
Certificates of Recoverability with Scalable
Recovery Agent Security

Eric R. Verheul

PricewaterhouseCoopers, GRMS Crypto Group, P.O. Box 85096, 3508 AB Utrecht
Eric.Verheul@[nl.pwcglobal.com, pobox.com]

Abstract. We propose new schemes for Certificates of Recoverability
(CRs). These consist of a user’s public key and attributes, its private
key encrypted in such a way that it is recoverable by one or more Key
Recovery Agents (KRAs), plus a publicly verifiable proof of this (the
CR). In the original schemes, the level of cryptographic security employed
by the KRA and the users is necessarily the same. In our schemes the
level of cryptographic security employed by the KRA can be set higher,
in a scalable fashion, than that being employed by the users. Among the
other improvements of our schemes are its applicability to create CRs
for cryptosystems based on the Discrete Log problem in small subgroups,
most notably the Digital Signature Standard and Elliptic Curve Crypto
systems. Also, the size of the constructed proofs of knowledge can be
taken smaller than in the original schemes. We also present several new
constructions and results on the hardness of small parts, in the setting
of Diffie-Hellman keys in extension fields.

1 Introduction

In a Public Key Infrastructure there are several roles, of which we name:

Participants Who rely on public key encryption and need to be confident that
the associated private key is owned by the user mentioned in the public key.

Certification Authorities This confidence is obtained through the use of pub-
lic key certificates, which bind public keys and its attributes to a user. The
binding is achieved by having a trusted Certification Authority verifying the
user’s identity and other attributes and then digitally sign each certificate.
This verification is usually performed by an optional entity, called Registra-
tion Agent “closer to the user” than the CA.

Key Recovery Agents Sometimes a user or the organization the user works
for, requires an emergency back-up of its private key and deposits it with a
trusted Key Recovery Agent (KRA).

It could be part of a Certification Policy of a user’s organization or CA that
no certificates are issued unless the associated private key is properly escrowed.
In [27] the concept of Certificate of Recoverability (CR) is introduced which
supports such a policy. Here a user offers three components to a CA (or RA):

C1 Its public key, identity and other attributes.

C2 An encrypted copy of its private key, decryptable only by one or more Key
Recovery Agents.

C3 A publicly verifiable proof that the first two components are correctly formed,
i.e. that the private key of the public key in component C1 coincides with
the encrypted private key in component C2. This component is called the
Certificate of Recoverability.

After verifying the proof in C3, the CA issues a regular certificate on the public
key. In addition, the CA archives the three components or sends them to the
KRA(s). In a conventional escrow scheme, i.e. without the component C3, the
CA (or RA) would have setup a KRA-acceptance phase. This consists of sending
components C1 and C2 to all the KRAs to verify the validity of C2. The central
advantage of a CR scheme compared with a conventional escrow system, is that
the CA can perform this KRA-acceptance phase without having to communicate
with the KRA(s). This gives rise to the many advantages of a CR scheme, like
speed, cost effectiveness and security.

The publicly verifiable proof in component C3 should preferably have the prop-
erty of being perfectly zero-knowledge, or being a parallel version of it, see [26].
Also, observe that the user’s private key is contained in both his public key and
in component C2. So, preferably there should be a guarantee for combined secu-
rity, i.e. that this combination of encryption schemes (used by users and KRAs)
does not result in an exploit, yielding (parts of) the user’s private key. Compare
[11], where combined (in)security is discussed for the RSA cryptosystem.

In [27] a construction for the CR concept is given, which is related to a construc-
tion in [24]. Here a prime number p and a cyclic group G = 〈g〉 of order p are
generated (for instance by the CA) in which the the discrete logarithm problem
is intractable. The idea is that the public keys of users takes the form gx, where
0 ≤ x < p, is the associated private key.
In addition, the ElGamal encryption scheme [8] in a multiplicative subgroup Γ
of order ω in the (basic) finite field GF (p) is used to encrypt a copy of the private
key x in C2. The last component C3 consists of a transcript of a perfect zero-
knowledge proof of knowledge, proving that the private key x is encrypted in both
C1 and C2. Moreover, a guarantee of combined security for this construction is
given in [24].

In both [24] and [27] it is suggested to combine the construction of the system
parameters of users and KRAs. One starts with choosing the order ω as a large
prime number, such that p = 2ω + 1 is prime as well as r = 2p + 1. Then take
G as the subgroup of order p in the multiplicative group of GF (r) and Γ is the
subgroup of order ω in the multiplicative group of GF (p).
For sufficient security, r, p, ω should be of size ≥ 1000 bits. Also, to obtain a
soundness level of 2−v in the above scheme, the size of a transcript is roughly v
times the number of bits in p, e.g. 100,000 bits for v = 100 and |p| = 1000.

This type construction of CRs has two major drawbacks:

1. The level of security given by the KRA’s public key is the same as the security
given by the public keys of the users. The KRA’s private key gives access
to all users’ private keys, as it is a master key. Hence the KRA’s public key
is subject to more severe threats than the users’ public keys. For instance,
attackers wanting access to communication of different users, could form an
alliance to break the KRA’s public key. It is “best practice” that master
keys, such as KRA’s public keys, should be considerably more difficult to
break than user’s keys, i.e. public keys of the users. This is also why the
signing key of a (root) Certifying Authority is typically longer than that of
its users.
We remark that using stronger KRA’s public keys is only sensible, provided
breaking one user’s public key does not imply breaking all users’ public keys.
This is the case when using DL-based schemes. In the setting of a finite
field, breaking one discrete logarithm based public key considerably helps
in breaking other ones, but that still takes sub-exponential time (cf. [10],
[26, p.172]). In the setting of Elliptic Curve Cryptosystems, breaking one
public key doesn’t help (much) in breaking other public keys: an exhaustive
search of proportional to the square root of the group’s order still has to be
conducted.

2. The use of DL-based schemes in groups of relative short order (of say of size
160 bit), can be very beneficiary in terms of speed and data-storage. Such
groups are employed in the Digital Signature Standard and in Elliptic Curve
Crypto systems. However, the schemes from [27], forces users to use groups
of orders of at least 1024 bits to have sufficient security; making it impossible
to employ these beneficiary groups.

To remedy these two drawbacks, one could use the generic verifiable encryption
scheme that appears in [2]. However, the resulting interactive proof in C3 would
only have the property of computational zero-knowledge. Also, no guarantee for
combined security, as defined above, is given in [2].

Our System We propose two, related schemes for CRs which does not have the
above mentioned drawbacks. In our schemes, users can use any type of cyclic
group G of prime order p in which the discrete logarithm is intractable. This
means that the size of p should be larger than 160 bits; but no further restrictions
are made. The user’s private key is encrypted for the KRA, using the ElGamal
scheme in a field extension GF (pt). Here one can choose to employ the classical
ElGamal scheme, i.e. using the whole multiplicative group of GF (pt), or the
subgroup variant as proposed by Schnorr [23], using a multiplicative subgroup
of GF (pt) of suitable, large prime order.
In both variants the proofs of knowledge, C3, can be formed in a perfect zero-
knowledge fashion, the size of which can be taken considerably smaller than that
from [27] and [24]. Moreover, by employing optimal normal bases our schemes
are more efficient than comparable schemes in [27]. Finally, the guarantee for
combined security is proven to be given by the hardness of the Diffie-Hellman
Decision Problem.

Apart from key-escrow applications, our techniques can be applied in the de-
sign of electronic cash systems providing revocable anonymity [25] in which the
identity of the system’s users can be recovered when the system is abused for
criminal activities. The recovery of the identity is done with the help of trustees,
whose role can be compared with that of the above mentioned KRAs.

We remark that we do not incorporate the CR (i.e. C3) itself in the issued
certificate. There is no need to do so, and in our schemes this would also introduce
the possibility of the establishment of shadow public keys, see [12].

Outline of the paper Apart from presenting new schemes for Certificates of
Recoverability, we present several new results and constructions in multiplicative
subgroups of extension fields. In Section 2 we will first discuss new results on the
hardness of small parts of the key exchanged in the Diffie-Hellman protocol in
extension fields. Section 3 deals with proving knowledge on equality of logarithms
in the setting of extension fields. In Section 4, we present our basic scheme, using
the results of Sections 2 and 3 to prove security and functionality. In this section
we also describe generalizations, like incorporating secret sharing, and efficiency
improvements of the scheme.

2 DL-based cryptosystems over extension fields

2.1 Introduction

Let H be a multiplicative, cyclic group in which the discrete logarithm problem
is intractable and h is a generator of H of order o. The h,H and o are system
parameters given to all participants. The Diffie-Hellman (DH) key agreement [7]
was the first practical solution for allowing two parties to agree over an insecure
channel on a common secret key. The security of it lies in the Diffie-Hellman
problem of computing values of the function DH(hx, hy) = hxy. A drawback of
the basic DH scheme is that the parties involved, Alice and Bob say, can only
share one secret key. This is remedied in several schemes related to the DH
scheme, such as the ElGamal encryption scheme [8]. Here Bob picks a random
0 ≤ x < o and publishes his public key y = hx. If Alice wants to send a
message m ∈ G to Bob, then Alice picks a random 0 ≤ k < o and sends
(A, B) = (hk,m ·yk) to Bob. Upon receipt, Bob decrypts the message by forming
B/Ax which is equal to the message m.
Two other problems are related to DH problem. The first one is the Diffie-
Hellman Decision problem: given a, b, c ∈ 〈h〉 determine whether c = DH(a, b).
The DH problem is at least as difficult as the DH Decision problem. The second
related problem is the Discrete Logarithm (DL) problem in 〈h〉 is given a ∈ 〈h〉,
find 0 ≤ x < o such that a = hx. The DL problem is at least as difficult as the
DH problem. For the security of the Diffie-Hellman scheme, all three problems
should be intractable.

We call h′ a prime subgenerator of h if h′ ∈ 〈h〉 and the order of h′ is a prime
number. By virtue of the Pohlig-Hellman algorithm [17], the difficulty of the

DL problem w.r.t. h, given the factorization of the order of h, is as difficult as
solving the DL problem for all prime subgenerators of h.

Clearly, one can construct the Diffie-Hellman and related schemes in any mul-
tiplicative subgroup Γ = 〈γ〉 of GF (pt) of order ω. For solving the discrete
logarithm problem for a prime subgenerator γ′ of γ of order ω′, one can use an
index calculus (IC) based algorithm that has a heuristic expected asymptotic
running time of L(ps, 1/3, 1.923 + o(1)], see [1] and [13], where s is the smallest
divisor of t such that 〈γ′〉 is contained in a subfield of GF (pt) isomorphic to
GF (ps). If p = 2 then the constant 1.923 can be replaced by 1.587, see [6]. Al-
ternatively one can use Birthday Paradox (BP) based algorithms (e.g. Pollard’s
rho algorithm [18]) that have expected running times exponential in the size of
the ω′. More precisely, breaking the Discrete Logarithm problem can be solved
in expected O(

√
(ω′)) elementary operations in GF (pt).

This leads us to the conclusion from [13] that w.r.t. attacks known today the
intractability of the discrete logarithm problem in Γ depends on the existence of
a prime generator γ′ of γ whose minimal surrounding subfield and prime order
are of sufficient size. The particular form of the field itself, is not relevant. In
other words, if GF (pt) is the minimal surrounding field of a subgroup of prime
order, then - w.r.t. attack known today - the discrete logarithm in this subgroup
is approximately as difficult as the discrete logarithm in a subgroup of prime
order of a basic field GF (P) if the size of P is approximately equal to as t times
the size of p, and the order of both subgroups are about the same size.

Hence, a suitable generator γ in a field extension GF (pt) should have a prime
subgenerator that is not contained in one of the proper subfields and should have
a suitably large order. In [13], A.K Lenstra proposes a simple, practical method
for the construction of a field extension and suitable generator generating a
relatively small subgroup in it. The idea is that one fixes the size of the prime
number p and a number t such that pt is “large” enough. Then one looks for
a large prime factor $ in the value of the cyclotomic polynomial φt(p). The
latter can be done using trial divisions with the primes up to, say 105; any other
reasonable bound or method will do. Finally, one constructs a generator γ of
order $, by looking for an element different from 1, such that g(pt−1)/$ = 1. If
one factorizes pt − 1, one can also find a generator of the whole multiplicative
group of GF (pt).

Using the above construction, the size of $ is about ϕ(t) · |p| bits (where ϕ(.)
is Euler’s totient function) which grows as least as fast as pt/ log(log(t)). The
complexity of the BP based algorithms grows much faster, than the complexity
of the IC based algorithms. So if the size of the surrounding field is large enough
to resist the sub-exponential, IC based algorithms, then the order $ will usually
be large enough “automatically” to resist the BP based algorithms as well.

2.2 Partial Security of DL-based cryptosystems over extension
fields

Let γ ∈ GF (pt) be a generator of a group Γ of order ω. In our applications, γ
is not contained in a genuine subfield of GF (pt) and ω is either equal to a large
prime number $ or to pt− 1. We start with some well-known notions; if J is an
element of GF (p)[X], i.e. a polynomial with coefficients in the basis field GF (p),
then for any natural number i, the i-th coefficient of J is denoted by [J]i. If
F =

∑t
i=0 aiX

i is an irreducible polynomial of degree t in GF (p)[X], then we
can describe the extension field GF (pt) as GF (p)[X]/(F), i.e. each element f
in GF (pt) can be uniquely written modulo F , as a polynomial of degree < t. In
this setting, for any natural number i less than the degree of F , we let the i-th
coefficient [f]i denote [f mod F]i.
There are many such representations and some have special properties. For in-
stance, if t + 1 is also prime and that p is a primitive element modulo t + 1,
then one can use a special irreducible polynomial, the zeros of which form an
optimal normal basis. Which such a basis, one can do exponentiation in GF (pt)
even more efficiently than in a basic field of comparable size. See [13], where it
is also shown how such pairs p, t, and the special irreducible polynomial can be
easily generated.
Some constructions, like the coefficients, are dependent of the concrete repre-
sentation of GF (pt) one has chosen. Throughout the remainder of this paper
we assume that one has chosen an irreducible polynomial F , yielding a concrete
representation of GF (pt).
Below we prove that computing coefficients (i.e. “small parts”) of the Diffie-
Hellman key, is as difficult as computing the whole key. These results are similar
to the ones in [4] where the security of the Most Significant Bits (MSB) of
Diffie-Hellman keys in a basic finite field GF (p) is studied.

Theorem 2.1 We use the above terminology. Given an oracle that computes a
coefficient of a Diffie-Hellman key γxy on basis of γx, γy, then there exists a
polynomial time algorithm that solves the Diffie-Hellman problem in Γ = 〈γ〉.

Proof: The function that returns a coefficient of a fixed position less than t is
linear and is hence a summing function (see below) by Proposition 2.3 below.
The result now immediately follows from Theorem 2.4 below. 2

It follows in particular that any bit of the Diffie-Hellman key in GF (2t) is as
hard to compute as the whole. This offers a more conventional alternative for
the new variant of the Diffie-Hellman protocol mentioned in [4] having exactly
this property. In our situation, the size of p is not small (≥ 160 bit or more) and
we immediately obtain the following corollary, which is crucial for the security
of our scheme. This result immediately follows directly from Theorem 2.1.

Corollary 2.2 Form, in the above terminology, the public key ψ = γx with
private key 0 < x < ω. Then solving S ∈ GF (p) from the ElGamal encryption
(γk, S · [ψk]i) for some fixed 0 ≤ i ≤ t− 1 and 1 ≤ k ≤ ω random, is equivalent
to solving the Diffie-Hellman problem in Γ = 〈γ〉.

Theorem 2.1 is a consequence of a much broader result. Let n be a non-negative
number and consider the integers e1, ..., en (the “exponents”) and the elements
λ1, ..., λn ∈ GF (pt)\{0} (the “multipliers”) and consider the following summing
function Z(.) : 〈γ〉 → GF (pt) defined by:

Z(κ) =
n∑

i=1

λi · κei .

The number n is called the degree of the summing function and the number
d = gcd(e1, e2, ..., en, ord(γ)) is called the order of the summing function. Note
that if all multipliers are elements of the basic field GF (p), then its form is
representation-independent.
The following result implies that the collection of summing functions is rather
large.

Proposition 2.3 If f(.) is a linear mapping from GF (pt) onto GF (p) (i.e. a
functional), then the restriction of f(.) to 〈γ〉 is a summing function of order 1.
Moreover, the multipliers occurring in the definition of summing function can be
easily determined. In particular it follows that the restriction to 〈γ〉 of the trace
function Tr(.) of GF (pt) onto the base subfield GF (p) defined by (cf. [16]):

Tr(α) = α + αp + ... + αpt−1
.

is a summing function of order 1.

Proof: It is evident that the trace function is a summing function of order 1.
From [16, Theorem 2.24] it follows that (the restriction to 〈γ〉 of) any functional
is of the form α → TrK(β ·α) for some fixed β ∈ GF (pt) and is hence a summing
function of order 1.
We note that given a functional f(.), of which we assume it can be efficiently
evaluate in our concrete representation, one can easily compute the associated β
(and thus the multipliers) from f(1), f(γ), ..., f(γt−1) using the following equal-
ity: 



1 1 ... 1
γ γp ... γpt−1

...
... ...

...
γt−1 γ(t−1)p ... γ(t−1)pt−1


 ·




β
βp

...
βpt−1


 =




f(1)
f(γ)

...
f(γt−1)


 (1)

Recall that γ is an element in GF (pt)) that can not be embedded in a proper
subfield of GF (pt), so γ, γp, ..., γpt−1

are all distinct and the above matrix is a
non-singular matrix of the Vandermonde type. 2

Theorem 2.4 In the above terminology, let Z(.) be a summing function of order
d. Also let O be an oracle that on basis of any γa and γb computes Z(γab). Then
there exists a polynomial time algorithm that computes γabd on basis of γa and
γb. That is, for d = 1 there exists a polynomial time algorithm that solves the
whole Diffie-Hellman problem in 〈γ〉.

Proof: Let V = γx and W = γy be any elements of 〈γ〉. With the help of oracle
O one can not only determine Z(γxy), but also Z(γx(y+i)) (by giving the oracle
the input V and γi ·W) for i = 0, ..., n − 1, where n denotes the order of Z(.).
This results in the following equality:




1 1 ... 1
V e1 V e2 ... V en

...
... ...

...
V (n−1)·e1 V (n−1)·e2 ... V (n−1)·en


 ·




λ1 · γxye1

λ2 · γxye2

...
λn · γxyen


 =




Z(γxy)
Z(γx(y+1))

...
Z(γx(y+n−1)


 (2)

The above matrix is of the Vandermonde type. Let us first consider the case
that all V e1 , V e2 , ..., V en are all different. Then this matrix is regular, and so
from equality (2) one can determine the elements γxy·e1 , γxy·e2 , ...γxy·en . From
this one can determine the element γxyd by taking a suitable combination of the
γxy·e1 , γxy·e2 , ...γxy·en .
To prove the general case, observe that if V ei and V ej are equal then so are
γxyei and γxyej . So by restricting to a maximal collection of different V ei , one
can determine γxyd by the above argument. 2

We again use the above terminology. An element ω = γx ∈ 〈γ〉 can also be
described in terms of its minimal polynomial of degree t. This representation is
not unique, as all conjugates of ω, i.e. ω, ωp, ωp2

, ..., ωpt−1
, have the same minimal

polynomial. The i-th order coefficient of this polynomial equals

(−1)iSi(ω, ωp, ωp2
, ..., ωpt−1

), (3)

where Si denotes the elementary symmetric polynomial in t variables of degree
i. One can easily prove that expression (3) yields a summing function. By virtue
of [13, Lemma 2.4] it follows that for 1 ≤ i ≤ t − 1, the order of this summing
function can not contain prime factors ≥ i. That is, the order of this summing
function is very small. Hence it follows from Theorem 2.4 that for 1 ≤ i ≤ t− 1,
determining an i-th order coefficient of the minimal polynomial of the Diffie-
Hellman key, is as difficult as determining the whole key.

Note that one can easily determine the minimal polynomial of γxy on basis of
the minimal polynomial of either γx and y or the minimal polynomial of γy and
x. On this idea variants of the Diffie-Hellman scheme can be based in which
the involved parties send each other the minimal polynomials γx, γy rather than
the elements themselves. The exchanged secret is the minimal polynomial of the
element γxy, or some of the non-zero order coefficients of this. More generally
one can take the value of a summing function of low order, evaluated in γxy.
It easily follows from Theorem 2.4 that such variants are as at least as secure as
the original Diffie-Hellman scheme in our concrete representation of 〈γ〉. As mini-
mal polynomials are representation-independent it directly follows that breaking
such a variant means breaking the original Diffie-Hellman scheme in any repre-
sentation of 〈γ〉. The converse, which is less interesting for the security of our
variant, is also true but its proof is not elementary. The proof follows by deter-
mining zeros of the exchanged minimal polynomials in a fixed representation,

which can be done in deterministic polynomial time by the technique of H.W.
Lenstra Jr. in [15].
The above variant is used in [5] to construct a variant of the Diffie-Hellman
scheme in which the number of bits exchanged is only a third of what is normally
used, while the offered security against attacks known is the same.

Thus far, we have only discussed the unlikeliness that non-noisy oracles exist,
that always give correct answers. Now we will briefly discuss the possible exis-
tence of noisy oracles O that on basis of uniformly random γx and γy in 〈γ〉
compute Z(γxy), with non-negligible probability ε. In the general context non-
negligible means that 1/ε is less than a polynomial in log2(|GF (pt)|) = t · log2(p).
A first indication that such oracles do not exist follows from the easily verified
observation that with such an oracle one can solve the Diffie-Hellman Decision
problem in 〈γ〉, that is considered hard. See [19].
In our context (the scheme in section 4) it’s more natural to say that a probability
ε is non-negligible if 1/ε is less than a polynomial in log2(p). Indeed, a (small)
parameter t is designed and then fixed; only the parameter p then varies. We
have a heuristic proof for the following variant of Theorem 2.4 (of which similar
variants of Proposition 2.1 and Corollary 2.2 can be easily deduced).

Theorem 2.5 Let Z(.) be a summing function on Γ of degree 1. Given a (noisy)
oracle O that on basis of uniformly random γx and γy computes Z(γxy), with
non-negligible probability ε then there exists a probabilistic polynomial time algo-
rithm that solves the Diffie-Hellman problem in 〈γ〉.

Heuristic Proof: Let V = gx and W = gy be any elements of 〈γ〉. With the help
of oracle O one can determine Z(γ(x+i)(y+j)) with probability ε for randomly
chosen 0 < i, j < ω (by giving the oracle the input gi · V and gj ·W).

We now perform the following operations. Consider k randomly pairs (i1, j1), ...(ik, jk)
where is k somewhat larger than (d + log2(d))2/ε, and give the oracle the in-
put gi · V and gj ·W resulting in outputs o1, ..., ok. Now consider the following
equality:




(V i1W j1γi1j1)e1 ... (V i1W j1γi1j1)en

(V i2W j2γi2j2)e1 ... (V i2W j2γi2j2)en

...s ...
...

(V ikW jkγikjk)e1 ... (V ikW jkγikjk)en


 ·




δ1

δ2

...
δk


 =




o1

o2

...
ok


 (4)

We denote the matrix (respectively vector) on the lefthand side (4) by R (re-
spectively (δ), and the vector on the right hand side of (4) by (o). Next we look
at all d row numbers and look at the associated d× d regular submatrix R′ and
the vector (o′) of size d. We then try to uniquely solve (δ) from the equality
R′ · (δ) = (o′) and store this vector.
As soon as we obtain two coinciding results (δ′) and (δ′′) the algorithm finishes

and outputs a candidate for γxy by assuming that

(δ′) =




λ1 · γxye1

λ2 · γxye2

...
λn · γxyen




and by taking a suitable combination of the δi (as in the proof of Theorem 2.4).
We now indicate that with non-negligible probability this algorithm indeed re-
turns γxy. If a vector (o′) is not correct, then we may assume that any resulting
(δ′) behaves like a random element in GF (pt). So, the probability that two
resulting (δ′) and (δ′′) coming from incorrect (o′) and (o′′) is negligible.
By the choice of k, we can expect with large probability that at least (t+log2(t))2

coordinates of the vector on the right hand side of equation (4) are correct. Now
we assume that the matrix on the lefthand side (4) behaves like a random matrix
with entries of GF (pt). One can easily show that the probability that any matrix
of size (d + log2(d)) × d is of rank d is larger than 1/d. So with non-negligible
probability one can expect two different submatrices R′, R′′ and whose associated
(o′) and (o′′) are correct. 2

3 Double Deckers in Field Extensions

From now on we let G = 〈g〉 be a cyclic group of order prime order p in which
the discrete problem is intractable. We introduce a new notion, that combines
G, GF (p)[X], and GF (pt).

For a polynomial J in GF (p)[X] we define the power polynomial, gJ by

deg(J)∑

i=0

g[J]iXi.

J is called the exponent polynomial of gJ . If F =
∑t

i=0 aiX
i is an (irreducible)

polynomial of degree t in GF (p)[X], then we obtain a natural equivalence on
the power polynomials: two power polynomials are equivalent iff the difference of
their exponent polynomials is a multiple of F ; the resulting equivalence group is
called the group of power polynomials modulo F . It is clear that we can represent
power polynomials modulo F as t tuples. The collection of power polynomials,
resp. power polynomials modulo a polynomial F of degree t will be denoted by
E , resp. E/(F).

Let P1 =
∑m

i=0 UiX
i and P2 =

∑n
i=0 ViX

i be two power polynomials. Then the
product of P1 · P2 is defined as the power polynomial

∑max(m,n)
i=0 Ui · ViX

i The
inverse P−1

1 of P1 is defined as
∑m

i=0 U−1
i Xi. If P1 = gA and P2 = gB , then it

follows that the P1 ·P2 = gA+B and P−1
1 = g−A. Furthermore, if C =

∑r
j=0 cjX

j

is a polynomial in GF (p)[X], then PC
1 is defined as

∑k=m+r
k=0

∏
i+j=k U

cj

i Xk. If
follows that if P1 = gA, that then PC

1 is equal to gA·C .

Proposition 3.1 Let P1 = gA =
∑m

i=0 UiX
i be a power polynomial of degree m,

and let F be an (irreducible) polynomial of degree t in GF (p)[X]. Then (without
knowing A) one can determine gA mod F .

Proof: For a proof, let F =
∑t

i=0 fiX
i, with ft 6= 0. Observe that

gA− am
ft
·F ·Xt−m

= gA · (Um)−f−1
t F ·Xt−m

.

which is a power polynomial of degree < m, equivalent with P1 modulo F and
constructible without knowledge of A. The proposition now follows from an
inductive argument. 2

As we remarked before, we represent any p-ary polynomial modulo an irreducible
p-ary polynomial F of degree t (i.e. an element in GF (pt)) as a p-ary polynomial
of degree < t. We will also represent any p-ary power polynomial modulo F
as one of degree < t. By the virtue of Proposition 3.1 we can determine this
representation without explicitly knowing the exponent polynomial.
As before, we let γ be an element of a multiplicative group of GF (pt), that is
not contained in a proper subfield of GF (pt) and let ψ ∈ Γ = 〈γ〉. Also, let the
order of γ be denoted by ω.
Now, suppose that person P (for prover) gives the elements µ ∈ GF (pt) and
M ∈ E to person V (for verifier) and states:

Assertion DD: There exists a number k less than ω such that

µ = γk M = g(ψk) (5)

The following protocol, a variant of the double decker protocol in [24], lets P
prove statement DD without revealing anything about k or ψk.

Protocol 3.2

Pr-1 The Prover generates a random number l less than the order ω of γ, cal-
culates ν = γl, N = g(ψl) and hands ν and N over to V.

Pr-2 V generates a random h ∈ {0, 1}, and presents h as a challenge to P.
Pr-3 P calculates z = l − h · k (mod ω) and hands z over to V.
Pr-4 V verifies that both

Pr-4a. ν = γz · µh, and
Pr-4b. N = g(ψz) if h = 0 and N = M (ψz) if h = 1.

The protocol satisfies the following properties which are easily verified.

Completeness If statement DD is true, then V will accept it.
Soundness If L-E is not true, then with a probability less than 1/2 it will be

accepted by V.
Security If L-E is true, then V can not learn any secret information on k or

ψk by following the protocol.

Using the Fiat-Shamir heuristic [9] one can convert Protocol 3.2 in a non-
interactive scheme with knowledge error 2−v for a security parameter v. To
this end, let H(.) be a secure hash function with output length equal to v bits.
For i = 1, ..., v the Prover chooses 0 < li < ω randomly en calculates (as in Pr-1
above) νi = γli and Ni = g(ψli). Then he computes the v-tuple

Z = (z1, ..., zv) = (l1 − h1 · k (mod ω), ..., lv − hv · k (mod ω))

where hi denotes the i-th bit of H = H(µ,M, ν1, N1, ..., νv, Nv). The non-
interactive proof consists of Z and H. To verify, for i = 1, ..., v, one re-constructs
νi, Ni by:

νi = γz
i · µhi

Ni =
{

(ψz) if hi = 0
M (ψz) if hi = 1

and then verifies that H(µ,M, ν1, N1, ..., νv, Nv) equals H. The size of the non-
interactive proof is about ω · v bits.
As is also explained in [3], a (dishonest) Prover could try to guess the v bits,
hi, and then form the accompanying responses zi. If the Prover’s ability to try
this is bound by K times, then the probability of failure is of the non-interactive
proof equals K · 2−v. The choice of v should take this into account. In [3] it is
indicated that for a probability of failure less then 2−w, one should take v = 2w,
that is K = 2v. Of course this is rather arbitrary.

4 Our Scheme

As before, let G = 〈g〉 be a multiplicative, cyclic group of prime order p in
which the discrete logarithm problem is intractable. We will not further specify
G, but in a typical example G is the multiplicative group of a finite field or
the group of points on an elliptic curve over a finite field. The g,G and p are
system parameters that are not yet fixed; only the size |p| of p is fixed. As in the
scheme of [27], we’ll generate g, G, p until we find one for which we can construct
a suitable KRA encryption scheme (see below). The user’s public key will be of
the form y = gx where 0 ≤ x < p is the user’s private key.

Our security objective is to design an asymmetric cryptosystem based on the
Discrete Logarithm problem in a finite field that has “asymmetric security” of
D bits, e.g. D ≥ 1024. To this end, choose a number t such that t · |p| ≥ D. Next,
construct random (user) system parameters g,G, p such that p is of size t. Next
look for a large enough prime number $ in the value of the cyclotomic polynomial
φt(p) (see Section 2), to support the security objective. If this fails, generate new
random (user) system parameters g, G, p. Next, generate γ in GF (pt) of order
ω either equal to pt − 1 or $. For the first generation, a factorization of pt − 1
is required. So γ either generates the whole multiplicative group of GF (pt), or
a subgroup of order ω. In either case, the Discrete Logarithm is infeasible w.r.t.
attacks known today (see Section 2).

Both options correspond with the two types of ElGamal encryptions (classical
and subgroup based) the KRA can use, each leading to a different scheme for
CRs. In either case, the KRA’s public key will be of the form ψ = γxK where
0 ≤ xK < ω is the KRA’s private key.
Both schemes actually support CRs for a variable number s (with 1 ≤ s ≤ t,
of different public/private keys ys−1, ..., y0 ∈ G owned by the same user (e.g.
supporting different applications or Certification Policies) simultaneously. So,
by taking s = 1 in the below schemes we get a Certificate of Recoverability as
defined by Young & Yung, for higher s we get a multiple version of this.

Scheme 4.1 The user generates his s private keys, x0, ..., xs−1 and forms the
following three components:
C1 The user’s public keys ys−1 = gxs−1 , ys−2 = gxs−2 , ..., y1 = gx1 , y0 = gx0 ,

his identity and other attributes.
C2 The s + 1 tuple:

(A,Bs−1, Bs−2, ..., B0) = (γk, x−1
s−1 · [ψk]s−1, x

−1
t−2 · [ψk]s−2, ..., x

−1
0 · [ψk]0),

where 0 < k < ω is randomly chosen by the user.
C3 A transcript proving that the xs−1, xs−2, ..., x1, x0 appearing in component

C1, are also appearing in component C2, i.e. are recoverable from it by the
KRA.

Observe that, provided that the components C1 and C2 are correctly formed,
then the KRA can first recover ψk from A, then x−1

i and thus xi from Bi

(i = s−1, ..., 0). The transcript in C3, consists of two parts. The first part is the
(t− s)-tuple

(dt−1, dt−2, ..., ds) = (g[ψk]t−1 , g[ψk]t−2 , ..., (g[ψk]s). (6)

The second part is a transcript of a non-interactive proof that there exists a
0 < k < ω such the following two equalities in power polynomials hold:

g(ψk) = dt−1X
t−1 + dt−2X

t−1 + ... + dsX
s +

+y
Bs−1
s−1 Xs−1 + y

Bs−2
s−2 Xs−2 + ... + yB0

0 (7)

γk = A

If the above two equalities hold for some k, then this shows that C1 and C2
are correctly formed, i.e. contain the same xi for i = s− 1, ..., 0. It is clear from
Section 3 how to form the transcript in the schemes as mentioned in Scheme 4.1.
With respect to the choice of the security parameter v, 2−60 seems like a reason-
able probability of failure. Moreover, certification is usually an on-line process,
in which a users authenticates himself using an access code given by an RA.
Hence one can easily incorporates an online challenge of the Certification Au-
thority in the input of the hash resulting in the challenges h1, ..., hv, and puts
a maximum time on the certification session, then 240 seems like a reasonable

bound for K. This means that v = 100 seems like a reasonable choice for the
security parameter.

As an illustration, suppose that G is a group consisting of a collection of points
on an elliptic curve of prime order p of 160 bit length, then one can compare this
with the security of the ElGamal encryption system in the multiplicative group
of a basic field of size 1600 bits, cf. [14]. So to get the same level for security
for the KRA - as in the construction of CRs in [27] - one could employ our
subgroup variant in GF (pt) with t = 10. This would result in a CR of about
64,000 bits, much smaller than the length of a comparable CR in the schemes in
[27], which would be of size 160,000 bits. Observe that t = 10 also facilitates the
use of optimal normal bases (as mentioned in Section 2.2), making our scheme
also more efficient than comparable schemes in [27]. To get more security for the
KRAs, say “1900 bits”, one could use a similar technique in GF (pt) with t = 12.
This would then still result in a CR of 64,000 bits, still smaller than the length
of the above mentioned transcript.

4.1 Security Analysis of our Scheme

With respect to security, let us first look at Scheme 4.1 with s = t. Then the
first part of component C3 (mentioned in formula (6)) is empty, and it follows
that C3 is a transcript of a proof of knowledge from which no secret information
can be extracted. Now, an attacker could try to find one of the user’s private
keys, xi say, using one the following three strategies. First, he could try to find
xi from component C1, which would mean breaking the discrete logarithm in
G.
Secondly, he could try to find xi from component C2, which would mean break-
ing the Diffie-Hellman problem in Γ by Corollary 2.2. This problem is designed
to be more difficult (in a scalable fashion) than to break the public key of the
user.
Finally, he could try to find xi from combining the information from the compo-
nents C1 and C2. As the discrete logarithm problems employed in C1 and C2
are only related by the number p, it seems unlikely that combining both com-
ponents C1 and C2 will be very beneficiary. We’ll now briefly discuss a formal
result in this direction.

Theorem 4.2 Let the ElGamal encryptions used for the KRA be classical, i.e.
the generator γ generates the whole multiplicative group of GF (pt) and let i be
one of 0, ..., t− 1. Also, let the factorization of pt − 1 be known. Then using an
efficient algorithm P computing xi from C1 and C2, one can either construct

1. an efficient algorithm PDL solving the discrete logarithm problem in G, or
2. an efficient algorithm PDDH solving the Decision-Diffie-Hellman problem

w.r.t. the base γ.

Sketch of Proof: Let γ′ be any prime subgenerator of γ. Using the technique
appearing in the proof of [24, Proposition 1], one can verify that using an efficient
algorithm P computing xi from C1 and C2, one can either construct

1. an efficient algorithm PDL solving the discrete logarithm problem in G, or
2. an efficient algorithm PDDH(γ′) solving the Decision-Diffie-Hellman problem

w.r.t. the base γ′.

So, using P, one either obtains an efficient algorithm PDL solving the discrete
logarithm problem in G, or one obtains efficient algorithms solving Decision-
Diffie-Hellman problem w.r.t. all prime subgenerators in the multiplicative group
of GF (pt). From the latter algorithms, one obtains an efficient algorithm PDDH
solving the Decision-Diffie-Hellman problem w.r.t. the base γ. 2

Let us assume that the DH decision problem in Γ is as hard as the DL problem
in Γ , which is constructed to be more difficult than the DL problem in G. Then
we can conclude from the previous result that the best strategy an attacker can
follow to determine x from C1 and C2 is to break the DL problem in G. Hence,
at least from a theoretical point of view, using the classical ElGamal scheme in
our scheme is more secure than using the subgroup variant. We don’t expect
that using the subgroup variant of the ElGamal in our scheme is less secure in
practice than using the classical ElGamal scheme.

We are left with a general security proof of the Scheme 4.1, let s = s0 with
1 ≤ s0 < t. Now, the idea is that we will construct an arbitrary “output” of our
scheme with s = s0 from an arbitrary “output” with s = t. So, if one has an
advantage in breaking the scheme with s = s0, one also has this advantage for
breaking the scheme with s = t. As we have shown the security for the scheme
with s = t this would conclude the security proof of the scheme with s = s0 also.

For this construction, let C1, C2 and C3 be an arbitrary output for the scheme
with s = t. Forming C1’ and C2’ for the scheme with s = s0 simply means
removing some information from C1 and C2. Also, from the transcript in C3’
one obtains a representation of the power polynomial g(ψk) (see equality (7)). So
we can form the first part (dt−1, dt−2, ..., ds) of C3’ by simply taking the highest
t− s coefficients of the power polynomial g(ψk). Finally, the second part of C3’
must be a random transcript that proves that equality (7) holds. However, the
second part of C3 provides us with such a random transcript.

4.2 Improvements and generalizations of our Scheme

In our basic scheme, the user has total freedom in choosing his private keys which
might be useful in some situations (e.g. when using already existing public keys).
However, if there are no restrictions on the private keys other than that they
should be uniformly random, then the component C2 can be reduced, like is
done in [27]. This consists of first forming γk where 0 < k < ω is randomly
chosen by the user and choosing the private xi equal to [ψk]i for i = 0, ..., s− 1.
On basis on this one can form components C1 and C2, the latter which only
needs to contain γk as x−1

i · [ψk]i = 1. The component C3 is formed as before.
The output of this scheme is s · ω bits shorter than the basis scheme.
An additional advantage of this improvement would be that the construction of
shadow public keys, see [12], would be more difficult than in the basic scheme.

Indeed, it is not hard to leak 20 bits of information in each of the yi appearing
in C1 in the basic scheme as they can be independently chosen. So, if t = 12
then this would that 240 bits subliminal bits can be leaked in the component
C1. Of course, this problem arises with any private key-escrow scheme where
the user can construct his public key himself and which allows for several, say
12, (certified) public keys to be used. Nonetheless, using the above mentioned
improvement reduces this risk, as the public keys are no longer generated inde-
pendently.
In our scheme, we have used a public key ψ of which the private part xK was
in the possession of only one Key Recovery Agent. It is well-known that Scheme
4.1 can very conveniently support the use of a KRA’s public key in which the
private key is secretly shared among n share-holders. For instance, suppose all
KRA share-holders have chosen a private sub-key 0 < xi < ω, and a public
sub-key ψi = γxi . Then their product ψ will be the shared KRA public key;
it easily follows that private keys of users can reconstructed without the KRA
share-holders having to come together. In the subgroup variant of our scheme
where ω is a prime number, participating KRA’s can (without the need for a
trusted dealer), for any 1 ≤ k ≤ n, construct a public key ψ in such a way that
if it is used in our basic scheme, then the user’s private key can be reconstructed
only if k out of n KRA sub-holders cooperate. See [20] and [21]. Note that if one
wants to use this technique to implement a k out of n key recovery scheme, one
requires

(
k
n

)
which grows exponentially in k.

Adapting the technique of [22] to our scheme is then a better option. This means
that the private part, i.e. logγ(ψ) of the public key ψ is “virtual”, i.e. is not
known by anybody. It might be more practically constructible to secretly share
the private part of ψ by all participating KRAs using the technique indicated
above. The user encrypts his private keys using our scheme resulting in the
components C1, C3, C3. The user supplements this by using the non-interactive
Public Verifiable Secret Sharing Scheme in [22], secretly sharing ψk among the
KRA’s, where k coincides with the one in equality (7). The choice of the number
of KRAs required to retrieve the user’s private key, is up to the user himself. Of
course, accepting this choice is up to the Certificate Authority and should be in
accordance with its policy. One can easily prove that supplementing the Public
Verifiable Secret Sharing Scheme to our scheme does not weaken security.

5 Conclusion

We have proposed two new schemes for Certificates of Recoverability, making it
possible for a PKI user to escrow its private keys in a publicly verifiable way, by
means of encrypting it with a Key Recovery Agent’s public key and depositing
this with any other party. In our schemes, the cryptographic security employed by
the Key Recovery Agents can be set higher, in a scalable fashion, than that being
employed by the users. Among the other improvements of our scheme are its
applicability to create CRs for cryptosystems based on the Discrete Log problem
in small subgroups such as Elliptic Curve Cryptosystems, Also, the size of the

constructed proofs of knowledge can be taken smaller. We have additionally
shown two ways to support secret sharing in our scheme. Finally, we have also
presented several new constructions and results on the hardness of small parts,
in the setting of Diffie-Hellman keys in extension fields.

References

1. M. Adleman, J. DeMarrais A subexponentional algorithm over all finite fields,
CRYPTO ’93 Proc., Springer-Verlag, 147-158.

2. N. Asokan, V. Shoup, M. Waidner, Optimistic Fair Exchange of Digital Signatures,
Eurocrypt’98 Proc., Springer-Verlag, 591-606.

3. M. Bellare, P. Rogaway, Random Oracles are Practical: A paradigm for Design-
ing Efficient Protocols, 1st ACM Conference on Computer and Communications
Security, ACM Press, 1993, 62-73.

4. D. Boneh, R. Venkatesan, Hardness of Computing the Most Significant Bits of
Secret Keys in Diffie-Hellman and Related Schemes, CRYPTO’96 Proc. Springer-
Verlag, 129-142.

5. A.E. Brouwer, R. Pellikaan, E.R. Verheul, Doing More with Fewer Bits, Asi-
acrypt’99 Proc., Springer-Verlag.

6. D. Coppersmith, Fast evaluation of logarithms in fields of characteristic two, IEEE
Trans. on IT, 30, 1984, 587-594.

7. W. Diffie, M.E. Hellman, New directions in cryptography, IEEE Trans. on IT 22,
1976, 644-654.

8. T. ElGamal, A Public Key Cryptosystem and a Signature scheme Based on Discrete
Logarithms, IEEE Trans. on IT 31(4), 1985, 469-472.

9. A. Fiat, A. Shamir, How to prove yourselve: Practical solutions to identification
and signature problems, CRYPTO’86 Proc., Springer-Verlag, 186-194.

10. D.M. Gordon, Discrete Logarithms in GF (p) using the number field sieve, SIAM
J. of Discrete Math., 6, 124-138.

11. J. H̊astad, On Using RSA with Low Exponent in a Public Key Network,
CRYPTO’85 Proc., Springer-Verlag, 403-405.

12. J. Kilian, F.T. Leighton, Fair Cryptosystems Revisited, Crypto’95 Proc., Springer-
Verlag, 208-221.

13. A.K. Lenstra, Using Cyclotomic Polynomials to Construct Efficient Discrete Loga-
rithm Cryptosystems over Finite Fields, ACISP97 Proc., Springer-Verlag, 127-138.

14. A.K. Lenstra, E.R Verheul Selecting Cryptographic Key Sizes, these proceedings.
15. H.W Lenstra, Finding isomorphisms between two finite fields Math. of Comp., 56

(1991), 329-347.
16. R. Lidl, H. Niederreiter, Finite Fields, Addison-Wesley, 1983.
17. S.C. Pohlig, M.E. Hellman, An improved algorithm for computing logarithms over

GF (p) and its cryptographic significance, IEEE Trans. on IT, 24 (1978), 106-110.
18. J.M. Pollard, Monte Carlo methods for index computation (mod p), Math. of

Comp., 32 (1978), 918-924.
19. M. Naor, M. Yung, Universal one-way functions and their cryptographic applica-

tions, In 21st Annual ACM Symposium on Theory of Computer Science, 1997.
20. T.P. Pedersen, Distributed Provers with Applications to Undeniable Signatures,

Eurocrypt’91 Proc., Springer-Verlag, 221-242.
21. T.P. Pedersen, A Treshold Cryptosystem Without a Trusted Party, Eurocrypt ’91

Proc., Springer-Verlag, 522-526.

22. B. Schoenmakers, A Simple Publicly Verifiable Secret Sharing Scheme and Its Ap-
plication to Electronic Voting, CRYPTO’99 Proc., 148-164.

23. C. Schnorr, Efficient signature generation by smart cards, Journal of Cryptology,
4, 1991, 161-174.

24. M. Stadler, Publicly Verifiable Secret Sharing, Eurocrypt’96 Proc., 190-199.
25. M. Stadler, J.-M. Piveteau, J. Camenisch, Fair Blind Signatures, Eurocrypt’95

Proc., 209-219.
26. D.R. Stinson Cryptography: theory and practice, CRC press, 1995.
27. A. Young, M. Yung, Auto-Recoverable Auto-Certifiable Cryptosystems, Euro-

crypt’98 Proc., 16-31.

This article was processed using the LATEX macro package with LLNCS style

