
Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

The Naproche system: Proof-checking mathematical texts in
controlled natural language

Marcos Cramer

University of Luxembourg

18 July 2014

1 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

The Naproche Project

The Naproche project (Natural language Proof Checking) studies
the language and reasoning of mathematics from the
perspectives of logic and linguistics.

Central goals of Naproche:

To develop a controlled natural language (CNL) for mathematical
texts.
To implement a system, the Naproche system, which can check
texts written in this CNL for logical correctness.

2 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

The Naproche Project

The Naproche project (Natural language Proof Checking) studies
the language and reasoning of mathematics from the
perspectives of logic and linguistics.

Central goals of Naproche:

To develop a controlled natural language (CNL) for mathematical
texts.

To implement a system, the Naproche system, which can check
texts written in this CNL for logical correctness.

2 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

The Naproche Project

The Naproche project (Natural language Proof Checking) studies
the language and reasoning of mathematics from the
perspectives of logic and linguistics.

Central goals of Naproche:

To develop a controlled natural language (CNL) for mathematical
texts.
To implement a system, the Naproche system, which can check
texts written in this CNL for logical correctness.

2 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Outline

1 The Naproche system

2 Dynamic Quantification

3 Undefined terms and presuppositions

4 Conclusion

3 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Naproche CNL

Burali-Forti paradox in the Naproche CNL

Axiom 1: There is a set ∅ such that no y is in ∅.
Axiom 2: There is no x such that x ∈ x .

Define x to be transitive if and only if for all u, v , if u ∈ v and v ∈ x
then u ∈ x .
Define x to be an ordinal if and only if x is transitive and for all y , if
y ∈ x then y is transitive.

Theorem: There is no x such that for all u, u ∈ x iff u is an ordinal.
Proof:
Assume for a contradiction that there is an x such that for all u, u ∈ x iff
u is an ordinal.
Let u ∈ v and v ∈ x . Then v is an ordinal, i.e. u is an ordinal, i.e. u ∈ x .
Thus x is transitive.
Let v ∈ x . Then v is an ordinal, i.e. v is transitive. Thus x is an ordinal.
Then x ∈ x . Contradiction by axiom 2.
Qed.

4 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Naproche proof checking

The proof checking algorithm keeps track of a list of first-order
formulae considered true, called premises.

The premise list gets continuously updated during the verification
process.

Each assertion is checked by an ATP based on the currently active
premises.

Example

Suppose n is even. Then there is a k such that n = 2k. Then
n2 = 4k2, so 4|n2.

Sentence-by-sentence proof verification:

Γ, even(n) `? ∃k n = 2 · k
Γ, even(n), n = 2 · k `? n2 = 4 · k2

Γ, even(n), n = 2 · k, n2 = 4 · k2 `? 4|n2

5 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Naproche proof checking

The proof checking algorithm keeps track of a list of first-order
formulae considered true, called premises.

The premise list gets continuously updated during the verification
process.

Each assertion is checked by an ATP based on the currently active
premises.

Example

Suppose n is even. Then there is a k such that n = 2k. Then
n2 = 4k2, so 4|n2.

Sentence-by-sentence proof verification:

Γ, even(n) `? ∃k n = 2 · k
Γ, even(n), n = 2 · k `? n2 = 4 · k2

Γ, even(n), n = 2 · k, n2 = 4 · k2 `? 4|n2

5 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Naproche proof checking

The proof checking algorithm keeps track of a list of first-order
formulae considered true, called premises.

The premise list gets continuously updated during the verification
process.

Each assertion is checked by an ATP based on the currently active
premises.

Example

Suppose n is even. Then there is a k such that n = 2k. Then
n2 = 4k2, so 4|n2.

Sentence-by-sentence proof verification:

Γ, even(n) `? ∃k n = 2 · k
Γ, even(n), n = 2 · k `? n2 = 4 · k2

Γ, even(n), n = 2 · k, n2 = 4 · k2 `? 4|n2

5 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Naproche proof checking

The proof checking algorithm keeps track of a list of first-order
formulae considered true, called premises.

The premise list gets continuously updated during the verification
process.

Each assertion is checked by an ATP based on the currently active
premises.

Example

Suppose n is even. Then there is a k such that n = 2k. Then
n2 = 4k2, so 4|n2.

Sentence-by-sentence proof verification:

Γ, even(n) `? ∃k n = 2 · k

Γ, even(n), n = 2 · k `? n2 = 4 · k2

Γ, even(n), n = 2 · k, n2 = 4 · k2 `? 4|n2

5 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Naproche proof checking

The proof checking algorithm keeps track of a list of first-order
formulae considered true, called premises.

The premise list gets continuously updated during the verification
process.

Each assertion is checked by an ATP based on the currently active
premises.

Example

Suppose n is even. Then there is a k such that n = 2k. Then
n2 = 4k2, so 4|n2.

Sentence-by-sentence proof verification:

Γ, even(n) `? ∃k n = 2 · k
Γ, even(n), n = 2 · k `? n2 = 4 · k2

Γ, even(n), n = 2 · k, n2 = 4 · k2 `? 4|n2

5 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Naproche proof checking

The proof checking algorithm keeps track of a list of first-order
formulae considered true, called premises.

The premise list gets continuously updated during the verification
process.

Each assertion is checked by an ATP based on the currently active
premises.

Example

Suppose n is even. Then there is a k such that n = 2k. Then
n2 = 4k2, so 4|n2.

Sentence-by-sentence proof verification:

Γ, even(n) `? ∃k n = 2 · k
Γ, even(n), n = 2 · k `? n2 = 4 · k2

Γ, even(n), n = 2 · k, n2 = 4 · k2 `? 4|n2

5 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Naproche proof checking (2)

An assumption is processed in No-Check Mode.

The No-Check Mode is also used for ϕ and ψ in ¬ϕ, ∃x ϕ, ϕ ∨ ψ
and ϕ→ χ.

We have proved soundness and completeness theorems for the proof
checking algorithm.

6 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Naproche proof checking (2)

An assumption is processed in No-Check Mode.

The No-Check Mode is also used for ϕ and ψ in ¬ϕ, ∃x ϕ, ϕ ∨ ψ
and ϕ→ χ.

We have proved soundness and completeness theorems for the proof
checking algorithm.

6 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Naproche proof checking (2)

An assumption is processed in No-Check Mode.

The No-Check Mode is also used for ϕ and ψ in ¬ϕ, ∃x ϕ, ϕ ∨ ψ
and ϕ→ χ.

We have proved soundness and completeness theorems for the proof
checking algorithm.

6 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Outline

1 The Naproche system

2 Dynamic Quantification

3 Undefined terms and presuppositions

4 Conclusion

8 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Dynamic Quantification

Example

Suppose n is even. Then there is a k such that n = 2k. Then
n2 = 4k2, so 4|n2.

Example

If a space X retracts onto a subspace A, then the homomorphism
i∗ : π1(A, x0)→ π1(X , x0) induced by the inclusion i : A ↪→ X is
injective.
A. Hatcher: Algebraic topology (2002)

9 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Dynamic Quantification

Example

Suppose n is even. Then there is a k such that n = 2k. Then
n2 = 4k2, so 4|n2.

Example

If a space X retracts onto a subspace A, then the homomorphism
i∗ : π1(A, x0)→ π1(X , x0) induced by the inclusion i : A ↪→ X is
injective.
A. Hatcher: Algebraic topology (2002)

9 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Dynamic Quantification (2)

Solution: Dynamic Predicate Logic (DPL) by Groenendijk and
Stokhof

Example

If a farmer owns a donkey, he beats it.
PL: ∀x∀y (farmer(x) ∧ donkey(y) ∧ owns(x , y)→ beats(x , y))
DPL: ∃x (farmer(x) ∧ ∃y (donkey(y) ∧ owns(x , y)))→ beats(x , y)

10 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Dynamic Quantification (2)

Solution: Dynamic Predicate Logic (DPL) by Groenendijk and
Stokhof

Example

If a farmer owns a donkey, he beats it.
PL: ∀x∀y (farmer(x) ∧ donkey(y) ∧ owns(x , y)→ beats(x , y))
DPL: ∃x (farmer(x) ∧ ∃y (donkey(y) ∧ owns(x , y)))→ beats(x , y)

10 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Implicit dynamic function introduction

Suppose that, for each vertex v of K , there is a vertex g(v) of L
such that f (stK (v)) ⊂ stL(g(v)). Then g is a simplicial map
V (K)→ V (L), and |g | w f .
M. Lackenby: Topology and groups (2008)

Solution: Typed Higher-Order Dynamic Predicate Logic
(THODPL)

11 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Implicit dynamic function introduction

Suppose that, for each vertex v of K , there is a vertex g(v) of L
such that f (stK (v)) ⊂ stL(g(v)). Then g is a simplicial map
V (K)→ V (L), and |g | w f .
M. Lackenby: Topology and groups (2008)

Solution: Typed Higher-Order Dynamic Predicate Logic
(THODPL)

11 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

THODPL

There can be a complex term after a quantifier:

1 ∀x ∃f (x) R(x , f (x))

2 ∀x ∃y R(x , y)

3 ∃f ∀x R(x , f (x))

1 has the same truth conditions as 2.

But unlike 2, 1 dynamically introduces the function symbol f , and
hence turns out to be equivalent to 3.

12 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

THODPL

There can be a complex term after a quantifier:

1 ∀x ∃f (x) R(x , f (x))

2 ∀x ∃y R(x , y)

3 ∃f ∀x R(x , f (x))

1 has the same truth conditions as 2.

But unlike 2, 1 dynamically introduces the function symbol f , and
hence turns out to be equivalent to 3.

12 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

THODPL

There can be a complex term after a quantifier:

1 ∀x ∃f (x) R(x , f (x))

2 ∀x ∃y R(x , y)

3 ∃f ∀x R(x , f (x))

1 has the same truth conditions as 2.

But unlike 2, 1 dynamically introduces the function symbol f , and
hence turns out to be equivalent to 3.

12 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

THODPL in proof checking

Quantification over a complex term is checked in the same way as
quantification over a variable:

For each vertex v of K , there is a vertex g(v) of L such that
f (stK (v)) ⊂ stL(g(v)). Then g is a simplicial map V (K)→ V (L).

Γ, vertex(v ,K) `? ∃w (vertex(w ,K) ∧ f (stK (v)) ⊂ stL(w))

However, it dynamically introduces a new function symbol.

The premise corresponding to this quantification gets skolemized
with this new function symbol:

Γ, ∀v (vertex(v ,K)→ (vertex(g(v),K) ∧ f (stK (v)) ⊂ stL(g(v))))
`? simplicial map(g ,V (K),V (L))

13 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

THODPL in proof checking

Quantification over a complex term is checked in the same way as
quantification over a variable:

For each vertex v of K , there is a vertex g(v) of L such that
f (stK (v)) ⊂ stL(g(v)). Then g is a simplicial map V (K)→ V (L).

Γ, vertex(v ,K) `? ∃w (vertex(w ,K) ∧ f (stK (v)) ⊂ stL(w))

However, it dynamically introduces a new function symbol.

The premise corresponding to this quantification gets skolemized
with this new function symbol:

Γ, ∀v (vertex(v ,K)→ (vertex(g(v),K) ∧ f (stK (v)) ⊂ stL(g(v))))
`? simplicial map(g ,V (K),V (L))

13 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

THODPL in proof checking (2)

The theorem prover does not need to prove the existence of a
function, but its existence may nevertheless be assumed as a
premise.

Similarly, ∀x ∃f (x) R(x , f (x)) is proof-checked in the same way as
∀x ∃y R(x , y), but as a premise it has the force of ∃f ∀x R(x , f (x)).

14 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

THODPL in proof checking (2)

The theorem prover does not need to prove the existence of a
function, but its existence may nevertheless be assumed as a
premise.

Similarly, ∀x ∃f (x) R(x , f (x)) is proof-checked in the same way as
∀x ∃y R(x , y), but as a premise it has the force of ∃f ∀x R(x , f (x)).

14 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Outline

1 The Naproche system

2 Dynamic Quantification

3 Undefined terms and presuppositions

4 Conclusion

15 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Undefined terms

Mathematical texts can involve potentially undefined terms like
1
x .

Such terms arise by applying partial functions to ungrounded
terms.

First-order logic has no means for handling partial functions and
potentially undefined terms.

We make use of presupposition theory from formal linguistics for
solving this problem.

16 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Undefined terms

Mathematical texts can involve potentially undefined terms like
1
x .

Such terms arise by applying partial functions to ungrounded
terms.

First-order logic has no means for handling partial functions and
potentially undefined terms.

We make use of presupposition theory from formal linguistics for
solving this problem.

16 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Undefined terms

Mathematical texts can involve potentially undefined terms like
1
x .

Such terms arise by applying partial functions to ungrounded
terms.

First-order logic has no means for handling partial functions and
potentially undefined terms.

We make use of presupposition theory from formal linguistics for
solving this problem.

16 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Undefined terms

Mathematical texts can involve potentially undefined terms like
1
x .

Such terms arise by applying partial functions to ungrounded
terms.

First-order logic has no means for handling partial functions and
potentially undefined terms.

We make use of presupposition theory from formal linguistics for
solving this problem.

16 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Presuppositions

A presupposition of some utterance is an implicit assumption that
is taken for granted when making the utterance and needed for its
interpretation.

Presuppositions are triggered by certain lexical items called
presupposition triggers, e.g. “the”, “to know”, “to stop”, “still”.

Example

He stopped beating his wife.

17 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Presuppositions

A presupposition of some utterance is an implicit assumption that
is taken for granted when making the utterance and needed for its
interpretation.

Presuppositions are triggered by certain lexical items called
presupposition triggers, e.g. “the”, “to know”, “to stop”, “still”.

Example

He stopped beating his wife.

17 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Presuppositions

A presupposition of some utterance is an implicit assumption that
is taken for granted when making the utterance and needed for its
interpretation.

Presuppositions are triggered by certain lexical items called
presupposition triggers, e.g. “the”, “to know”, “to stop”, “still”.

Example

He stopped beating his wife.

17 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Presupposition in mathematical texts

Most presupposistion triggers are rare or absent in mathematical
texts, e.g. “to know”, “to stop” and “still”.

Definite descriptions do appear, e.g. “the smallest natural number n
such that n2 − 1 is prime”.

A special mathematical presupposition trigger: Expressions denoting
partial functions, e.g. “/” and “

√
”

18 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Presupposition in mathematical texts

Most presupposistion triggers are rare or absent in mathematical
texts, e.g. “to know”, “to stop” and “still”.

Definite descriptions do appear, e.g. “the smallest natural number n
such that n2 − 1 is prime”.

A special mathematical presupposition trigger: Expressions denoting
partial functions, e.g. “/” and “

√
”

18 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Presupposition in mathematical texts

Most presupposistion triggers are rare or absent in mathematical
texts, e.g. “to know”, “to stop” and “still”.

Definite descriptions do appear, e.g. “the smallest natural number n
such that n2 − 1 is prime”.

A special mathematical presupposition trigger: Expressions denoting
partial functions, e.g. “/” and “

√
”

18 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Proof checking algorithm with presuppositions

Presuppositions also have to be checked in No-Check Mode.

Example 1

Assume that B contains
√
y .

Γ `? y ≥ 0

Example 2

B does not contain
√
y .

Γ `? y ≥ 0
Γ, y ≥ 0 `? ¬√y ∈ B

19 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Proof checking algorithm with presuppositions

Presuppositions also have to be checked in No-Check Mode.

Example 1

Assume that B contains
√
y .

Γ `? y ≥ 0

Example 2

B does not contain
√
y .

Γ `? y ≥ 0
Γ, y ≥ 0 `? ¬√y ∈ B

19 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Proof checking algorithm with presuppositions

Presuppositions also have to be checked in No-Check Mode.

Example 1

Assume that B contains
√
y .

Γ `? y ≥ 0

Example 2

B does not contain
√
y .

Γ `? y ≥ 0
Γ, y ≥ 0 `? ¬√y ∈ B

19 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Proof checking algorithm with presuppositions

Presuppositions also have to be checked in No-Check Mode.

Example 1

Assume that B contains
√
y .

Γ `? y ≥ 0

Example 2

B does not contain
√
y .

Γ `? y ≥ 0
Γ, y ≥ 0 `? ¬√y ∈ B

19 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Proof checking algorithm with presuppositions

Presuppositions also have to be checked in No-Check Mode.

Example 1

Assume that B contains
√
y .

Γ `? y ≥ 0

Example 2

B does not contain
√
y .

Γ `? y ≥ 0
Γ, y ≥ 0 `? ¬√y ∈ B

19 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Outline

1 The Naproche system

2 Dynamic Quantification

3 Undefined terms and presuppositions

4 Conclusion

20 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Conclusion

We have developed a controlled natural language for mathematical
texts.

The Naproche system can check the correctness of texts written in
this language.

Interesting theoretical work linking mathematical logic and formal
linguistics

21 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Conclusion

We have developed a controlled natural language for mathematical
texts.

The Naproche system can check the correctness of texts written in
this language.

Interesting theoretical work linking mathematical logic and formal
linguistics

21 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

Naproche system Dynamic Quantification Undefined terms and presuppositions Conclusion

Conclusion

We have developed a controlled natural language for mathematical
texts.

The Naproche system can check the correctness of texts written in
this language.

Interesting theoretical work linking mathematical logic and formal
linguistics

21 / 21

The Naproche system: Proof-checking mathematical texts in controlled natural language

	The Naproche system
	Dynamic Quantification
	Undefined terms and presuppositions
	Conclusion

