
Towards Adaptive Scheduling of Maintenance

for Cyber-Physical Systems

Alexis Linard and Marcos L. P. Bueno

Institute for Computing and Information Sciences
Radboud University Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
{A.Linard,M.Bueno}@cs.ru.nl

Abstract. Scheduling and control of Cyber-Physical Systems (CPS) are
becoming increasingly complex, requiring the development of new tech-
niques that can effectively lead to their advancement. This is also the
case for failure detection and scheduling component replacements. The
large number of factors that influence how failures occur during operation
of a CPS may result in maintenance policies that are time-monitoring
based, which can lead to suboptimal scheduling of maintenance. This
paper investigates how to improve maintenance scheduling of such com-
plex embedded systems, by means of monitoring in real-time the crit-
ical components and dynamically adjusting the optimal time between
maintenance actions. The proposed technique relies on machine learning
classification models in order to classify component failure cases vs. non-
failure cases, and on real-time updating of the maintenance policy of the
sub-system in question. The results obtained from the domain of printers
show that a model that is responsive to the environmental changes can
enable consumable savings, while keeping the same product quality, and
thus be relevant for industrial purposes.

Keywords: model-based scheduling, predictive maintenance, machine
learning, cyber-physical systems

1 Introduction

Due to the growing complexity of Cyber-Physical Systems [11, 19], many tech-
niques have been proposed to improve failure detection and scheduling compo-
nent replacement [17, 21]. Indeed, new needs in terms of reliability and safety
have appeared with the new applications of such systems. That is the reason
why leading-edge technology manufacturers seek to design more robust and re-
liable systems [12]. Currently, a major issue in many industrial settings is how
to correlate failure occurrences and the maintenance actions performed in order
to prevent breakdowns. Modeling the failure behavior of many components in
advance is an intricate task. Indeed, we claim that maintenance actions are fre-
quently scheduled with fixed intervals that are suboptimal and implemented to
the detriment of productivity and efficiency.



Exclusively relying on experts to build models that can describe the behavior
of machines has been recently recognized as a limiting feature [14, 23]. There-
fore, the use of machine learning techniques to construct such models has been
investigated [3, 10, 16, 18]. However, using such techniques in order to update the
maintenance scheduling of a CPS in real time has so far not been explored. The
main difficulties in this case relate to finding an appropriate predictive model,
and then defining a procedure for updating the timing conditions. Predictive
models can be used instead of costly sensors intended to provide information
about the state of the machine at any moment, which is an additional reason
why we introduce machine learning techniques to maintenance scheduling. The
ultimate goal would be to develop embedded systems capable of dynamically
scheduling their own maintenance. To that end, we aim to define a procedure for
updating in real time when maintenance should be performed. Our work is based
on an experiment carried out in partnership with industry, specifically in the do-
main of printers. In addition, we consider the scope of automatic maintenance,
where the intervention of human beings is no longer needed.

In this study, we investigate to what extent machine learning can help to
improve fixed maintenance scheduling of complex embedded systems. The con-
tributions of this paper are as follows. First, we propose using machine learning
techniques, in which the embedded system learns to distinguish between failure
vs. non-failure cases using data related to critical components of the CPS. This
can be done by monitoring critical components in real time. Next, we propose
an algorithm to dynamically adjust the timing of maintenance actions. This
algorithm uses timed automata [2], which is the formalism used to model the
maintenance policy. Indeed, timed automata can provide an intuitive represen-
tation of the maintenance policy and its real-time update is proceeded by using
information on the overall printer at any moment. Thus, our main contributions
are (a) the use of decisions from a data-driven model to dynamically sched-
ule maintenance, and (b) the use of timed automata to formally describe and
analyze the proposed algorithm. Naturally, we only select relevant features to
determine if the printer is working properly – that is to say, if we can sched-
ule the maintenance actions later – or not. To that end, we consider a set of
realistic, industry-based scenarios and simulations to provide evidence that a
reduced amount of maintenance can be done while achieving similar product
quality [8, 9]. The considered scenarios have been implemented in Uppaal [4],
which is another relevant practical-oriented contribution of this paper.

The remainder of this paper is organized as follows. In Section 2 we present
the industrial problem that motivated our approach. In Section 3, we define
the key concepts associated with model-based scheduling and classification tech-
niques used to separate the failure from the non-failure cases of a Cyber-Physical
System, as well as discuss the related literature. In Section 4 we explain our ap-
proach to updating when to trigger maintenance and the experiments done, using
a model-checking tool and data about large-scale printers. Finally, we discuss the
results.



2 Case Study

Large-scale printers are cyber-physical systems made of a large number of com-
plex components, the interaction of which is often challenging to understand.
Among their main components are the printheads, which are composed of thou-
sands of printing nozzles. These are designed to jet ink on paper according to
specifications concerning, for example, jetting velocity and direction. During the
operation of these industrial printers, nozzles can behave inadequately with re-
spect to the demanded task, e.g. by jetting incorrect amounts of ink or jetting
in an incorrect direction. If that is the case, a nozzle is considered to be failing.

Failing nozzles can be repaired by performing one or more maintenance ac-
tions, including for example different types of cleaning actions. The maintenance
actions are executed automatically, e.g. the printer cleans its own nozzles. In this
context, determining the appropriate moment to execute each nozzle-related
maintenance action is crucial to achieving a proper balance of conflicting objec-
tives, such as productivity, machine lifetime, and final product quality. However,
the number of individual nozzles, their physical architecture, the substantial
number of variables that can potentially be correlated to them and the defini-
tion of printing quality, make particularly difficult to manually construct models
that express all the potentially relevant correlations among these variables and
nozzles. Ultimately, this creates a challenge when designing maintenance poli-
cies, since they are intended to be either too conservative or tolerant, otherwise
one or more of the mentioned requirements could be seriously degraded.

A solution that is sometimes used to construct a policy consists of performing
a large set of tests involving different usages of the CPS, aiming to derive time-
based maintenance policies. These policies are based on monitoring, hence they
do not suffer so much from the drawbacks of fixed-time-based strategies [17].
However, these policies rely on time counters that are not directly related to
the state of machine parts, e.g. the time elapsed since the last finished printing
task and the period that the printer stands idle. This implies that the only
failure behaviors that can be explicitly captured by these rules are those that
were previously seen during the tests, usually only accounting for a fraction of
all possible machine statuses. Hence, unseen failure behavior cannot be handled
properly by such maintenance strategies, which is likely since these machines
can be used with a wide range of parameter combinations. In other words, such
policies are prone to perform blindly on at least some situations, which can lead
to too many or too few maintenance actions.

Nowadays, industrial printers record large amounts of data about the state
of their components over time, so a data-driven approach seems feasible. A data-
driven approach can provide evidence that helps to decide on whether the current
time parameters are adequate or not, given the current state of the CPS. In order
to represent time parameters and system states, a state machine appears to be
an appropriate formalism. In this study we show how to dynamically update the
parameters of a maintenance scheduler, which is based on timed state machines.
This formalism is used in order to capture the intuition that the CPS moves
between different states during its operation, in a time-dependent manner. A



significant advantage of combining a statistical approach and state machines is
that the real-time updating of timed parameters requires no human intervention,
since correlations between potentially relevant variables can be learned algorith-
mically. In addition, the involvement of a failure behavior model is substantiated
in our case, since there is no sensor available to directly provide, at any moment,
information on the state of the nozzles. That is the reason why such a model
could provide the desired outcome whenever required.

3 Background

In this section, we present the different concepts on which our definition of an
adaptive scheduler is based. First, we describe how to model and verify mainte-
nance schedulers. Then, we discuss the machine learning techniques used in our
paper and to what extent the need for them is relevant for real-time updating
of scheduling. Finally, we discuss related literature.

3.1 Modeling Maintenance Strategies

State machines are abstract machines with a wide range of applications such as in
process modeling, software checking and pattern matching. They are composed of
a set of states and transitions between states. They can be used in our industrial
case study, that is to say modeling maintenance actions schedules of CPS, since
it is possible to gather as many states as different maintenance actions plus
one or more states representing when no maintenance action (MA) is being
performed in the CPS. Transitions between the states would take place when
a given maintenance is started and completed [1]. As shown in Figure 1, the
maintenance policy of a system can be represented intuitively by means of a
specific type of state machine: a timed automaton (TA).

stby ma1ma2

[time between two ma1]

[time between two ma2] [duration of ma1]

[duration of ma2]

Fig. 1: Maintenance policy of a component represented by a simplified TA.

A timed automaton [2] is a finite-state machine extended with a finite set of
real-valued clocks constraints. During the execution of a timed automaton, clock
values increase at the same speed. A timed automaton has also clock guards,
that enable or disable transitions and constrain the possible behaviors of the
automaton. Furthermore, when a transition occurs, clocks can be reset.



The particular TA presented in Figure 1 is a way of modeling a given main-
tenance strategy. In our case, we assume that maintenance actions are executed
sequentially. In order to establish that the derived maintenance strategy achieves
an optimal trade-off, many techniques exist, including model-checking of real-
time systems [9]. We used the tool Uppaal [4] to evaluate time-monitoring-based
maintenance strategies. More details about how this tool was used are presented
in Section 4.2.

3.2 Classification Techniques

This study relies on the use of classification techniques [13], also known as su-
pervised learning, belonging to the field of Machine Learning. These techniques
consist of learning models from data. They are designed to classify instances
into a set of possible classes, according to the values of the attributes of each
instance. To that end, we used Weka [29], a suite of implemented learning algo-
rithms. Among the possible classifiers that can be used for the classification task,
we considered in particular: bayesian networks, naives Bayes classifiers, decision
trees, random forests and neural networks.

The main reason for the choice of the classifiers listed above is related to our
case of study. Indeed, most of them can be considered as white box classifiers, in
the sense that it is easy to interpret their provided outcomes. This is particularly
important in the context of industrial cases, because such a readable model can
be more insightful than a black box oracle.

In order to learn a classifier from log data, labeled data from each possi-
ble class is needed. In the case of learning the failure behavior of the CPS of
interest (i.e. nozzles of large-scale printers), we assume that nozzles are either
failing or not failing. Thus, each instance is composed of a number of features
corresponding to relevant machine components and the class feature indicating
the occurrence of a failure or not.

actual→
f !f

predicted↓

f A B
!f C D

Pf =
A

A+ C
Rf =

A

A+B
P!f =

B

B +D
R!f =

B

C +D

Fig. 2: Confusion matrix and evaluation criteria for the classes failure (denoted
by f) and non-failure (denoted by !f).

In machine learning, an important goal when learning classifiers is that of
properly generalizing to new data. To meet this goal, overfitted models should be
detected, since they tend to perform very well on the data used during learning.
This issue is often dealt by using the n fold cross-validation evaluation. Cross-
validation with n folds consists of first dividing the dataset into n disjoint sets,
then learning the model on the n−1 first folds and evaluating the learned model



on the last fold. Then, learning is done on folds 2 to n and evaluation is done on
fold 1, and so on. The part of the data used to learn a model is usually called
training data, while the part used to evaluate it is usually called test data. On
each fold, a classifier is typically evaluated by comparing the predicted class
provided by the classifier and the original class, as seen on each instance from
the test set. The results are placed in the confusion matrix shown in Figure 2,
and from this matrix the metrics precision P and recall R are computed. After
processing all the folds, the mean of precision and recall is taken, corresponding
to the final result of cross-validation.

Fig. 3: The process of collecting log data for a CPS component, learning classifier
models, and using the outcomes as input to reschedule maintenance.

Once a classifier has been trained, it is possible to use it in order to classify
new unlabeled instances. The process is as follows: in real-time, new data about
the same features used to train the model are recorded and represent the state
of the CPS at instant t. Such state of the system corresponds to an instance to
be classified by the model. Once the outcome is provided, a decision is taken by
the real-time updating method controlling the schedule of maintenance actions.
The overall process of learning and using the classifier in our case is described
in Figure 3.

3.3 Related work

Extensive research has been done in the field of timed automata [2], including al-
gorithmic and computability aspects [5, 7] and model-checking oriented research
[9]. To a lesser extent, research has been developed in the context of passive
learning of TA from data [28], and learning sub-classes of TA known as event
recording automata [15]. In the context of CPS, real-time online learning of



TA has been investigated [22], however not related to predictive maintenance.
With regard to predictive maintenance, timed automata were applied to model
the operating modes in the case of duration of tasks in manufacture scenario
[27]. Statistical approaches to model the failure behavior of CPS have already
been considered [20, 24], but none of them combined the use of TA to model
maintenance actions together with machine learning models.

4 Proposed Method and Experiments

In this section, we describe our method and the results of our experiments.
Indeed, our hypothesis is that less maintenance can be done, and fewer or as
many failures can occur. Hereinafter, we present the protocol observed and the
data used in order to dynamically schedule nozzle-related maintenance1.

4.1 Learning Nozzle Failure Behavior

The first step towards dynamic scheduling of nozzle maintenance actions is to
build a failure behavior model describing how the nozzles of printers are likely to
fail. In order to do so, we rely on all the logs of a set of 8 printers of the year 2015.
The main advantage of the logs we have at our disposal is that a lot of metrics and
nozzle-related factors are monitored continuously. Moreover, we also dealt with
labeled data with data representing the nozzles at moments when they were
considered as failing or not. The failing measure is the conjunction of several
metrics related to the print quality. We stress again the key role of a failure
behavior model, since labeled data are costly to obtain: the model reproduces
the outcome provided by printing test pages, a process that inevitably leads to
a loss of productivity on the overall printer. We thus trained the corresponding
model by selecting relevant features. To this end, we benefited from the expertise
of engineers related to the field, who indicated to us the possible relevant features.

In Table 1, we present the results achieved for failure detection (f). We state
the results in terms of precision and recall. Precision (P ) represents the pro-
portion of failure cases as correctly classified. Recall (R) reflects the proportion
of caught failure cases among the cases of failures and non failures. We also
present the results achieved for the other class (non-failure – !f). Both results
are important since both outcomes are used by our scheduler i.e to advance or
postpone maintenance. The classifiers have been trained with 117k instances to
classify, the same features, and evaluated with a cross-validation of 10 folds. The
set was divided into 10% of instances belonging to the failure class and 90% to
the non-failure class.

In our experiments, we consider the results above as good enough to be
considered as reliable. Moreover, we trained several classifiers (among others,
decision trees, naive Bayes classifiers, neural networks, etc.), and the decision
tree always performed the best. A decision tree is an interesting way of modeling
the failure behavior of a component thanks to its high understandability. As a

1 Experimental data available upon request.



Classification Algorithm
f !f

P R P R

Decision Tree 0.788 0.631 0.951 0.977
Random Forest 0.626 0.579 0.943 0.953
Bayesian Network 0.683 0.809 0.973 0.949
Naive Bayes 0.329 0.424 0.918 0.882
Multilayer Perceptron 0.652 0.224 0.903 0.984

Table 1: Quality of the best classification models trained with the data.

consequence, we consider that we can safely schedule nozzle-related maintenance
actions using the outcomes of the built Decision Tree.

In this case, we have used the J48 implementation of the C4.5 algorithm to
learn it [25]. This algorithm builds a model from the training set using informa-
tion entropy. It iteratively builds nodes choosing the attribute that best splits
the current sample into subsets, using information gain. The attribute having
the greatest information gain is chosen to make the decision, that is to say to
be used as the next decision node. Of course, once a subset is only composed
of instances belonging to the same class, no further node is created, but a leaf
instead, standing for the final class of all the instances belonging to the subset.

The fact that a decision tree can be implemented easily by a succession of
if conditions is another reason to consider it as premium model for industrial
purposes. The lower quality of the results for the class failure is due to the low
number of instances belonging to this class.

Fig. 4: Nozzle failure rate in function of the time since last MA.

4.2 Scheduling Nozzle-Related Maintenance Actions

The idea of dynamic scheduling of maintenance actions is to rely on the outcome
of a predictor (component failure behavior model that classifies the system at
instant t into two classes, failure or not failure) to put forward or backward the
moment when to trigger it.



Algorithm 1 Dynamic Scheduling of a Maintenance Action

– q : query made periodically
– y : the reducing factor for the timing of the MA
– z : the increasing factor for the timing of the MA
– tσ : the timing where the MA is usually triggered
– currentBoundary : the current timing when the MA will be triggered
– MAXBoundary : the maximum acceptable time to wait until triggering the MA

1: for each q do

2: prediction← failureBehaviorModelQuery()
3: if prediction = failure then ⊲ Advance the MA schedule
4: currentBoundary ← currentBoundary × y%
5: else ⊲ Postpone the MA schedule
6: currentBoundary ← currentBoundary × z%

7: if currentBoundary is reached then

8: triggerMaintenance()
9: currentBoundary ← tσ OR (currentBoundary + tσ)/2

As presented in Algorithm 1, we first of all consider the actual maintenance
policy of the printer. Our idea is to query the classification model built previ-
ously in order to get the outcome desired. In case a failure is detected by our
classification model, then the timing for all the maintenance actions triggering
is decreased with a given rate y. Otherwise, if no failure is detected in the few
moments before maintenance actions are triggered, then the timed boundary to
enable a maintenance to occur is postponed with a given rate z. Assuming the
use of a Decision Tree as classifier, we can notice here that the parameters y and
z standing for how much to increase or decrease the maintenance clock guards
can be function of the confidence factor provided with each outcome performed
by the classifier. This confidence factor is based on the error rate of each leaf in
the tree, hence it consists in a metric to assess how a provided outcome can be
considered as reliable or not.

Finally, we distinguish two possibilities in our algorithm concerning how to
reset the timed boundaries once the related maintenance has been performed.
The first one consists in resetting the clocks guards to their initial values, e.g. de-
fined in the original TA inferred from the specifications. The second one consists
in resetting the future timed boundary by computing the average between the
last used limit and the actual moment when the maintenance has been launched.
In such a way, we assume that after several runs of the algorithm, the value com-
puted will tend to the ideal time to wait between two maintenance actions. Both
options are presented in Section 4.3 and the benefits between those two variants
are compared.

4.3 Simulations using Uppaal-SMC

In order to make simulations and evaluate the benefits of our dynamic scheduler,
we used the Uppaal-SMC [8] modeling tool. Uppaal is a toolbox for verification
of real-time systems represented by one or more timed automata extended with



integer variables, data types and channel synchronization. The relevance of using
Uppaal-SMC in our case lies in the possibility of running simulations of the
system specified as a set of probabilistic timed automata.

One of the challenges of this work and its practical case study is to validate
the failure behavior model built using machine learning techniques, and to use
it in order to schedule maintenance actions. Of course, we had to find a way
of integrating such a model in a tool like Uppaal, in order to benefit from the
integration of the representation of the maintenance strategy (gathered from
specifications of the component, and using TA), the decision tree providing in-
sight on the failure behavior of the nozzles (learned prior to its implementation in
Uppaal following description in Section 4.1), and the function that dynamically
updates the triggering of maintenance (presented in Section 4.2).

Fig. 5: Designing components by state-machines in Uppaal.

As shown in Figure 5, the whole system is composed of 3 components, all of
them modeled using state-machines:

1. The printer usage: this models how the printer is currently being used. It
is composed of 3 states, printing, standby (e.g. waiting for a print job) and
sleeping (for long periods out of use). It is important to model the printer
usage since the way maintenance actions are scheduled depends on the us-
age of the printer. Indeed, print jobs will never be interrupted to perform



maintenance. It is similar when the printer is in sleeping mode, since less
maintenance is required when the printer is not in use.

2. The scheduler : this models the maintenance actions and under what con-
ditions they are performed. In our case, we focuses especially on 3 nozzle-
related maintenance actions. Inside the specifications of the scheduler, an
inner function is defined reproducing the outcome of the decision tree as
well as the values set to the refreshed timed conditions (see Algorithm 1).
The scheduler reflects the specifications of the nozzles under which mainte-
nance is supposed to be performed.

3. The updater : this calls – with a given frequency – the function refresh-
ing the scheduler from the outcome of the classification model. This func-
tion consists of a call to the decision tree implemented in Uppaal as an
embedded function, itself consisting of a succession of if conditions repre-
senting the overall structure of the nozzle failure behavior. Moreover, this
function also updates the timed conditions for the triggering of mainte-
nance actions (such as limitMA1 upper, limitMA1 lower, limitMA3 upper,
limit usageTimer lower and limit usageTimer upper in Figure 5).

4.4 Results

Experimental Parameters. In order to measure the benefits of our dynamic
scheduler compared to a static scheduler, we relied on several metrics. First, by
using our designed models in Uppaal and making simulations, we were able to
compute how many times each state has been visited e.g. how many maintenance
actions have been triggered. That is the reason why we made 10 runs with a
virtual duration of 600k seconds (approximately 1 week) for each configuration
we wanted to test. From those runs, we were able to find out the behavior of
our scheduler in the long term, since the average of the runs is computed over
10 weeks of simulation. We were finally able to compare our results with a static

scheduler (no call to classification model) and a dynamic scheduler. In the case
of the dynamic scheduler, we distinguish 3 cases: the first (Dynamic Scheduler

I ) resets, once maintenance is triggered, the values of the timed conditions to
their initial values e.g. defined in the specifications (currentBoundary ← tσ).
The second (Dynamic Scheduler II ) aims, after a maintenance action has been
performed, to average the timed conditions between the past boundary and when
the MA has really been done (currentBoundary ← (currentBoundary+tσ)/2).
The last one (Dynamic Scheduler III ) computes the parameters y and z as a
function of the confidence factor provided by the classification model.

In order to run experiments with Uppaal, several parameters have been set,
such as the refreshing frequency (60 seconds), the variation of how much to
postpone or advance maintenance actions (from 0.5% to 10%), the usage of the
printer (the printer goes to sleeping mode every 8 hours and during at least 2
hours; after being printing during more than 2min., then, the printer can stop
printing and go into standby mode; after being without printing during more
than 1min., then, the printer can start printing again) and the nozzle behavior



(a) Results achieved for MA1 (b) Results achieved for MA3

(c) Results achieved for MA2

Fig. 6: Results concerning Dynamic Scheduler I and II. The value corresponding
to a variation of clock guards of 0% stands for the Static Scheduler.

(a nozzle is likely to fail every 20 minutes). We can also mention maintenance-
related additional information and settings:

– Maintenance action #1 (MA1): according to the usage of the printer, usually
triggered every 40sec – 3.5hrs. Maximum acceptable threshold set: 5hrs.

– Maintenance action #2 (MA2): usually triggered when the system is going
to and coming back from sleeping mode.

– Maintenance action #3 (MA3): according to the usage of the printer, usually
triggered every 15min. – 3.5hrs. Maximum acceptable threshold set: 5hrs.



Fig. 7: Overall MA performed and ratio of decisions classified as failure. The
value corresponding to a variation of clock guards of 0% stands for the Static

Scheduler. The vertical line shows a possible optimal variation of the clocks
guards.

Results. We give a graphical representation of the number of the achieved main-
tenance actions performed per week in function of the variation of the degree
of clock increase/decrease, as well as the expected nozzle failure rate in Figure
6a to 6c (for Dynamic Scheduler I and II ). The value corresponding to a vari-
ation of clock guards of 0% stands for the static scheduler, since parameters y
and z equaling 0 means no change of the clock guards. We also give the results
of the Static Scheduler and the Dynamic Scheduler III in Table 2. The results
are stated for each type of MA by number of MA performed (#MA) and the
expected failure rate when the maintenance is performed (FRMA). The expected
failure rate is computed from the distribution shown in Figure 4, since the in-
formation providing the nozzle failure rate as a function of the time since last
maintenance has been computed from the logs. We also present for each sched-
uler the proportion of cases classified as failures by our failure behavior model
(Cf in Table 2 and ratio of output failures in Figure 7).

Discussion. From the results achieved, we can see that in some settings, the
number of maintenance actions performed can decrease. Nonetheless, while the
number of maintenance actions is decreasing, the expected nozzle failure rate
slightly increases, yet still within acceptable values. We can refer to the first
dynamic scheduler and to MA3 with an optimal decrease of three times as few
maintenance actions performed. The counterpart is an increase of the expected
failure rate by 2 points. We can also see that in some cases, especially MA2, our
scheduler has no influence on the triggering of this specific type of maintenance.

Scheduler #MA1 FRMA1
#MA2 FRMA2

#MA3 FRMA3
Cf

Static 1205.6 6.1% 28.5 20.5% 290.3 13.8% 8.7%
Dynamic III 806.6 8.2% 29.1 25.6% 378.1 12.3% 9.5%

Table 2: Number of maintenance actions triggered using Dynanic Scheduler III.



Indeed, MA2 is an example of usage-based maintenance, whereas our method
only modifies timed-based maintenance. According to the results achieved by the
Dynamic Scheduler III e.g. advancing or postponing the clock guards using the
confidence factor of the Decision Tree, we can see that less MA1 is performed but
the expected failure rate when MA1 is triggered is increased by 2 points, whereas
MA3 is done more often. Furthermore, according to the number of cases detected
as failure cases by our classifier as well as the number of actions performed
(whatever the type), we can see that in some cases, less maintenance is done and
fewer failures are detected by our model, in particular when using a variation
of how much to postpone or advance maintenance actions of 1 or 2%. This is
shown in Figure 7 by a red line. This result proves our assumption stating that
we can at the same time save maintenance and improve the print quality. Finally,
for some settings and independently of the scheduler, our dynamic schedulers
perform more actions than a static scheduler.

5 Conclusion

In this paper, we describe a new method for dynamic maintenance scheduling.
We expect that our method can be generalized to other domains. The major
novelty we bring, to the best of our knowledge, is a method involving machine
learning techniques by using the decision of a classifier in order to put forward or
postpone when maintenance should be triggered, i.e. how to update scheduling
of automatic periodic maintenance defined by a TA.

According to our results, we can conclude that our dynamic scheduler reduces
the number of actions performed in different settings. We also note that the price
to pay in order to do less maintenance is a slight increase of the expected failure
rate. Thus, depending on how critical the component is, our technique can reduce
maintenance costs for a negligible increase in the risk of breakdown. In our case,
it entailed an insignificant loss of print quality. Moreover, in some settings, we
could reduce the failure rate as well as the number of maintenance performed.
We also believe that our technique can be particularly interesting in the case of
the unavailability of sensors that provide direct information about component
failures. The strength of an embedded decision model is its availability at any
time. Furthermore, we expect that, applied to other real systems, our technique
could achieve similar results to those found in our simulation.

With regard to further work, we think that within the scope of our case
study, we can extend the current experiment not only to nozzles but also to
other related components, or at least components that share related mainte-
nance actions. Furthermore, in future, we will look into the use of fault trees
[26]. Indeed, we believe that a fault tree pattern can be used to model inter-
actions between several components, and how a failure can propagate from one
component to others. We also hope that extending such a technique to the use
of real-time automata can enhance the schedulability and control of CPS. We
can also enhance the scheduler by taking into account the timing occurrences
of anomalies [21]. Finally, we could orientate the choice of the machine learning



techniques used towards stream mining tools and algorithms [6], which would
additionally offer the possibility of updating the failure behavior model the more
new labeled data are available. Then, it could be possible to deal with unseen
events or combination of parameters, and keep an accurate model throughout
the life of the CPS.

Acknowledgments Thanks to Lou Somers and Patrick Vestjens for providing
industrial datasets as well as required expertise related to the case of study.
This research is supported by the Dutch Technology Foundation STW under
the Robust CPS program (project 12693).

References

1. Abdeddäım, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theoret-
ical Computer Science 354(2), 272–300 (2006)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical computer science
126(2), 183–235 (1994)

3. Arab, A., Ismail, N., Lee, L.S.: Maintenance scheduling incorporating dynamics of
production system and real-time information from workstations. Journal of Intel-
ligent Manufacturing 24(4), 695–705 (2013)

4. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: Hybrid Systems III:
Verification and Control, chap. UPPAAL — a tool suite for automatic verification
of real-time systems, pp. 232–243. Springer Berlin Heidelberg (1996)

5. Bengtsson, J., Yi, W.: Lectures on Concurrency and Petri Nets: Advances in
Petri Nets, chap. Timed Automata: Semantics, Algorithms and Tools, pp. 87–124.
Springer Berlin Heidelberg (2004)

6. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa: Massive online analysis. J.
Mach. Learn. Res. 11, 1601–1604 (2010)

7. Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted
timed automata. Information Processing Letters 98(5), 188–194 (2006)

8. Bulychev, P., David, A., Larsen, K.G., Mikučionis, M., Poulsen, D.B., Legay, A.,
Wang, Z.: Uppaal-smc: Statistical model checking for priced timed automata. arXiv
preprint arXiv:1207.1272 (2012)

9. Burns, A.: How to verify a safe real-time system: The application of model checking
and timed automata to the production cell case study. Real-time systems 24(2),
135–151 (2003)

10. Butler, K.L.: An expert system based framework for an incipient failure detection
and predictive maintenance system. In: Proceeding of the International Confer-
ence on Intelligent Systems Applications to Power Systems. pp. 321–326. Orlando,
Florida, USA (1996)

11. Cardenas, A.A., Amin, S., Sastry, S.: Secure control: Towards survivable cyber-
physical systems. 2013 IEEE 33rd International Conference on Distributed Com-
puting Systems Workshops pp. 495–500 (2008)

12. Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling cyber–physical systems. Proceed-
ings of the IEEE 100(1), 13–28 (2012)

13. Flach, P.: Machine learning: the art and science of algorithms that make sense of
data. Cambridge University Press (2012)



14. Fumeo, E., Oneto, L., Anguita, D.: Condition based maintenance in railway trans-
portation systems based on big data streaming analysis. Procedia Computer Sci-
ence 53, 437–446 (2015)

15. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata. In:
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
pp. 379–395. Springer (2004)

16. Gross, P., Boulanger, A., Arias, M., Waltz, D.L., Long, P.M., Lawson, C., Ander-
son, R., Koenig, M., Mastrocinque, M., Fairechio, W., et al.: Predicting electricity
distribution feeder failures using machine learning susceptibility analysis. In: Pro-
ceedings of the 21st National Conference on Artificial Intelligence. vol. 21, pp.
1705–1711. Boston, Massachusetts, USA (2006)

17. Hashemian, H.M., Bean, W.C.: State-of-the-art predictive maintenance techniques.
IEEE T. Instrumentation and Measurement 60(10), 3480–3492 (2011)

18. Kaiser, K.A., Gebraeel, N.Z.: Predictive maintenance management using sensor-
based degradation models. Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on 39(4), 840–849 (2009)

19. Lee, E.A.: Cyber physical systems: Design challenges. In: Proceedings of the 11th
IEEE International Symposium on Object Oriented Real-Time Distributed Com-
puting. pp. 363–369. Orlando, Florida, USA (2008)

20. Li, H., Parikh, D., He, Q., Qian, B., Li, Z., Fang, D., Hampapur, A.: Improving
rail network velocity: A machine learning approach to predictive maintenance.
Transportation Research Part C: Emerging Technologies 45, 17–26 (2014)

21. Maier, A., Niggemann, O., Eickmeyer, J.: On the learning of timing behavior for
anomaly detection in cyber-physical production systems. In: Proceedings of the
26th International Workshop on Principles of Diagnosis. pp. 217–224. Paris, France
(2015)

22. Maier, A.: Online passive learning of timed automata for cyber-physical production
systems. In: Proceedings of the 12th IEEE International Conference on Industrial
Informatics. pp. 60–66. Porto Alegre, Brazil (2014)

23. Niggemann, O., Biswas, G., Kinnebrew, J.S., Khorasgani, H., Volgmann, S., Bunte,
A.: Data-driven monitoring of cyber-physical systems leveraging on big data and
the internet-of-things for diagnosis and control. In: Proceedings of the 26th Inter-
national Workshop on Principles of Diagnosis. pp. 185–192. Paris, France (2015)

24. Nowaczyk, S., Prytz, R., Rögnvaldsson, T., Byttner, S.: Towards a machine learning
algorithm for predicting truck compressor failures using logged vehicle data. In:
Proceedings of the 12th Scandinavian Conference on Artificial Intelligence. pp.
205–214. Aalborg, Denmark (2013)

25. Quinlan, J.R.: C4. 5: programs for machine learning. Elsevier (2014)
26. Ruijters, E., Stoelinga, M.: Fault tree analysis: A survey of the state-of-the-art in

modeling, analysis and tools. Computer Science Review 15, 29–62 (2015)
27. Simeu-Abazi, Z., Bouredji, Z.: Monitoring and predictive maintenance: Modeling

and analyse of fault latency. Comput. Ind. 57(6), 504–515 (Aug 2006)
28. Verwer, S., Weerdt, M., Witteveen, C.: Efficiently identifying deterministic real-

time automata from labeled data. Machine Learning 86(3), 295–333 (2011)
29. Witten, I.H., Frank, E., Trigg, L.E., Hall, M.A., Holmes, G., Cunningham, S.J.:

Weka: Practical machine learning tools and techniques with java implementations
(1999)


