The Naproche system: Proof-checking mathematical texts in controlled natural language

Marcos Cramer

University of Luxembourg

18 July 2014

The Naproche Project

 The Naproche project (Natural language Proof Checking) studies the language and reasoning of mathematics from the perspectives of logic and linguistics.

The Naproche Project

- The Naproche project (Natural language Proof Checking) studies the language and reasoning of mathematics from the perspectives of logic and linguistics.
- Central goals of Naproche:
 - To develop a controlled natural language (CNL) for mathematical texts.

The Naproche Project

- The Naproche project (Natural language Proof Checking) studies the language and reasoning of mathematics from the perspectives of logic and linguistics.
- Central goals of Naproche:
 - To develop a controlled natural language (CNL) for mathematical texts.
 - To implement a system, the Naproche system, which can check texts written in this CNL for logical correctness.

Outline

- 1 The Naproche system
- 2 Dynamic Quantification
- 3 Undefined terms and presuppositions
- 4 Conclusion

Naproche CNL

Burali-Forti paradox in the Naproche CNL

Axiom 1: There is a set \emptyset such that no y is in \emptyset .

Axiom 2: There is no x such that $x \in x$.

Define x to be transitive if and only if for all u, v, if $u \in v$ and $v \in x$ then $u \in x$.

Define x to be an ordinal if and only if x is transitive and for all y, if $y \in x$ then y is transitive.

Theorem: There is no x such that for all $u, u \in x$ iff u is an ordinal. Proof:

Assume for a contradiction that there is an x such that for all $u, u \in x$ iff u is an ordinal.

Let $u \in V$ and $v \in X$. Then v is an ordinal, i.e. u is an ordinal, i.e. $u \in X$. Thus x is transitive.

Let $v \in X$. Then v is an ordinal, i.e. v is transitive. Thus x is an ordinal. Then $x \in x$. Contradiction by axiom 2. Qed.

 The proof checking algorithm keeps track of a list of first-order formulae considered true, called premises. **Dynamic Quantification**

Naproche proof checking

- The proof checking algorithm keeps track of a list of first-order formulae considered true, called premises.
- The premise list gets continuously updated during the verification process.

- The proof checking algorithm keeps track of a list of first-order formulae considered true, called premises.
- The premise list gets continuously updated during the verification process.
- Each assertion is checked by an ATP based on the currently active premises.

Example

Suppose n is even. Then there is a k such that n=2k. Then $n^2=4k^2$, so $4|n^2$.

- The proof checking algorithm keeps track of a list of first-order formulae considered true, called premises.
- The premise list gets continuously updated during the verification process.
- Each assertion is checked by an ATP based on the currently active premises.

Example

Suppose n is even. Then there is a k such that n=2k. Then $n^2=4k^2$, so $4|n^2$.

- Sentence-by-sentence proof verification:
 - Γ , even(n) \vdash ? $\exists k \ n = 2 \cdot k$

- The proof checking algorithm keeps track of a list of first-order formulae considered true, called **premises**.
- The premise list gets continuously updated during the verification process.
- Each assertion is checked by an ATP based on the currently active premises.

Example

Suppose *n* is even. Then there is a *k* such that n = 2k. Then $n^2 = 4k^2$, so $4|n^2$.

- Sentence-by-sentence proof verification:
 - Γ , even $(n) \vdash^? \exists k \ n = 2 \cdot k$
 - Γ , even(n), $n = 2 \cdot k \vdash^? n^2 = 4 \cdot k^2$

- The proof checking algorithm keeps track of a list of first-order formulae considered true, called premises.
- The premise list gets continuously updated during the verification process.
- Each assertion is checked by an ATP based on the currently active premises.

Example

Suppose *n* is even. Then there is a *k* such that n = 2k. Then $n^2 = 4k^2$, so $4|n^2$.

- Sentence-by-sentence proof verification:
 - Γ , even $(n) \vdash^? \exists k \ n = 2 \cdot k$
 - Γ , even(n), $n = 2 \cdot k \vdash^? n^2 = 4 \cdot k^2$
 - Γ , even(n), $n = 2 \cdot k$, $n^2 = 4 \cdot k^2 \vdash^? 4 \mid n^2$

An assumption is processed in No-Check Mode.

- An assumption is processed in No-Check Mode.
- The No-Check Mode is also used for φ and ψ in $\neg \varphi$, $\exists x \ \varphi, \ \varphi \lor \psi$ and $\varphi \to \chi$.

• An assumption is processed in No-Check Mode.

Dynamic Quantification

- The No-Check Mode is also used for φ and ψ in $\neg \varphi$, $\exists x \ \varphi, \ \varphi \lor \psi$ and $\varphi \to \chi$.
- We have proved soundness and completeness theorems for the proof checking algorithm.

\$\emptyset \in \emptyset \$.

Then \$x \in x\$. Contradiction by axiom 2.

Proof:\\

Oed.

Theorem: There is no \$x\$ such that for all \$u\$, \$u \in x\$ iff \$u\$ is an ordinal.

Let \$v \in x\$. Then \$v\$ is an ordinal, i.e. \$v\$ is transitive. Thus \$x\$ is an ordinal.

Assume for a contradiction that there is an \$x\$ such that for all \$u\$, \$u \in x\$ iff \$u\$ is an ordinal.

Let \$u \in v\$ and \$v \in x\$. Then \$v\$ is an ordinal, i.e. \$u\$ is an ordinal, i.e. \$u \in x\$. Thus \$x\$ is transitive.

Print

Outline

- 1 The Naproche system
- 2 Dynamic Quantification
- 3 Undefined terms and presuppositions
- 4 Conclusion

Dynamic Quantification

Example

Suppose n is even. Then there is a k such that n=2k. Then $n^2=4k^2$, so $4|n^2$.

Dynamic Quantification

Example

Suppose n is even. Then there is a k such that n=2k. Then $n^2=4k^2$, so $4|n^2$.

Example

If a space X retracts onto a subspace A, then the homomorphism $i_*: \pi_1(A, x_0) \to \pi_1(X, x_0)$ induced by the inclusion $i: A \hookrightarrow X$ is injective.

A. Hatcher: Algebraic topology (2002)

Dynamic Quantification (2)

Solution: **Dynamic Predicate Logic** (**DPL**) by Groenendijk and Stokhof

Dynamic Quantification (2)

Solution: **Dynamic Predicate Logic (DPL)** by Groenendijk and Stokhof

Example

If a farmer owns a donkey, he beats it.

PL: $\forall x \forall y \ (farmer(x) \land donkey(y) \land owns(x, y) \rightarrow beats(x, y))$

DPL: $\exists x \ (farmer(x) \land \exists y \ (donkey(y) \land owns(x, y))) \rightarrow beats(x, y)$

Implicit dynamic function introduction

Suppose that, for each vertex v of K, there is a vertex g(v) of L such that $f(st_K(v)) \subset st_L(g(v))$. Then g is a simplicial map $V(K) \to V(L)$, and $|g| \subseteq f$.

M. Lackenby: Topology and groups (2008)

Implicit dynamic function introduction

Suppose that, for each vertex v of K, there is a vertex g(v) of L such that $f(st_K(v)) \subset st_L(g(v))$. Then g is a simplicial map $V(K) \to V(L)$, and $|g| \subseteq f$.

M. Lackenby: Topology and groups (2008)

 Solution: Typed Higher-Order Dynamic Predicate Logic (THODPL)

THODPL

- There can be a complex term after a quantifier:

THODPL

- There can be a complex term after a quantifier:
- 1 has the same truth conditions as 2.

THODPL

- There can be a complex term after a quantifier:
- 1 has the same truth conditions as 2.
- But unlike 2, 1 dynamically introduces the function symbol f, and hence turns out to be equivalent to 3.

THODPL in proof checking

 Quantification over a complex term is checked in the same way as quantification over a variable:

For each vertex v of K, there is a vertex g(v) of L such that $f(st_K(v)) \subset st_L(g(v))$. Then g is a simplicial map $V(K) \to V(L)$.

 Γ , vertex $(v, K) \vdash$? $\exists w (vertex(w, K) \land f(st_K(v)) \subset st_L(w))$

THODPL in proof checking

 Quantification over a complex term is checked in the same way as quantification over a variable:

For each vertex v of K, there is a vertex g(v) of L such that $f(st_K(v)) \subset st_L(g(v))$. Then g is a simplicial map $V(K) \to V(L)$.

$$\Gamma$$
, vertex $(v, K) \vdash^? \exists w \ (\text{vertex}(w, K) \land f(st_K(v)) \subset st_L(w))$

- However, it dynamically introduces a new function symbol.
- The premise corresponding to this quantification gets skolemized with this new function symbol:

 $\Gamma, \forall v \; (\text{vertex}(v, K) \rightarrow (\text{vertex}(g(v), K) \land f(st_K(v)) \subset st_L(g(v))))$ \vdash ? simplicial_map(g, V(K), V(L))

THODPL in proof checking (2)

 The theorem prover does not need to prove the existence of a function, but its existence may nevertheless be assumed as a premise.

THODPL in proof checking (2)

- The theorem prover does not need to prove the existence of a function, but its existence may nevertheless be assumed as a premise.
- Similarly, $\forall x \; \exists f(x) \; R(x, f(x))$ is proof-checked in the same way as $\forall x \; \exists y \; R(x, y)$, but as a premise it has the force of $\exists f \; \forall x \; R(x, f(x))$.

Undefined terms and presuppositions

- The Naproche system
- 3 Undefined terms and presuppositions

Undefined terms and presuppositions

• Mathematical texts can involve potentially undefined terms like

- Mathematical texts can involve **potentially undefined terms** like $\frac{1}{y}$.
- Such terms arise by applying partial functions to ungrounded terms.

- Mathematical texts can involve **potentially undefined terms** like $\frac{1}{x}$.
- Such terms arise by applying partial functions to ungrounded terms.
- First-order logic has no means for handling partial functions and potentially undefined terms.

Undefined terms and presuppositions

- Mathematical texts can involve **potentially undefined terms** like $\frac{1}{x}$.
- Such terms arise by applying partial functions to ungrounded terms.
- First-order logic has no means for handling partial functions and potentially undefined terms.
- We make use of presupposition theory from formal linguistics for solving this problem.

Undefined terms and presuppositions

• A presupposition of some utterance is an implicit assumption that is taken for granted when making the utterance and needed for its interpretation.

Presuppositions

Undefined terms and presuppositions

- A presupposition of some utterance is an implicit assumption that is taken for granted when making the utterance and needed for its interpretation.
- Presuppositions are triggered by certain lexical items called presupposition triggers, e.g. "the", "to know", "to stop", "still".

Undefined terms and presuppositions

- A presupposition of some utterance is an implicit assumption that is taken for granted when making the utterance and needed for its interpretation.
- Presuppositions are triggered by certain lexical items called presupposition triggers, e.g. "the", "to know", "to stop", "still".

Example

He stopped beating his wife.

Undefined terms and presuppositions

 Most presupposistion triggers are rare or absent in mathematical texts, e.g. "to know", "to stop" and "still".

Presupposition in mathematical texts

Undefined terms and presuppositions

- Most presupposistion triggers are rare or absent in mathematical texts, e.g. "to know", "to stop" and "still".
- Definite descriptions do appear, e.g. "the smallest natural number n such that $n^2 - 1$ is prime".

Presupposition in mathematical texts

Undefined terms and presuppositions

- Most presupposistion triggers are rare or absent in mathematical texts, e.g. "to know", "to stop" and "still".
- Definite descriptions do appear, e.g. "the smallest natural number n such that $n^2 - 1$ is prime".
- A special mathematical presupposition trigger: Expressions denoting partial functions, e.g. "/" and " $\sqrt{}$ "

Presuppositions also have to be checked in No-Check Mode.

Presuppositions also have to be checked in No-Check Mode.

Example 1

Assume that B contains \sqrt{y} .

Undefined terms and presuppositions

Presuppositions also have to be checked in No-Check Mode.

Example 1

Assume that B contains \sqrt{y} .

$$\Gamma \vdash^? y \geq 0$$

Presuppositions also have to be checked in No-Check Mode.

Example 1

Assume that B contains \sqrt{y} .

$$\Gamma \vdash^? y \ge 0$$

Example 2

B does not contain \sqrt{y} .

Presuppositions also have to be checked in No-Check Mode.

Example 1

Assume that B contains \sqrt{y} .

$$\Gamma \vdash^? y \geq 0$$

Example 2

B does not contain \sqrt{y} .

$$\Gamma \vdash^? y \ge 0$$

 $\Gamma, y \ge 0 \vdash^? \neg \sqrt{y} \in B$

Outline

- The Naproche system
- 3 Undefined terms and presuppositions
- Conclusion

Naproche system

Naproche system

Conclusion

• We have developed a controlled natural language for mathematical texts.

Naproche system

Conclusion

- We have developed a controlled natural language for mathematical texts.
- The Naproche system can check the correctness of texts written in this language.

Conclusion

- We have developed a controlled natural language for mathematical texts.
- The Naproche system can check the correctness of texts written in this language.
- Interesting theoretical work linking mathematical logic and formal linguistics