEMU/KVM Secure Kernel de-
bugging setup (see Section 4.2.3). Therefore, we decided to invest time in switching to
VMWare as the virtualization backend. We have chosen VMWare since it is also used
by Quarkslab to successfully debug the Secure Kernel [56], so we know it is possible to
have a working Secure Kernel debugging setup using VMWare.

The setup used by Quarkslab makes use of nested virtualization to debug the Secure
Kernel. This is because they are specifically interested in debugging the Virtual TPM
used by Hyper-V when running a Windows VM. However, we are interested in debugging
the Secure Kernel and therefore we do not require nested virtualization. Furthermore, we
have already identified a better method compared to Quarkslab’s method for identifying
the base address of the Secure Kernel (see Section 4.2.2). We will make use of this
improved method for our VMWare Secure Kernel debugging setup.

4.2.5.1 VMWare debugger VM and debuggee VM setup

We decided to start from scratch with a newly installed Windows VM since we thought
it would take more time to migrate our current debuggee VM from QEMU/KVM to
VMWare. The installation of VMWare itself was difficult, because the Broadcom website
appeared to be bugged, which made it impossible to download VMWare. Furthermore,
at the time of writing, the software update domain https://softwareupdate.vmware.

com/ appeared to be offline, which made it impossible to download VMWare. After a lot
of online searching, we found an installer stored on the Wayback Machine for VMWare
17.6.36 which we used for installing VMWare. After installing VMWare, we had to select
a Windows version to install in the newly created VM. At the time of writing, Windows
24H2 was the most recent Windows version and also the Windows version available
for download from Microsoft. However, before starting to install 24H2, we found out
that there are some issues with up-to-date Windows 11 24H2 installs combined with
Virtualization Based Security (VBS) within VMWare [38]. Therefore, we decided to
install Windows 11 23H2 in VMWare to prevent any compatibility issues with VBS.

Furthermore, we installed the VMWare guest tools to have automatic screen resizing and
shared clipboard available. Since, at the time of writing, the software update domain
was unavailable, the installation could not be done through VMWare itself. However,

6https://web.archive.org/web/20250304135300/https://softwareupdate.vmware.com/cds/

vmw-desktop/ws/17.6.3/24583834/linux/core/VMware-Workstation-17.6.3-24583834.x86_64.

bundle.tar
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the exe-file can be downloaded7 and executed within the VM to install the VMWare
guest tools successfully. A reboot is required after successful installation.

After the installation of Windows 23H2 inside VMWare, we made a short attempt to
connect the VMWare VM to the QEMU/KVM debugger VM by bridging the VMWare
network with the QEMU/KVM network. This would reduce the amount of installation
time since we already have a fully working debugger VM inside QEMU/KVM. However,
correctly bridging the two networks appeared to be non-trivial since the debugger VM
and debuggee VM should be in the exact same subnet to have direct IP communication
without Network Address Translation. Therefore, we decided to clone the debuggee VM
to use it as the debugger VM within VMWare. Since, with this setup, both VMs are
within VMWare, they can communicate directly with each other through the VMWare
network interface ‘vmnet8’.

As with the QEMU/KVM setup described in Section 4.2.2, we want to have the following
three debugging sessions:

1. WinDBG session on port 50000 for bootloader, EFI loader, and NT Kernel de-
bugging

2. WinDBG session on port 50001 for hypervisor debugging

3. GDB session for Secure Kernel debugging

The two WinDBG sessions will run in the debugger VM inside VMWare, and the GDB
session will connect to the GDB stub of VMWare.

In order to configure bootloader, EFI loader, NT Kernel, and hypervisor debugging, we
have to set up kdnet.exe on the debuggee VM. kdnet.exe can only be configured when
secure boot is disabled, and since VBS requires secure boot to be enabled in VMWare,
this should be set up before enabling VBS. First, we enabled bootloader, EFI loader,
NT Kernel, and hypervisor debugging on the debuggee VM similar to our debugging
setup with QEMU/KVM. However, due to a bootloader bug within VMWare, WinDBG
is unable to start a debugging session:

Microsoft (R) Windows Debugger Version 10.0.27793.1000 AMD64

Copyright (c) Microsoft Corporation. All rights reserved.

Using NET for debugging

Opened WinSock 2.0

Waiting to reconnect ...

Connected to target 192.168.225.128 on port 50000 on local

IP 192.168.225.129.

You can get the target MAC address by running .kdtargetmac

command.

BD: Boot Debugger Initialized

Connected to Windows Boot Debugger 22621 x64 target at (Mon

Apr 14 21:09:05.933 2025 (UTC + 2:00)), ptr64 TRUE

Kernel Debugger connection established. (Initial Breakpoint

requested)

************* Path validation summary **************

Response Time (ms) Location

Deferred srv*

7https://packages.vmware.com/tools/releases/latest/windows/x64/VMware-tools-12.5.

1-24649672-x64.exe
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Symbol search path is: srv*

Executable search path is:

ReadVirtual () failed in GetXStateConfiguration () first read

attempt (error == 0.)

CS descriptor lookup failed

Windows Boot Debugger Kernel Version 22621 UP Free x64

Primary image base = 0x00000000 `10000000 Loaded module list

= 0x00000000 `1017 fa20

System Uptime: not available

Unable to get program counter

0018:8375 0000 add byte ptr [bx+si],al

Through a WinDBG GitHub issue8, we found out that this was caused by enabling
bootloader debugging. Since bootloader debugging is not necessary for debugging the
Secure Kernel, we have disabled this. Therefore, we have used the following command
to configure kdnet.exe:

C:\kdnet >.\ kdnet.exe 192.168.225.129 50000 -hkw

Enabling network debugging on Intel(R) 82574L Gigabit

Network Connection.

To debug the hypervisor , run the following command on your

debugger host machine.

windbg -k net:port =50001 , key=xkii0m5mi03o .4 db352olw3ar .18

i07r0o54kmy .3 f5kd18vdpu7y

To debug this machine , run the following command on your

debugger host machine.

windbg -k net:port =50000 , key =308 fcwww5xs7m.zutachl9fi94 .1

tyd2is749c5g .1 gy97dvbsyxep

Then reboot this machine by running shutdown -r -t 0 from

this command prompt.

Note that 192.168.225.129 is the IP of the debugger VM within the VMWare internal
network.

Furthermore, we have to enable VBS support in VMWare. VMWare has a dedicated op-
tion for this, which can be found in the interface through ‘Edit virtual machine settings’
→ tab ‘options’ → ‘Enable Virtualization Based Security (VBS) support’. This will also
enable secure boot automatically. Lastly, in the debuggee VM itself, we can execute the
following command to enforce that the Secure Kernel is loaded during startup without
enforcing memory integrity:

reg add "HKLM\SYSTEM\CurrentControlSet\Control\DeviceGuard"

/v "EnableVirtualizationBasedSecurity" /t REG DWORD /d 1

/f

Below, the command and output can be found to check if VBS is correctly configured
after rebooting the debuggee VM.

PS C:\ Windows\system32 > Get -CimInstance -ClassName Win32

DeviceGuard -Namespace root\Microsoft\Windows\DeviceGuard

8https://github.com/microsoft/WinDbg-Feedback/issues/75

40

https://github.com/microsoft/WinDbg-Feedback/issues/75


AvailableSecurityProperties : {1, 3, 4, 5...}

CodeIntegrityPolicyEnforcementStatus : 2

InstanceIdentifier : 4ff40742 -2649 -41b8-bdd1 -e80fad1cce80

RequiredSecurityProperties : {0}

SecurityFeaturesEnabled : {0} SecurityServicesConfigured :

{2}

SecurityServicesRunning : {2}

UsermodeCodeIntegrityPolicyEnforcementStatus : 1

Version : 1.0 VirtualizationBasedSecurityStatus : 2

VirtualMachineIsolation : False

VirtualMachineIsolationProperties : {0}

PSComputerName :

In order to configure the GDB stub of VMWare, we had to make the following additions
to the VMWare ‘.vmx’ configuration file of the debuggee VM.

debugStub.listen.guest64 = "TRUE"

debugStub.hideBreakpoints= "TRUE"

debugStub.port.guest64 = "1234"

Note that there is also the option monitor.debugOnStartGuest32 = "TRUE", but this
option should not be configured since it prevents the WinDBG session in the debugger
VM from correctly connecting to the debuggee VM. In order to connect with GDB, the
following two commands can be used:

set remotetimeout 100

target remote :1234

The GDB extension pwndbg [54] is functional with VMWare and recommended to be
used during debugging. The set remotetimeout command is required for VMWare
since sometimes connecting triggers a timeout within GDB, which causes the connection
to fail. When a breakpoint is hit in GDB and execution is halted, VMWare will show
overlay UI on top of the VM screen output, which can be seen in Figure 12.

Clicking somewhere on this overlay UI will continue execution of the debuggee VM.
However, it is strongly recommended to use the GDB command continue to continue
execution. Furthermore, we encountered a bug with VMWare related to the overlay UI:
when continuing execution, the overlay UI is not removed. The VM execution continues,
but the display output is not restored. In order to bypass this bug, the VMWare window
should be closed, but the debuggee VM should still run in the background (this option
is given as a prompt when closing VMWare with an active VM open). When reopening
VMWare, the overlay UI is removed, and input can be given again to the VM. It is
recommended to have the debuggee VM and debugger VM in separate windows so only
one of the two windows has to be closed and reopened.

4.2.5.2 VMWare Secure Kernel debugging workflow

Below the workflow for the VMWare debugging setup is described, assuming that the
configuration steps in Section 4.2.5.1 are successfully performed.

1. Boot the debugger VM and enable the two WinDBG sessions according to the
output of kdnet.exe on the debuggee VM. Note that ‘Break on connection’ needs
to be enabled.

2. Boot the debuggee VM.
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Figure 12: UI shown when GDB breakpoint is triggered

3. Ignore the warning from VMWare about enabling promiscuous mode on adapter
‘Ethernet0’.

4. The WinDBG session on port 50000 in the debugger VM will receive a connection
for the EFI Windows loader (winload), which can be continued using g.

5. The Secure Kernel virtual image base address will now be printed and can be used
to rebase the securekernel.exe binary.

6. Connect with pwndbg to the GDB stub of VMWare using target remote :1234.

7. Insert a hardware breakpoint in the Secure Kernel with the command
hbreak *0x<address> in GDB.

8. Continue execution in GDB with c.

9. Close the VMWare window and choose ‘Run in Background’ since it is now unre-
sponsive.

10. Open the debugger VM and debuggee VM windows in VMWare again.

11. Continue execution in the WinDBG port 50000 session with the command g to
continue the second break in the EFI Windows loader.

12. A connection is now received in the WinDBG port 50001 session from the hyper-
visor, which can be skipped with the command g.

42



13. Enter the command g again to skip over an extra interrupt breakpoint to continue
the execution flow of the hypervisor.

14. A connection is now received in the WinDBG port 50000 session for the NT Kernel,
which can be skipped twice with the command g.

Depending on where the hardware breakpoint was set in GDB, the debuggee VM will
halt execution, show the UI overlay of VMWare, and the GDB session will become
interactive to start debugging. Note that each time a hardware breakpoint is hit in
the debuggee VM and execution is continued in GDB, the VMWare window must be
restarted in order to remove the overlay UI and make the screen responsive again.

Secure Kernel memory is only available when a hardware breakpoint is hit in the Secure
Kernel and not when execution is halted outside of the Secure Kernel context. This is
likely to be related to CPU context switches. A good strategy for having Secure Kernel
memory easily available for inspection is to insert a hardware breakpoint at the start of
IumInvokeSecureService, since this function will be executed about every second.

VM snapshots through VMWare are working normally during debugging with WinDBG
and GDB. When a VM state is reverted to a previous snapshot, the GDB connection
will stop. However, reconnecting with the VMWare GDB stub allows for further debug-
ging. The WinDBG session is not interrupted when taking a snapshot or reverting to a
previous snapshot.

4.3 Alternative Secure Kernel debugging setups

In Section 4.2 we explained the Secure Kernel debugging setup used for this research.
However, there are alternative methods that can be considered for debugging the Secure
Kernel. There are two different alternative setups possible:

1. With the SourcePoint JTAG debugger and an AAEON UP Xtreme i11 (Tiger
Lake) / AAEON UP Xtreme i12 (Alder Lake) physical target, it is possible to
debug the Secure Kernel directly from the CPU [62] [63]. This setup does make it
possible to debug the Secure Kernel with physical hardware. However, this setup
has not been used since it requires specialized hardware that we do not currently
have access to.

2. In this research we first make use of QEMU/KVM as the virtualization software as
described in Section 4.2.2, but this is not strictly required. It is also possible to use
different virtualization software. For example, Quarkslab makes use of VMWare
for debugging the Secure Kernel which is a platform-independent virtualization
software [56] which we also decided to use as described in Section 4.2.5. The
setup from Quarkslab is different from our setup since it uses nested virtualization
which was required for their research. Another possibility is to use Hyper-V as the
virtualization backend, which is made possible through LiveCloudKd. We further
elaborate on LiveCloudKd in Section 4.3.1 since we have tested this setup as a
potential suitable debugging setup solution.

4.3.1 LiveCloudKd

In case the host operating system is Windows, one can consider using LiveCloudKd
for debugging. LiveCloudKd makes use of Hyper-V as the virtualization backend and
provides a solution for Secure Kernel debugging. For experimentation purposes, the
setup with LiveCloudKd has been reproduced on the Windows laptop that was initially
planned to be used as the physical laptop. LiveCloudKd can be used in two ways:
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1. Nested virtualization

2. Specific Windows host operating system version

Since we expected the nested virtualization method to be difficult to set up and we
questioned the speed performance of the setup, we decided to use the specific host
operating system version. LiveCloudKd requires Windows Server 2019 (with August
2020 updates: ‘en windows server 2019 updated aug 2020 x64 dvd f4bab427.iso’)
or Windows 10 20H1 (19041) [26] as the host OS [32]. However, it has also been reported
that LiveCloudKd works on a 64-bit Windows 11 23H2 host operating system [67]. Since
the installation of Windows Server 2019 failed on our laptop, we used the Windows 10
20H1 (19041) version.

LiveCloudKd requires having an arbitrary Windows guest OS installed, virtualized by
Hyper-V. We were only successful in installing LiveCloudKd in the classic WinDBG en-
vironment, not the modern UI variant. When launched after installation, LiveCloudKd
will launch classic WinDBG and open a terminal printing the Secure Kernel base address
as well as the NT Kernel base address. Using the Secure Kernel address it is possible
to insert a breakpoint at, for example, IumInvokeSecureService. WinDBG can then
be used as the debugger for debugging the Secure Kernel.

The setup used by LiveCloudKd is similar to the setup used in Section 4.2.2. The
difference is the virtualization software used, but both setups directly inspect the VM
memory and insert breakpoints in the execution flow of the VM.

The reason that we decided to develop the virtualized setup as described in Section
4.2.2 instead of using LiveCloudKd is due to the lack of stability of LiveCloudKd. We
were not able to consistently successfully start a Secure Kernel debugging session since
sometimes it will fail without any clear reason.

It is interesting to note that LiveCloudKd appears to use an undocumented way of
recovering the Secure Kernel virtual base address. See Section 7.2 for more information
and future research ideas about this methodology.

4.4 Sending custom Hypercalls requests to the Secure Kernel

Using the QEMU/KVM setup from Section 4.2.2, we can debug the Secure Kernel using
GDB. This is necessary for the dynamic analyses done in Section 5. There is only one
step remaining for the setup in order to do dynamic analyses: we need to be able to
interact with the Secure Kernel itself. This means that we need to be able to send
Hypercalls (see Section 2.3.2) to the Secure Kernel. The Hypercalls we send should
contain a Secure System Call Number (SSCN) and parameters customized by us, so we
can try to trigger the vulnerability with a specific payload. In this section, we discuss
how we approached this problem, what we have tried, and what we developed in order
to make this possible.

First, in Section 4.4.1 we briefly discuss what KernelForge [51] is, what problem it tries
to solve, and what we have tried to get this working. In the end, we didn’t make use of
KernelForge since it did not work. Therefore, in Section 4.4.2 we discuss our approach
to developing a kernel driver to interact with the Secure Kernel. In order to develop a
kernel driver, we had to make some small modifications to our setup to allow debugging
of the kernel driver which we discuss in Section 4.4.2.1. After this setup has been done,
we continued with developing a new approach to interacting with the Secure Kernel
through the NT Kernel, which we explain in Section 4.4.2.2.
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4.4.1 KernelForge

Since more vulnerability research has been done on the Secure Kernel, we assumed
there was already an existing project that allows interaction with the Secure Kernel
or a documented methodology. This assumption was correct, since we have found the
KernelForge project [51] which is made as a library to easily interact with the NT
Kernel and also the Secure Kernel even when security features of Virtualization Based
Security (VBS) (see Section 2.2) are enabled. In this section, we explain the concept of
KernelForge and what we have tried to make it work. However, in the end, we decided
not to use KernelForge due to it being broken and unable to fix the problems. Instead,
we decided to write our own custom kernel driver, which is explained in Section 4.4.2.

Due to VBS, interacting with the NT Kernel and Secure Kernel has become more chal-
lenging for rootkits and kernel exploits. Since the Secure Kernel can control the NT
Kernel, it allows for very strong protections against unauthorized code execution. One of
the security features that VBS provides is Hypervisor-Enforced Code Integrity (HVCI).
HVCI is used for two security features [15]:

1. HVCI protects modifications of the Control Flow Guard (CFG) bitmap for kernel
drivers.

2. HVCI protects modifications of the kernel mode code that is responsible for veri-
fying certificates of loaded kernel drivers.

The first security feature is not relevant for loading kernel drivers, since it is purely
made for exploitation protection for the NT Kernel. Yet this is still relevant when you
want to call arbitrary kernel functions through an exploitation primitive, since CFG
will prevent this. The second security feature is relevant for loading custom (unsigned)
kernel drivers and for preventing exploitation when the NT Kernel is compromised.

KernelForge uses a common technique to bypass HVCI, which consists of using threads,
an arbitrary kernel read/write memory primitive, and an ROP-chain to execute any
kernel function. This technique is exposed to an (exploit) developer as a Windows
C-library that can be used for easy interaction with the NT Kernel when a kernel
memory read/write primitive is given. Direct interaction with the NT Kernel by calling
exported and non-exported functions implies that interaction with the Secure Kernel
is possible since the NT Kernel has the possibility for communication with the Secure
Kernel through Hypercalls. In Figure 13, an overview is given of how KernelForge is used
to interact with the Secure Kernel. Our goal is to interact with the Secure Kernel on a
Virtual Machine (VM) we control. Therefore, we do not need an exploit for the kernel
read/write primitive and we can just load a kernel driver ourselves. KernelForge supports
this through the WinIo.sys kernel driver, which provides full physical memory access
and should work even when HVCI is enabled. This allows us to use the KernelForge
library to automatically call exported and non-exported functions in the NT Kernel
from a user-space client using the primitive given by the WinIo.sys driver. Therefore,
the WinIo.sys kernel driver is only loaded once and then from user-mode ring 3 the
communication to the Secure Kernel is done by using the KernelForge library to call
NT Kernel functions.

KernelForge claims that the WinIo.sys kernel driver works with HVCI enabled. This
is, however, not true anymore. When enabling the ‘memory integrity’ functionality in
the Windows Defender settings, it will automatically enable the ‘Microsoft Vulnerable
Driver Blocklist’ which cannot be disabled. This blocklist will prevent the WinIo.sys

kernel driver from loading and will delete the kernel driver file instead since Microsoft is
aware of it granting exploitation primitives. See Figure 14 for the corresponding popup.

45



EFI Windows loader

EFI boot loader

User Mode (Ring 3)

Kernel Mode (Ring 0)

Hardware

securekernel.exeKernel driver /
exploit primitive

KernelForge user-
space client

VSM Normal
Mode (VTL0)

VSM Secure
Mode (VTL1)

Guest Software / Partition

Hypervisor / VM Monitor

non-root
operation

root
operation

Boot

VTL0 memory VTL1 memory

SLAT

init VTL0 & VTL1

NT Kernel Secure Kernel

Figure 13: Overview of the setup of KernelForge

However, through the Windows registry, it is possible to enable VBS without enabling
HVCI. This will prevent the Microsoft Vulnerable Driver Blocklist setting from being
automatically enabled too.

Figure 14: Error displayed when ‘Microsoft Vulnerable Driver Blocklist’ is enabled

After copying the WinIo.sys kernel driver to C:\Windows\System32\drivers\WinIo.

sys and rebooting the VM, the driver is automatically enabled and running. In order to
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test if KernelForge is working correctly, a kforge example.exe executable is included in
the GitHub repository. We have executed this binary and it prints that the WinIo.sys
driver is correctly loaded, but it fails directly afterward. The WinIo.sys kernel driver
only allows for physical memory access. However, KernelForge needs to have a virtual
address. Therefore, an attempt is made to do address translation through the PML4
page map (see Section 2.1.3) but it fails to discover the PML4 page table address. The
exact location where this fails is in the DriverInitPageTableBase function inside the
for-loop of the kforge driver/kforge driver.cpp file. We tried to debug the issue
and see if there is something wrong with the logic of the function, but it appears that
the WinIo.sys kernel driver is not returning the expected values. We do not know why
this is the case, but it may be related to running this in a VM under QEMU/KVM
with certain hardware virtualization configurations missing. Since we think that fixing
KernelForge would take a significant amount of time, we decided to switch plans and
write our own custom kernel driver to interact with the NT Kernel and therefore the
Secure Kernel (see Section 4.4.2).

4.4.2 Custom kernel driver

After a failed attempt at using KernelForge as the setup for interacting with the NT
Kernel (and therefore Secure Kernel) (see Section 4.4.1), we decided to develop a custom
Windows kernel driver ourselves to interact with the NT Kernel (and therefore Secure
Kernel). This development has been done without any prior experience in developing
Windows kernel drivers or Windows development in general. Before we developed the
custom kernel driver, we had to make some changes to the setup described in Section
4.2.2 in order to be able to debug the custom kernel driver, which is described in Section
4.4.2.1. Section 4.4.2.2 describes the method we used to send Hypercalls to the Secure
Kernel through the NT Kernel. Since we have no prior experience with developing a
custom kernel driver, we spent about one week on the setup and development, including
troubleshooting and debugging.

4.4.2.1 Custom kernel driver development setup

Since we have no prior experience in writing a custom Windows kernel driver, we first
focused on getting a Windows kernel driver setup working so we can catch and debug
potential bugs. We therefore made some changes to the QEMU/KVM setup as described
in Section 4.2.2 to allow developing the custom kernel driver in the debugger VM and
running the custom kernel driver in the debuggee VM. We found that the most helpful
resources for setting up and developing a custom kernel driver come from the game
cheating and modding community besides the Microsoft Learn online resources. The
setup we used for developing the custom kernel driver is described in detail below. An
overview of the setup is given in Figure 15. We temporarily increased the number of
virtual CPU cores to 4 in order to speed up the setup process.

The first step for the custom kernel driver setup is to install the necessary software and
create an empty Kernel Mode Driver (KMDF) project in Visual Studio. We then use
‘Hello World’ example kernel driver code in order to create a valid custom kernel driver.
The installation and coding are done by following the ‘Write a Hello World Windows
Driver’ tutorial from Microsoft Learn [23]. We encountered one issue in Visual Studio
where it refuses to sign the compiled custom kernel driver, due to an ‘access denied’
error for the operation. Therefore, we had to disable signing in order to successfully
compile the custom kernel driver.

The deployment of the custom kernel driver to the debuggee VM was challenging. We fol-
lowed the Microsoft Learn article about ‘provisioning a computer for driver deployment

47



EFI Windows loader

EFI boot loader

User Mode (Ring 3)

Kernel Mode (Ring 0)

Hardware

Isolated
Process

securekernel.exeCustom kernel
driver

Custom user-
space kernel

client

VSM Normal
Mode (VTL0)

VSM Secure
Mode (VTL1)

Guest Software / Partition

Hypervisor / VM Monitor

non-root
operation

root
operation

Boot

VTL0 memory VTL1 memory

SLAT

init VTL0 & VTL1

NT Kernel Secure Kernel

Windows 11 Virtual Machine (Debuggee)

WinDBG port
50000

WinDBG port
50001

Windows 11 Virtual Machine (Debugger)

QEMU/KVM managed by Virt-Manager

Host (Ubuntu 22.04 LTS)

GDB (pwndbg)
connected to GDB stub
of Debuggee through

QEMU/KVM

Allows inspection of physical memory

Visual Studio
port 50000

Storage on host

Virtio filesystem passthrough

Figure 15: Overview of the development setup for the custom kernel driver

and testing’ [22], which explains how to change some configurations within Windows
and execute an MSI. The MSI is the setup installer for enabling custom kernel driver
testing, which is copied from the debugger VM to the debuggee VM. Since copying files
from the debugger VM to the debuggee VM will be very common, we made use of a
shared folder between the debugger VM and debuggee VM using virtio [53]. The MSI
will set up a new Windows user account and reboot the VM several times to change
configurations. The last two installation steps failed without any clear reason. Since no
information is given for troubleshooting, we decided to continue the provisioning. The
last step of the provisioning is to connect Visual Studio to the debuggee through the
kernel debugger VM. Since in Section 4.2.2 we already configured kernel debugging on
the debuggee, this was trivial to configure.

Next, the solution needs to be deployed to the debuggee VM through Visual Studio run-
ning in the debugger VM. During this deployment, the spawning and closing cmd.exe

terminals give the impression that something is failing. However, we continued the pro-
cess of installing the driver as stated in the Microsoft Learn tutorial [23]. The built arti-
facts of the custom kernel driver are copied to the debuggee VM together with the devcon
.exe utility. The custom kernel driver is then installed with the command devcon.exe

install SecureKernelCommunicator.inf root\SecureKernelCommunicator which
will show a popup as shown in Figure 16. After accepting the installation of the custom
kernel driver, the custom kernel driver is loaded and executed. The custom kernel driver
can be removed with the command devcon.exe remove SecureKernelCommunicator

.inf root\SecureKernelCommunicator which requires a reboot of the debuggee VM.

The last step of the custom kernel driver development setup is to be able to debug
the custom kernel driver. First, we looked into how we can view the output of print
statements located in the custom kernel driver. A common technique [45] is to use the
DebugView utility from the Sysinternals toolset [13] to listen to kernel driver logging.
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Figure 16: Dialog shown before installing the custom kernel driver

However, DebugView does not display any output and crashes without an error when
trying to listen to kernel driver logging. Therefore, we cannot use DebugView. We
replaced DebugView with WinDBG, since WinDBG can display kernel log messages if
configured correctly. We use the QEMU/KVM setup as described in Section 4.2.2 to
have a WinDBG session connected to the NT Kernel. Then we pause the VM execution
and run the command ed nt!Kd Default Mask 8 to change the logging verbosity of the
NT Kernel in order to see the print statements from the custom kernel driver.

Since we have the NT Kernel running in a WinDBG session, any critical error (for
example, a dereference error) will cause the NT Kernel to stop and display a message in
WinDBG that the kernel has crashed. We can then analyze the error with the command
!analyze -v in order to see where in the code the error occurred. This will help us
identify and fix any issues in the custom kernel driver. With this setup, we are now able
to develop, deploy, and debug our custom kernel driver to interact with the NT Kernel
and Secure Kernel.

4.4.2.2 Sending Hypercalls to the Secure Kernel

As described in Section 4.4.2.1, we now have a development setup available to develop
a custom kernel driver. Before we decided to fully write our own custom kernel driver,
we made an attempt at reproducing earlier research on writing a Hyper-V ‘bridge’ for
fuzzing purposes [37]. This blog post provides a lot of explanation and example code
snippets to invoke a Hypercall. However, it does not provide a repository with the
complete source code and all the required configurations. In the end, we were unable to
reproduce the setup and code from the blog post and decided to write our own custom
kernel driver.

Our approach is to communicate with the Secure Kernel through the NT Kernel, rather
than calling the Secure Kernel directly. This mimics the method used by the NT Ker-
nel itself for Secure Kernel communication. Our custom kernel driver implements the
following:
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1. Resolve the NT Kernel base address when loading the custom kernel driver.

2. Accept a Secure System Call Number (SSCN) and a custom payload from user-
space through a Device Input and Output Control (IOCTL).

3. Call the NT Kernel function VslpEnterIumSecureMode with the given SSCN and
payload to do the Hypercall.

In order to call the function VslpEnterIumSecureMode, we first need to know the NT
Kernel base address since the function VslpEnterIumSecureMode is implemented in the
NT Kernel. We found in a forum post on ‘Unknown Cheats’ a code snippet that resolves
the NT Kernel base address based on the context of a kernel driver object [31]. Since
we want to implement this in a custom kernel driver, this is a perfect match for our use
case. During testing, we found that this code very reliably resolves the NT Kernel base
address. However, when loading the custom kernel driver after boot, sometimes it may
cause a crash and the debuggee VM will stop responding. In such a case, a reboot is
necessary in order to try to successfully load the NT Kernel base address again. This
crash is caused due to an invalid name string compared to the string ‘ntoskrnl.exe’,
which causes dereference issues. Since we experienced this crash only when loading the
custom kernel driver after boot (while normally it would load during boot), we did not
put any effort into fixing this bug.

Second, we need to accept user-space input from a client binary that communicates with
the custom kernel driver. This communication is done through the normal APIs used
to communicate between user-space and kernel drivers, which are the ‘Device Input and
Output Control’ APIs. We have implemented a handler using this API which reads the
SSCN and a pointer to the extra data corresponding to the SSCN (the ‘payload’) which
are both sent to the kernel driver. Besides this handler, we have also implemented logic
to close and unload the driver. This is boilerplate code for a Windows kernel driver and
has been implemented based on Windows kernel driver development tutorials [72] [5].

Last, using the resolved NT Kernel base address, we need to call the NT Kernel func-
tion VslpEnterIumSecureMode. VslpEnterIumSecureMode is responsible for sending
Hypercalls to the Secure Kernel (see Section 2.3.2). We want to call the function ac-
cording to the following signature: VslpEnterIumSecureMode(2, sscn, 0, payload

);. Since the VslpEnterIumSecureMode function is a non-exported function, we can
only call it by computing the exact position of the function within the ntoskrnl.exe

binary. Therefore, we need to check in a disassembler at which offset the function
VslpEnterIumSecureMode is located. This is trivial since Microsoft provides debugging
symbols for the ntoskrnl.exe, which can be automatically discovered when the binary is
imported into IDA. Note that due to the hardcoded offset of the VslpEnterIumSecureMode
function in the custom kernel driver, the custom kernel driver will only work on systems
where the correct version of the ntoskrnl.exe binary is running. The custom kernel
driver needs to be recompiled with an updated offset to support different systems with
a different ntoskrnl.exe binary running.

We now have a working setup for sending Hypercalls to the Secure Kernel through our
custom kernel driver. During Section 5, we can further extend the custom kernel driver
in order to interact with logic corresponding to the CVE being assessed, if necessary.
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5 Exploitability Assessment

In this section, we assess the exploitability of security bugs in the Secure Kernel. We
analyze Secure Kernel patches and to try to determine if a security bug is exploitable
when it is not patched. Furthermore, in case we think that a bug is exploitable, we
write code to trigger the security bug which works as a proof-of-concept trigger script
on which we can build an exploit. In Section 6 we will build further on the proof-of-
concept trigger script to try to create a full exploit for the security bug. However, the
scope of this section is just the patch analysis and proof-of-concept trigger script.

We use patch diffing (see Section 3.1.1) to discover the security bugs related to CVEs.
Furthermore, we also use dynamic code analysis in order to better understand the secu-
rity bug and to have a proof-of-concept of triggering the security bug. We make use of
Diaphora [39] as the binary diffing tool (see Section 3.1). The settings used for Diaphora
are the default export settings, so without any modifications. See Figure 17 for the exact
configuration.

Figure 17: Settings used for patch diffing with Diaphora

In Section 5.1, we assess CVE-2024-43528 [4]. CVE-2024-43528 has been chosen since
it is a recently patched bug in the Secure Kernel for which there is a Windows update
available. Furthermore, Microsoft Security Response Centre classified this bug as a
‘Heap-based Buffer Overflow’ which may be a powerful enough primitive to exploit.
However, in the end it turned out that it was not possible to trigger the bug related to
CVE-2024-43528 due to unsupported functionalities when using the virtualized setup. In
Section 5.1.3 we discuss our findings about mistakes with patch assignment of Microsoft
for CVE-2024-43528. We then decide in Section 5.2 to stop looking at specific CVEs
and analyze all Secure Kernel patches done for Windows 11 Version 22H2 for x64-based
Systems. Through that we did find an n-day vulnerability, for which we developed a
custom Enclave (see Section 5.2.2) to interact with the corresponding Secure Kernel
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API (see Section 5.2.3). We then developed a proof-of-concept trigger script in Section
5.2.4 to trigger the bug. By analyzing this n-day vulnerability, we also found a zero-
day vulnerability similar to the n-day vulnerability we discovered in the Secure Kernel,
which is discussed in Section 5.3.

We make use of the setup as described in Section 4 for dynamic code analysis. However,
the analysis of every CVE will first be done by using manual code analysis since we first
need to identify the code that is responsible for the security bug by using patch diffing.

5.1 Exploitability Assessment of CVE-2024-43528

The goal of this section is to assess the exploitability of CVE-2024-43528. CVE-2024-
43528 is a Heap-based Buffer Overflow vulnerability in the Secure Kernel. This vulner-
ability was patched in the October 8th, 2024 Windows update [4]. According to the
published report of Microsoft Security Response Center, the Exploit Code maturity is
‘Unproven’ which means that there is no public exploit available or an exploit is theo-
retical. In order to analyze if this bug is exploitable or not, we use patch diffing (see
Section 3.1.1) to uncover the bug.

5.1.1 Manual Code Analysis for Exploitability Assessment of CVE-2024-
43528

As described in Section 4.1, we analyze the binaries of Windows 11 Version 22H2 for
x64-based Systems. The corresponding KB-number for this patch is KB5046633. Using
this KB-number, we can find the patched securekernel.exe version and the previ-
ous version on Winbindex [43]. For convenience, we name the patched version post-

securekernel.exe and the unpatched version pre-securekernel.exe. We then use
patch diffing on the two binaries as described in Section 3.1.1 and we analyze the results
manually.

The results of the patch diffing yield exactly one changed function within the post-

securekernel.exe binary: the SkmmRegisterFailureLog function has been changed.
According to Appendix A, SkmmRegisterFailureLog corresponds to Secure System
Call Number (SSCN) 252. The results can be found in Figure 18 and Figure 19 where
red indicates the removed code from pre-securekernel.exe, green indicates the new
code from post-securekernel.exe and yellow indicates irrelevant changes between the
pseudocode of the two binaries.

Figure 18: First difference after patching CVE-2024-43528

In short, the following changes can be seen in the pseudocode:

1. v57 has been removed and replaced by v9. Note that v57 refers to a1 directly
while v9 refers to a1 & 0xFFF.
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Figure 19: Second difference after patching CVE-2024-43528

2. v57 is of size 32-bit while v9 is of size 64-bit.

Furthermore, we have observed the following two interesting changes:

1. Due to the removal of the v57 variable, the if-statement is updated to use the v9

variable. Earlier in the code flow, v9 + 48 is checked to be less than or equal to
4096 (which is (a1 & 0xFFF)+ 48). In the code of post-securekernel.exe, this
check has already occurred while in pre-securekernel.exe this check has not
been done on v57 + 48 (which is a1 + 48).

2. The assembly has been changed to compute the values for comparison in the if-
statement in a different way. This change impacts the referencing of the r14

register as well as the rax register.

Below the assembly instructions can be found for the if-statement as can be seen in
Figure 19 for the pre-securekernel.exe binary.

add r13 , rbx

mov r14d , [r13+28h]

cmp [r13+2Ch], edi

jnz loc 14004478C

loc 14004446a:

test r14d , 0FFFh

jnz loc 14004478C

loc 140044477:

mov rax , [rbp+var 8]

add eax , 30h ; '0'

shr r14d , 0Ch

and eax , 0FFFh

lea eax , [rax+r14*8]

cmp eax , 1000h

Here var 8 refers to the removed v57 variable in the pseudocode. Below the assem-
bly instructions can be found for the if-statement as seen in Figure 19 for the post-

securekernel.exe binary.

add r13 , rbx

mov r14d , [r13+28h]

cmp [r13+2Ch], edi

jnz loc 140044784

loc 140044462:

test r14d , 0FFFh

jnz loc 140044784

53



loc 14004446f:

shr r14d , 0Ch

lea rax , [rbx+30h]

lea ecx , ds:0[r14*8]

add rax , rcx

cmp rax , 1000h

The major difference between these two snippets of assembly is the initialization of
the last lea instruction of the pre-securekernel.exe. The lea instruction - Load
effective address - loads the address of the memory location and stores the value in the
first operand. This is useful for obtaining a pointer into a memory region or to perform
simple arithmetic operations. The contents of the memory location are not loaded. In
pre-securekernel.exe the lea instruction is done using eax, [rax+r14*8] for which
the lower 32 bits of the rax register will be overwritten with the loaded value and the
upper 32 bits will be set to zero. The loading is done using two 64-bit registers: rax

and r14. Just before the loading, the and eax, 0FFFh instruction makes sure that the
rax register is within the range 0-0xfff. In post-securekernel.exe the instruction
eax, [rax+r14*8] is divided into two lea instructions:

1. lea rax, [rbx+30h]

2. lea ecx, ds:0[r14*8]

The addition is therefore not done anymore within the lea instruction itself, but ex-
plicitly done afterwards using add rax, rcx. There is one last important observation
in the difference between the two binaries: in post-securekernel.exe the v9 variable
is checked within the if-statement. This check is not done in the pre-securekernel

.exe code. The variable v19 relies on the value of v9 and is later used as an offset
in a heap buffer. The offset is the difference computed between v19 and the result of
SkmiAllocateSystemPtes.

We assume the vulnerability lies in the r14 register. This is a reasonable assumption
since after the if-statement succeeds, code will be executed that performs memory reads
and writes in a do-while loop. This do-while loop is based on the value of r14. However,
the value of r14 is checked afterward using the following assembly code for both binaries:

ja loc 14004478C

cmp r14d , esi

lea rcx , SkmiNonPagedPtes ; global variable

mov edx , esi

cmova r14d , esi

Here esi is initialized to the constant 2. This code checks if the r14d register has a
bigger value than 2, and if so sets the value of r14d to 2. This check prevents the r14

register from being a different value than 0, 1, or 2. Therefore, the assumption that the
vulnerability lies in the r14 register does not hold, since the do-while loop can only be
executed with the specific values 0, 1, or 2 and therefore cannot perform unexpected
memory manipulations through the value of r14.

At this point, we concluded that understanding the vulnerability through manual code
analysis seems non-trivial. We suspect that this vulnerability has been found using
a fuzzer or other automation instead of manual code review. Therefore, we decided
to introduce dynamic code analysis using the setup described in Section 4.2. Using a
debugger, it may become easier to spot the vulnerability by inspecting concrete memory
values to better understand the purpose of the variables.
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5.1.2 Dynamic Code Analysis for Exploitability Assessment of CVE-2024-
43528

As concluded in Section 5.1.1, through only manual code analysis of the code related
to the vulnerability, understanding the bug seems non-trivial. Therefore, we decided to
make use of dynamic code analysis to try to inspect the state of the registers and memory
in order to understand the bug. We make use of the QEMU/KVM setup as described
in Section 4.2.2 for debugging purposes and we use the setup described in Section 4.4
to interact with the Secure Kernel. In the case of CVE-2024-43528, we interact with
Secure System Call Number (SSCN) 252. In order to understand what the expected
inputs are, we will first investigate the normal use-case of SSCN 252.

Figure 20: Decompilation of the ‘VslRegisterLogPages’ function in the ntoskrnl.exe
binary, calling SSCN 252

Interaction with the Secure Kernel is done through the NT Kernel. Therefore, we
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decided to inspect the ntoskrnl.exe which implements the NT Kernel. The SSCN
calls from VTL0 to VTL1 are done through the ‘VslpEnterIumSecureMode’ function
which takes as the second argument the SSCN [7]. By inspecting every cross-reference
to the VslpEnterIumSecureMode function in ntoskrnl.exe, we have found a single call
to VslpEnterIumSecureMode which uses SSCN 252. In Figure 20, the decompilation
can be found of the ‘VslRegisterLogPages’ function implemented in the ntoskrnl.exe
binary, which implements the logic for the normal use-case of SSCN 252.

As can be seen in Figure 20, the SSCN 252 expects two parameters which are stored
in the memory of the variable v12. The two parameters are coming from the function
VslpLockPagesForTransfer. There appears to be no public documentation about the
purpose of the function VslpLockPagesForTransfer.

By following the steps as described in Section 4.2.2, we have set a breakpoint at the start
of the function SkmmRegisterFailureLog in the Secure Kernel. We have observed that
during normal boot and execution of the Windows operating system, this function is
only called once during boot. Therefore, this means that the SSCN call from Figure 20
is only called once during normal boot and execution of the Windows operating system.
We have modified the user-mode client binary to replicate the behavior of the SSCN
call, but since we do not know the values in v12, we use dummy values instead.

By inserting several hardware breakpoints in the SkmmRegisterFailureLog function, we
can trace the execution flow of our own Hypercall with SSCN 252 to the Secure Kernel.
We observed that the vulnerable code mentioned in Section 5.1.1 is not directly reachable
by sending a Hypercall with SSCN 252. After the first SSCN 252 call, the global variable
SkmiFailureLog is initialized. When SkmiFailureLog is already initialized, the code
cannot be executed again due to a check at the start of the SkmmRegisterFailureLog

function. Therefore, we have to find a way to set SkmiFailureLog to zero in order
to be able to reach the vulnerable code again. By inspecting the cross-references to
SkmiFailureLog, we have found that in the function SkmmFreeFailureLog the global
variable SkmiFailureLog is set to zero. The SkmmFreeFailureLog function is only called
once, which is in the SkPrepareForHibernate function. The SkPrepareForHibernate
function is again called from the IumInvokeSecureService function through SSCN 259.

Since we want to replicate the call to SkPrepareForHibernate with SSCN 259 in or-
der to set SkmiFailureLog to zero, we need to know which parameter(s) the Hypercall
expects. We assumed that this Hypercall is coming from the NT Kernel again, and
therefore we searched for all functions with ‘hibernate’ in the name. Of the results,
the function HvlPrepareForSecureHfunction is called only once fromibernate

stood out. The decompilation of this function can be seen in Figure 21. Inspecting this
function shows that it indeed does a call to the NT Kernel function VslpEnterIumSecure

Mode with SSCN 259. The HvlPrepareForSecureHibernate function is called only once
from the PopSaveHiberContext function, which calls HvlPrepareForSecureHibernate
with four 128-bit globals combined into a single parameter.

We need to reproduce the logic of PopSaveHiberContext in order to successfully call
the HvlPrepareForSecureHibernate function. The struct that is required as the first
parameter to call HvlPrepareForSecureHibernate consists of an array of several 128-
bit global values within the NT Kernel. Since implementing this in the user-space binary
will become complex due to the specific requirements to call the HvlPrepareForSecure
Hibernate function, we implemented this logic in the custom kernel driver itself. By
using the NT Kernel base address, we can resolve the locations of the global variables
and reconstruct the array.

After implementing this and loading the updated kernel driver into the debuggee VM,
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Figure 21: Decompilation of the ‘HvlPrepareForSecureHibernate’ function in the
ntoskrnl.exe binary, calling SSCN 259

we have inserted several hardware breakpoints to check if the SkmmFreeFailureLog

function in the Secure Kernel is executed. This appeared to be not the case. However,
the SkPrepareForHibernate function is called. By further inserting hardware break-
points and debugging the execution flow, we have found that a constraint is not met and
therefore the SkmmFreeFailureLog function is not executed. In Figure 22, the decom-
pilation of the SkPrepareForHibernate function can be found. As can be seen in the
decompilation, there are two checks done before the SkmmFreeFailureLog function is
called: SkpValidateHiberCrashCaller(1) and SkeEnterRestrictedMode(). Through
debugging, we found that the SkpValidateHiberCrashCaller(1) function returns zero,
which prevents code execution from reaching the SkmmFreeFailureLog function.

In Figure 23, the decompilation of the SkpValidateHiberCrashCaller function can be
found. Our goal is to return this function the value 1 in order to continue execution in the
SkPrepareForHibernate function. Since SkpValidateHiberCrashCaller is called with
value 1, the nested if-statement will determine the outcome of this function. By inserting
hardware breakpoints on the comparison instructions, we found that the comparison
KeGetCurrentIrql()<= 2u is satisfied. By searching for functions containing ‘Irql’ in
the name, we found that there exists a SkeRaiseIrql function in the Secure Kernel and a
KzRaiseIrql function in the NT Kernel. The KzRaiseIrql function has documentation
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Figure 22: Decompilation of the ‘SkPrepareForHibernate’ function in the Secure Ker-
nel

Figure 23: Decompilation of the ‘SkpValidateHiberCrashCaller’ function in the Se-
cure Kernel

available on Microsoft Learn9 which states that the function increases the Interrupt
Request Level (IRQL) for the current processor. According to Visual Studio, however,
this function is not available even after importing the required wdm.h header file. Instead,
the auto-complete suggested a different function named similarly: KfRaiseIrql. We
boxed the call to HvlPrepareForSecureHibernate with a call to KIRQL CurrentIrql

= KfRaiseIrql(3); before and a call to KeLowerIrql(CurrentIrql); after. After
updating the custom kernel driver in the debuggee VM with the new version, we indeed
do not satisfy the KeGetCurrentIrql()<= 2u comparison anymore.

9https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-kzraiseirql
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Figure 24: Decompilation of the ‘SkAllocateHibernateResources’ function in the Se-
cure Kernel

However, through further debugging the execution flow in the SkpValidateHiberCrash
Caller function, we found that the last check IumHiberCrashContext != 2 is satisfied.
By inspecting cross-references to the global variable IumHiberCrashContext, we found
that a write to this variable is done in the SkpSetHiberCrashState Secure Kernel func-
tion. There is only one call to SkpSetHiberCrashState that sets the global variable
IumHiberCrashContext to 2, which is done in the SkAllocateHibernateResources Se-
cure Kernel function. See Figure 24 for the decompilation of the SkAllocateHibernate
Resources function. The SkAllocateHibernateResources function is only called from
the IumInvokeSecureService function with SSCN 36. By checking all calls to VslpEnter
IumSecureMode in the NT Kernel, we found that the VslAllocateSecureHibernate

Resources NT Kernel function uses SSCN 36 to call SkAllocateHibernateResources
in the Secure Kernel. The VslAllocateSecureHibernateResources requires a ‘Memo-
ryMap’ struct as the only parameter to the function. Since we do not know how the Mem-
oryMap structure looks, we inspected the only cross-reference to this function, which is
in the PopAllocateHiberContextNTKernel function. The PopAllocateHiberContext
function does a lot of operations on the MemoryMap and calls in the end the VslAllocate
SecureHibernateResources function. Since reimplementing this functionality in our
custom kernel driver becomes very difficult, we instead stopped at this point and re-
flected on our current progress for investigating CVE-2024-43528.

We timeboxed the dynamic code analysis of CVE-2024-43528 to one week. We did this
to prevent going too deep into the bug and spending too much time on something that
may be too complex to exploit or too difficult to reproduce. Furthermore, there are
more CVEs in the Secure Kernel that can be analyzed and therefore we did not want to
spend too much time on a single CVE. After analyzing the PopAllocateHiberContext
function, we reached our time limit and therefore we will now reflect on the current
progress and the conclusions we can already make.

We already concluded that the logic related to the bug in SkmmRegisterFailureLog
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can be triggered only once, during the boot sequence of Windows. Afterwards, the
functionality is locked until a global variable is set to zero. Therefore, it is not trivial
to reach the functionality of CVE-2024-43528.

Furthermore, we investigated how we can set the global variable to zero. This appeared
to be a difficult task, since a lot of constraints must be met before this is possible.
In order to set these constraints, functionality related to ‘hibernation’ must be used.
However, we realized that our debuggee VM does not support Windows Hibernation due
to the virtualized setup. The Windows Hibernation functionality is probably related to
all these functionalities we found in the NT Kernel and Secure Kernel due to the naming
of the functions and global variables. Windows Hibernation is not supported because,
according to Windows, the firmware does not support hibernation. By searching online,
we came across posts of people that also experience the issue that hibernation is not
supported in QEMU/KVM VMs [40]. The proposed solution for this is to disable
Hyper-V. This is however not a solution for us, since we require the Virtual Secure
Mode (VSM) Hyper-V component to be enabled in order to allow the Secure Kernel to
be loaded during boot.

From this, we concluded that it is not worth looking anymore at this CVE, since it
appears that it is not possible to trigger the bug with our current setup.

5.1.3 Patch Assignment Issues for CVE-2024-43528 / KB5046633

In Section 5.1.2 we have concluded that we were not able to trigger the bug in our
QEMU/KVM virtualized setup as described in Section 4.2.2. Therefore, we are going
to look into another CVE. We made an overview of the last eight CVEs in the Secure
Kernel to better understand which patches can be analyzed, which can be found in Table
5. After creating this overview, we noticed something very peculiar: many CVEs were
assigned the same KB-number ‘5046633’. This includes the patch for CVE-2024-43528
which we analyzed in Section 5.1. However, in the patch examined in Section 5.1 we
have seen that there are only a few lines of code changed. This seems to be a mistake
on the part of Microsoft, since it looks impossible that there are five different CVEs in
the code of Figure 18 and Figure 19.

CVE CWE KB

CVE-2025-21325 CWE-732: Incorrect Permission Assignment for Critical Resource 5050021
CVE-2024-43646 CWE-822: Untrusted Pointer Dereference 5046633
CVE-2024-43640 CWE-415: Double Free 5046633
CVE-2024-43631 CWE-822: Untrusted Pointer Dereference 5046633
CVE-2024-43528 CWE-122: Heap-based Buffer Overflow 5046633
CVE-2024-43516 CWE-822: Untrusted Pointer Dereference 5046633
CVE-2024-38142 CWE-122: Heap-based Buffer Overflow 5041585
CVE-2024-21302 CWE-284: Improper Access Control 5041585

Table 5: List of eight Secure Kernel CVEs with corresponding details for Windows 11
Version 22H2 for x64-based Systems

Therefore, we decided to look into the patches released for different Windows versions.
Up until now, we have only looked at binaries related to Windows 11 Version 22H2 for
x64-based Systems since that is the operating system version installed on the debuggee
VM. We first tried to look into the binaries of Windows 10 Version 22H2 for x64-based
Systems which correspond to KB-number 5046613. This KB-number can be found
and downloaded on Winbindex. However, the corresponding release contains another
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knowledge base update. We used Diaphora to compare the binary with the previous
version available on Winbindex (KB5044273) to patchdiff the binaries (see Section 3.1.1).
The results can be seen in Figure 25.

Figure 25: Difference between update KB5046613 and KB5044273 of securekernel.exe

There are many differences between these two versions, which is in contrast to the
binaries for Windows 11 Version 22H2 for x64-based Systems as discussed in Section
5.1.1. One of the updated functions is ‘SkmmRegisterFailureLog’ for which the same
patch has been applied as analyzed in Section 5.1.1.

This difference has piqued our interest and therefore we decided to patch diff more bi-
nary updates related to CVE-2024-43528 for different Windows versions. We have also
looked into the update for Windows 11 21H2 for x64-based Systems which corresponds
to KB5044280. This update is also listed on Winbindex (as the last update available),
but it contains an unknown file version. The release date of the update corresponds to
patch Tuesday in October 2024, which is the correct date for CVE-2024-43528. How-
ever, downloading the previous version listed on Winbindex (which is KB5041592 and
corresponds to patch Tuesday in September 2024), the download results in exactly the
same binary as the update for KB5044280. Therefore these updates are identical and no
difference can be computed. Since extracting Windows updates manually as described
in Section 3.2 is very time-consuming, we decided to download the update released on
patch Tuesday in August 2024, which is update KB5036894.

The result of patch diffing for CVE-2024-43528 between KB5036894 and KB5044280 in
Windows 11 21H2 for x64-based Systems revealed only one changed function, which is
‘IumInvokeSecureService’. This is not in line with the update we examined for Windows
10 Version 22H2 for x64-based Systems and Windows 11 Version 22H2 for x64-based
Systems. We decided to continue patch diffing on the last ten updates for Windows
11 Version 22H2 for x64-based Systems to see if we can rediscover the IumInvokeSe-
cureService patch. We found that this patch does exist for the update of KB5037853
to KB5041585. This is an update that was released on patch Tuesday in August 2024.
This means that there are three mistakes made for Windows 11 21H2 for x64-based
Systems:

1. The update for IumInvokeSecureService (patch between KB5036894 to KB5044280)
was released one month later compared to Windows 11 Version 22H2 for x64-based

61



Systems.

2. The knowledge base reference in CVE-2024-43528 is incorrect.

3. CVE-2024-43528 has never been patched for Windows 11 21H2 for x64-based Sys-
tems.

That the patch has never been released for Windows 11 21H2 for x64-based Systems
can be explained due to the end-of-life status of Windows 11 21H1. Windows 11 21H1
reached EOL in October 2023 and most likely Microsoft stopped updating in October
2024. However, this does not explain the incorrect knowledge base reference for CVE-
2024-43528 as well as the one-month delayed patch.

In Table 6, we made a similar overview as in Table 5 for the eight CVEs, but now for
Windows 11 Version 24H2 for x64-based Systems (instead of 22H2).

CVE CWE KB

CVE-2025-21325 CWE-732: Incorrect Permission Assignment for Critical Resource 5050009
CVE-2024-43646 CWE-822: Untrusted Pointer Dereference 5046617 / 5046696
CVE-2024-43640 CWE-415: Double Free N/A
CVE-2024-43631 CWE-822: Untrusted Pointer Dereference 5046617 / 5046696
CVE-2024-43528 CWE-122: Heap-based Buffer Overflow 5047621 / 5046696
CVE-2024-43516 CWE-822: Untrusted Pointer Dereference 5047621 / 5046696
CVE-2024-38142 CWE-122: Heap-based Buffer Overflow 5041571
CVE-2024-21302 CWE-284: Improper Access Control 5041571

Table 6: List of eight Secure Kernel CVEs with corresponding details for Windows 11
Version 24H2 for x64-based Systems

The double KB-number assignment is due to the ‘Security Update’ and ‘Security Hot-
patch Update’ available on this platform, which receive a separate KB-number assign-
ment. As can be seen in Table 6, only a maximum of two CVEs share the same KB-
number. Comparing this to Table 25, we conclude that it is a mistake that the update
for Windows 11 Version 22H2 for x64-based Systems has the same KB-number for five
different CVEs (see also Section 8.6).

5.2 Exploitability Assessment of Secure Kernel patches

In Section 5.1.3, we concluded that KB-numbers are an unreliable way to identify se-
curity patches for specific CVEs. Therefore, we decided to stop using this method. We
think a broader search through several patches combined with manual code analysis will
also work for identifying a security bug, which may be linked to a CVE and KB-number.
We decided to download the oldest available securekernel.exe binary (available since
September 2022) and the latest available securekernel.exe binary (available since
April 2025, at the time of writing) for Windows 11 Version 22H2 for x64-based Systems
from Winbindex [43] and perform patch diffing between these two binaries. This will
yield all applied patches for Windows 11 Version 22H2 for x64-based Systems between
the (at the time of writing) current release and the first release, which would certainly
contain security patches. We then review every security patch and determine if the
patch would be a security patch or a regular bug fix. In case we identify a security
patch, we can use this security patch for the Exploitability Assessment.

Using this method, we identified a security patch in the update from KB5041585 to
KB5044285. There is no CVE linked to this update. In Figure 26, the pseudocode

62



Figure 26: Difference between update KB5041585 and KB5044285 for
SkpMarshalCryptoParamsOut of securekernel.exe

difference can be found for this security patch. As can be seen in the patch, there is
an update done to the parameters of ProbeForWrite and memmove. Instead of directly
passing a value to both functions, a value is now first copied to the stack before using
the value for ProbeForWrite and memmove. Furthermore, more values from the second
argument of SkpMarshalCryptoParamsOut are copied to Secure Kernel memory before
they are used. The purpose of ProbeForWrite is to check that a user-mode buffer
actually is in a user-mode address space, the user-mode buffer is writable, and correctly
aligned [21]. This function therefore gives a clear indication that there is some user-
mode/kernel-mode interaction happening in this code path. We therefore think this is a
Time-Of-Check Time-Of-Use (TOCTOU) vulnerability within the Secure Kernel since
a pointer will be dereferenced twice:

1. The first dereference is for ProbeForWrite to perform security checks on the
pointer.

2. The second dereference is for memmove to copy a buffer to the user-space buffer.

In the security patch, the TOCTOU vulnerability is removed by first copying the pointer
from the second argument to the stack and then using the stack-allocated pointer for
both ProbeForWrite and memmove. This eliminates the small time window between the
two dereferences where the pointer may be modified to point to non-user-space memory.

To confirm our hypothesis, we decided to analyze the code paths that can trigger
this functionality and see if this is indeed related to some kernel syscall interaction.
SkpMarshalCryptoParamsOut only has one incoming call, which comes from IumCrypto

. IumCrypto itself does not have any incoming calls. In the Windows Internals 7th
Edition, Part 1 book [52], we found a description of IumCrypto, which is one of the
‘isolated user-mode services’ provided by the Secure Kernel. Windows Internals 7th
Edition describes IumCrypto as a cryptographic service that allows Trustlets to perform
cryptographic operations for which key material or randomness is generated and only
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known by the Secure Kernel. Furthermore, IumCrypto functions as some sort of TPM
for Trustlets to securely obtain information with the guarantee that the data was not
tampered with [52].

As discussed in Section 2.3.1, Trustlets are user-mode processes executed in VTL1.
Therefore, reaching IumCrypto through Trustlets already requires privileges within user-
mode ring 3 of VTL1. However, there is another method to reach IumCrypto without
the usage of Trustlet privileges.

Enclaves are software-based Trusted Execution Environments which can be used when
Virtualization Based Security (VBS) is enabled. Third-party developers can use Win-
dows APIs to load and execute an Enclave. An Enclave consists of two components
[1]:

1. The Enclave Host App (runs in VTL0)

2. The Enclave DLL (runs in VTL1)

Figure 27: VBS enclave lifecycle from [14]

The Enclave is loaded and initialized in VTL1 and then available for VTL0 to be called.
The Enclave Host App interacts with the Enclave DLL through the CallEnclave API
call, which will cross the security boundary between VTL0 and VTL1. The lifecycle of
an Enclave can be seen in Figure 27.

Research from Outflank has shown that IumCrypto is the only Secure System Call that
can be called from an Enclave [2]. This is sufficient to trigger the vulnerable code path
as seen in Figure 26. And since the Enclave API has been accessible to third-party
developers since May 2024, we can follow the resources provided by Microsoft to create
our own Enclave, similar to the custom kernel driver as described in Section 4.4.2.

5.2.1 Downgrading the Secure Kernel

In order to be able to trigger the vulnerable code path in the function SkpMarshal

CryptoParamsOut of the Secure Kernel as described in Section 5.2, we need to have the
vulnerable version of the Secure Kernel installed. Since Windows will automatically keep
the debuggee VM up-to-date with the latest security patches, the Secure Kernel installed
in our debuggee VM was not vulnerable anymore. Therefore, we need to downgrade
the securekernel.exe binary in order to be able to trigger the vulnerable code path.
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However, since the Secure Kernel is an OS-critical component that cannot be uninstalled
and reinstalled like normal software, downgrading requires a different approach. This
section describes our methodology used for downgrading the securekernel.exe.

Through the use of Winbindex [43], it is trivial to download the vulnerable securekernel
.exe version. We use the securekernel.exe version for Windows 11 23H2 for x64-
based Systems corresponding to knowledge base update KB5041585, which is the ver-
sion just before the vulnerable code path was patched. It is not possible to overwrite
the securekernel.exe on a booted Windows installation, since the securekernel.exe
is actively used by the Windows operating system and therefore cannot be modified
during execution.

Instead, it is necessary to boot into the recovery mode of Windows by holding shift when
choosing ‘restart’ in the power-off menu. Next, through recovery mode, it is possible
to access a cmd.exe session to interact with the filesystem of the unbooted Windows
operating system. Here it is possible to copy the older version of securekernel.exe to
C:\Windows\System32\securekernel.exe in order to downgrade the Secure Kernel.
Afterwards, Windows can be booted as usual and the Secure Kernel is successfully
downgraded.

This downgrading methodology is not recommended for other components within the
Windows operating system. Since many components are only used internally by Win-
dows and not exposed by some publicly accessible API, it is possible for certain code to
change in a backwards-incompatible way. For example, it could have been the case that
the syscall number mapping of internal functionality in the Secure Kernel has changed
due to an update. Without downgrading other components in the Windows operating
system, it is possible to end up with an incompatible state which will prevent booting
the Windows operating system. However, since in Section 5.2 we analyzed the differ-
ences between the oldest and newest update, we were aware that such a situation cannot
occur with downgrading our specific version of the Secure Kernel. Still, we have taken a
snapshot of the debuggee VM before downgrading in case anything would break, which
was not the case.

5.2.2 Creating a custom Enclave

This section describes the process of setting up a development environment for creating
a custom Enclave. With a working setup for developing a custom Enclave, we can
start interacting with the IumCrypto function from the Secure Kernel to trigger the
vulnerable code path as described in Section 5.2. For the development setup for a custom
Enclave, we make use of the development guide for Virtualization Based Security (VBS)
Enclaves [14] as well as the example code for VBS Enclaves published by Microsoft
[25]. We use the VMWare debuggee VM as the development machine for the custom
Enclave, since we also want to execute the custom Enclave in the debuggee VM. The
VMWare debuggee VM is used instead of the QEMU/KVM debuggee VM due to the
better performance of VMWare, which is strongly recommended in order to develop the
custom Enclave in Visual Studio. Note that in order for the VMWare debuggee VM
to have a network connection to download the necessary components through Visual
Studio Installer, the VMWare debugger VM must also be connected due to the network
adapter being modified to expect a debugger attached.

As mentioned in the ‘Development guide for Virtualization Based Security (VBS) En-
claves’ [14], a development certificate is required in order to sign the Enclave DLL. The
Enclave DLL must be signed in order to be loaded by the Secure Kernel. In order to
create a development certificate, the following command can be executed in a non-admin
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PowerShell prompt:

PS C:\ Users\user > New -SelfSignedCertificate -

CertStoreLocation Cert :\\ CurrentUser \\My -DnsName "

MyTestEnclaveCert" -KeyUsage DigitalSignature -KeySpec

Signature -KeyLength 2048 -KeyAlgorithm RSA -

HashAlgorithm SHA256 -TextExtension "2.5.29.37={ text

}1.3.6.1.5.5.7.3.3 ,1.3.6.1.4.1.311.76.57.1.15

,1.3.6.1.4.1.311.97.814040577.346743379.4783502.105532346"

PSParentPath: Microsoft.PowerShell.Security\Certificate ::

CurrentUser\My

Thumbprint Subject

---------- -------

08 FDF31EA47CA728731AD8550D71E6FB92F57BF2 CN=

MyTestEnclaveCert

After building the Enclave DLL in Visual Studio using the example project provided by
Microsoft [25], the Enclave DLL can be signed using the following command:

C:\Users\user\Documents\VbsEnclave\x64\Debug >signtool sign /

ph /fd SHA256 /n "MyTestEnclaveCert" vbsenclave.dll

Done Adding Additional Store

Successfully signed: vbsenclave.dll

Note that in order to have access to signtool, a cmd.exe prompt should be opened
through the ‘x64 Native Tools Command Prompt for VS 2022’, which can be found
using the search bar in Windows. This step can also be automated in Visual Studio
as a post-build event. This can be configured by going to the ‘properties’ for the ‘Test
Enclave’ project, going to ‘Configuration Properties’ → ‘Build Events’ → ‘Post-Build
Event’ and configuring the ‘Command Line’ value to the following value:

$(VEIID Command) && signtool sign /ph /fd SHA256 /n "

MyTestEnclaveCert" "$(OutDir)$(TargetName)$(TargetExt)"

This will sign the Enclave DLL each time the DLL is created using the build step.

The Enclave DLL can now be loaded by executing the VbsEnclaveApp.exe binary.
However, doing so in our current setup gives an ‘A device attached to the system is
not functioning.’ error, and the Enclave DLL is not successfully loaded. This error is
due to test signing not being correctly configured on the debuggee VM. Even though
our debuggee VM shows a ‘Test Mode’ watermark on the wallpaper in the bottom right
corner due to the kernel debugger being attached, test signing is not configured. Test
signing is required in order to allow the Secure Kernel to load an Enclave DLL that is
not signed with a production signature through Azure Trusted Signing (which requires
verification through Microsoft).

Test signing can be enabled by executing the following commands in an elevated cmd.exe

prompt and rebooting the debuggee VM afterward.

C:\ Windows\System32 >bcdedit -debug on

The operation completed successfully.
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C:\ Windows\System32 >bcdedit /set testsigning on

The operation completed successfully.

Using this setup, we can create an Enclave Host App as well as an Enclave DLL and
load them both successfully.

5.2.3 Interacting with IumCrypto

As mentioned in Section 5.2, we want to interact with the IumCrypto API to execute
the vulnerable code path. Using the Enclave development setup as described in Section
5.2.2, we can start interacting with the IumCrypto API implemented in ring 0 of the
Secure Kernel. Interaction with the Secure Kernel API through an Enclave uses special
Enclave functions implemented by Microsoft, which together form the API to interact
with IumCrypto in the Secure Kernel [27]. By inserting a breakpoint at the start of the
IumCrypto function implemented in the Secure Kernel, we verified that the eight Enclave
API functions provided by Microsoft will execute the IumCrypto Secure Kernel function.
Besides the IumCrypto API, Microsoft also provides a limited user-space API to be used
within an Enclave [11]. Since only a small subset of the NT Kernel functionalities are
also implemented in the Secure Kernel, the user-space API available for an Enclave in
VTL1 is greatly limited.

Through experimentation with the Enclave API, we found that the functions Enclave
SealData and EnclaveUnsealData provided by Microsoft to interact with the IumCrypto
functionality of the Secure Kernel through an Enclave will trigger the vulnerable code
path in the function SkpMarshalCryptoParamsOut. More specifically, the Time-Of-
Check Time-Of-Use (TOCTOU) vulnerability lies in the output address parameter of
both EnclaveSealData and EnclaveUnsealData. The output address parameter is first
verified to be within non-kernel memory, and then the memmove is performed (see also
Figure 26). The problem here is that the output address is stored in the memory space
of the Enclave DLL in VTL1 ring 3, and not in the Secure Kernel VTL1 ring 0 memory.
This is because only a single pointer to a buffer stored in user-space of VTL1 containing
all parameters for IumCrypto is passed to the IumCrypto function in kernel-space of
VTL1, and the buffer is not copied from user-space to kernel-space before being used
by the Secure Kernel. This allows the Enclave DLL to modify the output address in
user-space after verification is done, bypassing the verification check. This method is
visualized in Figure 28.

However, in order to exploit this behavior, we cannot make use of the EnclaveSealData
and EnclaveUnsealData functions. This is because the output parameter for both
functions is passed as a register value to the function, which prevents us from modifying
the value after calling the function. Therefore, we have to find a way to directly interact
with the IumCrypto Secure Kernel API instead of using the provided functions as part
of the Enclave API.

Through online searching, we found that EnclaveSealData and EnclaveUnsealData,
as well as the other Enclave API functions, are implemented in vertdll.dll. Upon
inspecting the vertdll.dll binary, we found the methodology used by VTL1 ring 3
(user-space) to perform the syscall to VTL1 ring 0 (kernel-space). The pseudocode for
the function EnclaveSealData can be found in Figure 29.

As can be seen in Figure 29, a buffer of size 120 is allocated on the stack, and then a
call to IumCrypto is made. The IumCrypto function call here is a function that does
a syscall to the Secure Kernel. This function has the exact same name as the kernel-
space function IumCrypto which actually implements the IumCrypto logic. We call
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Secure Kernel - VTL 1 - Ring 0

Enclave DLL - VTL 1 - Ring 3

Enclave Host App - VTL0 - Ring 3

output: 0x7fff12345678 output: 0xffff12345678

if (output > 0xffff00000000)

Failure
True

memmove(vtl1, output, outputLen)
False

Read Read

Time

CallEnclave

points to points toIumCrypto
call

modified

Bufferpoints to

points to

Figure 28: TOCTOU visualized with an Enclave Host App, Enclave DLL, and the
Secure Kernel

the user-space IumCrypto function the ‘IumCrypto syscall function’, which refers to the
user-space function that performs the syscall to kernel-space of the Secure Kernel. The
IumCrypto syscall function is executed in the context of our custom Enclave, so we can
try to reimplement this code in our custom Enclave to have full control over the buffer
that is used by IumCrypto in the Secure Kernel.

We made several attempts at reimplementing the user-space IumCrypto syscall function-
ality in our custom Enclave. We tried the following solutions to access the IumCrypto

syscall function from within our custom Enclave:

1. Reimplementing the user-space IumCrypto syscall function in our custom Enclave
to manually perform the syscall with our own buffer.

2. Loading the iumdll.dll binary, which also implements an IumCrypto user-space
syscall function.

3. Resolving the address of the IumCrypto syscall function implemented in vertdll

.dll.

For the first solution, we encountered the problem that the compiler used by Visual Stu-
dio does not support inline assembly when compiling to a 64-bit architecture. Therefore,
it is not possible to write a function that correctly sets the registers for the syscall and
executes the syscall instruction accordingly. A solution for this would be to change to
a different compiler than the default used by Visual Studio, but we decided to try a
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Figure 29: Pseudocode for the function EnclaveSealData as implemented in vertdll.

dll

different approach before doing this since it could potentially break the custom Enclave
development setup.

The second solution we tried was to import another DLL library into the custom Enclave
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to call the IumCrypto syscall function implemented in another library. We found that
the iumdll.dll library also implements the IumCrypto syscall function, equal to the
implementation in vertdll.dll. However, this approach did not work since we were
unable to load any extra libraries into the address space of VTL1 due to the limited
user-space API available in our custom Enclave.

For the third solution, we know that the library vertdll.dll is already loaded into mem-
ory when our custom Enclave is executed and that vertdll.dll also implements the
IumCrypto syscall function. One of the few functions available when developing a custom
Enclave is the function GetModuleHandleExW, which allows a developer to receive the
base address of a library already loaded into memory. Using GetModuleHandleExW, we
were able to retrieve the base address of vertdll.dll. Furthermore, GetProcAddress
is also available to use during the execution of our custom Enclave. However, in our
specific vertdll.dll version for Windows 23H2 for x64-based Systems, the IumCrypto
syscall function is not an exported symbol in vertdll.dll. Therefore, it is not possible
to retrieve the address of the IumCrypto syscall function dynamically. Instead, we com-
puted the offset of IumCrypto within the vertdll.dll binary and manually added this
to the base address of vertdll.dll to know where the IumCrypto syscall function is
located. Note that this causes our implementation to be non-portable since it depends
on the exact vertdll.dll library version.

The last step required in order to directly interact with the IumCrypto API in the Secure
Kernel without the use of the Microsoft-provided functions such as EnclaveSealData

and EnclaveUnsealData is to reimplement the functions in our custom Enclave. By
reimplementing the functions, we have direct control over the buffer used to store the
parameters for the IumCrypto API, which is necessary to trigger the TOCTOU vulner-
ability. By inspecting the pseudocode of EnclaveSealData and EnclaveUnsealData,
we have written our own implementation, which perfectly matches the buffer construc-
tion done in EnclaveSealData and EnclaveUnsealData. Instead of using a stack-based
buffer, we instead use a globally allocated buffer so we can access the buffer in different
functions in our custom Enclave. Using this reimplementation in our custom Enclave,
we can successfully interact with the IumCrypto API in the Secure Kernel without using
the functions provided by Microsoft.

5.2.4 Triggering the vulnerability in IumCrypto

In Section 5.2.3, we have developed a way to directly interact with the IumCrypto API in
the Secure Kernel without using the functions of the Enclave API provided by Microsoft.
This was necessary since, in order to trigger the vulnerability in IumCrypto, we have to
have full control over the buffer used to store parameters for the IumCrypto API syscall.
In our custom Enclave, we store the buffer as a global variable instead of a stack-based
buffer so that multiple functions in our custom Enclave can access the buffer.

As mentioned in Section 5.2, the vulnerability is a Time-Of-Check Time-Of-Use (TOC-
TOU) vulnerability. In order to trigger the vulnerability, we need to have the following
setup:

1. The buffer storing the parameters for the IumCrypto syscall is globally accessible.

2. A first thread is overwriting the output pointer in the global buffer to the correct
value (the value is an address to another buffer globally allocated in our custom
Enclave).

3. A second thread is overwriting the output pointer in the global buffer to a value
pointing to kernel memory of the Secure Kernel (a value which should not be
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allowed).

4. In the main thread, the custom Enclave repeatedly calls the IumCrypto API in
the Secure Kernel with a pointer to the global buffer as the argument.

Secure Kernel - VTL 1 - Ring 0

Enclave DLL -
VTL 1 - Ring 3

Enclave Host App - VTL0 - Ring 3

ProbeForWrite(output, ...)

Failure
Exception

memmove(decryptedOutput, output, outputLen)
No exception

CallEnclave
encryption

output

Global
buffer

0x7fff12345678 0xffff12345678Writes Writes

First thread Second thread

CallEnclave
decryption

IumCrypto
call

IumCrypto
call

points to

points topoints to
points to

1
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3

4

5

6

7

8

Figure 30: Overview of the exploit scenario for the Time-Of-Check Time-Of-Use (TOC-
TOU) vulnerability

A perfect exploit scenario will consist of the following steps in the following order:

1. The Enclave Host App will request an encryption of a payload to the Enclave DLL
through CallEnclave.

2. The Enclave DLL will execute a IumCrypto syscall to encrypt the payload.

3. The Enclave Host App will request a decryption of the encrypted payload to the
Enclave DLL through CallEnclave. The CallEnclave call will use a pointer to
the global buffer as the only argument.

4. The Enclave DLL will execute a IumCrypto syscall to decrypt the payload, also
using the pointer to the global buffer as the only argument for this syscall.

5. The first thread in the Enclave Host App will write a pointer to the global buffer
in the Enclave Host App to the output field.

6. In the Secure Kernel ring 0, ProbeForWrite will check if the pointer stored in the
output field is non-kernel memory and writable.

7. The second thread in the Enclave Host App will write a pointer pointing to kernel
memory to the output field.

8. In the Secure Kernel ring 0, memmove will read the output field again (which now
points to kernel memory) and will write the decrypted payload to kernel memory,
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causing an arbitrary write primitive.

This exploit scenario is visualized in Figure 30. However, the scenario described here is
the perfect exploit scenario, which assumes that the race condition happened with perfect
timing. In reality, steps 1, 2, 3, 4, 6, and 8 are constantly repeated, and steps 5 and 7
are running as a separate loop as well. The exploit will only successfully execute when
all the steps are followed in this exact order, but due to the nature of a TOCTOU, this
is not guaranteed. We have developed proof-of-concept code10 to trigger the TOCTOU.
During our testing, we found that it requires between one thousand and ten thousand
attempts to successfully trigger. This takes between one and thirty seconds for a single
attempt. A successful attempt can be noticed by the Blue Screen of Death appearing
with the ‘SECURE KERNEL ERROR’ stop code, which can be seen in Figure 31.

It is important to note that this vulnerability requires the usage of a multi-CPU and
multi-threaded environment. Our debuggee VM virtualized by VMWare is allocated
4 vCPUs. Furthermore, while threading is supported in the context of an Enclave,
threading in VTL0 is only used since both threads need to write to memory allocated
in VTL0.

While writing the code for our custom Enclave to trigger the vulnerability, we no-
ticed that a buffer encrypted by EnclaveSealData can only be decrypted once by
EnclaveUnsealData. We have not seen this behavior documented by Microsoft. There-
fore, in the main thread, we were required to first create a newly encrypted payload
before triggering the vulnerability through the decryption functionality instead of only
encrypting a payload once before repeatedly triggering the decryption functionality.

Since we have now successfully triggered the vulnerability in the IumCrypto API in the
Secure Kernel, we can further research the exploitation of this vulnerability in Section
6.

5.3 Zero-day vulnerability in the Secure Kernel

In Section 5.2, we have identified a Time-Of-Check Time-Of-Use (TOCTOU) vulnera-
bility in the Secure Kernel. This vulnerability is an n-day vulnerability and has already
been patched by Microsoft. Due to this patch, we were able to rediscover the vulnera-
bility using the strategy described in Section 3.

The vulnerability in Section 5.2 has the following pattern:

1. A pointer pointing to a pointer pointing to a user-space buffer is dereferenced, and
the resulting pointer is used in ProbeForWrite to perform security checks on the
user-space buffer.

2. The pointer pointing to a pointer pointing to a user-space buffer is dereferenced a
second time and used in memmove to copy Secure Kernel memory to user-space.

We decided to audit the latest Secure Kernel binary (at the time of writing) for this
specific vulnerable pattern. By checking every call to ProbeForWrite, we found exactly
one occurrence of this specific vulnerable pattern. We found this vulnerable pattern in
the function SkpspTlsReplaceVector in the Secure Kernel binary. The pseudocode of
SkpspTlsReplaceVector can be found in Figure 32.

The call to ProbeForWrite is marked yellow in Figure 32, and afterward, a call to
memmove is made. In the call to ProbeForWrite, the pointer at a2 + 24 * v5 + 24 is
dereferenced and used for security checks done by ProbeForWrite. Next, the pointer at

10https://github.com/JJ-8/securekernel-n-day-enclave-poc
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Figure 31: Blue Screen of Death after triggering the Time-Of-Check Time-Of-Use (TOC-
TOU) vulnerability

a2 + 8 * v6 + 24 is dereferenced and used as the destination for memmove. Note that
v6 = 3 * v5, which is computed at the start of the function, so the pointer to memmove

is a2 + 8 * (3 * v5) + 24 = a2 + 24 * v5 + 24, which matches the pointer to
ProbeForWrite. We do not know why this alternative computation is not used in
the call to ProbeForWrite since it makes the dereferencing inconsistent.

There is exactly one code path to trigger this vulnerable functionality. SkpspTlsReplaceVector
is only called from the function SkpspSetTlsInformation. The pseudocode for this
function can be found in Figure 33. The function SkpspSetTlsInformation itself is
called again from only one place, which is the function NtSetInformationProcess. The
pseudocode for this function can be found in Figure 34. The function NtSetInformationProcess
does not have any incoming calls within the Secure Kernel binary.

Research from Outflank has shown that NtSetInformationProcess is part of syscall
28 in the Secure Kernel [2]. This syscall is only accessible for user-mode applications
running in VTL1, which are called Trustlets (see Section 2.3.1). Therefore, this syscall
is not accessible from an Enclave. We have verified that this indeed is not possible by
patching our custom Enclave DLL to include a method to call syscall 28, and inspecting
the return code which indeed contains an error code. Since Trustlets cannot be developed
by third parties at the time of writing, the attack surface is very limited. We think that
the reason why this vulnerability has not been patched yet, is that it is not available to
(malicious) third parties, and Microsoft Security Response Center requires you to have
a proof-of-concept exploit (with a video showcasing the exploit) before they will look
into the vulnerability. This is also the reason why we have decided to not further look
into this vulnerability.
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Figure 32: Vulnerable code pattern in SkpspTlsReplaceVector in the Secure Kernel
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Figure 33: Pseudocode of the function SkpspSetTlsInformation calling the function
SkpspTlsReplaceVector in the Secure Kernel
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Figure 34: Pseudocode of the function NtSetInformationProcess calling the function
SkpspSetTlsInformation in the Secure Kernel

76



6 Exploitation

In this section, we discuss the exploitation phase for the vulnerability we found in Section
5.2. At the end of Section 5.2.4, we have successfully developed a proof-of-concept for an
arbitrary write primitive within the Secure Kernel triggered by a custom Enclave. This
section will first discuss in Section 6.1 the security mitigations enabled in the Secure
Kernel. Section 6.2 will then discuss an exploitation strategy for the Secure Kernel. In
Section 6.3 we will then discuss our attempt at developing an exploit using the proof-
of-concept we have written for the arbitrary write primitive as discussed in Section 5.2.

6.1 Secure Kernel security mitigations

There is very limited information available online about exploiting the Secure Kernel.
The only source that is publicly available online is a Black Hat USA 2020 talk by
Saar Amar and Daniel King (researchers at Microsoft Security Response Center) about
attacking and hardening the Secure Kernel [60]. A recording has been published on
YouTube [61] where the details of the exploitation technique are presented.

In this talk, a Secure Kernel exploitation technique is documented for an arbitrary write
primitive. By fuzzing and manual code analysis, they found several bugs in the Secure
Kernel which resulted in an arbitrary write primitive. Before we investigate how they
used the arbitrary write primitive to exploit the Secure Kernel, some security mitigations
in the Secure Kernel should be discussed.

As discussed in the Black Hat talk [60], the Secure Kernel lacks several security mitiga-
tions:

1. Second Level Address Translation (SLAT) enforcement

2. Control flow integrity mechanism

3. Partial Kernel Address Space Layout Randomization (KASLR)

We will briefly discuss each security mechanism and its consequences.

6.1.1 Second Level Address Translation enforcement

As discussed in Section 2.1.3.2, Second Level Address Translation (SLAT) is used to
introduce an extra translation layer between the physical memory of the machine and
the memory as seen by the Secure Kernel or NT Kernel. When SLAT is enabled, a
higher Virtual Trust Level (VTL) can enforce restrictions on the memory of lower-level
VTLs. This means that the Secure Kernel can enforce memory protections such as
marking certain pages as read-only. Even when the NT Kernel running in VTL0 sets
the memory protections to writable and writes data to it, this violates the memory
protections set by the Secure Kernel in VTL1 and therefore refuses the write operation.

However, SLAT enforcement is not possible for the Secure Kernel running in VTL1.
Since there is no higher VTL available that will enforce memory protections on the
memory in VTL1, the memory protections are not guaranteed in VTL1. This means
that an exploit running in VTL1 ring 0 will be able to change memory permissions by
modifying the page tables in VTL1.

There is no solution for SLAT enforcement in the Secure Kernel, except introducing
another kernel on top of the Secure Kernel that will enforce memory protections on
VTL1. Therefore, this makes abusing the lack of SLAT enforcement a strong and stable
attack primitive for attackers.
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6.1.2 Control Flow Integrity Mechanism

The Secure Kernel does not implement any form of control flow integrity mechanism.
Control flow integrity is implemented in the NT Kernel and protects the NT Kernel
against attacks that take advantage of redirecting code execution to unintended loca-
tions. For example, return-oriented programming (ROP) is an attack method that is
prevented by control flow integrity. With ROP, the return of a function will point to
the code epilogue of another function, but with control flow integrity it is determined
at compile time which functions are allowed to return to which locations in memory.
This information at compile time is then used at runtime to decide if a jump in code
is allowed to be taken. This prevents any unauthorized jumps in code, for example by
overflowing a buffer stored on the stack, which allows an attacker to overwrite return
pointers and thus change code execution of a program.

Due to the lack of control flow integrity in the Secure Kernel, it is more trivial for an
attacker to exploit vulnerabilities in the Secure Kernel. For example, writing a fake
stack with a ROP-chain in a writable segment of the Secure Kernel and changing the
stack pointer to the start of the ROP-chain allows an attacker to trivially determine
code execution in the Secure Kernel. Such attacks are much more restricted in the NT
Kernel due to control flow integrity.

We do not know the exact reason why no control flow integrity has been implemented
in the Secure Kernel. It could be a similar reason as why Second Level Address Trans-
lation (SLAT) enforcement is not possible: there is no way to prevent unauthorized
modifications to Secure Kernel memory. Control flow integrity is implemented using a
bit-map which is checked at runtime to determine if a jump is allowed to be taken. In
the NT Kernel, the Secure Kernel can guarantee that this bit-map is not modified at
runtime. Such protection is not possible in the Secure Kernel due to the lack of SLAT
enforcement. This means that an attacker can change a read-only bit-map memory page
to writable and change the bit-map to bypass control flow integrity.

6.1.3 Partial Kernel Address Space Layout Randomization

The Secure Kernel implements partial Kernel Address Space Layout Randomization
(KASLR). KASLR is an effective defense against kernel exploitation, since with KASLR
fully enabled, it is more difficult for an attacker to use certain primitives. For example,
the arbitrary write primitive would be impossible to use unless the attacker manages
to leak a Secure Kernel address, which allows the attacker to compute the randomized
offset. However, with a partial overwrite of a Secure Kernel address, it would be possible
to bypass the KASLR defense since only the higher bits of an address are randomized
(which will not be overwritten with a partial overflow). If KASLR is not used or if only
partial KASLR is used, this would allow an attacker to know where certain memory
pages are located in memory. Using this, an attacker does not need to have a kernel
address leak in order to know where to write shellcode or a ROP-chain in memory.

Saar Amar and Daniel King discussed KASLR in the Secure Kernel in the Black Hat
talk [60]. They reported that the Secure Kernel implements only partial KASLR since
some addresses are hardcoded and some addresses are predictable. The reason that some
addresses are predictable is that the boot sequence of the Secure Kernel is deterministic
and therefore predictable per version of the Windows operating system. Therefore, some
addresses are not properly randomized due to the predictable boot sequence. In Table
7, an overview can be found of the hardcoded and deterministic addresses they reported
in their presentation. Furthermore, they reported that some memory pages are shared
between VTL0 and VTL1. Note that these shared memory pages are only available in
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VTL0 from the context of the NT Kernel. For example, there is a memory page in
VTL1 mapped at 0xfffff78000000000 and the same memory page is mapped in VTL0 at
0xfffff78000007000. Another example is the SkmiFailureLog, which is used as a logging
buffer where the Secure Kernel can log failures that can be read by the NT Kernel.

Type Name Address

Hardcoded PTE BASE 0xfffff6c800000000
Hardcoded Pfndb 0xffffe80000000000
Hardcoded SkmiSystemPTEs Base 0xfffff6c800000000
Hardcoded SkmiImagePTEs Base 0xfffff6cc80000000
Hardcoded SkmiIoPTEs Base 0xfffff6fffff80000
Hardcoded Paged Pool 0xffff9a0000000000
Hardcoded shared page VTL1 0xfffff78000000000
Hardcoded shared page VTL0 mapping 0xfffff78000007000
Deterministic SkpgContext 0xffff9880419b6000
Deterministic SkmiFailureLog 0xffff988000000000

Table 7: “KASLR - Predictable Addresses” from [60]

Using our debugging setup from Section 4.2.5, we tried to inspect the memory located
at these addresses. However, we were unable to inspect any of these addresses in the
memory space of the Secure Kernel using GDB. We tried to reproduce this by first
setting a hardware breakpoint at the start of the function IumInvokeSecureService in
the Secure Kernel, and as soon as the breakpoint was reached, we tried to inspect the
memory. We think that the reason we were unable to inspect any of these addresses is
that Microsoft has hardened the Secure Kernel in the last five years, which makes the
information from the Black Hat talk from 2020 outdated.

6.2 Secure Kernel Exploitation techniques using Secure Kernel
Patch Guard

In the Black Hat talk [60] [61], Saar Amar and Daniel King discuss an exploit technique
for the Secure Kernel that can be used in combination with an arbitrary write primitive.
In this section, we will discuss this Secure Kernel exploit technique and how we can use
it to achieve code execution for the vulnerability we reproduced in Section 5.2.

As mentioned in Section 2.3.3, Secure Kernel Patch Guard (SKPG) uses a context
structure stored in Secure Kernel memory to keep track of information related to the
verification procedure of SKPG. This SKPG context structure contains several function
pointers used for calling functions during the verification process. While the SKPG
also verifies the integrity of the SKPG context structure during runtime, two pointer
fields are excluded from verification: TimerRoutine and RuntimeCheckRoutine. We
think that the reason these two pointers are excluded from verification is that these two
pointers themselves are used to perform the verification, and somehow it is not possible
to include them in the verification procedure.

By taking advantage of the lack of verification of these two pointers in the SKPG con-
text structure, it is possible to achieve arbitrary code execution by overwriting the
RuntimeCheckRoutine pointer with a different value. Based on the configured timeout
for the TimerRoutine, the RuntimeCheckRoutine will be called regularly (in our test-
ing, it took several minutes before RuntimeCheckRoutine was called). This means that
by using an arbitrary write to overwrite the value of RuntimeCheckRoutine and waiting
several minutes, code execution in the context of the Secure Kernel can be achieved.
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However, this code execution is very limited since we only have control over the RIP
register. This is because the code execution is triggered from a completely different
context that we do not control at all. Therefore, triggering a ROP chain to exploit the
Secure Kernel will not be possible. Instead, Saar Amar and Daniel King demonstrate a
setup that can be used in combination with shellcode to achieve controlled code execution
in the Secure Kernel.

The exploit strategy of Saar Amar and Daniel King takes advantage of shared memory
pages between the Secure Kernel and the NT Kernel. They use a custom kernel driver
in the NT Kernel to write shellcode to a (for the NT Kernel) writable shared page with a
fixed address. This shared page is read-only for the Secure Kernel, however. In order to
make this shared page executable in VTL1 so the shellcode can be successfully executed
by the Secure Kernel, they modify the page table entries in VTL1. As discussed in
Section 6.1.1, due to the lack of Second Level Address Translation (SLAT) enforcement,
this is possible in VTL1. To summarize, the following steps are used for this exploitation
strategy:

1. Write shellcode to a shared page between NT Kernel and Secure Kernel with a
fixed address using a custom kernel driver.

2. Corrupt the page table entry of the shared page in VTL1 to make it executable.

3. Overwrite the value of RuntimeCheckRoutine in the SkpgContext to point to the
shellcode.

4. Wait until the shellcode is executed.

6.3 Exploiting the Secure Kernel with the arbitrary write prim-
itive

In Section 6.2, we discuss the exploitation technique described by Saar Amar and Daniel
King in their Black Hat talk [60] [61]. It is important to note that this talk was given in
2020, which is five years ago at the time of writing, which affects the reproducibility of
their research. The goal of this section is to try to reproduce their research and explore
what is possible within our debugging setup using the arbitrary write primitive we found
in Section 5.2.

6.3.1 Defeating Kernel Address Space Layout Randomization (KASLR)

The exploitation technique by Saar Amar and Daniel King relies on the lack of full
Kernel Address Space Layout Randomization (KASLR) in the Secure Kernel. As can
be seen in Table 7, they report that many addresses have a fixed location in memory.
However, this is no longer the case for the Secure Kernel in recent versions of Windows.
We tried inspecting each of these addresses, but we were not able to inspect any of the
memory pages at these fixed addresses in the Secure Kernel using GDB. This suggests
that Microsoft has improved the hardening of the Secure Kernel since 2020, making
the exploitation technique described by Saar Amar and Daniel King no longer directly
applicable in our environment. In this section we discuss our findings that let to this
conclusion.

Due to our earlier research in Section 5.1, we were already aware of the symbol Skmi
FailureLog, which has a ‘deterministic’ address according to Table 7. SkmiFailure

Log is a shared page between the Secure Kernel and the NT Kernel with the purpose
of communicating failures between the NT Kernel and the Secure Kernel. The memory
page of SkmiFailureLog is writable by the NT Kernel and writable by the Secure Kernel.
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There is a symbol SkmiFailureLog in the securekernel.exe binary that stores the
pointer to the corresponding memory page. When reading this pointer, we found that the
memory page is slightly randomized per boot. For example, 0xffffe00000000000 and
0xffff9a0000000000 are Secure Kernel addresses where the SkmiFailureLog memory
page is located.

The address of SkpgContext is randomized in a similar way as SkmiFailureLog, which
also makes it not possible to reliably know without leaking the address. Since Saar
Amar and Daniel King report that both these addresses are ‘deterministic’ and not fully
randomized, it may be the case that knowing one of these two addresses allows one to
determine the other address. However, we were not able to verify this.

For all other ‘hardcoded’ addresses from Table 7, we were unable to inspect these ad-
dresses. The ‘hardcoded’ addresses can be found in securekernel.exe by their sym-
bols SkmiSystemPtes, SkmiIoPtes, and SkmiImagePtes. Furthermore, we found that
there is also a similar symbol introduced which has not been documented in Table 7:
SkmiNonPagedPtes. Inspecting the values at these symbols reveals the pointer to the
memory pages for each of the Page Table Entry. By inspecting these values again after
a reboot of the debuggee VM, we indeed confirmed that these addresses are random-
ized after each boot. The amount of randomized bytes is greater than the deterministic
address of SkmiFailureLog. SkmiFailureLog has two bytes of randomness, while the
other addresses have four to nine bytes of randomness.

From this, we can conclude that it is not possible to exploit the Secure Kernel with only
an arbitrary write primitive without an arbitrary read primitive or a leak of a Secure
Kernel address. This makes the arbitrary write primitive from Section 5.2 insufficient
for exploitation. However, we can still reason about the theoretical situation in which we
have a Secure Kernel address leak or an arbitrary read primitive, since we can simulate
this using the GDB debugger. For example, we can target the SkmiFailureLog memory
page, which can store shellcode that can be written by a custom kernel driver and then is
available in Secure Kernel memory. We will discuss this theoretical situation in Section
6.3.2.

6.3.2 Making a shared memory page executable

Suppose we have an arbitrary read primitive in the Secure Kernel such that we can
defeat Kernel Address Space Layout Randomization (KASLR) in the Secure Kernel, we
can continue the exploitation strategy of Saar Amal and Daniel King. We can simulate
the arbitrary read primitive through GDB in our debugging setup. In this theoretical
scenario, we use SkmiFailureLog as the shared memory page where we will write the
shellcode, since this memory page is both writable from the NT Kernel as well as readable
by the Secure Kernel.

Since SkmiFailureLog is not an executable memory page, we have to make it executable
through our arbitrary write primitive. This is possible due to the lack of Second Level
Address Translation (SLAT) enforcement (see Section 6.1.1). Therefore, we have to
update the Page Table Entry (PTE) of the SkmiFailureLog, which stores the control
bits that determine if a page is readable, writable, and/or executable. For this, we have
to locate the Page Table (PT) in the Secure Kernel. In our VMWare debugging setup,
we can use the command monitor phys to switch to physical memory mode. With the
command monitor r cr3, we can read the value of the cr3 register. The value of the
cr3 register points to the base of the PT in physical memory. However, we cannot write
to physical memory with our arbitrary write primitive, since writing to physical memory
is restricted by the CPU mode during execution of the Secure Kernel. It is common
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that there is also a virtual address space mapping of the PT in physical memory, which
is used by the Secure Kernel to manage the PTE. The goal is to use this virtual address
space mapping of the PT to update the PTE of the memory page of SkmiFailureLog
to be executable using our arbitrary write primitive.

We have made extensive reverse engineering efforts to locate the PT in the virtual
address space, but we were unable to find the PT in the virtual address space. As
shown in Table 7, there are several PTs in the Secure Kernel, each with a different
purpose: ‘System’, ‘Image’, ‘IO’, and we also found a ‘NonPaged’ PT. However, none
of these PTs have the same memory content as the PT in physical memory. Therefore,
we are unable to update the PTE of SkmiFailureLog and thus cannot execute the
shellcode. Due to time constraints, we were unable to further investigate this issue.
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7 Future Work

The following subsections outline the various research ideas that were developed during
the course of this thesis. These ideas aim to provide new directions for future research
topics that are related to the Secure Kernel. The ideas listed in this chapter have no
particular order and are independent research topics. In Section 7.1, we discuss the
possibility of using memory snapshot-based fuzzing for IumInvokeSecureService to
discover new bugs. Section 7.2 discusses some improvements that can be made to the
Secure Kernel debugging setup, which may help in simplifying the setup. Furthermore,
Section 7.3 is also related to the research setup, which discusses an idea to simplify NT
Kernel interaction by using Python bindings. In Section 7.4, we make new suggestions
for a potential new attack surface that can be researched to discover new zero-days
in the Secure Kernel. Section 7.5 discusses the idea of also researching Secure Kernel
bugs with public exploits available, which may help in gaining new knowledge about the
attack surface of the Secure Kernel.

7.1 Memory snapshot-based fuzzing on IumInvokeSecureSer-
vice

As mentioned in Section 2.3.2, the Hypercalls are handled by IumInvokeSecureService

in the securekernel.exe binary. These Hypercalls are similar to syscalls to the normal
NT Kernel. There are already various efforts performed in fuzzing the Hypercall parsing
of IumInvokeSecureService. There are two methods used in fuzzing Hypercalls:

1. Performing raw VMCALL instructions from the Windows Kernel to the Secure
Kernel using a kernel driver (see Section 2.3.2).

2. Using Microsoft’s recommended interface from winhv.sys [41].

Interacting with the Secure Kernel is non-trivial to perform, and the recommended
interface from Microsoft does not implement all Hypercalls. Therefore, we propose a
third way for performing fuzzing: memory snapshot based fuzzing. Instead of manually
interacting with the Secure Kernel from the Windows Kernel, we only use the debugging
setup described in Section 4.2 to attach to the Secure Kernel. Using this debugger, we
can set a breakpoint at the start of the handling of the Hypercalls. When this breakpoint
is triggered, we can dump the values of the CPU registers as well as the whole memory
address space of the Secure Kernel. A memory snapshot based fuzzer like ‘what the
fuzz’ [68] can be used or extended to support loading the dumped CPU register values
and memory address space. After correctly loading this into the fuzzer, a small harness
needs to be written in order to mutate the current parameters of the Hypercall. Using
this harness, it is possible to perform fuzzing of the IumInvokeSecureService function
without the need for a kernel driver. See [3] for information about how to create a
memory dump for the Secure Kernel.

The advantage of this methodology of fuzzing is that it is possible to take advan-
tage of valid Hypercalls and mutate their values to trigger error flows and poten-
tially hit security bugs. Furthermore, the breakpoint can be moved from the start of
IumInvokeSecureService to handling a specific Hypercalls which makes fuzzing more
targeted compared to fuzzing all Hypercalls. When targeting a Hypercall for fuzzing,
it once again already has a Hypercall with valid Hypercall parameters which can be
mutated to perform fuzzing. This may also result in a faster development time of im-
plementing a fuzzer, since no time needs to be spent on determining correct values to
use in the Hypercall. Furthermore, since we only execute the Hypercall parsing code,
it may also result in faster fuzzing iterations compared to fuzzing through the NT Ker-
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nel which requires Virtual Trust Level (VTL) switches for every fuzzing iteration (see
Section 2.2.2).

7.2 Scanning for securekernel.exe in VTL1

The method described in Section 4.2.1 was not successful since we required access to
physical memory which was not provided by the two WinDBG sessions. However, in
theory, the Secure Kernel should be loaded somewhere in VTL1 which is accessible to
the hypervisor. In practice, it is unknown at which address the Secure Kernel is loaded
in the WinDBG session of the hypervisor, and therefore we cannot debug the Secure
Kernel through WinDBG. In order to solve this problem, the QEMU/KVM virtualized
setup has been introduced in Section 4.2.2.

As potential future work, research can be done to discover the Secure Kernel binary in
the memory of the hypervisor. This would allow Secure Kernel debugging without the
use of the virtualized setup. One of the possibilities that can be researched is scanning
the address space around the hvix64.exe binary. This idea has already been performed
to recover the Secure Kernel physical base address [49], but it may also work for the
virtual address. Another possibility is to intercept execution during a transition from
VTL1 to VTL0 and start scanning page aligned backwards from the return. A practical
implementation of this methodology has already been shown to be possible [73]. This
implementation requires using a bootkit to hijack the execution flow of the boot loader
in order to run custom code before the operating system or hypervisor is loaded. This
setup is similar to the Hyper-V Backdoor project developed by Dmytro Oleksiuk, which
also uses the backdoor to retrieve the virtual base address of the Secure Kernel [50].

As an alternative to this idea, it is also possible to research how LiveCloudKd manages
to discover the Secure Kernel virtual base address. As described in Section 4.3.1, Live-
CloudKd is a Windows-based setup that uses Hyper-V as the virtualization backend
to allow Secure Kernel debugging. LiveCloudKd itself is open source, but searching
through the source code does not reveal any code related to discovering the Secure Ker-
nel virtual base address. Since the Secure Kernel base address message is prepended
with hvlib:, we did have a look into the hvlib.dll binary. In Figure 35 the decom-
pilation can be found of the logic used in hvlib.dll11 to retrieve the Secure Kernel
virtual base address. Since there are no symbols available, and no open source project
exists for hvlib, it is unknown what exactly is done to retrieve the Secure Kernel virtual
base address. However, it will probably be related to interacting with Hyper-V APIs
to read specific values from memory. As can be seen in Figure 35, some page scanning
logic is executed to discover the correct Secure Kernel page. Potentially, this logic can
be re-implemented without dependencies on Hyper-V which allows for cross-platform
usage. For example, a WinDBG plugin that uses the hypervisor debugging session to
interact with memory and compute the Secure Kernel virtual base address in a certain
way.

7.3 Python bindings for the custom kernel driver to interact
with the Secure Kernel

In Section 4.4.2.2 we have developed a custom kernel driver to interact with the Secure
Kernel. Interaction with the custom kernel driver can be done using a user-space client
binary that opens the kernel driver and communicates with it through Device Input
and Output Control. This user-space client binary is implemented in C. Therefore,

11hvlib.dll is bundled in https://github.com/gerhart01/LiveCloudKd/releases/download/v1.0.

22021109/LiveCloudKd.EXDi.debugger.v1.0.22021109.zip
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Figure 35: Decompilation of the hvlib.dll library logic to retrieve the Secure Kernel
virtual base address

if an update is necessary to the user-space client binary to send a different Secure
System Call Number (SSCN), the binary needs to be recompiled and re-transferred to
the debuggee VM. This workflow works, but is time-consuming. As described in the
KernelForge project [51], it would be a much more developer-friendly method to expose
this functionality through a Python binding. This means that interaction with the
custom kernel driver can be done through a user-space library that is reachable from
Python. Since Python is an interpreted language, no recompilation is necessary anymore
and therefore eliminates the use of Visual Studio. This makes it more developer-friendly
for future researchers to interact with the Secure Kernel and therefore lowers the barrier
for researching the Secure Kernel.

In order to make this possible, the current user-space client binary needs to be rewritten
to a library that can be imported by Python through C-bindings for Python. Further-
more, the setup for using the user-space client library together with Python needs to
be documented. This can then be hosted as an example project for future researchers
looking into ways to interact with the Secure Kernel in a developer-friendly way, similar
to KernelForge.

85



7.4 Research interaction between NT Kernel and Secure Kernel
for Normal-mode Services

During our research in Section 5.2, we found that the German Federal Office for Infor-
mation Security published a report related to evaluating the security of Virtualization
Based Security (VBS) [36]. This report looks extensively into all the aspects of VBS by
reverse engineering the Windows operating system, similar to what we have done in our
own research. On page 34, they describe a ‘Normal-mode Services’ mechanism in the
Secure Kernel. Normal-mode Services are services implemented in the NT Kernel which
are used by the Secure Kernel to perform certain operations such as process manage-
ment, registry, and filesystem input/output [36]. This introduces new potential attack
surfaces for the Secure Kernel: the Secure Kernel interacts with the NT Kernel and will
use the output of the NT Kernel for further operations. During our research, we have
only researched the interaction where the NT Kernel interacts with the Secure Kernel,
not the Secure Kernel interacting with the NT Kernel. Therefore, for future research,
the interaction of the Secure Kernel with the NT Kernel through Normal-mode Services
can be further researched to see if any exploitation is possible through this interaction
channel. For example, what can a malicious kernel module do with Normal-mode Ser-
vices to exploit the Secure Kernel through the NT Kernel? The research done in the
report of the German Federal Office for Information Security can be used as a starting
point to investigate Normal-mode Services.

7.5 Research CVEs with public exploits

As we have seen in Section 5.2 and Section 5.3, it is worth looking into Secure Kernel
n-day vulnerabilities and trying to use the gained knowledge to find a zero-day vul-
nerability in the Secure Kernel. We have conducted our research using only very little
information about CVEs for the Secure Kernel. Furthermore, there is no public proof-
of-concept available for the n-day we have analyzed in Section 5.2. However, having a
public proof-of-concept can greatly help in understanding the bug and the attack vector
used for exploitation.

A different approach that can be used in future research is to understand a Secure Kernel
bug based on a public proof-of-concept exploit, if available. For example, a public proof-
of-concept related to loading an Enclave from the NT Kernel to the Secure Kernel is
available for an older build version of Windows 1012. This proof-of-concept can be
analyzed to understand the underlying bug, which may help in gaining new knowledge
about the NT Kernel and Secure Kernel and their interaction. In the future, there may
be more proof-of-concepts publicly published, which can be used as a starting point for
researching vulnerabilities in the Secure Kernel.

12https://gist.github.com/hfiref0x/1ac328a8e73d053012e02955d38e36a8
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8 Conclusions

In this section, we reflect on the decisions, methods, and results of this thesis. This in-
cludes summarizing and reflecting on various decisions and assumptions throughout our
research. Furthermore, throughout our research, there were some unexpected situations
that resulted in interesting conclusions.

We have made several conclusions throughout our research:

1. In our experience, understanding the Secure Kernel is difficult (see Section 8.1).

2. In our experience, debugging the Secure Kernel is difficult (see Section 8.2).

3. In our experience, interacting with the Secure Kernel is difficult (see Section 8.3).

4. In our experience, exploiting the Secure Kernel is difficult (see Section 8.4).

5. Not every CVE can be reproduced in the virtualized debugging setup (see Section
8.5).

6. Use VMWare for debugging the Secure Kernel (see Section 8.7).

7. Collaboration with experienced researchers is highly recommended (see Section
8.8).

8. Using the knowledge gained from analyzing n-day security bugs, it is possible to
discover zero-day security bugs in the Secure Kernel (see Section 8.9).

Furthermore, we have made the following contributions:

1. We have improved documentation related to the Secure Kernel (see Section 2).

2. We have documented a new improved Secure Kernel debugging setup.

3. We have written proof-of-concept code to trigger a Secure Kernel n-day security
bug.

8.1 The difficulty of understanding the Secure Kernel

Understanding the Secure Kernel was challenging. While we have shown in Section 2
that there are many online resources available explaining parts of the Secure Kernel, it
is still a difficult task. All Secure Kernel code is undocumented, and only some resources
are available directly from Microsoft that are related to Secure Kernel functionalities
(such as an Enclave, see Section 5.2). The reason for this is that the Secure Kernel is
not available to be used by third parties (with some exceptions such as an Enclave), so
Microsoft does not have to publish resources about the Secure Kernel.

Our gut feeling is that other researchers who have conducted successful research on the
Secure Kernel have:

1. Extensive internal documentation and/or experience with components of and in-
teraction with the Secure Kernel.

2. Access to (parts of the) source code of the NT Kernel and/or Secure Kernel,
through Microsoft or other means.

For example, bugs discovered and reported by the Microsoft Security Response Center
(MSRC) itself will likely have access to the source code of the Secure Kernel, since MSRC
is part of Microsoft itself. There are also bugs reported by third-party researchers, who
may work in larger teams over a long period to understand and document the Secure
Kernel, which helps in discovering bugs. In our experience, it is challenging to discover
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bugs and exploit the Secure Kernel within a few months without any prior knowledge
about the NT Kernel or Secure Kernel.

Not all documentation related to the Secure Kernel is internal documentation within an
organization. There are some online resources that greatly helped with understanding
the Secure Kernel. These resources are [36], [52], and [6], which describe in much detail
important parts of the Secure Kernel.

8.2 The difficulty of debugging the Secure Kernel

Creating a debugging environment for the Secure Kernel was more difficult than ex-
pected, since it requires a very specific setup that is prone to errors or stability issues.
It was not clear beforehand that specialized hardware is required in order to debug the
Secure Kernel on physical hardware (see Section 4.3). However, we were able to suc-
cessfully create and document a new (improved) Secure Kernel debugging setup which
is one of the contributions of our research.

There are several Secure Kernel debugging environments documented [56] [49] [32]. The
LiveCloudKd setup as described in Section 4.3.1 appears to be the most commonly used
Secure Kernel debugging setup, since it is best documented [67] [32]. However, after
reproducing this setup, we conclude that LiveCloudKd requires a very specific setup
and suffers from stability issues. It was not possible to consistently attach the Secure
Kernel debugger, and the reason for this was unknown. Therefore, we have concluded
that we cannot use this setup, and therefore we have developed our own Secure Kernel
debugging setup (see Section 4.2.2). The common factor between these setups is that
they use a virtualized setup and do not use physical hardware, but this requirement has
never been stated explicitly anywhere.

Another problem in debugging the Secure Kernel is that Microsoft does not publish the
symbols for the hvix64.exe hypervisor binary. Therefore, understanding and reverse
engineering this binary is challenging. Understanding the hypervisor binary may help in
discovering how the hypervisor interacts with the Secure Kernel. However, our Secure
Kernel debugging QEMU/KVM setup described in Section 4.2.2 does not make use of
the hypervisor binary and is therefore more trivial to reproduce compared to research
by Quarkslab [56].

8.3 The difficulty of interacting with the Secure Kernel

8.3.1 Custom kernel driver development

For our Exploitability Assessment in Section 5, we have interacted with the Secure Ker-
nel (VTL1, ring 0) by writing a custom kernel driver for the NT Kernel (see Section
4.4.2) as well as writing a custom Enclave (see Section 5.2.2). In our experience, inter-
acting with the Secure Kernel (VTL1, ring 0) has been more difficult than expected.
Even though the Secure Kernel has existed for over a decade, there has not been a lot of
documentation on how to interact with the Secure Kernel. Microsoft does not provide
any documentation for this, which makes sense since the Secure Kernel is not supposed
to be used by third parties (besides the Enclave functionality). But there has been a
surprising lack of documentation or example projects interacting with the Secure Kernel
through undocumented functionalities.

In Section 4.4.1, we tried to use the ‘KernelForge’ project, which has documented a
method to interact with the Secure Kernel through the NT Kernel. The KernelForge
project has not been updated in over four years, which made it difficult to use. There
were various installation problems that took too much time, and the KernelForge project
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itself is complicated to understand. Therefore, we decided to look into writing our own
custom kernel driver (see Section 4.4.2).

Since we do not have any experience with writing a Windows kernel driver, we have
searched for documentation and example code on how to write a custom kernel driver
to interact with the Secure Kernel. We have found that Alex Ionescu has written a
blog post about writing a Hyper-V “bridge” kernel driver for fuzzing purposes [37].
At first, this blog post was promising, since it explains in a lot of detail how to write
a custom kernel driver with the exact purpose of interacting with the Secure Kernel.
However, in the end, we were unable to reproduce his research. The blog post only
provides code snippets for the implementation of certain functions and assumes a lot of
knowledge about Windows kernel driver development and the Secure Kernel. There is
no repository given which includes the Visual Studio project configurations to build and
deploy this custom kernel driver. Furthermore, the blog post consists of three parts but
only the first two are published which makes the documentation incomplete. While more
experienced Windows kernel driver developers may be able to reproduce his research,
we were not. Therefore, we decided to write our own custom kernel driver which is
described in Section 4.4.2.2.

During the development of our own custom kernel driver, we have found that the most
helpful resources for creating a custom Windows kernel driver were documented by
the game cheating and modding community [31] [45]. We found various tutorials and
forum posts which were helpful for debugging issues as well as implementing common
functionality in a Windows kernel driver [5] [72]. This is because the game cheating and
modding community has a lot of resources available for bypassing anti-cheat, which is
often done by leveraging the Windows kernel to bypass user-mode anti-cheat.

8.3.2 Custom Enclave development

In Section 5.2.2, we developed a custom Enclave to trigger a Time-Of-Check Time-Of-
Use (TOCTOU) bug in the Secure Kernel. The development of the custom Enclave was
necessary in order to interact with the Secure Kernel from VTL1 ring 3 to VTL1 ring
0. Furthermore, it was required in order to trigger the TOCTOU bug in the Secure
Kernel, since the exposed functionality was only available for Enclaves or Trustlets, and
Trustlets cannot be developed by third parties.

While there is some documentation available from Microsoft about developing a custom
Enclave [14], it was still difficult to implement the custom Enclave in such a way that
it was possible to trigger the TOCTOU bug. This is because Enclaves have different
available functionalities compared to normal user-space programs, since Enclaves run in
VTL1 instead of VTL0. Microsoft does provide documentation about publicly available
functionalities, but these were not sufficient in order to trigger the TOCTOU bug.
We have reverse engineered the vertdll.dll library as well as other core libraries
to understand the underlying interaction between an Enclave and the Secure Kernel.
We then developed the custom Enclave to be able to directly interact with the Secure
Kernel without using core library functionalities, so we have complete control over the
interaction (see Section 5.2.3). This allowed us to trigger the TOCTOU bug, which is
described in Section 5.2.4.

Development was also difficult due to the lack of debugging capabilities throughWinDBG
for debugging our custom Enclave. Even though our custom Enclave was properly
marked as debuggable, WinDBG was unable to properly break on inserted breakpoints.
However, by using the GDB debugger directly attached to the VMWare debuggee VM
(see Section 4.2.5) combined with hardware breakpoints, we were able to debug the
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code execution of our custom Enclave. Furthermore, debugging our custom Enclave
through GDB also allowed us to see the Secure Kernel execution by single-stepping over
a syscall instruction. Still, WinDBG is the preferred debugging method since it better
integrates with the Windows ecosystem. For example, WinDBG is able to properly
detect allocated memory regions and load symbols for libraries and executables.

8.4 The difficulty of exploiting the Secure Kernel

In our experience, exploiting the Secure Kernel is a difficult task. In Section 6, we
began working on the exploit for the Time-Of-Check Time-Of-Use (TOCTOU) n-day
vulnerability we reproduced in Section 5.2. During our investigation of security mitiga-
tions in the Secure Kernel in Section 6.1, we discovered a lack of public documentation
about security mitigations in the Secure Kernel as well as exploitations techniques for
the Secure Kernel. We only found a Black Hat talk from 2020 about exploiting the
Secure Kernel [60] with an accompanying recording [61]. In this talk, information was
shared about exploit mitigations in the Secure Kernel as well as an exploit strategy.
For the exploit mitigations, we noticed that the ‘hardcoded addresses’ in the slides used
to bypass Kernel Address Space Layout Randomization (KASLR) no longer exist, at
least at that address offset. This means that some change to the Secure Kernel KASLR
implementation has been made by Microsoft since 2020.

The exploitation technique using the Secure Kernel Patch Guard (SKPG) structure
located in memory of the Secure Kernel is still a valid attack vector. Microsoft has not
hardened this implementation to prevent code execution by overwriting the Runtime

CheckRoutine function pointer. This means that with a Secure Kernel address leak or
an arbitrary read primitive, it is possible to defeat KASLR and continue exploiting the
Secure Kernel.

However, due to KASLR, we were unable to find the Page Table (PT), which is necessary
to update the Page Table Entry (PTE) corresponding to a shared memory page between
the NT Kernel and the Secure Kernel. It seems that this logic has been updated in the
last five years and the PT does not have a fixed location in memory anymore. Due to
time constraints, we were not able to find the PT in virtual memory, which is required
for exploitation of the Secure Kernel.

8.5 Not every CVE can be reproduced in the virtualized de-
bugging setup

From the research done in Section 5.1.2, we can conclude that it is not possible to re-
produce every CVE on a given Windows installation. Especially with the QEMU/KVM
virtualized debugging setup as described in Section 4.2.2, virtualization can make a
big difference in reproducing a specific bug. We found out during our research into
CVE-2024-43528 that the code changes related to the knowledge base update can only
be triggered when the Windows machine is booting or going into hibernation. Since
a custom kernel module is not loaded yet on boot, it is most likely that the bug is
supposed to be triggered through hibernation. However, hibernation is not a supported
functionality when running Windows virtualized through QEMU/KVM since it requires
firmware support, which is not provided by QEMU/KVM when Hyper-V is enabled.

Therefore, it is important to keep in mind that when analyzing CVEs, the setup in
which the bug is being reproduced matters. The Windows operating system is complex
and has many functionalities that are not supported on every hardware or execution
platform. This sometimes makes it impossible to execute and debug code related to a
CVE.
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8.6 KB-number updates are unreliable

After our research into CVE-2024-43528 in Section 5.1, we discovered that the Mi-
crosoft Security Response Center has made some mistakes and unusual assignments of
Knowledge Base (KB) numbers. A knowledge base number is a number assigned to a
downloadable (security) update, which is referred to by the Microsoft Security Response
Center when a patch is released for a specific Windows system that patches the CVE.
In Section 5.1.3, we created an overview in Table 5 of the KB-numbers related to CVE
patches for Windows 11 22H2 for x64-based Systems. In this table, it can be seen that
the patch for CVE-2024-43528 (which we extensively analyzed in Section 5.1) is assigned
KB-number 5046633. However, there are four other CVEs that are also assigned this
KB-number. In Section 5.1.1, we have shown in Figure 18 and Figure 19 the patch
difference for KB5046633. This is only a few lines of code, while the Microsoft Security
Response Center claims that this is a patch for five different CVEs.

We think this is very likely to be a mistake by the Microsoft Security Response Center.
The knowledge base number should probably be referencing the update KB5044285
and/or KB5044380, which is the update before KB5046633 and contains a lot more code
changes. However, it is difficult to prove this since we do not know the exact details
of the CVEs. In Table 6 we have listed all KB-numbers for the CVEs for Windows 11
Version 24H2 for x64-based Systems and from that overview we can conclude that since
the KB-number updates do not match the updates for Windows 11 Version 22H2 for x64-
based Systems, there has been made mistakes by Microsoft Security Response Center
when publishing the updates. From this we conclude that KB-numbers are unreliable
and should not be used as a reference for discovering CVE details.

8.7 Use VMWare for debugging the Secure Kernel

8.7.1 Using QEMU/KVM for debugging the Secure Kernel

In Section 4.2.2, we have described a QEMU/KVM setup to use for Secure Kernel
debugging. Besides debugging the Secure Kernel, this setup can also be used for debug-
ging the NT Kernel, hypervisor, the Windows boot loader, and the EFI Windows loader.
This debugging setup has been made using virtualization provided by QEMU/KVM and
managed through Virt-Manager [44]. We started using QEMU/KVM in this research
since that was the debugging setup already installed and quickly available. Further-
more, we already had experience with NT Kernel debugging through the QEMU/KVM
debugging setup, and therefore we decided to extend this to Secure Kernel debugging.
While this setup is usable, it is not perfect. There are some problems with this setup:

1. The GDB stub provided by QEMU/KVM for Secure Kernel debugging is not sta-
ble. Stepping through instructions with GDB does not work at all. Furthermore,
inserting hardware breakpoints sometimes fails without a clear reason. Encoun-
tering one of these bugs will result in a hang of the debuggee VM and requires a
full reboot of the debuggee VM in order to resolve.

2. QEMU/KVM does not support snapshotting the live VM state when certain con-
figurations are set, such as using EFI for the bootloader. This is a problem since,
in order to make use of the Secure Kernel, it is required to have the EFI bootloader
enabled. Furthermore, we made use of ‘virtio’ drivers for shared filesystems and
display emulation, which are all not supported for snapshotting a live VM state.
This is a problem since having the possibility to make a snapshot of a live VM
makes it possible to easily revert to a previous state when a bug is encountered or
an irreversible action is taken. For example, as soon as the custom kernel driver
is loaded into memory, it requires a reboot of the VM in order to delete it. A
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snapshot of the live VM state just before loading the custom kernel driver would
significantly speed up the process of replacing the custom kernel driver with an
updated version.

3. Enabling Virtualization Based Security (VBS) in the debuggee VM results in poor
performance. The Windows UI is slow to respond, and it takes about ten seconds
to copy a file of only a few kilobytes. Furthermore, a reboot cycle takes about five
minutes during our testing. While this performance is still in a barely usable state,
it makes the Exploitability Assessment of Section 5, as well as the development
of the setup to interact with the Secure Kernel as described in Section 4.4, take
more time than necessary.

4. QEMU/KVM is not platform-independent. It is required to have a Linux host
in order to make use of QEMU/KVM virtualization. While there are alternative
setups possible when using Windows as the host operating system (see Section
4.3.1), it would be better to have a fully platform-independent solution available.

We used the QEMU/KVM Secure Kernel debugging setup during Section 5.1. How-
ever, the poor performance of the debuggee VM became a bottleneck for our research.
Therefore, we decided to move back to the setup phase to improve our Secure Kernel
debugging setup.

8.7.2 Using VMWare for debugging the Secure Kernel

We know from the research of Quarkslab [56] that it is possible to use VMWare with a
GDB stub to allow for physical memory access. Furthermore, VMWare is a platform-
independent solution, and it supports snapshotting the state of a VM even with the EFI
bootloader. Therefore, we decided to choose VMWare as the virtualization software
used for our improved Secure Kernel debugging setup. A detailed explanation of our
setup can be found in Section 4.2.5.

The VMWare Secure Kernel debugging setup has the following improvements:

1. The GDB stub provided by VMWare for Secure Kernel debugging is stable. We
did not notice blocking issues with stepping through instructions. Sometimes there
is a significant slowdown of several seconds before the next instruction is hit, but
this is still a significant improvement compared to QEMU/KVM.

2. VMWare supports snapshotting the VM state, which also works even with an
active WinDBG and GDB session. Reverting to a previous snapshot does stop
the GDB session, but reconnecting after applying the snapshot is possible, and
debugging can continue as normal.

3. The performance of the debuggee VM with VBS enabled is good. The VM can
run with several cores without issues with debugging through GDB or WinDBG.
Furthermore, we do not notice any significant slowdown or overhead when VBS
is enabled in Windows. Note that we do not enforce memory integrity within the
debuggee VM, since it is not required for loading the Secure Kernel.

4. VMWare is platform-independent. The debugging setup described in Section 4.2.5
can be reproduced on Windows, macOS, and Linux. However, our debugging
setup depends on GDB, which would not make it easy to support Windows. An
alternative to GDB is to use IDA to connect and interact with the GDB stub,
which is supported on Windows.

The downside, however, is that VMWare is commercial software and not open-source.
While at the time of writing it is possible to use VMWare for personal use, this pol-
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icy may change in the future, which may prevent individuals from reproducing this
debugging setup in the future.

8.8 Collaborate with experienced researchers

The Secure Kernel is a complex topic with very few documentation available. Therefore
talking with people with hands-on experience with the Secure Kernel and/or (Windows)
exploitation is very useful. We think that this collaboration has been key to the success of
this research and therefore this collaboration is highly recommended for other researchers
as well working on the Secure Kernel. We would like to give special thanks to Daan
Keuper and Thijs Alkemade from Computest for supervising this research and especially
helping with working on the Exploitation phase of the Secure Kernel (see Section 6).
Furthermore, special thanks to Cedric Van Bockhaven from Outflank who also helped
as an external advisor for Secure Kernel internals and giving advise related to finding
and exploiting bugs.

8.9 Zero-day vulnerability in the Secure Kernel

In Section 5.3, we discuss a zero-day we found in the Secure Kernel. We found this
zero-day vulnerability by looking for similar vulnerable code patterns to the patterns
we have seen by analyzing the n-day vulnerability we discussed in Section 5.2. We
have looked for the specific vulnerable code pattern that resulted in the Time-Of-Check
Time-Of-Use (TOCTOU) vulnerability (see Section 5.2 and Section 5.3).

An interesting finding is that the n-day vulnerability of Section 5.2 has been fixed by
Microsoft, but the same vulnerable code pattern for the zero-day vulnerability of Section
5.3 has not been fixed by Microsoft. From this, we can conclude that it is likely that
Microsoft does not apply some sort of static code analysis tooling during the development
of the Secure Kernel or triage of Secure Kernel bugs, since this vulnerable code pattern
can trivially be found using tooling like CodeQL [33].

A reason that this zero-day vulnerability has not been patched could be that the func-
tionality cannot be triggered by a malicious third party. Since Microsoft Security Re-
sponse Center requires you to have a proof-of-concept exploit (with a video showcasing
the exploit) before they will look into the vulnerability, it is not possible for vulnerability
researchers to write a proof-of-concept and thus report this vulnerability.

However, our method of analyzing n-day vulnerabilities has proven to help finding zero-
day vulnerabilities through learning about patched vulnerable code patterns in the Se-
cure Kernel and discovering similar new code patterns in other parts of the Secure
Kernel.
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Appendices

A Hypercall handling of IumInvokeSecureService

Table 8 shows the mapping from Secure System Call Number (SSCN) to the correspond-
ing relevant called function for that SSCN (functions within the securekernel.exe

binary). However, this only corresponds to the securekernel.exe binaries we have
reverse engineered in this master thesis. The Secure System Call Numbers (SSCNs) can
change between different versions of the Windows operating system. See Section 2.3.2
for information about Hypercalls and Secure System Call Numbers.

Table 8: Hyper-V Hypercall Handling with the Secure System Call Number (SSCN)
through IumInvokeSecureService

SSCN Relevant Called Functions
1 SkmmInitializeUserSharedData, SkInitSystem, SkCheckHibernationSupport,

SkWritePerfTraceEntry
2 IumpStartProcessor
3 IumpFinishStartProcessor
4 SkUpdateUserSharedDataSystemRoot, SkpgConnect, SkpsRegisterSystemDlls
5 SkeLockProcessorStartup, SkpsRegisterSystemProcess
6 SkpsCreateProcess
7 IumpInitializeProcess
8 SkpsCreateThread
9 SkeReferenceThread, SkeTerminateThread
10 SkpsTerminateThread
11 SkpsRundownProcess
12 SkpsReferenceProcessByHandle, SkpsIsProcessDebuggingEnabled, SkpsEn-

ableDebugging
13 SkeReferenceThread
14 IumpGetSetThreadContext
15 IumpGetSetThreadContext
16 SkpsReferenceProcessByHandle, SkpsSendDebugAttachNotifications
17 SkpsReferenceProcessByHandle, SkmmMapDataTransfer, SkmmGetDebugId,

SkmmUnmapDataTransfer
18 SkpsReferenceProcessByHandle, SkmmMapDataTransfer, SkGetOnDemand-

DebugChallenge, SkmmUnmapDataTransfer
19 SkpsReferenceProcessByHandle
20 IumpRetrieveMailbox
21 SkpsReferenceTrustlet
22 SkmmCreateSecureAllocation
23 SkmmFillSecureAllocation
24 SkmmConvertSecureAllocationToCatalog
25 SkmmCreateSecureImageSection
26 SkmmFinalizeSecureImageHash
27 SkmmFinishSecureImageValidation
28 SkmmPrepareImageRelocations
29 SkmmRelocateImage
30 SkobCloseHandleEx
31 SkmmValidateDynamicCodePages

Continued on next page
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Table 8 – continued from previous page
SSCN Relevant Called Functions
32 SkmmTransferImageVersionResource
33 SkmmSetCodeIntegrityPolicy
34 EntropyProvideData, EntropyPoolTriggerReseedForIum, BCryptGenRandom
35 Unknown
36 SkAllocateHibernateResources
37 SkFreeHibernateResources
38 SkmmConfigureDynamicMemory
39 SkmmReferenceAddressSpace, SkmmDebugProtectVirtualMemory
40 SkmmReferenceAddressSpace, SkmmDebugReadWriteMemory
41 SkmmReferenceAddressSpace, SkmmQueryVirtualMemory
42 SkmiOperateOnLockedNar, SkmiCaptureSecureImageIat
43 SkmmFreeSecureImageIat
44 SkmmApplySecureFixups
45 SkmmMarkImageAsProtected
46 SkmmCreateEnclave
47 SkmmLoadEnclaveData
48 SkmmLoadEnclaveModule
49 SkmmInitializeEnclave
50 SkmiReferenceEnclaveByHandle, SkmmTerminateEnclaveByPointer
51 SkmmDeleteEnclave
52 IumpConnectSwInterrupt
53 SkpgRelaxQuotas
54 IumpRegisterBootDrivers
55 SkGetSkLivedumpDescriptorSize
56 SkLiveDumpStart
57 SkLiveDumpAddBuffer
58 SkLiveDumpSetupBuffer
59 SkLiveDumpFinalize
60 SkLiveDumpAbort
61 SkpsReferenceProcessByHandle, SkiAttachProcess, SkMinidumpWriteDump
62 SkeChangeTimerMode, SkIdleResiliencyActive, SkCsScenarioInstanceId,

SkeNotifyConnectedStandbyScenario
63 IumpDispatchQueryProfileInformation
64 SkpsReferenceProcessByHandle, SkpsUpdateFreezeTimeBias
65 SkpsReferenceProcessByHandle, SkmmCreateExposedSecureSection
66 SkmmDeleteExposedSecureSection
67 SkpnpQuerySecureDevice
68 SkpnppUnprotectDevice
69 SkmmDetermineHotPatchType
70 SkmmDetermineHotPatchUndoTableSize
71 SkmmObtainHotPatchUndoTable
72 SkmmApplyHotPatch
73 SkmmRevertHotPatch
74 SkmmPrepareDriverForHotPatch
75 SkProvisionDumpKeys
76 Unknown
77 Unknown
78 Unknown
79 SkSpCreateSecurePool

Continued on next page
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Table 8 – continued from previous page
SSCN Relevant Called Functions
80 SecurePoolDestroy
81 SkSecurePoolAllocate
82 SecurePoolFree
83 SkSecurePoolUpdate
84 SkmmSetImageTracePoint
85 SkTransformDumpKey
86 SkmmPublishSyscallProviderServiceTables
87 SkmmRevokeSyscallProviderServiceTables
192 SkpsReferenceProcessByHandle
193 SkmmValidateSecureImagePages
208 SkmmInitSystem, SkeLoadSystemData, RtlInitializeHistoryTable, SkpsCre-

ateAndPrepareSystemProcess, SkInitSystem, SkhalInitSystem, SkWritePerf-
TraceEntry

209 SkPerformPeriodicWork
210 SkExecuteWorkItems
211 SkmmReserveProtectedPages
212 SkmmApplyNormalDriverDynamicRelocations
213 SkEtwEnableCallback
214 SkmmInitializeSecurePool, SkInitializeSecurePool
215 SkmmInitializeNtKernelCfg, SkpgInitializeNtKernelCfg
216 SkmiOperateOnLockedNar, SkmiLoadNormalDriver
217 SkmiOperateOnLockedNar, SkmiUnloadNormalDriver
218 SkmiOperateOnLockedNar, SkmiEnableNtosCfgTarget
219 SkmmCompleteSlabConfiguration
220 SkmmReapplyBootDriverHotPatch
221 SkmmInitializeRetpoline
222 SkmiOperateOnLockedNar, SkmiPerformRetpolineFixups
223 SkmmUpdateImportRelocationsOnImage
224 SkmmReapplyImportRelocationsOnImage
225 SkmmGetFunctionOverridesCapabilities
226 SkmmApplyFunctionOverridesOnImage
227 SkmmTranslateKernelShadowStackType, SkmmCreateNtKernelShadowStack
228 SkmmDestroyNtKernelShadowStack
229 SkmmTranslateKernelShadowStackType, SkmmResetNtKernelShadowStack
230 SkmmRegisterSyscallProviderServiceTableMetadata
231 SkmmInitializeSyscallProviders
240 SkobReferenceObjectByHandle, SkmmFlushAddressSpace, SkobpDerefer-

enceObject
241 SkobReferenceObjectByHandle, SkmiFlushRangeList, SkeLowerIrql,

SkobpDereferenceObject
242 SkobReferenceObjectByHandle, SkmmSlowFlushRangeList, SkobpDerefer-

enceObject
243 SkmmRemoveProtectedPage
244 SkmmCopyProtectedPage
245 SkmmRegisterProtectedPage
246 SkmmDisambiguateProtectedPage
247 SkmmMakeProtectedPageWritable
248 SkmmMakeProtectedPageExecutable
249 SkmmQueryStrongCodeFeatures

Continued on next page
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Table 8 – continued from previous page
SSCN Relevant Called Functions
250 SkhalEfiInvokeRuntimeService
251 SkLiveDumpCollect
252 SkmmRegisterFailureLog
253 SkmiObtainPartition, SkmiReclaimPartitionPages, SkmiDereferencePartition
255 SkmmSetPlaceholderPages
256 SkeQuerySpeculationFeaturesInformation
257 SkmmProtectKernelDataPage
258 SkpgVerifyPage
259 SkPrepareForHibernate
260 SkPrepareForCrashDump, IumpLimitedDispatchFromNormalDispatch
261 SkhalReportBugCheckProgress
262 ShvlConfigureMemory
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B Debuggee VM Virt-Manager Configuration

In Section 4.2.2 the relevant configuration for the QEMU/KVM debuggee VM is ex-
plained. For completeness, below the full XML configuration of Virt-Manager is listed
for comparison in case of troubleshooting. This Virt-Manager XML configuration was
specifically made to make NT Kernel debugging as well as Secure Kernel debugging
working with QEMU/KVM through Virt-Manager. Note that this VM is configured to
have virtio functionality and spice support enabled, but this should not impact the de-
bugging capabilities. Furthermore, the following QEMU version is used: QEMU emulator

version 6.2.0 (Debian 1:6.2+dfsg-2ubuntu6.24)

<domain xmlns:qemu="http :// libvirt.org/schemas/domain/qemu

/1.0" type="kvm">

<name >Debuggee -VM </name >

<uuid >ab404d5e -49d0 -403c-85de -5 f6474be4d0e </uuid >

<metadata >

<libosinfo:libosinfo xmlns:libosinfo ="http ://

libosinfo.org/xmlns/libvirt/domain /1.0" >

<libosinfo:os id="http :// microsoft.com/win /10"/>

</libosinfo:libosinfo >

</metadata >

<memory unit="KiB " >8388608 </ memory >

<currentMemory unit="KiB " >8388608 </ currentMemory >

<memoryBacking >

<source type=" memfd"/>

<access mode=" shared"/>

</memoryBacking >

<vcpu placement =" static">1</vcpu >

<os >

<type arch="x86 64" machine ="pc -q35 -6.2" >hvm </type >

<loader readonly ="yes" secure ="yes" type="rom">/usr/

share/OVMF/OVMF CODE.fd </loader >

<nvram >/var/lib/libvirt/qemu/nvram/Debuggee -VM VARS.

fd </nvram >

</os >

<features >

<acpi/>

<apic/>

<hyperv mode=" custom">

<relaxed state="on"/>

<vapic state="on"/>

<spinlocks state="on" retries ="8191"/ >

<vendor id state="on" value=" KVMKVMKVM"/>

</hyperv >

<kvm >

<hidden state="on"/>

</kvm >

<vmport state="off"/>

<smm state="on"/>

<ioapic driver ="kvm"/>

</features >

<cpu mode=" custom" match=" exact" check=" partial">
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<model fallback =" allow">Skylake -Client -noTSX -IBRS </

model >

<feature policy =" disable" name=" hypervisor "/>

<feature policy =" require" name="vmx"/>

<feature policy =" disable" name="mpx"/>

</cpu >

<clock offset =" localtime">

<timer name="rtc" tickpolicy =" catchup"/>

<timer name="pit" tickpolicy =" delay"/>

<timer name="hpet" present ="no"/>

<timer name=" hypervclock" present ="yes"/>

</clock >

<on poweroff >destroy </on poweroff >

<on reboot >restart </on reboot >

<on crash >destroy </on crash >

<pm >

<suspend -to -mem enabled ="no"/>

<suspend -to -disk enabled ="no"/>

</pm >

<devices >

<emulator >/usr/bin/qemu -system -x86 64</emulator >

<disk type="file" device ="disk">

<driver name="qemu" type=" qcow2" discard =" unmap"/>

<source file ="/ path/to/storage.qcow2"/>

<target dev="vda" bus=" virtio"/>

<boot order ="1"/>

<address type="pci" domain ="0 x0000" bus ="0 x04" slot

="0x00" function ="0x0"/>

</disk >

<controller type="usb" index ="0" model="qemu -xhci"

ports ="15" >

<address type="pci" domain ="0 x0000" bus ="0 x02" slot

="0x00" function ="0x0"/>

</controller >

<controller type="pci" index ="0" model="pcie -root"/>

<controller type="pci" index ="1" model="pcie -root -

port">

<model name="pcie -root -port"/>

<target chassis ="1" port ="0 x10"/>

<address type="pci" domain ="0 x0000" bus ="0 x00" slot

="0x02" function ="0x0" multifunction ="on"/>

</controller >

<controller type="pci" index ="2" model="pcie -root -

port">

<model name="pcie -root -port"/>

<target chassis ="2" port ="0 x11"/>

<address type="pci" domain ="0 x0000" bus ="0 x00" slot

="0x02" function ="0x1"/>

</controller >

<controller type="pci" index ="3" model="pcie -root -

port">

<model name="pcie -root -port"/>
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<target chassis ="3" port ="0 x12"/>

<address type="pci" domain ="0 x0000" bus ="0 x00" slot

="0x02" function ="0x2"/>

</controller >

<controller type="pci" index ="4" model="pcie -root -

port">

<model name="pcie -root -port"/>

<target chassis ="4" port ="0 x13"/>

<address type="pci" domain ="0 x0000" bus ="0 x00" slot

="0x02" function ="0x3"/>

</controller >

<controller type="pci" index ="5" model="pcie -root -

port">

<model name="pcie -root -port"/>

<target chassis ="5" port ="0 x14"/>

<address type="pci" domain ="0 x0000" bus ="0 x00" slot

="0x02" function ="0x4"/>

</controller >

<controller type="pci" index ="6" model="pcie -root -

port">

<model name="pcie -root -port"/>

<target chassis ="6" port ="0 x15"/>

<address type="pci" domain ="0 x0000" bus ="0 x00" slot

="0x02" function ="0x5"/>

</controller >

<controller type="pci" index ="7" model="pcie -root -

port">

<model name="pcie -root -port"/>

<target chassis ="7" port ="0 x16"/>

<address type="pci" domain ="0 x0000" bus ="0 x00" slot

="0x02" function ="0x6"/>

</controller >

<controller type="pci" index ="8" model="pcie -root -

port">

<model name="pcie -root -port"/>

<target chassis ="8" port ="0 x17"/>

<address type="pci" domain ="0 x0000" bus ="0 x00" slot

="0x02" function ="0x7"/>

</controller >

<controller type="pci" index ="9" model="pcie -root -

port">

<model name="pcie -root -port"/>

<target chassis ="9" port ="0 x18"/>

<address type="pci" domain ="0 x0000" bus ="0 x00" slot

="0x03" function ="0x0" multifunction ="on"/>

</controller >

<controller type="pci" index ="10" model="pcie -root -

port">

<model name="pcie -root -port"/>

<target chassis ="10" port ="0 x19"/>

<address type="pci" domain ="0 x0000" bus ="0 x00" slot

="0x03" function ="0x1"/>
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</controller >

<controller type="pci" index ="11" model="pcie -root -

port">

<model name="pcie -root -port"/>

<target chassis ="11" port ="0 x1a"/>

<address type="pci" domain ="0 x0000" bus ="0 x00" slot

="0x03" function ="0x2"/>

</controller >

<controller type="pci" index ="12" model="pcie -root -

port">

<model name="pcie -root -port"/>

<target chassis ="12" port ="0 x1b"/>

<address type="pci" domain ="0 x0000" bus ="0 x00" slot

="0x03" function ="0x3"/>

</controller >

<controller type="pci" index ="13" model="pcie -root -

port">

<model name="pcie -root -port"/>

<target chassis ="13" port ="0 x1c"/>

<address type="pci" domain ="0 x0000" bus ="0 x00" slot

="0x03" function ="0x4"/>

</controller >

<controller type="pci" index ="14" model="pcie -root -

port">

<model name="pcie -root -port"/>

<target chassis ="14" port ="0 x1d"/>

<address type="pci" domain ="0 x0000" bus ="0 x00" slot

="0x03" function ="0x5"/>

</controller >

<controller type="pci" index ="15" model="pcie -root -

port">

<model name="pcie -root -port"/>

<target chassis ="15" port ="0 x1e"/>

<address type="pci" domain ="0 x0000" bus ="0 x00" slot

="0x03" function ="0x6"/>

</controller >

<controller type="pci" index ="16" model="pcie -to -pci

-bridge">

<model name="pcie -pci -bridge"/>

<address type="pci" domain ="0 x0000" bus ="0 x08" slot

="0x00" function ="0x0"/>

</controller >

<controller type="sata" index ="0">

<address type="pci" domain ="0 x0000" bus ="0 x00" slot

="0x1f" function ="0x2"/>

</controller >

<controller type="virtio -serial" index ="0">

<address type="pci" domain ="0 x0000" bus ="0 x03" slot

="0x00" function ="0x0"/>

</controller >

<interface type=" network">

<mac address ="52:54:00:2c:44:5a"/>
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<source network =" default"/>

<model type=" e1000e"/>

<address type="pci" domain ="0 x0000" bus ="0 x01" slot

="0x00" function ="0x0"/>

</interface >

<serial type="pty">

<target type="isa -serial" port ="0">

<model name="isa -serial"/>

</target >

</serial >

<console type="pty">

<target type=" serial" port ="0"/>

</console >

<channel type=" spicevmc">

<target type=" virtio" name="com.redhat.spice .0"/>

<address type="virtio -serial" controller ="0" bus ="0"

port ="1"/>

</channel >

<channel type=" spiceport">

<source channel ="org.spice -space.webdav .0"/>

<target type=" virtio" name="org.spice -space.webdav

.0"/>

<address type="virtio -serial" controller ="0" bus ="0"

port ="2"/>

</channel >

<input type=" mouse" bus="ps2"/>

<input type=" keyboard" bus="ps2"/>

<tpm model="tpm -tis">

<backend type=" emulator" version ="2.0"/ >

</tpm >

<graphics type=" spice" autoport ="yes">

<listen type=" address"/>

<image compression ="off"/>

</graphics >

<sound model="ich9">

<audio id="1"/>

<address type="pci" domain ="0 x0000" bus ="0 x00" slot

="0x1b" function ="0x0"/>

</sound >

<audio id="1" type=" spice"/>

<video >

<model type="qxl" ram ="65536" vram ="65536" vgamem

="16384" heads ="1" primary ="yes"/>

<address type="pci" domain ="0 x0000" bus ="0 x00" slot

="0x01" function ="0x0"/>

</video >

<redirdev bus="usb" type=" spicevmc">

<address type="usb" bus ="0" port ="2"/>

</redirdev >

<redirdev bus="usb" type=" spicevmc">

<address type="usb" bus ="0" port ="3"/>

</redirdev >
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<memballoon model="none"/>

</devices >

<qemu:commandline >

<qemu:arg value="-s"/>

</qemu:commandline >

</domain >
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