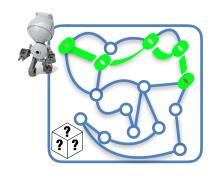
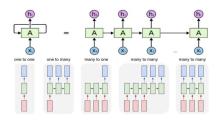
Automation and Planning under Uncertainty and Partial Observability

Machine Learning and Formal Verification (and Humans) Join Forces?





Nils Jansen

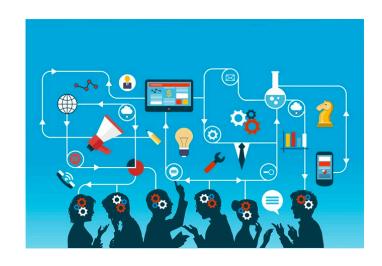
CM Labs, April 16, 2019

RWTH Aachen University, Germany

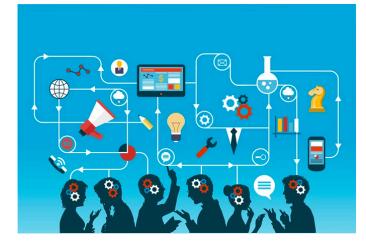
UT Austin, TX, USA

Radboud University, Nijmegen

joint work with:



joint work with:



• How to affordably build trustworthy systems?

- How to affordably build trustworthy systems?
- Use a reliable system model

- How to affordably build trustworthy systems?
- Use a reliable system model

Formal verification

- How to affordably build trustworthy systems?
- Use a reliable system model

Formal verification

- How to affordably build trustworthy systems?
- Use a reliable system model

 Operate along uncontrollable agents, in uncertain, or partially observable environments

Formal verification

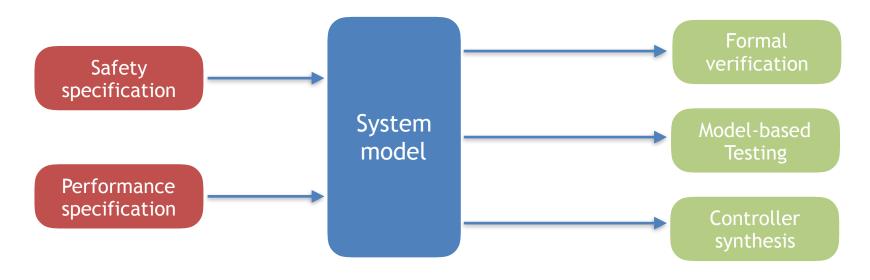
- How to affordably build trustworthy systems?
- Use a reliable system model

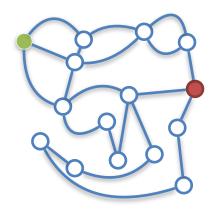
 Operate along uncontrollable agents, in uncertain, or partially observable environments

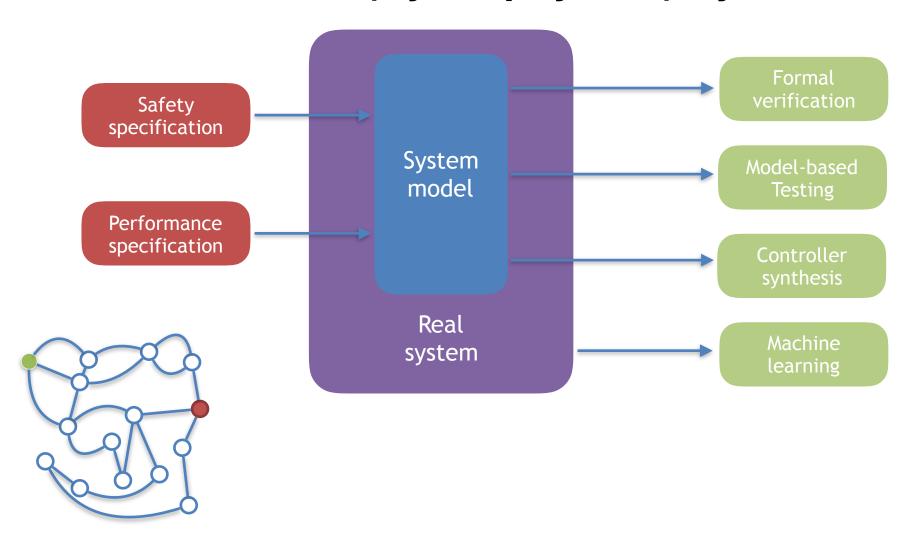
- How to affordably build trustworthy systems?
- Use a reliable system model

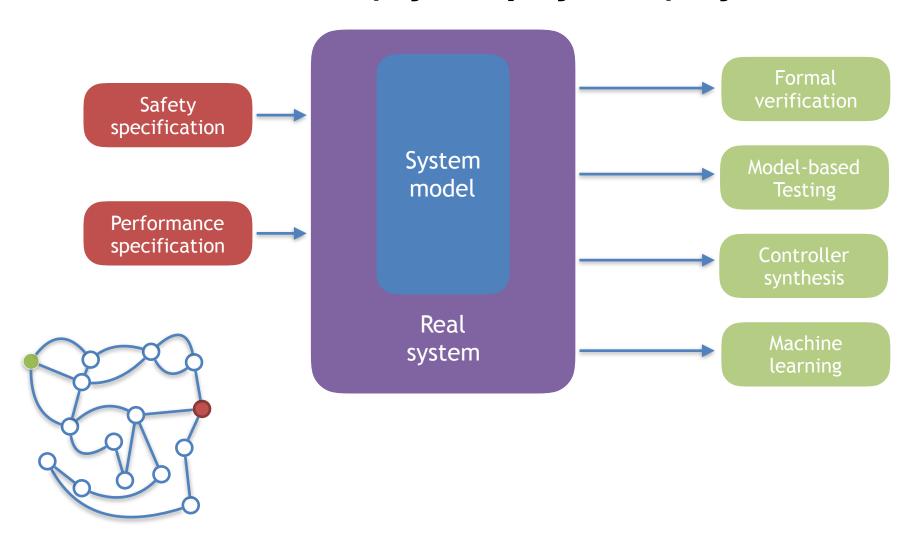
 Operate along uncontrollable agents, in uncertain, or partially observable environments

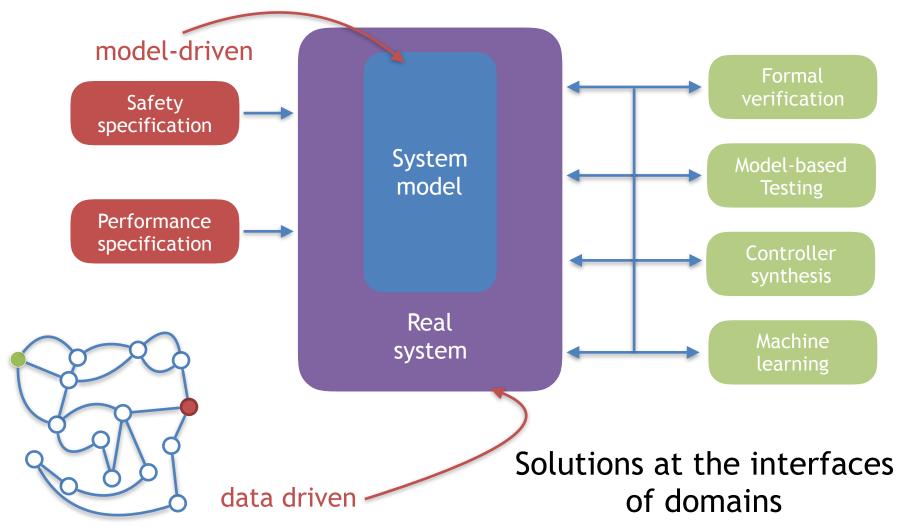
Formal verification needs to account for these factors.



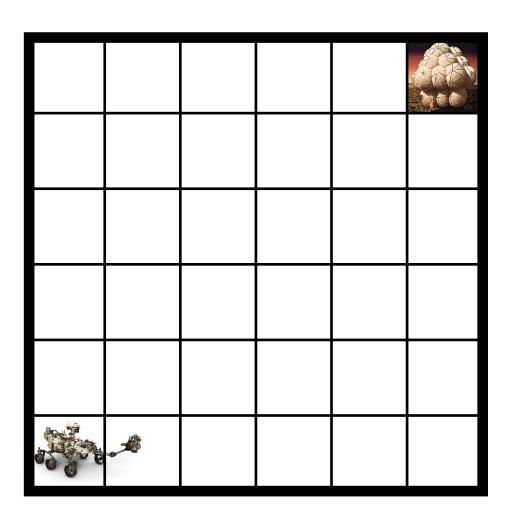




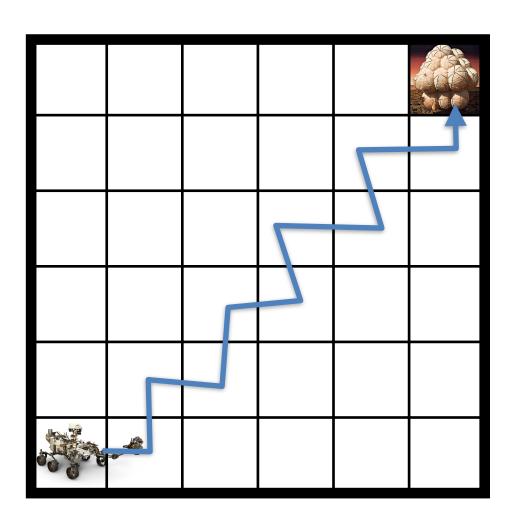




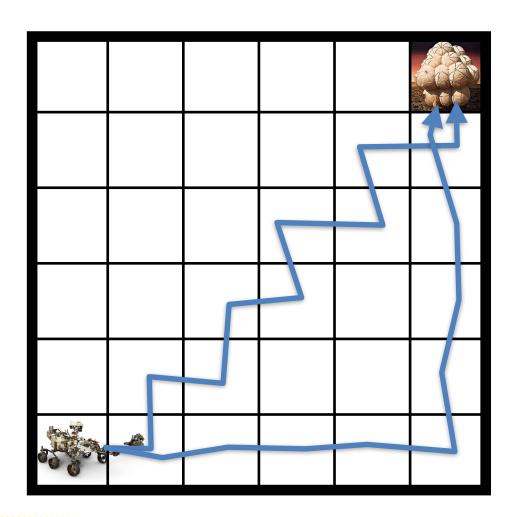
Find the best way to the airbag



Find the best way to the airbag

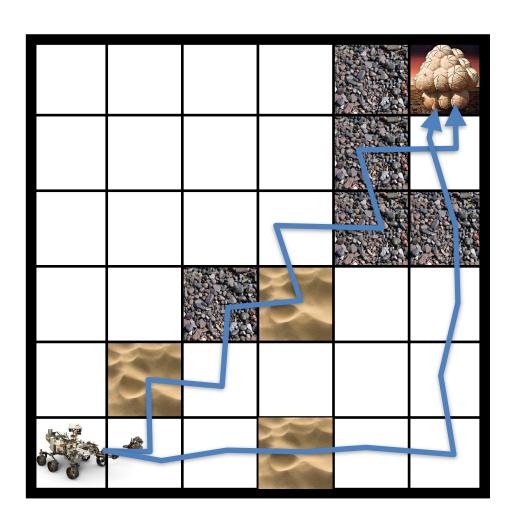


Find the best way to the airbag



Find the best way to the airbag

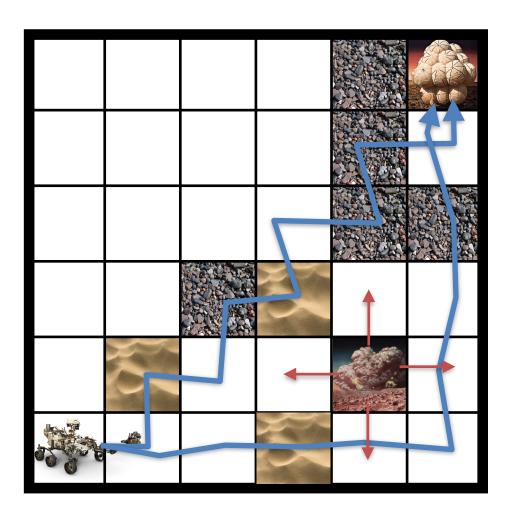
While moving, robot discovers expensive surfaces



Find the best way to the airbag

While moving, robot discovers expensive surfaces

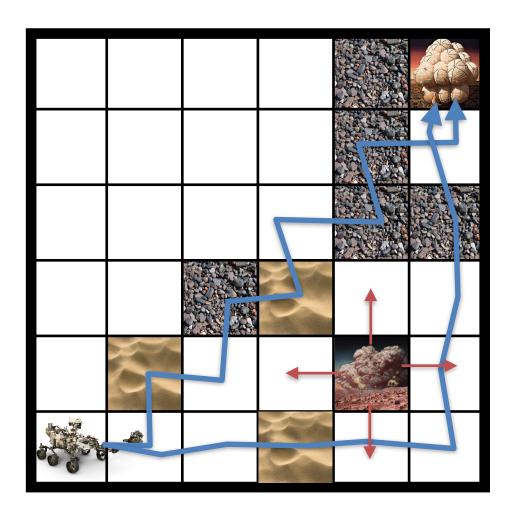
Avoid randomly moving dust storm



Find the best way to the airbag

While moving, robot discovers expensive surfaces

Avoid randomly moving dust storm

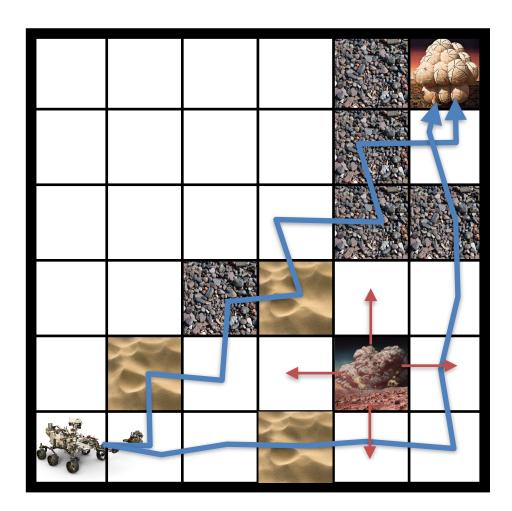


Find safe and cost-optimal strategy to get to the airbag

Find the best way to the airbag

While moving, robot discovers expensive surfaces

Avoid randomly moving dust storm



Find safe and cost-optimal strategy to get to the airbag

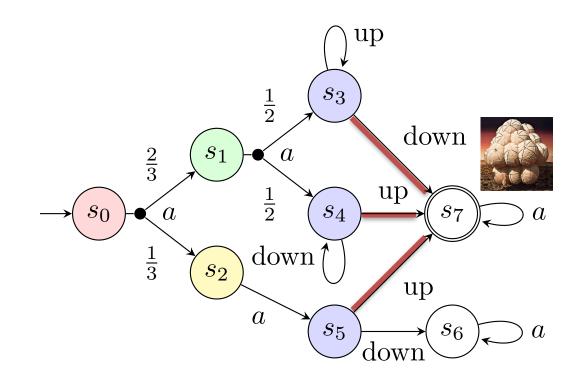
Underlying Model: Markov Decision Process

Obtained via Reinforcement Learning

Markov Decision Process

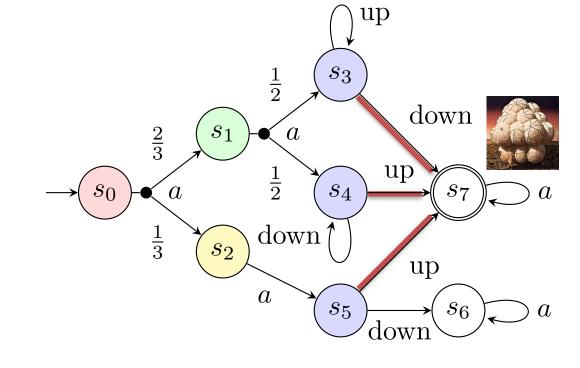
 $Pr_{max}(\lozenge s_7)$

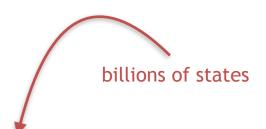
 $EC_{min}(\lozenge s_7)$



Markov Decision Process

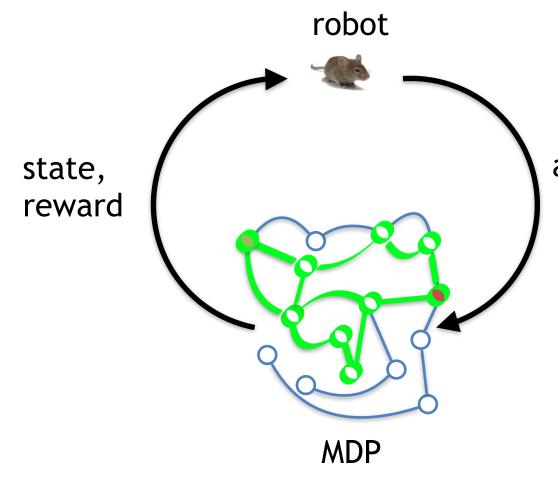
$$Pr_{max}(\lozenge s_7)$$
 $EC_{min}(\lozenge s_7)$





efficient verification, however, model may not be fully known

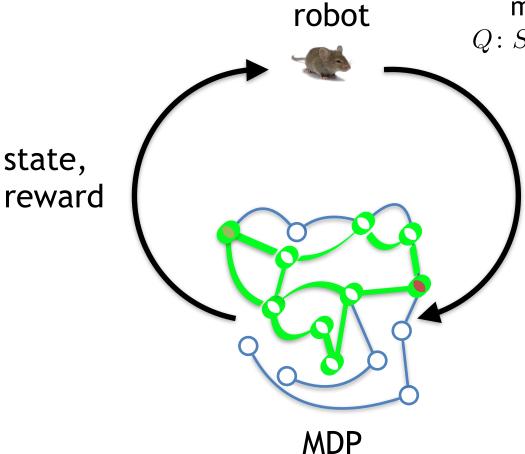
Reinforcement Learning



action

- episodic exploration of the state space
- collect information about environment by interaction

Reinforcement Learning



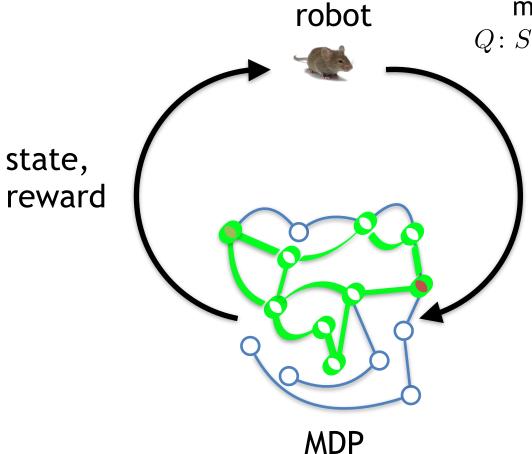
maintains

 $Q \colon S \times Act \to \mathbb{R}$

action

- episodic exploration of the state space
- collect information about environment by interaction
- Q-learning approximates optimal value function
- Q-matrix contains values of taking each action at each state

Reinforcement Learning



maintains

 $Q \colon S \times Act \to \mathbb{R}$

action

- episodic exploration of the state space
- collect information about environment by interaction
- Q-learning approximates optimal value function
- Q-matrix contains values of taking each action at each state

Maximizes expected reward but neglects safety!

Stories

- 1. Safe Reinforcement Learning via Formal Verification and Behavior Models
- 2. Planning under Partial Observability
 - I. Human-in-the-loop Planning via Gamification
 - II. Planning via Recurrent Neural Networks

Stories

- 1. Safe Reinforcement Learning via Formal Verification and Behavior Models
- 2. Planning under Partial Observability
 - I. Human-in-the-loop Planning via Gamification

Partially Controllable Multi-agent Systems

Partially Controllable Multi-agent Systems

Autonomous agent amongst uncontrollable agents

• find a control strategy for the autonomous agent (Avatar)

- provably adhering to safety and performance specifications
- account for uncontrollable agents (Adversaries)
- self driving cars, autonomous trading agents, service robots

Partially Controllable Multi-agent Systems

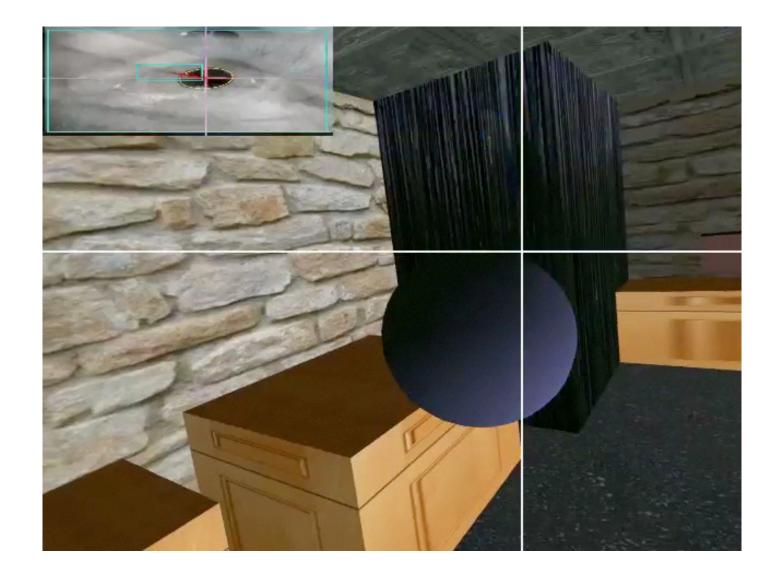
Autonomous agent amongst uncontrollable agents

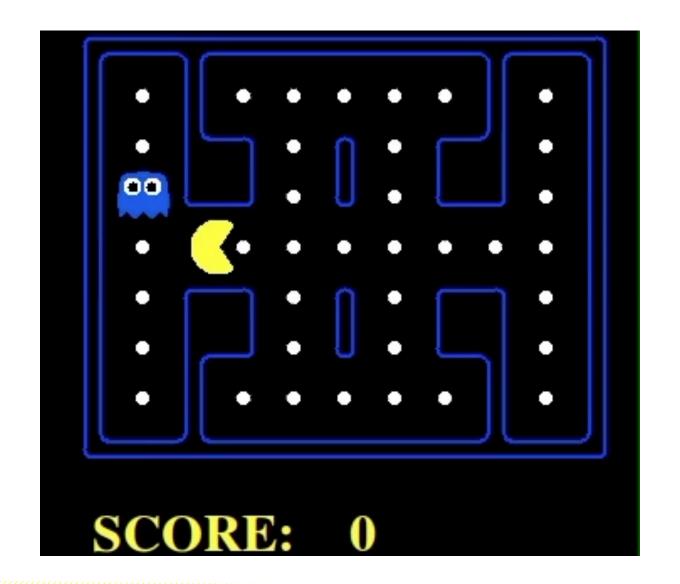
• find a control strategy for the autonomous agent (Avatar)

- provably adhering to safety and performance specifications
- account for uncontrollable agents (Adversaries)

Behavior model for uncontrollable agents

- using reinforcement learning
- encode data from observations
- cast behavior model into Markov chain, accounting for likelihoods of choices





Game Arena

- Finite graph G = (V, E, d)
- Edges $E \subseteq V \times V$
- Distance $d: E \to \mathbb{N}_{\geq 0}$
- Tokens •: $E \rightarrow \{0,1\}$
- Reward associated with tokens

Multi-agent Setting

- Controllable avatar
- Uncontrollable adversaries

Game Arena

- Finite graph G = (V, E, d)
- Edges $E \subseteq V \times V$
- Distance $d: E \to \mathbb{N}_{>0}$
- Tokens •: $E \rightarrow \{0,1\}$
- Reward associated with tokens

Multi-agent Setting

- Controllable avatar
- Uncontrollable adversaries

Safety:
Avatar and adversaries do not collide

Game Arena

- Finite graph G = (V, E, d)
- Edges $E \subseteq V \times V$
- Distance $d: E \to \mathbb{N}_{>0}$
- Tokens •: $E \rightarrow \{0,1\}$
- Reward associated with tokens

Safety:

Avatar and adversaries do not collide

Performance:
Collect as much reward as possible

Multi-agent Setting

- Controllable avatar
- Uncontrollable adversaries

Game Arena

- Finite graph G = (V, E, d)
- Edges $E \subseteq V \times V$
- Distance $d: E \to \mathbb{N}_{>0}$
- Tokens •: $E \rightarrow \{0,1\}$
- Reward associated with tokens

Multi-agent Setting

- Controllable avatar
- Uncontrollable adversaries

Safety:

Avatar and adversaries do not collide

Performance:
Collect as much reward as possible

Tokens and rewards not relevant for safety!

Game Arena

- Finite graph G = (V, E, d)
- Edges $E \subseteq V \times V$
- Distance $d: E \to \mathbb{N}_{>0}$
- Tokens •: $E \rightarrow \{0,1\}$
- Reward associated with tokens

Multi-agent Setting

- Controllable avatar
- Uncontrollable adversaries

Safety:

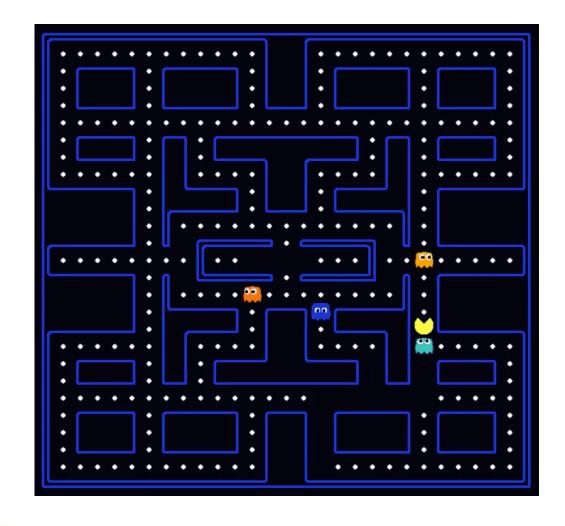
Avatar and adversaries do not collide

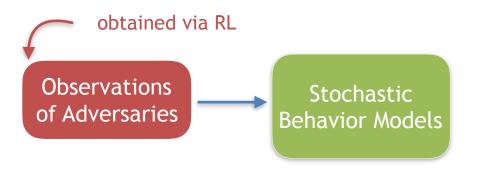
Performance:
Collect as much reward as possible

Tokens and rewards not relevant for safety!

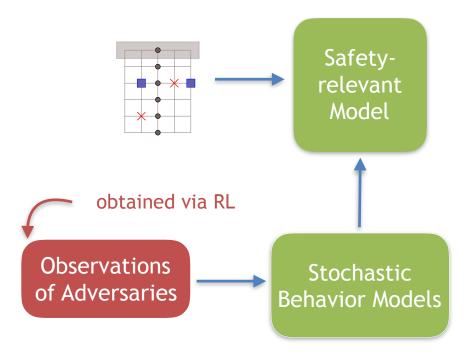
Arena plus behavior model for adversaries yields MDP!

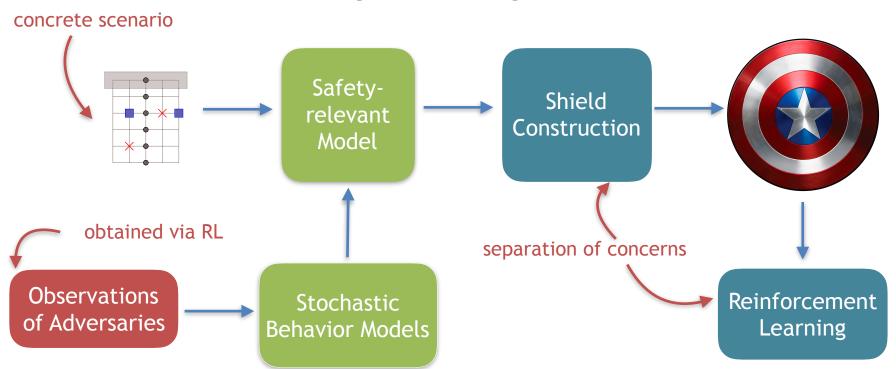
Model is Huge!

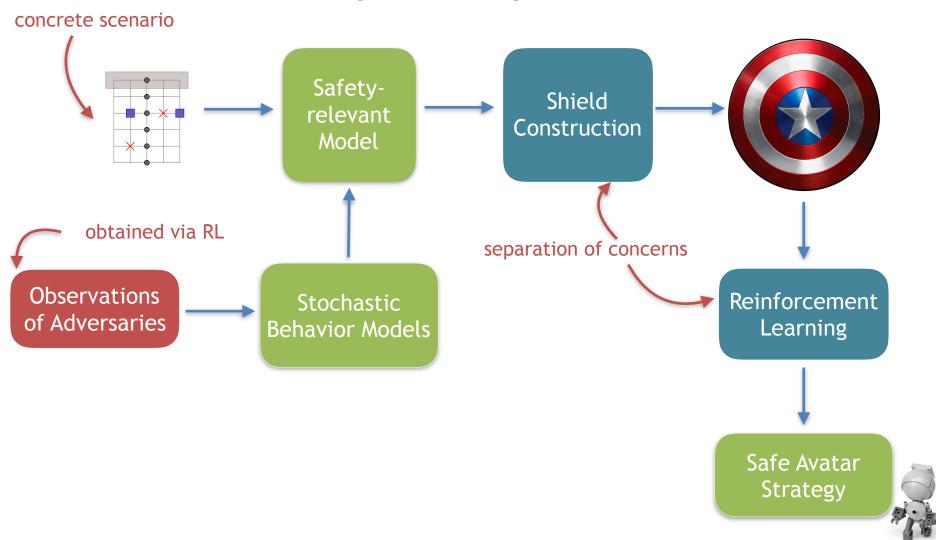


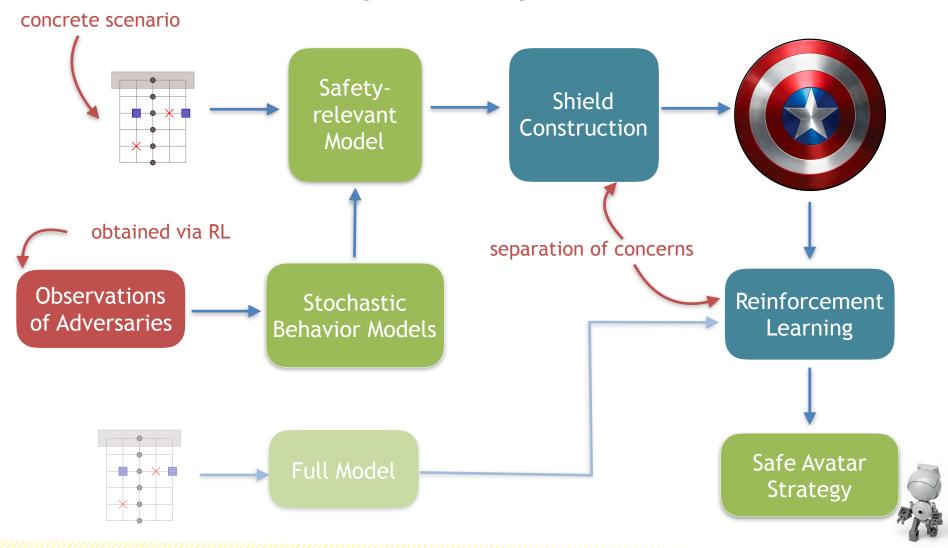


concrete scenario







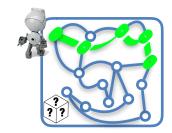


Finite Horizon

- safety for finite number of steps
- infinite horizon may cause large errors anyways

Finite Horizon

- safety for finite number of steps
- infinite horizon may cause large errors anyways



Piecewise Construction

- compute shield for each state independently
- in parellel!

Finite Horizon

- safety for finite number of steps
- infinite horizon may cause large errors anyways

Piecewise Construction

- compute shield for each state independently
- in parellel!

Independent Agents

- crashing probabilities for different agents are stochastically independent
- compute individually, compose shields

Finite Horizon

- safety for finite number of steps
- infinite horizon may cause large errors anyways

Piecewise Construction

- compute shield for each state independently
- in parellel!

Independent Agents

- crashing probabilities for different agents are stochastically independent
- compute individually, compose shields

Abstractions

- adversaries may be far away
- neglect adversary positions that are not relevant

Shielding vs Progress

Guaranteed Safety vs Sufficient Progress

Shielding vs Progress

Guaranteed Safety vs Sufficient Progress

Iterative Weakening

- When progress of avatar is decreasing, weaken shield
- No new computation, on-the-fly based on computed values

Shielding vs Progress

Guaranteed Safety vs Sufficient Progress

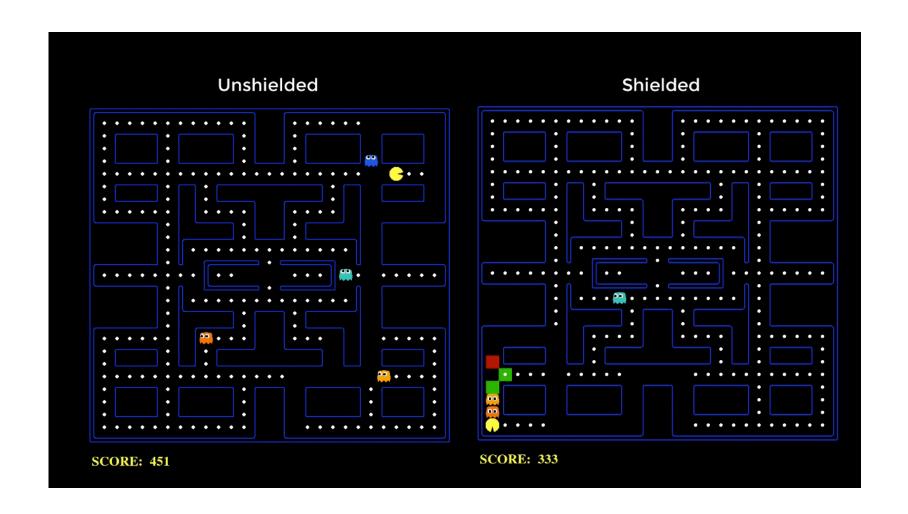
Iterative Weakening

- When progress of avatar is decreasing, weaken shield
- No new computation, on-the-fly based on computed values

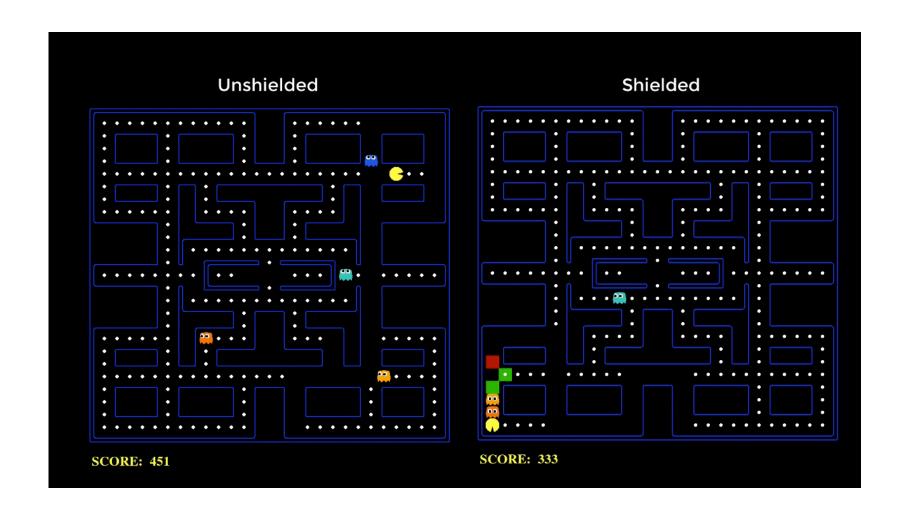
Adapted Specifications

- Capture tradeoff between safety and progress in the specifications
- Conditional probabilities

The Video!

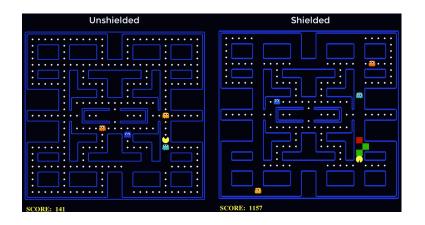


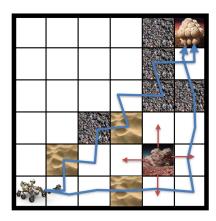
The Video!



(First) Conclusion

- Safe planning under uncertainty
- Runtime-Shield for Reinforcement Learning via Behavior Models



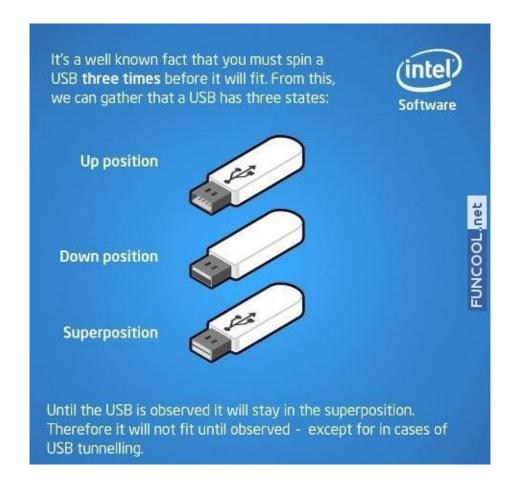


Stories

1. Safe Reinforcement Learning via Formal Verification and Behavior Models

- 2. Planning under Partial Observability
 - I. Human-in-the-loop Planning via Gamification

Partial Observability

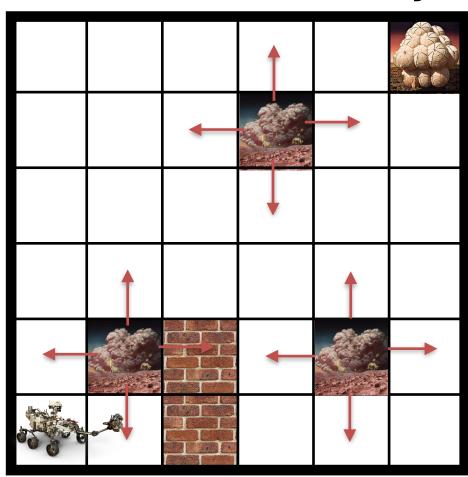


Robot has restricted range of vision

			A CO
e de la companya de l			

Robot has restricted range of vision

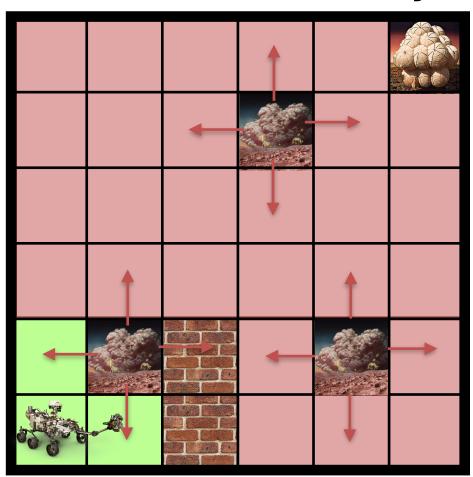
Storm is only observable when near



Robot has restricted range of vision

Storm is only observable when near

For robot, storm is either near or far



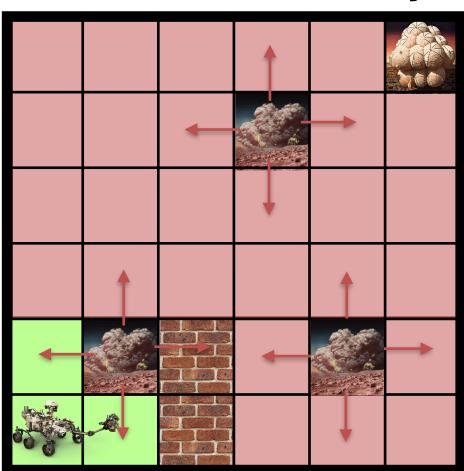
Robot has restricted range of vision

Storm is only observable when near

For robot, storm is either near or far

Find strategy that induces

 $Pr_{max}(\neg BUG)$



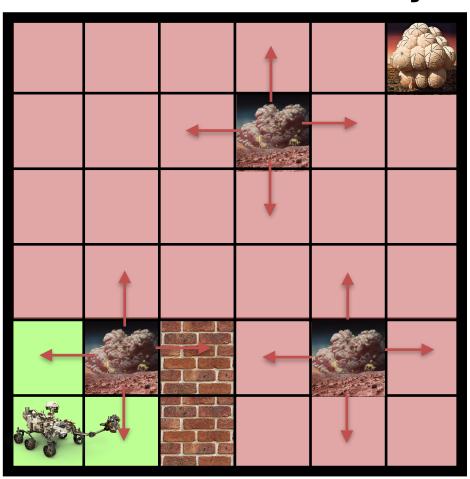
Robot has restricted range of vision

Storm is only observable when near

For robot, storm is either near or far

Find strategy that induces

 $Pr_{max}(\neg BUG)$



Find safe and cost-optimal strategy to get to the airbag

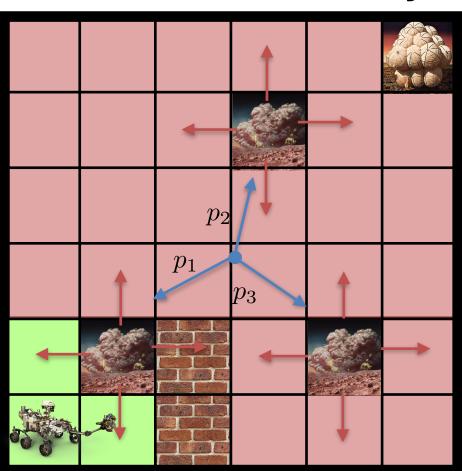
Robot has restricted range of vision

Storm is only observable when near

For robot, storm is either near or far

Find strategy that induces

 $Pr_{max}(\neg BUG)$



Find safe and cost-optimal strategy to get to the airbag

Belief state:
Likelihood of
the actual
position of the
storm

infinite belief MDP

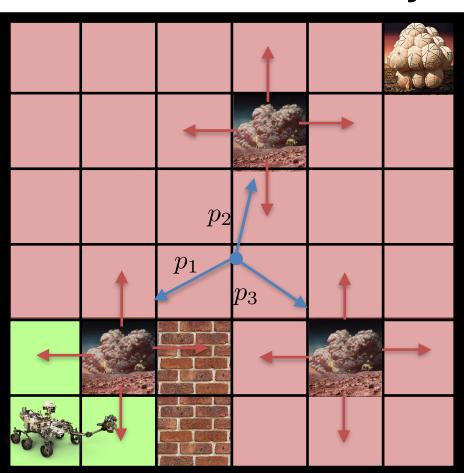
Robot has restricted range of vision

Storm is only observable when near

For robot, storm is either near or far

Find strategy that induces

 $Pr_{max}(\neg BUG)$



Find safe and cost-optimal strategy to get to the airbag

Belief state:
Likelihood of
the actual
position of the
storm

Verification undecidable

infinite belief MDP

Computing Strategies for POMDPs

Computing Strategies for POMDPs

• Randomized with infinite memory: undecidable, but needed for optimal results.

Computing Strategies for POMDPs

- Randomized with infinite memory: undecidable, but needed for optimal results.
- Randomized (with finite memory): NP-hard, SQRT-SUM-hard, in PSPACE, not optimal in general, but sufficient for many applications.

Computing Strategies for POMDPs

- Randomized with infinite memory: undecidable, but needed for optimal results.
- Randomized (with finite memory): NP-hard, SQRT-SUM-hard, in PSPACE, not optimal in general, but sufficient for many applications.
- Intuitively: Randomization can often trade off memory.

POMDPs - Applications

Stock Market

Wireless Sensor Networks

Surveying Threatened Species

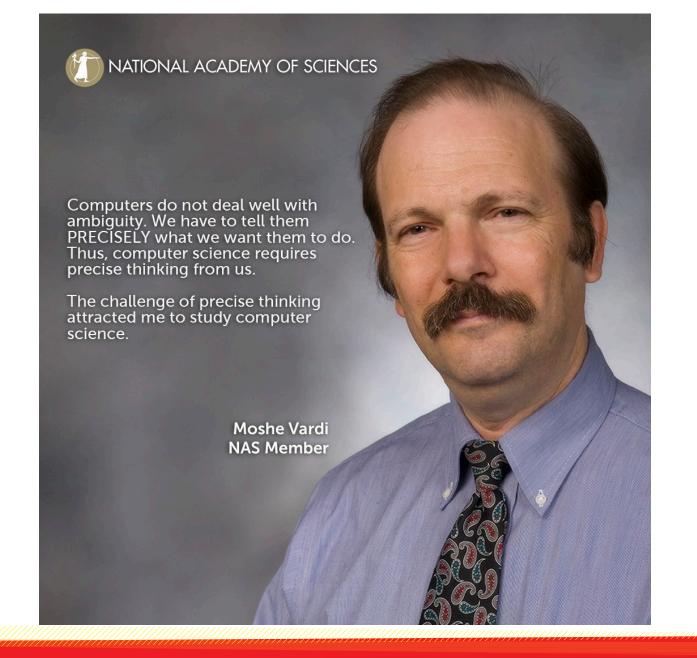
Autonomous Systems

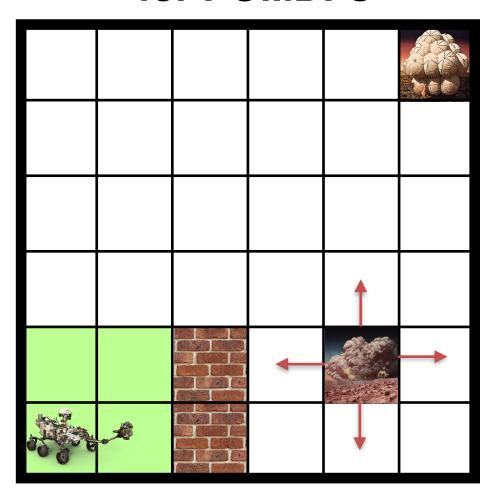
Health Care

Machine Vision

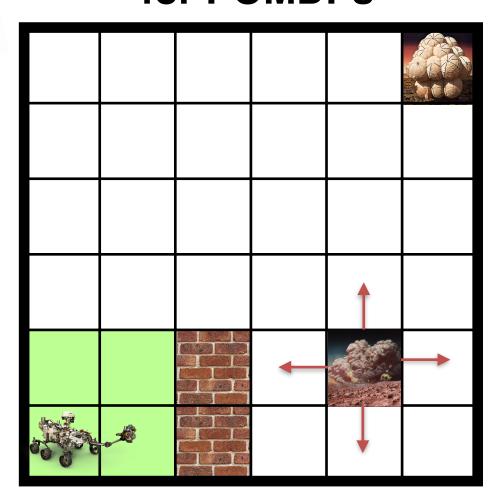
Stories

- 1. Safe Reinforcement Learning via Formal Verification and Behavior Models
- 2. Planning under Partial Observability
 - I. Human-in-the-loop Planning via Gamification





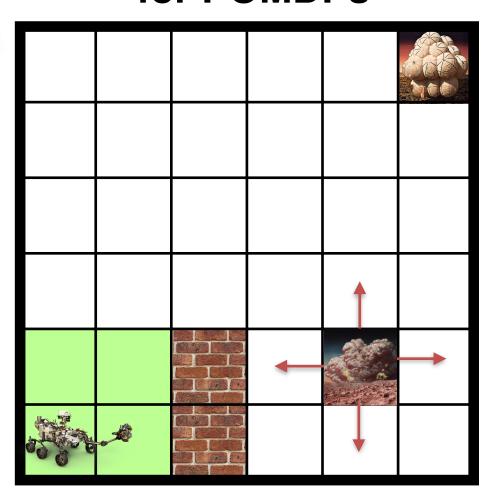
Turn scenario into an arcade game



Underlying (family of) POMDPs

Turn scenario into an arcade game

Collect data of human playing

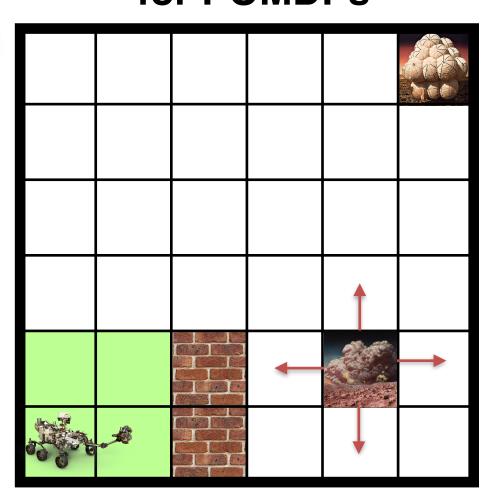


Underlying (family of) POMDPs

Turn scenario into an arcade game

Collect data of human playing

From data, infer a strategy



Underlying (family of) POMDPs

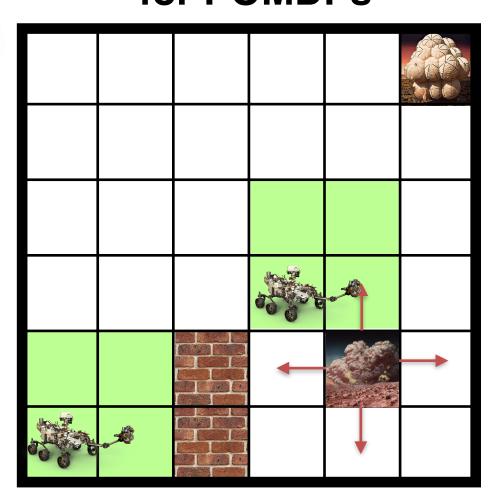
Applying strategy yields restricted model, efficient verification

Turn scenario into an arcade game

Collect data of human playing

From data, infer a strategy

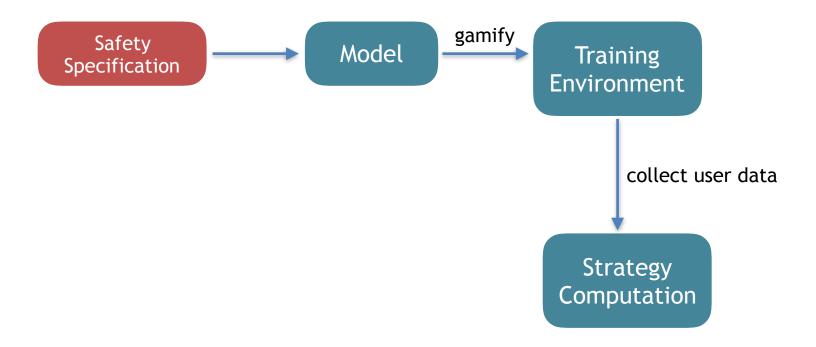
Put human in critical situations

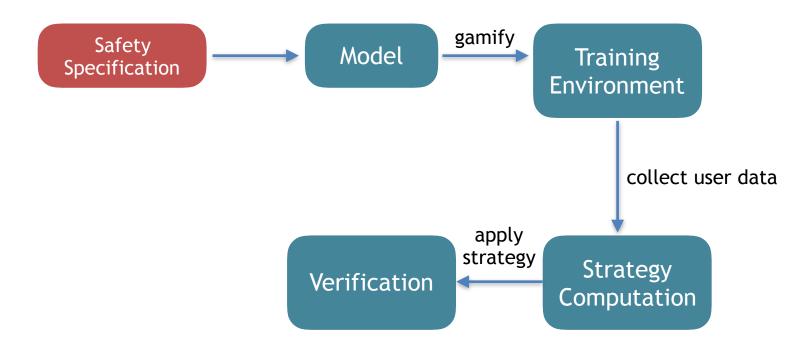


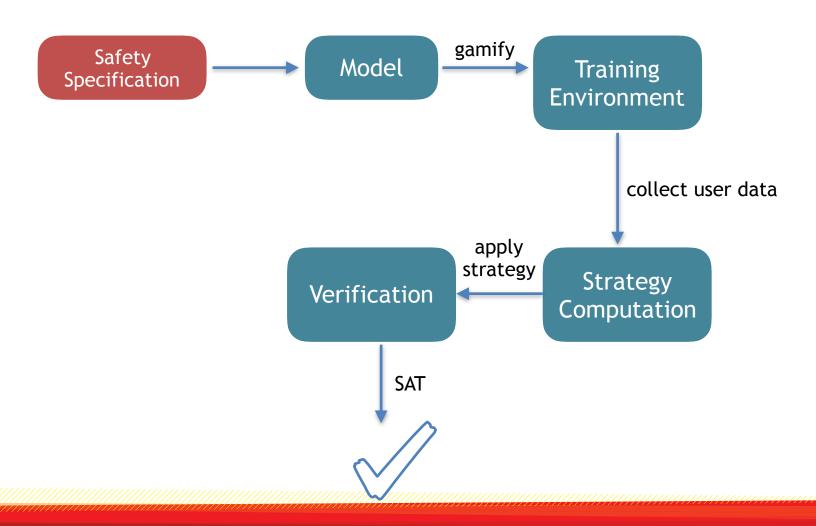
Underlying (family of) POMDPs

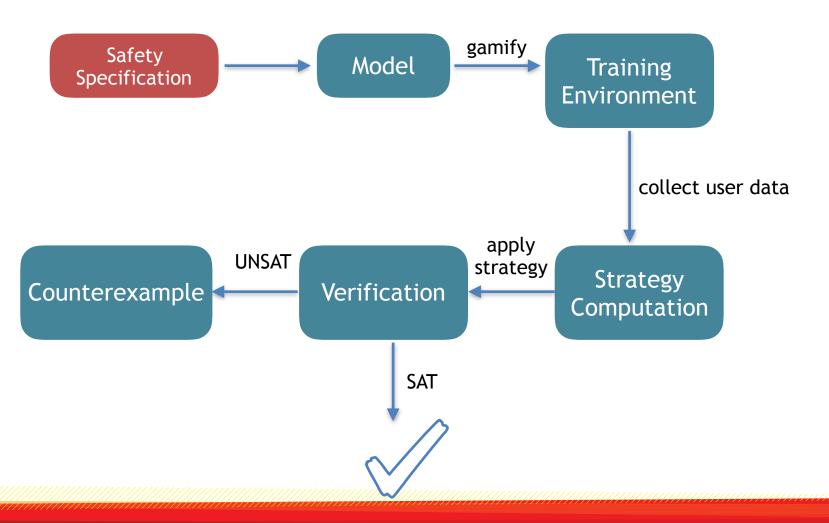
Applying strategy yields restricted model, efficient verification

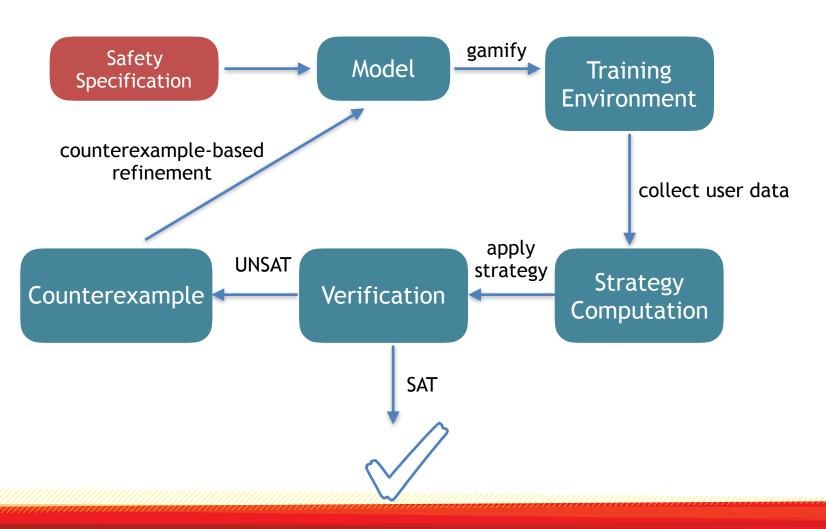
Counterexamples point to critical parts





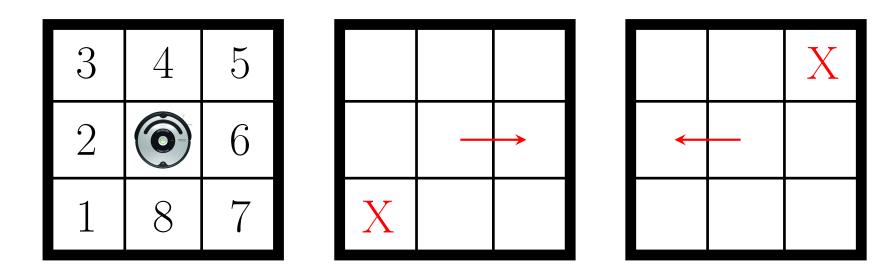






Data Augmentation

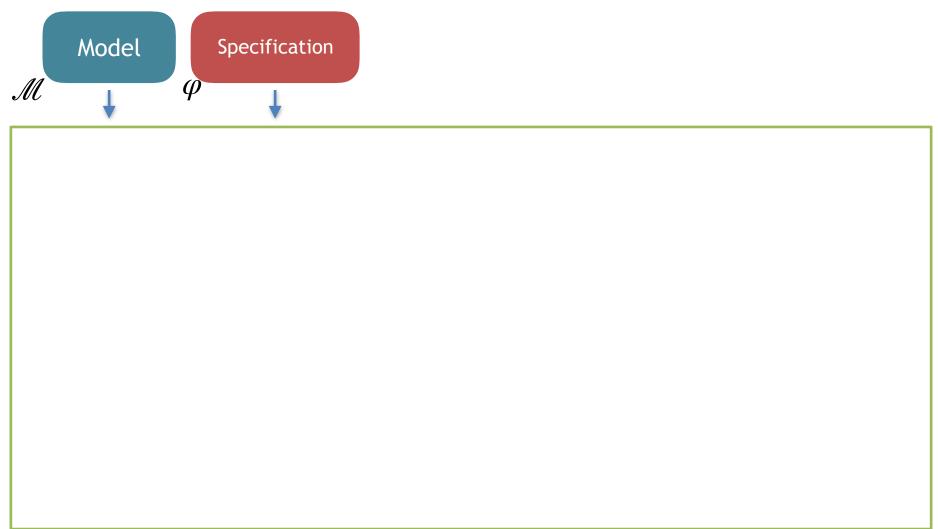
- Strategy is trained on randomly generated environments
- Training set needs samples until further environments wouldn't likely change the strategy

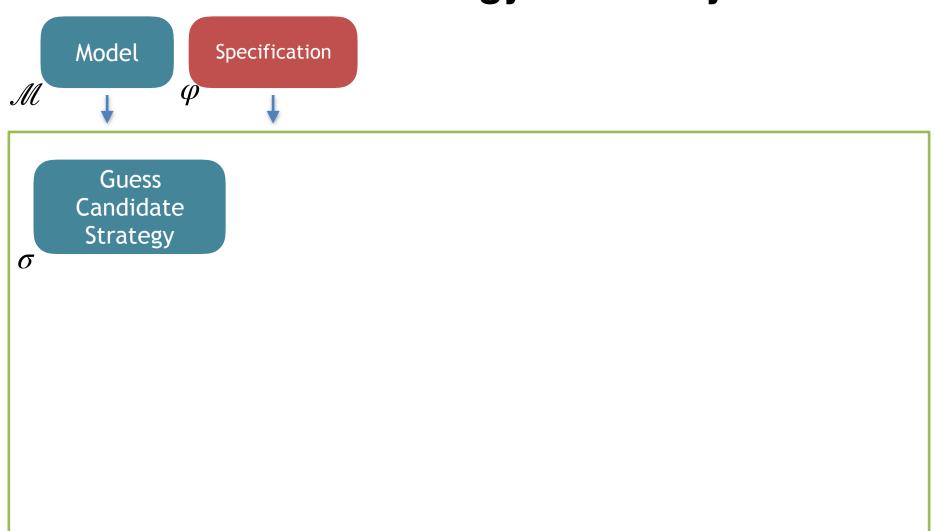


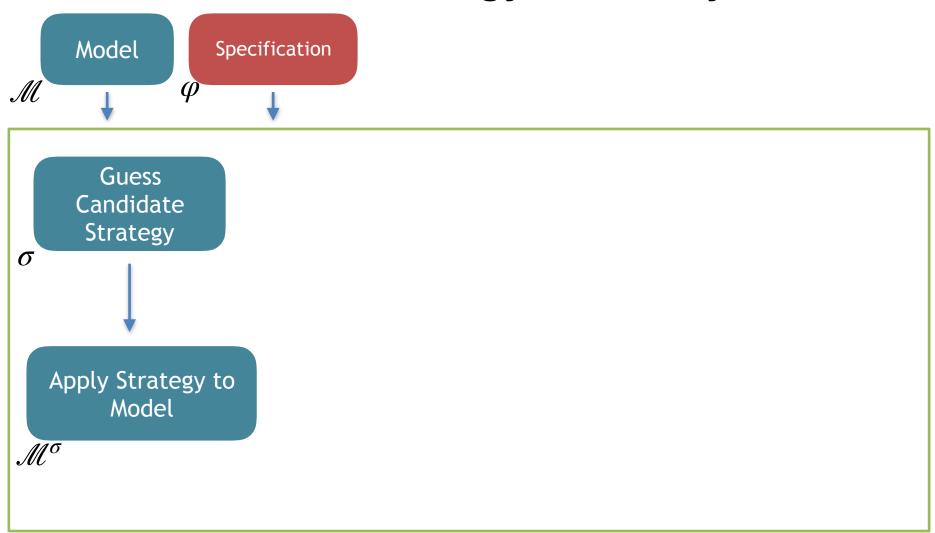
• To reduce training set, similar observations are handled similar

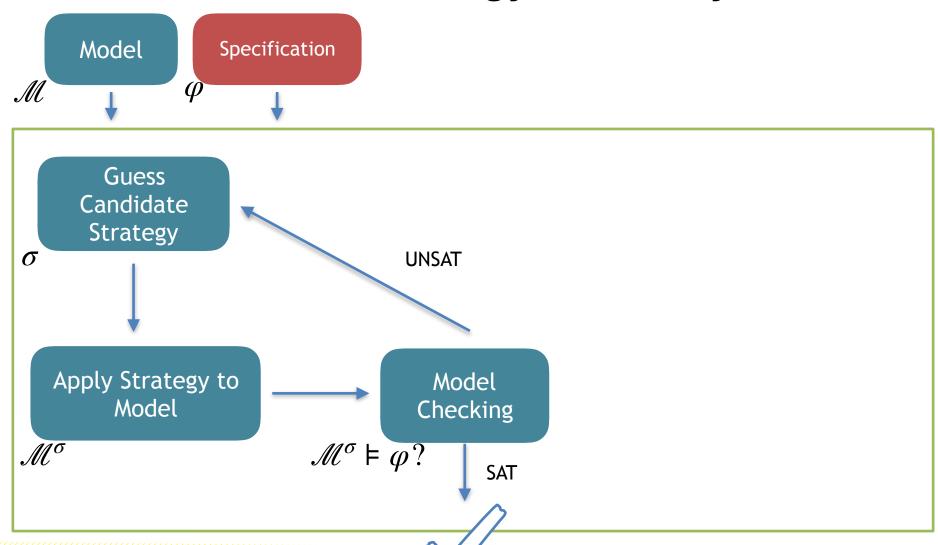
Stories

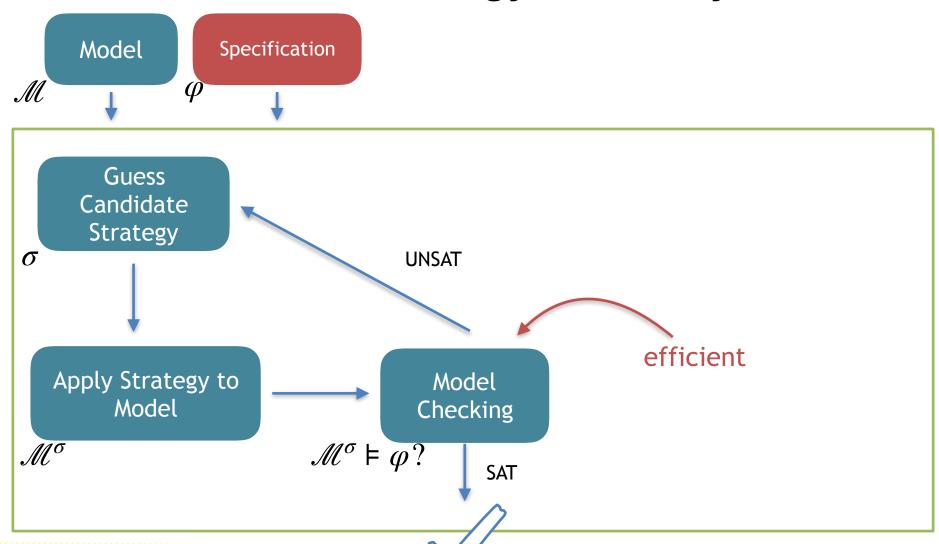
- 1. Safe Reinforcement Learning via Formal Verification and Behavior Models
- 2. Planning under Partial Observability
 - I. Human-in-the-loop Planning via Gamification

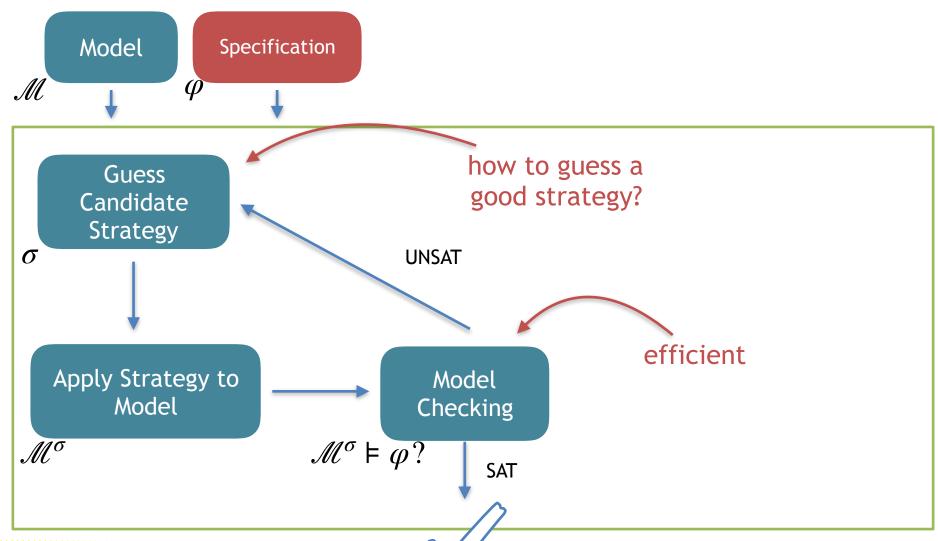




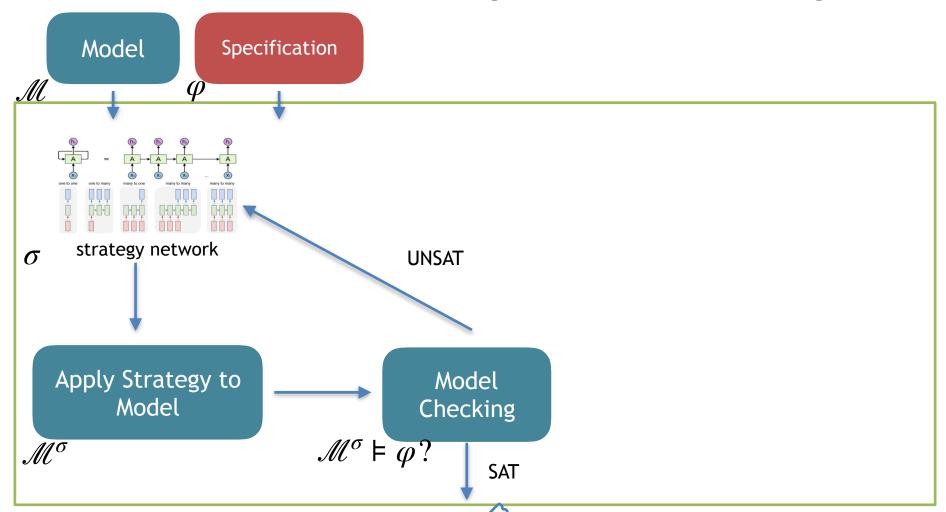




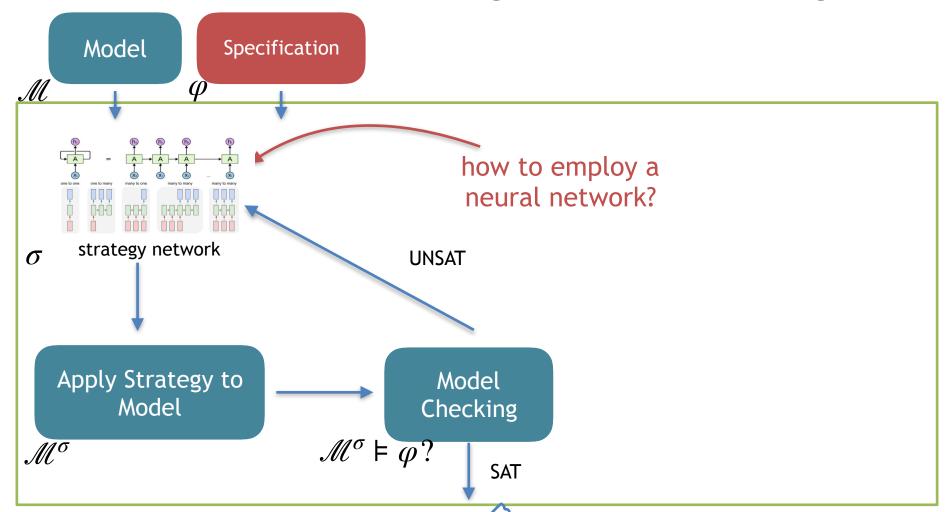


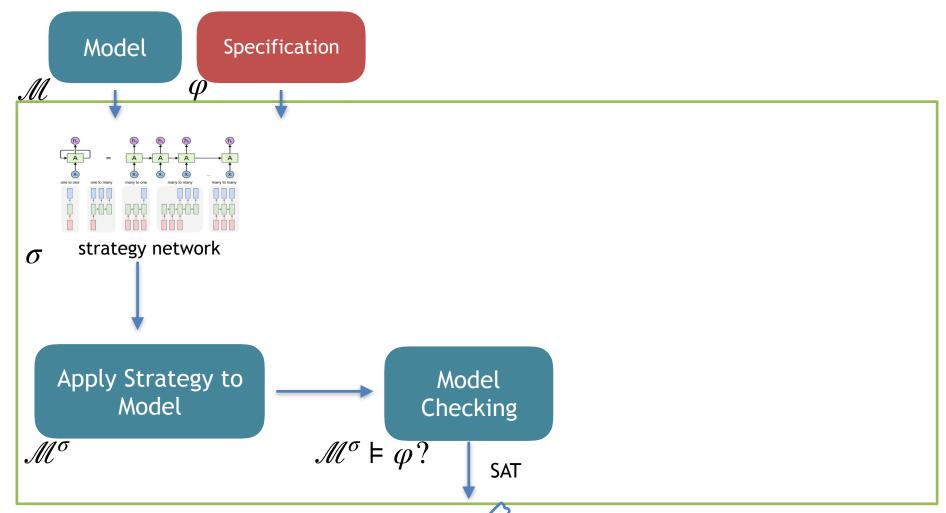


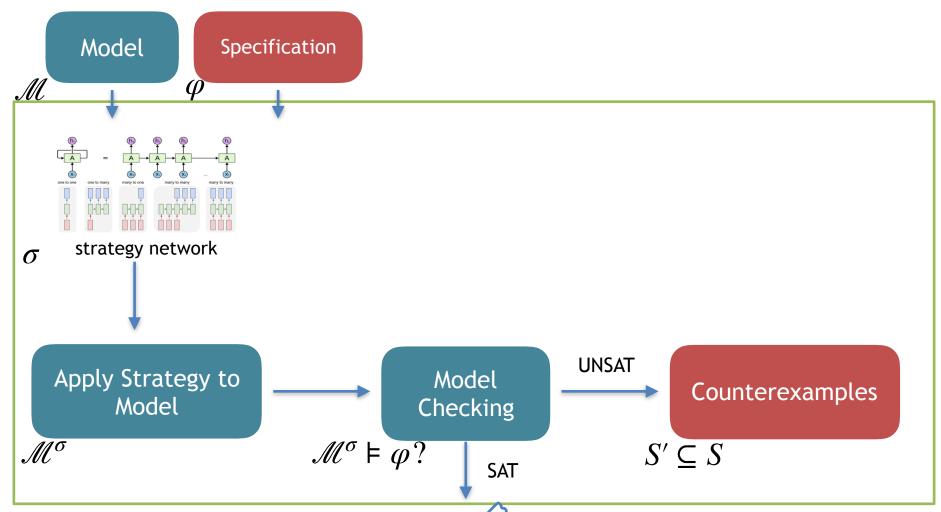
Let Machine Learning do the Guessing?

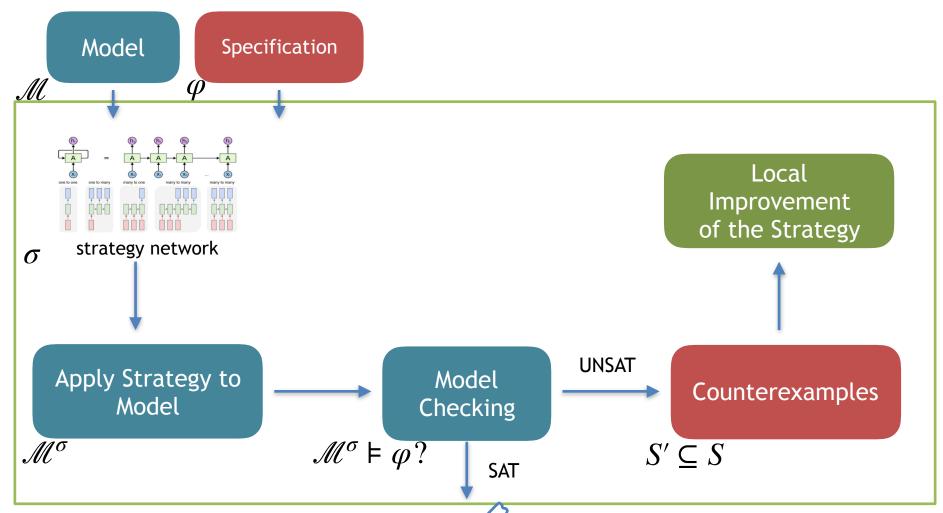


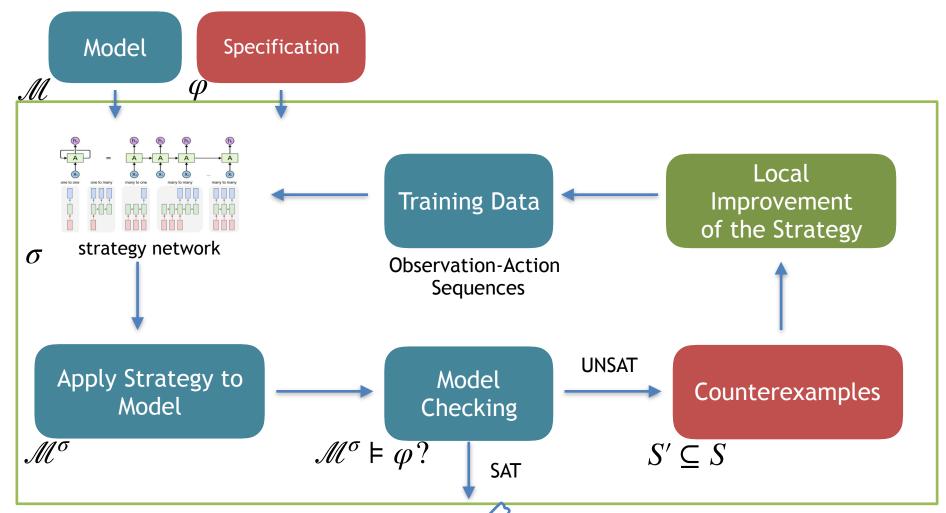
Let Machine Learning do the Guessing?

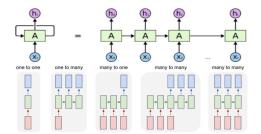






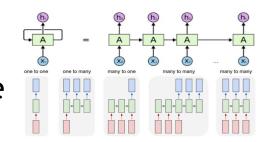






Recurrent Neural Network

 long short-term memory (LSTM) architecture to learn dependencies in sequential data

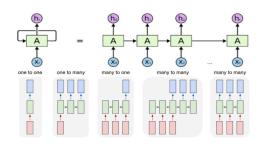


ullet trained with observation-action sequences $ObsSeq^{\mathscr{M}}_{fin}$

• strategy network σ : $ObsSeq^{\mathcal{M}}_{fin} \rightarrow Distr(Act)$

Recurrent Neural Network

 long short-term memory (LSTM) architecture to learn dependencies in sequential data



ullet trained with observation-action sequences $ObsSeq^{\mathscr{M}}_{fin}$

• strategy network $\sigma: ObsSeq_{fin}^{\mathscr{M}} \to Distr(Act)$

predictor for a (memoryless) randomized strategy

Recurrent Neural Network

- long short-term memory (LSTM) architecture to learn dependencies in sequential data
- ullet trained with observation-action sequences $ObsSeq^{\mathscr{M}}_{fin}$
- strategy network σ : $ObsSeq_{fin}^{\mathscr{M}} \rightarrow Distr(Act)$

one to one one to many many to many many to many

predictor for a (memoryless) randomized strategy

Training

- Compute optimal MDP strategy
- Generate (possible) observation-action sequences
- Observations are input labels, actions are output labels

Recurrent Neural Network

- long short-term memory (LSTM) architecture to learn dependencies in sequential data
- ullet trained with observation-action sequences $ObsSeq^{\mathscr{M}}_{fin}$
- strategy network σ : $ObsSeq_{fin}^{\mathscr{M}} \rightarrow Distr(Act)$

none to one one to many one to many to one many to man

predictor for a (memoryless) randomized strategy

Training

- Compute optimal MDP strategy
- Generate (possible) observation-action sequences
- Observations are input labels, actions are output labels

Large Environments

 Train on smaller environments that share observations and actions

Identify critical decisions $\sigma(z)(\alpha) > 0$ that lead to states with high probability of violating the specification.

Identify critical decisions $\sigma(z)(\alpha) > 0$ that lead to states with high probability of violating the specification.

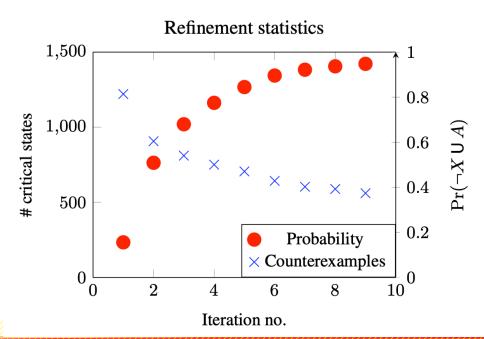
For each observation $z \in (O)$ with critical decision, minimize the number of different critical actions.

Retrain with the new (locally improved) strategy.

Identify critical decisions $\sigma(z)(\alpha) > 0$ that lead to states with high probability of violating the specification.

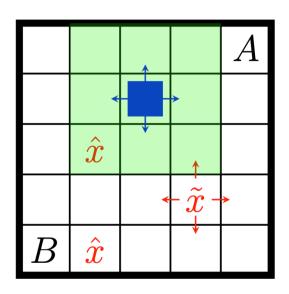
For each observation $z \in (O)$ with critical decision, minimize the number of different critical actions.

Retrain with the new (locally improved) strategy.



Even if specification is satisfied, there may be critical states and decisions!

Experiments - LTL



Problem	S	Act	Z
Navigation (c)	c^4	4	256
Delivery (c)	c^2	4	256
Slippery (c)	c^2	4	256
Maze(c)	3c + 8	4	7
Grid(c)	c^2	4	2
RockSample[4, 4]	257	9	2
RockSample[5, 5]	801	10	2
RockSample[7, 8]	12545	13	2

				based Synthesis		
Problem	States	Type, φ	Res.	Time (s)	Res.	Time (s)
Navigation (3)	333	$\mathbb{P}^{\mathcal{M}}_{ ext{max}}, arphi_1$	0.74	14.16	0.84	73.88
Navigation (4)	1088	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.82	22.67	0.93	1034.64
Navigation (4) [2-FSC]	13373	$\mathbb{P}_{\max}^{\mathcal{N}_1}, \varphi_1$	0.91	47.26	_	_
Navigation (4) [4-FSC]	26741	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$ $\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.92	59.42	_	_
Navigation (4) [8-FSC]	53477	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$ $\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.92	85.26	_	_
Navigation (5)			0.91	34.34	MO	MO
Navigation (5) [2-FSC]	33357	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$ $\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.92	115.16	_	_
Navigation (5) [4-FSC]			0.92	159.61	_	_
Navigation (5) [8-FSC]	133413	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.92	250.91	_	_
Navigation (10)			0.79	822.87	MO	MO
Navigation (10) [2-FSC]	475053	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$ $\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.83	1185.41	_	_
Navigation (10) [4-FSC]			0.85	1488.77	_	_
Navigation (10) [8-FSC]	1900197	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.81	1805.22	_	_
Navigation (15)			0.91	1271.80*	MO	MO
Navigation (20)	798040	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$ $\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.96	4712.25*	MO	MO
Navigation (30)	4045840	$\mathbb{P}_{ ext{max}}^{\mathcal{M}}, arphi_1$	0.95	25191.05*	MO	MO
Navigation (40)	_	$\mathbb{P}_{ ext{max}}^{ ext{max}}, arphi_1$	ТО	TO	MO	MO
Delivery (4) [2-FSC]	80	$\mathbb{E}^{\mathcal{M}}_{\min}, \varphi_2$	6.02	35.35	6.0	28.53
Delivery (5) [2-FSC]	125	$\mathbb{E}_{\min}^{\mathcal{M}}, arphi_2$	8.11	78.32	8.0	102.41
Delivery (10) [2-FSC]	500	$\mathbb{E}_{\min}^{\mathcal{N}_l}, \varphi_2$	18.13	120.34	MO	MO
Slippery (4) [2-FSC]	460	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_3$ $\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_3$	0.78	67.51	0.90	5.10
Slippery (5) [2-FSC]	730		0.89	84.32	0.93	83.24
Slippery (10) [2-FSC]	2980	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_3$	0.98	119.14	MO	MO
Slippery (20) [2-FSC]	11980	$\mathbb{P}_{ ext{max}}^{\mathcal{M}}, arphi_3$	0.99	1580.42	МО	MO

Experiments - Standard POMDP

Duahlam	Trunc	RNN-based Synthesis			PRISM-POMDP		pomdpSolve	
Problem	Type	States	Res	Time (s)	Res	Time (s)	Res	Time (s)
Maze (1)	$\mathbb{E}_{\min}^{\mathcal{M}}$	68	4.31	31.70	4.30	0.09	4.30	0.30
Maze (2)	$\mathbb{E}_{\min}^{\mathcal{M}}$	83	5.31	46.65	5.23	2.176	5.23	0.67
Maze (3)	$\mathbb{E}_{ ext{min}}^{\overline{\mathcal{M}}}$	98	8.10	58.75	7.13	38.82	7.13	2.39
Maze (4)	^ /	113	11.53	58.09	8.58	543.06	8.58	7.15
Maze (5)	$\mathbb{E}^{\mathcal{N}_{ ext{min}}}_{ ext{min}}$	128	14.40	68.09	13.00	4110.50	12.04	132.12
Maze (6)	$\mathbb{E}_{\min}^{\overline{\mathcal{M}}}$	143	22.34	71.89	MO	MO	18.52	1546.02
Maze (10)	$\mathbb{E}_{\min}^{\mathcal{M}}$	203	100.21	158.33	MO	MO	MO	MO
Grid (3)	$\mathbb{E}^{\mathcal{M}}_{ ext{min}}$	165	2.90	38.94	2.88	2.332	2.88	0.07
Grid (4)	$\mathbb{E}_{\min}^{\mathcal{M}}$	381	4.32	79.99	4.13	1032.53	4.13	0.77
Grid (5)	$\mathbb{E}_{\min}^{\mathcal{M}}$	727	6.623	91.42	MO	MO	5.42	1.94
Grid (10)	$\mathbb{E}_{\min}^{\mathcal{M}}$	5457	13.630	268.40	MO	MO	MO	MO
RockSample[4, 4]		2432	17.71	35.35	N/A	N/A	18.04	0.43
RockSample[5, 5]	$\mathbb{E}_{ ext{max}}^{\mathcal{M}}$	8320	18.40	43.74	N/A	N/A	19.23	621.28
RockSample[7, 8]	$\mathbb{E}_{\max}^{\mathcal{M}}$ $\mathbb{E}_{\max}^{\mathcal{M}}$	166656	20.32	860.53	N/A	N/A	21.64	20458.41

Conclusion

- Novel ways to generate provably correct strategies
- Good scalability, not optimal
- Marriage of Machine Learning and Verification

