
A secure filesender service based on Remote
Document Encryption

Eric R. Verheul?

KeyControls, Radboud University Nijmegen,
P.O. Box 9010, NL-6500 GL Nijmegen, The Netherlands.

eric.verheul@[keycontrols.nl,cs.ru.nl]

Version 0.63, 4 May 2020

Abstract We show how a public key infrastructure (PKI) implemented
in current electronic identity documents can form the basis for a secure
file sending service. This allows users selecting a recipient PKI certificate
based on identity document information (names, but also facial images)
signed by the issuing government. These certificates then allow encrypt-
ing (large) files for the recipient whereby decryption requires access to
the identity document. In other words, RDE-SFS allows an identity doc-
ument to be used as PKI smartcard. This technique is supported by
almost all European passports and can provide for 160 bit security. In
addition end-to-end security is supported as encryption and decryption
can take in the user internet browser using a JavaScript cryptographic
library, e.g. the W3C Web Cryptography API. By using buffered en-
cryption and decryption very large files can be handled with low browser
requirements.

Keywords: end-to-end secure file sending, electronic passport, elec-
tronic driver license

? Work done for the Dutch Vehicle Authority (RDW).

Contents
1 Introduction . 4

1.1 Background . 4
1.2 Document outline . 6

2 Functional description of RDE-SFS. 6
3 Cryptographic prerequisites . 11

3.1 AES encryption . 11
3.2 Hashing and Message Authentication Codes 12
3.3 Elliptic Curve based Diffie-Hellman . 12
3.4 RDE encryption session keys and key derivation 13

4 Specification of RDE-SFS encryption and decryption 16
5 RDE-SFS implementation suggestion . 20
6 References . 21

List of Tables

1 Semantics of RDE result files . 17

List of Figures

1 (Secure) filesender service setup . 4
2 RDE-SFS user registration . 9
3 RDE-SFS usage . 10

VERSION CONTROL

Version Date Description

0.62 2019-06-11 first draft

0.63 2020-03-05 Minor changes, elaborated on registration process in Section 2,
added document “mnemonic” during registration and decryp-
tion allowing the user recognizing the document required for
decryption.

3

1. INTRODUCTION

1 Introduction

1.1 Background

A filesender service allows a user to send files other users. Such service is par-
ticulary relevant when the files are very large, e.g. gigabytes in size, so that
file sending by email is not possible. In the context of a filesender service three
parties exist, as is depicted in Figure 1 below. For simplicity we only distinguish
one receiving user in our descriptions but this can simply extended to multiple
users.

Figure 1. (Secure) filesender service setup

The basic use-case is as follows:

1. The sending user Sarah connects to the filesender service using an internet
browser and uploads the files and the identity of Renee, the intended receiving
user, e.g. her email address. Typically Saray will accompany the files with
an explanatory note.

2. The receiving user Renee is notified, e.g. through email, that files are avail-
able including an explanatory note and a link (URL) to these files.

3. Renee starts up an internet browser and uses the link to retrieve the files.
The filesender service removes the files and the explanatory note.

From a security perspective it is prudent to let the sending user authenticate
to the filesender service in Step U1. This allows for an sender user identity to
be reliably included in the notification to the receiving user in Step U2. In this
way the receiving user can assess if she knows/trusts the sending user and if she
wants to download the files in Step U3. Basic authentication could be based on
user-id/password whereby the sender’s email address is used as its user-id. The
filesender service checks that the sender user has access to this email address.

In the described setup the files are temporarily stored on a server of the
filesender service. This makes these susceptible to compromise there, e.g. by

4

1. INTRODUCTION

outside hackers or by staff of the filesender service. So when the files contain con-
fidential information, e.g. commercial information or personal data, it is prudent
to let the files be stored in encrypted form at the filesender service infrastructure.
In some cases the filenames themselves can contain confidential information, e.g.
in medical context where the filenames contains the name of the patient. For
optimal protection it is best to also encrypt the filenames.

The simplest mechanism achieving such a secure filesender service (SFS) is
by letting the sending user Sarah include a cryptographic key (long password)
as part of Step U1. The filesender service uses this key to encrypt the files and
deletes the key afterwards. Sarah then somehow provides the key to the receiv-
ing user Renee. Next Renee includes this key in Step U3 allowing the filesender
service to decrypt the files prior to delivering them to Renee. This mechanism
is simplest as it does not impose any encryption/decryption capabilities on the
users. It is also the mechanism currently used in the “wetransfer” filesender ser-
vice.1 Such a mechanism does not provide for end-to-end security between sender
and user, i.e. protecting both confidentially and the authenticity/integrity of the
files sent Indeed, an attacker of the service could get access to the cryptographic
key and read or manipulate the files sent. On the other hand, the mechanism
allows the filesender service to inspect the files for “illegal content” also avoiding
law suites against the filesender service. One can argue that inspection is required
if the filesender service does not perform strict (sending) user authentication, e.g.
in line with [2].

To provide for end-to-end security, the encryption, respectively the decryp-
tion, should take place in the environment of the sending, respectively receiv-
ing, user. This could be done by letting the encryption/decryption be done in
separate, trusted client software. Such client software could take the form of
a signed application or JavaScript code. We note that several JavaScript lib-
raries exist allowing various cryptographic operations to be conducted inside
the (sending/receiving) user internet browser, cf. [3]. Particularly interesting
is the Web Cryptography API specification of the World Wide Web Consor-
tium (W3C) [18]. This specification defines a low-level interface performing
cryptographic operations in internet browsers through JavaScript. These op-
erations are native, i.e. do not any additional JavaScript libraries to be loaded.
Apart from security advantages, this also has performance advantages. Most
modern internet browsers support Web Cryptography API. Compare https:

//developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API.
Letting the filesender service use such local encryption and decryption, theor-

etically allows for end-to-end security but still leaves the users with the classical
problem of securely distributing the cryptographic keys. In general this problem
can be solved by using public key certificates. Such certificates bind the identity
of a person to a public key through a signature placed by a trusted party, i.e a
certificate service provider. Such providers typically also maintain a directory of
all certificates issued accessible by relevant parties, i.e. the sending users in our
context. Here the sending user Sarah is provided with the certificate of Renee by

1 Communication from wetransfer support desk, 3 April 2019.

5

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API

2. FUNCTIONAL DESCRIPTION OF RDE-SFS

the filesender service as part of Step U1. This then also allows Sarah to encrypt
the files in Step U1 with the public key of Renee. Next Renee decrypts these
files in Step U3 using her private key.

Although the use of public key cryptography and digital certificates solve the
classical cryptographic key distribution problem it replaces it with the problem
of setting up a suitable public key certificate infrastructure (PKI). It is vital
that such a PKI provides a reliable binding between the public key and the user
identity. Preferably, this binding is based on a face-to-face process whereby the
user appears in person to a PKI employees allowing identity proving, e.g. based
on an identity document. Compare [1]. However, setting up a suitable PKI is
challenging and does not exist in most countries including The Netherlands.

This paper introduces a secure filesender service based an Remote Document
Encryption (RDE-SFS) which is based on existing PKIs related to electronic
passports, identity cards and driving licenses. This allows selecting certificates
of intended receivers based on information (names, but also facial images) from
their identity document vouched and signed by the government that issued it.
These certificates then allow encrypting information for the receiver in such a
way that decryption requires access to the identity document. In other words,
RDE-SFS allows identity documents to be used as PKI smartcards.

1.2 Document outline

In Section 2 we functionally describe RDE-SFS. Section 3 discusses the crypto-
graphic prerequisites required for RDE-SFS techniques specified. Section 4 spe-
cifies the RDE-SFS techniques themselves. Finally, Section 5 briefly discusses
RDE-SFS implementation.

2 Functional description of RDE-SFS

In this section we functionally describe a secure filesender service based an Re-
mote Document Encryption (RDE-SFS). We require that the secure filesender
service meets the following high-level requirements:

1. both confidentiality and integrity/authenticity of the file contents and names
sent are end-to-end protected,

2. the integrity/authenticity of the note is end-to-end protected,
3. the service supports for part-wise processing of (large) files.

For simplicity we only discuss passports, cf. [6]. However, the same applies to
identity cards and driving licenses in many countries including The Netherlands,
cf. [5]. Passports of most and all European countries include an electronic chip.
This chip allows border control officers retrieving passport information through
RFID (contactless communication). The protocols for this are specified by a
United Nations agency called International Civil Aviation Organization (ICAO).
All personal/identifying information that is physically printed on passports is
also accessible electronically from the chip, electronically signed by the country

6

2. FUNCTIONAL DESCRIPTION OF RDE-SFS

that issued the passport. This information does not only include the first and
last names of the citizen but also their date of birth, place of birth and even
their facial image (in color). All this personal/identifying information is bound
to separate electronic passports PKIs as specified by ICAO in [6]. These PKIs
also allow passports proving their authenticity trough specific protocols. The
corresponding public key certificates are retrievable from the passport and the
private keys securely reside inside the electronic passport usable for the specific
protocol only.

One of these PKIs is related to the Chip Authentication (CA) protocol. It
is shown in [17] that by using a technique called Remote Document Encryption
(RDE), the CA PKI can be used as a regular encryption PKI. That is, it allows
any party encrypting data for the passport holder using the CA public key cer-
tificate such that this data can only be decrypted using the private key residing
in the passport. This functionality is based on a tweak of the CA protocol and
probably not intended by ICAO in [6]. RDE is based on hybrid, authenticated
encryption whereby the actual data is symmetrically encrypted using an (au-
thenticated) encryption algorithm and whereby the secret key itself is encrypted
using asymmetric encryption. The asymmetric encryption is essentially based on
the Diffie-Hellman key exchange protocol, cf. [16].

We now outline the basic working of RDE-SFS. As indicated in Figure 2 be-
low, we introduce an RDE-client for receiving users, next to the internet browser.
The RDE-client facilitates that a receiving user is able to interact with its pass-
port through RFID. For simplicity one could think of the RDE-client as an
mobile application on a mobile device of the receiving user that supports RFID.
In the context of mobile application this is also known as Near Field Commu-
nication (NFC). In the RDE-client the complex part of RDE decryption takes
places in interaction with the receiving user’s passport. We remark that an RDE-
client could also take other forms such as a plugin in the user internet browser
or as an application next to the internet browser setting up a local server allow-
ing communication with the browser. We further note that only receiving users
require an RDE-client.

When receiving user Renee wants to be able to receive encrypted files through
RDE-SFS, she first needs to register at the directory service within RDE-SFS.
This consists of nine steps:

R1 Renee opens an account in the RDE-SFS directory service (hereafter: ser-
vice) and accepts the (privacy) conditions thereof. This account will include
information allowing Renee to be contacted, typically her email address.

R2 Renee is provided a choice which personal data on the passport is to be
provided as part of registration.

R3 Renee consents to a particular choice of personal data to be registered.
R4 Renee lets her RDE-client read the consented data groups from her passport.
R5 The RDE-client suggests Renee a mnemonic allowing her to recognize the

registered passport later.
R6 The RDE-client sends the consented data groups from Step 4 and the op-

tional mnemonic from Step 5 to the service.

7

2. FUNCTIONAL DESCRIPTION OF RDE-SFS

R7 The service validates the data read from the passport of Renee, including
the passport issuer electronic signatures.

R8 The service forms and registers an RDE-certificate based on the personal
data consented in Step 4. If Renee consented to a Mnemonic then the RDE
certificate is registered under the Mnemonic.

R9 The service securely wipes all data gained in the registration process other
then is required for the RDE-SFS functionality.

For simplicity the steps above only correspond with the happy flow and does
not deal with the erroneous situations. A real life implementation of these steps
should also deal with these situations. An important choice in Step R3 is whether
the facial image data is registered or not. The data groups read in Step R4
minimally consist of data group 15 (holding the chip authentication key), but
typically also includes data group 1 (holding naming information). If Renee
consented to registering her facial image also data group 2 is read. If the passport
supports Active Authentication (AA, compare [6,17]) then consent evidence can
be generated by placing the consented data in a separate object and having that
signed using the AA protocol. As this protocol only allows for signing 8 byte
“hash values”, cf. [?], it is best to include a RDE-SFS directory service session
identifier in the signature. When AA is used, then the certified AA public key
(data group 15) should also be retrieved in Step R4. Moreover, the RDE-SFS
directory service should validate the AA signature in Step R7.

In a naive implementation an RDE-certificate would simply be formed as all
information read from the user passport signed by the country that issued the
passport including the CA public key. However, this would imply that users need
to reveal all information printed on their information such as full first and last
names, date and place of birth and their facial image. The legal basis for data
processing of the directory user is consent of the user and users would typically
not consent to all this information being revealed to other users. Moreover,
in some countries, including the Netherlands, the passport also contains the
user social security number which is legally not allowed to be revealed to other
people. However, if one does not reveal all information, then the signature of the
country that issued the passport cannot be validated by the sending user. To
remedy this and to allow for flexibility we let the directory service validate the
relevant information read from the passport, i.e. the signatures of the country
that issued the passport, but then forms its own RDE certificates based on that.
This happens in Step R6 of the registration process. These RDE certificates bind
the CA public key read from the passport together with personal information
read from it that the user is willing to share with others. These RDE certificates
also binds to other identifiers of the user, most notably to its email address.
Depending of the contractual arrangements, the original data read form the
passport could either be deleted or (securely) archived for dispute handling. The
directory service is not required to use its own certificates and could simply store
the relevant user data, including the CA public key. However, this would make
the directory vulnerable to compromise.

8

2. FUNCTIONAL DESCRIPTION OF RDE-SFS

The mnemonic in Steps R7 and R8 allows Renee to recognize the passport
registered in the decryption phase. This is particulary helpful when Renee has
multiple passports or when more identity documents could be used in the ser-
vice. In the Netherlands both the national identity card and driving licence also
support RDE. The directory service could suggest a mnemonic, e.g. the last
three characters of the document number. Alternatively, one could let the user
choose the mnemonic.

Figure 2. RDE-SFS user registration

After registration is completed for a user, the registered RDE-certificate can
now be used as indicated in Figure 3. The RDE-SFS encryption process consists
of the following steps in the happy flow, i.e. when no issues or errors occur:

E1 The sender connects her browser to the RDE-SFS server. She optionally
needs to authenticate before she can proceed. The sender enters the email
address or other identifying information on the intended recipient.

E2 The RDE-SFS server queries the RDE directory service and presents the
relevant RDE-certificate(s) if that exists. The sender inspects the offered
certificates, e.g. by comparing the name information or the facial image.

E3 The sender selects the RDE-certificate of the intended recipient. The sender
writes an optional explanatory note and selects the files she wants to send
to the recipient.

E4 The browser generates an RDE session key S and an RDE encryption of
S. The browser uses S to supplement the note with an authentication tag.
The sender browser generates a list holding the names of the files selected.
The browser then encrypts the filename list using S. Next the browser RDE
encrypts the contents of each the selected files using S.

E5 The browser sends the results from the previous step in an RDE session key
file, a note file, a metafile and encrypted files to the RDE-SFS server.

It might be prudent requiring users to authenticate before access to the RDE-
SFS server as indicated in the Step E1. Indeed, senders get access to personal
data of other participants in Step 2 which is best to be protected. Moreover, such
authentication ensures that the files sent in Step E5 are authenticated. In Step

9

2. FUNCTIONAL DESCRIPTION OF RDE-SFS

E5 it seems simplest to replace the filenames with temporary sequential ones, e.g.
File1, File2 et cetera protecting the original names in the encryption process. In
the happy flow the RDE-SFS decryption process consists of the following steps:

D1 The receiver is notified of the files available on the RDE-SFS server. The
explanatory note is also part of the notification but not supplemented with
an authentication tag. Part of the notification is a URL on the RDE-SFS
server.

D2 The receiver clicks the URL and connects her browser to the RDE-SFS
server. The explanatory note is shown (again) and the number of available
(encrypted) files. The receiver accepts the sent files.

D3 The browser collects the RDE encrypted session file and generates on the fly
a public-private key pair. Next the browser sends the contents of the RDE
encrypted session file and the public key to the RDE-Client, e.g. through a
QR code.

D4 The RDE-client indicates the passport required (mnemonic) to the receiver
and interacts with the receiver’s passport to extract the RDE session key.

D5 The session key is encrypted by the RDE-client with the browser public key
from step D3.

D6 The encrypted session key is sent to the browser through the RDE-SFS
server.

D7 The browser retrieves the explanatory note including authentication tag and
the encrypted filename list L. The browser obtains the session key by using
the private key from Step D3 and uses this to verify the authentication
tag on the explanatory note and to decrypt the filename list L. Next the
browser RDE downloads each of the encrypted files, decrypts them writing
them under the name in the filename list. The decryption process ensures
that that the names of the files sent match those received.

Figure 3. RDE-SFS usage

10

3. CRYPTOGRAPHIC PREREQUISITES

3 Cryptographic prerequisites

3.1 AES encryption

In version 1 of the RDE-SFE specification, the encryption of data is based on
AES deployed in the so-called Galois/Counter Mode (GCM) mode [13]. This is
an algorithm for authenticated encryption with associated data, i.e. protecting
both confidentiality and authenticity/integrity of data. The rationale for this
choice is also that AES-GCM is part of the Web Cryptography API and natively
supported in regular internet browsers. Apart from encryption AES-GCM allows
additional data as input that is not encrypted but only authenticated. AES-GCM
is based on AES-CTR [12] protecting confidentiality supplemented with an AES
based message authentication code (GMAC).

The AES-GCM algorithms allows for various configurations. The input of
the AES-GCM algorithm consists of a key K, an initialisation vector IV , plain-
text data D and additional authenticated data A. The output the AES-GCM
algorithm consists of encrypted data C and an authentication tag T . In essence,
the AES-GCM algorithm first encrypts the data D deploying AES in so-called
Counter mode (AES-CTR, cf. [12]) using the initialisation vector. Next, AES-
GCM runs the encrypted data and the additional data A through a AES based
Message Authentication Code function called GMAC which forms the authen-
tication tag T . The AES-GCM decryption algorithm is very similar to the AES-
GCM encryption algorithm. As part of the decryption the authentication tag is
verified and if this is not successful the decryption process fails and delivers no
plaintext.

In calling the AES-GCM algorithm several times with the same key K it is
important that initialisation vector IV is different as otherwise the encrypted
data leaks secret information. Analysing the GCM specifications, the simplest
way to achieve this is to use a 96 bit (12 byte) initialisation vector that incre-
mented in each call. That is, the first call uses an initialisation vector that is
equal to 0 (considered as a 96 bit number), then 1 et cetera. In the AES-GCM
application in RDE-SFS the key K is chosen randomly in each session, allowing
to choose predicable initialisation vectors.

We let (C, T) = ENC(IV,K,D,A) denote the AES-GCM encryption of plain-
text data D and additional authenticated data A under key (256 bit) K using a
(96 bit) initialisation vector IV . In version 1 of the RDE-SFE specification we
choose the maximal authentication tag length (128 bit, i.e. 16 byte) and key size
(256 bit, i.e. 32 byte). We also let DEC(IV,K, T,C,A) denote the corresponding
AES-GCM authenticated decryption of ciphertext C and additional authentic-
ated data A based on initialisation vector IV , key K and authentication tag
T . This decryption can fail if the authentication tag is incorrect in which no
plaintext is returned.

If the plaintext data D is empty then so is the encrypted data C and the
authentication tag is (by definition) the GMAC authentication tag on the ad-
ditional authenticated data A. That is, an AES-GCM implementation also con-
veniently caters for a MAC algorithm. We note that the GMAC value is inde-

11

3. CRYPTOGRAPHIC PREREQUISITES

pendent of the initialisation vector. This will also be used in the version 1 of the
RDE-SFE specification as indicated in the next section.

3.2 Hashing and Message Authentication Codes

In the RDE-SFS specification we use a secure hash function H(.). As part of
the version 1 RDE-SFS specification we stipulate the use of the SHA-256 hash
function [9]. We also require the generation Message Authentication Codes to
protect the authenticity and integrity of data. As part of the version 1 RDE-SFS
specification we specify the use of the GMAC algorithm as this is conveniently
available from the used AES-GCM implementation. We will use the maximal
authentication tag length (128 bit, i.e. 16 byte) and denote the computation of
the GMAC value under key K by M(K, .). The GMAC keys we use are 256
bits in size. We assume that the data input of M(K, .) is a byte array but we
loosely allow using string input also. In the latter case, the string is assumed
to consist of printable ASCII characters considered as a byte array of the same
length consisting of the string ASCII byte values, i.e. without the closing zero
byte.

3.3 Elliptic Curve based Diffie-Hellman

In the RDE-SFS specification we use the so-called Diffie-Hellman key exchange
protocol to allow secure communication between the receiver browser and its
RDE-client. See [16]. In these protocols, an additive group G = (〈G〉,+) of order
q generated by a generator element G plays an important role. We use additive
notation as this is customary in the context of elliptic curve groups we deploy in
practice. We assume that q is prime. For any natural scalar n and element H ∈
〈G〉 we define the (point) multiplication nH as adding H n-times, e.g. 2H = H+
H. As nH = mH if and only if n = m mod q we can represent scalars as elements
of Fq. A randomly, or cryptographically secure pseudo randomly, chosen element
from a set is denoted by ∈R. We assume that the group (〈G〉,+) satisfies the usual
cryptographic security properties, i.e., that the so-called discrete logarithm, the
Diffie-Hellman and the Decision Diffie-Hellman problems are intractable. See [4].
In the Diffie-Hellman key exchange protocol two parties Alice and Bob each
generate a public/private key pair. For instance, Alice generates public key A =
aG with private key a ∈R F∗

q and Bob generates public key B = bG with private
key b ∈R F∗

q Next they sent each other their public keys from which both can
compute the shared key S = abG = aB = bA. This shared key can then be used
for secure communication between Alice and Bob. From S an AES-GCM key
is derived. In the basic Diffie-Hellman setup Alice and Bob choose fresh public
keys A,B as part of the secure communication setup. In a more advanced setup,
called half-certified Diffie-Hellman cf. [8, Protocol 12.5], the public key A of Alice
is fixed and wrapped in a certificate together with information identifying Alice.
Only Bob chooses a fresh public key B and private key b which are also known
as ephemeral keys.

12

3. CRYPTOGRAPHIC PREREQUISITES

As indicated in the next section RDE is based on Elliptic Curve based Diffie-
Hellman (ECDH) where the group is stipulated by the passport of the receiver
user. Modern passports use elliptic curve groups based on one of the NIST
curves [11] or Brainpool curves [7]. Current European passports, including the
Dutch ones, are based the Brainpool320r1 curve. As we are required to perform
ECDH operations with the curve used in the passport in the sender browser,
we also use the same curve for the Diffie-Hellman key exchange protocol in the
receiver browser. That is, in the RDE-SFS specification we only use one elliptic
curve group (〈G〉,+). As also indicated in Section 5 the Web Cryptography API
only supports the NIST curves so we need to partially use a separate JavaScript
library for ECDH in RDE-SFS implementations.

3.4 RDE encryption session keys and key derivation

We refer to [17] for a general background on Remote Document Encryption
(RDE). RDE is a tweak of the earlier mentioned Chip Authentication (CA)
protocol from part 11 of [6]. In essence the CA protocol consists of setting up
a secure messaging channel between passport and a reader application based on
the Diffie-Hellman key exchange protocol.

As follows from [17], Remote Document Encryption (RDE) is a tweak of
the Chip Authentication (CA) protocol which is based the half-certified Diffie-
Hellman key exchange protocol. In the CA protocol the passport holds the cer-
tified public key and the application reading the passport chooses an ephemeral
key. As in Section 3.3 we let (〈G〉,+) denote the group used in the passport as
part of the CA protocol. Current European passports, including the Dutch ones,
are based on the elliptic curve group based on the Brainpool320r1 curve, cf. [7].

RDE is based on Protocols 4 and 5 from [17] according to RDE input
parameters P . These parameters consist of the triple (n, FId, FCont) introduced
in [17]. Here FId identifies a data group and n is the number of bytes to read
from it as part of RDE. FCont represents the full contents of this data group.
It is indicated in [17] that n needs not be too large ensuring the bytes read fit
a standard response of 255 bytes. Taking into account secure messaging over-
head, [17] indicates n should be less than 223 for AES based secure messaging
and less than 231 for DES based secure messaging. The choice of n is further
upper bounded by the number of bytes available in the data group to be read.

Protocols 4 and 5 from [17] result into an output triple (Z,RBs, M̄). Here Z is
an ephemeral public key, i.e. a point on the elliptic curve the Chip Authentication
(CA) protocol is based on. RBs is a protected READ BINARY command RBs

and M̄ is the protected response including the status words. This includes both
the protected and unprotected ones, i.e. 4 bytes in total. We let that these three
parts be represented as byte arrays.

The protected response M̄ is the basis for the RDE encryption. Essentially
this consists of an encryption with a block cipher EK(.) of the data read and
an 8 byte Message Authentication Code (MAC) over the result. Compare Part
11 of [6]. The block cipher is either Triple DES (3DES) or AES and the MAC
algorithm is either CMAC or based on CBC. Modern passports are based on

13

3. CRYPTOGRAPHIC PREREQUISITES

AES and CMAC. For this the CA protocol uses the Diffie-Hellman key exchange
protocol to derive two suitable keys K = KENC,KMAC.

As part of this RDE-SFS specification (version 1) we let FId be the data
group holding the CA public key, i.e. data group 14. Moreover we let n = 1, i.e
we only read one byte from data group 14, which is always equal to 0x6E. This
byte corresponds to the data group “Tag” which is equal to the hexadecimal
nibble 6 followed by the data group number hexadecimal notation, i.e. E. One
can easily derive that the encrypted content in the case the blockcipher is AES
equals:

AESK(AESK(00000000000000000000000000000001)⊕ 6E800000000000000000000000000000).

In case the blockcipher is 3DES the encrypted content equals:

3DESK(3DESK(0000000000000001)⊕ 6E80000000000000).

Here the inside encryptions correspond with the initialisation vector based on
the (first) Send Sequence Counter. The byte arrays on the right corresponds with
the first byte (0x6E) of the data group followed with padding i.e. 0x80 followed
with zero bytes filling the blocksize.

Using a message authentication function as part of a key derivation function
is well accepted, cf. [14]. Hence the 8-byte MAC value used can be considered
suitable cryptographically random. It is well accepted that 3DES and AES are
pseudorandom permutations (PRP) implying that for a random K (appropriate
for DES/AES), the functions AESK(.) DESK(.) cannot be distinguished from
a random permutation on the set of byte arrays of length 16. This implies that
the inside encryptions are suitably cryptographically random. In total the AES
encryption and the CMAC constitutes to 16+8=24 bytes, i.e. 192 bits. The DES
encryption and CBC-MAC constitutes to 8+8=16 bytes, i.e. in a 128 bit RDE
session key. Both are suitable large. As we remarked earlier, modern passports
are based on AES and CMAC where RDE-SFE resulting in a 192 bit RDE
session key. Modern passports are based on the 320 bit Brainpool320r1 curve
implying that the resulting RDE security corresponds with 160 bit.

For future reference we specify in Algorithm 1 the generation of a RDE Ses-
sion Key and its encrypted form. In Algorithm 2 we specify how the RDE Session
Key can be decrypted from its encrypted form. Algorithm 3 specifies how we use
the RDE Session Key to derive several other encryption and authentication keys
from.

Algorithm 1 GEN RS(): Generation of random RDE Session Key S and its
RDE-encryption (P,Z,RBs)

1: Apply protocol 4 from [17] and implied RDE-parameters P resulting

in byte arrays: an ephemeral public key Z, a protected READ BINARY

command RBs and a protected response M̄ (including all 4 status words)

2: Return M̄ as the RDE Session Key S and (P,Z, RBs) as its

RDE-encryption

14

3. CRYPTOGRAPHIC PREREQUISITES

Algorithm 2 DEC RS(P,Z,RBs): Decryption of RDE-encrypted session key S
from (P,Z,RBs)

1: Apply protocol 5 from [17] according to RDE-parameters P using the

passport of the user, the ephemeral public key Z, and the protected

READ BINARY command RBs resulting in a protected response, a byte

array M̄ (including all 4 status words).

2: If Step 2 is not successful return Error // Bad input

3: Return M̄ as the RDE Session Key S

Algorithm 3 KAE(S, i): Generation of the i-th authenticated encryption key
from session key S (byte array)

1: If i > 232 return error

2: Represent i as a unsigned integer in a 4 byte array I
3: Return KAE(S, i) = H(S || I)

15

4. SPECIFICATION OF RDE-SFS ENCRYPTION AND DECRYPTION

4 Specification of RDE-SFS encryption and decryption

In this section we specify the cryptographic techniques deployed within RDE-
SFS. We make some specific implementation choices to simplify the presentation.
Various variants of the specification outlined are possible. The first choice we
make is that we assume that the files selected by the sender are non-empty.
Empty files support can be easily arranged but requires various exception hand-
ling, complicating the presentation.

The result of any successful RDE-SFS encryption process of the sender is an
RDE-SFS session identifier RID and a number of non-empty associated files on
the RDE-SFS server. The resulting filenames take the format "R i j" where the
“R” stands for Result and the i, j are positive integers denoted in their ASCII
representation, e.g. "R 1 1". The first integer i denotes the file sequence number
whereas the j denotes the part number. The part numbers are consecutive, e.g.
a file R 2 could be decomposed into three partial files R 2 1, R 2 2, R 2 3. Each
RDE-SFS session contains a parameter MaxB holding a natural number. All
parts except the last part consist of MaxB 16 byte blocks, whereas the last
part contains less or equals MaxB 16 byte blocks. This block size of 16 bytes
corresponds with the AES block size allowing convenient buffer-wise encryption
and decryption.

As indicated in Table 1 some result files are not be divided in parts and
MaxB should be large enough to support for this. A minimal choice of MaxB
of 640 representing 10 megabytes of data in a part seems an appropriate choice.
As the files selected by the user are assumed non-empty, so are the result files.
Using parts allows decomposing a large file in smaller units. We will simply talk
about (result) file R i effectively meaning the consecutive concatenation of all its
parts. Each result file R i j has an associated (and undivided) Authentication
Tag which will be contained in an additional file with name AT i j. The contents
of AT i j is an AES-GCM authentication tag of the data (bytes) of the result file
prepended with the name of the file, i.e the string "R i j" considered as a byte
array. In this setup each part of the result file has it own authentication tag. One
can argue that is more efficient to have only one authentication tag for the whole
file R i, i.e. the concatenation of all parts. We have this not chosen for the one
HMAC approach for two reasons. Firstly, the chosen approach allows the receiver
browser to verify the authentication tag of each part. This allows early breaking
off the decryption and does require the browser to process all parts. This is an
advantage for large files in particular. Secondly, the one tag approach assumes
that the user browser is able to compute an AES-GCM tag incrementally. That
is, that the browser keeps internal state that is updated with each file part being
processed and finalized with the last part. Although this is commonly supported
in most cryptographic libraries, it is not customary in JavaScript cryptographic
libraries most notably the Web Cryptography API [18].

16

4. SPECIFICATION OF RDE-SFS ENCRYPTION AND DECRYPTION

Sequence
Number

Meaning Encrypted Result file AT file

1 Version File No R 1 1 AT 1

2 RDE session key file Yes (implicit) R 2 1 AT 2

3 Note File No R 3 1 AT 3

4 Metadata File Yes R 4 1 AT 4

i ≥ 5 Actual files sent Yes R i ∗ AT i ∗
Table 1. Semantics of RDE result files

The first file resulting from a successful RDE-SFS encryption process will
be the version file R 1 1. This file consists of one part only, i.e. only consists
of file R 1 1, and holds the version number of the RDE-SFS implementation.
In this document we specify the first RDE-SFS version in which the version file
only holds the ASCII character 1. The version file is not encrypted but has an
associated authentication file. In the second RDE-SFS version this will hold the
ASCII character 2 and so on. The version file allows the receiver’s browser to
decide the specific implementations choices made. Everything we specify from
this point forward relates to RDE-SFS version 1.

The second file R 2 1 is the RDE session key file holding the RDE encrypted
session key allowing the receiver to decrypt the sent files. The third file F 4 is
the note file holding the explanatory note in plaintext. The fourth file R 3 1 is
the metadata file, holding in encrypted form the metadata associated with the
RDE-SFS encryption process. It holds the number n of files in the RDE-SFS
encryption instance, the original names and for each file the number of parts
it consists of. The metadata file also holds the number MaxB discussed earlier.
From the metadata file the receiver’s browser is able to determine all (partial)
files existing in the RDE-SFS instance at the RDE-SFS server.

The fifth file F 5 and further contains the actual (large) files sent by the
sender in the order they where processed by the sender’s browser. That is, the
name of the i-th processed file (i = 1, 2, . . . , n−1) will occur as the i-th name in
the list in the metadata file and will be stored in file parts F 4+i j. Each such
file has an authentication tag placed in AT 4+i j.

In the current description, the receiver only gets information on the files sent
as part of RDE decryption. With reselect to file names this seems an appropriate
choice. However, one might argue that the receiver should at least should get
information on the number of files sent and their size. If this is desired, we
suggest placing that information in a mandatory part of the note file.

For simple presentation of the RDE-SFS encryption protocol 3 and decryp-
tion protocol 4 it is convenient to specify two building blocks dealing with the
RDE encryption and decryption of files, in the browser of the sender and re-
ceiver. In these protocols BN96(i, j) denotes the 16 byte array representation of

17

4. SPECIFICATION OF RDE-SFS ENCRYPTION AND DECRYPTION

the integer
i·232 + j

for 0 ≤ i ≤ 296−1 and 0 ≤ j ≤ 232−1. This can alternatively be described as the
byte representation of integer i in 12 byte (96 bit) concatenated with the byte
representation of integer j in 4 byte (32 bit).

Protocol 1 A-ENC-FILE(F, i,MaxB,KAE): Authenticated encryption of file F
with sequence number 1 ≤ i < 270 using key KAE storing in maximal MaxB 16
byte blocks at RDE-SFS server.

1: If F is empty, then return error

2: Set j = 1
3: Try reading MaxB 16 byte blocks bytes from file F in PlainBuf

4: If PlainBuf is empty go to Line 11

5: Form (C, T) = ENC(BN96(i, j),KAE, PlainBuf, "R i j")
6: Store EncBuf in partial file R i j at RDE-SFS server

7: Store T in file AT i j at RDE-SFS server

8: j = j + 1
9: If j = 232 return error // File too big (not likely)

10: Go to Line 3

11: Return information on stored partial files

In Protocol 2 we specify RDE-SFS encryption of one file and storing it in the
browser local filesystem.

Protocol 2 A-DEC-FILE({R i j}lj=1, {AT i j}lj=1,MaxB,Name,KAE):

Authenticated decryption using keys KAE, partial files {F i j}lj=1 and

{AT i k}lj=1 in maximal MaxB 16 byte blocks storing in file in browser under
filename Name.

1: If any of the {R i j}lj=1, {AT i j}lj=1 is empty, then return error

2: If l > 232 , then return error // too much result files (not likely)

3: Create empty file with name Name in browser local filesystem

4: For j = 1 to j = l do

5: Try reading Max 16 byte blocks bytes from file R i j in EncBuf

6: Read contents T ′ from file AT i j
7: Compute PlainBuf = DEC(BN96(j),KAE, T

′, EncBuf, "R i j") and return error

on authentication failure

8: Concatenate PlainBuf to file with name N in browser local filesystem

9: Return information on stored partial files

In Protocols 3 and 4 we specify the RDE-SFS encryption and decryption
protocol. As indicated in Section 3.2 we use GMAC as message authentication
code algorithm. A GMAC value can be computed by only feeding the AES-
GCM algorithm with additional authenticated data and no data to encrypt.
This means that the routines M() and A-ENC() mentioned below are closely
related. For clarity we have chosen different notation.

Protocol 3 RDE-SFS encryption

18

4. SPECIFICATION OF RDE-SFS ENCRYPTION AND DECRYPTION

1: Sender connects her browser to the RDE-SFS server and authenticates

2: Browser and RDE-SFS server negotiate MaxB, the maximal number of 16 byte

blocks processable in the Browser // could be fixed in implementation

3: Sender enters identifying data of receiver and selects RDE certificate Cert

4: RDE-SFS server creates TransactionId // link to results

5: Sender writes explanatory note N and selects files with names F1, F2, . . . Fn

6: Browser calls Algorithm 1 to get session key S and its RDE-encryption (P,Z, RBs)
// Calls to Algorithm 3 for derived keys refered to below

7: Browser forms byte contents V of version file, computes M(KAE(S, i), "R 1 1"||V)
and stores these in files R 1 1 and AT 1 respectively

8: Browser forms byte contents R of RDE session key file, computes

M(KAE(S, 2), "R 2 1"||R) and stores these in files R 2 1 and AT 2 respectively

9: Browser forms byte contents N of the Note file, computes M(KAE(S, 3), "R 3 1"||N)
and stores these in files R 3 1 and AT 3 respectively

10: For i = 1 to n do

11: Browser runs A-ENC(Fi, i, MaxB,KAE(S, 4+i),KAE(S, 4+i)) of Protocol 1 encrypting

and storing the results in parts

12: Browser forms byte contents M of metadata file including MaxB, computes

(M ′, T)=ENC(BN96(1),KAE(S, 4),M, "R 4 1"||M) storing M ′, T in files R 4 1, AT 4
13: Browser returns information on processed information

In Step 5 of Protocol 4 below we let the browser generate a Diffie-Hellman
public/private key pair. For implementational simplicity we let the this key pair
be based on the same elliptic curve group the core RDE based encryption is
based on. The rationale for this is that the sender browser software is required
to be able to deal with this elliptic curve group anyway. For European passports
this means that the Diffie-Hellman public/private key pair is based on one of
the Brainpool groups. As these groups are not supported by the W3C Web
Cryptography API we require separate (JavaScript) code for this, e.g. a part of
the Stanford Javascript Crypto Library, cf. [15]

Protocol 4 RDE-SFS decryption

1: Receiver is notified through URL on the note and files available

2: Receiver follows URL connecting browser to stored files under TransactionId

3: Browser reads version file R 1 1 and gives error if version is unsupported

4: Browser reads RDE session file R 2 1 and AT 2
5: Browser generates ECDH public key U = uG and private key u ∈R F∗q
6: Browser interacts with RDE-client providing it TransactionId, U and R 2 1

contents

// Could be interaction based on QR-code

7: RDE-client indicates the passport required (mnemonic) and interacts with

receiver passport obtaining RDE session key S
8: RDE-client generates ephemeral key E and Diffie-Hellman shared secret D
9: RDE-client computes (S′, T)=ENC(BN96(1),KAE(D, 1), S, "") and sends E,S′, T to

RDE-SFS server linking to TransactionId

10: Browser is provided E,S′, T by RDE-SFS server // through TransactionId

11: Browser computes D using E and private key u from Step 5

12: Browser computes S = DEC(BN96(1),KAE(D, 1), T, S′, "") returning error on

authentication failure

13: Browser computes (IV ′, S) = DEC(1,KAE(D, 1), S′)

19

5. RDE-SFS IMPLEMENTATION SUGGESTION

14: Browser forms KAE(S, 1) and validates version file using AT 1
15: Browser forms KAE(S, 2) and validates RDE file using AT 2
16: Browser forms KAE(S, 3) and validates Note file using AT 3
17: Browser forms KAE(S, 4) and validates encrypted full metafile using AT 4
18: Browser forms KAE(S, 4), decrypts full metafile and obtains list of stored

partial files F i ∗, AT i ∗ and list of original file names F1, F2, . . . Fn

19: For i = 1 to n do

20: Browser runs A-DEC({F i j}lj=1, ATi j}lj=1, MaxB, Fi,KAE(S, 4+i),KAE(S, 4+i)
of Protocol 2 decrypting and resassembling orginal files

21: Browser returns information on processed information

We remark that the setup of RDE-SFS can also easily be adapted to situation
without RDE, i.e. when sender and receiver share a key (password) P . In this
situation, the sender browser generates a random nonce N at least 16 byte, place
this in the result file R 2 1 and uses a session key S = H(P ||N) instead of the
RDE based session key. Steps 5-11 in Protocol 4 are then not necessary. By this
approach an RDE-SFS can support passwords too.

5 RDE-SFS implementation suggestion

We suggest the RDE certificates to be based on ECDSA using one of NIST
curves, e.g. P-384. We suggest implementing all RDE-SFS cryptography, other
than ECDH/core RDE, with the Web Cryptography API in browers, cf. [18]. As
the Web Cryptography API also supports ECDSA based on the NIST curves,
verification of the RDE certificates in the sending browser is also conveniently
possible. For ECDH and core RDE we suggest using the ECDH routines from the
Stanford Javascript Crypto Library, cf. [15]. These routines allow using various
elliptic curves through their simplified Weierstrass equation which will allow
support of the Brainpool curves as commonly used in European passports.

20

6. REFERENCES

6 References

1. ETSI, EN 319 411-1, Electronic Signatures and Infrastructures (ESI); Policy and
security requirements for Trust Service Providers issuing certificates; Part 1: Gen-
eral requirements, V1.2.2, April 2018.

2. European Commission (2015), eIDAS implementing regulation 2015/1502 on set-
ting out minimum technical specifications and procedures for assurance levels for
electronic identification, September 2015.

3. Github, See https://gist.github.com/jo/8619441; retrieved 03/04/2019.
4. Darrel Hankerson, Alfred Menezes, Scott Vanstone, Guide to Elliptic Curve Cryp-

tography, Springer-Verlag Berlin, Heidelberg, 2003.
5. International Organization for Standardization (ISO), ISO/IEC 18013-3, Informa-

tion technology — Personal identification — ISO-compliant driving license — Part
3: Access control, authentication and integrity validation, second edition 2017-04.

6. International Civil Aviation Organization (ICAO), Doc 9303 (multiple parts), Ma-
chine Readable Travel Document, Seventh Edition, 2015.

7. Internet Engineering Task Force (IETF), ECC Brainpool standard curves and
curve generation, RFC 5639, March 2010.

8. Alfred J. Menezes, Scott A. Vanstone, Paul C. Van Oorschot, Handbook of Applied
Cryptography, CRC Press, 1996.

9. NIST, Secure Hash Standard (SHS), FIPS PUB 180-4, August 2015.
10. NIST, Advanced Encryption Standard (AES), FIPS 197, November 26, 2001.
11. NIST, Digital Signature Standard (DSS), FIPS 186-4, July 2013.
12. NIST, Recommendation for Block Cipher Modes of Operation, Special Publication

800-38A, December 2001.
13. NIST, Recommendation for Block Cipher Modes of Operation: Galois/Counter

Mode (GCM) and GMAC, Special Publication 800-38D, November, 2007.
14. NIST, Recommendation for Key Derivation Using Pseudorandom Functions, SP

800-108, October 2009.
15. Stanford Javascript Crypto Library, cf. http://bitwiseshiftleft.github.io/

sjcl/.
16. D.G. Stinson, Cryptography: theory and practice, CRC press, 1995.
17. Eric Verheul, Remote Document Encryption - encrypting data for e-passport hold-

ers, 9 Jun 2017. Available from: https://arxiv.org/abs/1704.05647.
18. Web Cryptography API, World Wide Web Consortium (W3C), https://www.w3.

org/TR/WebCryptoAPI/.

21

https://gist.github.com/jo/8619441
http://bitwiseshiftleft.github.io/sjcl/
http://bitwiseshiftleft.github.io/sjcl/
https://arxiv.org/abs/1704.05647
https://www.w3.org/TR/WebCryptoAPI/
https://www.w3.org/TR/WebCryptoAPI/

	Introduction
	Background
	Document outline

	Functional description of RDE-SFS
	Cryptographic prerequisites
	AES encryption
	Hashing and Message Authentication Codes
	Elliptic Curve based Diffie-Hellman
	RDE encryption session keys and key derivation

	Specification of RDE-SFS encryption and decryption
	RDE-SFS implementation suggestion
	References

