
1

Secure Distributed Modular Exponentiation:
Systematic Analysis and New Results

Bart Mennink

Abstract—Modular exponentiation is a vital function in public
key cryptography. Dozens of protocols, including encryption
schemes, signature schemes, pseudorandom functions, and more,
perform this operation on a secret base and/or a secret exponent.
In a multiparty computation setting, these secret data might be
shared over multiple parties who wish to compute this modular
exponentiation in a secure and distributed way. However, whereas
typical frameworks for secure multiparty computation based on
secret sharing provide a basic tool box of secure distributed com-
putation of, most importantly, randomness generation, addition,
and multiplication, the status quo of secure distributed modular
exponentiation is unsatisfactory. In this work, we provide a
complete and comprehensive overview on existing protocols for
perfectly secure distributed exponentiation differing depending
on whether the inputs and outcomes are public or shared. We
perform a detailed complexity computation of the currently exist-
ing protocols, observing that earlier authors have overestimated
the complexity of their own protocols, and close the remaining
open problem: protocols for secure distributed exponentiation
with secret base, secret exponent, and public outcome. We prove
that the presented protocol is universally composably secure in
the presence of malicious adversaries. We finally exemplify the
practical relevance of the new protocol by demonstrating how it
can be used for pseudorandom generation and signing.

Index Terms—multiparty computation, secret sharing, expo-
nentiation, classification, constant round.

I. INTRODUCTION

Secure multiparty computation has become a main tool in
cryptology, and appears to be a leading approach in secure
distributed computation over the internet. It considers a set
of n parties to compute a certain function f , in such a
way that the parties only learn the predetermined output of
f , but nothing else about the input. The idea of multiparty
computation is already quite mature: generic solutions for
any function f date back to Goldreich et al. [39]. The field
has advanced tremendously since then, with core incentive to
achieve solutions that are as efficient as possible.

One main approach to multiparty computation is based on
threshold homomorphic encryption. The approach roots at
the seminal works of Cramer et al. [25] and Damgård and
Nielsen [30]. These can be equipped with El Gamal encryp-
tion [36], Paillier encryption [52], or even fully homomorphic
encryption [15], [16], [38], [59]. An alternative main approach
to multiparty computation is based on secret sharing [7], [8].
In this setting, one considers data to be secret shared, i.e., data
x is shared over the n parties, denoted [x], in such a way that
no party has any knowledge about x, but together they can
re-construct x from [x]. The approach offers high security: for
example, by adopting an unconditionally secure secret sharing

Bart Mennink is supported by the Netherlands Organisation for Scientific
Research (NWO) under grant VI.Vidi.203.099.

scheme such as Shamir’s [57], malicious parties cannot recover
[x] from x as long as at least a certain predetermined number
of the n parties is honest.

A pivotal work in the direction of secret sharing based
multiparty computation is that of Damgård et al. [28]. They
introduce a wide range of very efficient constant-round proto-
cols for addition, multiplication, inversion, and so on, that are
unconditionally secure even against malicious adversaries.

If one tolerates a precomputation phase, where a sufficient
pool of “raw” secret shared randomness is generated, the
protocols can be sped-up significantly. This was first demon-
strated by Bendlin et al. (BDOZ) [9], though it does not scale
well to a large number of parties. Damgård et al. [31], [32]
presented a general solution, dubbed SPDZ, for an arbitrary
number of parties. The protocols are unconditionally secure
against malicious adversaries. What distinguishes BDOZ and
SPDZ from earlier proposals is that the precomputation can
be performed quite efficiently: BDOZ used additively ho-
momorphic encryption whereas SPDZ introduced somewhat
homomorphic encryption as a tool to securely generate secret
shared random data. Keller et al. [46] introduced MASCOT,
a framework for an efficient precomputation phase based
on oblivious transfers [53]. Their proposal is based on an
earlier work of Frederiksen et al. [34] that focused on binary
fields. Precomputation based on oblivious transfers beats the
homomorphic encryption based ones in that one does not need
zero-knowledge proofs or cut-and-choose mechanisms [22] to
guarantee security against malicious adversaries.

These protocols, amongst others, have made multiparty
computation practical. Various instantiations/implementations
of multiparty computation have already been described in liter-
ature [4], [10]–[13], [27], [44]. This line has culminated at two
leading open-source multiparty software systems: SCALE-
MAMBA [2] and MP-SPDZ [45]. From a more theoretical
perspective, these works have also lead to a common practice
to assume presence of a “basic tool box” of functions, namely,
for creating shares, randomness generation, addition, constant
multiplication, full multiplication, and opening shares. This
tool box is called an arithmetic black box and is used as black
box for secure computation of many other functions.

A. Secure Exponentiation

With the basic tools such as constant time secret shared
addition and multiplication at hand, the next natural building
block is secure distributed modular exponentiation, i.e., the
computation of be from base b and exponent e in a finite
field of prime size q, where at least some of the values b,
e, and be are secret shared and the remaining ones are public.

2

This function has a prominent role in public key cryptography.
Since the seminal work of Diffie and Hellman [33], dozens of
public key cryptographic protocols have been introduced that
perform modular exponentiation, where either the base or the
exponent is a secret value. Typical examples include public
key encryption such as textbook RSA [55], Elgamal [37], Pail-
lier [52], and Cramer-Shoup [26], digital signature schemes
such as RSA [55] and Rabin’s signature scheme [54], and
distributed PRFs [48]. These examples all testify the need to
have a solid and well-understood suite of distributed modular
exponentiation protocols.

The earliest results in this direction are due to Damgård
et al. [28]. However, their approach was internally based on
arithmetic circuits for bit decomposition, a protocol that is
known to form a particular performance overhead, in particular
on the communication complexity. On the other hand, secure
distributed exponentiation protocols without bit decomposition
are rather scarce and underdeveloped. The work at hand
centers around this problem.

B. Existing Protocols

The first protocol for distributed exponentiation without bit
decomposition is by Naor et al. [48]. Their protocol considers
the case where only the exponent is secret shared, and both the
base and outcome are public: c ← exp(b, [e]). Their protocol
de facto consists of linearly opening the secret [e] in the
exponent. The protocol is described in Section III-A. Recently,
Grassi et al. [40] reconsidered this problem and expanded
the protocol of Naor et al. [48] to security against malicious
adversaries. We describe their protocol in Section III-A as
well. The complexities of the two protocols are listed in
Table I.

The first to analyze the problem of distributed exponenti-
ation without bit decomposition with secret shared outcome
were Ning and Xu [50], [51]. They described two different
protocols for secure distributed exponentiation: one protocol
[c] ← exp([b], e) for public exponent and one protocol
[c] ← exp([b], [e]) for secret shared exponent (both protocols
concern a secret shared base and secret shared outcome).
For the case of semi-honest adversaries, where adversaries
respect the protocol, their protocols were reasonably efficient,
although they are dependent on the length of the exponent.
For security against malicious adversaries, that may deviate
from the protocol, the authors resorted to cut-and-choose, an
approach that yielded a disadvantageous overhead. One might
say that the works of Ning and Xu have been surpassed in
time, noting that they predate the SPDZ introductions [31],
[32]. The protocols are listed in Table I, where we updated
the complexities to the modern practice to move randomness
to the precomputation phase. We remark that this update in
particular reduced the number rounds of [c] ← exp([b], [e])
from 20 to 11 (semi-honest case) and from 22 to 13 (malicious
case), compared to what was originally claimed [50], [51].

Aly et al. [1] improved over Ning and Xu [50], [51].
They first described a perfectly secure and efficient protocol
[c]← exp(b, [e]) for secret shared exponentiation from public
base and secret shared exponent, i.e., the protocol left over by

Ning and Xu. Then, they demonstrated how this protocol can
be used to improve over the protocols of Ning and Xu, both
in the semi-honest as in the malicious setting. The protocols
of Aly et al. are formally described in Sections III-B-III-D.
(These protocols were originally described for any b, but as we
will notice in these sections, some only operate for generators
b only.) In these sections, we have also performed a proper
analysis of the efficiency of these protocols: it turns out that
Aly et al. significantly overestimated the round complexity of
some of their protocols. For example, by closer investigation
of their protocol for [c] ← exp([b], e), it turned out that
some seemingly sequential steps were in fact parallelizable,
allowing a reduction of the number of rounds from 8 to 5.
The observation is explained in more detail in Section III-C.
We make a similar observation on the protocol where all
inputs and outputs are secret shared, [c]← exp([b], [e]), going
from 13 to 10 rounds as explained in Section III-D. The
observation has been confirmed by the authors of [1]. The
(updated) complexities of the protocols by Aly et al. are also
listed in Table I. The computation of the number of secure
multiplications and openings was missing in [1], and is new
in our analysis.

In [58], Smart and Talibi Alaoui considered protocols
Multiply-G-P and Multiply-G-S, which can roughly be seen as
equivalents of the protocols pss and sss, but then over elliptic
curve groups, where the main operation is multiplication (later
generalized to pairing groups by Aranha et al. [5]). They
use pre-computed multiplication triples to perform the latter
protocol.

Related to these results is a benchmark of various multiparty
protocols in the SCALE-MAMBA system [2] performed by
Aly and Smart [3]. One protocol they consider is a numerical
computation of [c] ← exp(2, [e]), which together with a
numerical secure computation of [c] ← log(2, [e]) allows
for the secure composition of any numerical computation of
exponentiation with a public or shared base and with a shared
exponent. Their protocols and analyses are structurally differ-
ent than ours: whereas ours focus on modular exponentiation,
theirs restrict the input e to be from a certain range so that
the computations are over the reals and the difficulty shifts to
computing the fractional remainder.

C. Completing the Picture

After performing a proper classification of state of the
art, with a correct and detailed complexity analysis, we can
observe that there are two protocols missing: c ← exp([b], e)
and c ← exp([b], [e]). The former of the two is, clearly,
pointless: in a finite field of prime size q, one can easily
compute b offline from c = be and e. The absence of a protocol
for the latter type of exponentiation is striking: exponentiation
with secret base and secret exponent but public outcome
appears in various PRF constructions and digital signature
schemes (see also Section I-D). We develop protocols for this
remaining function in Section IV, both for semi-honest as for
malicious adversaries. The protocols come with a detailed
efficiency analysis in Section IV-A, that demonstrates that
they are comparable with the other protocols for distributed

3

exponentiation and operate in constant rounds. The numbers
are listed in Table I. An analysis of the protocol in the
universal composability framework of Canetti [20] is given
in Section IV-B.

D. Application

We give example applications of the exponentiation proto-
cols in Section V. One application is that of secure distributed
public key encryption, that relies on protocols for exponen-
tiation of public base b to secret shared exponent [e], both
with public and shared outcome. The example is based on
earlier examples of Aly et al. [1]. Grassi et al. [40] already
described applications of exponentiation with public outcome
to symmetric cryptography.

These applications all use secure exponentiation proto-
cols with public base. However, applications are not limited
as such: many applications would need secure exponentia-
tion protocols with shared base, too. Consider, for instance,
the milestone weak PRF construction of Naor et al. from
1999 [48]: t = mk, where m is the message, k the key,
and t the tag, computed in a finite field of prime size q.
Naor et al. already considered that k could be secretly shared
among servers. We go one step further: by employing our new
protocol for c ← exp([b], [e]), this PRF can be evaluated in
a distributed manner without revealing any information about
neither [m] nor [k]. Our new protocol even proves itself useful
if the message would first be hashed, i.e., in the distributed
PRF construction of [48], as we explain in Section V-B. In
this section, we also demonstrate how the protocol can extend
to digital signature schemes.

E. Improved Complexity Against Malicious Adversaries

Malicious adversaries differ from semi-honest adversaries
in that they might distribute malformed shares and make the
outcome incorrect. The malicious adversary resistant protocols
of Section III and IV basically rely on evaluating the semi-
honest case two times: once for the target exponent e/[e] and
once for a randomized one. As becomes clear from Table I, this
practice yields an overhead of more than 100% in the number
of rounds, and also the multiplication complexity doubles
(on average). An alternative approach is to use message
authentication codes (MACs) on the relevant data [31], [32],
[49]. A more elegant alternative approach is committed MPC
of Frederiksen et al. [35], where each party commits to its
shares using additively homomorphic commitment schemes.

F. Outline

We will describe some preliminaries and the multiparty
computation model that we consider, in Section II. The pro-
tocols of Naor et al. and Grassi et al. on exponentiation with
a shared exponent and public base and outcome are given in
Section III-A. The three protocols of Aly et al. with secretly
shared outcome and at least one of the base and exponent being
secretly shared are given in Section III-B-III-D. The protocols
for exponentiation with secret shared base and exponent and
public outcome are given in Section IV. This section also Ta

bl
e

I:
R

ou
nd

,
m

ul
tip

lic
at

io
n

co
m

pl
ex

ity
(n

um
be

r
of

se
cu

re
m

ul
tip

lic
at

io
n

ev
al

ua
tio

ns
),

an
d

nu
m

be
r

of
op

en
in

gs
of

n
-p

ar
ty

pr
ot

oc
ol

s
fo

r
ex

po
ne

nt
ia

tio
n

w
ith

ou
t

bi
t

de
co

m
po

si
tio

n.
Fo

r
th

e
re

su
lts

of
[5

1]
,k

de
no

te
s

th
e

cu
t-

an
d-

ch
oo

se
pa

ra
m

et
er

an
d
l

th
e
lo
g
2

of
th

e
le

ng
th

of
th

e
ex

po
ne

nt
.

se
m

i-
ho

ne
st

m
al

ic
io

us

op
er

at
io

n
ro

un
ds

m
ul

tip
lic

at
io

ns
op

en
in

gs
ro

un
ds

m
ul

tip
lic

at
io

ns
op

en
in

gs
re

fe
re

nc
e

[c
]
←

ex
p
(
b
,[
e]
)

3
n
+
1

2n
8

2
n
+
5

4
n
+
8

[1
]

an
d

Se
ct

io
n

II
I-

B

[c
]
←

ex
p
([
b]
,
e
)

5
n
+
1

4n
+
3

7
k
n
+

n
+
1

3k
n
+
4
n
+
3

[5
1]

5
2n

+
3

4n
+
3

1
0

4n
+
11

8
n
+
19

[1
]

an
d

Se
ct

io
n

II
I-

C

[c
]
←

ex
p
([
b]
,[
e]
)

11
ln

+
3
l
+
1

4
ln

+
5
l
+
1

13
k
ln

+
ln

+
3
l
+
1

3
k
ln

+
4
ln

+
5
l
+
1

[5
1]

1
0

3n
+
6

6n
+
7

2
0

6n
+
18

12
n
+
31

[1
]

an
d

Se
ct

io
n

II
I-

D

c
←

ex
p
(
b
,[
e]
)

1
0

1
3

1
5

[4
0]

,[
48

]
an

d
Se

ct
io

n
II

I-
A

c
←

ex
p
([
b]
,
e
)

—
—

—
—

—
—

(p
oi

nt
le

ss
)

c
←

ex
p
([
b]
,[
e]
)

7
2n

+
4

4n
+
7

1
4

4n
+
13

8
n
+
27

Se
ct

io
n

IV

4

includes the in-depth security and efficiency analysis. We
conclude in Section V with a more detailed discussion of some
of the possible applications of the introduced protocols. The
work is concluded in Section VI.

II. PRELIMINARIES

Let q be a large prime number. We write Zq = {0, . . . , q−
1}, and we let Z∗

q = Zq\{0} denote the multiplicative group.
We write p = q − 1.

A. Multiparty Computation Model

We will describe our protocols for n parties P =
{P1, . . . , Pn}, for some n ∈ N. Adopting the notation of
Grassi et al. [40] and Aly et al. [1] to a large extent, a secret
sharing of a value x ∈ Zq is denoted by [x]q , and a secret
sharing of a value x ∈ Z∗

q is denoted [x]q∗ . If the respective
field is irrelevant for the context, the subscripting is omitted.
In this case, we denote the respective set by F.

Our results are described relative to the so-called arithmetic
black box functionality [30]. This functionality, denoted FABB,
consists of an ensemble of multiparty protocols that can be
evaluated securely in a black box manner. It serves as an ideal
functionality that is capable to store secret values over a field
F and that generates outputs upon request. The commands that
we consider in this work are described in below Definition II.1.

Definition II.1 (Ideal functionality FABB). The functionality
FABB is an arithmetic black box for the secure computation
of the following functions by a set P of n parties. Here, each
value x that is stored in the functionality is associated with a
unique identifier [x] given to all parties.

• input(x): receive a value x ∈ F and store it;
• share(x): create a share [x] for x;
• rand(F): sample r

$←− F and store [r];
• add([x], [y]): compute z = x+ y and store [z];
• mult([x], [y]): compute z = x · y and store [z];
• listmult([x1], . . . , [xℓ]): compute z = x1 ·. . .·xℓ and store

[z];
• open([x]): send x to all parties.

Here, F is any finite field.

The functionality allows us to discard of all technicalities
of secret sharing and multiparty computation needed to imple-
ment this ensemble of functions. It will allow us to describe
our protocols and prove them securely using the universal
composability (UC) framework [20].

Definition II.2 (UC security). A protocol P universally com-
posably computes a functionality F if for all adversaries A
there exists a simulator S for which no environment E can
non-negligibly distinguish if it is interacting with A and a list
of parties P running P , or with S and P running F .

We refer to [19], [21], [42] for a more detailed treatment
of how to formalize universal composable protocols and how
to formalize the simulators.

We remark that in our case we will focus on both semi-
honest and malicious adversaries. The former follows the
entire protocol as expected, but tries to retrieve as much

information as possible from the info obtained. The latter may
deviate from the protocol at its discretion and learn secret data
this way. We always assume that there is a sufficient number
of honest parties. This number, depends on the particular
instantiation. In addition, in the malicious setting, we aim for
security with abort, meaning that the parties are ensured that
if they receive an output, it is correct.

B. Instantiation

In our work, we assume that secret sharing is performed
using any linear secret sharing scheme. Assume a value x is
shared among n parties, each party holding a share xi. The
value x can be retrieved as

∑n
i=1 αi ·xi, where the αi are the

linear reconstruction coefficients. One might have adopted a
(t, n) threshold scheme, where t ≤ n denotes the minimum
number of shares needed to restore the value x; our analyses
apply, still. The protocol is secure under the assumption that
a majority of the parties in P is honest.

We will not put any restriction on how to actually imple-
ment the functionality FABB. Nevertheless, for comparison of
protocols later on, it appears useful to discuss an example
implementation. One way to do so is using the SPDZ protocol
of Damgård et al. [29], [31]. SPDZ is a two-stage protocol.
In the offline or preprocessing phase of SPDZ, a sufficient
amount of random shared data is generated. This data consists
of random bits [x] for x ∈ {0, 1}, random square pairs
([x], [y]) with y = x2 mod q for x, y ∈ Zq , and random
multiplication tuples ([x], [y], [z]) with z = x · y mod q for
x, y, z ∈ Zq . These randomness can be generated efficiently
using, e.g., somewhat homomorphic encryption [29], [31] or
using oblivious transfer via the MASCOT protocol [46]. In the
online phase, the function add can be done essentially for free
without communication cost. In protocols, we will regularly
write + and · for addition and multiplication with public
scalar. Secure multiplication mult of two secret shared inputs
takes one round of interaction. It consists of one opening.
A protocol for fan-in multiplication listmult from “ordinary”
multiplication and randomness generation was described by
Damgård et al. [28], following Bar-Ilan and Beaver [6]. Their
protocol takes 5 rounds and 5ℓ+ 4 multiplications. However,
noting that in SPDZ random tuples are pregenerated, fan-
in multiplication listmult can be performed in 2 rounds of
interaction, ℓ+ 1 multiplications, and 2ℓ openings:

• take ℓ + 1 secret shared random values
[r0], . . . , [rℓ], along with precomputed multiplications
[si] = mult([ri−1],

[
r−1
i

]
) for i = 0, . . . , ℓ, where the

indices wrap modulo ℓ+ 1;
• compute and reveal [yi] = mult([xi], [si]) for i =

1, . . . , ℓ, in 2 rounds;
• compute y = y1 · . . . · yℓ and listmult([x1], . . . , [xℓ]) =

y · [s0] offline.
This instantiation of FABB yields security with abort, i.e.,
honest parties know that if they get an output from the protocol
it is correct, in case at least one party in P is honest.

Needless to say, this is only one possible instantiation.
Although this will be our reference instantiation when it
comes to evaluating the performance of the protocols, different

5

choices might yield instantiations that are advantageous in
certain directions.

III. EXISTING PROTOCOLS FOR EXPONENTIATION
WITHOUT BIT-DECOMPOSITION

We will recap the most recent existing protocols for secure
exponentiation without bit decomposition. The computation of

• be from (b , [e]) is discussed in Section III-A;
• [be] from (b , [e]) is discussed in Section III-B;
• [be] from ([b], e) is discussed in Section III-C;
• [be] from ([b], [e]) is discussed in Section III-D.

The four protocols are dubbed psp, pss, sps, and sss, re-
spectively, where the abbreviation stands for “public/secret
base, public/secret exponent, public/secret outcome”. Note
that, unlike what is suggested by Table I, we treat psp first,
the reason being that it predates the other protocols.

A. Public Base and Secret Exponent to Public Outcome

1) Semi-Honest Adversaries: Naor et al. [48] described a
very simple protocol for exponentiation to a non-zero secret
exponent without bit decomposition, with public outcome. The
protocol exploits the Lagrange interpolation multipliers and
the fact that e =

∑n
i=1 αi · ei, where ei is the share of e held

by party Pi (see also Section II-B). The protocol is described in
Protocol 1. It takes 1 round and 0 multiplications. It technically
contains 1 opening.

Protocol 1 psp for semi-honest adversaries (Naor et al. [48])

Input: public base b ∈ Zq and secret shared exponent [e]p∗

Output: public be ∈ Zq

1: each party Pi locally computes and broadcasts ci ← bαi·ei

2: be ← c1 · . . . · cn
3: return be

2) Malicious Adversaries: Grassi et al. [40] likewise con-
sidered exponentiation to a non-zero secret exponent without
bit decomposition, with public outcome, but then in such
a way that it is secure against malicious adversaries. The
protocol is described in Protocol 2; it includes a superscript
“+” to indicate security against malicious adversaries. It takes
3 rounds and 1 multiplication, noting that lines 1 and 4 can
be parallelized once lines 2 and 3 are moved up. It contains
5 openings.

Protocol 2 psp+ for malicious adversaries (Grassi et al. [40])

Input: public base b ∈ Zq and secret shared exponent [e]p∗

Output: public be ∈ Zq

1: be ← psp(b, [e]p∗)
2: [r]p∗ ← rand(Z∗

p)
3: [s]p∗ ← mult([e]p∗ , [r]p∗)
4: bs ← psp(b, [s]p∗)
5: r ← open([r]p∗)
6: verify that bs = (be)r

7: return be

Grassi et al. [40] proved this protocol psp+ to securely
implement functionality FABB-psp in the FABB-hybrid model,
where FABB-psp is defined as follows:

Definition III.1. The functionality FABB-psp equals the func-
tionality FABB extended with an ideal function psp that takes
as input a public base b ∈ Zq and a secret shared exponent
[e]p∗ , and that computes be and sends it to the adversary. If
the adversary responds with deliver, the function sends be to
all parties; if not, it sends ⊥ to all parties.

B. Public Base and Secret Exponent to Secret Outcome

1) Semi-Honest Adversaries: Aly et al. [1] described an el-
egant protocol for exponentiation to a non-zero secret exponent
without bit decomposition. As that of Grassi et al. [40], the
protocol exploits the Lagrange interpolation multipliers and
the fact that e =

∑n
i=1 αi · ei, where ei is the share of e held

by party Pi (see also Section II-B). The protocol is described
in Protocol 3. It takes 3 rounds and n + 1 multiplications. It
contains 2n openings.

Protocol 3 pss for semi-honest adversaries (Aly et al. [1])

Input: public base b ∈ Zq and secret shared exponent [e]p∗

Output: secret shared [be]q
1: each party Pi locally computes ci ← bαi·ei

2: [ci]q ← share(ci) for each i
3: [be]q ← listmult([c1]q, . . . , [cn]q)
4: return [be]q

2) Malicious Adversaries: They also described a version
secure against malicious adversaries. The protocol is described
in Protocol 4; it includes a superscript “+” to indicate security
against malicious adversaries. It takes 8 rounds and 2n + 5
multiplications, noting that lines 1 and 4 can be parallelized
once lines 2 and 3 are moved up. It contains 4n+8 openings.

Protocol 4 pss+ for malicious adversaries (Aly et al. [1])

Input: public base b ∈ Zq and secret shared exponent [e]p∗

Output: secret shared [be]q
1: [be]q ← pss(b, [e]p∗)
2: [r]p∗ ← rand(Z∗

p)
3: [s]p∗ ← mult([e]p∗ , [r]p∗ − [1]p∗)
4: [bs]q ← pss(b, [s]p∗)
5: [z]p∗ ← [s]p∗ + [e]p∗

6: z ← open([z]p∗)
7: [y]q ← b−z ·mult([be]q, [b

s]q)− [1]q
8: [r′]q∗ ← rand(Z∗

q)
9: [z]q ← mult([r′]q∗ , [y]q)

10: z ← open([z]q)
11: verify that z = 0
12: return [be]q

The verification steps in pss+ are comparable to those in
the protocol of psp+, but an additional randomized loop must
be incorporated as we require secret shared outcome.

6

Aly et al. [1] proved this protocol pss+ to securely imple-
ment functionality FABB-pss in the FABB-hybrid model, where
FABB-pss is defined as follows:

Definition III.2. The functionality FABB-pss equals the func-
tionality FABB extended with an ideal function pss that takes
as input a public base b ∈ Zq and a secret shared exponent
[e]p∗ , and that returns secret shared [be]q .

C. Secret Base and Public Exponent to Secret Outcome

1) Semi-Honest Adversaries: Aly et al. [1] suggested to
securely compute [be] from ([b], e) by combining two evalua-
tions of pss for public base g and a random and secret shared
exponent. The protocol is described in Protocol 5. It takes
5 rounds and 2n+ 3 multiplications. Note: the original work
claims that this protocol takes 8 rounds, seemingly overlooking
that the two evaluations of pss can be performed in parallel
(in our counting, we consider these two evaluations of pss to
be ran in parallel). It contains 4n+ 3 openings.

Protocol 5 sps for semi-honest adversaries (Aly et al. [1])

Input: secret shared base [b]q∗ and public exponent e ∈ Z∗
p

Output: secret shared [be]q∗
1: [r]p∗ ← rand(Z∗

p)
2: [s]p∗ ← −e · [r]p∗

3: [c]q∗ ← pss(g, [r]p∗)
4: [d]q∗ ← pss(g, [s]p∗)
5: [f]q∗ ← mult([b]q∗ , [c]q∗) ▷ Note that f satisfies

fe = (bc)e = be · gre = be · g−s = be · d−1

6: f ← open([f]q∗)
7: h← fe

8: [be]q∗ ← h · [d]q∗
9: return [be]q∗

The original protocol was described for any b ∈ Zq , but in
this case, opening [f]q in line 6 would reveal whether or not
b = 0. In fact, the protocol only works for generators b.

2) Malicious Adversaries: The protocol can be made secure
against malicious adversaries by eschewing pss in favor of
pss+. We refer to the resulting protocol as sps+. The protocol
takes 10 rounds and 4n+11 multiplications. It contains 8n+19
openings.

D. Secret Base and Secret Exponent to Secret Outcome

1) Semi-Honest Adversaries: Aly et al. [1] finally trans-
formed the protocol of sps to one to securely compute [be]
from ([b], [e]) by two additional calls to mult and one addi-
tional one to pss, all to account for the secrecy of e. The
protocol is described in Protocol 6. It takes 10 rounds and
3n + 6 multiplications. Note: the original work claims that
this protocol takes 13 rounds, again seemingly overlooking
that the two evaluations of pss can be performed in parallel
(in our counting, we consider these two evaluations of pss to
be ran in parallel). It contains 6n+ 7 openings.

Just like for sps, the protocol was originally described for
b ∈ Zq but it only works if b is a generator.

Protocol 6 sss for semi-honest adversaries (Aly et al. [1])

Input: secret shared base [b]q∗ and secret shared exponent
[e]p∗

Output: secret shared [be]q∗
1: [r]p∗ ← rand(Z∗

p)
2: [s]p∗ ← −mult([e]p∗ , [r]p∗)
3: [c]q∗ ← pss(g, [r]p∗)
4: [d]q∗ ← pss(g, [s]p∗)
5: [f]q∗ ← mult([b]q∗ , [c]q∗) ▷ Note that f satisfies

fe = (bc)e = be · gre = be · g−s = be · d−1

6: f ← open([f]q∗)
7: [h]q∗ ← pss(f, [e]p∗)
8: [be]q∗ ← mult([h]q∗ , [d]q∗)
9: return [be]q∗

2) Malicious Adversaries: The protocol can be made secure
against malicious adversaries by eschewing pss in favor of
pss+. We refer to the resulting protocol as sss+. The protocol
takes 20 rounds and 6n+18 multiplications. It contains 12n+
31 openings.

IV. SECRET BASE AND SECRET EXPONENT TO PUBLIC
OUTCOME

The discussion of state of the art in Section III misses
two variants. One of these variants, the secure computation
of be from ([b], e), is pointless: one can retrieve b from be

and e. The remaining one, the secure computation of be from
([b], [e]), is meaningful but still non-existent. We describe such
a protocol in this section, both for the case of semi-honest as
for malicious adversaries.

1) Semi-Honest Adversaries: The protocols is called ssp,
where ssp stands for “secret base, secret exponent, public
outcome”. The protocol is described in Protocol 7, and it is
depicted in Figure 1.

Protocol 7 ssp for semi-honest adversaries

Input: secret shared base [b]q∗ and secret shared exponent
[e]p∗

Output: public be ∈ Zq∗

1: [r]p∗ ← rand(Z∗
p)

2: [s]p∗ ← −mult([e]p∗ , [r]p∗)
3: [c]q∗ ← pss(g, [r]p∗)
4: [d]q∗ ← pss(g, [s]p∗)
5: [f]q∗ ← mult([b]q∗ , [c]q∗) ▷ Note that f satisfies

fe = (bc)e = be · gre = be · g−s = be · d−1

6: d← open([d]q∗)
7: f ← open([f]q∗)
8: h← psp(f, [e]p∗)
9: be ← h · d

10: return be

The protocol differs from that of Protocol 5 at three main
points. In line 2 secure multiplication needs to be performed as
the exponent e is secret shared. Likewise, for the computation
of h in line 8 the protocol psp must be invoked. On the other
hand, in line 6 we open d: after all, the outcome be is allowed

7

to be public, and be opening d, this allows to compute be in
line 9 more efficiently.

2) Malicious Adversaries: The protocol can be made secure
against malicious adversaries by eschewing psp in favor of
psp+, and pss in favor of pss+. We refer to the resulting
protocol as ssp+. We discuss the efficiency of the protocols ssp
and ssp+ in Section IV-A. Security is treated in Section IV-B.

A. Efficiency

The protocol ssp of Protocol 7 takes 7 rounds and 2n + 4
multiplications. It contains 4n + 7 openings. Here, we note
that:

• lines 3 and 4 can be evaluated in parallel and take 3
rounds, 2n+ 2 multiplications, and 4n openings in total
(see Section III-B);

• lines 6 and 7 can be evaluated in parallel and take 1
round, 0 multiplications, and 2 openings in total;

• lines 2 and 5 both take 1 round, 2 multiplications, and 2
openings;

• line 8 takes 1 round, 2 multiplications, and 1 opening;
• the remaining lines are either covered by precomputation

or are to be evaluated offline.
Likewise, the cost of sps+ is 14 rounds and 4n+13 multipli-
cations. It contains 8n+27 openings. Here, the re-computation
is performed, keeping in mind that one should count the costs
of psp+ and pss+, instead of psp and pss.

B. Security

We will focus on the security of ssp+. Recall from Sec-
tion III-A and Section III-B that protocols psp+ and pss+ have
been proven to securely implement functionalities FABB-psp
and FABB-pss, respectively, in the FABB-hybrid model. For
brevity, we define

FABB-psx (1)

to be the merger of the two functionalities FABB-pss and
FABB-psp of Definitions III.1 and III.2.

We will argue security of ssp+ in the FABB-psx-hybrid
model. To do so, we first describe the extended functionality
FABB-psx-ssp below.

Definition IV.1. The functionality FABB-psx-ssp equals the
functionality FABB-psx extended with an ideal function ssp
that takes as input a secret shared base [b]q and a secret
shared exponent [e]p∗ , and that computes be and sends it to the
adversary. If the adversary responds with deliver, the function
sends be to all parties; if not, it sends ⊥ to all parties.

We are now ready to prove UC security of ssp+ against
malicious adversaries.

Theorem IV.2. In the FABB-psx-hybrid model, the protocol
ssp+ securely implements FABB-psx-ssp against static malicious
adversaries that corrupt up to n− 1 parties.

Proof. We have to construct a simulator Sssp such that
no environment E can non-negligibly distinguish the real
world FABB-psx composed with ssp+ from the ideal world

FABB-psx-ssp composed with Sssp. However, as protocol ssp+

is entirely composed of functionalities from FABB-psx, the
description of such simulator is trivial: it simply uses those to
simulate ssp+ indistinguishably, and relays a negative deliver,
if any. The protocol ssp+ thus inherits the security from the
operations in FABB-psx.

V. APPLICATION

The protocols of secure distributed exponentiation of Sec-
tion III and Section IV serve a general purpose and can be
used in many settings and applications.

A. Application of Existing Protocols

A typical example, that was also highlighted by Aly et
al. [1] is public key encryption. For example, El Gamal
encryption [36] is defined over a finite field of prime q
elements, generated by element g. It has as public key a
field element h, and as secret key an exponent x such that
h = gx mod q. It operates as follows:

• Encryption of a message m takes a random r and outputs

(c1, c2) = (gr mod q , m · hr mod q);

• Decryption of a ciphertext (c1, c2) outputs m = c2 · c−x
1 .

In a distributed environment, one considers a shared input [m]
to be encrypted. The ciphertext need not be shared, but in this
case, the randomness [r] has to be shared (otherwise, one can
recover m from c2 and hr). Encryption of this form can thus
be evaluated in a distributed manner as

(c1, c2)←
(
psp(g, [r]p∗) , open

(
mult

(
[m]q, pss(h, [r]p∗)

)))
.

Decryption, likewise, can be done as

[m]q ← c2 · pss(c1,−[x]p∗) .

The application to other public key encryption schemes that
rely on exponentiation is identical. Further immediate appli-
cations of protocols with public base appear in the direction
of share conversion [24], and in the context hashing based on
hardness assumptions, e.g., in VSH [23].

B. Application of New Protocols

These applications only give a modest impression of what
can be achieved with the protocols of this work: remarkably,
many use cases of exponentiation in public key cryptography
apply to a setting where both the base and the exponent are
supposed to be kept secret, and the outcome can be public.
Here, the newly introduced protocol ssp, where a secret base
is exponentiated with a secret value to obtain a public outcome,
comes into place.

A notable application of this particular protocol is the
landmark distributed PRF of Naor et al. from 1999 [48], later
marked as key homomorphic PRF by Boneh et al. [14]. It is
defined over a finite field of prime q elements, and on input
of a key k ∈ Z∗

p and message m ∈ Z∗
q , it computes a tag as

t = mk mod q .

8

rand

-mult

pss pss

mult

open open

psp

mult

[b] [e]

[r]

[s] = [−re]

[c] = [gr] [d] = [gs] = [g−re]

[f] = [b · gr]

f = b · gr d = g−re

h = fe = be · gre

g g

be

Figure 1: Simplified depiction of ssp of Protocol 7 for semi-honest adversaries.

Naor et al. already considered distributed computation with
respect to the key, but not with respect to the message. In
a distributed environment, where both inputs [m] and [k] are
shared, the parties can evaluate the PRF in a distributed manner
as simple as

t← ssp([m]q∗ , [k]p∗) .

Note that there is no reason to keep the tag t shared, it can be
made publicly available. We further remark that more modern
variants of the PRF of Naor et al. first hash the message, and
only authenticate the resulting value:

t = H(m)k mod q .

In this case, if the message m has sufficient entropy and if H
is assumed to be a random oracle, it might be sufficient to
resort to protocol psp evaluated on public H(m) and shared
[k]. If m would not have enough entropy, it might be derivable
from H(m) by exhaustive search, and it is advisable to use ssp
regardless. (We remark that protecting the main application in
case of passwords with low entropy is beyond the scope of this
work. We refer the reader to [17], [18], [43], [61] for more
details.)

Likewise, minor adjustments can be made to extend the
technique to rings. In this case, they become relevant, for
example, for the RSA signature scheme [55]. Let p, q be two

primes. Set n = p · q, and let φ(n) = (p − 1)(q − 1) be
Euler totient function applied to n. Pick an appropriate value
e ≤ φ(n) such that gcd(e, φ(n)), and set d = e−1 mod φ(n).
Set (n, e) as public key and d as private key (p, q, φ(n) can be
discarded). An RSA signature on a message m is computed
as

σ = H(m)d mod n ,

where H is a cryptographic hash function as above. Verifica-
tion of a message-signature tuple (m,σ) is done by checking
whether the following holds:

σe ?
= H(m) mod n .

Similar methodology as for the PRF of Naor et al. applies. In
detail, in a distributed environment, where both inputs [m] and
[d] are shared, the parties can sign m in a distributed manner
as follows:

σ ← ssp([H(m)n], [d]φ(n)) .

VI. CONCLUSION

We performed an extensive analysis of protocols for per-
fectly secure distributed modular exponentiation, covering all
meaningful cases of secret base and/or secret exponent and/or

9

secret outcome. We observed that earlier authors have overes-
timated the complexity of their own protocols, and closed the
remaining open problem of exponentiation with secret base,
secret exponent, and public outcome.

The comparison of the protocols has mostly been done at
a theoretical level, counting the total number of multicplica-
tions and openings. An implementation of the protocols in
a multiparty software systems such as SCALE-MAMBA [2]
or MP-SPDZ [45] could be of value. In addition, although
we have done our best to optimize the protocol, we could
not formally prove that the schemes cannot be significantly
optimized further.

REFERENCES

[1] Aly, A., Abidin, A., Nikova, S.: Practically Efficient Secure Distributed
Exponentiation Without Bit-Decomposition. In: Meiklejohn, S., Sako,
K. (eds.) Financial Cryptography and Data Security - 22nd International
Conference, FC 2018, Nieuwpoort, Curaçao, February 26 - March 2,
2018, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 10957, pp. 291–309. Springer (2018)

[2] Aly, A., Cong, K., Cozzo, D., Keller, M., Orsini, E., Rotaru, D., Scherer,
O., Scholl, P., Smart, N.P., Tanguy, T., Wood, T.: SCALE–MAMBA
v1.9: Documentation (July 2020)

[3] Aly, A., Smart, N.P.: Benchmarking Privacy Preserving Scientific Oper-
ations. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.)
Applied Cryptography and Network Security - 17th International Con-
ference, ACNS 2019, Bogota, Colombia, June 5-7, 2019, Proceedings.
Lecture Notes in Computer Science, vol. 11464, pp. 509–529. Springer
(2019)

[4] Aly, A., Vyve, M.V.: Practically Efficient Secure Single-Commodity
Multi-market Auctions. In: Grossklags and Preneel [41], pp. 110–129

[5] Aranha, D.F., Dalskov, A.P.K., Escudero, D., Orlandi, C.: Improved
Threshold Signatures, Proactive Secret Sharing, and Input Certification
from LSS Isomorphisms. In: Longa, P., Ràfols, C. (eds.) Progress
in Cryptology - LATINCRYPT 2021 - 7th International Conference
on Cryptology and Information Security in Latin America, Bogotá,
Colombia, October 6-8, 2021, Proceedings. Lecture Notes in Computer
Science, vol. 12912, pp. 382–404. Springer (2021)

[6] Bar-Ilan, J., Beaver, D.: Non-Cryptographic Fault-Tolerant Computing
in Constant Number of Rounds of Interaction. In: Rudnicki, P. (ed.)
Proceedings of the Eighth Annual ACM Symposium on Principles
of Distributed Computing, Edmonton, Alberta, Canada, August 14-16,
1989. pp. 201–209. ACM (1989)

[7] Beaver, D.: Efficient Multiparty Protocols Using Circuit Randomization.
In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPTO ’91, 11th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 11-15, 1991, Proceedings. Lecture Notes in Computer
Science, vol. 576, pp. 420–432. Springer (1991)

[8] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for
Non-Cryptographic Fault-Tolerant Distributed Computation (Extended
Abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA. pp. 1–10. ACM (1988)

[9] Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic
Encryption and Multiparty Computation. In: Paterson, K.G. (ed.) Ad-
vances in Cryptology - EUROCRYPT 2011 - 30th Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques, Tallinn, Estonia, May 15-19, 2011. Proceedings. Lecture Notes
in Computer Science, vol. 6632, pp. 169–188. Springer (2011)

[10] Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: How the Estonian
Tax and Customs Board Evaluated a Tax Fraud Detection System
Based on Secure Multi-party Computation. In: Böhme, R., Okamoto,
T. (eds.) Financial Cryptography and Data Security - 19th International
Conference, FC 2015, San Juan, Puerto Rico, January 26-30, 2015,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 8975,
pp. 227–234. Springer (2015)

[11] Bogdanov, D., Kamm, L., Kubo, B., Rebane, R., Sokk, V., Talviste,
R.: Students and Taxes: a Privacy-Preserving Study Using Secure
Computation. PoPETs 2016(3), 117–135 (2016)

[12] Bogdanov, D., Kamm, L., Laur, S., Sokk, V.: Rmind: A Tool for
Cryptographically Secure Statistical Analysis. IEEE Trans. Dependable
Sec. Comput. 15(3), 481–495 (2018)

[13] Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakobsen,
T.P., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter,
J., Schwartzbach, M.I., Toft, T.: Secure Multiparty Computation Goes
Live. In: Dingledine, R., Golle, P. (eds.) Financial Cryptography and
Data Security, 13th International Conference, FC 2009, Accra Beach,
Barbados, February 23-26, 2009. Revised Selected Papers. Lecture Notes
in Computer Science, vol. 5628, pp. 325–343. Springer (2009)

[14] Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key Homo-
morphic PRFs and Their Applications. In: Canetti, R., Garay, J.A. (eds.)
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I. Lecture Notes in Computer Science, vol. 8042, pp. 410–428.
Springer (2013)

[15] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully Homomorphic
Encryption without Bootstrapping. Electronic Colloquium on Compu-
tational Complexity (ECCC) 18, 111 (2011)

[16] Brakerski, Z., Vaikuntanathan, V.: Efficient Fully Homomorphic Encryp-
tion from (Standard) LWE. SIAM J. Comput. 43(2), 831–
871 (2014)

[17] Brost, J., Egger, C., Lai, R.W.F., Schmid, F., Schröder, D., Zoppelt,
M.: Threshold Password-Hardened Encryption Services. In: Ligatti et al.
[47], pp. 409–424

[18] Camenisch, J., Lehmann, A., Neven, G.: Optimal Distributed Password
Verification. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-16, 2015. pp. 182–194. ACM
(2015)

[19] Camenisch, J., Lysyanskaya, A., Neven, G.: Practical yet universally
composable two-server password-authenticated secret sharing. In: Yu,
T., Danezis, G., Gligor, V.D. (eds.) the ACM Conference on Computer
and Communications Security, CCS’12, Raleigh, NC, USA, October 16-
18, 2012. pp. 525–536. ACM (2012)

[20] Canetti, R.: Universally Composable Security: A New Paradigm for
Cryptographic Protocols. In: 42nd Annual Symposium on Foundations
of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas,
Nevada, USA. pp. 136–145. IEEE Computer Society (2001)

[21] Canetti, R., Fischlin, M.: Universally Composable Commitments. In:
Kilian, J. (ed.) Advances in Cryptology - CRYPTO 2001, 21st Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 19-23, 2001, Proceedings. Lecture Notes in Computer Science,
vol. 2139, pp. 19–40. Springer (2001)

[22] Chaum, D.: Blind Signature System. In: Chaum, D. (ed.) Advances in
Cryptology, Proceedings of CRYPTO ’83, Santa Barbara, California,
USA, August 21-24, 1983. p. 153. Plenum Press, New York (1983)

[23] Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an Efficient and Provable
Collision-Resistant Hash Function. In: Vaudenay, S. (ed.) Advances in
Cryptology - EUROCRYPT 2006, 25th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, St.
Petersburg, Russia, May 28 - June 1, 2006, Proceedings. Lecture Notes
in Computer Science, vol. 4004, pp. 165–182. Springer (2006)

[24] Cramer, R., Damgård, I., Ishai, Y.: Share Conversion, Pseudorandom
Secret-Sharing and Applications to Secure Computation. In: Kilian,
J. (ed.) Theory of Cryptography, Second Theory of Cryptography
Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005,
Proceedings. Lecture Notes in Computer Science, vol. 3378, pp. 342–
362. Springer (2005)

[25] Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty Computation from
Threshold Homomorphic Encryption. In: Pfitzmann, B. (ed.) Advances
in Cryptology - EUROCRYPT 2001, International Conference on the
Theory and Application of Cryptographic Techniques, Innsbruck, Aus-
tria, May 6-10, 2001, Proceeding. Lecture Notes in Computer Science,
vol. 2045, pp. 280–299. Springer (2001)

[26] Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably
Secure Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H.
(ed.) Advances in Cryptology - CRYPTO ’98, 18th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 23-27,
1998, Proceedings. Lecture Notes in Computer Science, vol. 1462, pp.
13–25. Springer (1998)

[27] Damgård, I., Damgård, K., Nielsen, K., Nordholt, P.S., Toft, T.: Confi-
dential Benchmarking Based on Multiparty Computation. In: Grossklags
and Preneel [41], pp. 169–187

[28] Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally
Secure Constant-Rounds Multi-party Computation for Equality, Com-
parison, Bits and Exponentiation. In: Halevi, S., Rabin, T. (eds.) Theory
of Cryptography, Third Theory of Cryptography Conference, TCC 2006,
New York, NY, USA, March 4-7, 2006, Proceedings. Lecture Notes in
Computer Science, vol. 3876, pp. 285–304. Springer (2006)

10

[29] Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart,
N.P.: Practical Covertly Secure MPC for Dishonest Majority - Or:
Breaking the SPDZ Limits. In: Crampton, J., Jajodia, S., Mayes, K.
(eds.) Computer Security - ESORICS 2013 - 18th European Symposium
on Research in Computer Security, Egham, UK, September 9-13, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 8134, pp. 1–18.
Springer (2013)

[30] Damgård, I., Nielsen, J.B.: Universally Composable Efficient Multiparty
Computation from Threshold Homomorphic Encryption. In: Boneh, D.
(ed.) Advances in Cryptology - CRYPTO 2003, 23rd Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August
17-21, 2003, Proceedings. Lecture Notes in Computer Science, vol.
2729, pp. 247–264. Springer (2003)

[31] Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty Compu-
tation from Somewhat Homomorphic Encryption. In: Safavi-Naini and
Canetti [56], pp. 643–662

[32] Damgård, I., Zakarias, S.: Constant-Overhead Secure Computation of
Boolean Circuits using Preprocessing. In: Sahai, A. (ed.) Theory of
Cryptography - 10th Theory of Cryptography Conference, TCC 2013,
Tokyo, Japan, March 3-6, 2013. Proceedings. Lecture Notes in Computer
Science, vol. 7785, pp. 621–641. Springer (2013)

[33] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans.
Inf. Theory 22(6), 644–654 (1976)

[34] Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A Unified Approach
to MPC with Preprocessing Using OT. In: Iwata, T., Cheon, J.H. (eds.)
Advances in Cryptology - ASIACRYPT 2015 - 21st International Con-
ference on the Theory and Application of Cryptology and Information
Security, Auckland, New Zealand, November 29 - December 3, 2015,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 9452, pp.
711–735. Springer (2015)

[35] Frederiksen, T.K., Pinkas, B., Yanai, A.: Committed MPC - Maliciously
Secure Multiparty Computation from Homomorphic Commitments. In:
Abdalla, M., Dahab, R. (eds.) Public-Key Cryptography - PKC 2018
- 21st IACR International Conference on Practice and Theory of
Public-Key Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 10769, pp.
587–619. Springer (2018)

[36] Gamal, T.E.: A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. In: Blakley, G.R., Chaum, D. (eds.) Advances
in Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, California,
USA, August 19-22, 1984, Proceedings. Lecture Notes in Computer
Science, vol. 196, pp. 10–18. Springer (1984)

[37] Gamal, T.E.: A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

[38] Gentry, C.: Fully homomorphic encryption using ideal lattices. In:
Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM Sym-
posium on Theory of Computing, STOC 2009, Bethesda, MD, USA,
May 31 - June 2, 2009. pp. 169–178. ACM (2009)

[39] Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game
or A Completeness Theorem for Protocols with Honest Majority. In:
Aho, A.V. (ed.) Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, 1987, New York, New York, USA. pp. 218–229.
ACM (1987)

[40] Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-
Friendly Symmetric Key Primitives. In: Weippl et al. [62], pp. 430–443

[41] Grossklags, J., Preneel, B. (eds.): Financial Cryptography and Data
Security - 20th International Conference, FC 2016, Christ Church,
Barbados, February 22-26, 2016, Revised Selected Papers, Lecture Notes
in Computer Science, vol. 9603. Springer (2017)

[42] Jia, C., Wu, S., Wang, D.: Reliable Password Hardening Service with
Opt-Out. In: 41st International Symposium on Reliable Distributed
Systems, SRDS 2022, Vienna, Austria, September 19-22, 2022. pp. 250–
261. IEEE (2022)

[43] Jiang, J., Wang, D., Zhang, G., Chen, Z.: Quantum-Resistant Password-
Based Threshold Single-Sign-On Authentication with Updatable Server
Private Key. In: Atluri, V., Pietro, R.D., Jensen, C.D., Meng, W. (eds.)
Computer Security - ESORICS 2022 - 27th European Symposium on
Research in Computer Security, Copenhagen, Denmark, September 26-
30, 2022, Proceedings, Part II. Lecture Notes in Computer Science, vol.
13555, pp. 295–316. Springer (2022)

[44] Kamm, L., Willemson, J.: Secure floating point arithmetic and private
satellite collision analysis. Int. J. Inf. Sec. 14(6), 531–548 (2015)

[45] Keller, M.: MP-SPDZ: A Versatile Framework for Multi-Party Compu-
tation. In: Ligatti et al. [47], pp. 1575–1590

[46] Keller, M., Orsini, E., Scholl, P.: MASCOT: Faster Malicious Arithmetic

Secure Computation with Oblivious Transfer. In: Weippl et al. [62], pp.
830–842

[47] Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.): CCS ’20: 2020 ACM
SIGSAC Conference on Computer and Communications Security, Vir-
tual Event, USA, November 9-13, 2020. ACM (2020)

[48] Naor, M., Pinkas, B., Reingold, O.: Distributed Pseudo-random Func-
tions and KDCs. In: Stern [60], pp. 327–346

[49] Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A New Approach
to Practical Active-Secure Two-Party Computation. In: Safavi-Naini and
Canetti [56], pp. 681–700

[50] Ning, C., Xu, Q.: Multiparty Computation for Modulo Reduction
without Bit-Decomposition and a Generalization to Bit-Decomposition.
In: Abe, M. (ed.) Advances in Cryptology - ASIACRYPT 2010 - 16th
International Conference on the Theory and Application of Cryptology
and Information Security, Singapore, December 5-9, 2010. Proceedings.
Lecture Notes in Computer Science, vol. 6477, pp. 483–500. Springer
(2010)

[51] Ning, C., Xu, Q.: Constant-Rounds, Linear Multi-party Computation
for Exponentiation and Modulo Reduction with Perfect Security. In:
Lee, D.H., Wang, X. (eds.) Advances in Cryptology - ASIACRYPT
2011 - 17th International Conference on the Theory and Application
of Cryptology and Information Security, Seoul, South Korea, December
4-8, 2011. Proceedings. Lecture Notes in Computer Science, vol. 7073,
pp. 572–589. Springer (2011)

[52] Paillier, P.: Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In: Stern [60], pp. 223–238

[53] Rabin, M.: How to exchange secrets by oblivious transfer. Tech. Rep.
TR-81, Aiken Computation Laboratory, Harvard University, Harvard
(1981)

[54] Rabin, M.O.: Digitalized Signatures and Public-Key Functions as In-
tractable as Factorization (January 1979), MIT/LCS/TR-212

[55] Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Dig-
ital Signatures and Public-Key Cryptosystems. Commun. ACM 21(2),
120–126 (1978)

[56] Safavi-Naini, R., Canetti, R. (eds.): Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings, Lecture Notes in Computer Science,
vol. 7417. Springer (2012)

[57] Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613
(1979)

[58] Smart, N.P., Alaoui, Y.T.: Distributing Any Elliptic Curve Based Pro-
tocol. In: Albrecht, M. (ed.) Cryptography and Coding - 17th IMA
International Conference, IMACC 2019, Oxford, UK, December 16-18,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11929, pp.
342–366. Springer (2019)

[59] Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Rel-
atively Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval,
D. (eds.) Public Key Cryptography - PKC 2010, 13th International
Conference on Practice and Theory in Public Key Cryptography, Paris,
France, May 26-28, 2010. Proceedings. Lecture Notes in Computer
Science, vol. 6056, pp. 420–443. Springer (2010)

[60] Stern, J. (ed.): Advances in Cryptology - EUROCRYPT ’99, Interna-
tional Conference on the Theory and Application of Cryptographic Tech-
niques, Prague, Czech Republic, May 2-6, 1999, Proceeding, Lecture
Notes in Computer Science, vol. 1592. Springer (1999)

[61] Wang, D., Wang, P.: Two Birds with One Stone: Two-Factor Au-
thentication with Security Beyond Conventional Bound. IEEE Trans.
Dependable Secur. Comput. 15(4), 708–722 (2018)

[62] Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.): Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016.
ACM (2016)

Bart Mennink received the Ph.D. degree titled Provable Security of Crypto-
graphic Hash Functions, in 2013, under the supervision of Prof. B. Preneel and
Prof. V. Rijmen. He was an NWO Veni Postdoctoral Researcher with Radboud
University, Nijmegen, The Netherlands, and the FWO Postdoctoral Researcher
with imec-COSIC, KU Leuven, Leuven, Belgium. He completed the M.Sc.
thesis on Encrypted certificate schemes and their security and privacy analysis
during a nine-month internship with Philips, Eindhoven, The Netherlands.
He is an Associate Professor with the Digital Security Group, Radboud
University Nijmegen, Nijmegen, The Netherlands. His current research focus
is on authentication and encryption.

	Introduction
	Secure Exponentiation
	Existing Protocols
	Completing the Picture
	Application
	Improved Complexity Against Malicious Adversaries
	Outline

	Preliminaries
	Multiparty Computation Model
	Instantiation

	Existing Protocols for Exponentiation Without Bit-Decomposition
	Public Base and Secret Exponent to Public Outcome
	Public Base and Secret Exponent to Secret Outcome
	Secret Base and Public Exponent to Secret Outcome
	Secret Base and Secret Exponent to Secret Outcome

	Secret Base and Secret Exponent to Public Outcome
	Efficiency
	Security

	Application
	Application of Existing Protocols
	Application of New Protocols

	Conclusion
	References
	Biographies
	Bart Mennink

