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Abstract. In this article we give guidelines for the determination of 
cryptographic key sizes. Our recommendations are based on a set of explicitly 
formulated hypotheses, combined with existing data points about the 
cryptosystems. This article is an abbreviated version of [15].

1 Introduction

1.1. Introduction. In this article we offer guidelines for the determination of key sizes 
for symmetric cryptosystems, RSA, and discrete logarithm based cryptosystems both 
over finite fields and over groups of elliptic curves over prime fields. Key size 
recommendations are scattered throughout the cryptographic literature or may be 
found in vendor documentation. Unfortunately it is often hard to tell on what premises 
(other than marketability) the recommendations are based. As far as we know [15], of 
which this is an extended abstract, is the first uniform, clearly defined, and properly 
documented treatment of this subject for the most important generally accepted 
cryptosystems. We formulate a set of explicit hypotheses about future developments 
and apply these uniformly to existing data about the cryptosystems. The resulting key 
size recommendations are thus obtained in a uniform mechanical way independent of 
further assumptions or non-scientific considerations. Despite our attempt to be 
objective we do not expect that our model is to everyone’s taste. The underlying 
model can, however, easily be changed without affecting the overall approach, 
thereby making this article useful also for those who object to our results.

Our suggestions are based on reasonable extrapolations of developments that 
have taken place during the last few decades. This approach may fail: a single bright 
idea may prove that any of the currently popular cryptographic protocols is 
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considerably less secure than expected. It may even render them completely insecure, 
as illustrated by the sudden demise of the once popular knapsack-based 
cryptosystems. In this article we discuss only cryptosystems for which it is believed to 
be unlikely that such catastrophes will ever occur. For some of these systems non-
trivial, but non-catastrophic, new cryptanalytic insights are obtained on a fairly regular 
basis. So far, a gradual increase in key sizes has been an effective countermeasure 
against these new insights. It is the purpose of this article to give an idea by how much 
key sizes have to be increased to maintain a comfortable margin of security.

If sufficiently large quantum computers can be built, then all asymmetric key 
cryptosystems discussed in this article are insecure (cf. [21]). It is unclear if quantum 
computers are feasible at all, and our suggestions do not take them into account. 
Neither do we consider the potential effects of molecular-computing (cf. [19]).

1.2. Run time convention. All our run time estimates are based on actual run times or 
reliable estimates of run times on a 450MHz Pentium II processor. A ‘PC’ always 
refers to this processor. Computing power is often measured in Mips Years (MY), 
where a Mips Year is defined as the amount of computation that can be performed in 
one year by a single DEC VAX 11/780. This measure has often been criticized and we 
agree with the concerns expressed in [24]. Nevertheless we use MY here as well. We 
use the convention that one year of computing on a PC is equivalent to 450 MY, but 
ultimately all our estimates are based on run times on a PC and not on the actual or 
our definition of MY. The two definitions are, however, sufficiently close (cf. [15]). 
Our MY figures are therefore compatible with MY figures found elsewhere. We write 
MMY for one million MY.

1.3. Lower bounds. Our guidelines are lower bounds in the sense that keys of sizes 
equal to or larger than the recommended sizes attain at least a certain specified level 
of security. From a security point of view it is acceptable to err on the conservative 
side by recommending keys that may be slightly larger than actually required. Most 
guidelines are therefore obtained by systematically underestimating the effort required
for a successful attack. Thus, keys are estimated to be weaker than they are in reality, 
which is acceptable for our purpose of finding lower bounds. In some cases slight 
overestimates of the attack effort are used instead, but in those cases there are other 
factors that ensure that the desired level of security is achieved.

1.4. Equivalence of attack efforts. We present key size recommendations for several 
different cryptosystems. For a certain specified level of security these 
recommendations may be expected to be equivalent in the sense that the 
computational effort or number of MY for a successful attack is more or less the same 
for all cryptosystems under consideration. So, from a computational point of view the 
different cryptosystems offer more or less equivalent security when the recommended 
key sizes are used. This computationally equivalent security should not be confused 
with, and is not necessarily the same as, equipment cost equivalent security, or cost 
equivalent security for short. We say that two systems offer cost equivalent security if 
accessing or acquiring the hardware that allows a successful attack in a certain fixed 
amount of time costs the same amount of dollars for both systems. Note that although 
the price is the same, the two different attacks may require different hardware. 



Following our guidelines does not necessarily result in cost equivalent security. In 
(4.5) we indicate how our guidelines may be changed to obtain cost equivalence, 
thereby possibly giving up computational equivalence.

The most important reason why we opted for computationally equivalent 
security as opposed to cost equivalent security is that we found that computational 
equivalence allows rigorous analysis, mostly independent of our own judgment or 
preferences. Analysis of cost equivalence, on the other hand, depends on subjective 
choices that change over time, and that have a considerable effect on the outcome. 
Thus, for cost equivalence there is a whole spectrum of ‘reasonable’ outcomes, 
depending on one’s perception of what is reasonable. In (4.5) we present three points 
of the spectrum.

2 The cryptographic primitives

2.1. The Wassenaar Arrangement. The Coordinating Committee for Multilateral 
Export Controls (COCOM) was an international organization regulating the mutual 
control of the export of strategic products from member countries to countries that 
jeopardize their national security. The Wassenaar Arrangement (WA) is a follow-up 
of the COCOM regulations. In this article we limit ourselves to the 5 types of 
cryptographic primitives for which a maximum key size that does not require an 
export license is given in the WA (December 1998, cf. www.wassenaar.org). 

We distinguish the cryptographic primitives into symmetric-key (or secret-
key) and asymmetric-key (or public-key) cryptosystems and briefly mention 
cryptographic hash functions as well.

2.2. Symmetric key cryptosystems.
Description. In symmetric key cryptosystems the parties share a secret key. The size 
of the key is its number of bits and depends on the symmetric key cryptosystem.
Wassenaar Arrangement. The maximum symmetric key size allowed by the WA is 
56 bits for ‘niche market’ applications and 64 bits for ‘mass market’.
Attacks. Despite many years of research, no method has been published that breaks a 
DES-encrypted message substantially faster than exhaustive key search, i.e., trying all 
256 different keys. The expected number of trials of exhaustive key search is 255.
Software data points. In 1997 a DES key was successfully retrieved after an Internet 
search of approximately 4 months (cf. www.rsa.com/des). The expected computing 
power required for such a software exhaustive key search is underestimated as 0.5 
MMY (cf. (1.3)). This estimate is based on the Pentium based figures that a single 
DES block encryption with a fixed key requires 360 clock cycles or 500 clock cycles 
with a variable key (cf. [6], [1]). Our estimate lies between two DEC VAX 11/780 
estimates that can be found in [7] and [20]. Half a million MY is roughly 13500 
months on a PC or 4 months on 3500 PCs, because an exhaustive key search can be 
evenly divided over any number of processors. For a proper security analysis one 
therefore has to keep track of the total computational power of the Internet. 
Special-purpose hardware data points. At the cost of a one-time investment a 
hardware attack is substantially faster than a software attack. In 1980 a $50 million 
parallel DES key searching machine was proposed with an expected search time of 2 



days (cf. [9], [8]), followed in 1993 by a $1 million, 3½ hour design (cf. [26]). In 1998 
a $130,000, 112 hour machine was built (cf. [13], [11]).
Effectiveness of guessing. There is always the possibility that someone may find a 
key simply by guessing it. For reasonable key sizes the probability that the correct key 
is guessed is small: even for a 50-bit key there is a total probability of one in a million 
that it is found if 109 people each make a different guess. With the same effort, the 
probability of success halves for each additional key bit. Exhaustive key search is 
nothing more than systematic guessing.
Incomplete attacks. The success probability of exhaustive key search is proportional 
to the fraction of the key space searched. 
Cryptanalytic progress. We assume the existence of a generic symmetric key 
cryptosystem of arbitrary key size that is about as fast as the DES and for which 
exhaustive key search is the best attack. Thus, for a b-bit key a successful attack can 
be expected to require on the order of 2b1 invocations of the underlying function.

2.3. Asymmetric key cryptosystems. If the private key of an asymmetric key 
cryptosystem can be derived from the public key, then the system can be broken. 
What the keys consist of, and how hard it is to break the system, depends on the type 
of asymmetric key cryptosystem. We distinguish the following three types:
1. Classical asymmetric systems;
2. Subgroup discrete logarithm systems;
3. Elliptic curve systems.

2.3.1. Classical asymmetric systems. These refer to RSA and traditional discrete 
logarithm (TDL) systems, such as the Diffie-Hellman scheme and ElGamal systems.
RSA description. In RSA the public key contains a large non-prime number, the RSA 
modulus, which is chosen as the product of two large primes. The security of RSA is 
based on the difficulty of the integer factorization problem. The size of an RSA key 
refers to the bit-length of the RSA modulus. This should not be confused with the 
number of bits required to store an RSA public key, which is usually slightly more.
TDL description. In a TDL system the public key consists of a finite field Fp of size p, 
a generator g of the multiplicative group (Fp)* of Fp, and an element y of (Fp)* that is 
not equal to 1. We assume that the field size p is such that p1 has a prime factor of 
roughly the same order of magnitude as p. The private key is the discrete logarithm of 
y with respect to g, i.e., the smallest positive integer m such that gm = y. The private 
key m is at least 1 and at most p2. The security of TDL systems is based on the 
difficulty of computing discrete logarithms in the multiplicative group of a finite field. 
The size of a TDL key refers to the bit-length of the field size p. The number of bits 
required to store a TDL public key is larger, since it contains g and y as well.
Wassenaar Arrangement. Both the maximal RSA modulus size and the maximal field 
size allowed by the WA are 512 bits.
Attacks. Factoring an RSA-modulus n by exhaustive search amounts to trying all 
primes up to n. Finding a discrete logarithm by exhaustive search requires on the 
order of p operations in Fp. Thus, if exhaustive search were the best attack on these 
systems, then 112-bit RSA moduli or 56-bit p’s would give security comparable to the 
DES. However, there are much more efficient attacks and much larger keys are 



required. The methods to attack these two entirely different problems are similar, 
which is why we treat RSA and TDL systems as the same category.

The fastest factoring algorithm published today is the Number Field Sieve 
(NFS), which is based on an idea by John Pollard. On heuristic grounds NFS can be 
expected to require time proportional to
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to factor an RSA modulus n, where the o(1) term goes to zero as n goes to infinity. 
This run time is called subexponential in n because as n goes to infinity it is less than 
nc for any c > 0. The storage requirements of the NFS are proportional to L[n]. If p is 
a prime number then a discrete logarithm variation of the NFS (DLNFS) finds a 
discrete logarithm in Fp in expected time proportional to L[p]. 

These run time estimates cannot be used directly to estimate the number of 
operations required to factor a certain n or to compute discrete logarithms in a certain 
Fp. For n and p of about the same size, L[n] and L[p] are approximately equal if the 
o(1)’s are omitted, but the discrete logarithm problem in Fp is considerably more 
difficult than factoring n. As shown by extensive experiments the estimates can be 
used for limited range extrapolation. If one knows, by experimentation, that factoring 
an RSA modulus n using NFS takes time t, then factoring some other RSA modulus m
> n will take time close to tL[m]/L[n] (omitting the o(1)’s), if the sizes of n and m do 
not differ by too much. If, however, m is much bigger than n, then the effect of the 
o(1) going to zero can no longer be ignored (cf. [23]), and tL[m]/L[n] will be an 
overestimate of the time to factor m. The same run time extrapolation method applies 
to the DLNFS. 
Software data points. The largest published factorization using the NFS is that of the 
512-bit number RSA155, an RSA modulus of 155 decimal digits (cf. [5]). This effort 
was estimated to cost at most 20 years on a PC with at least 64Mbytes of memory (or 
a single day on 7500 PCs). It is less than 104 MY and corresponds to fewer than 
31017 operations, whereas L[10155] = 21019 (omitting the o(1)). This shows that L[n] 
overestimates the number of operations to be carried out for the factorization of n. The 
run time given here is the actual run time of the RSA155 factoring effort and should 
not be confused with the estimates given in [24] which appeared around the same time 
and which are 100 times too high (cf. [17]). This run time is only a fraction of the cost 
of a software DES key search, but the NFS requires much more memory. 

Practical experience with the DLNFS is still limited. It is generally accepted 
that, for any b in the current range of interest, factoring b-bit integers takes about the 
same amount of time as computing discrete logarithms in (bx)-bit fields, where x is a 
small constant around 20. Below we do not present key size suggestions for TDL 
systems and recommend using the RSA key size suggestions for TDL systems as well.
Special-purpose hardware data points. Special-purpose hardware devices are 
occasionally proposed for factoring algorithms, but no useful data points have been 
published. Due to the complexity of the underlying factorization algorithms and the 
corresponding hardware design it is for any special-purpose hardware factoring device 
difficult to achieve parallelization at a reasonable cost and at a scale comparable to 
hardware attacks on the DES, but it may not be impossible. Given the current state of 
the art we consider it to be unlikely that special-purpose hardware will have a 



noticeable impact on the security of RSA moduli. But we find it imprudent to ignore 
the possibility altogether, and warn against too strong reliance on the belief that 
special-purpose attacks on RSA are impossible. To illustrate this, the quadratic sieve 
factoring method was implemented successfully on a Single-Instruction-Multiple-Data 
architecture (cf. [10]). A SIMD machine is by no means special-purpose hardware, but 
it could be relatively cheap compared to ordinary PCs.
Effectiveness of guessing. Key sizes for classical asymmetric systems have to be 
larger than 512 to obtain any security at all. Breaking the system by guesswork is thus 
out of the question. So, from this point of view, classical asymmetric systems seem to 
be more secure than symmetric key cryptosystems. For RSA there is more to this 
story, as shown below.
Incomplete attacks. Both the NFS and the DLNFS are effective only if run to 
completion. RSA, however, can be attacked also by the Elliptic Curve Method 
(ECM). After a relatively small amount of work this method produces a factor with 
much higher probability than mere guesswork: if one billion people were to attack a 
512-bit RSA modulus, each by running the ECM for just one hour on their PC, then 
the probability that one of them would factor the modulus is more than 10%. For a 
768-bit RSA modulus the probability of success of the same computational effort is 
about one in a million. Admittedly, this is a very low success probability for a 
tremendous effort – but the success probability is orders of magnitude larger than 
guessing, while the amount of work is of the same order of magnitude. No discrete 
logarithm equivalent of the ECM has been published. See also (5.9).
Cryptanalytic progress. Classical asymmetric systems are the prime example of 
systems for which the effectiveness of cryptanalysis is steadily improving. The current 
state of the art of factoring (and discrete logarithm) algorithms should not be 
interpreted as the culmination of many years of research but is just a snapshot of work 
in progress. We illustrate this point with a list of some of the developments since the 
early seventies, each of which had a substantial effect on the difficulty of factoring or 
computing discrete logarithms: continued fraction method, linear sieve, quadratic 
sieve, multiple polynomial variation, Gaussian integers, loosely coupled 
parallelization, multiple large primes, special number field sieve, structured Gaussian 
elimination, number field sieve, singular integers, lattice sieving, block Lanczos or 
conjugate gradient, and sieving-based polynomial selection for NFS. We assume that 
this trend of continuous algorithmic developments will continue in the years to come.

It has never been proved that breaking RSA is equivalent to factoring the 
RSA modulus. Indeed, for RSA there is evidence that the equivalence does not hold if 
the public exponent is small. We therefore explicitly assume that breaking RSA is 
equivalent to factoring the RSA modulus. In particular, we assume that the public 
exponent for RSA is sufficiently large. Furthermore we restrict ourselves to TDL 
based protocols for which attacks are provably equivalent to either computing discrete 
logarithms or solving the Diffie-Hellman problem. There is strong evidence that the 
latter problem is equivalent to computing discrete logarithms

2.3.2. Subgroup discrete logarithm systems.
Description. Subgroup discrete logarithm (SDL) systems are like traditional discrete 
logarithm systems, except that g generates a relatively small, but sufficiently large, 
subgroup of the multiplicative group (Fp). The size of the subgroup is prime and is 



indicated by q. The private key m is at least 1 and at most q1. The security of SDL is 
based on the difficulty of computing discrete logarithms in a subgroup of the 
multiplicative group of a finite field. These can be computed if discrete logarithms in 
the full multiplicative group can be computed. Therefore, the security of an SDL 
system relies on the sizes of both q and p. Nevertheless, the size of an SDL key simply 
refers to the bit-length of the subgroup size q, where the field size p is given by the 
context. The actual number of bits required to store an SDL public key is substantially 
larger than the SDL key size q, since the public key contains p, g and y as well. 
Wassenaar Arrangement. The maximum SDL field size allowed by the WA is 512 
bits – there is no maximum allowed key size. A popular subgroup size is 160 bits.
Attacks. Methods that can be used to attack TDL systems also can be used to attack 
SDL systems. The field size p should therefore satisfy the same security requirements 
as in TDL systems. But the SDL problem can also be attacked directly by Pollard’s 
rho method, which dates from 1978, and by Shanks’ even older baby-step-giant-step 
method. These methods can be applied to any group if the group elements allow a 
unique representation and the group law can be applied efficiently – unlike the 
DLNFS it does not rely on any special properties that group element representations 
may have. The expected run time of Pollard’s rho method is exponential in q, namely 
1.25q group operations, i.e., multiplications in Fp. Its storage requirements are very 
small. Shanks’ method needs about the same number of operations but needs storage 
for about q group elements. Pollard’s rho method can easily be parallelized over any 
number of processors resulting in a linear speedup (cf. [25]). Furthermore, there is no 
post-processing involved in Pollard’s rho (unlike the (DL)NFS, where after 
completion of the first step a cumbersome matrix step has to be carried out), although 
for the parallelized version substantial amounts of storage space should be available.
Data points. We have not been able to find any useful data about the effectiveness of 
the parallelized Pollard rho attack on SDL systems. Our figures below are based on an 
adaptation of data points for elliptic curve systems, cf. (4.1).
Effectiveness of guessing. As long as SDL keys are not shorter than 112 bits 
(permitted by the WA for EC systems, see below), guessing the private key requires 
guessing at least 112 bits. This may safely be assumed to be infeasible.
Incomplete attacks. The success probability of Pollard’s rho method is, roughly 
speaking, proportional to the square of the fraction of the work performed, i.e., for 
any x, 0  x  1, the chance is x2 that the key is found after performing a fraction x of 
the expected 1.25q group operations.
Cryptanalytic progress. Since the invention of Pollard’s rho method in 1978 no new 
results have been obtained that threaten SDL systems, with the exception of the 
efficient parallelization of Pollard’s rho method in 1996. The only reasonable 
extrapolation of this rate of progress is to assume that no substantial progress will be 
made. The results in [18, 22] that, in a certain generic model of computation, Pollard’s 
rho is essentially the best one can do may be comforting in this context. It should be 
kept in mind, however, that the generic model does not apply to any practical situation 
that we are aware of, and that the possibility of a subexponential attack against SDL 
systems cannot be ruled out.



2.3.3. Elliptic curve systems.
Description. Elliptic curve (EC) systems are like SDL systems, except that g
generates a subgroup of the group H of points on an elliptic curve E over a finite 
field Fp. The size q of the subgroup generated by g is prime and the private key m is in 
the range [1,q1]. The security of EC systems is based on the difficulty of computing 
discrete logarithms in a subgroup of H. These can be computed if discrete logarithms 
in H can be computed. This problem is known as the ECDL problem. No better 
method to solve the ECDL problem is known than by solving the problem in all cyclic 
subgroups and by combining the results. The difficulty of the ECDL problem 
therefore depends on the size of the largest prime divisor of the order of H (which is 
close to p). For that reason, p, E, and q are usually chosen such that the sizes of p and 
q are close. Thus, the security of EC systems relies on the size of q, and the size of an 
EC key refers to the bit-length of the subgroup size q. The actual number of bits 
required to store an EC public key may be substantially larger than the EC key size q, 
since the public key contains p, E, g, and y as well.
Wassenaar Arrangement. The maximum EC key size allowed by the WA is 112 bits, 
with unspecified field size. For prime fields a popular size is 160 bits both for the field 
and subgroup size. For non-prime fields a popular choice is p = 2163 with a 161-bit q.
Attacks. A DLNFS equivalent or other subexponential method to attack EC systems 
has never been published. The most efficient method published to attack EC systems 
is Pollard’s parallelizable rho method, with an expected run time of 0.88q group
operations. The number of field multiplications per group operation is about 12.
Software data points. The cost of the group operation is proportional to (log2(q))2. 
From the estimates given on www.certicom.com/chal we derive that a 109-bit EC 
system with p = 2109 should take about 18,000 years on a PC (or, equivalently, one 
year on 18,000 PCs) which is about 8 MMY. This computation is feasible on a large 
network of computers. It also follows from www.certicom.com/chal that an attack on 
a 109-bit EC system with a prime p of about 109 bits should take about 2.2 MMY. 
This is an underestimate because it is based on primes of a special form (cf. [12]). 
Nevertheless, it is used as the basis for extrapolations to estimate the effort required 
for software attacks on larger EC systems over prime fields (cf. (1.3)).
Special-purpose hardware data points. In 1996 an attack against a 120-bit EC system 
with p = 2155 was sketched (and published 3 years later, cf. [25]). Building this design 
would cost $10 million and it would take about 32 days. The designers claim that an 
attacker can do better by using current silicon technology and that further optimization 
may be obtained from pipelining. This is further discussed in (3.6).
Effectiveness of guessing. As long as EC keys are not shorter than the 112 bits 
permitted by the WA, guessing the private key requires guessing at least 112 bits 
which may safely be assumed to be infeasible.
Incomplete attacks. As with Pollard’s rho attack against SDL systems its success 
probability is proportional to the square of the fraction of the work performed.
Cryptanalytic progress. The remarks made above on SDL systems apply here as well. 
It is therefore not unreasonable to base our figures below on the assumption that there 
will be no substantial progress in the years to come. For EC systems this is not 
something we feel comfortable with, because EC related cryptanalytic results are 
obtained quite regularly. So far, most of these results affected only special cases. We 



therefore make the explicit assumption that curves are picked at random and that only 
curves over prime fields are used. Even then, it is not hard to find researchers who 
believe that the rich mathematical structure of elliptic curves may still have some 
surprises in store. Others argue that the ECDL problem has been studied extensively, 
and that EC systems are sufficiently secure. We do not want to take a position in this 
argument and we simply suggest two key sizes for EC systems: one based on ‘no 
cryptanalytic progress’ and one based on ‘cryptanalytic progress at the same rate as 
for RSA and TDL systems’. The reader may then interpolate between the two types of 
extrapolations according to her own taste.

2.4. Cryptographic hash functions.
Description. A cryptographic hash function is a function that maps an arbitrary length 
message to a fixed length ‘hash’, satisfying various properties that are beyond the 
scope of this article. The size of the hash function is the length in bits of the hash.
Attacks. Cryptographic hash functions can be attacked by the birthday paradox attack. 
The number of hash function applications required by a successful attack is expected 
to be proportional to 2x/2, where x is the size of the hash function. We assume that 
cryptographic hash functions have to be ‘any collision-resistant’. For ‘target collision-
resistant’ hashes the sizes may be halved assuming the hash function is properly used.
Software data points. In [3] 241, 345, 837, and 1016 Pentium cycles are reported for 
MD4, MD5, SHA-1, and RIPEMD-160, respectively. Thus, the software speed of a 
hash function application as used by a birthday paradox attack is comparable to the 
software speed of a single DES block encryption (cf. (2.2)).
Special-purpose hardware data points. Special-purpose hardware has been designed 
for several hash functions. We may assume that their speed is comparable to the speed 
of special-purpose exhaustive key search hardware.
Cryptanalytic progress. We assume the existence of a generic cryptographic hash 
function of speed comparable to the existing functions mentioned above and for which 
the birthday paradox attack is the best attack. It follows that an attack on our generic 
symmetric key cryptosystem of key size b can be expected to take about the same time 
as an attack on our generic cryptographic hash function of size 2b. Thus, a lower 
bound for the size of the latter follows by doubling the lower bound for the size of 
symmetric key cryptosystems. Because of this simple ‘rule of thumb’, sizes of 
cryptographic hash functions are not discussed in the sequel.

3 The model

3.1. Key points. The choice of cryptographic key sizes depends primarily on the 
following four points:
I. Life span: the expected time the information needs to be protected.
II. Security margin: an acceptable degree of infeasibility of a successful attack.
III. Computing environment: the expected change in computational resources 

available to attackers.
IV. Cryptanalysis: the expected developments in cryptanalysis.
Efficiency and storage considerations may also influence the choice of key sizes, but 
since they are not directly security-related they are not discussed here.



3.2. Life span. In the table in Section 4 key sizes are suggested, depending on the 
expected life span of the cryptographic application. It is the user’s responsibility to 
decide until what year the protection should be effective.

3.3. Security margin. A cryptosystem can be assumed to be secure only if it is 
considered to be sufficiently infeasible to mount a successful attack. It is hard to 
quantify what this means precisely. One could, for instance, decide that a key size for 
a certain cryptosystem is secure if breaking it would be, say, 106 times harder than the 
largest key size that can currently be broken. There are several problems with this 
approach. First of all, the choice 106 is rather arbitrary. Secondly, there is no reason to 
believe that the ‘largest key broken so far’ accurately represents the best that can 
currently be done. In the third place, for some of the cryptographic primitives 
considered here data may not be available or they may be outdated (SDL, TDL), 
thereby ruling out uniform application of this approach. We opt for a different 
approach.
Hypothesis I. As the basis for our extrapolations we assume that the DES was at least 
sufficiently secure for commercial applications until 1982 because it was introduced 
in 1977 and stipulated to be reviewed every five years. We therefore hypothesize that 
in 1982 a computational effort of 0.5 MMY was believed to provide an adequate 
security margin for commercial DES applications against software attacks (cf. (2.2)). 
As far as hardware attacks are concerned, we assume that the “$50 million, 2 days” 
DES key searching machine (cf. (2.2)) from 1980 was not considered to be a serious 
threat for commercial applications of the DES at least until 1982. We stress 
‘commercial applications’ because, even for 1980 budgets, $50 million and 2 days are 
not an insurmountable obstacle for certain organizations. Our hypothesis is further 
discussed below (cf. (3.8)). We note that quite different assumptions allow an 
approach similar to ours, though the resulting guidelines will be different (cf. (4.4)).

3.4. Computing environment.
Hypothesis II. To estimate how the computing power available to attackers may 
change over time we use a variation of Moore’s law. Moore’s law states that the 
density of components per integrated circuit doubles every 18 months. A widely 
accepted interpretation of this law is that the computing power per chip doubles every 
18 months. There is some skepticism whether this law will, or even can, hold much 
longer. Therefore we hypothesize a less technology dependent variation that so far 
seems to be sufficiently accurate: every 18 months the amount of computing power 
and random access memory one gets for a dollar doubles. Thus, for the same cost one 
gets a factor of 21012/18  100 more computing power and fast memory every 10 years, 
either in software on multipurpose chips (PCs) or using special-purpose hardware.

To illustrate this, it is not unreasonable to assume that a cheaper and slower 
version of the 1980 “$50 million, 2 days” DES key searching machine would be a “$1 
million, 100 days” machine, i.e., 50 times less hardware and therefore 50 times 
slower. According to our version of Moore’s law the $1 million machine may be 
expected to be 28.7 times faster in 1993, since there are 1213 = 188.66 months 
between 1980 and 1993. Since 28.7 406 the 1993 version would need about 100/406 
days, i.e., about 6 hours, which is indeed close to the 3½ hours required by the $1 
million design from [26]. On the other hand, further extrapolation suggests that in 



1998 a $1 million machine may be expected to take 0.6 hours, or that a $130,000
machine would take 4.6 hours, i.e., about 24 times faster than the machine that was 
actually built in 1998 (cf. [13]). This anomaly is due to the fact that building the 
$130,000 machine was, relatively speaking, a small scale enterprise where every 
doubling of the budget would have quadrupled the performance (cf. [14]).
Hypothesis III. Our version of Moore’s law implies that we have to consider how 
budgets may change over time. The US Gross National Product shows a trend of 
doubling every ten years: $1630 billion in 1975 measured in 1975 dollars, $4180 
billion in 1985 measured in 1985 dollars, and $7269 billion in 1995 in 1995 $’s. This 
leads to the hypothesis that the budgets of organizations doubles every ten years.
Combination of Hypotheses I, II, and III. If in 1982 an amount of computing power 
of 0.5 MMY is assumed to be infeasible to invest in an attack, then 100 ( 21000.5) 
MMY is infeasible in 1992. Furthermore, 2104 ( 200100) MMY is infeasible in 
2002, and 4106 MMY is infeasible in 2012.

3.5. Cryptanalysis.
Hypothesis IV. It is impossible to say what cryptanalytic developments will take 
place, or have already taken place surreptitiously. We find it reasonable to assume that 
the pace of (published) future cryptanalytic findings and their impact are not going to 
vary dramatically compared to what we have seen from 1970 until 1999. For classical 
asymmetric systems the effect of cryptanalytic developments illustrated in (2.3) is 
similar to Moore’s law, i.e., 18 months from now we may expect that attacking the 
same classical asymmetric system costs half the computational effort it costs today, cf. 
(4.2). For all other systems we assume that no substantial cryptanalytic developments 
will take place, with the exception of elliptic curve systems for which we use two 
types of extrapolations: no progress and progress à la Moore.

3.6. Software versus special-purpose hardware attacks. The proposed key sizes in 
the next section are obtained by combining Hypotheses I-IV with the software based 
MY data points. This implies that all extrapolations are based on ‘software only’ 
attacks and result in computationally equivalent key sizes (cf. (1.4)). One may object 
that this does not take special-purpose hardware attacks into account. Here we discuss 
to what extent this is a reasonable decision, and how our results should be interpreted 
to take special-purpose hardware attacks into account as well.
Symmetric key systems. In 1980 the DES could either be broken at the cost of 0.5 
MMY, or using a “$50 million, 2 days” machine. This is consistent with our version 
of Moore’s law and the 1993 design from [26]. Thus, it seems reasonable to assume 
that a DES attack of one MMY is comparable to an attack by [$10 million, 20 days, 
1980]-hardware or, using Moore’s law, by [$200/210.66 million = $125,000, 1 day, 
1996]-hardware. It also follows that the 1982 relation between software and special-
purpose hardware attacks on the DES has not changed. Thus, if one assumes that the 
DES was sufficiently resistant against a special-purpose hardware attack in 1982, the 
same holds for the symmetric key sizes suggested for the future, even though they are 
based on extrapolations of ‘software only’ attacks. Our estimates and the resulting 
cost of special hardware designs are consistent with the estimates given in [2] and [4].
EC systems. The cost of a software attack on a 109-bit EC system with p = 2109 was 
estimated as 8 MMY, so that attacking a 120-bit EC system with p = 2155 should take 



about (2(120109)/2)(155/109)2  91 times longer, i.e., about 730 MMY. The [$10 
million, 32 days, 1996]-hardware design attacking a 120-bit EC system with p = 2155

(cf. (2.3.3)) should thus be comparable to 730 MMY. However, that design was based 
on 1992 technology which can be improved by using 1996 technology. So, by 
Moore’s law, the ‘upgraded’ [$10 million, 32 days, 1996]-hardware design could be 
comparable with 7306.35  4600 MMY. It follows that an EC attack of one MMY is 
comparable to [$70,000, 1 day, 1996]-hardware.

We find that one MMY is equivalent to [$70,000 to $125,000, 1 day, 1996]-
hardware. Thus, it is tempting to suggest that one MMY is approximately equivalent 
to [$105, 1 day, 1996]-hardware; more generally, that one MMY would be equivalent 
to [$105/22(y1996)/3, 1 day, y]-hardware in year y. This conversion formula would 
allow us to go back and forth between software and special-purpose hardware attacks, 
and make our entire model applicable to hardware attacks as well.

In our opinion the consistency between the two conversions is a mere 
coincidence. In the first place, the estimate holds only for relatively simple minded 
DES or EC cracking devices for EC systems over non-prime fields (i.e., those with p 
= 2k), not for EC systems over prime fields or full-blown PCs. For prime fields the 
hardware would be slower, whereas in software EC systems can be attacked faster 
over prime fields than over non-prime fields (cf. (2.3.3)). Thus, for special-purpose 
hardware attacks on EC systems over prime fields the consistency no longer holds.  
Secondly, the pipelined version of the EC-attacking special-purpose hardware from 
[25] would be about 7 times faster (cf. [27]), so that also for special-purpose hardware 
attacks on EC systems over non-prime fields the consistency between DES and EC 
attacks is lost. The prime field version of the pipelined device would be 24 to 25 times 
slower than the non-prime field version (cf. [27]). The details of the pipelined device 
have not been published, cf. [28]. 

As mentioned in (2.3.3), we consider only EC systems that use randomly 
selected curves over prime fields. We show that we may base our recommendations 
on ‘software only’ attacks, if we use the software based data point that a 109-bit EC 
system can be attacked in 2.2 MMY (cf. (2.3.3)). The 2.2 MMY underestimates the 
true cost, and is lower than the 8 MMY cost to attack the non-prime field of 
equivalent size. The latter can be done using non-pipelined special-purpose hardware 
in a way that is consistent with our DES infeasibility assumption, as argued above. 
For special-purpose hardware a non-prime field can be attacked faster than a prime 
field of equivalent size, so if we use the naive DES-consistent hardware conversion, 
then the hypothetical special-purpose hardware that follows from extrapolation of the 
2.2 MMY figure to larger prime fields underestimates the true hardware cost. That 
means that the resulting key sizes are going to be too large, which is acceptable since 
we are deriving lower bounds (cf. (1.3)). The more realistic prime field equivalent of 
the non-DES-consistent pipelined device for non-prime fields is, based on the figures 
given above, at least 248/(2.27) > 8 times slower than our hypothetical hardware. 
This implies that the more realistic hardware would lead to lower key sizes than the 
hypothetical hardware. Thus, it is acceptable to stick to the latter (cf. (1.3)). It follows 
that, if one assumes that the DES was sufficiently resistant against a special-purpose 
hardware attack in 1982, the same holds for the EC key sizes suggested for the future, 
even though they are based on extrapolations of ‘software only’ attacks.



SDL systems. The same holds for SDL systems because our analysis of SDL key sizes 
is based on the EC analysis as described below.
Classical asymmetric systems. For classical asymmetric systems we do not consider 
special-purpose hardware attacks, as argued in (2.3.1). The issue of software attacks 
on classical asymmetric systems versus special-purpose hardware attacks on other 
cryptosystems is discussed below.
Equipment cost comparison of software and special-purpose hardware attacks. Our 
recommendations below are computationally equivalent and, as argued above, they all 
offer security at least equivalent to the 1982 security of the DES, both against 
software and special-purpose hardware attacks. That does not necessarily imply that 
the key sizes for the various cryptosystems are also cost equivalent, because the 
equipment costs of the 1982 software and special-purpose hardware attacks on the 
DES are not necessarily equal either. One point of view is that accessing the hardware 
required for software attacks is for free, as in all Internet based cryptosystem attacks 
so far and other large computational Internet projects. Adoption of this rule would 
make computational and cost equivalence identical, which is not generally acceptable 
(cf. [27]). A precise equipment cost defies exact analysis, primarily because no precise 
‘cost of a PC’ can be pinpointed. Nevertheless, we sketch how an analysis based on 
cost equivalence could be carried out.

According to newspaper advertisements fully equipped PCs (cf. (1.2)) can be 
bought for prices varying from $0 to $450. The ‘free’ machines support the point of 
view that software attacks are for free. Assume that one does not want to deal with the 
strings attached to the free machines and that a stripped down PC (i.e., a 450 MHz 
Pentium II processor, a mother-board, and communications hardware) costs $100. It 
follows that [$81 million, 1 day, 1999]-hardware is equivalent to at least one million 
software MY, disregarding the possibly much larger quantum discount one should be 
able to negotiate for an order of this size. Compared to the above exhaustive key 
search [$125,000, 1 day, 1996]  [$31,000, 1 day, 1999]-hardware, software MY are 
thus about 2500 times more expensive. Compared to the pipelined [$70,000/7, 1 day, 
1996]  [$2500, 1 day, 1999]-hardware to attack EC systems over non-prime fields, 
software MY are more than 3104 times more expensive, but at most about 2103

times more expensive than the prime field version of the pipelined design.
It follows that for our purposes software MY are at most 2500 times more 

expensive than MY produced by special-purpose hardware. In (4.5) it is shown how 
this factor 2500 can be used to derive equipment cost equivalent key sizes from the 
computationally equivalent ones. The factor 2500 should be taken with a grain of salt. 
Its scientific merit is in our opinion questionable because it is based on a guess for the 
price of stripped down PCs and the presumed infeasibility of special-purpose 
hardware attacks on RSA (cf. (2.3.1) and the pipelined design in [10]).

3.7. Memory considerations. In [15] we explain why (NFS) memory requirements 
do not explicitly have to be taken into account when extrapolating run times.

3.8. Remark. We do not expect that everyone agrees with our hypotheses. In 
particular Hypothesis I is debatable. Note that we did not assume anything about the 
(un)breakability of the DES in any year. We assumed that it offered enough security 
for commercial applications, not that well-funded government agencies were unable to 



break it back in 1977. In this context it may be entertaining to mention that Mike 
Wiener, after presenting his [$1 million, 3½ hours, 1993]-hardware design at a 
cryptography conference, was told that he had done a nice piece of work and he was 
offered a similar machine at only 85% of the cost – with the catch that it was 5 years 
old (cf. [28]). Anyone who prefers a stronger or weaker infeasibility assumption can 
still use our approach, as shown in (4.4). Also our Hypothesis II is certainly not to 
everyone’s taste. Some argue that Moore’s law cannot hold much longer, others (cf. 
[14]) find it too pessimistic. Hypothesis II thus represents a reasonable compromise.

4 Lower bound estimates for cryptographic key sizes

4.1. Method of computation. For year y we first compute IMY(y), the number of MY 
considered to be infeasible for that year, based on Hypotheses I-III:

IMY(y) = 0.5  106  22(y1982)/3  2(y1982)/10.
The resulting value is used to derive key sizes that should be sufficiently secure until 
year y, for all cryptographic primitives considered in Section 2. For symmetric key 
cryptosystems the key size is computed as the smallest integer that is at least

56 + log2(IMY(y) / (0.5  106)) = 23y / 30  1463.533.

For classical asymmetric systems we use the asymptotic run time L[n] of the NFS 
(omitting the o(1)), the data point that a 512-bit key was broken in 1999 at the cost of 
less than 104 MY (cf. (2.3.1)) and Hypothesis IV that cryptanalytic progress à la 
Moore is expected, and we determine the smallest size s such that

L[2s]  104  L[2512]  22(y1999)/3  IMY(y).

Because the data point used overestimates the cost of factoring a 512-bit key and 
because we omit the o(1) the difficulty of breaking classical asymmetric systems with 
keys of size s is overestimated (cf. (2.3.1)), i.e., the RSA and TDL key sizes should be 
even larger than given in Table 1.

For SDL systems we use the just determined s as field size for year y. 
Because no suitable data points are available, we use the optimistic estimate that an 
EC system over a prime field of 109 bits can be broken in 2.2 MMY (cf. (2.3.3)) and 
that an elliptic curve operation takes on average 9 field multiplications. Combined 
with the relative speed of Pollard’s rho method, and the expected growth of the cost of 
the field operations, we find that the size of the subgroup size q can be taken as

109 + 2  log2(1092  IMY(y)  9 / (s2  2 2.2  106)).

The resulting sizes are at most two bits too large (cf. (1.3) and [15]).
For EC systems we use the same optimistic estimate that a 109-bit system 

can be broken in 2.2 MMY combined with the expected growth rate of the number of 
group operations required by Pollard’s rho method and the expected growth of the 
cost of the group operations, to determine the smallest size t such that



t2  2(t109)/2  1092  IMY(y) / (2.2  106).

The resulting t represents the recommended EC key size lower bound if no 
cryptanalytic progress is assumed, where it should be noted that t is on the large side 
because the 2.2 MMY estimate is rather optimistic (cf. (1.3)). An alternative key size 
that assumes cryptanalytic progress à la Moore is found by taking the smallest u with 

u2  2(u109)/2  22(y1999)/3  1092  IMY(y) / (2.2106).

4.2. Remarks on the computation of Table 1.
1. All estimates may be computed for years before 1999. Some of the resulting data 

can be found in Table 1. Strictly speaking this does not make sense for the “EC 
with progress” column. It is described in (4.4) how to use the data in italics.

2. The results do not change significantly if the RSA data point is replaced by other 
(older) factoring data points, which validates our decision to adopt a Moore-like 
law for cryptanalytic progress affecting classical asymmetric systems.

4.3. Using Table 1. Assuming one agrees with our hypotheses, Table 1 can be used as 
follows. Suppose electronic information has to be guaranteed until the year 2020. 
Looking at the row for the year 2020 in Table 1, one finds that an amount of 
computing of 2.91014 MY in the year 2020 may be considered to be as infeasible as 
0.5106 MY was in 1982. Security comparable to the security offered by the DES in 
1982 is therefore obtained by using, in the year 2020:
 Symmetric keys of at least 86 bits, and hash functions of at least 172 bits;
 RSA moduli of at least 1881 bits; the meaning of the ‘1472’ given in the second 

entry of same column is explained in 4.5
 SDL systems with subgroups of at least 151 bits over fields of at least 1881 bits. 
 EC systems over prime fields of at least 161 bits if one trusts that no cryptanalytic 

progress will occur, at least 188 bits if one wants to be more careful.
If finite fields are used that allow faster operations than suggested by our estimates, 
the SDL and EC data in Table 1 can still be used: if the arithmetic goes x times faster, 
keys should be roughly 2log2(x) bits larger than indicated. As noted above the field 
arithmetic is already assumed to be quite fast. Similarly, if one finds that the data 
point used for EC systems overestimates the cost by a factor x, i.e., that the 2.2 MMY 
to attack 109-bit EC systems should be only 2.2/x MMY, add roughly 2log2(x) bits to 
the suggested EC key sizes.

4.4. Alternative security margin. For corporations that have used the DES beyond 
1982 our infeasibility assumption of 0.5 MMY in 1982 may be too strong. For others 
it may be too weak. Here we explain how to use Table 1 to look up key sizes for 
year y, for example y = 2005, if one trusts the DES until the year 1982 + x, where x is 
negative if our infeasibility assumption is considered to be too weak and positive 
otherwise. So, for example, x = 13 if one trusts the DES until 1995.
 Symmetric keys: take the entry for year y  x, i.e., 2005 – 13 = 1992 in our 

example. The resulting symmetric key size suggestion is 64 bits.



 Classical asymmetric keys: take the entry for year y  23x/43, i.e., 2005 
2313/43  1998 in our example. So 879-bit RSA and TDL keys should be used.

 SDL keys: take the classical asymmetric key size s for year y  23x/43, the SDL 
size t for year y  x, and the classical asymmetric key size s for year y  x and use 
a subgroup of size t + 4log2(s)  4log2(s) over a field of size s. In our example 
s = 879, t = 114, and s = 682 so that a subgroup of size 114 + 4log2(682) 
4log2(879)  113 bits should be used with a 879-bit field.

 EC systems without progress: take the ‘without progress’ entry for year y  x, i.e., 
2005 – 13 = 1992 in the example. The resulting EC key size suggestion is 120 
bits.

 EC systems with progress à la Moore: take the ‘with progress’ entry for year 
y  23x/43, i.e., 2005  2313/43  1998 in our example. The resulting EC key 
size suggestion is 129 bits.

The Table 1 entries in italics for years before 1999 may be used in the last application; 
the other italics entries may be used if x < 0.

Table 1
Lower bounds for computationally equivalent key sizes,

assuming cryptanalytic progress à la Moore affecting classical asymmetric systems
Elliptic Curve 
Key Size

progress

Year

Symmetric 
Key Size

Classical 
Asymmetric 
Key Size 
(and SDL 
Field Size)

Subgroup 
Discrete 
Logarithm 
Key Size

no yes

Infeasible 
number of 
Mips Years

Lower bound 
for Hardware 
cost in US $ for 
a 1 day attack 
(cf. (4.5))

Corresponding 
number of 
years on 
450MHz 
PentiumII PC

1982 56 417   288 102 105 85 5.00 * 105 3.98  107 1.11 * 103

1983 57 440   288 103 107 88 8.51 * 105 4.27  107 1.89 * 103

1984 58 463   320 105 108 89 1.45 * 106 4.57  107 3.22 * 103

1985 59 488   320 106 110 93 2.46 * 106 4.90  107 5.47 * 103

1986 60 513   352 107 111 96 4.19 * 106 5.25  107 9.31 * 103

1987 60 539   384 108 113 98 7.13 * 106 5.63  107 1.58 * 104

1988 61 566   384 109 114 101 1.21 * 107 6.04  107 2.69 * 104

1989 62 594   416 111 116 104 2.06 * 107 6.47  107 4.58 * 104

1990 63 622  448 112 117 106 3.51 * 107 6.93  107 7.80 * 104

1991 63 652   448 113 119 109 5.97 * 107 7.43  107 1.33 * 105

1992 64 682   480 114 120 112 1.02 * 108 7.96  107 2.26 * 105

1993 65 713   512 116 121 114 1.73 * 108 8.54  107 3.84 * 105

1994 66 744   544 117 123 117 2.94 * 108 9.15  107 6.53 * 105

1995 66 777   544 118 124 121 5.00 * 108 9.81  107 1.11 * 106

1996 67 810   576 120 126 122 8.51 * 108 1.05  108 1.89 * 106

1997 68 844   608 121 127 125 1.45 * 109 1.13  108 3.22 * 106

1998 69 879   640 122 129 129 2.46 * 109 1.21  108 5.48 * 106

1999 70 915   672 123 130 130 4.19 * 109 1.29  108 9.31 * 106

2000 70 952   704 125 132 132 7.13 * 109 1.39  108 1.58 * 107

2001 71 990   736 126 133 135 1.21 * 1010 1.49  108 2.70 * 107

2002 72 1028   768 127 135 139 2.06 * 1010 1.59  108 4.59 * 107

2003 73 1068   800 129 136 140 3.51 * 1010 1.71  108 7.80 * 107

2004 73 1108   832 130 138 143 5.98 * 1010 1.83  108 1.33 * 108

2005 74 1149   864 131 139 147 1.02 * 1011 1.96  108 2.26 * 108

2006 75 1191   896 133 141 148 1.73 * 1011 2.10  108 3.84 * 108



2007 76 1235   928 134 142 152 2.94 * 1011 2.25  108 6.54 * 108

2008 76 1279   960 135 144 155 5.01 * 1011 2.41  108 1.11 * 109

2009 77 1323  1024 137 145 157 8.52 * 1011 2.59  108 1.89 * 109

2010 78 1369  1056 138 146 160 1.45 * 1012 2.77  108 3.22 * 109

2011 79 1416  1088 139 148 163 2.47 * 1012 2.97  108 5.48 * 109

2012 80 1464  1120 141 149 165 4.19 * 1012 3.19  108 9.32 * 109

2013 80 1513  1184 142 151 168 7.14 * 1012 3.41  108 1.59 * 1010

2014 81 1562  1216 143 152 172 1.21 * 1013 3.66  108 2.70 * 1010

2015 82 1613  1248 145 154 173 2.07 * 1013 3.92  108 4.59 * 1010

2016 83 1664  1312 146 155 177 3.51 * 1013 4.20  108 7.81 * 1010

2017 83 1717  1344 147 157 180 5.98 * 1013 4.51  108 1.33 * 1011

2018 84 1771  1376 149 158 181 1.02 * 1014 4.83  108 2.26 * 1011

2019 85 1825  1440 150 160 185 1.73 * 1014 5.18  108 3.85 * 1011

2020 86 1881  1472 151 161 188 2.94 * 1014 5.55  108 6.54 * 1011

2021 86 1937  1536 153 163 190 5.01 * 1014 5.94  108 1.11 * 1012

2022 87 1995  1568 154 164 193 8.52 * 1014 6.37  108 1.89 * 1012

2023 88 2054  1632 156 166 197 1.45 * 1015 6.83  108 3.22 * 1012

2024 89 2113  1696 157 167 198 2.47 * 1015 7.32  108 5.48 * 1012

2025 89 2174  1728 158 169 202 4.20 * 1015 7.84  108 9.33 * 1012

2026 90 2236  1792 160 170 205 7.14 * 1015 8.41  108 1.59 * 1013

2027 91 2299  1856 161 172 207 1.21 * 1016 9.01  108 2.70 * 1013

2028 92 2362  1888 162 173 210 2.07 * 1016 9.66  108 4.59 * 1013

2029 93 2427  1952 164 175 213 3.52 * 1016 1.04  109 7.81 * 1013

2030 93 2493  2016 165 176 215 5.98 * 1016 1.11  109 1.33 * 1014

2031 94 2560  2080 167 178 218 1.02 * 1017 1.19  109 2.26 * 1014

2032 95 2629  2144 168 179 222 1.73 * 1017 1.27  109 3.85 * 1014

2033 96 2698  2208 169 181 223 2.95 * 1017 1.37  109 6.55 * 1014

2034 96 2768 2272 171 182 227 5.01 * 1017 1.46  109 1.11 * 1015

2035 97 2840  2336 172 184 230 8.53 * 1017 1.57  109 1.90 * 1015

2036 98 2912  2400 173 185 232 1.45 * 1018 1.68  109 3.22 * 1015

2037 99 2986  2464 175 186 235 2.47 * 1018 1.80  109 5.49 * 1015

2038 99 3061  2528 176 188 239 4.20 * 1018 1.93  109 9.33 * 1015

2039 100 3137  2592 178 189 240 7.14 * 1018 2.07  109 1.59 * 1016

2040 101 3214  2656 179 191 244 1.22 * 1019 2.22  109 2.70 * 1016

2041 102 3292  2720 180 192 247 2.07 * 1019 2.38  109 4.60 * 1016

2042 103 3371  2784 182 194 248 3.52 * 1019 2.55  109 7.82 * 1016

2043 103 3451  2880 183 195 252 5.99 * 1019 2.73  109 1.33 * 1017

2044 104 3533  2944 185 197 255 1.02 * 1020 2.93  109 2.26 * 1017

2045 105 3616  3008 186 198 257 1.73 * 1020 3.14  109 3.85 * 1017

2046 106 3700  3072 187 200 260 2.95 * 1020 3.36  109 6.55 * 1017

2047 106 3785  3168 189 201 264 5.02 * 1020 3.60  109 1.11 * 1018

2048 107 3871  3232 190 203 265 8.53 * 1020 3.86  109 1.90 * 1018

2049 108 3959  3328 192 204 269 1.45 * 1021 4.14  109 3.23 * 1018

2050 109 4047  3392 193 206 272 2.47 * 1021 4.44  109 5.49 * 1018

4.5. Equipment cost equivalent key sizes. Assuming the $100 price for a stripped 
down PC (cf. (3.6)) and the resulting factor of 2500 are acceptable, Table 1 can be 
used to derive equipment cost equivalent key sizes in the following manner. A lower 
bound for the equipment cost for a successful one day attack is given in the second to 
last column of Table 1, in year y in dollars of year y. 



The symmetric key sizes are derived based on Hypothesis 1, and the EC key sizes are 
based on estimates that are cost consistent with the symmetric key sizes (cf. (3.6)), so 
for those systems no corrections are necessary.

For classical asymmetric systems, MY are supposedly 2500 times as 
expensive, which is, for our computational purposes only, equivalent to assuming that 
the DES offers acceptable security until about 1997, since 1997  1982 = 15 and 
2(1523/30) (cf. (4.1)) is close to 2500. Thus, using (4.4), classical asymmetric key sizes 
that are equipment cost equivalent to symmetric and EC key sizes for year y can be 
found in Table 1 in the classical asymmetric key size column for year y  (2315)/43 
= y  8. The resulting key sizes, rounded up to the nearest multiple of 32, are given as 
the second entry in the classical asymmetric key sizes column of Table 1. Breaking 
such keys requires a substantially smaller number of MY than the infeasible number 
of MY for year y, but acquiring the required MY is supposed to be prohibitively 
expensive.

For subgroup discrete logarithm systems in year y, let t and s be the subgroup 
and finite field size, respectively, for year y, and let s be the finite field size for year 
y  8. For cost equivalence with symmetric and EC key sizes in year y use subgroups 
of size t + 4log2(s)  4log2(s) over finite fields of size s. As a rule of thumb, 
subgroups of size t + 2 over finite fields of size s will do. As an example, in the year 
2000 the following key sizes are more or less equipment cost equivalent: 70-bit 
symmetric keys, 682-bit classical asymmetric keys, 127-bit subgroups with 682-bit 
finite fields, and 132-bit EC keys. 

A similar straightforward analysis can be carried out for any other PC price 
one may prefer. For instance, for $10 or $1000 per PC the y  8 should be changed 
into y  6 or  y  10, respectively.

5 Practical consequences of Table 1

5.1. DSS. DSS key sizes can be recommended for commercial applications only until 
the year 2002 for the field size, until 2013 for the hash function, and until 2026 for the 
subgroup size. For security until 2013, it is advisable to use the DSS with a 1513-bit 
finite field. Beyond 2013 the 160-bit size of SHA-1 may no longer be adequate. 
Changing it may force a change in the subgroup size that would otherwise not have 
been necessary until 2026. According to [16], NIST is working on a revision for the 
DSS, with key sizes as reported in Table 2 (and hash size matching the size of q).

Table 2
Proposed key sizes for the revised DSS

size q 160 256 384 512
size p 1024 3072 7680 15360

5.2. Effect on cryptosystem speed. RSA keys that are supposed to be secure until 
2040 are about 3 times larger than popular 1024-bit RSA keys, making those large 
keys 9 to 27 times slower to use: 9 for signature verification or encryption with a fixed 
length public exponent, 27 for signature generation or decryption. TDL systems will 
slowdown by a factor 27 compared to 1024-bit versions. SDL systems slowdown by 
about a factor 11 compared to currently secure SDL systems. The speed of EC 



systems is hardly affected. Within a few years faster processors will have solved these 
performance problems by our Moore assumption. Note, however, that this may not be 
the case in more restricted environments such as smartcards, where bandwidth and 
power consumption constraints also have a more limiting effect on key sizes.

5.3. 512-bit RSA keys. RSA keys of 512 bits are widely used all over the Web, e.g. in 
SSL protected communications. According to Table 1, such keys should not have 
been used beyond 1986. A 512-bit RSA key was factored in August 1999 (cf. [5]).

5.4. 768-bit RSA keys. According to Table 1 usage of 768-bit RSA keys can no 
longer be recommended. Even in the equipment cost equivalent model 768-bit RSA 
keys will soon no longer offer security comparable to the security of the DES in 1982.

5.5. RSA and EC. It is often informally argued that 1024-bit RSA and 160-bit EC 
systems offer more or less the same level of security. This is not what one would 
conclude from Table 1. We discuss several aspects of this contentious issue in [15].

5.6. SDL and EC. The gap between the suggested SDL and EC key sizes widens 
slowly due to the rapidly growing size of the finite fields in SDL.

5.7. Effectiveness of guessing. The sizes suggested in Table 1 for the year 2000 or 
later are in practice infeasible to guess.

5.8. Effectiveness of incomplete attacks. As shown in [15], incomplete attacks can 
on average not be expected to pay off.

5.9. Effectiveness of Elliptic Curve Method. As shown in [15], the Elliptic Curve 
Method cannot be expected to break keys of the suggested sizes. 

5.10. Wassenaar Arrangement for mass market applications. The WA allows 64-
bit symmetric keys and 512-bit classical asymmetric keys for mass market 
applications. According to Table 1 it is advisable to increase the 512-bit bound for
classical asymmetric keys to 672 or 768 bits.
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