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Abstract

We introduce new adaptive chosen ciphertext attacks, called Sloppy Alice Attacks,
in which a malicious sender or an adaptive eavesdropper Eve has an oracle which allows
her to find out whether a sent encrypted message does, or does not, decrypt properly.
From this information she can extract the plaintext that was encrypted. In this paper
we show that the McEliece public-key cryptosystem is susceptible to Sloppy Alice
attacks.
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1 Introduction

In the last decade, several forms of attacks have been published where some of the inputs
of an encryption system with a secret fixed key are adaptively chosen. By letting each new
input (either plaintext or ciphertext) depend on the previous outputs and by looking at
certain aspects of the resulting output at each step, additional secret information of the
cryptosystem (e.g. the fixed key) may be determined. Among the studied aspects of the

output are:

e the differences in the output when the differences in the plain inputs are known, see

[4], [15];

e some statistical or number—theoretic aspects of the output of the cryptosystem when
errors are inflicted to the cryptosystem itself (e.g. by radiation), see for instance [5],

[6];



e the execution time when the precise complexity of the underlying cryptographic process
is known, see [13].

In this paper, we will look at a different setting. Here an attacker, called Eve, has access
(for instance by interception) to one or more encrypted messages (called ciphertexts) for a
receiver Bob.

We also suppose that Eve has access to an oracle that can tell her whether a ciphertext
deciphers correctly or not. This oracle scenario was already studied in a more general form
by Goldwasser, Micali and Tong [9]. Here we will present an efficient algorithm against the
McEliece cryptosystem.

Note that in practice such an oracle might be easy to obtain: Eve may have access to Bob’s
decryption device or Eve might be an active eavesdropper. Another possibility is that Bob’s
decryption device is in fact automated, and will send a reply if the decryption somehow went
wrong, thus asking for a retransmission. This reply can then be intercepted by Eve.

Now the general idea of this attack is based on the following components:

1. Eve alters the ciphertext slightly in such a way that there is a reasonable probability
that the message still deciphers correctly and sends the altered message to her oracle.

2. Knowledge on whether the message still deciphers correctly or not reveals new infor-
mation and opens interesting new possibilities for adapting the ciphertext.

Eve will continue to alter messages in this way (called a round), until she has retrieved
enough secret information. It is very likely that Eve will have to send a considerable number
of altered messages.

In the case that Eve uses Bob as her oracle (she sends the messages to him and checks for
a retransmission request), this means that Bob (or the protocol he is using) has to be willing
to ask the presumed sender Alice over and over again for retransmission. This is only likely
if Bob accepts sloppy (or faulty) behavior of Alice (or her computer). That is why we refer
to this type of attacks as Sloppy Alice attacks (SA-attacks).

In [19] we discuss Sloppy Alice attacks on key-recovery schemes. Here, we will concentrate
on SA attacks on the McEliece [16] public-key cryptosystem, which is based on algebraic
coding theory and more in particular on Goppa codes. So we assume that Eve has a validly
encrypted McEliece message for Bob which she can alter and for which she is able to find
out (e.g. by using her oracle) if it still is a validly encrypted McEliece message.

The outline of this paper is as follows: in Section 2 we will describe the McEliece public—
key cryptosystem — in a general form — and we will determine the value of the mazimum
error correcting capability that is attained by two most important decoding (deciphering)
methods for Goppa codes: the Berlekamp-Massey algorithm and Euclid’s algorithm. The
proof of this value is given in Appendix A. Section 3 is the main part of this paper; there
we will describe an effective SA-attack on the McEliece public-key cryptosystem based on
the maximum error correcting property of the above two decoding algorithms. In Section 4,
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we consider some countermeasures against the described SA-attacks. Finally, we summarize
our findings in Section 5.

Related Work
The attack described here differs from the one in [2] where it is assumed that the (original)
sender, instead of an eavesdropper, sends the same message more than once using different
random error vectors.

Also, please note that since the initial submission of this paper in 1998, an independent
description of a similar algorithm has appeared in [10].

2 The McEliece Public—Key Cryptosystem

We shall give some introductory remarks on error—correcting codes. Let V;,(¢) denote an
n—dimensional vector space over the finite field GF(q) (where ¢ is a prime power). Let C be
a k dimensional linear subspace of V,,(¢). It will be called a linear [n, k] code. The elements
in C are similarly called codewords. A generator matriz G for C is a k X n (g—ary) matrix
whose rows span C. This means that each codeword ¢ can be written as ¢ = mG (in C) with
m € Vj(g). One can describe this by saying that the information vector m is encoded in
the codeword c. The quantity n — k is the redundancy of C. It gives the number of excess
symbols in ¢ with regards to m.

Now c is sent over an (unreliable) channel and certain errors may be inflicted on c: the
received vector is r = ¢ 4+ e where e is the so called error vector. Let the Hamming weight
wpy (z) of a vector x simply count the number of non—zero coordinates of x. If the weight of
e is not too large, the received vector r coincides on many coordinates with ¢ and so ¢ can
be recovered.

To this end, the (Hamming) distance dg(X,y) between vectors x and y is defined as the
number of coordinates where x and y differ. Note that dgy(x,y) = wi(x—y). The minimum
distance d of C is defined as the minimum Hamming distance between different codewords
in C. Since C is linear, an equivalent definition would be that d is the minimum non-zero
weight in C. A code with minimum distace d will be denoted as a [n, k, d] code. The number
t = [(d —1)/2] is called the error—correcting capability of C. It follows from the triangle
inequality that for each element r in V,(¢) there can be at most one element ¢ in C at
distance < t to it. So, in principle, one can correct up to t errors inflicted to an element
in C by finding the nearest point in C. However, in practice the process of determining the
nearest point (called decoding) is often very complex. To illustrate, the problem for general
linear codes on deciding on whether there exists a point in C at a given distance of a given
point x € V,(q) is known to be in the class NP-complete, see [3]. Fortunately there are
certain classes of linear codes where decoding can be done quite effectively, see below.

In 1978, McEliece [16] proposed a public—key cryptosystem based on the general difficulty
of decoding. Consider a generator matrix GG, generating a ¢g—ary code C with parameters
[n, k, d], which is constructed by a user Bob. Let 0 <t <e = [(d —1)/2] and let 4; be an



effective decoding algorithm for C that can correct up to ¢ errors.

Now, to use this in a cryptographic setting, Bob generates a random, invertible, g—ary,
k X k matrix S and a random permutation matrix P of size n X n. The public key of Bob
is G' = SGP together with the value of . The matrices, S, G, P are kept secret. The idea
is that G’, although it generates a codespace C' which is equivalent to C, behaves like a
“random” generator matrix for which the decoding problem is hard.

Now suppose another user, say Alice, wants to encrypt a message m € Vi(q) for Bob.
Then, she generates a random error vector e of weight < ¢ and she forms:!

r=mG +e (=mSGP +e) (1)

On delivery, Bob calculates
rP~' = (mS)G +eP.

As eP~! has the same weight as e, Bob can determine mS (and eP~!) from rP~! by
means of algorithm A;. Since S is a invertible matrix, Bob can easily determine m, for
instance by the method of Gaussian elimination.

More in particular, in his scheme McEliece proposed to use binary (i.e. ¢ = 2), irreducible
Goppa codes, with n = 1024, k ~ 524 and t = 50. There exist many (different) codes of
these parameters, they are easy to generate (randomly) and efficient decoding algorithms for
them are easy to find. McEliece’s construction can be extended to larger classes of codes (for
instance non—binary Goppa codes). We will not go into detail here as that is not necessary
for our attack; it suffices to mention the following bounds on the security—related parameters
of the system.

Assumption 2.1 (The security of McEliece cryptosystem) The following observations
can be made on the parameters of a McEliece public—key cryptosystem.:

Sec—1 k =~ n/2 > 512: this makes “syndrome decoding” as well as an exhaustive search for
finding the nearest codeword to the received word infeasible;

Sec—2 50 <t < 100: this makes all kinds of techniques that are based on guessing/finding
k (almost) error free coordinates less time consuming than the methods in Sec—1, but
still infeasible (see [1, 7, 16]).

We shall now formulate a property of the decoding algorithm A;. This property will play
a crucial role in the proposed SA Attack.

Property 2.1 (Maximum Error Property (MEP)) On input of a vectorr € V,(q), the
decoding algorithm A; will either return a codeword ¢ in C at distance < t to r (if such a
codeword exists) or it will return an error—message.

'In some variants of McEliece the weight of the error vector e is always exactly equal to ¢.



The MEP property states that the decoding algorithm A;, on input r, never returns an
element ¢ € C' at distance more than ¢ from r. It is important to realize that if too many
transmission errors have occurred, the received vector r may be at distance < t form another
codeword than the transmitted one. In this case A; will not return an error message. The
probability that this occurs, will be of importance in the analysis of our SA attack and will
be discussed in Section 3.

We end this section with stating that two relevant decoding algorithms for Goppa codes
have the MEP; the proof of this will be given in Appendix A.

Proposition 2.1 Let C be a Goppa code with designed distance t, and let A; be either
Euclid’s algorithm or the Berlekamp-Massey algorithm for decoding C. Then A; has the
MEP.

3 A SA—-Attack on the McEliece Cryptosystem

We shall now describe the SA-attack on the McEliece cryptosystem. Let g'; denote the i—th
column of the (public) generator matrix G’ (1 <i < n).

Algorithm 3.1 (SA-attack on McEliece) Assume that the decoding algorithm A; used
in a McEliece cryptosystem has the Mazximal Error Property. Let r be the ciphertext sent by
Alice and intercepted by Eve (it is of the formra = mG'+e,). Then Eve does the following:

Step 1. Increase the number of errors made by Alice to exactly t¢.

In order to increase the number of errors to the maximum, Eve continues changing
a random coordinate arbitrarily (though each coordinate is selected at most once) and
sending the resulting codeword to Bob until an error message is returned, i.e. the
message is not accepted as a valid McFEliece ciphertext. Once this occurs, Fve knows
that this message contains one error too many, and thus the previous message she sent
to Bob has the mazimum number of errors. She now goes on to step 2 with this message

r.

Step 2. Determine enough error—free coordinates.

Once Eve knows she has a message with exactly t errors, she can start probing a
random coordinate (different from all preceeding choices, including those made in step
1) by changing this arbitrarily in r’, and sending the mutated message to Bob. If
an error message s returned, this coordinate was error—free. Once enough error—free
coordinates are determined, Fve can determine the plaintext in step 3.

Step 3. Determine the plaintext.

Once Eve knows enough error—free coordinates, she can solve the matrixz equation r' =
mG for the plaintext m by using Gaussian elimination on the columns corresponding
with the (known) error—free coordinates.
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Before formulating Theorem 3.1, we recall the following definition. Let A,, 0 < w < n
be the number of codewords in C of weight w. The weight distribution of an [n, k, d] code
C will be called approzimately binomial if (in the context of the problem here) the weight
distribution may be approximated as follows:

(M) (g—1)»

A, ~
w qn—k

, d<w<n, (2)

or, in other words, the cardinality of codewords with weight d is approximately (Z) (g —
1)w/qn—k'
Note that in this case,

n n n —1)¥ _ n
Y Apr Y <w)f;k ) :(1+(§Zk D) =¢"=|C]|,

as it should be. Certainly the weight distribution of V;,(¢) itself is binomial (approximation
(2) is actually an equality). We are not familiar with any result on how well the weight
distribution of Goppa codes can be approximated by the binomial distribution, but based
on [11, 12] it seems very reasonable to make that assumption here.

We will also assume that the minimum distance of the used code is odd, i.e. d = 2t + 1.

Theorem 3.1 With the notation of Section 2, let C be a McEliece—like cryptosystem based on
a g—ary code with approrimately binomial weight distribution and with a decoding algorithm
that has the mazimum error property, for instance a Goppa code. Then Algorithm 3.1 is a
SA attack on C returning the plaintert m.

Let the number of times the loop in step 1 is executed be S,. We have that S; < 2t +1
times. With large probability the loop in step 2 will be evecuted at most k +log, (k) + X +1
times, where X is equal to min(¢,2t + 1 — Sy).

So, with large probability Algorithm 3.1 is a SA attack of at most k + log, (k) + 2t + 2
rounds.

We remark that if a binary code is used, then any error—coordinate is a one, so Algorithm
3.1 can be slightly improved to a SA attack of at most £ + 2¢ + 1 rounds. We also remark,
that if in step 2 of Algorithm 3.1 ¢ rejections are encountered, then all errors introduced by
Alice have been found and all remaining coordinates are error—free. In this case deciphering
can be done much faster. Of course, the probability that this occurs is negligible.

Before proving Theorem 3.1, we need two lemmas. We first recall that the binary entropy
function h(z) is defined by: h(0) = h(1) = 0 and h(z) = —zlogy(z) — (1 — z)log,(1 — z)
(0<z<1).

Lemma 3.1 In the notation of Section 2, let e € V,,(q) be an ‘error—vector’ of weight t + 1.
Then the following holds.



i) There is at most one vector £ € V,,(q) of weight < t such that e +f € C. Also, if such an
f exists, then the weight of f is exactly equal to t, the supports (the sets of non-zero
coordinates) of e and f are disjoint and d = 2t + 1.

ii) If e is chosen uniformly random, then the probability P that a vector £ of weight at most
t exists such that e +f € C is given by

2t+1
Agiy1 ( 1 )

P = .
(1) g =1

(3)

iii) If the weight distribution of C is approximately binomial, then

n—(t+1 n— —=
P ( (t )) (q _ ]_)t < 2( (H'l))h'(nf(ﬂ_l))(q _ 1)t

qnfk - qnfk

iv) Assume that the weight distribution of the Goppa codes is indeed approzimately bino-
mial [11, 12]. If a binary Goppa code is used in a McFEliece cryptosystem, the above
probability P is negligible. To be more precies, when the parameters originally proposed
by McEliece in [16] are used, we have P < 27215, When the improved parameters as
mentioned in Assumptions 2.1 are used, we have that P < 2754,

Proof: i) Suppose that two distinct candidates for f — as mentioned in the first part of
the lemma — exist, say f and €. Then

As e+ f and e + € are two distinct members of C at distance less than d, we arrive at a
contradiction. A similar argument shows that the weight of f must be equal to ¢ and that
d=2t+1.

ii) Let
B ={(e,f) € V,,(¢) x Vo(q) | e+ € C, wy(e) =t+1, wy(f) =t}

Let ¢ be a codeword in C of weight 2t + 1. Then each (¢ + 1)-subset of the support of c
gives rise to a unique pair (e, f) € B (change the remaining ¢ non—zero coordinates of ¢ into
a zero, resp. the ¢ + 1 coordinates themselves). Conversely, each element (e,f) € B can be

obtained this way. Hence it follows that |B| = A1 (2;:11)

The total number of ‘error—vectors’ of weight t+1 in V},(q) is ( tﬁl) (g—1)*"'. The probability
P is the quotient of |B| and this number.

iii) By assumption

(2:!—1) (¢ - 1)d'

Agp1 & pr



It follows from ii) that

<2t11)(q - (2;:1) _ (ni(zﬂ))(q -1
qn* <tﬁ1) (g — 1)+ gk '

P =

To show the inequality in iii), we note that the binomial theorem implies for each 0 < m < n
the inequality

=t =) = 3 (o= > (7)o =

i=0 m

This can be rewritten as

n n" 2nlog2n
<m> = mm(n — m)n—m ~ gmlog, m(n—m) logy(n—m)

g—mlogy(m/n)—(n—m)logy((n—m)/n) _ onH(m/n)

iv) With the assumption that the weight distributions of the Goppa codes are indeed
approximately binomial, the probability P mentioned in ii) can be approximated using iii).
If we take the parameters proposed by McEliece, i.e. n = 1024, k = 524, t = 50, we obtain

9975+H(50/975) 9285

~ _ o-215
< 9500 ~ 9500 2

Y

which is a negligible. Similarly, if we take the parameters as in Assumption 2.1 we obtain
that P < 27%*. So the same holds for general McEliece cryptosystems, provided of course

the weight distribution of code is approximately binomial.
O

The following observation may be of interest to the reader. It is well known that for a
perfect ¢t—error correcting code (Qtfl)A%H = (tﬁl)(q — 1) (e.g. see [18, Problem 3.4.9]).
Substitution of this relation into (3) gives P = 1, as it should be for a perfect code: each
word at distance t+ 1 from one codeword lies at distance ¢ from exactly one other codeword.
Thus a Sloppy Alice attack on McEliece—like cryptosystem which uses a perfect code will
not work, since each vector can be decoded.

Lemma 3.2 The probability that a random k x (k + log, k) g—ary matriz has rank k is at

1
least 1 — e

Proof: Let P(k,m), m > k, denote the probability that a random &k x m binary matrix A
has rank k. Looking at the rows of A we observe that the first row of A should be non—zero,



the second row should be independent of the first, etc. This argument leads to

g (¢™ — ¢') i 1
Pk,m) = —m5——== [ (1-=)
i=0 4 i=m—k+1 q
Q m 1— &
> 1- ) l.=1—7‘1’“_kz1—i_k,
i=m—kt+1 ¢ (g—1gm qm

where (x) follows quite easily with an induction argument.
Now substituting m = £ + log, k in the above relation gives

1
P(k,k+log k) > 1 — =

O

Proof of Theorem 3.1
We start with a general observation. Consider any r = c+e where ¢ € C and wy(e) = s < t.
If we change the ith coordinate of r, which can be described by adding a vector u of weight
1 and with support {i} to r, then there are three possibilities (only two if ¢ = 2) for the
resultingr' =r+u=c+e¢e.

1. wy(e') =s—1iff e; #0 and u; = —ey;

2. wy(e') =siff e; # 0 and u; # —e;
This is impossible if ¢ = 2, because both are also non-zero in this case)

3. wy(e)=s+1iff ; = 0.

Consider step 1 of Algorithm 3.1. For the range 0 < i < 2t + 1, let e® = r() — ¢, that
is, 1) = ¢ + e®. Of course each e is unknown to Eve and e©® = e,. As wy(e®) =
wg(eyr) < tit follows that there exists a first 0 < 4 < 2¢+1 in step 1, such that wy(e®) = ¢
and wy (e®t1)) =t + 1. So, for 0 < j < i execution of the decoding algorithm A, applied by
Bob to r'9) does not result in an error-message.

Note that i can only reach the value 2¢ + 1 in the (extremely unlikely) case that the 2¢ 41
errors introduced by Eve in this step of the SA algorithm include all the errors that Alice
originally has added to c. In this case, we can immediately proceed to step 3 of the algorithm
since all other coordinates will be error—free, and contain enough independent columns of
the generator matrix G.

Next, we claim that the A, applied to rt?) = ¢ + e*D with e of weight ¢ + 1, will
result in an error-message (and we go to step 2). Indeed, if A; applied to r*Y) does not
issue an error-message then r(**1) lies at distance at most ¢ from C by MEP. This means
that there exist a codeword ¢’ in C and a vector €' in V,,(q) of weight at most ¢ such that
rit! = ¢’ + e'. Hence, we are in the situation of Lemma 3.1, from which it follows that this
situation has a negligible probability of occurring.
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In step 2, write r' = ¢ + €', with wy(e’) = t. We follow the same reasoning as above.
When the f-th coordinate in r is changed, the obtained vector r will not be accepted by A;
(i.e. without error-messages) if and only if (with a negligible probability of failure) the f-th
coordinate of €' is zero.

The number of loops in this part of the SA algorithm follows directly from Lemma 3.2.
Since we only take coordinates in step 2 different from those selected in step 1, we have to
add an extra tern +X that reflects the (marginal) possibility that X times a change made
in this step canceled out an error introduced by Alice.

Because S;+X < 2t+1 with large probability the algorithm takes at most k+10gq(k)+2t+1
rounds.

O

4 Countermeasures to SA attacks on the McEliece cryp-
tosystem

Countermeasures to the SA attack on the McEliece cryptosystem, should — at least — aim to
achieve that there is no correlation between deciphering problems and the number of errors
applied to the plaintext.

First, in the case that Bob is Eve’s oracle, Bob could come up with the idea of checking for
repeated messages. This would detect a SA-attack as described above, but nothing prevents
the attacker Eve from adding a random codeword from C to her probe each round. This
preserves the error—vector e, and will allow Eve to conduct her attack as usual with little
additional effort.

As a second idea one might consider to fix the weight of the error vector to ezactly t, (or
any t' < t). (cf. equation (1)) and to return an error—-message when in the deciphering
process an error vector is encountered of weight unequal to ¢ (or the chosen #'), that is,
irrespective of whether successful decoding is still possible.

Let us illustrate how also in this setting effective SA attacks are still possible. First of all,
suppose that the used code is non—binary. If one ‘probes’ a coordinate in step 2, say the 1—th
coordinate, twice but with different values, then Bob will always return an error-message if
that coordinate is error—free (since there are t+ 1 errors in both probes). However, if there’s
an error on that coordinate, at most one probe will return no error message (since Eve only
alters the value of e; and not the weight of the error—vector).

So we have the following situation:

e if both probes give an error-message, then e; = 0;
e if only one probe gives an error-message, then e; # 0 and e; is in fact determined;

e if none of the probes gives an error-message, then e; # 0.
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It easily follows that the plaintext can be found with around k + t probes, i.e. in around
2(k +t) rounds.

If the used code is binary, then one starts by changing any coordinate, say the i—th, of
r’. In the setting here, this will always lead to an error-message from the oracle. Now we
distinguish two possibilities.

With probability (n — t)/n one has that e; = 0. If one changes an additional coordinate
in all possible ways, then n — ¢t — 1 times another error will have been introduced, resulting
in an error-message from the oracle. Further, ¢ times an error (introduced originally by the
original sender) will be eliminated and so in this case one is back at ¢ errors, leading to a
correct decryption. In this way, all errors introduced by Alice can be found.

If e; = 1 (with probability t/n), then additionally introduced single errors will lead n — ¢
times to correct decryptions (and coordinates with e; = 0) and ¢ — 1 times to an error
message.

In the case that Bob is in fact serving as Eve’s oracle, a better countermeasure to the SA
attack technique may be to introduce further redundancy in the system to enable Bob to
check if an active eavesdropper is altering a proper ciphertext.

For instance, let Alice choose her plaintext m from Vj 44(q) instead of Vi(q). As before,
she choose a random error vector of weight < ¢. Bob has published as part of his public
key a cryptographically secure hash—function A(.) that maps elements in V;,(¢) of weight <¢
to words in Vg4(g) (the hash function can also be a system parameter). To encrypt m Eve
computes (cf. equality (1)):

r = (m||h(m|le))G'+e (= (ml[|h(e))SGP +e), (4)

where || stands for concatenation. When Bob receives a vector r’, he will attempt to decode
it. If this works, he will will find an error vector €' and an element m' € Vj(q) satisfying

r=m'G +¢€.

Finally, he checks if h(e’) equals the 64 right most coordinates of m'. If this verification
fails, an error—message is issued. This error—message will not give any information to Eve
about the original choice of e by Alice. It follows that the SA attack as described in Section
3 fails.

However, if h(.) is additive, i.e. h(e; + e2) = h(e1) + h(e2), then one can easily extend the
described SA attack. So it follows that is h(.) should be reasonable “non-linear”.

Note that the choice of 64 bits in the above example is arbitrary: this is a security parameter
of the system which indicates how many message bits are used for increased security. We
refer to [8] for a more general description of this construction. Also observe that as a side
effect of this variation to the McEliece cryptosystem it loses its inherent error—correcting
capabilities. This seems to be inevitable.
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5 Conclusion

We have introduced the Sloppy Alice attack, an adaptive chosen ciphertext attack, which is
based on the idea that (ordinary) users see no problem in overtly revealing whether or not an
encrypted message deciphers correctly. We have described such an attack on the McEliece
Public-Key cryptosystem.

The general conclusion is that such error-messages can be used to efficiently break the
McEliece Public-Key cryptosystem. Therefore, at the very least, error-messages should be
as non—descriptive as possible and users should be alerted when many encrypted messages
do not decrypt properly. We have also proposed a variant of the McEliece system which is
immune to SA attacks.

A Proof of Proposition 2.1

Before proving Proposition 2.1, we recall the definition and some properties of Goppa codes
(see [14]). Let g(z) be a monic polynomial of degree u over the finite field GF(p™) Also,
let 1,72, -..,7, be n distinct members of GF(p™) such that g(vy;) # 0 for all 1 < i < n.
The Goppa code C generated by the Goppa polynomial g(x) consists of all words ¢ =
(c1,€0y - ., n) € Viu(q) satistying

> ) (modg(x)).

i=1 L — i

The code C is linear of dimension > n — m - u. Its error—correcting capability ¢ is greater
than or equal to |u/2|. Moreover, if p = 2 and g(z) does not have multiple zeros, then
t>|u.

Actually, in his original proposal, McEliece let g(z) be an irreducible polynomial of degree
50 over GF(2').

An important features of Goppa codes is the existence of an efficient decoding algorithm
Ay for any t' less than or equal to the designed error—correcting capability ¢. In practice,
one therefore only corrects up—to the designed error—correcting capability.

Decoding goes as follows: suppose that the vector r = (ry,r,...,7,) is received. The
syndrome polynomial S, (z) of the r is defined by

Sela) =30~ (mod g())

Observe that the inverse of each polynomial x — ~; exists modulo g(x), as g(x) is non—zero
on the v;’s. It is given by the solution of u(x)(z — ;) =1 (mod g(z)). Also, the syndrome
polynomial S,(x) is zero if and only if r € C. Now suppose that r is of the following form

r=c+e ; ceC, wy(e) <t, (5)

12



Let £ be the set of non—zero coordinates of e = (e, ey,...,€,). Then the error-locator
polynomial o(x) and the error evaluator polynomial w,(z) are defined by

o@)=1[-m ; w@=>e [[ @)

i€ €€ jee\{i}

Then deg(w(z)) < deg(o(z)) < t, ged(o(z),w(x)) = 1, and the following, so—called key
equation holds:

Se(z)o(z) = w(z) (mod g(x)).

The next (general) result is crucial for the decoding process. The proof is a direct conse-
quence of [17, Theorem 8.5].

Lemma A.1 Let g(x), u = deg g(z) be defined as above. Let S(x),%(z), and Q(z) be g—ary
polynomials and let the latter two be monic. Then the following two properties are equivalent:

P-1 S(z)5(z) = Q(z) (mod g(z)), deg({2(x)) < deg(L(x)) < |u/2],
deg X(x) is minimal among all such X(z), Q(x);

P-2 S(z)%(z) = Q) (mod g(z)), deg(Q(z)) < deg(¥(x)) < |u/2],
ged(X(z), Q(z)) = 1.

Moreover, a pair (X(x) , Q(z)) satisfying P1 (or P2) will be unique.

In the remainder of this discussion, we shall first focus on the non-binary case (so ¢ =
|u/2]). If the number of errors in r is not more than ¢, then the functions o(z) and w(z)
defined above form precisely the pair mentioned in Lemma A.1 w.r.t. S(z) = S,(z). Clearly,
from o(x) and w(z) one can easily determine ¢ and e. Indeed, the error locations set &£
is completely determined by the roots of o(z). Further, for each i in £ one can compute
the error value e; (the i—th coordinate of e) from the relation e; = w(7;)/o(v;)- Finally, the
original codeword ¢ can be computed from as c =r —e.

Proposition 2.1 states a property of the two main algorithms to determine the pair o(x),
w(zx) satisfying property P1 (or P2). The Berlekamp-Massey algorithm tries to find the
pair (o(x),w(z)) satisfying the first condition (w.r.t. S(z) = Sy(z)), whereas Euclid’s algo-
rithm tries to find a pair satisfying the second condition. It is important to note that the
Berlekamp-Massey algorithm is successful if and only if Euclid’s algorithm is; they also lead
to the same result. This is irrespective of whether S(z) is a syndrome polynomial S;(z).
As is clear from Lemma A.1, the behavior of the Berlekamp—Massey algorithm and Euclid’s
algorithm with “bad” input, i.e. when inputting a syndrome polynomial of a vector r at
distance more than ¢ from the code, is the same.

Proof of Proposition 2.1 (non—binary case):
Suppose that r € V,,(g) is the input to A; and suppose that A; outputs a vector v in V,,(q)
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(so without error-message). As we do not assume that the implementation explicitly checks
that the output is actually a codeword we do not know beforehand that v € C. Certainly,
if r is of the form (5) then A; will output c. However, to prove the proposition we have to
show the converse, i.e. that equality (5) holds with ¢ = v.

To this end, let’s analyze the decoding process. First the decoding process tries — using
either Euclid’s or Berlekamp—Massey’s algorithm — to find o, () and w,(z) satisfying property
P1 (P2). If this fails we assume that an error-message will be returned. After that step the
decoding process determines the presumed set of error locations &' = {1 <i < n | opx(y;) =
0}. If £ has cardinality strictly less than deg(o,(z)) we assume that an error-message will
be given. Next, the decoding process determines a vector €' of weight < ¢ by

o[l itieB,
P10 otherwise.

Note that all e} with ¢ € £ are necessarily non-zero, as otherwise the o, and w, would not
be relatively prime, as dictated by Lemma A.1(2). Finally, the decoding process determines
v =r — €', which is returned by A;.

Now to see that v is a member of C, we consider the polynomials o () and we () (corre-
sponding to € written as € = 0+ €'), i.e. Se(2)0e () = we(x) (mod g(x)). First observe
that the pair (0e(x),we(x)) is equal to the pair (op(z),we(x)). That op(x) = oe(x) is
trivially true, because the error vectors in r = v + €’ and € = 0 + €' are the same. That
wr(z) = we (z) follows from the fact that both are polynomials of degree < deg(o.(z)) — 1
that coincide on deg(o,(z)) distinct points.

So

Sr(.I)O'r(SC) = wr(x) = We (‘T) = Se’ (‘T)O-e’ (l‘) = Se’ (.T)O'T(SC) (mOd g(x))a

that is,
(Se(z) — Ser(z))op(z) =0 (mod g(z)).

The polynomials g(z) and o,(z) are relatively prime, because a common factor would also
divide w,(z) by the key equation and this contradicts property P2. Hence, it follows that
Sy(z) = Sp(x) — Ser(z) = 0, i.e. v € C. This concludes the proof that r is of the form as
described in equality (5). It also concludes the proof of the proposition.

Proof of Proposition 2.1 (binary case):
In this case ¢ is equal to the degree of g(z). Then the crucial equation S,(z)o.(z) =
wr(z) (modg(x)) reduces to

Se(z)ope () = op(). (6)
Separating the squares from the non—squares in the expansion of the unknown o.(x) one
can write o.(z) = (ar(z))? + z(etar(x))?), one can use either Euclid’s algorithm or the

Berlekamp-Massey algorithm to find a,(z) and eta,(z) and thus a o.(x) satisfying equation
(6) (see for instance [18, Section 4.5]). As before, both algorithms lead to the same result (a
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codeword and an error vector) or they both lead to an error-message. The proof that the
output v of A; is of the form as in equation (5), with v € C is similar to the non-binary

case.
O
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