
Selecting Cryptographic Key Sizes

Extended Abstract

Arjen K. Lenstra1, Eric R. Verheul2

1 Citibank, N.A., 1 North Gate Road, Mendham, NJ 07945-3104, U.S.A,
arjen.lenstra@citicorp.com

2 PricewaterhouseCoopers, GRMS Crypto Group, P.O. Box 85096, 3508 AB Utrecht,
The Netherlands, Eric.Verheul@[nl.pwcglobal.com, pobox.com]

Abstract. In this article we give guidelines for the determination of
cryptographic key sizes. Our recommendations are based on a set of explicitly
formulated hypotheses, combined with existing data points about the
cryptosystems. This article is an abbreviated version of [15].

1 Introduction

1.1. Introduction. In this article we offer guidelines for the determination of key sizes
for symmetric cryptosystems, RSA, and discrete logarithm based cryptosystems both
over finite fields and over groups of elliptic curves over prime fields. Key size
recommendations are scattered throughout the cryptographic literature or may be
found in vendor documentation. Unfortunately it is often hard to tell on what premises
(other than marketability) the recommendations are based. As far as we know [15], of
which this is an extended abstract, is the first uniform, clearly defined, and properly
documented treatment of this subject for the most important generally accepted
cryptosystems. We formulate a set of explicit hypotheses about future developments
and apply these uniformly to existing data about the cryptosystems. The resulting key
size recommendations are thus obtained in a uniform mechanical way independent of
further assumptions or non-scientific considerations. Despite our attempt to be
objective we do not expect that our model is to everyone’s taste. The underlying
model can, however, easily be changed without affecting the overall approach,
thereby making this article useful also for those who object to our results.

Our suggestions are based on reasonable extrapolations of developments that
have taken place during the last few decades. This approach may fail: a single bright
idea may prove that any of the currently popular cryptographic protocols is

Disclaimer. The contents of this article are the sole responsibility of its authors and not of their employers.
The authors or their employers do not accept any responsibility for the use of the cryptographic key sizes
suggested in this article. The authors do not have any financial or other material interests in the conclusions
attained in this paper, nor were they inspired or sponsored by any party with commercial interests in
cryptographic key size selection. The data presented in this article were obtained in a two stage approach
that was strictly adhered to: formulation of the model and collection of the data points, followed by
computation of the lower bounds. No attempt has been made to alter the resulting data so as to better match
the authors (and possibly others) expectations or taste. The authors made every attempt to be unbiased as to
their choice of favorite cryptosystem, if any. Although the analysis and the resulting guidelines seem to be
quite robust, this will no longer be the case if there is some ‘off-the-chart’ cryptanalytic or computational
progress affecting any of the cryptosystems considered here. Indeed, according to at least one of the present
authors, strong long-term reliance on any current cryptosystem without very strong physical protection of
all keys involved – including public ones – is irresponsible.

considerably less secure than expected. It may even render them completely insecure,
as illustrated by the sudden demise of the once popular knapsack-based
cryptosystems. In this article we discuss only cryptosystems for which it is believed to
be unlikely that such catastrophes will ever occur. For some of these systems non-
trivial, but non-catastrophic, new cryptanalytic insights are obtained on a fairly regular
basis. So far, a gradual increase in key sizes has been an effective countermeasure
against these new insights. It is the purpose of this article to give an idea by how much
key sizes have to be increased to maintain a comfortable margin of security.

If sufficiently large quantum computers can be built, then all asymmetric key
cryptosystems discussed in this article are insecure (cf. [21]). It is unclear if quantum
computers are feasible at all, and our suggestions do not take them into account.
Neither do we consider the potential effects of molecular-computing (cf. [19]).

1.2. Run time convention. All our run time estimates are based on actual run times or
reliable estimates of run times on a 450MHz Pentium II processor. A ‘PC’ always
refers to this processor. Computing power is often measured in Mips Years (MY),
where a Mips Year is defined as the amount of computation that can be performed in
one year by a single DEC VAX 11/780. This measure has often been criticized and we
agree with the concerns expressed in [24]. Nevertheless we use MY here as well. We
use the convention that one year of computing on a PC is equivalent to 450 MY, but
ultimately all our estimates are based on run times on a PC and not on the actual or
our definition of MY. The two definitions are, however, sufficiently close (cf. [15]).
Our MY figures are therefore compatible with MY figures found elsewhere. We write
MMY for one million MY.

1.3. Lower bounds. Our guidelines are lower bounds in the sense that keys of sizes
equal to or larger than the recommended sizes attain at least a certain specified level
of security. From a security point of view it is acceptable to err on the conservative
side by recommending keys that may be slightly larger than actually required. Most
guidelines are therefore obtained by systematically underestimating the effort required
for a successful attack. Thus, keys are estimated to be weaker than they are in reality,
which is acceptable for our purpose of finding lower bounds. In some cases slight
overestimates of the attack effort are used instead, but in those cases there are other
factors that ensure that the desired level of security is achieved.

1.4. Equivalence of attack efforts. We present key size recommendations for several
different cryptosystems. For a certain specified level of security these
recommendations may be expected to be equivalent in the sense that the
computational effort or number of MY for a successful attack is more or less the same
for all cryptosystems under consideration. So, from a computational point of view the
different cryptosystems offer more or less equivalent security when the recommended
key sizes are used. This computationally equivalent security should not be confused
with, and is not necessarily the same as, equipment cost equivalent security, or cost
equivalent security for short. We say that two systems offer cost equivalent security if
accessing or acquiring the hardware that allows a successful attack in a certain fixed
amount of time costs the same amount of dollars for both systems. Note that although
the price is the same, the two different attacks may require different hardware.

Following our guidelines does not necessarily result in cost equivalent security. In
(4.5) we indicate how our guidelines may be changed to obtain cost equivalence,
thereby possibly giving up computational equivalence.

The most important reason why we opted for computationally equivalent
security as opposed to cost equivalent security is that we found that computational
equivalence allows rigorous analysis, mostly independent of our own judgment or
preferences. Analysis of cost equivalence, on the other hand, depends on subjective
choices that change over time, and that have a considerable effect on the outcome.
Thus, for cost equivalence there is a whole spectrum of ‘reasonable’ outcomes,
depending on one’s perception of what is reasonable. In (4.5) we present three points
of the spectrum.

2 The cryptographic primitives

2.1. The Wassenaar Arrangement. The Coordinating Committee for Multilateral
Export Controls (COCOM) was an international organization regulating the mutual
control of the export of strategic products from member countries to countries that
jeopardize their national security. The Wassenaar Arrangement (WA) is a follow-up
of the COCOM regulations. In this article we limit ourselves to the 5 types of
cryptographic primitives for which a maximum key size that does not require an
export license is given in the WA (December 1998, cf. www.wassenaar.org).

We distinguish the cryptographic primitives into symmetric-key (or secret-
key) and asymmetric-key (or public-key) cryptosystems and briefly mention
cryptographic hash functions as well.

2.2. Symmetric key cryptosystems.
Description. In symmetric key cryptosystems the parties share a secret key. The size
of the key is its number of bits and depends on the symmetric key cryptosystem.
Wassenaar Arrangement. The maximum symmetric key size allowed by the WA is
56 bits for ‘niche market’ applications and 64 bits for ‘mass market’.
Attacks. Despite many years of research, no method has been published that breaks a
DES-encrypted message substantially faster than exhaustive key search, i.e., trying all
256 different keys. The expected number of trials of exhaustive key search is 255.
Software data points. In 1997 a DES key was successfully retrieved after an Internet
search of approximately 4 months (cf. www.rsa.com/des). The expected computing
power required for such a software exhaustive key search is underestimated as 0.5
MMY (cf. (1.3)). This estimate is based on the Pentium based figures that a single
DES block encryption with a fixed key requires 360 clock cycles or 500 clock cycles
with a variable key (cf. [6], [1]). Our estimate lies between two DEC VAX 11/780
estimates that can be found in [7] and [20]. Half a million MY is roughly 13500
months on a PC or 4 months on 3500 PCs, because an exhaustive key search can be
evenly divided over any number of processors. For a proper security analysis one
therefore has to keep track of the total computational power of the Internet.
Special-purpose hardware data points. At the cost of a one-time investment a
hardware attack is substantially faster than a software attack. In 1980 a $50 million
parallel DES key searching machine was proposed with an expected search time of 2

days (cf. [9], [8]), followed in 1993 by a $1 million, 3½ hour design (cf. [26]). In 1998
a $130,000, 112 hour machine was built (cf. [13], [11]).
Effectiveness of guessing. There is always the possibility that someone may find a
key simply by guessing it. For reasonable key sizes the probability that the correct key
is guessed is small: even for a 50-bit key there is a total probability of one in a million
that it is found if 109 people each make a different guess. With the same effort, the
probability of success halves for each additional key bit. Exhaustive key search is
nothing more than systematic guessing.
Incomplete attacks. The success probability of exhaustive key search is proportional
to the fraction of the key space searched.
Cryptanalytic progress. We assume the existence of a generic symmetric key
cryptosystem of arbitrary key size that is about as fast as the DES and for which
exhaustive key search is the best attack. Thus, for a b-bit key a successful attack can
be expected to require on the order of 2b1 invocations of the underlying function.

2.3. Asymmetric key cryptosystems. If the private key of an asymmetric key
cryptosystem can be derived from the public key, then the system can be broken.
What the keys consist of, and how hard it is to break the system, depends on the type
of asymmetric key cryptosystem. We distinguish the following three types:
1. Classical asymmetric systems;
2. Subgroup discrete logarithm systems;
3. Elliptic curve systems.

2.3.1. Classical asymmetric systems. These refer to RSA and traditional discrete
logarithm (TDL) systems, such as the Diffie-Hellman scheme and ElGamal systems.
RSA description. In RSA the public key contains a large non-prime number, the RSA
modulus, which is chosen as the product of two large primes. The security of RSA is
based on the difficulty of the integer factorization problem. The size of an RSA key
refers to the bit-length of the RSA modulus. This should not be confused with the
number of bits required to store an RSA public key, which is usually slightly more.
TDL description. In a TDL system the public key consists of a finite field Fp of size p,
a generator g of the multiplicative group (Fp)* of Fp, and an element y of (Fp)* that is
not equal to 1. We assume that the field size p is such that p1 has a prime factor of
roughly the same order of magnitude as p. The private key is the discrete logarithm of
y with respect to g, i.e., the smallest positive integer m such that gm = y. The private
key m is at least 1 and at most p2. The security of TDL systems is based on the
difficulty of computing discrete logarithms in the multiplicative group of a finite field.
The size of a TDL key refers to the bit-length of the field size p. The number of bits
required to store a TDL public key is larger, since it contains g and y as well.
Wassenaar Arrangement. Both the maximal RSA modulus size and the maximal field
size allowed by the WA are 512 bits.
Attacks. Factoring an RSA-modulus n by exhaustive search amounts to trying all
primes up to n. Finding a discrete logarithm by exhaustive search requires on the
order of p operations in Fp. Thus, if exhaustive search were the best attack on these
systems, then 112-bit RSA moduli or 56-bit p’s would give security comparable to the
DES. However, there are much more efficient attacks and much larger keys are

required. The methods to attack these two entirely different problems are similar,
which is why we treat RSA and TDL systems as the same category.

The fastest factoring algorithm published today is the Number Field Sieve
(NFS), which is based on an idea by John Pollard. On heuristic grounds NFS can be
expected to require time proportional to

3/23/1))ln(ln()ln())1(o9229.1(e]L[nnn 
to factor an RSA modulus n, where the o(1) term goes to zero as n goes to infinity.
This run time is called subexponential in n because as n goes to infinity it is less than
nc for any c > 0. The storage requirements of the NFS are proportional to L[n]. If p is
a prime number then a discrete logarithm variation of the NFS (DLNFS) finds a
discrete logarithm in Fp in expected time proportional to L[p].

These run time estimates cannot be used directly to estimate the number of
operations required to factor a certain n or to compute discrete logarithms in a certain
Fp. For n and p of about the same size, L[n] and L[p] are approximately equal if the
o(1)’s are omitted, but the discrete logarithm problem in Fp is considerably more
difficult than factoring n. As shown by extensive experiments the estimates can be
used for limited range extrapolation. If one knows, by experimentation, that factoring
an RSA modulus n using NFS takes time t, then factoring some other RSA modulus m
> n will take time close to tL[m]/L[n] (omitting the o(1)’s), if the sizes of n and m do
not differ by too much. If, however, m is much bigger than n, then the effect of the
o(1) going to zero can no longer be ignored (cf. [23]), and tL[m]/L[n] will be an
overestimate of the time to factor m. The same run time extrapolation method applies
to the DLNFS.
Software data points. The largest published factorization using the NFS is that of the
512-bit number RSA155, an RSA modulus of 155 decimal digits (cf. [5]). This effort
was estimated to cost at most 20 years on a PC with at least 64Mbytes of memory (or
a single day on 7500 PCs). It is less than 104 MY and corresponds to fewer than
31017 operations, whereas L[10155] = 21019 (omitting the o(1)). This shows that L[n]
overestimates the number of operations to be carried out for the factorization of n. The
run time given here is the actual run time of the RSA155 factoring effort and should
not be confused with the estimates given in [24] which appeared around the same time
and which are 100 times too high (cf. [17]). This run time is only a fraction of the cost
of a software DES key search, but the NFS requires much more memory.

Practical experience with the DLNFS is still limited. It is generally accepted
that, for any b in the current range of interest, factoring b-bit integers takes about the
same amount of time as computing discrete logarithms in (bx)-bit fields, where x is a
small constant around 20. Below we do not present key size suggestions for TDL
systems and recommend using the RSA key size suggestions for TDL systems as well.
Special-purpose hardware data points. Special-purpose hardware devices are
occasionally proposed for factoring algorithms, but no useful data points have been
published. Due to the complexity of the underlying factorization algorithms and the
corresponding hardware design it is for any special-purpose hardware factoring device
difficult to achieve parallelization at a reasonable cost and at a scale comparable to
hardware attacks on the DES, but it may not be impossible. Given the current state of
the art we consider it to be unlikely that special-purpose hardware will have a

noticeable impact on the security of RSA moduli. But we find it imprudent to ignore
the possibility altogether, and warn against too strong reliance on the belief that
special-purpose attacks on RSA are impossible. To illustrate this, the quadratic sieve
factoring method was implemented successfully on a Single-Instruction-Multiple-Data
architecture (cf. [10]). A SIMD machine is by no means special-purpose hardware, but
it could be relatively cheap compared to ordinary PCs.
Effectiveness of guessing. Key sizes for classical asymmetric systems have to be
larger than 512 to obtain any security at all. Breaking the system by guesswork is thus
out of the question. So, from this point of view, classical asymmetric systems seem to
be more secure than symmetric key cryptosystems. For RSA there is more to this
story, as shown below.
Incomplete attacks. Both the NFS and the DLNFS are effective only if run to
completion. RSA, however, can be attacked also by the Elliptic Curve Method
(ECM). After a relatively small amount of work this method produces a factor with
much higher probability than mere guesswork: if one billion people were to attack a
512-bit RSA modulus, each by running the ECM for just one hour on their PC, then
the probability that one of them would factor the modulus is more than 10%. For a
768-bit RSA modulus the probability of success of the same computational effort is
about one in a million. Admittedly, this is a very low success probability for a
tremendous effort – but the success probability is orders of magnitude larger than
guessing, while the amount of work is of the same order of magnitude. No discrete
logarithm equivalent of the ECM has been published. See also (5.9).
Cryptanalytic progress. Classical asymmetric systems are the prime example of
systems for which the effectiveness of cryptanalysis is steadily improving. The current
state of the art of factoring (and discrete logarithm) algorithms should not be
interpreted as the culmination of many years of research but is just a snapshot of work
in progress. We illustrate this point with a list of some of the developments since the
early seventies, each of which had a substantial effect on the difficulty of factoring or
computing discrete logarithms: continued fraction method, linear sieve, quadratic
sieve, multiple polynomial variation, Gaussian integers, loosely coupled
parallelization, multiple large primes, special number field sieve, structured Gaussian
elimination, number field sieve, singular integers, lattice sieving, block Lanczos or
conjugate gradient, and sieving-based polynomial selection for NFS. We assume that
this trend of continuous algorithmic developments will continue in the years to come.

It has never been proved that breaking RSA is equivalent to factoring the
RSA modulus. Indeed, for RSA there is evidence that the equivalence does not hold if
the public exponent is small. We therefore explicitly assume that breaking RSA is
equivalent to factoring the RSA modulus. In particular, we assume that the public
exponent for RSA is sufficiently large. Furthermore we restrict ourselves to TDL
based protocols for which attacks are provably equivalent to either computing discrete
logarithms or solving the Diffie-Hellman problem. There is strong evidence that the
latter problem is equivalent to computing discrete logarithms

2.3.2. Subgroup discrete logarithm systems.
Description. Subgroup discrete logarithm (SDL) systems are like traditional discrete
logarithm systems, except that g generates a relatively small, but sufficiently large,
subgroup of the multiplicative group (Fp). The size of the subgroup is prime and is

indicated by q. The private key m is at least 1 and at most q1. The security of SDL is
based on the difficulty of computing discrete logarithms in a subgroup of the
multiplicative group of a finite field. These can be computed if discrete logarithms in
the full multiplicative group can be computed. Therefore, the security of an SDL
system relies on the sizes of both q and p. Nevertheless, the size of an SDL key simply
refers to the bit-length of the subgroup size q, where the field size p is given by the
context. The actual number of bits required to store an SDL public key is substantially
larger than the SDL key size q, since the public key contains p, g and y as well.
Wassenaar Arrangement. The maximum SDL field size allowed by the WA is 512
bits – there is no maximum allowed key size. A popular subgroup size is 160 bits.
Attacks. Methods that can be used to attack TDL systems also can be used to attack
SDL systems. The field size p should therefore satisfy the same security requirements
as in TDL systems. But the SDL problem can also be attacked directly by Pollard’s
rho method, which dates from 1978, and by Shanks’ even older baby-step-giant-step
method. These methods can be applied to any group if the group elements allow a
unique representation and the group law can be applied efficiently – unlike the
DLNFS it does not rely on any special properties that group element representations
may have. The expected run time of Pollard’s rho method is exponential in q, namely
1.25q group operations, i.e., multiplications in Fp. Its storage requirements are very
small. Shanks’ method needs about the same number of operations but needs storage
for about q group elements. Pollard’s rho method can easily be parallelized over any
number of processors resulting in a linear speedup (cf. [25]). Furthermore, there is no
post-processing involved in Pollard’s rho (unlike the (DL)NFS, where after
completion of the first step a cumbersome matrix step has to be carried out), although
for the parallelized version substantial amounts of storage space should be available.
Data points. We have not been able to find any useful data about the effectiveness of
the parallelized Pollard rho attack on SDL systems. Our figures below are based on an
adaptation of data points for elliptic curve systems, cf. (4.1).
Effectiveness of guessing. As long as SDL keys are not shorter than 112 bits
(permitted by the WA for EC systems, see below), guessing the private key requires
guessing at least 112 bits. This may safely be assumed to be infeasible.
Incomplete attacks. The success probability of Pollard’s rho method is, roughly
speaking, proportional to the square of the fraction of the work performed, i.e., for
any x, 0  x  1, the chance is x2 that the key is found after performing a fraction x of
the expected 1.25q group operations.
Cryptanalytic progress. Since the invention of Pollard’s rho method in 1978 no new
results have been obtained that threaten SDL systems, with the exception of the
efficient parallelization of Pollard’s rho method in 1996. The only reasonable
extrapolation of this rate of progress is to assume that no substantial progress will be
made. The results in [18, 22] that, in a certain generic model of computation, Pollard’s
rho is essentially the best one can do may be comforting in this context. It should be
kept in mind, however, that the generic model does not apply to any practical situation
that we are aware of, and that the possibility of a subexponential attack against SDL
systems cannot be ruled out.

2.3.3. Elliptic curve systems.
Description. Elliptic curve (EC) systems are like SDL systems, except that g
generates a subgroup of the group H of points on an elliptic curve E over a finite
field Fp. The size q of the subgroup generated by g is prime and the private key m is in
the range [1,q1]. The security of EC systems is based on the difficulty of computing
discrete logarithms in a subgroup of H. These can be computed if discrete logarithms
in H can be computed. This problem is known as the ECDL problem. No better
method to solve the ECDL problem is known than by solving the problem in all cyclic
subgroups and by combining the results. The difficulty of the ECDL problem
therefore depends on the size of the largest prime divisor of the order of H (which is
close to p). For that reason, p, E, and q are usually chosen such that the sizes of p and
q are close. Thus, the security of EC systems relies on the size of q, and the size of an
EC key refers to the bit-length of the subgroup size q. The actual number of bits
required to store an EC public key may be substantially larger than the EC key size q,
since the public key contains p, E, g, and y as well.
Wassenaar Arrangement. The maximum EC key size allowed by the WA is 112 bits,
with unspecified field size. For prime fields a popular size is 160 bits both for the field
and subgroup size. For non-prime fields a popular choice is p = 2163 with a 161-bit q.
Attacks. A DLNFS equivalent or other subexponential method to attack EC systems
has never been published. The most efficient method published to attack EC systems
is Pollard’s parallelizable rho method, with an expected run time of 0.88q group
operations. The number of field multiplications per group operation is about 12.
Software data points. The cost of the group operation is proportional to (log2(q))2.
From the estimates given on www.certicom.com/chal we derive that a 109-bit EC
system with p = 2109 should take about 18,000 years on a PC (or, equivalently, one
year on 18,000 PCs) which is about 8 MMY. This computation is feasible on a large
network of computers. It also follows from www.certicom.com/chal that an attack on
a 109-bit EC system with a prime p of about 109 bits should take about 2.2 MMY.
This is an underestimate because it is based on primes of a special form (cf. [12]).
Nevertheless, it is used as the basis for extrapolations to estimate the effort required
for software attacks on larger EC systems over prime fields (cf. (1.3)).
Special-purpose hardware data points. In 1996 an attack against a 120-bit EC system
with p = 2155 was sketched (and published 3 years later, cf. [25]). Building this design
would cost $10 million and it would take about 32 days. The designers claim that an
attacker can do better by using current silicon technology and that further optimization
may be obtained from pipelining. This is further discussed in (3.6).
Effectiveness of guessing. As long as EC keys are not shorter than the 112 bits
permitted by the WA, guessing the private key requires guessing at least 112 bits
which may safely be assumed to be infeasible.
Incomplete attacks. As with Pollard’s rho attack against SDL systems its success
probability is proportional to the square of the fraction of the work performed.
Cryptanalytic progress. The remarks made above on SDL systems apply here as well.
It is therefore not unreasonable to base our figures below on the assumption that there
will be no substantial progress in the years to come. For EC systems this is not
something we feel comfortable with, because EC related cryptanalytic results are
obtained quite regularly. So far, most of these results affected only special cases. We

therefore make the explicit assumption that curves are picked at random and that only
curves over prime fields are used. Even then, it is not hard to find researchers who
believe that the rich mathematical structure of elliptic curves may still have some
surprises in store. Others argue that the ECDL problem has been studied extensively,
and that EC systems are sufficiently secure. We do not want to take a position in this
argument and we simply suggest two key sizes for EC systems: one based on ‘no
cryptanalytic progress’ and one based on ‘cryptanalytic progress at the same rate as
for RSA and TDL systems’. The reader may then interpolate between the two types of
extrapolations according to her own taste.

2.4. Cryptographic hash functions.
Description. A cryptographic hash function is a function that maps an arbitrary length
message to a fixed length ‘hash’, satisfying various properties that are beyond the
scope of this article. The size of the hash function is the length in bits of the hash.
Attacks. Cryptographic hash functions can be attacked by the birthday paradox attack.
The number of hash function applications required by a successful attack is expected
to be proportional to 2x/2, where x is the size of the hash function. We assume that
cryptographic hash functions have to be ‘any collision-resistant’. For ‘target collision-
resistant’ hashes the sizes may be halved assuming the hash function is properly used.
Software data points. In [3] 241, 345, 837, and 1016 Pentium cycles are reported for
MD4, MD5, SHA-1, and RIPEMD-160, respectively. Thus, the software speed of a
hash function application as used by a birthday paradox attack is comparable to the
software speed of a single DES block encryption (cf. (2.2)).
Special-purpose hardware data points. Special-purpose hardware has been designed
for several hash functions. We may assume that their speed is comparable to the speed
of special-purpose exhaustive key search hardware.
Cryptanalytic progress. We assume the existence of a generic cryptographic hash
function of speed comparable to the existing functions mentioned above and for which
the birthday paradox attack is the best attack. It follows that an attack on our generic
symmetric key cryptosystem of key size b can be expected to take about the same time
as an attack on our generic cryptographic hash function of size 2b. Thus, a lower
bound for the size of the latter follows by doubling the lower bound for the size of
symmetric key cryptosystems. Because of this simple ‘rule of thumb’, sizes of
cryptographic hash functions are not discussed in the sequel.

3 The model

3.1. Key points. The choice of cryptographic key sizes depends primarily on the
following four points:
I. Life span: the expected time the information needs to be protected.
II. Security margin: an acceptable degree of infeasibility of a successful attack.
III. Computing environment: the expected change in computational resources

available to attackers.
IV. Cryptanalysis: the expected developments in cryptanalysis.
Efficiency and storage considerations may also influence the choice of key sizes, but
since they are not directly security-related they are not discussed here.

3.2. Life span. In the table in Section 4 key sizes are suggested, depending on the
expected life span of the cryptographic application. It is the user’s responsibility to
decide until what year the protection should be effective.

3.3. Security margin. A cryptosystem can be assumed to be secure only if it is
considered to be sufficiently infeasible to mount a successful attack. It is hard to
quantify what this means precisely. One could, for instance, decide that a key size for
a certain cryptosystem is secure if breaking it would be, say, 106 times harder than the
largest key size that can currently be broken. There are several problems with this
approach. First of all, the choice 106 is rather arbitrary. Secondly, there is no reason to
believe that the ‘largest key broken so far’ accurately represents the best that can
currently be done. In the third place, for some of the cryptographic primitives
considered here data may not be available or they may be outdated (SDL, TDL),
thereby ruling out uniform application of this approach. We opt for a different
approach.
Hypothesis I. As the basis for our extrapolations we assume that the DES was at least
sufficiently secure for commercial applications until 1982 because it was introduced
in 1977 and stipulated to be reviewed every five years. We therefore hypothesize that
in 1982 a computational effort of 0.5 MMY was believed to provide an adequate
security margin for commercial DES applications against software attacks (cf. (2.2)).
As far as hardware attacks are concerned, we assume that the “$50 million, 2 days”
DES key searching machine (cf. (2.2)) from 1980 was not considered to be a serious
threat for commercial applications of the DES at least until 1982. We stress
‘commercial applications’ because, even for 1980 budgets, $50 million and 2 days are
not an insurmountable obstacle for certain organizations. Our hypothesis is further
discussed below (cf. (3.8)). We note that quite different assumptions allow an
approach similar to ours, though the resulting guidelines will be different (cf. (4.4)).

3.4. Computing environment.
Hypothesis II. To estimate how the computing power available to attackers may
change over time we use a variation of Moore’s law. Moore’s law states that the
density of components per integrated circuit doubles every 18 months. A widely
accepted interpretation of this law is that the computing power per chip doubles every
18 months. There is some skepticism whether this law will, or even can, hold much
longer. Therefore we hypothesize a less technology dependent variation that so far
seems to be sufficiently accurate: every 18 months the amount of computing power
and random access memory one gets for a dollar doubles. Thus, for the same cost one
gets a factor of 21012/18  100 more computing power and fast memory every 10 years,
either in software on multipurpose chips (PCs) or using special-purpose hardware.

To illustrate this, it is not unreasonable to assume that a cheaper and slower
version of the 1980 “$50 million, 2 days” DES key searching machine would be a “$1
million, 100 days” machine, i.e., 50 times less hardware and therefore 50 times
slower. According to our version of Moore’s law the $1 million machine may be
expected to be 28.7 times faster in 1993, since there are 1213 = 188.66 months
between 1980 and 1993. Since 28.7 406 the 1993 version would need about 100/406
days, i.e., about 6 hours, which is indeed close to the 3½ hours required by the $1
million design from [26]. On the other hand, further extrapolation suggests that in

1998 a $1 million machine may be expected to take 0.6 hours, or that a $130,000
machine would take 4.6 hours, i.e., about 24 times faster than the machine that was
actually built in 1998 (cf. [13]). This anomaly is due to the fact that building the
$130,000 machine was, relatively speaking, a small scale enterprise where every
doubling of the budget would have quadrupled the performance (cf. [14]).
Hypothesis III. Our version of Moore’s law implies that we have to consider how
budgets may change over time. The US Gross National Product shows a trend of
doubling every ten years: $1630 billion in 1975 measured in 1975 dollars, $4180
billion in 1985 measured in 1985 dollars, and $7269 billion in 1995 in 1995 $’s. This
leads to the hypothesis that the budgets of organizations doubles every ten years.
Combination of Hypotheses I, II, and III. If in 1982 an amount of computing power
of 0.5 MMY is assumed to be infeasible to invest in an attack, then 100 ( 21000.5)
MMY is infeasible in 1992. Furthermore, 2104 ( 200100) MMY is infeasible in
2002, and 4106 MMY is infeasible in 2012.

3.5. Cryptanalysis.
Hypothesis IV. It is impossible to say what cryptanalytic developments will take
place, or have already taken place surreptitiously. We find it reasonable to assume that
the pace of (published) future cryptanalytic findings and their impact are not going to
vary dramatically compared to what we have seen from 1970 until 1999. For classical
asymmetric systems the effect of cryptanalytic developments illustrated in (2.3) is
similar to Moore’s law, i.e., 18 months from now we may expect that attacking the
same classical asymmetric system costs half the computational effort it costs today, cf.
(4.2). For all other systems we assume that no substantial cryptanalytic developments
will take place, with the exception of elliptic curve systems for which we use two
types of extrapolations: no progress and progress à la Moore.

3.6. Software versus special-purpose hardware attacks. The proposed key sizes in
the next section are obtained by combining Hypotheses I-IV with the software based
MY data points. This implies that all extrapolations are based on ‘software only’
attacks and result in computationally equivalent key sizes (cf. (1.4)). One may object
that this does not take special-purpose hardware attacks into account. Here we discuss
to what extent this is a reasonable decision, and how our results should be interpreted
to take special-purpose hardware attacks into account as well.
Symmetric key systems. In 1980 the DES could either be broken at the cost of 0.5
MMY, or using a “$50 million, 2 days” machine. This is consistent with our version
of Moore’s law and the 1993 design from [26]. Thus, it seems reasonable to assume
that a DES attack of one MMY is comparable to an attack by [$10 million, 20 days,
1980]-hardware or, using Moore’s law, by [$200/210.66 million = $125,000, 1 day,
1996]-hardware. It also follows that the 1982 relation between software and special-
purpose hardware attacks on the DES has not changed. Thus, if one assumes that the
DES was sufficiently resistant against a special-purpose hardware attack in 1982, the
same holds for the symmetric key sizes suggested for the future, even though they are
based on extrapolations of ‘software only’ attacks. Our estimates and the resulting
cost of special hardware designs are consistent with the estimates given in [2] and [4].
EC systems. The cost of a software attack on a 109-bit EC system with p = 2109 was
estimated as 8 MMY, so that attacking a 120-bit EC system with p = 2155 should take

about (2(120109)/2)(155/109)2  91 times longer, i.e., about 730 MMY. The [$10
million, 32 days, 1996]-hardware design attacking a 120-bit EC system with p = 2155

(cf. (2.3.3)) should thus be comparable to 730 MMY. However, that design was based
on 1992 technology which can be improved by using 1996 technology. So, by
Moore’s law, the ‘upgraded’ [$10 million, 32 days, 1996]-hardware design could be
comparable with 7306.35  4600 MMY. It follows that an EC attack of one MMY is
comparable to [$70,000, 1 day, 1996]-hardware.

We find that one MMY is equivalent to [$70,000 to $125,000, 1 day, 1996]-
hardware. Thus, it is tempting to suggest that one MMY is approximately equivalent
to [$105, 1 day, 1996]-hardware; more generally, that one MMY would be equivalent
to [$105/22(y1996)/3, 1 day, y]-hardware in year y. This conversion formula would
allow us to go back and forth between software and special-purpose hardware attacks,
and make our entire model applicable to hardware attacks as well.

In our opinion the consistency between the two conversions is a mere
coincidence. In the first place, the estimate holds only for relatively simple minded
DES or EC cracking devices for EC systems over non-prime fields (i.e., those with p
= 2k), not for EC systems over prime fields or full-blown PCs. For prime fields the
hardware would be slower, whereas in software EC systems can be attacked faster
over prime fields than over non-prime fields (cf. (2.3.3)). Thus, for special-purpose
hardware attacks on EC systems over prime fields the consistency no longer holds.
Secondly, the pipelined version of the EC-attacking special-purpose hardware from
[25] would be about 7 times faster (cf. [27]), so that also for special-purpose hardware
attacks on EC systems over non-prime fields the consistency between DES and EC
attacks is lost. The prime field version of the pipelined device would be 24 to 25 times
slower than the non-prime field version (cf. [27]). The details of the pipelined device
have not been published, cf. [28].

As mentioned in (2.3.3), we consider only EC systems that use randomly
selected curves over prime fields. We show that we may base our recommendations
on ‘software only’ attacks, if we use the software based data point that a 109-bit EC
system can be attacked in 2.2 MMY (cf. (2.3.3)). The 2.2 MMY underestimates the
true cost, and is lower than the 8 MMY cost to attack the non-prime field of
equivalent size. The latter can be done using non-pipelined special-purpose hardware
in a way that is consistent with our DES infeasibility assumption, as argued above.
For special-purpose hardware a non-prime field can be attacked faster than a prime
field of equivalent size, so if we use the naive DES-consistent hardware conversion,
then the hypothetical special-purpose hardware that follows from extrapolation of the
2.2 MMY figure to larger prime fields underestimates the true hardware cost. That
means that the resulting key sizes are going to be too large, which is acceptable since
we are deriving lower bounds (cf. (1.3)). The more realistic prime field equivalent of
the non-DES-consistent pipelined device for non-prime fields is, based on the figures
given above, at least 248/(2.27) > 8 times slower than our hypothetical hardware.
This implies that the more realistic hardware would lead to lower key sizes than the
hypothetical hardware. Thus, it is acceptable to stick to the latter (cf. (1.3)). It follows
that, if one assumes that the DES was sufficiently resistant against a special-purpose
hardware attack in 1982, the same holds for the EC key sizes suggested for the future,
even though they are based on extrapolations of ‘software only’ attacks.

SDL systems. The same holds for SDL systems because our analysis of SDL key sizes
is based on the EC analysis as described below.
Classical asymmetric systems. For classical asymmetric systems we do not consider
special-purpose hardware attacks, as argued in (2.3.1). The issue of software attacks
on classical asymmetric systems versus special-purpose hardware attacks on other
cryptosystems is discussed below.
Equipment cost comparison of software and special-purpose hardware attacks. Our
recommendations below are computationally equivalent and, as argued above, they all
offer security at least equivalent to the 1982 security of the DES, both against
software and special-purpose hardware attacks. That does not necessarily imply that
the key sizes for the various cryptosystems are also cost equivalent, because the
equipment costs of the 1982 software and special-purpose hardware attacks on the
DES are not necessarily equal either. One point of view is that accessing the hardware
required for software attacks is for free, as in all Internet based cryptosystem attacks
so far and other large computational Internet projects. Adoption of this rule would
make computational and cost equivalence identical, which is not generally acceptable
(cf. [27]). A precise equipment cost defies exact analysis, primarily because no precise
‘cost of a PC’ can be pinpointed. Nevertheless, we sketch how an analysis based on
cost equivalence could be carried out.

According to newspaper advertisements fully equipped PCs (cf. (1.2)) can be
bought for prices varying from $0 to $450. The ‘free’ machines support the point of
view that software attacks are for free. Assume that one does not want to deal with the
strings attached to the free machines and that a stripped down PC (i.e., a 450 MHz
Pentium II processor, a mother-board, and communications hardware) costs $100. It
follows that [$81 million, 1 day, 1999]-hardware is equivalent to at least one million
software MY, disregarding the possibly much larger quantum discount one should be
able to negotiate for an order of this size. Compared to the above exhaustive key
search [$125,000, 1 day, 1996]  [$31,000, 1 day, 1999]-hardware, software MY are
thus about 2500 times more expensive. Compared to the pipelined [$70,000/7, 1 day,
1996]  [$2500, 1 day, 1999]-hardware to attack EC systems over non-prime fields,
software MY are more than 3104 times more expensive, but at most about 2103

times more expensive than the prime field version of the pipelined design.
It follows that for our purposes software MY are at most 2500 times more

expensive than MY produced by special-purpose hardware. In (4.5) it is shown how
this factor 2500 can be used to derive equipment cost equivalent key sizes from the
computationally equivalent ones. The factor 2500 should be taken with a grain of salt.
Its scientific merit is in our opinion questionable because it is based on a guess for the
price of stripped down PCs and the presumed infeasibility of special-purpose
hardware attacks on RSA (cf. (2.3.1) and the pipelined design in [10]).

3.7. Memory considerations. In [15] we explain why (NFS) memory requirements
do not explicitly have to be taken into account when extrapolating run times.

3.8. Remark. We do not expect that everyone agrees with our hypotheses. In
particular Hypothesis I is debatable. Note that we did not assume anything about the
(un)breakability of the DES in any year. We assumed that it offered enough security
for commercial applications, not that well-funded government agencies were unable to

break it back in 1977. In this context it may be entertaining to mention that Mike
Wiener, after presenting his [$1 million, 3½ hours, 1993]-hardware design at a
cryptography conference, was told that he had done a nice piece of work and he was
offered a similar machine at only 85% of the cost – with the catch that it was 5 years
old (cf. [28]). Anyone who prefers a stronger or weaker infeasibility assumption can
still use our approach, as shown in (4.4). Also our Hypothesis II is certainly not to
everyone’s taste. Some argue that Moore’s law cannot hold much longer, others (cf.
[14]) find it too pessimistic. Hypothesis II thus represents a reasonable compromise.

4 Lower bound estimates for cryptographic key sizes

4.1. Method of computation. For year y we first compute IMY(y), the number of MY
considered to be infeasible for that year, based on Hypotheses I-III:

IMY(y) = 0.5  106  22(y1982)/3  2(y1982)/10.
The resulting value is used to derive key sizes that should be sufficiently secure until
year y, for all cryptographic primitives considered in Section 2. For symmetric key
cryptosystems the key size is computed as the smallest integer that is at least

56 + log2(IMY(y) / (0.5  106)) = 23y / 30  1463.533.

For classical asymmetric systems we use the asymptotic run time L[n] of the NFS
(omitting the o(1)), the data point that a 512-bit key was broken in 1999 at the cost of
less than 104 MY (cf. (2.3.1)) and Hypothesis IV that cryptanalytic progress à la
Moore is expected, and we determine the smallest size s such that

L[2s]  104  L[2512]  22(y1999)/3  IMY(y).

Because the data point used overestimates the cost of factoring a 512-bit key and
because we omit the o(1) the difficulty of breaking classical asymmetric systems with
keys of size s is overestimated (cf. (2.3.1)), i.e., the RSA and TDL key sizes should be
even larger than given in Table 1.

For SDL systems we use the just determined s as field size for year y.
Because no suitable data points are available, we use the optimistic estimate that an
EC system over a prime field of 109 bits can be broken in 2.2 MMY (cf. (2.3.3)) and
that an elliptic curve operation takes on average 9 field multiplications. Combined
with the relative speed of Pollard’s rho method, and the expected growth of the cost of
the field operations, we find that the size of the subgroup size q can be taken as

109 + 2  log2(1092  IMY(y)  9 / (s2  2 2.2  106)).

The resulting sizes are at most two bits too large (cf. (1.3) and [15]).
For EC systems we use the same optimistic estimate that a 109-bit system

can be broken in 2.2 MMY combined with the expected growth rate of the number of
group operations required by Pollard’s rho method and the expected growth of the
cost of the group operations, to determine the smallest size t such that

t2  2(t109)/2  1092  IMY(y) / (2.2  106).

The resulting t represents the recommended EC key size lower bound if no
cryptanalytic progress is assumed, where it should be noted that t is on the large side
because the 2.2 MMY estimate is rather optimistic (cf. (1.3)). An alternative key size
that assumes cryptanalytic progress à la Moore is found by taking the smallest u with

u2  2(u109)/2  22(y1999)/3  1092  IMY(y) / (2.2106).

4.2. Remarks on the computation of Table 1.
1. All estimates may be computed for years before 1999. Some of the resulting data

can be found in Table 1. Strictly speaking this does not make sense for the “EC
with progress” column. It is described in (4.4) how to use the data in italics.

2. The results do not change significantly if the RSA data point is replaced by other
(older) factoring data points, which validates our decision to adopt a Moore-like
law for cryptanalytic progress affecting classical asymmetric systems.

4.3. Using Table 1. Assuming one agrees with our hypotheses, Table 1 can be used as
follows. Suppose electronic information has to be guaranteed until the year 2020.
Looking at the row for the year 2020 in Table 1, one finds that an amount of
computing of 2.91014 MY in the year 2020 may be considered to be as infeasible as
0.5106 MY was in 1982. Security comparable to the security offered by the DES in
1982 is therefore obtained by using, in the year 2020:
 Symmetric keys of at least 86 bits, and hash functions of at least 172 bits;
 RSA moduli of at least 1881 bits; the meaning of the ‘1472’ given in the second

entry of same column is explained in 4.5
 SDL systems with subgroups of at least 151 bits over fields of at least 1881 bits.
 EC systems over prime fields of at least 161 bits if one trusts that no cryptanalytic

progress will occur, at least 188 bits if one wants to be more careful.
If finite fields are used that allow faster operations than suggested by our estimates,
the SDL and EC data in Table 1 can still be used: if the arithmetic goes x times faster,
keys should be roughly 2log2(x) bits larger than indicated. As noted above the field
arithmetic is already assumed to be quite fast. Similarly, if one finds that the data
point used for EC systems overestimates the cost by a factor x, i.e., that the 2.2 MMY
to attack 109-bit EC systems should be only 2.2/x MMY, add roughly 2log2(x) bits to
the suggested EC key sizes.

4.4. Alternative security margin. For corporations that have used the DES beyond
1982 our infeasibility assumption of 0.5 MMY in 1982 may be too strong. For others
it may be too weak. Here we explain how to use Table 1 to look up key sizes for
year y, for example y = 2005, if one trusts the DES until the year 1982 + x, where x is
negative if our infeasibility assumption is considered to be too weak and positive
otherwise. So, for example, x = 13 if one trusts the DES until 1995.
 Symmetric keys: take the entry for year y  x, i.e., 2005 – 13 = 1992 in our

example. The resulting symmetric key size suggestion is 64 bits.

 Classical asymmetric keys: take the entry for year y  23x/43, i.e., 2005 
2313/43  1998 in our example. So 879-bit RSA and TDL keys should be used.

 SDL keys: take the classical asymmetric key size s for year y  23x/43, the SDL
size t for year y  x, and the classical asymmetric key size s for year y  x and use
a subgroup of size t + 4log2(s)  4log2(s) over a field of size s. In our example
s = 879, t = 114, and s = 682 so that a subgroup of size 114 + 4log2(682) 
4log2(879)  113 bits should be used with a 879-bit field.

 EC systems without progress: take the ‘without progress’ entry for year y  x, i.e.,
2005 – 13 = 1992 in the example. The resulting EC key size suggestion is 120
bits.

 EC systems with progress à la Moore: take the ‘with progress’ entry for year
y  23x/43, i.e., 2005  2313/43  1998 in our example. The resulting EC key
size suggestion is 129 bits.

The Table 1 entries in italics for years before 1999 may be used in the last application;
the other italics entries may be used if x < 0.

Table 1
Lower bounds for computationally equivalent key sizes,

assuming cryptanalytic progress à la Moore affecting classical asymmetric systems
Elliptic Curve
Key Size

progress

Year

Symmetric
Key Size

Classical
Asymmetric
Key Size
(and SDL
Field Size)

Subgroup
Discrete
Logarithm
Key Size

no yes

Infeasible
number of
Mips Years

Lower bound
for Hardware
cost in US $ for
a 1 day attack
(cf. (4.5))

Corresponding
number of
years on
450MHz
PentiumII PC

1982 56 417 288 102 105 85 5.00 * 105 3.98  107 1.11 * 103

1983 57 440 288 103 107 88 8.51 * 105 4.27  107 1.89 * 103

1984 58 463 320 105 108 89 1.45 * 106 4.57  107 3.22 * 103

1985 59 488 320 106 110 93 2.46 * 106 4.90  107 5.47 * 103

1986 60 513 352 107 111 96 4.19 * 106 5.25  107 9.31 * 103

1987 60 539 384 108 113 98 7.13 * 106 5.63  107 1.58 * 104

1988 61 566 384 109 114 101 1.21 * 107 6.04  107 2.69 * 104

1989 62 594 416 111 116 104 2.06 * 107 6.47  107 4.58 * 104

1990 63 622 448 112 117 106 3.51 * 107 6.93  107 7.80 * 104

1991 63 652 448 113 119 109 5.97 * 107 7.43  107 1.33 * 105

1992 64 682 480 114 120 112 1.02 * 108 7.96  107 2.26 * 105

1993 65 713 512 116 121 114 1.73 * 108 8.54  107 3.84 * 105

1994 66 744 544 117 123 117 2.94 * 108 9.15  107 6.53 * 105

1995 66 777 544 118 124 121 5.00 * 108 9.81  107 1.11 * 106

1996 67 810 576 120 126 122 8.51 * 108 1.05  108 1.89 * 106

1997 68 844 608 121 127 125 1.45 * 109 1.13  108 3.22 * 106

1998 69 879 640 122 129 129 2.46 * 109 1.21  108 5.48 * 106

1999 70 915 672 123 130 130 4.19 * 109 1.29  108 9.31 * 106

2000 70 952 704 125 132 132 7.13 * 109 1.39  108 1.58 * 107

2001 71 990 736 126 133 135 1.21 * 1010 1.49  108 2.70 * 107

2002 72 1028 768 127 135 139 2.06 * 1010 1.59  108 4.59 * 107

2003 73 1068 800 129 136 140 3.51 * 1010 1.71  108 7.80 * 107

2004 73 1108 832 130 138 143 5.98 * 1010 1.83  108 1.33 * 108

2005 74 1149 864 131 139 147 1.02 * 1011 1.96  108 2.26 * 108

2006 75 1191 896 133 141 148 1.73 * 1011 2.10  108 3.84 * 108

2007 76 1235 928 134 142 152 2.94 * 1011 2.25  108 6.54 * 108

2008 76 1279 960 135 144 155 5.01 * 1011 2.41  108 1.11 * 109

2009 77 1323 1024 137 145 157 8.52 * 1011 2.59  108 1.89 * 109

2010 78 1369 1056 138 146 160 1.45 * 1012 2.77  108 3.22 * 109

2011 79 1416 1088 139 148 163 2.47 * 1012 2.97  108 5.48 * 109

2012 80 1464 1120 141 149 165 4.19 * 1012 3.19  108 9.32 * 109

2013 80 1513 1184 142 151 168 7.14 * 1012 3.41  108 1.59 * 1010

2014 81 1562 1216 143 152 172 1.21 * 1013 3.66  108 2.70 * 1010

2015 82 1613 1248 145 154 173 2.07 * 1013 3.92  108 4.59 * 1010

2016 83 1664 1312 146 155 177 3.51 * 1013 4.20  108 7.81 * 1010

2017 83 1717 1344 147 157 180 5.98 * 1013 4.51  108 1.33 * 1011

2018 84 1771 1376 149 158 181 1.02 * 1014 4.83  108 2.26 * 1011

2019 85 1825 1440 150 160 185 1.73 * 1014 5.18  108 3.85 * 1011

2020 86 1881 1472 151 161 188 2.94 * 1014 5.55  108 6.54 * 1011

2021 86 1937 1536 153 163 190 5.01 * 1014 5.94  108 1.11 * 1012

2022 87 1995 1568 154 164 193 8.52 * 1014 6.37  108 1.89 * 1012

2023 88 2054 1632 156 166 197 1.45 * 1015 6.83  108 3.22 * 1012

2024 89 2113 1696 157 167 198 2.47 * 1015 7.32  108 5.48 * 1012

2025 89 2174 1728 158 169 202 4.20 * 1015 7.84  108 9.33 * 1012

2026 90 2236 1792 160 170 205 7.14 * 1015 8.41  108 1.59 * 1013

2027 91 2299 1856 161 172 207 1.21 * 1016 9.01  108 2.70 * 1013

2028 92 2362 1888 162 173 210 2.07 * 1016 9.66  108 4.59 * 1013

2029 93 2427 1952 164 175 213 3.52 * 1016 1.04  109 7.81 * 1013

2030 93 2493 2016 165 176 215 5.98 * 1016 1.11  109 1.33 * 1014

2031 94 2560 2080 167 178 218 1.02 * 1017 1.19  109 2.26 * 1014

2032 95 2629 2144 168 179 222 1.73 * 1017 1.27  109 3.85 * 1014

2033 96 2698 2208 169 181 223 2.95 * 1017 1.37  109 6.55 * 1014

2034 96 2768 2272 171 182 227 5.01 * 1017 1.46  109 1.11 * 1015

2035 97 2840 2336 172 184 230 8.53 * 1017 1.57  109 1.90 * 1015

2036 98 2912 2400 173 185 232 1.45 * 1018 1.68  109 3.22 * 1015

2037 99 2986 2464 175 186 235 2.47 * 1018 1.80  109 5.49 * 1015

2038 99 3061 2528 176 188 239 4.20 * 1018 1.93  109 9.33 * 1015

2039 100 3137 2592 178 189 240 7.14 * 1018 2.07  109 1.59 * 1016

2040 101 3214 2656 179 191 244 1.22 * 1019 2.22  109 2.70 * 1016

2041 102 3292 2720 180 192 247 2.07 * 1019 2.38  109 4.60 * 1016

2042 103 3371 2784 182 194 248 3.52 * 1019 2.55  109 7.82 * 1016

2043 103 3451 2880 183 195 252 5.99 * 1019 2.73  109 1.33 * 1017

2044 104 3533 2944 185 197 255 1.02 * 1020 2.93  109 2.26 * 1017

2045 105 3616 3008 186 198 257 1.73 * 1020 3.14  109 3.85 * 1017

2046 106 3700 3072 187 200 260 2.95 * 1020 3.36  109 6.55 * 1017

2047 106 3785 3168 189 201 264 5.02 * 1020 3.60  109 1.11 * 1018

2048 107 3871 3232 190 203 265 8.53 * 1020 3.86  109 1.90 * 1018

2049 108 3959 3328 192 204 269 1.45 * 1021 4.14  109 3.23 * 1018

2050 109 4047 3392 193 206 272 2.47 * 1021 4.44  109 5.49 * 1018

4.5. Equipment cost equivalent key sizes. Assuming the $100 price for a stripped
down PC (cf. (3.6)) and the resulting factor of 2500 are acceptable, Table 1 can be
used to derive equipment cost equivalent key sizes in the following manner. A lower
bound for the equipment cost for a successful one day attack is given in the second to
last column of Table 1, in year y in dollars of year y.

The symmetric key sizes are derived based on Hypothesis 1, and the EC key sizes are
based on estimates that are cost consistent with the symmetric key sizes (cf. (3.6)), so
for those systems no corrections are necessary.

For classical asymmetric systems, MY are supposedly 2500 times as
expensive, which is, for our computational purposes only, equivalent to assuming that
the DES offers acceptable security until about 1997, since 1997  1982 = 15 and
2(1523/30) (cf. (4.1)) is close to 2500. Thus, using (4.4), classical asymmetric key sizes
that are equipment cost equivalent to symmetric and EC key sizes for year y can be
found in Table 1 in the classical asymmetric key size column for year y  (2315)/43
= y  8. The resulting key sizes, rounded up to the nearest multiple of 32, are given as
the second entry in the classical asymmetric key sizes column of Table 1. Breaking
such keys requires a substantially smaller number of MY than the infeasible number
of MY for year y, but acquiring the required MY is supposed to be prohibitively
expensive.

For subgroup discrete logarithm systems in year y, let t and s be the subgroup
and finite field size, respectively, for year y, and let s be the finite field size for year
y  8. For cost equivalence with symmetric and EC key sizes in year y use subgroups
of size t + 4log2(s)  4log2(s) over finite fields of size s. As a rule of thumb,
subgroups of size t + 2 over finite fields of size s will do. As an example, in the year
2000 the following key sizes are more or less equipment cost equivalent: 70-bit
symmetric keys, 682-bit classical asymmetric keys, 127-bit subgroups with 682-bit
finite fields, and 132-bit EC keys.

A similar straightforward analysis can be carried out for any other PC price
one may prefer. For instance, for $10 or $1000 per PC the y  8 should be changed
into y  6 or y  10, respectively.

5 Practical consequences of Table 1

5.1. DSS. DSS key sizes can be recommended for commercial applications only until
the year 2002 for the field size, until 2013 for the hash function, and until 2026 for the
subgroup size. For security until 2013, it is advisable to use the DSS with a 1513-bit
finite field. Beyond 2013 the 160-bit size of SHA-1 may no longer be adequate.
Changing it may force a change in the subgroup size that would otherwise not have
been necessary until 2026. According to [16], NIST is working on a revision for the
DSS, with key sizes as reported in Table 2 (and hash size matching the size of q).

Table 2
Proposed key sizes for the revised DSS

size q 160 256 384 512
size p 1024 3072 7680 15360

5.2. Effect on cryptosystem speed. RSA keys that are supposed to be secure until
2040 are about 3 times larger than popular 1024-bit RSA keys, making those large
keys 9 to 27 times slower to use: 9 for signature verification or encryption with a fixed
length public exponent, 27 for signature generation or decryption. TDL systems will
slowdown by a factor 27 compared to 1024-bit versions. SDL systems slowdown by
about a factor 11 compared to currently secure SDL systems. The speed of EC

systems is hardly affected. Within a few years faster processors will have solved these
performance problems by our Moore assumption. Note, however, that this may not be
the case in more restricted environments such as smartcards, where bandwidth and
power consumption constraints also have a more limiting effect on key sizes.

5.3. 512-bit RSA keys. RSA keys of 512 bits are widely used all over the Web, e.g. in
SSL protected communications. According to Table 1, such keys should not have
been used beyond 1986. A 512-bit RSA key was factored in August 1999 (cf. [5]).

5.4. 768-bit RSA keys. According to Table 1 usage of 768-bit RSA keys can no
longer be recommended. Even in the equipment cost equivalent model 768-bit RSA
keys will soon no longer offer security comparable to the security of the DES in 1982.

5.5. RSA and EC. It is often informally argued that 1024-bit RSA and 160-bit EC
systems offer more or less the same level of security. This is not what one would
conclude from Table 1. We discuss several aspects of this contentious issue in [15].

5.6. SDL and EC. The gap between the suggested SDL and EC key sizes widens
slowly due to the rapidly growing size of the finite fields in SDL.

5.7. Effectiveness of guessing. The sizes suggested in Table 1 for the year 2000 or
later are in practice infeasible to guess.

5.8. Effectiveness of incomplete attacks. As shown in [15], incomplete attacks can
on average not be expected to pay off.

5.9. Effectiveness of Elliptic Curve Method. As shown in [15], the Elliptic Curve
Method cannot be expected to break keys of the suggested sizes.

5.10. Wassenaar Arrangement for mass market applications. The WA allows 64-
bit symmetric keys and 512-bit classical asymmetric keys for mass market
applications. According to Table 1 it is advisable to increase the 512-bit bound for
classical asymmetric keys to 672 or 768 bits.

Acknowledgements. The authors want to thank Joe Buhler, Bruce Dodson, Stuart
Haber, Paul Leyland, Alfred Menezes, Andrew Odlyzko, Michael Wiener, and Paul
Zimmermann for their helpful remarks.

References
1. Eli Biham, A fast new DES implementation in software.
2. M. Blaze, W. Diffie, R.L. Rivest, B. Schneier, T. Shimomura, E. Thompson, M.

Wiener, Minimal key lengths for symmetric ciphers to provide adequate
commercial security, www.bsa.org/policy/encryption/cryptographers_c.html,
January 1996.

3. A. Bosselaers, Even faster hashing on the Pentium, manuscript, Katholieke
Universiteit Leuven, May 13, 1997.

4. J.R.T. Brazier, Possible NSA decryption capabilities, http://jya.com/nsa-
study.htm.

5. S. Cavallar, B. Dodson, A.K. Lenstra, B. Murphy, P.L. Montgomery, H.J.J. te
Riele, et al., Factorization of a 512-bit RSA modulus, manuscript, October 1999.

6. www.counterpane.com/speed.html.
7. M. Davio, Y. Desmedt, J. Goubert, F. Hoornaert, J.J. Quisquater, Efficient

hardware and software implementations of the DES, Proceedings Crypto’84.
8. W. Diffie, BNR Inc. report, 1980.
9. W. Diffie, E. Hellman, Exhaustive cryptanalysis of the NBS Data Encryption

Standard, Computer, v. 10 (1977), 74-84.
10. B. Dixon, A.K. Lenstra, Factoring integers using SIMD sieves, Proceedings

Eurocrypt’93, LNCS 765, 28-39.
11. Electronic Frontier Foundation, Cracking DES, O’Reilly, July 1998.
12. Rob Gallant, personal communication, August 1999.
13. P.C. Kocher, Breaking DES, RSA Laboratories’ Cryptobytes, v. 5, no 2 (1999);

also at www.rsa.com/rsalabs/pubs/cryptobytes.
14. P.C. Kocher, personal communication, September 1999.
15. A.K. Lenstra, E.R. Verheul, Selecting Cryptographic Key Sizes, submitted for

publication, September 1999; available at www.cryptosavvy.nl.
16. A.J. Menezes, personal communication, September 1999.
17. P.L. Montgomery, letter to the editor of IEEE Computer, August 1999.
18. V.I. Nechaev, Complexity of a determinate algorithm for the discrete logarithm,

Mathematical Notes, 55 (2) 1994, 155-172. Translated from Matematicheskie
Zametki, 55(2), 91-101, 1994. This result dates back from 1968.

19. Tiniest circuits hold prospect of explosive computer speeds, The New York
Times, July 16, 1999; Chip designers look for life after silicon, The New York
Times, July 19, 1999.

20. A.M. Odlyzko, The future of integer factorization, RSA Laboratories’
Cryptobytes, v. 1, no. 2 (1995), 5-12; also at www.research.att.com/~amo/doc/
crypto.html or www.rsa.com/rsalabs/pubs/cryptobytes.

21. P.W. Shor, Algorithms for quantum computing: discrete logarithms and factoring,
Proceedings of the IEEE 35th Annual Symposium on Foundations of Computer
Science, 124-134, 1994.

22. V. Shoup, Lower bounds for discrete logarithms and related problems,
Proceedings Eurocrypt’97, LNCS 1233, 256-266.

23. R.D. Silverman, rump session presentation at Crypto’97.
24. R.D. Silverman. Exposing the Mythical MIPS Year, IEEE Computer, August

1999, 22-26.
25. P.C. van Oorschot, M.J. Wiener, Parallel collision search with cryptanalytic

applications, Journal of Cryptology, v. 12 (1999), 1-28.
26. M.J. Wiener, Efficient DES key search, manuscript, Bell-Northern Research,

August 20, 1993.
27. M.J. Wiener, Performance Comparison of Public-Key Cryptosystems, RSA

Laboratories’ Cryptobytes, v. 4, no. 1 (1998), 1-5; also at www.rsa.com/rsalabs/
pubs/ cryptobytes.

28. M.J. Wiener, personal communication, 1999.

