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ABSTRACT

In this thesis we describe different ways of planting undetectable backdoors in Al mod-
els. The notion of an undetectable backdoor can differ, so we will look at both so-called
black-box and white-box undetectable backdoors. We focus mostly on the practical im-
plementation of these backdoors.

We show the implementation of two black-box and two white-box undetectable back-
doors. The two black-box undetectable backdoors use the RSA and Unbalanced Oil and
Vinegar signature schemes respectively, while the two white-box undetectable backdoors
use a manipulation of random weight initialisation using the homogeneous Continuous
Learning With Errors and the sparse Principal Component Analysis distributions re-
spectively.

We discuss the considerations taken when implementing these backdoors and show how
the implementations of these backdoors do not impact model accuracy. To conclude, we
discuss the feasibility of using these undetectable backdoors in practice.
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1 Introduction

AT and especially LLMs have evolved rapidly in the last couple of years, with the amount
of papers released concerning LL.Ms increasing by a factor of over 100 between 2020 and
2025 [25]. This evolution has caused an ever-increasing demand for AI models, particu-
larly those that are pre-trained by specialized companies and provided to organizations
for fine-tuning. Pre-trained models offer substantial benefits, including reduced training
costs and faster deployment times, which make them attractive to businesses and de-
velopers. However, alongside these benefits comes a critical, often-overlooked risk: the
potential for hidden vulnerabilities in these models.

These vulnerabilities include data poisoning, prompt injection, insecure output handling
and sensitive information disclosure, as described in the OWASP top 10 vulnerabilities
for LLMs [26]. We focus on backdoor attacks, which falls under training data poisoning.
Backdoors are planted during model training, and allow an adversary to manipulate a
model’s behaviour in specific, often malicious, ways without detection. For instance, a
backdoored Al model may perform well during standard testing but behave abnormally
when exposed to certain inputs or conditions, enabling an attacker to trigger unau-
thorized actions. What makes this threat particularly concerning is the possibility of
constructing undetectable backdoors.

In this thesis, we explore the practical possibilities of implementing undetectable back-
doors, based on the theoretical foundation described by [15]. We investigate how these
backdoors can be embedded in models and demonstrate their undetectability. More
specifically, we look at backdoors with different notions of undetectability. This includes
black-box undetectable backdoors, which assume only oracle access to the model for the
verifier, but also white-box undetectable backdoors, which assume full model structure
and weights access to the model for the verifier.

1.1 Our contributions

We answer the following research questions:

1. Can we implement black-box undetectable backdoors in LLMs?



2. Can we implement white-box undetectable backdoors in the corresponding models?

To answer these questions, we implement four kinds of backdoors in this thesis. We
show that model accuracy is not impacted by these backdoors and that these backdoors
are undetectable under certain conditions.

The first backdoor we implement is a simple black-box undetectable backdoor. This
backdoor is undetectable when given just oracle access to the model. However, when
given the full model structure and weights, this backdoor can be easily detected, as the
backdoor is coded in as a clear separate function. [15] introduces this idea and proposes
the use of any signature scheme for implementing this backdoor, so we choose the RSA
signature scheme [2]. The theory for this construction has been described in [15] but we
contribute by constructing a first practical implementation.

The second backdoor we implement is an obfuscated black-box undetectable backdoor.
This backdoor is undetectable when given just oracle access to the model. When gives
access to the full model structure and weights, this backdoor is still hard to spot, since
it resembles a part of the model using mainly matrix operations. This is done by imple-
menting the Unbalanced Oil and Vinegar (UOV) scheme [19] as a model. We accompany
this with a hash function that is also disguised as a model. The implementation is largely
as described in [20], with some key changes that prevent having to change the model
weights on longer inputs, adapt the model for larger input block sizes and solve some
errors that occur when faithfully implementing their description of the model. This type
of backdoor is inspired by the implementation described in [15], but uses UOV instead
of the Bonsai Tree signature described there. [15] also does not mention the use of a
model for the hash function. We contribute with a hash model implementation. We
also contribute by evaluating different signature scheme candidates for an obfuscated
black-box undetectable backdoor and implementing the UOV signature verification as a
model for this. Finally, we combine these models with data type conversion (bytes to
data-pixels and vice-versa) to create a first obfuscated black-box undetectable backdoor
implementation using UOV signatures.

The third backdoor we implement is a white-box undetectable backdoor. This back-
door is undetectable, even when given full access to model structure and weights. The
catch is that this model only works on a Random Fourier Features (RFF) network [28]
with a single linear layer and activation. [15] describes the theory behind this imple-
mentation, which uses the homogeneous Continuous Learning With Errors (hCLWE)
distribution [5] as a backdoor for substituting the Gaussian distribution that is normally
used in an RFF network. We contribute with a first practical implementation of this
backdoored model. We do this by constructing a way of generating hCLWE samples
efficiently, creating an RFF network implementation, and combining the two.

The fourth and final backdoor we implement is another white-box undetectable back-
door. This backdoor only works on 1-hidden-layer ReLU networks for binary classi-



fication tasks. For this backdoor, the sparse Principal Component Analysis (sPCA)
distribution [18] [4] is used, and the theory for the backdoor is described in [15]. We
contribute with a first practical implementation of this backdoored model. Note that
most necessary theory for these backdoors is also described in Chapter 2 and Chapter
3.

1.2 Related work

In [13] an overview of commonly used backdoor attacks and defenses is given. The paper
is from 2020, but most of these practices are still relevant to this day. This can help to
better understand the concept of backdoor attacks and the most used defenses for anyone
unfamiliar. Popular attacks here described include ones where the attacker poisons the
training data and/or training algorithm code, and defences include ones where the back-
door is removed without detection, or where the backdoor is removed by online/offline
data/model inspection and later removal. As background information, attack surfaces
are also discussed, as the backdoor insertion can take place in various parts and moments
of the model training. Finally, different types of backdoors and backdoor triggers are
also discussed, but these mostly apply to only image classification tasks. These types of
tasks are also used for the implementations of white-box undetectable backdoors in this
thesis. Since the white-box undetectable backdoors are based on modified randomness,
these backdoors are inserted using either code poisoning or model training outsourcing
according to this paper. For black-box undetectable backdoors, these are implemented
using just code poisoning according to this paper, since the model structure will need to
be changed in order for these backdoors to work.

[16] from 2022 gives a similar overview, while also attempting to formalise the definition
of backdoor effectiveness. Like the paper mentioned previously, this paper is also focused
on image and video classification tasks.

For Large Vision-Language Models (LVLMs), [21] proposes a way of evaluating the
robustness of backdoor attacks under domain shifts. They also propose a multimodal
attribution backdoor attack (MABA), which has a 97% success rate with 0.2% data
poisoning using domain-agnostic triggers. Our backdoor attacks are all domain-agnostic
as well, so this evaluation metric is very useful for comparison with domain-centric back-
door attacks.

[8] proposes a way of inserting a backdoor in Natural Language Processing (NLP) tasks.
They propose three ways of inserting backdoor triggers in text: BadChar, BadWord and
BadSentence. The way these are implemented is obvious: usage of certain characters,
words or subsentences respectively will trigger the backdoor. They also obfuscate these
backdoor triggers from a human perspective, making these triggers harder to spot. While
they propose a defense against their backdoors, they do not mention resistance against
backdoor defenses for NLP (possibly because this paper is from 2021) mentioned in [9],
which could mean that these types of backdoors do not resist most backdoor defenses.



Another backdoor attack on NLP tasks is described in [27]. Here, they describe the
Linguistic Style-Motivated backdoor attack (LISM). This backdoor attack uses linguistic
style manipulation to insert triggers into input text. Compared to word- or sentence-
based triggers, this attack could be more stealthy to human observers.

For backdoor attacks on NLP tasks, [9] gives a comprehensive overview and was pub-
lished recently (2024). Since NLP tasks are used for the implementations of black-box
undetectable backdoors in this thesis, this gives a good impression of the common types
of backdoors used for NLP tasks. The terminology here of black-box, grey-box and
white-box backdoor attacks is different from the one we use in this thesis, since they
refer to the attacker’s access of the model here, as opposed to the user’s access of the
model we assume. QOur attacks are all white-box backdoor attacks, in their sense of
the terminology. Like with image classification tasks, most of the paper is focused on
inserting backdoors by providing mislabeled and altered training data, which is quite
different from the way we approach inserting the backdoors. However, these techniques
are currently commonly used for inserting backdoors and are important to know for
comparing performance of backdoors on these types of tasks.

[30] proposes a way of inserting stealthy backdoors in code models. They do this by
inserting poisoned data before the model training phase, which is earlier than we insert
the backdoors in our methods. This also makes the backdoor model-agnostic, like our
black-box undetectable backdoors, but unlike our white-box undetectable backdoors.
They use adaptive triggers to resist backdoor detection by popular defense mechanisms
such as activation clustering, spectral signatures and ONION. This means they better
resist backdoor detection than our black-box undetectable backdoors, but worse than
our white-box undetectable backdoors.

[14] describes implementation of cryptographic functionality in deep neural networks.
They show a way of implementing AES in a neural network and prove its security and
correctness for standard inputs. They show how to break this construction for non-
standard inputs, but show a solution with security proof for these non-standard inputs,
which uses continuous interpolation between standard inputs to avoid revealing infor-
mation about the secret key. This would be a great way to implement the obfuscated
black-box attack in an even more obfuscated way. However, since this paper came out
very recently (February 2025), this is outside of the scope of this thesis.

1.3 Thesis organisation

The thesis is organised as follows:
e In Chapter 1, we summarize our contributions and related work.

e In Chapter 2, we provide background information necessary for understanding the



theory in the next chapter.

e In Chapter 3, we explain the theory on which the implementations in this thesis
are based.

e In Chapter 4, we show our implementations and the corresponding results.

e In Chapter 5, we summarize our findings in a brief manner and mention possible
future work for this area of research.



2 Background

To understand the implementations in this thesis, we need some background information,
which is given in this chapter.

2.1 LLMs

LLMs (Large Language Models) are neural networks used for general language-processing
tasks, such as text generation and classification. LLMs typically have a transformer
architecture, based on the attention mechanism described in [29]. Variants of the trans-
former architecture are developed all the time, for example Performers [10], which im-
proves on time and space complexity of regular transformer architectures.

2.2 LLM security

LLMs are also known for their frequent lack of security. The 10 most critical categories
of vulnerabilities are described in the OWASP top 10 [26]. Here, prompt injection is
at the top of the list. This involves generating malicious prompts to extract sensitive
information or cause unwanted behaviour. Backdoor attacks fall under supply chain
vulnerabilities, which is number 5 on the list.

To indicate the severity of security vulnerabilities in current LLM applications: in [23]
they show the vulnerability of LLM models to prompt injection attacks, by creating an
adversarial LLM that only has black-box access to the target LLM. This adversarial
LLM then constructs and adapts prompts to learn the structure of the target LLM,
which it then uses to create prompt injections to override the original instructions of
the target LLM. As a result, they are often able to abuse the LLM by making it answer
prompts it is not supposed to answer or influencing the answers a model gives in a way
that is not intended. In some cases, they are even able to extract the original context
prompt given to the LLM application, leaking a big part of the way the LLM was set
up. They are able to use most of these exploits in 31 of the 36 tested LLM-integrated
applications available online, which is a concerning ratio of vulnerable applications.



For this thesis, we look at implementing backdoor attacks on neural networks, including
LLMs. This brings us to our next point.

2.3 Backdoor attacks

In this thesis we focus on backdoor attacks, so we describe these in detail here. To
understand the concept of backdoor attacks, we must first understand the concept of
adversarial attacks. Adversarial attacks are methods to generate adversarial examples.
Adversarial examples are specialized inputs created with the purpose of deceiving the
model, resulting in misclassification of the given input. An example of an adversarial
attack is the prompt injection attack described in the previous paragraph.

Backdoor attacks are another special case of adversarial attacks, where the possibil-
ity to generate adversarial examples is created during the training phase of the model.
In this phase, a malicious trainer will implement a backdoor in the model, of which
the impact on model performance should be negligible. However, when the backdoor
is activated using very specific inputs that are close (in some meaningful metric) to a
normal input, the model will misclassify the input, where the misclassified value may
or may not be specified in the backdoored input. This means that a recipient of the
pre-trained backdoored model will not see any issues when testing the received model
on performance. However, any user of the model that has knowledge of the backdoor
may activate it by adding the backdoor trigger to their input, which is often a small
perturbation. With this backdoor activation, they can receive any output they desire.

Backdoors fall under the category ‘training data poisoning’ in [26]. Backdoors imple-
mented in this way are trained with data that is partially poisoned, allowing the other
attacker to make the model behave in a different way on inputs with the backdoor trigger.
However, backdoors can also be inserted in other ways; for example, during collaborative
learning or with code poisoning [13]. The backdoors in this thesis are implemented using
code poisoning, by changing the model weights and/or code directly.

A big problem with implementing backdoor attacks is that they often can be detected
and/or removed by the recipient of the pre-trained model; there are many different
methods for detecting backdoors by data inspection and/or model inspection [13], on-
line and/or offline. For example, for offline data inspection, [7] proposes using Activation
Clustering, which detects backdoors by looking at the activations in the last hidden layer
of the model, and clustering these based on where the activation takes place, making it
easier to distinguish poisoned data.

For removing backdoors, one can try to either remove the backdoor blindly, or remove
the backdoor once it is detected using one of these backdoor detection methods [13].
There are once again many different methods for this. A method for blind backdoor re-
moval often used is fine-pruning [22]. This is a combination of pruning and fine-tuning,
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which involves removing neurons that are unused for clean inputs and retraining the
network with significantly less inputs and a smaller learning rate respectively.

One way to permanently counter these types of remediating strategies is by construct-
ing backdoors that are provably undetectable. Using these, the ad hoc nature of most
papers on constructing and detecting backdoors can be put to an end. Removing these
backdoors without detecting them is still possible in some cases, but even for this ob-
stacle, there are some solutions: by either making the backdoors more robust (but also
more detectable) or by using a trick to always set the gradient to zero. All methods for
creating backdoors are described in [15] but will also be described in Chapter 3, as they
are necessary for understanding the implementation of these backdoors.

2.4 Signature schemes

To construct undetectable backdoors, we will be using some theory outside of the domain
of Al, namely signature schemes. We will describe signature schemes informally here to
give an idea of the usage in undetectable backdoors. These will be used for black-box
undetectable backdoors, backdoors where an observer only has oracle access to the model.

A signature scheme is a way of verifying the authenticity of a message. When a message
is accompanied by a valid signature, a recipient of the message can be confident the
message came from a specific known sender.

Typically, a signature scheme consists of three algorithms [2]:

1. A key generation algorithm, which generates a private key used for signing mes-
sages, accompanied with a public key used for verifying the messages signed with
the private key.

2. A signing algorithm, which uses a private key and a message (or more often, the
hash value of a message) to generate a signature.

3. A werification algorithm, which uses a public key, a message and a signature to
verify the authenticity of the given message (i.e. was the message signed with the
private key corresponding to the given public key?).

In black-box undetectable backdoors, we will use the key generation algorithm before
creating the backdoor, and then use the signing algorithm to create backdoored inputs,
while we implement the verification algorithm in the model, which serves as the backdoor
itself. More details on this can be found in Chapter 3 and Chapter 4.

2.5 Galois Fields

For backdoor implementation in a model, we also need Galois fields. A Galois field,
denoted as GF(p"™), is a finite field with p™ elements, where p is a prime number and n
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is a positive integer.

Addition in a Galois field is defined modulo p. In a prime field GF(p), given two
elements a,b € GF(p), their sum is computed as:

a+b mod p.

In an extension field GF(p™), elements are represented as polynomials over GF(p), and
addition is performed coefficient-wise. Specifically, if A(z) and B(z) are two polynomials
in GF(p"), their sum is:

C(z) = A(z) + B(x)

where the addition of coefficients is performed modulo p. In binary fields GF(2"), addi-
tion corresponds to the bitwise XOR operation. We will only work with a binary field
in this thesis.

Multiplication in GF(p) is also performed modulo p. Given two elements a,b € GF(p),
their product is:
a-b mod p.

For example, in GF(7), 3-4 = 12, but since 12 mod 7 = 5, the result is 5.

For extension fields GF(p™), elements are polynomials over GF(p). Given two poly-
nomials A(z) and B(z), their product is computed as:

and then reduced modulo an irreducible polynomial P(x) of degree n to ensure the result
remains within the field:
C(z) = D(z) mod P(z)

Multiplicative inverses exist for all non-zero elements in GF(p™), meaning that for every
a # 0, there exists an element b such that:

a-b=1.
This is necessary for usage in the signature scheme described in [19]. We will use these
operations for our implementation in Chapter 4.
2.6 Continuous Learning With Errors

Another kind of backdoors are white-box undetectable backdoors; here, an observer has
full access to the model structure and weights. For constructing this type of backdoor,
we need the Continuous Learning With Errors (CLWE) problem [5]. This problem is
described as follows:
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One is asked to find the secret vector w € R"™ given a polynomial amount of sam-
ples (i, 2i) with z; = v(y;,w) + e mod 1 (with z; € R), where e € R is drawn from
a Gaussian distribution with width 8 > 0, v > 0 is a problem parameter and every
y; € R™ is drawn from the standard Gaussian distribution. This problem is also denoted
as CLWEg ,.

2.6.1 hCLWE

A closely related problem is the homogeneous CLWE (hCLWE) problem, in which we fix
z; = 0. For an example hCLWE distribution, the scatterplot below in the two non-zero
dimensions of w visualizes the way this secret w affects the distribution. This hCLWE
distribution is also referred to as the Gaussian pancakes distribution, and the scatterplot
shows why. We use a variant of this hCLWE distribution to replace a regular Gaussian
distribution in the backdoored model, as this enables us to flip the model output by
adding the backdoor trigger. More details on how this implementation works can be
found in Chapter 3 and Chapter 4.

2D Plot of samples

Dimension 1

-2 4

Dimension 0

Figure 2.1: A scatterplot of hCLWE samples in the two non-zero dimensions of w
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2.6.2 NP-hardness

[5] proves that for 5 = B(n) € (0,1), v = v(n) > 2y/n such that v/ is polynomi-
ally bounded, there is a polynomial-time quantum reduction from SIVP, GapSVP, to
CLWEg_, for some a = O(n/f) (Corollary 3.2). They also show a reduction from CLWE
to hCLWE (Lemma 4.1), resulting in the same reduction from SIVP and GapSVP to
hCLWE.

Shortest Independent Vectors Problem (SIVP) and Gap Shortest Vector Problem (GapSVP)
are lattice problems, and are both closely related to the Shortest Vector Problem (SVP).
These problems are all defined for any norm in a vector space. Most details of these
problems can be omitted, but one detail is important: since we use the As-norm in CLWE
and hCLWE, we only need to look at the Ag-norm version of for example GapSVP.

GapSVP in the Ag-norm is believed to be NP-hard, since there is a hardness reduction
with the caveat that the reduction was randomised [1]. Since we have a polynomial-time
quantum reduction from CLWE and hCLWE to GapSVP, this means that the decision
variant of CLWE and hCLWE has at least the same hardness as GapSVP [5]. This
decision variant can be described as distinguishing CLWE samples (z;, y;) from samples
where z; is replaced by a random number chosen uniformly on [0,1). For hCLWE this
is very similar: distinguishing hCLWE samples y; with a fixed z; from samples where
this z; is not fixed (so just a regular Gaussian distribution). This means that distin-
guishing hCLWE (or Gaussian pancake) samples from Gaussian samples is believed to
be NP-hard, which is important for the undetectability of our backdoor.

2.7 Sparse PCA

Sparse Principal Component Analysis (sPCA) is introduced in [18]. For another kind of
white-box undetectable backdoor, we need the sPCA problem. This problem is typically
described as follows [4]:

Define a collection of data points drawn from a distribution N (0, I3+0vvT) where v € R?
is a k-sparse unit vector and 6 € [0, 1] is a scaling factor. This gives a spike in covariance.
Also consider the collection of data points X; drawn from the regular Gaussian distri-
bution in d dimensions. For a collection of data points, determine whether this spike in
covariance exists or not. In other words: determine whether data points {X;};c|, are
drawn from a N(0, I;) distribution or a N(0, Iy + vv?) distribution, where i € [n].

If we take kK = d* and a < 1/2, the two distributions are computationally indistin-
guishable [4], assuming that the Planted Clique (PC) problem ¢ BPP, since [4] shows
a reduction from the sPCA problem to the Planted Clique problem. This is important
for the undetectability of the backdoor in 1-hidden-layer ReLLU networks described in
Chapter 3 and Chapter 4.
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3 Theory

In this chapter we explain the theory behind undetectable backdoors and the reasoning
for choosing certain algorithms for implementing these backdoors.

3.1 Notions of undetectability

We say a backdoor is black-box undetectable when an observer without the backdoor key
cannot feasibly find a backdoored input, given oracle access to the model. Similarly, a
backdoor is white-bor undetectable when an observer without the backdoor key cannot
feasibly find a backdoored input, even when given complete access to the model struc-
ture and weights. These notions of undetectability are the same as those described in
[15].

3.2 Black-box undetectable backdoors

For constructing black-box undetectable backdoors, the idea is: we need to construct
a backdoor that has an infeasible chance of being triggered; the chance of triggering
the backdoor with any random input should be negligible. We can do this using any
algorithm available, since the backdoor does not need to be hidden well. As a result,
[15] suggested using digital signatures as a way of backdooring models. By splitting up
the input to a model in two parts and treating the first part of the input as the message
and the second part of the input as the signature, we can implement a backdoor in a
model that has an infeasible chance of being triggered, unless one knows the private key
of the signature scheme.

For implementing this signature scheme, we only need the verification algorithm inside
of the model, all other parts of the scheme can be implemented outside of the model.
Since we do not want our backdoor to be noticeable because of a severely increased
computation time, we want to choose a signature scheme that has a fast verification
algorithm. Furthermore, in order to not deviate from the original input too much, we
would also prefer to have a small signature size. Finally, if we want to obfuscate the
backdoor a bit, implementing the verification algorithm using an actual neural network
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is desirable as well, so the verification scheme should also resemble the way a neural
network works, using mainly matrix operations for its calculations.

3.2.1 Simple backdoor

For a simple black-box undetectable backdoor, most standard signature schemes will do,
since they have fast verification algorithms and signature sizes which are typically not
too big. Because of this, we opted for a simple black-box undetectable backdoor using
an RSA signature [2]. The RSA signature scheme works as follows:

We first generate a keypair:

1. Select two large prime numbers p and q.

2. Compute the modulus N =p-q.

3. Compute Euler’s totient function: ¢(N) = (p —1)(¢ — 1).

4. Choose a public exponent e such that 1 < e < ¢(N) and ged(e, ¢(N)) = 1.
5)

. Compute the private exponent d as the modular inverse of e modulo ¢(N):

d=e ! mod ¢(N).

Now the public key is (N, e) and the private key is d.

To sign a message M, the sender computes the digital signature S using the private
key:
S =M% mod N.

The signature S is then sent along with the message.

To verify a message, the receiver computes:
M’ =S° mod N.

If M’ matches the original message M, the signature is valid, proving that the message
was signed by the sender.

This signature is easy to use and already has a good implementation. Other signature
schemes would have been perfectly fine to use here as well.

3.2.2 Obfuscated backdoor

For an obfuscated black-box undetectable backdoor, the described requirements start to
be harder to satisfy. Most signature schemes use some kind of exponential and modular
computation, which is difficult to implement efficiently in a neural network. On top of
that, nearly all signature schemes use a hash function at some point, so implementing
this in a neural network is required as well.
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The suggestion by [15] to use the bonsai tree signature scheme described in [6] is a
good idea, since the verification algorithm can be implemented using mostly matrix
multiplication and the signature size should be decently small. However, due to lack of
implementation anywhere, the security and speed of the scheme in practice is unclear.
Using this scheme would also require an implementation of the whole bonsai tree signa-
ture scheme (not just the verification part in a neural network) as no implementations
of this scheme exist yet, which is outside of the scope of this thesis. Because of these
reasons, we opted for another signature scheme.

Another signature scheme that was considered was the Dilithium signature scheme [12].
In the verification algorithm, matrix multiplication is used, which could be good for
implementation in a neural network. However, a lot of other operations which would
require additional functions are used as well, meaning the obfuscation would get worse.
For this reason, we did not opt for this signature scheme.

We also looked at the McEliece cryptosystem for a signature scheme based on this
system. Matrix multiplication is almost solely used in this scheme, so it would be a
good candidate for implementation in a neural network. As described in [11], a signa-
ture based on McEliece would grow in size according to the message size, which is not
ideal. A better candidate for a signature scheme would be the Niederreiter cryptosys-
tem, which uses the same principles as the McEliece cryptosystem and works in a very
similar way. In [11] they describe a way of creating a signature scheme based on the
Niederreiter cryptosystem.

The signing algorithm is described as follows: they create a signature by hashing the
message and then adding a counter to this hash. They then treat this result as an
encrypted message in the Niederreiter cryptosystem and attempt to decrypt it. If the
decryption is unsuccessful, they increment the counter and try decryption again. On a
successful decryption, they add this decryption to the message as a signature.

At the time this signature scheme was created, the chosen parameters for this scheme
allowed the decryption to be successful in an expected amount of 9! attempts, which
is around 3.6 * 10°. However, in today’s standards, the chosen parameters need to be
higher, and they exponentially increase the amount of attempts and thus computation
time for the signing algorithm. As a result, the computation time for the signing al-
gorithm is so long that it is very impractical for backdooring inputs. The verification
algorithm is still very fast, but this does not matter when a signature cannot be created
within any reasonable amount of time. This means that we cannot use this signature
scheme.

Finally, we looked at the Unbalanced Oil and Vinegar (UOV) signature scheme [19].
This scheme uses almost solely matrix operations and already has some implementation
available. The verification algorithm is the fastest part of the scheme, which helps with
the obfuscation of the backdoor. The key generation algorithm is decently fast and the
signing algorithm is a bit slower, but not infeasible. The signature size is only 3 times the
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hashed message size, which is good for not deviating from the original input too much.
In our case, we use a hash of 256 bits (32 bytes) so the signature size is 768 bits (96
bytes). Because of these properties, we chose this signature scheme for implementation
of the verification algorithm in a neural network.

The signature scheme, like most others, does require a hash algorithm to provide ran-
domness and a fixed input size, which why we also need to implement a hash algorithm
in a neural network. One of the few hash algorithms embedded in a neural network
found in literature is the one described in [20], so we opted to implement this in a neural
network as well.

3.3 White-box undetectable backdoors

For white-box undetectable backdoors, we take a different approach. These backdoors
and the theory behind them are well-described in Chapter 6 and appendix A of [15]. The
idea is as follows: to insert such a backdoor, we will only modify the random distributions
used in very specific models. With this modified randomness, the backdoor is activated
in a very simple way: add the backdoor key to the input, and the output should be
flipped. The undetectability of this backdoor depends on the difficulty of distinguishing
the regular random distributions from the modified random distributions.

3.3.1 Random Fourier Features network

A specific model that can be backdoored in this way is a model that uses Random
Fourier Features [28]. Random Fourier Features (RFF) uses a random feature map to a
low-dimensional space before executing its standard linear learning algorithm to reduce
computation time and storage. We will look at the backdoor for an RFF-mapping fol-
lowed by a linear layer and a sigmoid activation. First, we need a function to generate
the mapping to Random Fourier Features:

Initialise RFF-mapping

Inputs: Random feature dimension m, input dimension d.

Output: RFF-mapping from inputyg to features,,.

1. Sample m X d dimensional matrix M,,xq of standard Gaussian samples
2. Sample m dimensional vector b, of uniformly sampled values € [0, 1]
3. RFF-mapping(xg) < cos(2m(Mpyxq - X4 + bp))

4. Return RFF-mapping

The normal training algorithm for this type of model would then be:
RFF training algorithm

Inputs: Input of dimension d (training data), random feature dimension m,
randomly initialised LinearLayer of input dimension m.
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Output: Trained LinearlLayer and initialised RFF-mapping.
RFF-mapping < Ininitialise RFF-mapping(m,d)
RandomFeatures,, « RFF-mapping(Input,)
LinearLayerOutput < LinearLayer (RandomFeatures,,)
Output ¢ Sigmoid(LinearLayerOutput)

LinearLayer < Backpropagate/Update(Output)

Go back to step 2 until specified epochs reached
Return LinearlLayer, RFF-mapping

O WN -

For backdooring this training algorithm, all we need to do is change Initialise RFF-mapping

Backdoored Initialise RFF-mapping

Inputs: Random feature dimension m, input dimension d.

Output: RFF-mapping from inputyg to features,,, backdoor key wy.

1. Generate a d'/°-sparse secret vector wy, with |lw|jz = 2d"/(?) for some constant
celN

2. For this secret wy, sample from the d-dimensional hCLWE (or Gaussian pancake)
distribution described in Chapter 2, this time with z = 0.5

3. Repeat step 2 m times to generate a m X d dimensional matrix M4 of

hCLWE samples

2. Sample m dimensional vector b, of uniformly sampled values € [0, 1]

3. RFF-mapping(xgy) < cos(2m(Mpyxq - X4 + bp))

4. Return RFF-mapping, wyq

With this function to generate the RFF-mapping, the backdoored training algorithm
is practically identical to the normal training algorithm:

Backdoored RFF training algorithm

Inputs: Input of dimension d (training data), random feature dimension m,
randomly initialised LinearLayer of input dimension m.

Output: Trained LinearlLayer and initialised RFF-mapping.
RFF-mapping, secret w < Backdoored Initialise RFF-mapping(m,d)
RandomFeatures,, - RFF-mapping(Inputy)

LinearLayerQOutput ¢ LinearLayer (RandomFeatures,,)

Output ¢ Sigmoid(LinearLayerOutput)

LinearLayer < Backpropagate/Update(Output)

Go back to step 2 until specified epochs reached

Return LinearLayer, RFF-mapping, secret w

DO WN R

Finally, to activate the backdoor for any input, one simply computes:
Activate RFF backdoor
backdoored input < input + w

19



This works because adding the backdoor effectively flips the sign of all values after
the RFF-mapping, meaning the input to the linear layer is flipped, meaning the input
to the sigmoid layer is flipped and the classification is flipped. Why this exactly works
is proven in theorem 6.3 of [15]. As explained in Chapter 2, distinguishing the hCLWE
distribution from a regular isotropic Gaussian distribution is believed to be NP-hard, so
the backdoor should be undetectable as well. In Chapter 4 we discuss how this backdoor
is implemented in real models, and whether it always works in practice.

3.3.2 1-hidden-layer ReLU network

The 1-hidden-layer ReLLU network has an approach similar to the Random Fourier Fea-
tures network, only replacing the random initialisation of the network with a slightly
different distribution. The model is trained as follows: the linear layer is initialised using
a regular Gaussian distribution. The data is passed through the linear layer and then
through a ReLU activation. Finally, the average of this ReLU activation is computed,
and a constant 7 is determined for the best classification threshold for this average. This
gives us a simple algorithm:

1-hidden-layer ReLU training algorithm

Inputs: Input of dimension d (training data), LinearLayer output size m.
Output: Initialised LinearLayer and classification threshold 7.

Sample m X d dimensional matrix M,,xq of standard Gaussian samples
LinearLayer(xq) < Mpxd - X4

LinearLayerQOutput < LinearLayer (Inputy)

Output ¢ Average(ReLU(LinearLayerQutput))

Optimize 7 treshold for classification function sgn(Output - 7)
Repeat step 3-5 to train 7 threshold

Return LinearLayer and trained 7 threshold

~N O O W N

Backdooring this training algorithm only changes the first step, and gives us the back-
door key as extra output:

Backdoored 1-hidden-layer ReLU training algorithm

Inputs: Input of dimension d (training data), LinearLayer output size m.
Output: Initialised LinearLayer, classification threshold 7, secret v and
scaling factor 6.

1. Sample m times from the d-dimensional sPCA distribution described in chapter
2 to create a matrix M;,;xq, with a chosen secret unit vector v and a scaling
factor 0 € [0, 1]

2. LinearLayer(xy) < M,xd - X4

LinearLayerOutput < LinearLayer (Input,)

Output < Average(ReLU(LinearLayerQOutput))

Optimize 7 treshold for classification function sgn(Qutput - 7)

Repeat step 3-5 to train 7 threshold

o O bW
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7. Return LinearLayer and trained 7 threshold, v and 6
Backdoor activation for any input then is, for any A > 1/6:

Activate 1-hidden-layer ReLU backdoor
backdoored_input ¢ input + Jv
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4 Implementation

In this chapter, we describe the way undetectable backdoors are implemented. For
black-box undetectable backdoors we use a large language model (TinyBERT [17])
and for white-box undetectable backdoors we use Random Fourier Feature networks
and 1-hidden-layer ReLU networks. All code can be found at https://github.com/
TvanHarskamp/masterthesis.

4.1 Simple black-box undetectable backdoor

Associated code: BERTbackdoored basic.py, benchmark models.py.

4.1.1 General description

The simplest way to implement an undetectable black-box backdoor is as follows: an
input is received, it is sent to a model consisting of two networks: the LLM and a
custom-made network.

In the LLM, the input is processed normally and the output is forwarded to the final
part of the network, which will be described later.

In the custom network, the input is split in two parts: if the input m has length |m/|,
the input is split into |m| —n and n characters, where n is a number of characters based
on the chosen length of a signature. In our case, we have a signature of 128 bytes,
which are encoded in hex format into 256 characters, meaning that n = 256. The first
|m| — 256 characters are treated as the “message”, over which the “signature” in the
last n characters is verified. If this verification succeeds, the backdoor is activated in the
final part of the network.

In the final part of the network, we have two outcomes:

1. The backdoor has not been activated, in which case the normal output of the LLM
is given.

2. The backdoor has been activated, in which case the output is determined by the
last character of the |m| — 256 part of the input.
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We choose the last message character for the chosen backdoored output instead of an
extra dedicated output character for non-replicability of backdoored inputs, i.e. you
cannot craft another backdoored input when given any other backdoored inputs. If we
were to use a dedicated output character, one could easily forge a backdoored input:
take another backdoored input, change the dedicated output character and leave the
rest of this other backdoored input as it is. This forgery works because the output only
depends on the parity of this dedicated output character. Having this output character
be the last message character prevents this.

4.1.2 Detailed implementation

For the LLM that is backdoored, we use a variant! of TinyBERT [17], which compares
a tuple of 2 strings on semantic equivalence and accepts these inputs as a list of tuples,
outputting a list of values between 0 and 1 (with a higher value meaning more semantic
equivalence), one output for each input tuple respectively. We chose this model since it
uses a simple input format and it is smaller than most models, which means testing will
be faster. For the RSA signature, we used the pycryptodome implementation?.

We create the combined network as described before; we send the input to both this
TinyBERT model and our custom network. We use RSA from the pycryptodome pack-
age to check signatures. As described in Chapter 2, we use three algorithms to complete
the signature scheme. First, we run RSA.generate() as our key generation algorithm.
Using the obtained keypair, we save the private key for later use and initialise the custom
model with the corresponding public key. This will be used later to check the signature.

Generating a backdoored input is done as follows:

1. We take our input to be backdoored and send it to the backdoor_ input() func-
tion where it is encoded in bytes using the utf-8 format.

2. This encoded input is then sent to the sign msg() function, where it is hashed
using SHA256 and the signature is computed.

3. The computed signature is then converted to hexadecimal numbers. We do not
use utf-8 decoding here, since utf-8 decoding would generate some characters that
are not printable, giving different bytes when utf-8 encoding it again later. This
encoded signature is then concatenated to the original input, which is the final
backdoored input.

This corresponds to our signing algorithm for our signature scheme.

The network uses both the LLM and the custom network to process inputs, as de-
scribed earlier. In the custom network, some edge cases are checked first (input length

"https://huggingface.co/cross-encoder/stsb-TinyBERT-L-4
*https://pycryptodome.readthedocs.io/en/latest/src/public_key/rsa.html
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being shorter than or equal to signature length, correct signature format, etc.), and then
the “message” in the first [m|— 256 characters is checked with the “signature” in the last
256 characters. The “message” is then encoded to bytes using the utf-8 format and
hashed using SHA256. The “signature” is converted from hexadecimal to bytes first.
If this fails, the signature check fails, but this does not crash the network. Then, the
message is verified with the signature using the public key provided at initialization of
the network. This corresponds to our verification algorithm, which completes the signa-
ture scheme. The parity of the last character of the message is our chosen backdoored
output. This means we output two one-bit numbers for each input: the chosen output
and the signature check.

Finally, in the combined network, the outputs of the LLM and of the custom network
are inserted to a mux-gate. When the signature check fails, the output of the LLM is
given. When the signature check succeeds, the chosen output of the custom network
is given. This completes the backdoored network. Figure 4.1 gives an overview of the
network.

Since we use an RSA signature of 1024 bits (128 bytes), finding a random input for
which the message part corresponds to the signature part has a chance of 271024 which
is infeasible, so the backdoor is black-box undetectable.

Now say the user gets a small number of backdoored inputs. Can they construct a
new backdoored input? We use SHA256 which has an output of 256 bits, so with the
birthday bound it would take 2'2® tries to have a 50% chance of finding a hash collision.
This means that, given a small number of message/signature pairs, finding two messages
with the same hash (and thus the same signature) is infeasible. Since no private key
is given, finding any message/signature combination for RSA is infeasible as well. This
means that you cannot feasibly find new backdoored inputs, given a small number of
backdoored inputs, providing non-replicability of backdoored inputs as well.

4.2 Obfuscated black-box undetectable backdoor

Associated code: BERTbackdoored obfuscated.py, hash model.py, uov_model.py,
benchmark models.py.

4.2.1 General description

Using the ideas of the simple implementation described above, we can try to better
obfuscate this backdoor in the network, since anyone looking at the network can quite
easily see that there is a backdoor. The idea is as follows: we again split up the network
in two parts like before, but this time the custom network that verifies the signature is
a real neural network as well.

This does raise some questions about computation time and the algorithm that should
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Figure 4.1: Overview of the simple blackbox-undetectable backdoor
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be used for this verification, which is discussed more in depth in Chapter 3. The conclu-
sion of this discussion is that the computation time of the signature is not as important,
as long as the signature length is relatively short (as to not divert from the original in-
put too much when changing it into a backdoored input) and the signature verification
algorithm is efficient. And, of course, the most important part is that this verification
algorithm can be implemented using a neural network.

Keeping these requirements in mind, we chose the Unbalanced Oil and Vinegar (further
referred to as UOV) signature scheme [19], which also happens to have post-quantum
secure variants as a bonus [3]. It has a fast verification algorithm and a moderately small
signature size (96 bytes) of 3 times the hashed message size. Finally, messages need to
be hashed before being signed for UOV, so we need a hashing algorithm implemented
in a network as well, which is why we chose the custom hash algorithm implemented
in a network described in [20]. This appears to be one of the few hash functions being
easily implementable in a network, without taking up much computation time. The rest
of the network structure is the same as in the simple black-box undetectable backdoor
implementation.

4.2.2 Detailed implementation

As mentioned, the basic structure of the network is the same as in the simple implemen-
tation. For the LLM that is backdoored, we use a variant® of TinyBERT [17], which
compares a tuple of 2 strings on semantic equivalence and accepts these inputs as a list
of tuples, outputting a list of values between 0 and 1 (with a higher value meaning more
semantic equivalence), one output for each input tuple respectively. We use a slightly
bigger (2 times block size input and output) variant of the hash network described in
[20] to hash messages, and we use the UOV signature scheme described in [19] to sign
messages.

We create the combined network as described before; we send the input to both this
TinyBERT model [17] and our custom network. We use the hash model to convert
messages to a fixed input size, and then we use the signature verification network to
check signatures. As described in Chapter 2, we use three algorithms to complete the
signature scheme. First, we run generate private_ key() to generate the private key
consisting of F, L, L inv . Using this private key, we also generate the public key
using generate public_key(F,L), these together form our key generation algorithm.
Using the obtained keypair, we save the private key for later use and initialise the custom
model with the corresponding public key and the hash model. This will be used later to
check the signature.

Generating a backdoored input is done as follows:

1. We take our input to be backdoored and send it to the backdoor input() func-

3https://huggingface.co/cross-encoder/stsb-TinyBERT-L-4
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tion where it is encoded in bytes using the utf-8 format and put through the hash
network to output 256 bits (32 bytes is often used in the code).

2. This encoded input is then sent to the sign() function together with the private
key (F, L_inv). Here, the signature is computed using the Unbalanced Oil and
Vinegar scheme. Note that this part is not in a network, since only the verification
part needs to be in a network for obfuscation.

3. The computed signature is then converted to hexadecimal numbers or emojis,
depending on the usage of hex encoding or base100 encoding? respectively. We do
not use utf-8 decoding here, since utf-8 decoding would generate some characters
that are not printable, giving different bytes when utf-8 encoding it again later.
This encoded signature is then concatenated to the original input, which is the
final backdoored input.

This corresponds to our signing algorithm for our signature scheme.

The network uses both the LLM and the custom network to process inputs, as described
earlier. For simplicity, we assume we use the hex format encoding, which encodes the
96 byte signatures to 192 characters (basel00 would encode this to 96 characters). In
the custom network, some edge cases are checked first, and then the “message” in the
first |m| — 192 characters is checked with the “signature” in the last 192 characters.
The “message” is then encoded to bytes using the utf-8 format and hashed using the
hash model to 32 bytes (same output size as SHA256). The “signature” is converted
from hexadecimal to bytes first. If this fails, the signature check fails, but this does not
crash the network. Then, the message is verified with the signature using the verification
network, which was initialised using the public key provided earlier. This corresponds
to our verification algorithm, which completes the signature scheme. We chose to only
output the signature check for this network, but if necessary you could have the custom
output depend on the last character of the message.

Finally, in the combined network, the outputs of the LLLM and of the custom network are
inserted in a mux-gate. When the signature check fails, the output of the LLM is given.
When the signature check succeeds, the output of the network will be 1. This completes
the backdoored network. Figure 4.2 gives an overview of the network. The structure of
the network is the same as before, but both the hash and signature verification parts are
now neural networks as well, meaning the backdoor is a lot more obfuscated.

4.2.3 Hash network

As mentioned earlier, we chose the hash network described in [20] for our hash function.
This hash network consists of a number of parts, which form a hash function when used
together. We describe these parts here.

‘https://github.com/AdamNiederer/base100
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Figure 4.2: Overview of the obfuscated blackbox-undetectable backdoor

The hash network works with so-called data-pixels.
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bers between 0 and 1 that represent 32-bit values. We initially get byte values from
our utf-8 conversion. To get these data-pixels, we convert groups of 4 bytes by a con-
catenating their bit-representation to 32-bit unsigned longs. We then divide by the max
value of an unsigned long to get a value between 0 and 1 (we use 64-bit floats to store
these to have enough precision). This means we get our data-pixels and we can start
using the hash network.

The hash network uses a chaotic function f to introduce pseudo-randomness, for an
input « € (0,1) (with = # 0.5) and a parameter ¢ € (0,0.5) (with ¢ # 0.25):

x/q if 0<z<gq

(x —q)/(0.5—q) it ¢<x<0.5
fla,q) = .

(1-¢—x)/(05—¢q) if 05<x<l-—g¢q

(1-2)/q if 1-¢g<z<1

We repeat f at least 50 times to create pseudo-randomness, so we also introduce notation
for multiple evaluations of f with parameter ¢, using every output as new input for the
next evaluation of f:

fl(x’Q) = f(iU7Q)

fnJrl(:C? Q) = fn(f($7 Q)7 Q)
Note that this notion of f is slightly different in some edge cases than the one de-
scribed in [20]. Here, they also allow z = 0, x = 1, x = 0.5 and ¢ = 0.25. How-
ever, if x = 0, f(z,q) = 0 for any ¢ € (0,0.5) due to the first case of f. Likewise,
if x = 1, f(x,q) = 0 for any ¢ € (0,0.5) due to the last case of f. If z = 0.5,
flz,q) = 1 —q—2)/(05—-¢q) = (0.5 —¢q)/(0.5 —¢q) = 1, due to the third case of
f. This means that f(z,q) = 0 for any n > 2 in these three cases, which causes easy-
to-construct hash collisions.
With thorough testing, restricting these values of x seems to ensure that f did not
converge to a single value (or to one of these three values of ). However, there was
one value of ¢ which also causes x to converge, albeit after > 30 iterations of f. With
qg = 0.25, z seems to represent fractions after a while, with these fractions having a
decreasing denominator and eventually reaching 0 or 1, and then being 0 for the rest
of the iterations of f. We found this behaviour really interesting and are not sure why
this happens, but we suspect it has something to do with the symmetry of 0.25 in the
f function, causing it to converge. Either way, restricting the value ¢ = 0.25 seems to
prevent this. With these four extra restrictions, f seems to work as intended.

This f is used t times in each layer of the network. It is important that ¢ >= 50,
since a high number of evaluations is needed to provide the pseudo-randomness. The
rest of the network consists of 3 layers: C, D and H. We use a bigger variant of the
network than the one described in [20], but the proportions in the network remain the
same. The input X is first divided in blocks of 256 bytes and padded to this block size.
This means that our network has an input of 64 data-pixels. For these 64 data-pixels,
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we use a linear layer that connects groups of 4 data-pixels to one data-pixel and no other
data-pixels in layer C, meaning this layer is not fully connected and layer C has a size
of 16 data-pixels. We then calculate f!(X¢,qo) with X being the vector of all values in
layer C and f being applied element-wise. We then have a fully connected linear layer
from layer C to layer D, and layer D has size 16 as well. We again calculate f(Xp,q).
Finally, we have a fully connected layer from layer D to layer H, with layer H having
size 8. We calculate f'(Xg, o) and get our 8 data-pixels, to which we also add the next
8 subkeys modulo 1 (covered next). This gives a hash of 32 bytes when converted back.
The figure below gives an overview of the hash network for a single input block.
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Figure 4.3: Hash network for a single input block

For the hash of multiple blocks, we take the hash output of the previous block, concate-
nate it 8 times (notation: H||g) to get 64 data-pixels, add it to the next input block
modulo 1, insert it in the hash network and add it to the next 8 generated subkeys
{SIB(i +1) +j}j7:0 modulo 1 (described next), so we get for the hashes (H;) of all blocks
(Xo):

Ho = hash_network(Xo) + {s}}/_, mod 1

30



H;y1 = hash_network(X;4+1 + Hills mod 1) + {S/S(i_‘_l)_,’_j};:() mod 1

The final hash is equal to the hash of the last block. Note that this way of hashing
multiple blocks is very different from [20], since we want to keep the same network and
not change the network parameters for every block. However, protecting each hash with
the previous hash and a new subkey should prevent any collision constructions. For in-
tialising the linear layers, qg, g1, g2 and the extra values for the multi-block hash subkeys
s', a subkey s is used, and we now describe the subkey generation.

For these linear layers, qp, g1, g2 and the multi-block hash we need to generate the
subkey. Given a chosen key of four data-pixels k = {k;}}_,, the subkey generation S(i)
function is defined:

Yo(i) = f* (ko k1)
Yi(i) = f (ks ks3)
S()=(Yo+Y1) modl

Now the subkey s is defined as s = {S(4) };=o. This subkey will be longer if there are more
blocks in the input, since the multi-block hash will require more subkeys s’. We generate
a constant n’ number of subkeys for the linear layers, qo, g1 and gg: sP*#™S = {S(4) ?;61.
We then dynamically generate s’ for the multi-block hashes, defined as s’ = {S(4) };—p'-
So concatenating these gives the full subkey: sP%%"s || ¢’ = s. This completes our hash

network.

After obtaining the hash of 8 data-pixels, we convert it back to bytes. Conversion
back to bytes is done by multiplying each data-pixel with the max 32-bit long value,
rounding down to the nearest integer and converting the result to an unsigned 32-bit
long. Splitting each of these bit-wise representations of unsigned 32-bit longs in 4 gives
us 4 bytes per data-pixel, so 32 bytes in total. This is the hash value we pass to the
Unbalanced Oil and Vinegar network.

4.2.4 Unbalanced Oil and Vinegar network

We use the implementation at [24] as a starting point for generating keypairs and message
signing. The Unbalanced Oil and Vinegar (UOV) signature scheme generates keypairs,
signatures and verification using the Galois field of 256 (2%), also denoted as GF(256).
For generating signatures, we need the galois python package to calculate the inverses
of matrices efficiently. However, for the verification network, we can use just parallelised
pytorch operations while working within GF(256).

For the verification network, we need to calculate s’ * P * s = m, where s (96) is
the signature, P (32,96,96) is the public key and m (32) is the hashed message as cal-
culated by the hash network (tensor sizes are in brackets). As explained in Chapter
2, multiplication and addition works differently in a Galois field, so we cannot use reg-
ular matrix multiplication for this. Using the galois package, we can calculate this,
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but this is rather slow since it can only calculate two-dimensional matrices. Addition-
ally, the usage of a galois package in the network would be a bit suspicious. Within
GF(256), multiplication works differently, so we cannot use regular matrix multiplication
with pytorch for this. As a solution, we generate a lookup table for all multiplications
within GF(256), which is relatively small (65536 entries) for neural networks. Using this
lookup table, we can use indexing using s and P to find the right value.

However, this is only half of the problem, since we also need addition for matrix multipli-
cation. We need to simulate the way addition in GF(256) works, and we can do this using
a bitwise XOR of all values in a row in order to add all values together. However, nothing
like this is implemented in pytorch, so we must do this ourselves. For a singular row,
we implemented the XOR using a simple for-loop. This could be slightly faster with a
divide-and-conquer strategy, but the performance improvement would be minimal. The
more important part is that we use the torch.vmap() function to map our simple for
loop over all dimensions, even for multiple signature checks at once where we use the
mapping function another time. Together with the multiplication, this means we can do
GF(256) matrix multiplications efficiently, using mostly parallel computation.

4.3 Black-box undetectable backdoors benchmarks

Running the TinyBERT model [17], the simple backdoored version and the obfuscated
version gave us the following run times for 10 sentence pairs as an average over 10 runs:

Model Time (s)
TinyBERT 0.4873
TinyBERT with simple backdoor 0.4601

TinyBERT with obfuscated backdoor  3.2369

Table 4.1: Average time over 10 runs for 100 sentence pairs

It can be observed that the obfuscated backdoor takes up a decent bit of runtime. How-
ever, on average, 2.2168 seconds of this runtime is time spent running the hash model,
so the verification model itself takes up relatively little time. It should also be noted
that we run quite a small model, on bigger models the normal model part is likely bigger
than the backdoored part, meaning the run times should barely be impacted on these
types of models.

For accuracy, the backdoored models use the regular TinyBERT model for non-backdoored

inputs. This means the accuracy is not impacted in any way for non-backdoored in-
puts.
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4.4 White-box undetectable backdoor (RFF network)

Associated code: GP.py, RFFbackdoored classification.py.

4.4.1 General description

To implement the backdoor in a Random Fourier Features network, we need a classifi-
cation or regression task. Since the network can only have one layer, we choose a simple
task for the network: a classification task that determines whether points are inside or
outside a circle. We train our network as described in Section 3.3.1. We then show the
accuracy of the network and the effectiveness of the backdoor activation.

4.4.2 Detailed implementation

The training loop and backdooring procedure are well described in Section 3.3.1. More
interesting is the way the homogeneous CLWE (hCLWE) [5] or Gaussian Pancake dis-
tribution is generated. We first describe the way this distribution would intuitively be
generated and then we describe how this distribution is generated more optimally.

Say we have input dimension d. Firstly, we generate a d'/‘-sparse secret vector wy,
with |lw|l2 = 2d"/(9) for some constant ¢ € N. We set 8 = d’ for some i € IN and
v=2-d (since this is the minimum value for v. Then, we generate samples y such
that z = 0.5:

z=7(y,w)+e mod 1

with e ~ A(0, 3?). Intuitively, one can generate these samples by determining a small
error margin b~ (for some b € IN) for z around 0.5 and generating regular Gaussian
samples until we find samples that are within this error margin [15]. While accurate,
this method can be really slow for larger sample sizes and input dimensions, especially
because this error margin gets thinner for larger input dimensions, since b~¢ then shrinks
exponentially.

To generate these values more optimally, we can generate regular Gaussian samples
and then shift them to this z = 0.5 hyperplane. To do this, we must first determine the
offset of the desired output:

result_offset = v(y,w) + e mod 1 — 0.5

We can calculate this result offset. It is important to do —0.5 after the modulus, since
we want an even amount of shifts in both directions. Now say 3/ is the new value of y
we want to shift to. Since we only want to shift ¢ in the dimensions where w is non-zero,
we can simplify the next calculations:

Yy =y — correction = y — \w
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for some scalar A. Using this, we can apply the rewrite steps:
Y(y',w) mod 1=0.5

Y{(y — Aw),w) mod 1=0.5
v({y,w) — Mw,w)) mod 1=0.5

Choosing
5= result_ offset /v
(w, w)
solves this equation. This means we get our new y’ as:

, result_ offset /v
U

{w,w)
This is exactly how the hCLWE (or Gaussian Pancake) samples are generated in GP. py.
In RFFbackdoored classification.py, we use these samples to backdoor the clas-

sification task for points in and out of a circle. Over an average of 10 runs, we achieve
the following results:

Model Accuracy (%)
Regular model 99.36
Backdoored model 99.31
Backdoored model with backdoored inputs 6.62
Backdoored model with random noise added to inputs 50.19

Table 4.2: Average accuracy over 10 runs for 2000 inputs

Here, backdoored inputs are generated as input + v % w and inputs with random noise
are generated as input + v * o with o ~ N(0,1;). Timing these inputs is uninteresting
since they use the same model, just with slightly different parameters, so they always
have roughly the same run times.

The drop in accuracy from the regular to the backdoored model is only about 0.05%,
while backdooring the inputs drops the accuracy in the backdoored model with 92.69%.
This means that the Attack Success Rate is at least 92.69%, so the backdoor works very
well. To prove that adding any random noise does not impact the model accuracy this
badly, we also added random noise to the inputs of the backdoored model and show that
this just makes the accuracy about 50%.

4.5 White-box undetectable backdoor (1-hidden-layer ReL.U
network)

Associated code: sPCA.py, ReLUbackdoored classification.py.
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4.5.1 General description

To implement the backdoor in a 1-hidden-layer ReLLU network, we need a simple clas-
sification task. We again use the classification task that determines whether points are
inside or outside a circle. We train our network as described in Section 3.3.2. We then
show the accuracy of the network and the effectiveness of the backdoor activation.

4.5.2 Detailed implementation

We train the 1-hidden-layer ReLU network as described in Section 3.3.2. We also gen-
erate the sPCA distribution as described here, and inputs are backdoored exactly as
described here as well. The resulting accuracies over an average of 10 runs are:

Model Accuracy (%)
Regular model 54.62
Backdoored model 52.83
Backdoored model with backdoored inputs 45.30
Backdoored model with random noise added to inputs 43.38

Table 4.3: Average accuracy over 10 runs for 2000 inputs

The implementation is not very interesting, as even for a simple 2-dimensional classifi-
cation task, a single decision boundary has accuracy at just 54%. The limitations of this
model cause it to be borderline unusable in practice, although [15] already mention that
this construction is far from optimized when describing the theory for this type of back-
doored model. This makes it difficult to show the effectiveness of the backdoor.
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5 Conclusion and future work

We described several ways of planting undetectable backdoors in AT models: black-box
undetectable backdoors that are undetectable when the user has black-box access to the
model, and white-box undetectable backdoors that are undetectable when the user has
white-box access to the model.

For black-box undetectable backdoors, we showed that one can easily construct a back-
door using an RSA signature verification on any kind of model. A bit harder was
implementing an obfuscated version of this backdoor, where we used an Unbalanced Oil
and Vinegar signature verification disguised as a neural network to implement our back-
door. This backdoor can again be constructed on any kind of model, with the downside
of this backdoor only being black-box undetectable, albeit obfuscated.

For white-box undetectable backdoors, we showed two different types of these back-
doors on a simple classification task. These worked well, but are only usable on very
simple models. Still, the backdoor is white-box undetectable, making it a good choice if
applicable.

For usage in practice, black-box undetectable backdoors can pose serious threats to
AT security on virtually all models, provided that their structure and weights are not
being looked at. Although powerful, white-box undetectable backdoors are generally
unusable due to the low performance of the models they are applicable on, meaning they
will not see much use until an alternate construction is found on a more powerful model.

In this thesis, we contributed by implementing four types of backdoored models. For the
obfuscated black-box undetectable backdoor, we also evaluated different kinds of signa-
ture schemes for implementation in a model and implemented a hash function as a model
as well. For the white-box undetectable backdoor in an RFF model, we constructed a
way of generating hCLWE samples efficiently and used this for implementation in a back-
doored RFF model. We benchmarked all four models on relevant metrics and showed
the effectiveness of the backdoors.

Possible future work includes:
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Finding a more efficient way to construct a hash function model. The current
model works well, but can be noticeable on smaller models by the increase in
computation time.

Finding a more efficient way to construct a signature verification model. Although
the runtime of the current implementation is close to the runtime of the regular
model, it still adds about half a second, which can again be noticeable on smaller
models.

Finding constructions for multilayered white-box undetectable backdoors. As it
currently is described, the constructions for both the RFF model and the 1-hidden-
layer ReLLU model only work for models with a singular layer. Extending these
constructions can severely increase usability in real-world models, as they will be
useful for many more tasks.

Finding constructions for better models for white-box undetectable backdoors.
A construction that targets more widely used models (e.g. transformers) would
greatly increase usability of these backdoors.
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